src/share/classes/com/sun/tools/javac/comp/Check.java

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 1
9a66ca7c79fa
child 12
7366066839bb
permissions
-rw-r--r--

Initial load

duke@1 1 /*
duke@1 2 * Copyright 1999-2006 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30
duke@1 31 import com.sun.tools.javac.code.*;
duke@1 32 import com.sun.tools.javac.jvm.*;
duke@1 33 import com.sun.tools.javac.tree.*;
duke@1 34 import com.sun.tools.javac.util.*;
duke@1 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 36 import com.sun.tools.javac.util.List;
duke@1 37
duke@1 38 import com.sun.tools.javac.tree.JCTree.*;
duke@1 39 import com.sun.tools.javac.code.Lint;
duke@1 40 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 41 import com.sun.tools.javac.code.Type.*;
duke@1 42 import com.sun.tools.javac.code.Symbol.*;
duke@1 43
duke@1 44 import static com.sun.tools.javac.code.Flags.*;
duke@1 45 import static com.sun.tools.javac.code.Kinds.*;
duke@1 46 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 47
duke@1 48 /** Type checking helper class for the attribution phase.
duke@1 49 *
duke@1 50 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 51 * you write code that depends on this, you do so at your own risk.
duke@1 52 * This code and its internal interfaces are subject to change or
duke@1 53 * deletion without notice.</b>
duke@1 54 */
duke@1 55 public class Check {
duke@1 56 protected static final Context.Key<Check> checkKey =
duke@1 57 new Context.Key<Check>();
duke@1 58
duke@1 59 private final Name.Table names;
duke@1 60 private final Log log;
duke@1 61 private final Symtab syms;
duke@1 62 private final Infer infer;
duke@1 63 private final Target target;
duke@1 64 private final Source source;
duke@1 65 private final Types types;
duke@1 66 private final boolean skipAnnotations;
duke@1 67 private final TreeInfo treeinfo;
duke@1 68
duke@1 69 // The set of lint options currently in effect. It is initialized
duke@1 70 // from the context, and then is set/reset as needed by Attr as it
duke@1 71 // visits all the various parts of the trees during attribution.
duke@1 72 private Lint lint;
duke@1 73
duke@1 74 public static Check instance(Context context) {
duke@1 75 Check instance = context.get(checkKey);
duke@1 76 if (instance == null)
duke@1 77 instance = new Check(context);
duke@1 78 return instance;
duke@1 79 }
duke@1 80
duke@1 81 protected Check(Context context) {
duke@1 82 context.put(checkKey, this);
duke@1 83
duke@1 84 names = Name.Table.instance(context);
duke@1 85 log = Log.instance(context);
duke@1 86 syms = Symtab.instance(context);
duke@1 87 infer = Infer.instance(context);
duke@1 88 this.types = Types.instance(context);
duke@1 89 Options options = Options.instance(context);
duke@1 90 target = Target.instance(context);
duke@1 91 source = Source.instance(context);
duke@1 92 lint = Lint.instance(context);
duke@1 93 treeinfo = TreeInfo.instance(context);
duke@1 94
duke@1 95 Source source = Source.instance(context);
duke@1 96 allowGenerics = source.allowGenerics();
duke@1 97 allowAnnotations = source.allowAnnotations();
duke@1 98 complexInference = options.get("-complexinference") != null;
duke@1 99 skipAnnotations = options.get("skipAnnotations") != null;
duke@1 100
duke@1 101 boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
duke@1 102 boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
duke@1 103
duke@1 104 deprecationHandler = new MandatoryWarningHandler(log,verboseDeprecated, "deprecated");
duke@1 105 uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked, "unchecked");
duke@1 106 }
duke@1 107
duke@1 108 /** Switch: generics enabled?
duke@1 109 */
duke@1 110 boolean allowGenerics;
duke@1 111
duke@1 112 /** Switch: annotations enabled?
duke@1 113 */
duke@1 114 boolean allowAnnotations;
duke@1 115
duke@1 116 /** Switch: -complexinference option set?
duke@1 117 */
duke@1 118 boolean complexInference;
duke@1 119
duke@1 120 /** A table mapping flat names of all compiled classes in this run to their
duke@1 121 * symbols; maintained from outside.
duke@1 122 */
duke@1 123 public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
duke@1 124
duke@1 125 /** A handler for messages about deprecated usage.
duke@1 126 */
duke@1 127 private MandatoryWarningHandler deprecationHandler;
duke@1 128
duke@1 129 /** A handler for messages about unchecked or unsafe usage.
