src/share/classes/com/sun/tools/javac/comp/Check.java

Wed, 19 May 2010 16:41:57 +0100

author
mcimadamore
date
Wed, 19 May 2010 16:41:57 +0100
changeset 561
e9ef849ae0ed
parent 547
04cf82179fa7
child 564
1d587ef8bf56
permissions
-rw-r--r--

6880344: Recursive type parameters do not compile
Summary: Issue in type-variable substitution causes valid code to be rejected
Reviewed-by: jjg

duke@1 1 /*
xdono@229 2 * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30
duke@1 31 import com.sun.tools.javac.code.*;
duke@1 32 import com.sun.tools.javac.jvm.*;
duke@1 33 import com.sun.tools.javac.tree.*;
duke@1 34 import com.sun.tools.javac.util.*;
duke@1 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 36 import com.sun.tools.javac.util.List;
duke@1 37
duke@1 38 import com.sun.tools.javac.tree.JCTree.*;
duke@1 39 import com.sun.tools.javac.code.Lint;
duke@1 40 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 41 import com.sun.tools.javac.code.Type.*;
duke@1 42 import com.sun.tools.javac.code.Symbol.*;
duke@1 43
duke@1 44 import static com.sun.tools.javac.code.Flags.*;
duke@1 45 import static com.sun.tools.javac.code.Kinds.*;
duke@1 46 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 47
duke@1 48 /** Type checking helper class for the attribution phase.
duke@1 49 *
duke@1 50 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 51 * you write code that depends on this, you do so at your own risk.
duke@1 52 * This code and its internal interfaces are subject to change or
duke@1 53 * deletion without notice.</b>
duke@1 54 */
duke@1 55 public class Check {
duke@1 56 protected static final Context.Key<Check> checkKey =
duke@1 57 new Context.Key<Check>();
duke@1 58
jjg@113 59 private final Names names;
duke@1 60 private final Log log;
duke@1 61 private final Symtab syms;
duke@1 62 private final Infer infer;
duke@1 63 private final Types types;
mcimadamore@89 64 private final JCDiagnostic.Factory diags;
duke@1 65 private final boolean skipAnnotations;
mcimadamore@359 66 private boolean warnOnSyntheticConflicts;
duke@1 67 private final TreeInfo treeinfo;
duke@1 68
duke@1 69 // The set of lint options currently in effect. It is initialized
duke@1 70 // from the context, and then is set/reset as needed by Attr as it
duke@1 71 // visits all the various parts of the trees during attribution.
duke@1 72 private Lint lint;
duke@1 73
duke@1 74 public static Check instance(Context context) {
duke@1 75 Check instance = context.get(checkKey);
duke@1 76 if (instance == null)
duke@1 77 instance = new Check(context);
duke@1 78 return instance;
duke@1 79 }
duke@1 80
duke@1 81 protected Check(Context context) {
duke@1 82 context.put(checkKey, this);
duke@1 83
jjg@113 84 names = Names.instance(context);
duke@1 85 log = Log.instance(context);
duke@1 86 syms = Symtab.instance(context);
duke@1 87 infer = Infer.instance(context);
duke@1 88 this.types = Types.instance(context);
mcimadamore@89 89 diags = JCDiagnostic.Factory.instance(context);
duke@1 90 Options options = Options.instance(context);
duke@1 91 lint = Lint.instance(context);
duke@1 92 treeinfo = TreeInfo.instance(context);
duke@1 93
duke@1 94 Source source = Source.instance(context);
duke@1 95 allowGenerics = source.allowGenerics();
duke@1 96 allowAnnotations = source.allowAnnotations();
jjg@398 97 allowCovariantReturns = source.allowCovariantReturns();
duke@1 98 complexInference = options.get("-complexinference") != null;
duke@1 99 skipAnnotations = options.get("skipAnnotations") != null;
mcimadamore@359 100 warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
duke@1 101
jjg@398 102 Target target = Target.instance(context);
jjg@398 103 syntheticNameChar = target.syntheticNameChar();
jjg@398 104
duke@1 105 boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
duke@1 106 boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
jjg@377 107 boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
jjg@60 108 boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
duke@1 109
jjg@60 110 deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
jjg@60 111 enforceMandatoryWarnings, "deprecated");
jjg@60 112 uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
jjg@60 113 enforceMandatoryWarnings, "unchecked");
jjg@377 114 sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
jjg@377 115 enforceMandatoryWarnings, "sunapi");
duke@1 116 }
duke@1 117
duke@1 118 /** Switch: generics enabled?
duke@1 119 */
duke@1 120 boolean allowGenerics;
duke@1 121
duke@1 122 /** Switch: annotations enabled?
duke@1 123 */
duke@1 124 boolean allowAnnotations;
duke@1 125
jjg@398 126 /** Switch: covariant returns enabled?
jjg@398 127 */
jjg@398 128 boolean allowCovariantReturns;
jjg@398 129
duke@1 130 /** Switch: -complexinference option set?
duke@1 131 */
duke@1 132 boolean complexInference;
duke@1 133
jjg@398 134 /** Character for synthetic names
jjg@398 135 */
jjg@398 136 char syntheticNameChar;
jjg@398 137
duke@1 138 /** A table mapping flat names of all compiled classes in this run to their
duke@1 139 * symbols; maintained from outside.
duke@1 140 */
duke@1 141 public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
duke@1 142
duke@1 143 /** A handler for messages about deprecated usage.
duke@1 144 */
duke@1 145 private MandatoryWarningHandler deprecationHandler;
duke@1 146
duke@1 147 /** A handler for messages about unchecked or unsafe usage.
duke@1 148 */
duke@1 149 private MandatoryWarningHandler uncheckedHandler;
duke@1 150
jjg@377 151 /** A handler for messages about using Sun proprietary API.
jjg@377 152 */
jjg@377 153 private MandatoryWarningHandler sunApiHandler;
duke@1 154
duke@1 155 /* *************************************************************************
duke@1 156 * Errors and Warnings
duke@1 157 **************************************************************************/
duke@1 158
duke@1 159 Lint setLint(Lint newLint) {
duke@1 160 Lint prev = lint;
duke@1 161 lint = newLint;
duke@1 162 return prev;
duke@1 163 }
duke@1 164
duke@1 165 /** Warn about deprecated symbol.
duke@1 166 * @param pos Position to be used for error reporting.
duke@1 167 * @param sym The deprecated symbol.
duke@1 168 */
duke@1 169 void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
duke@1 170 if (!lint.isSuppressed(LintCategory.DEPRECATION))
duke@1 171 deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
duke@1 172 }
duke@1 173
duke@1 174 /** Warn about unchecked operation.
duke@1 175 * @param pos Position to be used for error reporting.
duke@1 176 * @param msg A string describing the problem.
duke@1 177 */
duke@1 178 public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
duke@1 179 if (!lint.isSuppressed(LintCategory.UNCHECKED))
duke@1 180 uncheckedHandler.report(pos, msg, args);
duke@1 181 }
duke@1 182
jjg@377 183 /** Warn about using Sun proprietary API.
jjg@377 184 * @param pos Position to be used for error reporting.
jjg@377 185 * @param msg A string describing the problem.
jjg@377 186 */
jjg@377 187 public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
jjg@377 188 if (!lint.isSuppressed(LintCategory.SUNAPI))
jjg@377 189 sunApiHandler.report(pos, msg, args);
jjg@377 190 }
jjg@377 191
jjg@505 192 public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
jjg@505 193 if (lint.isEnabled(LintCategory.STATIC))
jjg@505 194 log.warning(pos, msg, args);
jjg@505 195 }
jjg@505 196
duke@1 197 /**
duke@1 198 * Report any deferred diagnostics.
duke@1 199 */
duke@1 200 public void reportDeferredDiagnostics() {
duke@1 201 deprecationHandler.reportDeferredDiagnostic();
duke@1 202 uncheckedHandler.reportDeferredDiagnostic();
jjg@377 203 sunApiHandler.reportDeferredDiagnostic();
duke@1 204 }
duke@1 205
duke@1 206
duke@1 207 /** Report a failure to complete a class.
duke@1 208 * @param pos Position to be used for error reporting.
duke@1 209 * @param ex The failure to report.
duke@1 210 */
duke@1 211 public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
jjg@12 212 log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
duke@1 213 if (ex instanceof ClassReader.BadClassFile) throw new Abort();
duke@1 214 else return syms.errType;
duke@1 215 }
duke@1 216
duke@1 217 /** Report a type error.
duke@1 218 * @param pos Position to be used for error reporting.
duke@1 219 * @param problem A string describing the error.
duke@1 220 * @param found The type that was found.
duke@1 221 * @param req The type that was required.
duke@1 222 */
duke@1 223 Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
duke@1 224 log.error(pos, "prob.found.req",
duke@1 225 problem, found, req);
jjg@110 226 return types.createErrorType(found);
duke@1 227 }
duke@1 228
duke@1 229 Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
duke@1 230 log.error(pos, "prob.found.req.1", problem, found, req, explanation);
jjg@110 231 return types.createErrorType(found);
duke@1 232 }
duke@1 233
duke@1 234 /** Report an error that wrong type tag was found.
duke@1 235 * @param pos Position to be used for error reporting.
duke@1 236 * @param required An internationalized string describing the type tag
duke@1 237 * required.
duke@1 238 * @param found The type that was found.
duke@1 239 */
duke@1 240 Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
jrose@267 241 // this error used to be raised by the parser,
jrose@267 242 // but has been delayed to this point:
jrose@267 243 if (found instanceof Type && ((Type)found).tag == VOID) {
jrose@267 244 log.error(pos, "illegal.start.of.type");
jrose@267 245 return syms.errType;
jrose@267 246 }
duke@1 247 log.error(pos, "type.found.req", found, required);
jjg@110 248 return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
duke@1 249 }
duke@1 250
duke@1 251 /** Report an error that symbol cannot be referenced before super
duke@1 252 * has been called.
duke@1 253 * @param pos Position to be used for error reporting.
duke@1 254 * @param sym The referenced symbol.
duke@1 255 */
duke@1 256 void earlyRefError(DiagnosticPosition pos, Symbol sym) {
duke@1 257 log.error(pos, "cant.ref.before.ctor.called", sym);
duke@1 258 }
duke@1 259
duke@1 260 /** Report duplicate declaration error.
duke@1 261 */
duke@1 262 void duplicateError(DiagnosticPosition pos, Symbol sym) {
duke@1 263 if (!sym.type.isErroneous()) {
duke@1 264 log.error(pos, "already.defined", sym, sym.location());
duke@1 265 }
duke@1 266 }
duke@1 267
duke@1 268 /** Report array/varargs duplicate declaration
duke@1 269 */
duke@1 270 void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
duke@1 271 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
duke@1 272 log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
duke@1 273 }
duke@1 274 }
duke@1 275
duke@1 276 /* ************************************************************************
duke@1 277 * duplicate declaration checking
duke@1 278 *************************************************************************/
duke@1 279
duke@1 280 /** Check that variable does not hide variable with same name in
duke@1 281 * immediately enclosing local scope.
duke@1 282 * @param pos Position for error reporting.
duke@1 283 * @param v The symbol.
duke@1 284 * @param s The scope.
duke@1 285 */
duke@1 286 void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
duke@1 287 if (s.next != null) {
duke@1 288 for (Scope.Entry e = s.next.lookup(v.name);
duke@1 289 e.scope != null && e.sym.owner == v.owner;
duke@1 290 e = e.next()) {
duke@1 291 if (e.sym.kind == VAR &&
duke@1 292 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 293 v.name != names.error) {
duke@1 294 duplicateError(pos, e.sym);
duke@1 295 return;
duke@1 296 }
duke@1 297 }
duke@1 298 }
duke@1 299 }
duke@1 300
duke@1 301 /** Check that a class or interface does not hide a class or
duke@1 302 * interface with same name in immediately enclosing local scope.
duke@1 303 * @param pos Position for error reporting.
duke@1 304 * @param c The symbol.
duke@1 305 * @param s The scope.
duke@1 306 */
duke@1 307 void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
duke@1 308 if (s.next != null) {
duke@1 309 for (Scope.Entry e = s.next.lookup(c.name);
duke@1 310 e.scope != null && e.sym.owner == c.owner;
duke@1 311 e = e.next()) {
duke@1 312 if (e.sym.kind == TYP &&
duke@1 313 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 314 c.name != names.error) {
duke@1 315 duplicateError(pos, e.sym);
duke@1 316 return;
duke@1 317 }
duke@1 318 }
duke@1 319 }
duke@1 320 }
duke@1 321
duke@1 322 /** Check that class does not have the same name as one of
duke@1 323 * its enclosing classes, or as a class defined in its enclosing scope.
duke@1 324 * return true if class is unique in its enclosing scope.
duke@1 325 * @param pos Position for error reporting.
duke@1 326 * @param name The class name.
duke@1 327 * @param s The enclosing scope.
duke@1 328 */
duke@1 329 boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
duke@1 330 for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
duke@1 331 if (e.sym.kind == TYP && e.sym.name != names.error) {
duke@1 332 duplicateError(pos, e.sym);
duke@1 333 return false;
duke@1 334 }
duke@1 335 }
duke@1 336 for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
duke@1 337 if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
duke@1 338 duplicateError(pos, sym);
duke@1 339 return true;
duke@1 340 }
duke@1 341 }
duke@1 342 return true;
duke@1 343 }
duke@1 344
duke@1 345 /* *************************************************************************
duke@1 346 * Class name generation
duke@1 347 **************************************************************************/
duke@1 348
duke@1 349 /** Return name of local class.