duke@1 130 */
duke@1 131 private MandatoryWarningHandler uncheckedHandler;
duke@1 132
duke@1 133
duke@1 134 /* *************************************************************************
duke@1 135 * Errors and Warnings
duke@1 136 **************************************************************************/
duke@1 137
duke@1 138 Lint setLint(Lint newLint) {
duke@1 139 Lint prev = lint;
duke@1 140 lint = newLint;
duke@1 141 return prev;
duke@1 142 }
duke@1 143
duke@1 144 /** Warn about deprecated symbol.
duke@1 145 * @param pos Position to be used for error reporting.
duke@1 146 * @param sym The deprecated symbol.
duke@1 147 */
duke@1 148 void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
duke@1 149 if (!lint.isSuppressed(LintCategory.DEPRECATION))
duke@1 150 deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
duke@1 151 }
duke@1 152
duke@1 153 /** Warn about unchecked operation.
duke@1 154 * @param pos Position to be used for error reporting.
duke@1 155 * @param msg A string describing the problem.
duke@1 156 */
duke@1 157 public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
duke@1 158 if (!lint.isSuppressed(LintCategory.UNCHECKED))
duke@1 159 uncheckedHandler.report(pos, msg, args);
duke@1 160 }
duke@1 161
duke@1 162 /**
duke@1 163 * Report any deferred diagnostics.
duke@1 164 */
duke@1 165 public void reportDeferredDiagnostics() {
duke@1 166 deprecationHandler.reportDeferredDiagnostic();
duke@1 167 uncheckedHandler.reportDeferredDiagnostic();
duke@1 168 }
duke@1 169
duke@1 170
duke@1 171 /** Report a failure to complete a class.
duke@1 172 * @param pos Position to be used for error reporting.
duke@1 173 * @param ex The failure to report.
duke@1 174 */
duke@1 175 public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
duke@1 176 log.error(pos, "cant.access", ex.sym, ex.errmsg);
duke@1 177 if (ex instanceof ClassReader.BadClassFile) throw new Abort();
duke@1 178 else return syms.errType;
duke@1 179 }
duke@1 180
duke@1 181 /** Report a type error.
duke@1 182 * @param pos Position to be used for error reporting.
duke@1 183 * @param problem A string describing the error.
duke@1 184 * @param found The type that was found.
duke@1 185 * @param req The type that was required.
duke@1 186 */
duke@1 187 Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
duke@1 188 log.error(pos, "prob.found.req",
duke@1 189 problem, found, req);
duke@1 190 return syms.errType;
duke@1 191 }
duke@1 192
duke@1 193 Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
duke@1 194 log.error(pos, "prob.found.req.1", problem, found, req, explanation);
duke@1 195 return syms.errType;
duke@1 196 }
duke@1 197
duke@1 198 /** Report an error that wrong type tag was found.
duke@1 199 * @param pos Position to be used for error reporting.
duke@1 200 * @param required An internationalized string describing the type tag
duke@1 201 * required.
duke@1 202 * @param found The type that was found.
duke@1 203 */
duke@1 204 Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
duke@1 205 log.error(pos, "type.found.req", found, required);
duke@1 206 return syms.errType;
duke@1 207 }
duke@1 208
duke@1 209 /** Report an error that symbol cannot be referenced before super
duke@1 210 * has been called.
duke@1 211 * @param pos Position to be used for error reporting.
duke@1 212 * @param sym The referenced symbol.
duke@1 213 */
duke@1 214 void earlyRefError(DiagnosticPosition pos, Symbol sym) {
duke@1 215 log.error(pos, "cant.ref.before.ctor.called", sym);
duke@1 216 }
duke@1 217
duke@1 218 /** Report duplicate declaration error.
duke@1 219 */
duke@1 220 void duplicateError(DiagnosticPosition pos, Symbol sym) {
duke@1 221 if (!sym.type.isErroneous()) {
duke@1 222 log.error(pos, "already.defined", sym, sym.location());
duke@1 223 }
duke@1 224 }
duke@1 225
duke@1 226 /** Report array/varargs duplicate declaration
duke@1 227 */
duke@1 228 void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
duke@1 229 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
duke@1 230 log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
duke@1 231 }
duke@1 232 }
duke@1 233
duke@1 234 /* ************************************************************************
duke@1 235 * duplicate declaration checking
duke@1 236 *************************************************************************/
duke@1 237
duke@1 238 /** Check that variable does not hide variable with same name in
duke@1 239 * immediately enclosing local scope.
duke@1 240 * @param pos Position for error reporting.
duke@1 241 * @param v The symbol.
duke@1 242 * @param s The scope.
duke@1 243 */
duke@1 244 void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
duke@1 245 if (s.next != null) {
duke@1 246 for (Scope.Entry e = s.next.lookup(v.name);
duke@1 247 e.scope != null && e.sym.owner == v.owner;
duke@1 248 e = e.next()) {
duke@1 249 if (e.sym.kind == VAR &&
duke@1 250 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 251 v.name != names.error) {
duke@1 252 duplicateError(pos, e.sym);
duke@1 253 return;
duke@1 254 }
duke@1 255 }
duke@1 256 }
duke@1 257 }
duke@1 258
duke@1 259 /** Check that a class or interface does not hide a class or
duke@1 260 * interface with same name in immediately enclosing local scope.
duke@1 261 * @param pos Position for error reporting.
duke@1 262 * @param c The symbol.
duke@1 263 * @param s The scope.
duke@1 264 */
duke@1 265 void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
duke@1 266 if (s.next != null) {
duke@1 267 for (Scope.Entry e = s.next.lookup(c.name);
duke@1 268 e.scope != null && e.sym.owner == c.owner;
duke@1 269 e = e.next()) {
duke@1 270 if (e.sym.kind == TYP &&
duke@1 271 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 272 c.name != names.error) {
duke@1 273 duplicateError(pos, e.sym);
duke@1 274 return;
duke@1 275 }
duke@1 276 }
duke@1 277 }
duke@1 278 }
duke@1 279
duke@1 280 /** Check that class does not have the same name as one of
duke@1 281 * its enclosing classes, or as a class defined in its enclosing scope.
duke@1 282 * return true if class is unique in its enclosing scope.
duke@1 283 * @param pos Position for error reporting.
duke@1 284 * @param name The class name.
duke@1 285 * @param s The enclosing scope.
duke@1 286 */
duke@1 287 boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
duke@1 288 for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
duke@1 289 if (e.sym.kind == TYP && e.sym.name != names.error) {
duke@1 290 duplicateError(pos, e.sym);
duke@1 291 return false;
duke@1 292 }
duke@1 293 }
duke@1 294 for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
duke@1 295 if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
duke@1 296 duplicateError(pos, sym);
duke@1 297 return true;
duke@1 298 }
duke@1 299 }
duke@1 300 return true;
duke@1 301 }
duke@1 302
duke@1 303 /* *************************************************************************
duke@1 304 * Class name generation
duke@1 305 **************************************************************************/
duke@1 306
duke@1 307 /** Return name of local class.
duke@1 308 * This is of the form <enclClass> $ n <classname>
duke@1 309 * where
duke@1 310 * enclClass is the flat name of the enclosing class,
duke@1 311 * classname is the simple name of the local class
duke@1 312 */
duke@1 313 Name localClassName(ClassSymbol c) {
duke@1 314 for (int i=1; ; i++) {
duke@1 315 Name flatname = names.
duke@1 316 fromString("" + c.owner.enclClass().flatname +
duke@1 317 target.syntheticNameChar() + i +
duke@1 318 c.name);
duke@1 319 if (compiled.get(flatname) == null) return flatname;
duke@1 320 }
duke@1 321 }
duke@1 322
duke@1 323 /* *************************************************************************
duke@1 324 * Type Checking
duke@1 325 **************************************************************************/
duke@1 326
duke@1 327 /** Check that a given type is assignable to a given proto-type.
duke@1 328 * If it is, return the type, otherwise return errType.
duke@1 329 * @param pos Position to be used for error reporting.
duke@1 330 * @param found The type that was found.
duke@1 331 * @param req The type that was required.
duke@1 332 */
duke@1 333 Type checkType(DiagnosticPosition pos, Type found, Type req) {
duke@1 334 if (req.tag == ERROR)
duke@1 335 return req;
duke@1 336 if (found.tag == FORALL)
duke@1 337 return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
duke@1 338 if (req.tag == NONE)
duke@1 339 return found;
duke@1 340 if (types.isAssignable(found, req, convertWarner(pos, found, req)))
duke@1 341 return found;
duke@1 342 if (found.tag <= DOUBLE && req.tag <= DOUBLE)
duke@1 343 return typeError(pos, JCDiagnostic.fragment("possible.loss.of.precision"), found, req);
duke@1 344 if (found.isSuperBound()) {
duke@1 345 log.error(pos, "assignment.from.super-bound", found);
duke@1 346 return syms.errType;
duke@1 347 }
duke@1 348 if (req.isExtendsBound()) {
duke@1 349 log.error(pos, "assignment.to.extends-bound", req);
duke@1 350 return syms.errType;
duke@1 351 }
duke@1 352 return typeError(pos, JCDiagnostic.fragment("incompatible.types"), found, req);
duke@1 353 }
duke@1 354
duke@1 355 /** Instantiate polymorphic type to some prototype, unless
duke@1 356 * prototype is `anyPoly' in which case polymorphic type
duke@1 357 * is returned unchanged.