duke@1 350 * This is of the form <enclClass> $ n <classname>
duke@1 351 * where
duke@1 352 * enclClass is the flat name of the enclosing class,
duke@1 353 * classname is the simple name of the local class
duke@1 354 */
duke@1 355 Name localClassName(ClassSymbol c) {
duke@1 356 for (int i=1; ; i++) {
duke@1 357 Name flatname = names.
duke@1 358 fromString("" + c.owner.enclClass().flatname +
jjg@398 359 syntheticNameChar + i +
duke@1 360 c.name);
duke@1 361 if (compiled.get(flatname) == null) return flatname;
duke@1 362 }
duke@1 363 }
duke@1 364
duke@1 365 /* *************************************************************************
duke@1 366 * Type Checking
duke@1 367 **************************************************************************/
duke@1 368
duke@1 369 /** Check that a given type is assignable to a given proto-type.
duke@1 370 * If it is, return the type, otherwise return errType.
duke@1 371 * @param pos Position to be used for error reporting.
duke@1 372 * @param found The type that was found.
duke@1 373 * @param req The type that was required.
duke@1 374 */
duke@1 375 Type checkType(DiagnosticPosition pos, Type found, Type req) {
duke@1 376 if (req.tag == ERROR)
duke@1 377 return req;
mcimadamore@536 378 if (found.tag == FORALL)
mcimadamore@536 379 return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
duke@1 380 if (req.tag == NONE)
duke@1 381 return found;
duke@1 382 if (types.isAssignable(found, req, convertWarner(pos, found, req)))
duke@1 383 return found;
duke@1 384 if (found.tag <= DOUBLE && req.tag <= DOUBLE)
mcimadamore@89 385 return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
duke@1 386 if (found.isSuperBound()) {
duke@1 387 log.error(pos, "assignment.from.super-bound", found);
jjg@110 388 return types.createErrorType(found);
duke@1 389 }
duke@1 390 if (req.isExtendsBound()) {
duke@1 391 log.error(pos, "assignment.to.extends-bound", req);
jjg@110 392 return types.createErrorType(found);
duke@1 393 }
mcimadamore@89 394 return typeError(pos, diags.fragment("incompatible.types"), found, req);
duke@1 395 }
duke@1 396
duke@1 397 /** Instantiate polymorphic type to some prototype, unless
duke@1 398 * prototype is `anyPoly' in which case polymorphic type
duke@1 399 * is returned unchanged.
duke@1 400 */
mcimadamore@383 401 Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
duke@1 402 if (pt == Infer.anyPoly && complexInference) {
duke@1 403 return t;
duke@1 404 } else if (pt == Infer.anyPoly || pt.tag == NONE) {
duke@1 405 Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
duke@1 406 return instantiatePoly(pos, t, newpt, warn);
duke@1 407 } else if (pt.tag == ERROR) {
duke@1 408 return pt;
duke@1 409 } else {
mcimadamore@536 410 try {
mcimadamore@536 411 return infer.instantiateExpr(t, pt, warn);
mcimadamore@536 412 } catch (Infer.NoInstanceException ex) {
mcimadamore@536 413 if (ex.isAmbiguous) {
mcimadamore@536 414 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@536 415 log.error(pos,
mcimadamore@536 416 "undetermined.type" + (d!=null ? ".1" : ""),
mcimadamore@536 417 t, d);
mcimadamore@536 418 return types.createErrorType(pt);
mcimadamore@536 419 } else {
mcimadamore@536 420 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@536 421 return typeError(pos,
mcimadamore@536 422 diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
mcimadamore@536 423 t, pt);
mcimadamore@536 424 }
mcimadamore@536 425 } catch (Infer.InvalidInstanceException ex) {
mcimadamore@536 426 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@536 427 log.error(pos, "invalid.inferred.types", t.tvars, d);
mcimadamore@536 428 return types.createErrorType(pt);
mcimadamore@536 429 }
duke@1 430 }
mcimadamore@536 431 }
duke@1 432
duke@1 433 /** Check that a given type can be cast to a given target type.
duke@1 434 * Return the result of the cast.
duke@1 435 * @param pos Position to be used for error reporting.
duke@1 436 * @param found The type that is being cast.
duke@1 437 * @param req The target type of the cast.
duke@1 438 */
duke@1 439 Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
duke@1 440 if (found.tag == FORALL) {
duke@1 441 instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
duke@1 442 return req;
duke@1 443 } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
duke@1 444 return req;
duke@1 445 } else {
duke@1 446 return typeError(pos,
mcimadamore@89 447 diags.fragment("inconvertible.types"),
duke@1 448 found, req);
duke@1 449 }
duke@1 450 }
duke@1 451 //where
duke@1 452 /** Is type a type variable, or a (possibly multi-dimensional) array of
duke@1 453 * type variables?
duke@1 454 */
duke@1 455 boolean isTypeVar(Type t) {
duke@1 456 return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
duke@1 457 }
duke@1 458
duke@1 459 /** Check that a type is within some bounds.
duke@1 460 *
duke@1 461 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
duke@1 462 * type argument.
duke@1 463 * @param pos Position to be used for error reporting.
duke@1 464 * @param a The type that should be bounded by bs.
duke@1 465 * @param bs The bound.
duke@1 466 */
duke@1 467 private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
mcimadamore@154 468 if (a.isUnbound()) {
mcimadamore@154 469 return;
mcimadamore@154 470 } else if (a.tag != WILDCARD) {
mcimadamore@154 471 a = types.upperBound(a);
mcimadamore@154 472 for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
mcimadamore@154 473 if (!types.isSubtype(a, l.head)) {
mcimadamore@154 474 log.error(pos, "not.within.bounds", a);
mcimadamore@154 475 return;
mcimadamore@154 476 }
mcimadamore@154 477 }
mcimadamore@154 478 } else if (a.isExtendsBound()) {
mcimadamore@154 479 if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
mcimadamore@154 480 log.error(pos, "not.within.bounds", a);
mcimadamore@154 481 } else if (a.isSuperBound()) {
mcimadamore@154 482 if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
mcimadamore@154 483 log.error(pos, "not.within.bounds", a);
mcimadamore@154 484 }
mcimadamore@154 485 }
mcimadamore@154 486
mcimadamore@154 487 /** Check that a type is within some bounds.
mcimadamore@154 488 *
mcimadamore@154 489 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
mcimadamore@154 490 * type argument.
mcimadamore@154 491 * @param pos Position to be used for error reporting.
mcimadamore@154 492 * @param a The type that should be bounded by bs.
mcimadamore@154 493 * @param bs The bound.
mcimadamore@154 494 */
mcimadamore@154 495 private void checkCapture(JCTypeApply tree) {
mcimadamore@154 496 List<JCExpression> args = tree.getTypeArguments();
mcimadamore@154 497 for (Type arg : types.capture(tree.type).getTypeArguments()) {
mcimadamore@154 498 if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
mcimadamore@154 499 log.error(args.head.pos, "not.within.bounds", args.head.type);
mcimadamore@154 500 break;
mcimadamore@79 501 }
mcimadamore@154 502 args = args.tail;
mcimadamore@79 503 }
mcimadamore@154 504 }
duke@1 505
duke@1 506 /** Check that type is different from 'void'.
duke@1 507 * @param pos Position to be used for error reporting.
duke@1 508 * @param t The type to be checked.
duke@1 509 */
duke@1 510 Type checkNonVoid(DiagnosticPosition pos, Type t) {
duke@1 511 if (t.tag == VOID) {
duke@1 512 log.error(pos, "void.not.allowed.here");
jjg@110 513 return types.createErrorType(t);
duke@1 514 } else {
duke@1 515 return t;
duke@1 516 }
duke@1 517 }
duke@1 518
duke@1 519 /** Check that type is a class or interface type.
duke@1 520 * @param pos Position to be used for error reporting.
duke@1 521 * @param t The type to be checked.
duke@1 522 */
duke@1 523 Type checkClassType(DiagnosticPosition pos, Type t) {
duke@1 524 if (t.tag != CLASS && t.tag != ERROR)
duke@1 525 return typeTagError(pos,
mcimadamore@89 526 diags.fragment("type.req.class"),
duke@1 527 (t.tag == TYPEVAR)
mcimadamore@89 528 ? diags.fragment("type.parameter", t)
duke@1 529 : t);
duke@1 530 else
duke@1 531 return t;
duke@1 532 }
duke@1 533
duke@1 534 /** Check that type is a class or interface type.
duke@1 535 * @param pos Position to be used for error reporting.
duke@1 536 * @param t The type to be checked.
duke@1 537 * @param noBounds True if type bounds are illegal here.
duke@1 538 */
duke@1 539 Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
duke@1 540 t = checkClassType(pos, t);
duke@1 541 if (noBounds && t.isParameterized()) {
duke@1 542 List<Type> args = t.getTypeArguments();
duke@1 543 while (args.nonEmpty()) {
duke@1 544 if (args.head.tag == WILDCARD)
duke@1 545 return typeTagError(pos,
jjg@398 546 Log.getLocalizedString("type.req.exact"),
duke@1 547 args.head);
duke@1 548 args = args.tail;
duke@1 549 }
duke@1 550 }
duke@1 551 return t;
duke@1 552 }
duke@1 553
duke@1 554 /** Check that type is a reifiable class, interface or array type.
duke@1 555 * @param pos Position to be used for error reporting.
duke@1 556 * @param t The type to be checked.
duke@1 557 */
duke@1 558 Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
duke@1 559 if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
duke@1 560 return typeTagError(pos,
mcimadamore@89 561 diags.fragment("type.req.class.array"),
duke@1 562 t);
duke@1 563 } else if (!types.isReifiable(t)) {
duke@1 564 log.error(pos, "illegal.generic.type.for.instof");
jjg@110 565 return types.createErrorType(t);
duke@1 566 } else {
duke@1 567 return t;
duke@1 568 }
duke@1 569 }
duke@1 570
duke@1 571 /** Check that type is a reference type, i.e. a class, interface or array type
duke@1 572 * or a type variable.
duke@1 573 * @param pos Position to be used for error reporting.
duke@1 574 * @param t The type to be checked.
duke@1 575 */
duke@1 576 Type checkRefType(DiagnosticPosition pos, Type t) {
duke@1 577 switch (t.tag) {
duke@1 578 case CLASS:
duke@1 579 case ARRAY:
duke@1 580 case TYPEVAR:
duke@1 581 case WILDCARD:
duke@1 582 case ERROR:
duke@1 583 return t;
duke@1 584 default:
duke@1 585 return typeTagError(pos,
mcimadamore@89 586 diags.fragment("type.req.ref"),
duke@1 587 t);
duke@1 588 }
duke@1 589 }
duke@1 590
jrose@267 591 /** Check that each type is a reference type, i.e. a class, interface or array type
jrose@267 592 * or a type variable.
jrose@267 593 * @param trees Original trees, used for error reporting.
jrose@267 594 * @param types The types to be checked.
jrose@267 595 */
jrose@267 596 List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
jrose@267 597 List<JCExpression> tl = trees;
jrose@267 598 for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
jrose@267 599 l.head = checkRefType(tl.head.pos(), l.head);
jrose@267 600 tl = tl.tail;
jrose@267 601 }
jrose@267 602 return types;
jrose@267 603 }
jrose@267 604
duke@1 605 /** Check that type is a null or reference type.
duke@1 606 * @param pos Position to be used for error reporting.
duke@1 607 * @param t The type to be checked.
duke@1 608 */
duke@1 609 Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
duke@1 610 switch (t.tag) {
duke@1 611 case CLASS:
duke@1 612 case ARRAY:
duke@1 613 case TYPEVAR:
duke@1 614 case WILDCARD:
duke@1 615 case BOT:
duke@1 616 case ERROR:
duke@1 617 return t;
duke@1 618 default:
duke@1 619 return typeTagError(pos,
mcimadamore@89 620 diags.fragment("type.req.ref"),
duke@1 621 t);
duke@1 622 }
duke@1 623 }
duke@1 624
duke@1 625 /** Check that flag set does not contain elements of two conflicting sets. s
duke@1 626 * Return true if it doesn't.
duke@1 627 * @param pos Position to be used for error reporting.
duke@1 628 * @param flags The set of flags to be checked.
duke@1 629 * @param set1 Conflicting flags set #1.
duke@1 630 * @param set2 Conflicting flags set #2.
duke@1 631 */
duke@1 632 boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
duke@1 633 if ((flags & set1) != 0 && (flags & set2) != 0) {
duke@1 634 log.error(pos,
duke@1 635 "illegal.combination.of.modifiers",
mcimadamore@80 636 asFlagSet(TreeInfo.firstFlag(flags & set1)),
mcimadamore@80 637 asFlagSet(TreeInfo.firstFlag(flags & set2)));
duke@1 638 return false;
duke@1 639 } else
duke@1 640 return true;
duke@1 641 }
duke@1 642
mcimadamore@537 643 /** Check that the type inferred using the diamond operator does not contain
mcimadamore@537 644 * non-denotable types such as captured types or intersection types.