duke@1 358 */
duke@1 359 Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) {
duke@1 360 if (pt == Infer.anyPoly && complexInference) {
duke@1 361 return t;
duke@1 362 } else if (pt == Infer.anyPoly || pt.tag == NONE) {
duke@1 363 Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
duke@1 364 return instantiatePoly(pos, t, newpt, warn);
duke@1 365 } else if (pt.tag == ERROR) {
duke@1 366 return pt;
duke@1 367 } else {
duke@1 368 try {
duke@1 369 return infer.instantiateExpr(t, pt, warn);
duke@1 370 } catch (Infer.NoInstanceException ex) {
duke@1 371 if (ex.isAmbiguous) {
duke@1 372 JCDiagnostic d = ex.getDiagnostic();
duke@1 373 log.error(pos,
duke@1 374 "undetermined.type" + (d!=null ? ".1" : ""),
duke@1 375 t, d);
duke@1 376 return syms.errType;
duke@1 377 } else {
duke@1 378 JCDiagnostic d = ex.getDiagnostic();
duke@1 379 return typeError(pos,
duke@1 380 JCDiagnostic.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
duke@1 381 t, pt);
duke@1 382 }
duke@1 383 }
duke@1 384 }
duke@1 385 }
duke@1 386
duke@1 387 /** Check that a given type can be cast to a given target type.
duke@1 388 * Return the result of the cast.
duke@1 389 * @param pos Position to be used for error reporting.
duke@1 390 * @param found The type that is being cast.
duke@1 391 * @param req The target type of the cast.
duke@1 392 */
duke@1 393 Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
duke@1 394 if (found.tag == FORALL) {
duke@1 395 instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
duke@1 396 return req;
duke@1 397 } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
duke@1 398 return req;
duke@1 399 } else {
duke@1 400 return typeError(pos,
duke@1 401 JCDiagnostic.fragment("inconvertible.types"),
duke@1 402 found, req);
duke@1 403 }
duke@1 404 }
duke@1 405 //where
duke@1 406 /** Is type a type variable, or a (possibly multi-dimensional) array of
duke@1 407 * type variables?
duke@1 408 */
duke@1 409 boolean isTypeVar(Type t) {
duke@1 410 return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
duke@1 411 }
duke@1 412
duke@1 413 /** Check that a type is within some bounds.
duke@1 414 *
duke@1 415 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
duke@1 416 * type argument.
duke@1 417 * @param pos Position to be used for error reporting.
duke@1 418 * @param a The type that should be bounded by bs.
duke@1 419 * @param bs The bound.
duke@1 420 */
duke@1 421 private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
duke@1 422 if (a.isUnbound()) {
duke@1 423 return;
duke@1 424 } else if (a.tag != WILDCARD) {
duke@1 425 a = types.upperBound(a);
duke@1 426 for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
duke@1 427 if (!types.isSubtype(a, l.head)) {
duke@1 428 log.error(pos, "not.within.bounds", a);
duke@1 429 return;
duke@1 430 }
duke@1 431 }
duke@1 432 } else if (a.isExtendsBound()) {
duke@1 433 if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
duke@1 434 log.error(pos, "not.within.bounds", a);
duke@1 435 } else if (a.isSuperBound()) {
duke@1 436 if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
duke@1 437 log.error(pos, "not.within.bounds", a);
duke@1 438 }
duke@1 439 }
duke@1 440
duke@1 441 /** Check that type is different from 'void'.
duke@1 442 * @param pos Position to be used for error reporting.
duke@1 443 * @param t The type to be checked.
duke@1 444 */
duke@1 445 Type checkNonVoid(DiagnosticPosition pos, Type t) {
duke@1 446 if (t.tag == VOID) {
duke@1 447 log.error(pos, "void.not.allowed.here");
duke@1 448 return syms.errType;
duke@1 449 } else {
duke@1 450 return t;
duke@1 451 }
duke@1 452 }
duke@1 453
duke@1 454 /** Check that type is a class or interface type.
duke@1 455 * @param pos Position to be used for error reporting.
duke@1 456 * @param t The type to be checked.
duke@1 457 */
duke@1 458 Type checkClassType(DiagnosticPosition pos, Type t) {
duke@1 459 if (t.tag != CLASS && t.tag != ERROR)
duke@1 460 return typeTagError(pos,
duke@1 461 JCDiagnostic.fragment("type.req.class"),
duke@1 462 (t.tag == TYPEVAR)
duke@1 463 ? JCDiagnostic.fragment("type.parameter", t)
duke@1 464 : t);
duke@1 465 else
duke@1 466 return t;
duke@1 467 }
duke@1 468
duke@1 469 /** Check that type is a class or interface type.