mcimadamore@537 645 * @param t the type inferred using the diamond operator
mcimadamore@537 646 */
mcimadamore@537 647 List<Type> checkDiamond(ClassType t) {
mcimadamore@537 648 DiamondTypeChecker dtc = new DiamondTypeChecker();
mcimadamore@537 649 ListBuffer<Type> buf = ListBuffer.lb();
mcimadamore@537 650 for (Type arg : t.getTypeArguments()) {
mcimadamore@537 651 if (!dtc.visit(arg, null)) {
mcimadamore@537 652 buf.append(arg);
mcimadamore@537 653 }
mcimadamore@537 654 }
mcimadamore@537 655 return buf.toList();
mcimadamore@537 656 }
mcimadamore@537 657
mcimadamore@537 658 static class DiamondTypeChecker extends Types.SimpleVisitor<Boolean, Void> {
mcimadamore@537 659 public Boolean visitType(Type t, Void s) {
mcimadamore@537 660 return true;
mcimadamore@537 661 }
mcimadamore@537 662 @Override
mcimadamore@537 663 public Boolean visitClassType(ClassType t, Void s) {
mcimadamore@537 664 if (t.isCompound()) {
mcimadamore@537 665 return false;
mcimadamore@537 666 }
mcimadamore@537 667 for (Type targ : t.getTypeArguments()) {
mcimadamore@537 668 if (!visit(targ, s)) {
mcimadamore@537 669 return false;
mcimadamore@537 670 }
mcimadamore@537 671 }
mcimadamore@537 672 return true;
mcimadamore@537 673 }
mcimadamore@537 674 @Override
mcimadamore@537 675 public Boolean visitCapturedType(CapturedType t, Void s) {
mcimadamore@537 676 return false;
mcimadamore@537 677 }
mcimadamore@537 678 }
mcimadamore@537 679
mcimadamore@547 680 /**
mcimadamore@547 681 * Check that vararg method call is sound
mcimadamore@547 682 * @param pos Position to be used for error reporting.
mcimadamore@547 683 * @param argtypes Actual arguments supplied to vararg method.
mcimadamore@547 684 */
mcimadamore@547 685 void checkVararg(DiagnosticPosition pos, List<Type> argtypes) {
mcimadamore@547 686 Type argtype = argtypes.last();
mcimadamore@547 687 if (!types.isReifiable(argtype))
mcimadamore@547 688 warnUnchecked(pos,
mcimadamore@547 689 "unchecked.generic.array.creation",
mcimadamore@547 690 argtype);
mcimadamore@547 691 }
mcimadamore@547 692
duke@1 693 /** Check that given modifiers are legal for given symbol and
duke@1 694 * return modifiers together with any implicit modififiers for that symbol.
duke@1 695 * Warning: we can't use flags() here since this method
duke@1 696 * is called during class enter, when flags() would cause a premature
duke@1 697 * completion.
duke@1 698 * @param pos Position to be used for error reporting.
duke@1 699 * @param flags The set of modifiers given in a definition.
duke@1 700 * @param sym The defined symbol.
duke@1 701 */
duke@1 702 long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
duke@1 703 long mask;
duke@1 704 long implicit = 0;
duke@1 705 switch (sym.kind) {
duke@1 706 case VAR:
duke@1 707 if (sym.owner.kind != TYP)
duke@1 708 mask = LocalVarFlags;
duke@1 709 else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 710 mask = implicit = InterfaceVarFlags;
duke@1 711 else
duke@1 712 mask = VarFlags;
duke@1 713 break;
duke@1 714 case MTH:
duke@1 715 if (sym.name == names.init) {
duke@1 716 if ((sym.owner.flags_field & ENUM) != 0) {
duke@1 717 // enum constructors cannot be declared public or
duke@1 718 // protected and must be implicitly or explicitly
duke@1 719 // private
duke@1 720 implicit = PRIVATE;
duke@1 721 mask = PRIVATE;
duke@1 722 } else
duke@1 723 mask = ConstructorFlags;
duke@1 724 } else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 725 mask = implicit = InterfaceMethodFlags;
duke@1 726 else {
duke@1 727 mask = MethodFlags;
duke@1 728 }
duke@1 729 // Imply STRICTFP if owner has STRICTFP set.
duke@1 730 if (((flags|implicit) & Flags.ABSTRACT) == 0)
duke@1 731 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 732 break;
duke@1 733 case TYP:
duke@1 734 if (sym.isLocal()) {
duke@1 735 mask = LocalClassFlags;
jjg@113 736 if (sym.name.isEmpty()) { // Anonymous class
duke@1 737 // Anonymous classes in static methods are themselves static;
duke@1 738 // that's why we admit STATIC here.
duke@1 739 mask |= STATIC;
duke@1 740 // JLS: Anonymous classes are final.
duke@1 741 implicit |= FINAL;
duke@1 742 }
duke@1 743 if ((sym.owner.flags_field & STATIC) == 0 &&
duke@1 744 (flags & ENUM) != 0)
duke@1 745 log.error(pos, "enums.must.be.static");
duke@1 746 } else if (sym.owner.kind == TYP) {
duke@1 747 mask = MemberClassFlags;
duke@1 748 if (sym.owner.owner.kind == PCK ||
duke@1 749 (sym.owner.flags_field & STATIC) != 0)
duke@1 750 mask |= STATIC;
duke@1 751 else if ((flags & ENUM) != 0)
duke@1 752 log.error(pos, "enums.must.be.static");
duke@1 753 // Nested interfaces and enums are always STATIC (Spec ???)
duke@1 754 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
duke@1 755 } else {
duke@1 756 mask = ClassFlags;
duke@1 757 }
duke@1 758 // Interfaces are always ABSTRACT
duke@1 759 if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
duke@1 760
duke@1 761 if ((flags & ENUM) != 0) {
duke@1 762 // enums can't be declared abstract or final
duke@1 763 mask &= ~(ABSTRACT | FINAL);
duke@1 764 implicit |= implicitEnumFinalFlag(tree);
duke@1 765 }
duke@1 766 // Imply STRICTFP if owner has STRICTFP set.
duke@1 767 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 768 break;
duke@1 769 default:
duke@1 770 throw new AssertionError();
duke@1 771 }
duke@1 772 long illegal = flags & StandardFlags & ~mask;
duke@1 773 if (illegal != 0) {
duke@1 774 if ((illegal & INTERFACE) != 0) {
duke@1 775 log.error(pos, "intf.not.allowed.here");
duke@1 776 mask |= INTERFACE;
duke@1 777 }
duke@1 778 else {
duke@1 779 log.error(pos,
mcimadamore@80 780 "mod.not.allowed.here", asFlagSet(illegal));
duke@1 781 }
duke@1 782 }
duke@1 783 else if ((sym.kind == TYP ||
duke@1 784 // ISSUE: Disallowing abstract&private is no longer appropriate
duke@1 785 // in the presence of inner classes. Should it be deleted here?
duke@1 786 checkDisjoint(pos, flags,
duke@1 787 ABSTRACT,
duke@1 788 PRIVATE | STATIC))
duke@1 789 &&
duke@1 790 checkDisjoint(pos, flags,
duke@1 791 ABSTRACT | INTERFACE,
duke@1 792 FINAL | NATIVE | SYNCHRONIZED)
duke@1 793 &&
duke@1 794 checkDisjoint(pos, flags,
duke@1 795 PUBLIC,
duke@1 796 PRIVATE | PROTECTED)
duke@1 797 &&
duke@1 798 checkDisjoint(pos, flags,
duke@1 799 PRIVATE,
duke@1 800 PUBLIC | PROTECTED)
duke@1 801 &&
duke@1 802 checkDisjoint(pos, flags,
duke@1 803 FINAL,
duke@1 804 VOLATILE)
duke@1 805 &&
duke@1 806 (sym.kind == TYP ||
duke@1 807 checkDisjoint(pos, flags,
duke@1 808 ABSTRACT | NATIVE,
duke@1 809 STRICTFP))) {
duke@1 810 // skip
duke@1 811 }
duke@1 812 return flags & (mask | ~StandardFlags) | implicit;
duke@1 813 }
duke@1 814
duke@1 815
duke@1 816 /** Determine if this enum should be implicitly final.
duke@1 817 *
duke@1 818 * If the enum has no specialized enum contants, it is final.
duke@1 819 *
duke@1 820 * If the enum does have specialized enum contants, it is
duke@1 821 * <i>not</i> final.
duke@1 822 */
duke@1 823 private long implicitEnumFinalFlag(JCTree tree) {
duke@1 824 if (tree.getTag() != JCTree.CLASSDEF) return 0;
duke@1 825 class SpecialTreeVisitor extends JCTree.Visitor {
duke@1 826 boolean specialized;
duke@1 827 SpecialTreeVisitor() {
duke@1 828 this.specialized = false;
duke@1 829 };
duke@1 830
jjg@398 831 @Override
duke@1 832 public void visitTree(JCTree tree) { /* no-op */ }
duke@1 833
jjg@398 834 @Override
duke@1 835 public void visitVarDef(JCVariableDecl tree) {
duke@1 836 if ((tree.mods.flags & ENUM) != 0) {
duke@1 837 if (tree.init instanceof JCNewClass &&
duke@1 838 ((JCNewClass) tree.init).def != null) {
duke@1 839 specialized = true;
duke@1 840 }
duke@1 841 }
duke@1 842 }
duke@1 843 }
duke@1 844
duke@1 845 SpecialTreeVisitor sts = new SpecialTreeVisitor();
duke@1 846 JCClassDecl cdef = (JCClassDecl) tree;
duke@1 847 for (JCTree defs: cdef.defs) {
duke@1 848 defs.accept(sts);
duke@1 849 if (sts.specialized) return 0;
duke@1 850 }
duke@1 851 return FINAL;
duke@1 852 }
duke@1 853
duke@1 854 /* *************************************************************************
duke@1 855 * Type Validation
duke@1 856 **************************************************************************/
duke@1 857
duke@1 858 /** Validate a type expression. That is,
duke@1 859 * check that all type arguments of a parametric type are within
duke@1 860 * their bounds. This must be done in a second phase after type attributon
duke@1 861 * since a class might have a subclass as type parameter bound. E.g:
duke@1 862 *
duke@1 863 * class B<A extends C> { ... }
duke@1 864 * class C extends B<C> { ... }
duke@1 865 *
duke@1 866 * and we can't make sure that the bound is already attributed because
duke@1 867 * of possible cycles.
duke@1 868 */
duke@1 869 private Validator validator = new Validator();
duke@1 870
duke@1 871 /** Visitor method: Validate a type expression, if it is not null, catching
duke@1 872 * and reporting any completion failures.
duke@1 873 */
mcimadamore@122 874 void validate(JCTree tree, Env<AttrContext> env) {
duke@1 875 try {
mcimadamore@122 876 if (tree != null) {
mcimadamore@122 877 validator.env = env;
mcimadamore@122 878 tree.accept(validator);
mcimadamore@122 879 checkRaw(tree, env);
mcimadamore@122 880 }
duke@1 881 } catch (CompletionFailure ex) {
duke@1 882 completionError(tree.pos(), ex);
duke@1 883 }
duke@1 884 }
mcimadamore@122 885 //where
mcimadamore@122 886 void checkRaw(JCTree tree, Env<AttrContext> env) {
mcimadamore@122 887 if (lint.isEnabled(Lint.LintCategory.RAW) &&
mcimadamore@122 888 tree.type.tag == CLASS &&
mcimadamore@122 889 !env.enclClass.name.isEmpty() && //anonymous or intersection
mcimadamore@122 890 tree.type.isRaw()) {
mcimadamore@122 891 log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
mcimadamore@122 892 }
mcimadamore@122 893 }
duke@1 894
duke@1 895 /** Visitor method: Validate a list of type expressions.
duke@1 896 */
mcimadamore@122 897 void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
duke@1 898 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
mcimadamore@122 899 validate(l.head, env);
duke@1 900 }
duke@1 901
duke@1 902 /** A visitor class for type validation.
duke@1 903 */
duke@1 904 class Validator extends JCTree.Visitor {
duke@1 905
jjg@398 906 @Override
duke@1 907 public void visitTypeArray(JCArrayTypeTree tree) {
mcimadamore@122 908 validate(tree.elemtype, env);
duke@1 909 }
duke@1 910
jjg@398 911 @Override
duke@1 912 public void visitTypeApply(JCTypeApply tree) {
duke@1 913 if (tree.type.tag == CLASS) {
mcimadamore@158 914 List<Type> formals = tree.type.tsym.type.allparams();
mcimadamore@158 915 List<Type> actuals = tree.type.allparams();
duke@1 916 List<JCExpression> args = tree.arguments;
mcimadamore@158 917 List<Type> forms = tree.type.tsym.type.getTypeArguments();
mcimadamore@561 918 ListBuffer<Type> tvars_buf = new ListBuffer<Type>();
duke@1 919
duke@1 920 // For matching pairs of actual argument types `a' and
duke@1 921 // formal type parameters with declared bound `b' ...
duke@1 922 while (args.nonEmpty() && forms.nonEmpty()) {
mcimadamore@122 923 validate(args.head, env);
duke@1 924
duke@1 925 // exact type arguments needs to know their
duke@1 926 // bounds (for upper and lower bound
duke@1 927 // calculations). So we create new TypeVars with
duke@1 928 // bounds substed with actuals.
duke@1 929 tvars_buf.append(types.substBound(((TypeVar)forms.head),
duke@1 930 formals,
mcimadamore@78 931 actuals));
duke@1 932
duke@1 933 args = args.tail;
duke@1 934 forms = forms.tail;
duke@1 935 }
duke@1 936
duke@1 937 args = tree.arguments;
mcimadamore@154 938 List<Type> tvars_cap = types.substBounds(formals,
mcimadamore@154 939 formals,
mcimadamore@158 940 types.capture(tree.type).allparams());
mcimadamore@154 941 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
mcimadamore@154 942 // Let the actual arguments know their bound
mcimadamore@154 943 args.head.type.withTypeVar((TypeVar)tvars_cap.head);
mcimadamore@154 944 args = args.tail;
mcimadamore@154 945 tvars_cap = tvars_cap.tail;
mcimadamore@154 946 }
mcimadamore@154 947
mcimadamore@154 948 args = tree.arguments;
mcimadamore@561 949 List<Type> tvars = tvars_buf.toList();
mcimadamore@154 950
duke@1 951 while (args.nonEmpty() && tvars.nonEmpty()) {
mcimadamore@561 952 Type actual = types.subst(args.head.type,
mcimadamore@561 953 tree.type.tsym.type.getTypeArguments(),
mcimadamore@561 954 tvars_buf.toList());
mcimadamore@154 955 checkExtends(args.head.pos(),
mcimadamore@561 956 actual,
mcimadamore@561 957 (TypeVar)tvars.head);
duke@1 958 args = args.tail;
duke@1 959 tvars = tvars.tail;
duke@1 960 }
duke@1 961
mcimadamore@154 962 checkCapture(tree);
mcimadamore@536 963
duke@1 964 // Check that this type is either fully parameterized, or
duke@1 965 // not parameterized at all.
duke@1 966 if (tree.type.getEnclosingType().isRaw())
duke@1 967 log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
duke@1 968 if (tree.clazz.getTag() == JCTree.SELECT)
duke@1 969 visitSelectInternal((JCFieldAccess)tree.clazz);
duke@1 970 }
duke@1 971 }
duke@1 972
jjg@398 973 @Override
duke@1 974 public void visitTypeParameter(JCTypeParameter tree) {
mcimadamore@122 975 validate(tree.bounds, env);
duke@1 976 checkClassBounds(tree.pos(), tree.type);
duke@1 977 }
duke@1 978
duke@1 979 @Override
duke@1 980 public void visitWildcard(JCWildcard tree) {
duke@1 981 if (tree.inner != null)
mcimadamore@122 982 validate(tree.inner, env);
duke@1 983 }
duke@1 984
jjg@398 985 @Override
duke@1 986 public void visitSelect(JCFieldAccess tree) {
duke@1 987 if (tree.type.tag == CLASS) {
duke@1 988 visitSelectInternal(tree);
duke@1 989
duke@1 990 // Check that this type is either fully parameterized, or
duke@1 991 // not parameterized at all.
duke@1 992 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
duke@1 993 log.error(tree.pos(), "improperly.formed.type.param.missing");
duke@1 994 }
duke@1 995 }
duke@1 996 public void visitSelectInternal(JCFieldAccess tree) {
mcimadamore@122 997 if (tree.type.tsym.isStatic() &&
duke@1 998 tree.selected.type.isParameterized()) {
duke@1 999 // The enclosing type is not a class, so we are
duke@1 1000 // looking at a static member type. However, the
duke@1 1001 // qualifying expression is parameterized.
duke@1 1002 log.error(tree.pos(), "cant.select.static.class.from.param.type");
duke@1 1003 } else {
duke@1 1004 // otherwise validate the rest of the expression
mcimadamore@122 1005 tree.selected.accept(this);
duke@1 1006 }
duke@1 1007 }
duke@1 1008
jjg@398 1009 @Override
jjg@308 1010 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 1011 tree.underlyingType.accept(this);
jjg@308 1012 }
jjg@308 1013
duke@1 1014 /** Default visitor method: do nothing.
duke@1 1015 */
jjg@398 1016 @Override
duke@1 1017 public void visitTree(JCTree tree) {
duke@1 1018 }
mcimadamore@122 1019
mcimadamore@122 1020 Env<AttrContext> env;
duke@1 1021 }
duke@1 1022
duke@1 1023 /* *************************************************************************
duke@1 1024 * Exception checking
duke@1 1025 **************************************************************************/
duke@1 1026
duke@1 1027 /* The following methods treat classes as sets that contain
duke@1 1028 * the class itself and all their subclasses
duke@1 1029 */
duke@1 1030
duke@1 1031 /** Is given type a subtype of some of the types in given list?
duke@1 1032 */
duke@1 1033 boolean subset(Type t, List<Type> ts) {
duke@1 1034 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 1035 if (types.isSubtype(t, l.head)) return true;
duke@1 1036 return false;
duke@1 1037 }
duke@1 1038
duke@1 1039 /** Is given type a subtype or supertype of
duke@1 1040 * some of the types in given list?
duke@1 1041 */
duke@1 1042 boolean intersects(Type t, List<Type> ts) {
duke@1 1043 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 1044 if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
duke@1 1045 return false;
duke@1 1046 }
duke@1 1047
duke@1 1048 /** Add type set to given type list, unless it is a subclass of some class
duke@1 1049 * in the list.
duke@1 1050 */
duke@1 1051 List<Type> incl(Type t, List<Type> ts) {
duke@1 1052 return subset(t, ts) ? ts : excl(t, ts).prepend(t);
duke@1 1053 }
duke@1 1054
duke@1 1055 /** Remove type set from type set list.
duke@1 1056 */
duke@1 1057 List<Type> excl(Type t, List<Type> ts) {
duke@1 1058 if (ts.isEmpty()) {
duke@1 1059 return ts;
duke@1 1060 } else {
duke@1 1061 List<Type> ts1 = excl(t, ts.tail);
duke@1 1062 if (types.isSubtype(ts.head, t)) return ts1;
duke@1 1063 else if (ts1 == ts.tail) return ts;
duke@1 1064 else return ts1.prepend(ts.head);
duke@1 1065 }
duke@1 1066 }
duke@1 1067
duke@1 1068 /** Form the union of two type set lists.
duke@1 1069 */
duke@1 1070 List<Type> union(List<Type> ts1, List<Type> ts2) {
duke@1 1071 List<Type> ts = ts1;
duke@1 1072 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1073 ts = incl(l.head, ts);
duke@1 1074 return ts;
duke@1 1075 }
duke@1 1076
duke@1 1077 /** Form the difference of two type lists.
duke@1 1078 */
duke@1 1079 List<Type> diff(List<Type> ts1, List<Type> ts2) {
duke@1 1080 List<Type> ts = ts1;
duke@1 1081 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1082 ts = excl(l.head, ts);
duke@1 1083 return ts;
duke@1 1084 }
duke@1 1085
duke@1 1086 /** Form the intersection of two type lists.
duke@1 1087 */
duke@1 1088 public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
duke@1 1089 List<Type> ts = List.nil();
duke@1 1090 for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
duke@1 1091 if (subset(l.head, ts2)) ts = incl(l.head, ts);
duke@1 1092 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1093 if (subset(l.head, ts1)) ts = incl(l.head, ts);
duke@1 1094 return ts;
duke@1 1095 }
duke@1 1096
duke@1 1097 /** Is exc an exception symbol that need not be declared?
duke@1 1098 */
duke@1 1099 boolean isUnchecked(ClassSymbol exc) {
duke@1 1100 return
duke@1 1101 exc.kind == ERR ||
duke@1 1102 exc.isSubClass(syms.errorType.tsym, types) ||
duke@1 1103 exc.isSubClass(syms.runtimeExceptionType.tsym, types);
duke@1 1104 }
duke@1 1105
duke@1 1106 /** Is exc an exception type that need not be declared?
duke@1 1107 */
duke@1 1108 boolean isUnchecked(Type exc) {
duke@1 1109 return
duke@1 1110 (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
duke@1 1111 (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
duke@1 1112 exc.tag == BOT;
duke@1 1113 }
duke@1 1114
duke@1 1115 /** Same, but handling completion failures.
duke@1 1116 */
duke@1 1117 boolean isUnchecked(DiagnosticPosition pos, Type exc) {
duke@1 1118 try {
duke@1 1119 return isUnchecked(exc);
duke@1 1120 } catch (CompletionFailure ex) {
duke@1 1121 completionError(pos, ex);
duke@1 1122 return true;
duke@1 1123 }
duke@1 1124 }
duke@1 1125
duke@1 1126 /** Is exc handled by given exception list?
duke@1 1127 */
duke@1 1128 boolean isHandled(Type exc, List<Type> handled) {
duke@1 1129 return isUnchecked(exc) || subset(exc, handled);
duke@1 1130 }
duke@1 1131
duke@1 1132 /** Return all exceptions in thrown list that are not in handled list.
duke@1 1133 * @param thrown The list of thrown exceptions.
duke@1 1134 * @param handled The list of handled exceptions.
duke@1 1135 */
mcimadamore@362 1136 List<Type> unhandled(List<Type> thrown, List<Type> handled) {
duke@1 1137 List<Type> unhandled = List.nil();
duke@1 1138 for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
duke@1 1139 if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
duke@1 1140 return unhandled;
duke@1 1141 }
duke@1 1142
duke@1 1143 /* *************************************************************************
duke@1 1144 * Overriding/Implementation checking
duke@1 1145 **************************************************************************/
duke@1 1146
duke@1 1147 /** The level of access protection given by a flag set,
duke@1 1148 * where PRIVATE is highest and PUBLIC is lowest.
duke@1 1149 */
duke@1 1150 static int protection(long flags) {
duke@1 1151 switch ((short)(flags & AccessFlags)) {
duke@1 1152 case PRIVATE: return 3;
duke@1 1153 case PROTECTED: return 1;
duke@1 1154 default:
duke@1 1155 case PUBLIC: return 0;
duke@1 1156 case 0: return 2;
duke@1 1157 }
duke@1 1158 }
duke@1 1159
duke@1 1160 /** A customized "cannot override" error message.
duke@1 1161 * @param m The overriding method.
duke@1 1162 * @param other The overridden method.
duke@1 1163 * @return An internationalized string.
duke@1 1164 */
mcimadamore@89 1165 Object cannotOverride(MethodSymbol m, MethodSymbol other) {
duke@1 1166 String key;
duke@1 1167 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1168 key = "cant.override";
duke@1 1169 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1170 key = "cant.implement";
duke@1 1171 else
duke@1 1172 key = "clashes.with";
mcimadamore@89 1173 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1174 }
duke@1 1175
duke@1 1176 /** A customized "override" warning message.
duke@1 1177 * @param m The overriding method.
duke@1 1178 * @param other The overridden method.
duke@1 1179 * @return An internationalized string.
duke@1 1180 */
mcimadamore@89 1181 Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1182 String key;
duke@1 1183 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1184 key = "unchecked.override";
duke@1 1185 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1186 key = "unchecked.implement";
duke@1 1187 else
duke@1 1188 key = "unchecked.clash.with";
mcimadamore@89 1189 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1190 }
duke@1 1191
duke@1 1192 /** A customized "override" warning message.
duke@1 1193 * @param m The overriding method.
duke@1 1194 * @param other The overridden method.
duke@1 1195 * @return An internationalized string.
duke@1 1196 */
mcimadamore@89 1197 Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1198 String key;
duke@1 1199 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1200 key = "varargs.override";
duke@1 1201 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1202 key = "varargs.implement";
duke@1 1203 else
duke@1 1204 key = "varargs.clash.with";
mcimadamore@89 1205 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1206 }
duke@1 1207
duke@1 1208 /** Check that this method conforms with overridden method 'other'.
duke@1 1209 * where `origin' is the class where checking started.
duke@1 1210 * Complications:
duke@1 1211 * (1) Do not check overriding of synthetic methods
duke@1 1212 * (reason: they might be final).
duke@1 1213 * todo: check whether this is still necessary.
duke@1 1214 * (2) Admit the case where an interface proxy throws fewer exceptions
duke@1 1215 * than the method it implements. Augment the proxy methods with the
duke@1 1216 * undeclared exceptions in this case.
duke@1 1217 * (3) When generics are enabled, admit the case where an interface proxy
duke@1 1218 * has a result type
duke@1 1219 * extended by the result type of the method it implements.
duke@1 1220 * Change the proxies result type to the smaller type in this case.
duke@1 1221 *
duke@1 1222 * @param tree The tree from which positions
duke@1 1223 * are extracted for errors.
duke@1 1224 * @param m The overriding method.
duke@1 1225 * @param other The overridden method.
duke@1 1226 * @param origin The class of which the overriding method
duke@1 1227 * is a member.
duke@1 1228 */
duke@1 1229 void checkOverride(JCTree tree,
duke@1 1230 MethodSymbol m,
duke@1 1231 MethodSymbol other,
duke@1 1232 ClassSymbol origin) {
duke@1 1233 // Don't check overriding of synthetic methods or by bridge methods.
duke@1 1234 if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
duke@1 1235 return;
duke@1 1236 }
duke@1 1237
duke@1 1238 // Error if static method overrides instance method (JLS 8.4.6.2).
duke@1 1239 if ((m.flags() & STATIC) != 0 &&
duke@1 1240 (other.flags() & STATIC) == 0) {
duke@1 1241 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
duke@1 1242 cannotOverride(m, other));
duke@1 1243 return;
duke@1 1244 }
duke@1 1245
duke@1 1246 // Error if instance method overrides static or final
duke@1 1247 // method (JLS 8.4.6.1).
duke@1 1248 if ((other.flags() & FINAL) != 0 ||
duke@1 1249 (m.flags() & STATIC) == 0 &&
duke@1 1250 (other.flags() & STATIC) != 0) {
duke@1 1251 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
duke@1 1252 cannotOverride(m, other),
mcimadamore@80 1253 asFlagSet(other.flags() & (FINAL | STATIC)));
duke@1 1254 return;
duke@1 1255 }
duke@1 1256
duke@1 1257 if ((m.owner.flags() & ANNOTATION) != 0) {
duke@1 1258 // handled in validateAnnotationMethod
duke@1 1259 return;
duke@1 1260 }
duke@1 1261
duke@1 1262 // Error if overriding method has weaker access (JLS 8.4.6.3).