duke@1 470 * @param pos Position to be used for error reporting.
duke@1 471 * @param t The type to be checked.
duke@1 472 * @param noBounds True if type bounds are illegal here.
duke@1 473 */
duke@1 474 Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
duke@1 475 t = checkClassType(pos, t);
duke@1 476 if (noBounds && t.isParameterized()) {
duke@1 477 List<Type> args = t.getTypeArguments();
duke@1 478 while (args.nonEmpty()) {
duke@1 479 if (args.head.tag == WILDCARD)
duke@1 480 return typeTagError(pos,
duke@1 481 log.getLocalizedString("type.req.exact"),
duke@1 482 args.head);
duke@1 483 args = args.tail;
duke@1 484 }
duke@1 485 }
duke@1 486 return t;
duke@1 487 }
duke@1 488
duke@1 489 /** Check that type is a reifiable class, interface or array type.
duke@1 490 * @param pos Position to be used for error reporting.
duke@1 491 * @param t The type to be checked.
duke@1 492 */
duke@1 493 Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
duke@1 494 if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
duke@1 495 return typeTagError(pos,
duke@1 496 JCDiagnostic.fragment("type.req.class.array"),
duke@1 497 t);
duke@1 498 } else if (!types.isReifiable(t)) {
duke@1 499 log.error(pos, "illegal.generic.type.for.instof");
duke@1 500 return syms.errType;
duke@1 501 } else {
duke@1 502 return t;
duke@1 503 }
duke@1 504 }
duke@1 505
duke@1 506 /** Check that type is a reference type, i.e. a class, interface or array type
duke@1 507 * or a type variable.
duke@1 508 * @param pos Position to be used for error reporting.
duke@1 509 * @param t The type to be checked.
duke@1 510 */
duke@1 511 Type checkRefType(DiagnosticPosition pos, Type t) {
duke@1 512 switch (t.tag) {
duke@1 513 case CLASS:
duke@1 514 case ARRAY:
duke@1 515 case TYPEVAR:
duke@1 516 case WILDCARD:
duke@1 517 case ERROR:
duke@1 518 return t;
duke@1 519 default:
duke@1 520 return typeTagError(pos,
duke@1 521 JCDiagnostic.fragment("type.req.ref"),
duke@1 522 t);
duke@1 523 }
duke@1 524 }
duke@1 525
duke@1 526 /** Check that type is a null or reference type.
duke@1 527 * @param pos Position to be used for error reporting.
duke@1 528 * @param t The type to be checked.
duke@1 529 */
duke@1 530 Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
duke@1 531 switch (t.tag) {
duke@1 532 case CLASS:
duke@1 533 case ARRAY:
duke@1 534 case TYPEVAR:
duke@1 535 case WILDCARD:
duke@1 536 case BOT:
duke@1 537 case ERROR:
duke@1 538 return t;
duke@1 539 default:
duke@1 540 return typeTagError(pos,
duke@1 541 JCDiagnostic.fragment("type.req.ref"),
duke@1 542 t);
duke@1 543 }
duke@1 544 }
duke@1 545
duke@1 546 /** Check that flag set does not contain elements of two conflicting sets. s
duke@1 547 * Return true if it doesn't.
duke@1 548 * @param pos Position to be used for error reporting.
duke@1 549 * @param flags The set of flags to be checked.
duke@1 550 * @param set1 Conflicting flags set #1.
duke@1 551 * @param set2 Conflicting flags set #2.
duke@1 552 */
duke@1 553 boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
duke@1 554 if ((flags & set1) != 0 && (flags & set2) != 0) {
duke@1 555 log.error(pos,
duke@1 556 "illegal.combination.of.modifiers",
duke@1 557 TreeInfo.flagNames(TreeInfo.firstFlag(flags & set1)),
duke@1 558 TreeInfo.flagNames(TreeInfo.firstFlag(flags & set2)));
duke@1 559 return false;
duke@1 560 } else
duke@1 561 return true;
duke@1 562 }
duke@1 563
duke@1 564 /** Check that given modifiers are legal for given symbol and
duke@1 565 * return modifiers together with any implicit modififiers for that symbol.
duke@1 566 * Warning: we can't use flags() here since this method
duke@1 567 * is called during class enter, when flags() would cause a premature
duke@1 568 * completion.
duke@1 569 * @param pos Position to be used for error reporting.
duke@1 570 * @param flags The set of modifiers given in a definition.
duke@1 571 * @param sym The defined symbol.