duke@1 1263 if ((origin.flags() & INTERFACE) == 0 &&
duke@1 1264 protection(m.flags()) > protection(other.flags())) {
duke@1 1265 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
duke@1 1266 cannotOverride(m, other),
mcimadamore@80 1267 other.flags() == 0 ?
mcimadamore@80 1268 Flag.PACKAGE :
mcimadamore@80 1269 asFlagSet(other.flags() & AccessFlags));
duke@1 1270 return;
duke@1 1271 }
duke@1 1272
duke@1 1273 Type mt = types.memberType(origin.type, m);
duke@1 1274 Type ot = types.memberType(origin.type, other);
duke@1 1275 // Error if overriding result type is different
duke@1 1276 // (or, in the case of generics mode, not a subtype) of
duke@1 1277 // overridden result type. We have to rename any type parameters
duke@1 1278 // before comparing types.
duke@1 1279 List<Type> mtvars = mt.getTypeArguments();
duke@1 1280 List<Type> otvars = ot.getTypeArguments();
duke@1 1281 Type mtres = mt.getReturnType();
duke@1 1282 Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
duke@1 1283
duke@1 1284 overrideWarner.warned = false;
duke@1 1285 boolean resultTypesOK =
tbell@202 1286 types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
duke@1 1287 if (!resultTypesOK) {
jjg@398 1288 if (!allowCovariantReturns &&
duke@1 1289 m.owner != origin &&
duke@1 1290 m.owner.isSubClass(other.owner, types)) {
duke@1 1291 // allow limited interoperability with covariant returns
duke@1 1292 } else {
mcimadamore@362 1293 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1294 "override.incompatible.ret",
mcimadamore@362 1295 cannotOverride(m, other),
duke@1 1296 mtres, otres);
duke@1 1297 return;
duke@1 1298 }
duke@1 1299 } else if (overrideWarner.warned) {
duke@1 1300 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1301 "override.unchecked.ret",
mcimadamore@362 1302 uncheckedOverrides(m, other),
mcimadamore@362 1303 mtres, otres);
duke@1 1304 }
duke@1 1305
duke@1 1306 // Error if overriding method throws an exception not reported
duke@1 1307 // by overridden method.
duke@1 1308 List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
mcimadamore@362 1309 List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
mcimadamore@362 1310 List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
mcimadamore@362 1311 if (unhandledErased.nonEmpty()) {
duke@1 1312 log.error(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1313 "override.meth.doesnt.throw",
duke@1 1314 cannotOverride(m, other),
mcimadamore@362 1315 unhandledUnerased.head);
mcimadamore@362 1316 return;
mcimadamore@362 1317 }
mcimadamore@362 1318 else if (unhandledUnerased.nonEmpty()) {
mcimadamore@362 1319 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1320 "override.unchecked.thrown",
mcimadamore@362 1321 cannotOverride(m, other),
mcimadamore@362 1322 unhandledUnerased.head);
duke@1 1323 return;
duke@1 1324 }
duke@1 1325
duke@1 1326 // Optional warning if varargs don't agree
duke@1 1327 if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
duke@1 1328 && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
duke@1 1329 log.warning(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1330 ((m.flags() & Flags.VARARGS) != 0)
duke@1 1331 ? "override.varargs.missing"
duke@1 1332 : "override.varargs.extra",
duke@1 1333 varargsOverrides(m, other));
duke@1 1334 }
duke@1 1335
duke@1 1336 // Warn if instance method overrides bridge method (compiler spec ??)
duke@1 1337 if ((other.flags() & BRIDGE) != 0) {
duke@1 1338 log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
duke@1 1339 uncheckedOverrides(m, other));
duke@1 1340 }
duke@1 1341
duke@1 1342 // Warn if a deprecated method overridden by a non-deprecated one.
duke@1 1343 if ((other.flags() & DEPRECATED) != 0
duke@1 1344 && (m.flags() & DEPRECATED) == 0
duke@1 1345 && m.outermostClass() != other.outermostClass()
duke@1 1346 && !isDeprecatedOverrideIgnorable(other, origin)) {
duke@1 1347 warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
duke@1 1348 }
duke@1 1349 }
duke@1 1350 // where
duke@1 1351 private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
duke@1 1352 // If the method, m, is defined in an interface, then ignore the issue if the method
duke@1 1353 // is only inherited via a supertype and also implemented in the supertype,
duke@1 1354 // because in that case, we will rediscover the issue when examining the method
duke@1 1355 // in the supertype.
duke@1 1356 // If the method, m, is not defined in an interface, then the only time we need to
duke@1 1357 // address the issue is when the method is the supertype implemementation: any other
duke@1 1358 // case, we will have dealt with when examining the supertype classes
duke@1 1359 ClassSymbol mc = m.enclClass();
duke@1 1360 Type st = types.supertype(origin.type);
duke@1 1361 if (st.tag != CLASS)
duke@1 1362 return true;
duke@1 1363 MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
duke@1 1364
duke@1 1365 if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
duke@1 1366 List<Type> intfs = types.interfaces(origin.type);
duke@1 1367 return (intfs.contains(mc.type) ? false : (stimpl != null));
duke@1 1368 }
duke@1 1369 else
duke@1 1370 return (stimpl != m);
duke@1 1371 }
duke@1 1372
duke@1 1373
duke@1 1374 // used to check if there were any unchecked conversions
duke@1 1375 Warner overrideWarner = new Warner();
duke@1 1376
duke@1 1377 /** Check that a class does not inherit two concrete methods
duke@1 1378 * with the same signature.
duke@1 1379 * @param pos Position to be used for error reporting.
duke@1 1380 * @param site The class type to be checked.
duke@1 1381 */
duke@1 1382 public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
duke@1 1383 Type sup = types.supertype(site);
duke@1 1384 if (sup.tag != CLASS) return;
duke@1 1385
duke@1 1386 for (Type t1 = sup;
duke@1 1387 t1.tsym.type.isParameterized();
duke@1 1388 t1 = types.supertype(t1)) {
duke@1 1389 for (Scope.Entry e1 = t1.tsym.members().elems;
duke@1 1390 e1 != null;
duke@1 1391 e1 = e1.sibling) {
duke@1 1392 Symbol s1 = e1.sym;
duke@1 1393 if (s1.kind != MTH ||
duke@1 1394 (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1395 !s1.isInheritedIn(site.tsym, types) ||
duke@1 1396 ((MethodSymbol)s1).implementation(site.tsym,
duke@1 1397 types,
duke@1 1398 true) != s1)
duke@1 1399 continue;
duke@1 1400 Type st1 = types.memberType(t1, s1);
duke@1 1401 int s1ArgsLength = st1.getParameterTypes().length();
duke@1 1402 if (st1 == s1.type) continue;
duke@1 1403
duke@1 1404 for (Type t2 = sup;
duke@1 1405 t2.tag == CLASS;
duke@1 1406 t2 = types.supertype(t2)) {
mcimadamore@24 1407 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
duke@1 1408 e2.scope != null;
duke@1 1409 e2 = e2.next()) {
duke@1 1410 Symbol s2 = e2.sym;
duke@1 1411 if (s2 == s1 ||
duke@1 1412 s2.kind != MTH ||
duke@1 1413 (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1414 s2.type.getParameterTypes().length() != s1ArgsLength ||
duke@1 1415 !s2.isInheritedIn(site.tsym, types) ||
duke@1 1416 ((MethodSymbol)s2).implementation(site.tsym,
duke@1 1417 types,
duke@1 1418 true) != s2)
duke@1 1419 continue;
duke@1 1420 Type st2 = types.memberType(t2, s2);
duke@1 1421 if (types.overrideEquivalent(st1, st2))
duke@1 1422 log.error(pos, "concrete.inheritance.conflict",
duke@1 1423 s1, t1, s2, t2, sup);
duke@1 1424 }
duke@1 1425 }
duke@1 1426 }
duke@1 1427 }
duke@1 1428 }
duke@1 1429
duke@1 1430 /** Check that classes (or interfaces) do not each define an abstract
duke@1 1431 * method with same name and arguments but incompatible return types.
duke@1 1432 * @param pos Position to be used for error reporting.
duke@1 1433 * @param t1 The first argument type.
duke@1 1434 * @param t2 The second argument type.
duke@1 1435 */
duke@1 1436 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1437 Type t1,
duke@1 1438 Type t2) {
duke@1 1439 return checkCompatibleAbstracts(pos, t1, t2,
duke@1 1440 types.makeCompoundType(t1, t2));
duke@1 1441 }
duke@1 1442
duke@1 1443 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1444 Type t1,
duke@1 1445 Type t2,
duke@1 1446 Type site) {
duke@1 1447 Symbol sym = firstIncompatibility(t1, t2, site);
duke@1 1448 if (sym != null) {
duke@1 1449 log.error(pos, "types.incompatible.diff.ret",
duke@1 1450 t1, t2, sym.name +
duke@1 1451 "(" + types.memberType(t2, sym).getParameterTypes() + ")");
duke@1 1452 return false;
duke@1 1453 }
duke@1 1454 return true;
duke@1 1455 }
duke@1 1456
duke@1 1457 /** Return the first method which is defined with same args
duke@1 1458 * but different return types in two given interfaces, or null if none
duke@1 1459 * exists.
duke@1 1460 * @param t1 The first type.
duke@1 1461 * @param t2 The second type.
duke@1 1462 * @param site The most derived type.
duke@1 1463 * @returns symbol from t2 that conflicts with one in t1.
duke@1 1464 */
duke@1 1465 private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
duke@1 1466 Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
duke@1 1467 closure(t1, interfaces1);
duke@1 1468 Map<TypeSymbol,Type> interfaces2;
duke@1 1469 if (t1 == t2)
duke@1 1470 interfaces2 = interfaces1;
duke@1 1471 else
duke@1 1472 closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
duke@1 1473
duke@1 1474 for (Type t3 : interfaces1.values()) {
duke@1 1475 for (Type t4 : interfaces2.values()) {
duke@1 1476 Symbol s = firstDirectIncompatibility(t3, t4, site);
duke@1 1477 if (s != null) return s;
duke@1 1478 }
duke@1 1479 }
duke@1 1480 return null;
duke@1 1481 }
duke@1 1482
duke@1 1483 /** Compute all the supertypes of t, indexed by type symbol. */
duke@1 1484 private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
duke@1 1485 if (t.tag != CLASS) return;
duke@1 1486 if (typeMap.put(t.tsym, t) == null) {
duke@1 1487 closure(types.supertype(t), typeMap);
duke@1 1488 for (Type i : types.interfaces(t))
duke@1 1489 closure(i, typeMap);
duke@1 1490 }
duke@1 1491 }
duke@1 1492
duke@1 1493 /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
duke@1 1494 private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
duke@1 1495 if (t.tag != CLASS) return;
duke@1 1496 if (typesSkip.get(t.tsym) != null) return;
duke@1 1497 if (typeMap.put(t.tsym, t) == null) {
duke@1 1498 closure(types.supertype(t), typesSkip, typeMap);
duke@1 1499 for (Type i : types.interfaces(t))
duke@1 1500 closure(i, typesSkip, typeMap);
duke@1 1501 }
duke@1 1502 }
duke@1 1503
duke@1 1504 /** Return the first method in t2 that conflicts with a method from t1. */
duke@1 1505 private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
duke@1 1506 for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
duke@1 1507 Symbol s1 = e1.sym;
duke@1 1508 Type st1 = null;
duke@1 1509 if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
duke@1 1510 Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
duke@1 1511 if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
duke@1 1512 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
duke@1 1513 Symbol s2 = e2.sym;
duke@1 1514 if (s1 == s2) continue;
duke@1 1515 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
duke@1 1516 if (st1 == null) st1 = types.memberType(t1, s1);
duke@1 1517 Type st2 = types.memberType(t2, s2);
duke@1 1518 if (types.overrideEquivalent(st1, st2)) {
duke@1 1519 List<Type> tvars1 = st1.getTypeArguments();
duke@1 1520 List<Type> tvars2 = st2.getTypeArguments();
duke@1 1521 Type rt1 = st1.getReturnType();
duke@1 1522 Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
duke@1 1523 boolean compat =
duke@1 1524 types.isSameType(rt1, rt2) ||
duke@1 1525 rt1.tag >= CLASS && rt2.tag >= CLASS &&
duke@1 1526 (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
mcimadamore@59 1527 types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
mcimadamore@59 1528 checkCommonOverriderIn(s1,s2,site);
duke@1 1529 if (!compat) return s2;
duke@1 1530 }
duke@1 1531 }
duke@1 1532 }
duke@1 1533 return null;
duke@1 1534 }
mcimadamore@59 1535 //WHERE
mcimadamore@59 1536 boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
mcimadamore@59 1537 Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
mcimadamore@59 1538 Type st1 = types.memberType(site, s1);
mcimadamore@59 1539 Type st2 = types.memberType(site, s2);
mcimadamore@59 1540 closure(site, supertypes);
mcimadamore@59 1541 for (Type t : supertypes.values()) {
mcimadamore@59 1542 for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
mcimadamore@59 1543 Symbol s3 = e.sym;
mcimadamore@59 1544 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
mcimadamore@59 1545 Type st3 = types.memberType(site,s3);
mcimadamore@59 1546 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
mcimadamore@59 1547 if (s3.owner == site.tsym) {
mcimadamore@59 1548 return true;
mcimadamore@59 1549 }
mcimadamore@59 1550 List<Type> tvars1 = st1.getTypeArguments();
mcimadamore@59 1551 List<Type> tvars2 = st2.getTypeArguments();
mcimadamore@59 1552 List<Type> tvars3 = st3.getTypeArguments();
mcimadamore@59 1553 Type rt1 = st1.getReturnType();
mcimadamore@59 1554 Type rt2 = st2.getReturnType();
mcimadamore@59 1555 Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
mcimadamore@59 1556 Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
mcimadamore@59 1557 boolean compat =
mcimadamore@59 1558 rt13.tag >= CLASS && rt23.tag >= CLASS &&
mcimadamore@59 1559 (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
mcimadamore@59 1560 types.covariantReturnType(rt23, rt2, Warner.noWarnings));
mcimadamore@59 1561 if (compat)
mcimadamore@59 1562 return true;
mcimadamore@59 1563 }
mcimadamore@59 1564 }
mcimadamore@59 1565 }
mcimadamore@59 1566 return false;
mcimadamore@59 1567 }
duke@1 1568
duke@1 1569 /** Check that a given method conforms with any method it overrides.
duke@1 1570 * @param tree The tree from which positions are extracted
duke@1 1571 * for errors.
duke@1 1572 * @param m The overriding method.
duke@1 1573 */
duke@1 1574 void checkOverride(JCTree tree, MethodSymbol m) {
duke@1 1575 ClassSymbol origin = (ClassSymbol)m.owner;
duke@1 1576 if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
duke@1 1577 if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
duke@1 1578 log.error(tree.pos(), "enum.no.finalize");
duke@1 1579 return;
duke@1 1580 }
duke@1 1581 for (Type t = types.supertype(origin.type); t.tag == CLASS;
duke@1 1582 t = types.supertype(t)) {
duke@1 1583 TypeSymbol c = t.tsym;
duke@1 1584 Scope.Entry e = c.members().lookup(m.name);
duke@1 1585 while (e.scope != null) {
duke@1 1586 if (m.overrides(e.sym, origin, types, false))
duke@1 1587 checkOverride(tree, m, (MethodSymbol)e.sym, origin);
mcimadamore@252 1588 else if (e.sym.kind == MTH &&
mcimadamore@252 1589 e.sym.isInheritedIn(origin, types) &&
mcimadamore@252 1590 (e.sym.flags() & SYNTHETIC) == 0 &&
mcimadamore@252 1591 !m.isConstructor()) {
mcimadamore@24 1592 Type er1 = m.erasure(types);
mcimadamore@24 1593 Type er2 = e.sym.erasure(types);
mcimadamore@252 1594 if (types.isSameTypes(er1.getParameterTypes(),
mcimadamore@252 1595 er2.getParameterTypes())) {
mcimadamore@24 1596 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@24 1597 "name.clash.same.erasure.no.override",
mcimadamore@24 1598 m, m.location(),
mcimadamore@24 1599 e.sym, e.sym.location());
mcimadamore@24 1600 }
mcimadamore@24 1601 }
duke@1 1602 e = e.next();
duke@1 1603 }
duke@1 1604 }
duke@1 1605 }
duke@1 1606
duke@1 1607 /** Check that all abstract members of given class have definitions.
duke@1 1608 * @param pos Position to be used for error reporting.
duke@1 1609 * @param c The class.
duke@1 1610 */
duke@1 1611 void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1612 try {
duke@1 1613 MethodSymbol undef = firstUndef(c, c);
duke@1 1614 if (undef != null) {
duke@1 1615 if ((c.flags() & ENUM) != 0 &&
duke@1 1616 types.supertype(c.type).tsym == syms.enumSym &&
duke@1 1617 (c.flags() & FINAL) == 0) {
duke@1 1618 // add the ABSTRACT flag to an enum
duke@1 1619 c.flags_field |= ABSTRACT;
duke@1 1620 } else {
duke@1 1621 MethodSymbol undef1 =
duke@1 1622 new MethodSymbol(undef.flags(), undef.name,
duke@1 1623 types.memberType(c.type, undef), undef.owner);
duke@1 1624 log.error(pos, "does.not.override.abstract",
duke@1 1625 c, undef1, undef1.location());
duke@1 1626 }
duke@1 1627 }
duke@1 1628 } catch (CompletionFailure ex) {
duke@1 1629 completionError(pos, ex);
duke@1 1630 }
duke@1 1631 }
duke@1 1632 //where
duke@1 1633 /** Return first abstract member of class `c' that is not defined
duke@1 1634 * in `impl', null if there is none.
duke@1 1635 */
duke@1 1636 private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
duke@1 1637 MethodSymbol undef = null;
duke@1 1638 // Do not bother to search in classes that are not abstract,
duke@1 1639 // since they cannot have abstract members.
duke@1 1640 if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1641 Scope s = c.members();
duke@1 1642 for (Scope.Entry e = s.elems;
duke@1 1643 undef == null && e != null;
duke@1 1644 e = e.sibling) {
duke@1 1645 if (e.sym.kind == MTH &&
duke@1 1646 (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
duke@1 1647 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1648 MethodSymbol implmeth = absmeth.implementation(impl, types, true);
duke@1 1649 if (implmeth == null || implmeth == absmeth)
duke@1 1650 undef = absmeth;
duke@1 1651 }
duke@1 1652 }
duke@1 1653 if (undef == null) {
duke@1 1654 Type st = types.supertype(c.type);
duke@1 1655 if (st.tag == CLASS)
duke@1 1656 undef = firstUndef(impl, (ClassSymbol)st.tsym);
duke@1 1657 }
duke@1 1658 for (List<Type> l = types.interfaces(c.type);
duke@1 1659 undef == null && l.nonEmpty();
duke@1 1660 l = l.tail) {
duke@1 1661 undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
duke@1 1662 }
duke@1 1663 }
duke@1 1664 return undef;
duke@1 1665 }
duke@1 1666
duke@1 1667 /** Check for cyclic references. Issue an error if the
duke@1 1668 * symbol of the type referred to has a LOCKED flag set.
duke@1 1669 *
duke@1 1670 * @param pos Position to be used for error reporting.
duke@1 1671 * @param t The type referred to.
duke@1 1672 */
duke@1 1673 void checkNonCyclic(DiagnosticPosition pos, Type t) {
duke@1 1674 checkNonCyclicInternal(pos, t);
duke@1 1675 }
duke@1 1676
duke@1 1677
duke@1 1678 void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
mcimadamore@236 1679 checkNonCyclic1(pos, t, List.<TypeVar>nil());
duke@1 1680 }
duke@1 1681
mcimadamore@236 1682 private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
duke@1 1683 final TypeVar tv;
mcimadamore@42 1684 if (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
mcimadamore@42 1685 return;
duke@1 1686 if (seen.contains(t)) {
duke@1 1687 tv = (TypeVar)t;
jjg@110 1688 tv.bound = types.createErrorType(t);
duke@1 1689 log.error(pos, "cyclic.inheritance", t);
duke@1 1690 } else if (t.tag == TYPEVAR) {
duke@1 1691 tv = (TypeVar)t;
mcimadamore@236 1692 seen = seen.prepend(tv);
duke@1 1693 for (Type b : types.getBounds(tv))
duke@1 1694 checkNonCyclic1(pos, b, seen);
duke@1 1695 }
duke@1 1696 }
duke@1 1697
duke@1 1698 /** Check for cyclic references. Issue an error if the
duke@1 1699 * symbol of the type referred to has a LOCKED flag set.
duke@1 1700 *
duke@1 1701 * @param pos Position to be used for error reporting.
duke@1 1702 * @param t The type referred to.
duke@1 1703 * @returns True if the check completed on all attributed classes
duke@1 1704 */
duke@1 1705 private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
duke@1 1706 boolean complete = true; // was the check complete?
duke@1 1707 //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
duke@1 1708 Symbol c = t.tsym;
duke@1 1709 if ((c.flags_field & ACYCLIC) != 0) return true;
duke@1 1710
duke@1 1711 if ((c.flags_field & LOCKED) != 0) {
duke@1 1712 noteCyclic(pos, (ClassSymbol)c);
duke@1 1713 } else if (!c.type.isErroneous()) {
duke@1 1714 try {
duke@1 1715 c.flags_field |= LOCKED;
duke@1 1716 if (c.type.tag == CLASS) {
duke@1 1717 ClassType clazz = (ClassType)c.type;
duke@1 1718 if (clazz.interfaces_field != null)
duke@1 1719 for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
duke@1 1720 complete &= checkNonCyclicInternal(pos, l.head);
duke@1 1721 if (clazz.supertype_field != null) {
duke@1 1722 Type st = clazz.supertype_field;
duke@1 1723 if (st != null && st.tag == CLASS)
duke@1 1724 complete &= checkNonCyclicInternal(pos, st);
duke@1 1725 }
duke@1 1726 if (c.owner.kind == TYP)
duke@1 1727 complete &= checkNonCyclicInternal(pos, c.owner.type);
duke@1 1728 }
duke@1 1729 } finally {
duke@1 1730 c.flags_field &= ~LOCKED;
duke@1 1731 }
duke@1 1732 }
duke@1 1733 if (complete)
duke@1 1734 complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
duke@1 1735 if (complete) c.flags_field |= ACYCLIC;
duke@1 1736 return complete;
duke@1 1737 }
duke@1 1738
duke@1 1739 /** Note that we found an inheritance cycle. */
duke@1 1740 private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1741 log.error(pos, "cyclic.inheritance", c);
duke@1 1742 for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
jjg@110 1743 l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
duke@1 1744 Type st = types.supertype(c.type);
duke@1 1745 if (st.tag == CLASS)
jjg@110 1746 ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
jjg@110 1747 c.type = types.createErrorType(c, c.type);
duke@1 1748 c.flags_field |= ACYCLIC;
duke@1 1749 }
duke@1 1750
duke@1 1751 /** Check that all methods which implement some
duke@1 1752 * method conform to the method they implement.
duke@1 1753 * @param tree The class definition whose members are checked.
duke@1 1754 */
duke@1 1755 void checkImplementations(JCClassDecl tree) {
duke@1 1756 checkImplementations(tree, tree.sym);
duke@1 1757 }
duke@1 1758 //where
duke@1 1759 /** Check that all methods which implement some
duke@1 1760 * method in `ic' conform to the method they implement.
duke@1 1761 */
duke@1 1762 void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
duke@1 1763 ClassSymbol origin = tree.sym;
duke@1 1764 for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
duke@1 1765 ClassSymbol lc = (ClassSymbol)l.head.tsym;
duke@1 1766 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
duke@1 1767 for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
duke@1 1768 if (e.sym.kind == MTH &&
duke@1 1769 (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
duke@1 1770 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1771 MethodSymbol implmeth = absmeth.implementation(origin, types, false);
duke@1 1772 if (implmeth != null && implmeth != absmeth &&
duke@1 1773 (implmeth.owner.flags() & INTERFACE) ==
duke@1 1774 (origin.flags() & INTERFACE)) {
duke@1 1775 // don't check if implmeth is in a class, yet
duke@1 1776 // origin is an interface. This case arises only
duke@1 1777 // if implmeth is declared in Object. The reason is
duke@1 1778 // that interfaces really don't inherit from
duke@1 1779 // Object it's just that the compiler represents
duke@1 1780 // things that way.
duke@1 1781 checkOverride(tree, implmeth, absmeth, origin);
duke@1 1782 }
duke@1 1783 }
duke@1 1784 }
duke@1 1785 }
duke@1 1786 }
duke@1 1787 }
duke@1 1788
duke@1 1789 /** Check that all abstract methods implemented by a class are
duke@1 1790 * mutually compatible.
duke@1 1791 * @param pos Position to be used for error reporting.
duke@1 1792 * @param c The class whose interfaces are checked.
duke@1 1793 */
duke@1 1794 void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
duke@1 1795 List<Type> supertypes = types.interfaces(c);
duke@1 1796 Type supertype = types.supertype(c);
duke@1 1797 if (supertype.tag == CLASS &&
duke@1 1798 (supertype.tsym.flags() & ABSTRACT) != 0)
duke@1 1799 supertypes = supertypes.prepend(supertype);
duke@1 1800 for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
duke@1 1801 if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
duke@1 1802 !checkCompatibleAbstracts(pos, l.head, l.head, c))
duke@1 1803 return;
duke@1 1804 for (List<Type> m = supertypes; m != l; m = m.tail)
duke@1 1805 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
duke@1 1806 return;
duke@1 1807 }
duke@1 1808 checkCompatibleConcretes(pos, c);
duke@1 1809 }
duke@1 1810
mcimadamore@359 1811 void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
mcimadamore@359 1812 for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
mcimadamore@359 1813 for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
mcimadamore@359 1814 // VM allows methods and variables with differing types
mcimadamore@359 1815 if (sym.kind == e.sym.kind &&
mcimadamore@359 1816 types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
mcimadamore@359 1817 sym != e.sym &&
mcimadamore@359 1818 (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
mcimadamore@359 1819 (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
mcimadamore@359 1820 syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
mcimadamore@359 1821 return;
mcimadamore@359 1822 }
mcimadamore@359 1823 }
mcimadamore@359 1824 }
mcimadamore@359 1825 }
mcimadamore@359 1826
mcimadamore@359 1827 /** Report a conflict between a user symbol and a synthetic symbol.