duke@1 572 */
duke@1 573 long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
duke@1 574 long mask;
duke@1 575 long implicit = 0;
duke@1 576 switch (sym.kind) {
duke@1 577 case VAR:
duke@1 578 if (sym.owner.kind != TYP)
duke@1 579 mask = LocalVarFlags;
duke@1 580 else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 581 mask = implicit = InterfaceVarFlags;
duke@1 582 else
duke@1 583 mask = VarFlags;
duke@1 584 break;
duke@1 585 case MTH:
duke@1 586 if (sym.name == names.init) {
duke@1 587 if ((sym.owner.flags_field & ENUM) != 0) {
duke@1 588 // enum constructors cannot be declared public or
duke@1 589 // protected and must be implicitly or explicitly
duke@1 590 // private
duke@1 591 implicit = PRIVATE;
duke@1 592 mask = PRIVATE;
duke@1 593 } else
duke@1 594 mask = ConstructorFlags;
duke@1 595 } else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 596 mask = implicit = InterfaceMethodFlags;
duke@1 597 else {
duke@1 598 mask = MethodFlags;
duke@1 599 }
duke@1 600 // Imply STRICTFP if owner has STRICTFP set.
duke@1 601 if (((flags|implicit) & Flags.ABSTRACT) == 0)
duke@1 602 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 603 break;
duke@1 604 case TYP:
duke@1 605 if (sym.isLocal()) {
duke@1 606 mask = LocalClassFlags;
duke@1 607 if (sym.name.len == 0) { // Anonymous class
duke@1 608 // Anonymous classes in static methods are themselves static;
duke@1 609 // that's why we admit STATIC here.
duke@1 610 mask |= STATIC;
duke@1 611 // JLS: Anonymous classes are final.
duke@1 612 implicit |= FINAL;
duke@1 613 }
duke@1 614 if ((sym.owner.flags_field & STATIC) == 0 &&
duke@1 615 (flags & ENUM) != 0)
duke@1 616 log.error(pos, "enums.must.be.static");
duke@1 617 } else if (sym.owner.kind == TYP) {
duke@1 618 mask = MemberClassFlags;
duke@1 619 if (sym.owner.owner.kind == PCK ||
duke@1 620 (sym.owner.flags_field & STATIC) != 0)
duke@1 621 mask |= STATIC;
duke@1 622 else if ((flags & ENUM) != 0)
duke@1 623 log.error(pos, "enums.must.be.static");
duke@1 624 // Nested interfaces and enums are always STATIC (Spec ???)
duke@1 625 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
duke@1 626 } else {
duke@1 627 mask = ClassFlags;
duke@1 628 }
duke@1 629 // Interfaces are always ABSTRACT
duke@1 630 if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
duke@1 631
duke@1 632 if ((flags & ENUM) != 0) {
duke@1 633 // enums can't be declared abstract or final
duke@1 634 mask &= ~(ABSTRACT | FINAL);
duke@1 635 implicit |= implicitEnumFinalFlag(tree);
duke@1 636 }
duke@1 637 // Imply STRICTFP if owner has STRICTFP set.
duke@1 638 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 639 break;
duke@1 640 default:
duke@1 641 throw new AssertionError();
duke@1 642 }
duke@1 643 long illegal = flags & StandardFlags & ~mask;
duke@1 644 if (illegal != 0) {
duke@1 645 if ((illegal & INTERFACE) != 0) {
duke@1 646 log.error(pos, "intf.not.allowed.here");
duke@1 647 mask |= INTERFACE;
duke@1 648 }
duke@1 649 else {
duke@1 650 log.error(pos,
duke@1 651 "mod.not.allowed.here", TreeInfo.flagNames(illegal));
duke@1 652 }
duke@1 653 }
duke@1 654 else if ((sym.kind == TYP ||
duke@1 655 // ISSUE: Disallowing abstract&private is no longer appropriate
duke@1 656 // in the presence of inner classes. Should it be deleted here?
duke@1 657 checkDisjoint(pos, flags,
duke@1 658 ABSTRACT,
duke@1 659 PRIVATE | STATIC))
duke@1 660 &&
duke@1 661 checkDisjoint(pos, flags,
duke@1 662 ABSTRACT | INTERFACE,
duke@1 663 FINAL | NATIVE | SYNCHRONIZED)
duke@1 664 &&
duke@1 665 checkDisjoint(pos, flags,
duke@1 666 PUBLIC,
duke@1 667 PRIVATE | PROTECTED)
duke@1 668 &&
duke@1 669 checkDisjoint(pos, flags,
duke@1 670 PRIVATE,
duke@1 671 PUBLIC | PROTECTED)
duke@1 672 &&
duke@1 673 checkDisjoint(pos, flags,
duke@1 674 FINAL,
duke@1 675 VOLATILE)
duke@1 676 &&
duke@1 677 (sym.kind == TYP ||
duke@1 678 checkDisjoint(pos, flags,
duke@1 679 ABSTRACT | NATIVE,
duke@1 680 STRICTFP))) {
duke@1 681 // skip
duke@1 682 }
duke@1 683 return flags & (mask | ~StandardFlags) | implicit;
duke@1 684 }
duke@1 685
duke@1 686
duke@1 687 /** Determine if this enum should be implicitly final.