mcimadamore@359 1828 */
mcimadamore@359 1829 private void syntheticError(DiagnosticPosition pos, Symbol sym) {
mcimadamore@359 1830 if (!sym.type.isErroneous()) {
mcimadamore@359 1831 if (warnOnSyntheticConflicts) {
mcimadamore@359 1832 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
mcimadamore@359 1833 }
mcimadamore@359 1834 else {
mcimadamore@359 1835 log.error(pos, "synthetic.name.conflict", sym, sym.location());
mcimadamore@359 1836 }
mcimadamore@359 1837 }
mcimadamore@359 1838 }
mcimadamore@359 1839
duke@1 1840 /** Check that class c does not implement directly or indirectly
duke@1 1841 * the same parameterized interface with two different argument lists.
duke@1 1842 * @param pos Position to be used for error reporting.
duke@1 1843 * @param type The type whose interfaces are checked.
duke@1 1844 */
duke@1 1845 void checkClassBounds(DiagnosticPosition pos, Type type) {
duke@1 1846 checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
duke@1 1847 }
duke@1 1848 //where
duke@1 1849 /** Enter all interfaces of type `type' into the hash table `seensofar'
duke@1 1850 * with their class symbol as key and their type as value. Make
duke@1 1851 * sure no class is entered with two different types.
duke@1 1852 */
duke@1 1853 void checkClassBounds(DiagnosticPosition pos,
duke@1 1854 Map<TypeSymbol,Type> seensofar,
duke@1 1855 Type type) {
duke@1 1856 if (type.isErroneous()) return;
duke@1 1857 for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
duke@1 1858 Type it = l.head;
duke@1 1859 Type oldit = seensofar.put(it.tsym, it);
duke@1 1860 if (oldit != null) {
duke@1 1861 List<Type> oldparams = oldit.allparams();
duke@1 1862 List<Type> newparams = it.allparams();
duke@1 1863 if (!types.containsTypeEquivalent(oldparams, newparams))
duke@1 1864 log.error(pos, "cant.inherit.diff.arg",
duke@1 1865 it.tsym, Type.toString(oldparams),
duke@1 1866 Type.toString(newparams));
duke@1 1867 }
duke@1 1868 checkClassBounds(pos, seensofar, it);
duke@1 1869 }
duke@1 1870 Type st = types.supertype(type);
duke@1 1871 if (st != null) checkClassBounds(pos, seensofar, st);
duke@1 1872 }
duke@1 1873
duke@1 1874 /** Enter interface into into set.
duke@1 1875 * If it existed already, issue a "repeated interface" error.
duke@1 1876 */
duke@1 1877 void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
duke@1 1878 if (its.contains(it))
duke@1 1879 log.error(pos, "repeated.interface");
duke@1 1880 else {
duke@1 1881 its.add(it);
duke@1 1882 }
duke@1 1883 }
duke@1 1884
duke@1 1885 /* *************************************************************************
duke@1 1886 * Check annotations
duke@1 1887 **************************************************************************/
duke@1 1888
duke@1 1889 /** Annotation types are restricted to primitives, String, an
duke@1 1890 * enum, an annotation, Class, Class<?>, Class<? extends
duke@1 1891 * Anything>, arrays of the preceding.
duke@1 1892 */
duke@1 1893 void validateAnnotationType(JCTree restype) {
duke@1 1894 // restype may be null if an error occurred, so don't bother validating it
duke@1 1895 if (restype != null) {
duke@1 1896 validateAnnotationType(restype.pos(), restype.type);
duke@1 1897 }
duke@1 1898 }
duke@1 1899
duke@1 1900 void validateAnnotationType(DiagnosticPosition pos, Type type) {
duke@1 1901 if (type.isPrimitive()) return;
duke@1 1902 if (types.isSameType(type, syms.stringType)) return;
duke@1 1903 if ((type.tsym.flags() & Flags.ENUM) != 0) return;
duke@1 1904 if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
duke@1 1905 if (types.lowerBound(type).tsym == syms.classType.tsym) return;
duke@1 1906 if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
duke@1 1907 validateAnnotationType(pos, types.elemtype(type));
duke@1 1908 return;
duke@1 1909 }
duke@1 1910 log.error(pos, "invalid.annotation.member.type");
duke@1 1911 }
duke@1 1912
duke@1 1913 /**
duke@1 1914 * "It is also a compile-time error if any method declared in an
duke@1 1915 * annotation type has a signature that is override-equivalent to
duke@1 1916 * that of any public or protected method declared in class Object
duke@1 1917 * or in the interface annotation.Annotation."
duke@1 1918 *
duke@1 1919 * @jls3 9.6 Annotation Types
duke@1 1920 */
duke@1 1921 void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
duke@1 1922 for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
duke@1 1923 Scope s = sup.tsym.members();
duke@1 1924 for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1925 if (e.sym.kind == MTH &&
duke@1 1926 (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
duke@1 1927 types.overrideEquivalent(m.type, e.sym.type))
duke@1 1928 log.error(pos, "intf.annotation.member.clash", e.sym, sup);
duke@1 1929 }
duke@1 1930 }
duke@1 1931 }
duke@1 1932
duke@1 1933 /** Check the annotations of a symbol.
duke@1 1934 */
duke@1 1935 public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
duke@1 1936 if (skipAnnotations) return;
duke@1 1937 for (JCAnnotation a : annotations)
duke@1 1938 validateAnnotation(a, s);
duke@1 1939 }
duke@1 1940
jjg@308 1941 /** Check the type annotations
jjg@308 1942 */
jjg@308 1943 public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
jjg@308 1944 if (skipAnnotations) return;
jjg@308 1945 for (JCTypeAnnotation a : annotations)
jjg@308 1946 validateTypeAnnotation(a, isTypeParameter);
jjg@308 1947 }
jjg@308 1948
duke@1 1949 /** Check an annotation of a symbol.
duke@1 1950 */
duke@1 1951 public void validateAnnotation(JCAnnotation a, Symbol s) {
duke@1 1952 validateAnnotation(a);
duke@1 1953
duke@1 1954 if (!annotationApplicable(a, s))
duke@1 1955 log.error(a.pos(), "annotation.type.not.applicable");
duke@1 1956
duke@1 1957 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
duke@1 1958 if (!isOverrider(s))
duke@1 1959 log.error(a.pos(), "method.does.not.override.superclass");
duke@1 1960 }
duke@1 1961 }
duke@1 1962
jjg@308 1963 public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
jjg@308 1964 if (a.type == null)
jjg@308 1965 throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
jjg@308 1966 validateAnnotation(a);
jjg@308 1967
jjg@308 1968 if (!isTypeAnnotation(a, isTypeParameter))
jjg@308 1969 log.error(a.pos(), "annotation.type.not.applicable");
jjg@308 1970 }
jjg@308 1971
duke@1 1972 /** Is s a method symbol that overrides a method in a superclass? */
duke@1 1973 boolean isOverrider(Symbol s) {
duke@1 1974 if (s.kind != MTH || s.isStatic())
duke@1 1975 return false;
duke@1 1976 MethodSymbol m = (MethodSymbol)s;
duke@1 1977 TypeSymbol owner = (TypeSymbol)m.owner;
duke@1 1978 for (Type sup : types.closure(owner.type)) {
duke@1 1979 if (sup == owner.type)
duke@1 1980 continue; // skip "this"
duke@1 1981 Scope scope = sup.tsym.members();
duke@1 1982 for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1983 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
duke@1 1984 return true;
duke@1 1985 }
duke@1 1986 }
duke@1 1987 return false;
duke@1 1988 }
duke@1 1989
jjg@308 1990 /** Is the annotation applicable to type annotations */
jjg@308 1991 boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
jjg@308 1992 Attribute.Compound atTarget =
jjg@308 1993 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
jjg@308 1994 if (atTarget == null) return true;
jjg@308 1995 Attribute atValue = atTarget.member(names.value);
jjg@308 1996 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
jjg@308 1997 Attribute.Array arr = (Attribute.Array) atValue;
jjg@308 1998 for (Attribute app : arr.values) {
jjg@308 1999 if (!(app instanceof Attribute.Enum)) return true; // recovery
jjg@308 2000 Attribute.Enum e = (Attribute.Enum) app;
jjg@308 2001 if (!isTypeParameter && e.value.name == names.TYPE_USE)
jjg@308 2002 return true;
jjg@308 2003 else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
jjg@308 2004 return true;
jjg@308 2005 }
jjg@308 2006 return false;
jjg@308 2007 }
jjg@308 2008
duke@1 2009 /** Is the annotation applicable to the symbol? */
duke@1 2010 boolean annotationApplicable(JCAnnotation a, Symbol s) {
duke@1 2011 Attribute.Compound atTarget =
duke@1 2012 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
duke@1 2013 if (atTarget == null) return true;
duke@1 2014 Attribute atValue = atTarget.member(names.value);
duke@1 2015 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
duke@1 2016 Attribute.Array arr = (Attribute.Array) atValue;
duke@1 2017 for (Attribute app : arr.values) {
duke@1 2018 if (!(app instanceof Attribute.Enum)) return true; // recovery
duke@1 2019 Attribute.Enum e = (Attribute.Enum) app;
duke@1 2020 if (e.value.name == names.TYPE)
duke@1 2021 { if (s.kind == TYP) return true; }
duke@1 2022 else if (e.value.name == names.FIELD)
duke@1 2023 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
duke@1 2024 else if (e.value.name == names.METHOD)
duke@1 2025 { if (s.kind == MTH && !s.isConstructor()) return true; }
duke@1 2026 else if (e.value.name == names.PARAMETER)
duke@1 2027 { if (s.kind == VAR &&
duke@1 2028 s.owner.kind == MTH &&
duke@1 2029 (s.flags() & PARAMETER) != 0)
duke@1 2030 return true;
duke@1 2031 }
duke@1 2032 else if (e.value.name == names.CONSTRUCTOR)
duke@1 2033 { if (s.kind == MTH && s.isConstructor()) return true; }
duke@1 2034 else if (e.value.name == names.LOCAL_VARIABLE)
duke@1 2035 { if (s.kind == VAR && s.owner.kind == MTH &&
duke@1 2036 (s.flags() & PARAMETER) == 0)
duke@1 2037 return true;
duke@1 2038 }
duke@1 2039 else if (e.value.name == names.ANNOTATION_TYPE)
duke@1 2040 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
duke@1 2041 return true;
duke@1 2042 }
duke@1 2043 else if (e.value.name == names.PACKAGE)
duke@1 2044 { if (s.kind == PCK) return true; }
jjg@308 2045 else if (e.value.name == names.TYPE_USE)
jjg@308 2046 { if (s.kind == TYP ||
jjg@308 2047 s.kind == VAR ||
jjg@308 2048 (s.kind == MTH && !s.isConstructor() &&
jjg@308 2049 s.type.getReturnType().tag != VOID))
jjg@308 2050 return true;
jjg@308 2051 }
duke@1 2052 else
duke@1 2053 return true; // recovery
duke@1 2054 }
duke@1 2055 return false;
duke@1 2056 }
duke@1 2057
duke@1 2058 /** Check an annotation value.
duke@1 2059 */
duke@1 2060 public void validateAnnotation(JCAnnotation a) {
duke@1 2061 if (a.type.isErroneous()) return;
duke@1 2062
duke@1 2063 // collect an inventory of the members
duke@1 2064 Set<MethodSymbol> members = new HashSet<MethodSymbol>();
duke@1 2065 for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
duke@1 2066 e != null;
duke@1 2067 e = e.sibling)
duke@1 2068 if (e.sym.kind == MTH)
duke@1 2069 members.add((MethodSymbol) e.sym);
duke@1 2070
duke@1 2071 // count them off as they're annotated
duke@1 2072 for (JCTree arg : a.args) {
duke@1 2073 if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
duke@1 2074 JCAssign assign = (JCAssign) arg;
duke@1 2075 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 2076 if (m == null || m.type.isErroneous()) continue;
duke@1 2077 if (!members.remove(m))
jjg@479 2078 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
duke@1 2079 m.name, a.type);
duke@1 2080 if (assign.rhs.getTag() == ANNOTATION)
duke@1 2081 validateAnnotation((JCAnnotation)assign.rhs);
duke@1 2082 }
duke@1 2083
duke@1 2084 // all the remaining ones better have default values
duke@1 2085 for (MethodSymbol m : members)
duke@1 2086 if (m.defaultValue == null && !m.type.isErroneous())
duke@1 2087 log.error(a.pos(), "annotation.missing.default.value",
duke@1 2088 a.type, m.name);
duke@1 2089
duke@1 2090 // special case: java.lang.annotation.Target must not have
duke@1 2091 // repeated values in its value member
duke@1 2092 if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
duke@1 2093 a.args.tail == null)
duke@1 2094 return;
duke@1 2095
duke@1 2096 if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
duke@1 2097 JCAssign assign = (JCAssign) a.args.head;
duke@1 2098 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 2099 if (m.name != names.value) return;
duke@1 2100 JCTree rhs = assign.rhs;
duke@1 2101 if (rhs.getTag() != JCTree.NEWARRAY) return;
duke@1 2102 JCNewArray na = (JCNewArray) rhs;
duke@1 2103 Set<Symbol> targets = new HashSet<Symbol>();
duke@1 2104 for (JCTree elem : na.elems) {
duke@1 2105 if (!targets.add(TreeInfo.symbol(elem))) {
duke@1 2106 log.error(elem.pos(), "repeated.annotation.target");
duke@1 2107 }
duke@1 2108 }
duke@1 2109 }
duke@1 2110
duke@1 2111 void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
duke@1 2112 if (allowAnnotations &&
duke@1 2113 lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
duke@1 2114 (s.flags() & DEPRECATED) != 0 &&
duke@1 2115 !syms.deprecatedType.isErroneous() &&
duke@1 2116 s.attribute(syms.deprecatedType.tsym) == null) {
duke@1 2117 log.warning(pos, "missing.deprecated.annotation");
duke@1 2118 }
duke@1 2119 }
duke@1 2120
duke@1 2121 /* *************************************************************************
duke@1 2122 * Check for recursive annotation elements.
duke@1 2123 **************************************************************************/
duke@1 2124
duke@1 2125 /** Check for cycles in the graph of annotation elements.
duke@1 2126 */
duke@1 2127 void checkNonCyclicElements(JCClassDecl tree) {
duke@1 2128 if ((tree.sym.flags_field & ANNOTATION) == 0) return;
duke@1 2129 assert (tree.sym.flags_field & LOCKED) == 0;
duke@1 2130 try {
duke@1 2131 tree.sym.flags_field |= LOCKED;
duke@1 2132 for (JCTree def : tree.defs) {
duke@1 2133 if (def.getTag() != JCTree.METHODDEF) continue;
duke@1 2134 JCMethodDecl meth = (JCMethodDecl)def;
duke@1 2135 checkAnnotationResType(meth.pos(), meth.restype.type);
duke@1 2136 }
duke@1 2137 } finally {
duke@1 2138 tree.sym.flags_field &= ~LOCKED;
duke@1 2139 tree.sym.flags_field |= ACYCLIC_ANN;
duke@1 2140 }
duke@1 2141 }
duke@1 2142
duke@1 2143 void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
duke@1 2144 if ((tsym.flags_field & ACYCLIC_ANN) != 0)
duke@1 2145 return;
duke@1 2146 if ((tsym.flags_field & LOCKED) != 0) {
duke@1 2147 log.error(pos, "cyclic.annotation.element");
duke@1 2148 return;
duke@1 2149 }
duke@1 2150 try {
duke@1 2151 tsym.flags_field |= LOCKED;
duke@1 2152 for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
duke@1 2153 Symbol s = e.sym;
duke@1 2154 if (s.kind != Kinds.MTH)
duke@1 2155 continue;
duke@1 2156 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
duke@1 2157 }
duke@1 2158 } finally {
duke@1 2159 tsym.flags_field &= ~LOCKED;
duke@1 2160 tsym.flags_field |= ACYCLIC_ANN;
duke@1 2161 }
duke@1 2162 }
duke@1 2163
duke@1 2164 void checkAnnotationResType(DiagnosticPosition pos, Type type) {
duke@1 2165 switch (type.tag) {
duke@1 2166 case TypeTags.CLASS:
duke@1 2167 if ((type.tsym.flags() & ANNOTATION) != 0)
duke@1 2168 checkNonCyclicElementsInternal(pos, type.tsym);
duke@1 2169 break;
duke@1 2170 case TypeTags.ARRAY:
duke@1 2171 checkAnnotationResType(pos, types.elemtype(type));
duke@1 2172 break;
duke@1 2173 default:
duke@1 2174 break; // int etc
duke@1 2175 }
duke@1 2176 }
duke@1 2177
duke@1 2178 /* *************************************************************************
duke@1 2179 * Check for cycles in the constructor call graph.
duke@1 2180 **************************************************************************/
duke@1 2181
duke@1 2182 /** Check for cycles in the graph of constructors calling other
duke@1 2183 * constructors.
duke@1 2184 */
duke@1 2185 void checkCyclicConstructors(JCClassDecl tree) {
duke@1 2186 Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
duke@1 2187
duke@1 2188 // enter each constructor this-call into the map
duke@1 2189 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 2190 JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
duke@1 2191 if (app == null) continue;
duke@1 2192 JCMethodDecl meth = (JCMethodDecl) l.head;
duke@1 2193 if (TreeInfo.name(app.meth) == names._this) {
duke@1 2194 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
duke@1 2195 } else {
duke@1 2196 meth.sym.flags_field |= ACYCLIC;
duke@1 2197 }
duke@1 2198 }
duke@1 2199
duke@1 2200 // Check for cycles in the map
duke@1 2201 Symbol[] ctors = new Symbol[0];
duke@1 2202 ctors = callMap.keySet().toArray(ctors);
duke@1 2203 for (Symbol caller : ctors) {
duke@1 2204 checkCyclicConstructor(tree, caller, callMap);
duke@1 2205 }
duke@1 2206 }
duke@1 2207
duke@1 2208 /** Look in the map to see if the given constructor is part of a
duke@1 2209 * call cycle.
duke@1 2210 */
duke@1 2211 private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
duke@1 2212 Map<Symbol,Symbol> callMap) {
duke@1 2213 if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
duke@1 2214 if ((ctor.flags_field & LOCKED) != 0) {
duke@1 2215 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
duke@1 2216 "recursive.ctor.invocation");
duke@1 2217 } else {
duke@1 2218 ctor.flags_field |= LOCKED;
duke@1 2219 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
duke@1 2220 ctor.flags_field &= ~LOCKED;
duke@1 2221 }
duke@1 2222 ctor.flags_field |= ACYCLIC;
duke@1 2223 }
duke@1 2224 }
duke@1 2225
duke@1 2226 /* *************************************************************************
duke@1 2227 * Miscellaneous
duke@1 2228 **************************************************************************/
duke@1 2229
duke@1 2230 /**
duke@1 2231 * Return the opcode of the operator but emit an error if it is an
duke@1 2232 * error.
duke@1 2233 * @param pos position for error reporting.
duke@1 2234 * @param operator an operator
duke@1 2235 * @param tag a tree tag
duke@1 2236 * @param left type of left hand side
duke@1 2237 * @param right type of right hand side
duke@1 2238 */
duke@1 2239 int checkOperator(DiagnosticPosition pos,
duke@1 2240 OperatorSymbol operator,
duke@1 2241 int tag,
duke@1 2242 Type left,
duke@1 2243 Type right) {
duke@1 2244 if (operator.opcode == ByteCodes.error) {
duke@1 2245 log.error(pos,
duke@1 2246 "operator.cant.be.applied",
duke@1 2247 treeinfo.operatorName(tag),
mcimadamore@80 2248 List.of(left, right));
duke@1 2249 }
duke@1 2250 return operator.opcode;
duke@1 2251 }
duke@1 2252
duke@1 2253
duke@1 2254 /**
duke@1 2255 * Check for division by integer constant zero
duke@1 2256 * @param pos Position for error reporting.
duke@1 2257 * @param operator The operator for the expression
duke@1 2258 * @param operand The right hand operand for the expression
duke@1 2259 */
duke@1 2260 void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
duke@1 2261 if (operand.constValue() != null
duke@1 2262 && lint.isEnabled(Lint.LintCategory.DIVZERO)
duke@1 2263 && operand.tag <= LONG
duke@1 2264 && ((Number) (operand.constValue())).longValue() == 0) {
duke@1 2265 int opc = ((OperatorSymbol)operator).opcode;
duke@1 2266 if (opc == ByteCodes.idiv || opc == ByteCodes.imod
duke@1 2267 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
duke@1 2268 log.warning(pos, "div.zero");
duke@1 2269 }
duke@1 2270 }
duke@1 2271 }
duke@1 2272
duke@1 2273 /**
duke@1 2274 * Check for empty statements after if
duke@1 2275 */
duke@1 2276 void checkEmptyIf(JCIf tree) {
duke@1 2277 if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
duke@1 2278 log.warning(tree.thenpart.pos(), "empty.if");
duke@1 2279 }
duke@1 2280
duke@1 2281 /** Check that symbol is unique in given scope.
duke@1 2282 * @param pos Position for error reporting.
duke@1 2283 * @param sym The symbol.
duke@1 2284 * @param s The scope.
duke@1 2285 */
duke@1 2286 boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2287 if (sym.type.isErroneous())
duke@1 2288 return true;
duke@1 2289 if (sym.owner.name == names.any) return false;
duke@1 2290 for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
duke@1 2291 if (sym != e.sym &&
duke@1 2292 sym.kind == e.sym.kind &&
duke@1 2293 sym.name != names.error &&
mcimadamore@252 2294 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
duke@1 2295 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
duke@1 2296 varargsDuplicateError(pos, sym, e.sym);
mcimadamore@252 2297 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
mcimadamore@252 2298 duplicateErasureError(pos, sym, e.sym);
duke@1 2299 else
duke@1 2300 duplicateError(pos, e.sym);
duke@1 2301 return false;
duke@1 2302 }
duke@1 2303 }
duke@1 2304 return true;
duke@1 2305 }
mcimadamore@252 2306 //where
mcimadamore@252 2307 /** Report duplicate declaration error.
mcimadamore@252 2308 */
mcimadamore@252 2309 void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
mcimadamore@252 2310 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
mcimadamore@252 2311 log.error(pos, "name.clash.same.erasure", sym1, sym2);
mcimadamore@252 2312 }
mcimadamore@252 2313 }
duke@1 2314
duke@1 2315 /** Check that single-type import is not already imported or top-level defined,
duke@1 2316 * but make an exception for two single-type imports which denote the same type.
duke@1 2317 * @param pos Position for error reporting.
duke@1 2318 * @param sym The symbol.
duke@1 2319 * @param s The scope
duke@1 2320 */
duke@1 2321 boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2322 return checkUniqueImport(pos, sym, s, false);
duke@1 2323 }
duke@1 2324
duke@1 2325 /** Check that static single-type import is not already imported or top-level defined,
duke@1 2326 * but make an exception for two single-type imports which denote the same type.
duke@1 2327 * @param pos Position for error reporting.
duke@1 2328 * @param sym The symbol.
duke@1 2329 * @param s The scope
duke@1 2330 * @param staticImport Whether or not this was a static import
duke@1 2331 */
duke@1 2332 boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2333 return checkUniqueImport(pos, sym, s, true);
duke@1 2334 }
duke@1 2335
duke@1 2336 /** Check that single-type import is not already imported or top-level defined,
duke@1 2337 * but make an exception for two single-type imports which denote the same type.
duke@1 2338 * @param pos Position for error reporting.
duke@1 2339 * @param sym The symbol.
duke@1 2340 * @param s The scope.
duke@1 2341 * @param staticImport Whether or not this was a static import
duke@1 2342 */
duke@1 2343 private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
duke@1 2344 for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
duke@1 2345 // is encountered class entered via a class declaration?
duke@1 2346 boolean isClassDecl = e.scope == s;
duke@1 2347 if ((isClassDecl || sym != e.sym) &&
duke@1 2348 sym.kind == e.sym.kind &&
duke@1 2349 sym.name != names.error) {
duke@1 2350 if (!e.sym.type.isErroneous()) {
duke@1 2351 String what = e.sym.toString();
duke@1 2352 if (!isClassDecl) {
duke@1 2353 if (staticImport)
duke@1 2354 log.error(pos, "already.defined.static.single.import", what);
duke@1 2355 else
duke@1 2356 log.error(pos, "already.defined.single.import", what);
duke@1 2357 }
duke@1 2358 else if (sym != e.sym)
duke@1 2359 log.error(pos, "already.defined.this.unit", what);
duke@1 2360 }
duke@1 2361 return false;
duke@1 2362 }
duke@1 2363 }
duke@1 2364 return true;
duke@1 2365 }
duke@1 2366
duke@1 2367 /** Check that a qualified name is in canonical form (for import decls).
duke@1 2368 */
duke@1 2369 public void checkCanonical(JCTree tree) {
duke@1 2370 if (!isCanonical(tree))
duke@1 2371 log.error(tree.pos(), "import.requires.canonical",
duke@1 2372 TreeInfo.symbol(tree));
duke@1 2373 }
duke@1 2374 // where
duke@1 2375 private boolean isCanonical(JCTree tree) {
duke@1 2376 while (tree.getTag() == JCTree.SELECT) {
duke@1 2377 JCFieldAccess s = (JCFieldAccess) tree;
duke@1 2378 if (s.sym.owner != TreeInfo.symbol(s.selected))
duke@1 2379 return false;
duke@1 2380 tree = s.selected;
duke@1 2381 }
duke@1 2382 return true;
duke@1 2383 }
duke@1 2384
duke@1 2385 private class ConversionWarner extends Warner {
duke@1 2386 final String key;
duke@1 2387 final Type found;
duke@1 2388 final Type expected;
duke@1 2389 public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
duke@1 2390 super(pos);
duke@1 2391 this.key = key;
duke@1 2392 this.found = found;
duke@1 2393 this.expected = expected;
duke@1 2394 }
duke@1 2395
jjg@398 2396 @Override
duke@1 2397 public void warnUnchecked() {
duke@1 2398 boolean warned = this.warned;
duke@1 2399 super.warnUnchecked();
duke@1 2400 if (warned) return; // suppress redundant diagnostics
mcimadamore@89 2401 Object problem = diags.fragment(key);
duke@1 2402 Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
duke@1 2403 }
duke@1 2404 }
duke@1 2405
duke@1 2406 public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2407 return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
duke@1 2408 }
duke@1 2409
duke@1 2410 public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2411 return new ConversionWarner(pos, "unchecked.assign", found, expected);
duke@1 2412 }
duke@1 2413 }

mercurial