duke@1 688 *
duke@1 689 * If the enum has no specialized enum contants, it is final.
duke@1 690 *
duke@1 691 * If the enum does have specialized enum contants, it is
duke@1 692 * <i>not</i> final.
duke@1 693 */
duke@1 694 private long implicitEnumFinalFlag(JCTree tree) {
duke@1 695 if (tree.getTag() != JCTree.CLASSDEF) return 0;
duke@1 696 class SpecialTreeVisitor extends JCTree.Visitor {
duke@1 697 boolean specialized;
duke@1 698 SpecialTreeVisitor() {
duke@1 699 this.specialized = false;
duke@1 700 };
duke@1 701
duke@1 702 public void visitTree(JCTree tree) { /* no-op */ }
duke@1 703
duke@1 704 public void visitVarDef(JCVariableDecl tree) {
duke@1 705 if ((tree.mods.flags & ENUM) != 0) {
duke@1 706 if (tree.init instanceof JCNewClass &&
duke@1 707 ((JCNewClass) tree.init).def != null) {
duke@1 708 specialized = true;
duke@1 709 }
duke@1 710 }
duke@1 711 }
duke@1 712 }
duke@1 713
duke@1 714 SpecialTreeVisitor sts = new SpecialTreeVisitor();
duke@1 715 JCClassDecl cdef = (JCClassDecl) tree;
duke@1 716 for (JCTree defs: cdef.defs) {
duke@1 717 defs.accept(sts);
duke@1 718 if (sts.specialized) return 0;
duke@1 719 }
duke@1 720 return FINAL;
duke@1 721 }
duke@1 722
duke@1 723 /* *************************************************************************
duke@1 724 * Type Validation
duke@1 725 **************************************************************************/
duke@1 726
duke@1 727 /** Validate a type expression. That is,
duke@1 728 * check that all type arguments of a parametric type are within
duke@1 729 * their bounds. This must be done in a second phase after type attributon
duke@1 730 * since a class might have a subclass as type parameter bound. E.g:
duke@1 731 *
duke@1 732 * class B<A extends C> { ... }
duke@1 733 * class C extends B<C> { ... }
duke@1 734 *
duke@1 735 * and we can't make sure that the bound is already attributed because
duke@1 736 * of possible cycles.
duke@1 737 */
duke@1 738 private Validator validator = new Validator();
duke@1 739
duke@1 740 /** Visitor method: Validate a type expression, if it is not null, catching
duke@1 741 * and reporting any completion failures.
duke@1 742 */
duke@1 743 void validate(JCTree tree) {
duke@1 744 try {
duke@1 745 if (tree != null) tree.accept(validator);
duke@1 746 } catch (CompletionFailure ex) {
duke@1 747 completionError(tree.pos(), ex);
duke@1 748 }
duke@1 749 }
duke@1 750
duke@1 751 /** Visitor method: Validate a list of type expressions.
duke@1 752 */
duke@1 753 void validate(List<? extends JCTree> trees) {
duke@1 754 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
duke@1 755 validate(l.head);
duke@1 756 }
duke@1 757
duke@1 758 /** Visitor method: Validate a list of type parameters.
duke@1 759 */
duke@1 760 void validateTypeParams(List<JCTypeParameter> trees) {
duke@1 761 for (List<JCTypeParameter> l = trees; l.nonEmpty(); l = l.tail)
duke@1 762 validate(l.head);
duke@1 763 }
duke@1 764
duke@1 765 /** A visitor class for type validation.
duke@1 766 */
duke@1 767 class Validator extends JCTree.Visitor {
duke@1 768
duke@1 769 public void visitTypeArray(JCArrayTypeTree tree) {
duke@1 770 validate(tree.elemtype);
duke@1 771 }
duke@1 772
duke@1 773 public void visitTypeApply(JCTypeApply tree) {
duke@1 774 if (tree.type.tag == CLASS) {
duke@1 775 List<Type> formals = tree.type.tsym.type.getTypeArguments();
duke@1 776 List<Type> actuals = tree.type.getTypeArguments();
duke@1 777 List<JCExpression> args = tree.arguments;
duke@1 778 List<Type> forms = formals;
duke@1 779 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
duke@1 780
duke@1 781 // For matching pairs of actual argument types `a' and
duke@1 782 // formal type parameters with declared bound `b' ...
duke@1 783 while (args.nonEmpty() && forms.nonEmpty()) {
duke@1 784 validate(args.head);
duke@1 785
duke@1 786 // exact type arguments needs to know their
duke@1 787 // bounds (for upper and lower bound
duke@1 788 // calculations). So we create new TypeVars with
duke@1 789 // bounds substed with actuals.
duke@1 790 tvars_buf.append(types.substBound(((TypeVar)forms.head),
duke@1 791 formals,
duke@1 792 Type.removeBounds(actuals)));
duke@1 793
duke@1 794 args = args.tail;
duke@1 795 forms = forms.tail;
duke@1 796 }
duke@1 797
duke@1 798 args = tree.arguments;
duke@1 799 List<TypeVar> tvars = tvars_buf.toList();
duke@1 800 while (args.nonEmpty() && tvars.nonEmpty()) {
duke@1 801 // Let the actual arguments know their bound
duke@1 802 args.head.type.withTypeVar(tvars.head);
duke@1 803 args = args.tail;
duke@1 804 tvars = tvars.tail;
duke@1 805 }
duke@1 806
duke@1 807 args = tree.arguments;
duke@1 808 tvars = tvars_buf.toList();
duke@1 809 while (args.nonEmpty() && tvars.nonEmpty()) {
duke@1 810 checkExtends(args.head.pos(),
duke@1 811 args.head.type,
duke@1 812 tvars.head);
duke@1 813 args = args.tail;
duke@1 814 tvars = tvars.tail;
duke@1 815 }
duke@1 816
duke@1 817 // Check that this type is either fully parameterized, or
duke@1 818 // not parameterized at all.
duke@1 819 if (tree.type.getEnclosingType().isRaw())
duke@1 820 log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
duke@1 821 if (tree.clazz.getTag() == JCTree.SELECT)
duke@1 822 visitSelectInternal((JCFieldAccess)tree.clazz);
duke@1 823 }
duke@1 824 }
duke@1 825
duke@1 826 public void visitTypeParameter(JCTypeParameter tree) {
duke@1 827 validate(tree.bounds);
duke@1 828 checkClassBounds(tree.pos(), tree.type);
duke@1 829 }
duke@1 830
duke@1 831 @Override
duke@1 832 public void visitWildcard(JCWildcard tree) {
duke@1 833 if (tree.inner != null)
duke@1 834 validate(tree.inner);
duke@1 835 }
duke@1 836
duke@1 837 public void visitSelect(JCFieldAccess tree) {
duke@1 838 if (tree.type.tag == CLASS) {
duke@1 839 visitSelectInternal(tree);
duke@1 840
duke@1 841 // Check that this type is either fully parameterized, or
duke@1 842 // not parameterized at all.
duke@1 843 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
duke@1 844 log.error(tree.pos(), "improperly.formed.type.param.missing");
duke@1 845 }
duke@1 846 }
duke@1 847 public void visitSelectInternal(JCFieldAccess tree) {
duke@1 848 if (tree.type.getEnclosingType().tag != CLASS &&
duke@1 849 tree.selected.type.isParameterized()) {
duke@1 850 // The enclosing type is not a class, so we are
duke@1 851 // looking at a static member type. However, the
duke@1 852 // qualifying expression is parameterized.
duke@1 853 log.error(tree.pos(), "cant.select.static.class.from.param.type");
duke@1 854 } else {
duke@1 855 // otherwise validate the rest of the expression
duke@1 856 validate(tree.selected);
duke@1 857 }
duke@1 858 }
duke@1 859
duke@1 860 /** Default visitor method: do nothing.
duke@1 861 */
duke@1 862 public void visitTree(JCTree tree) {
duke@1 863 }
duke@1 864 }
duke@1 865
duke@1 866 /* *************************************************************************
duke@1 867 * Exception checking
duke@1 868 **************************************************************************/
duke@1 869
duke@1 870 /* The following methods treat classes as sets that contain
duke@1 871 * the class itself and all their subclasses
duke@1 872 */
duke@1 873
duke@1 874 /** Is given type a subtype of some of the types in given list?
duke@1 875 */
duke@1 876 boolean subset(Type t, List<Type> ts) {
duke@1 877 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 878 if (types.isSubtype(t, l.head)) return true;
duke@1 879 return false;
duke@1 880 }
duke@1 881
duke@1 882 /** Is given type a subtype or supertype of
duke@1 883 * some of the types in given list?
duke@1 884 */
duke@1 885 boolean intersects(Type t, List<Type> ts) {
duke@1 886 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 887 if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
duke@1 888 return false;
duke@1 889 }
duke@1 890
duke@1 891 /** Add type set to given type list, unless it is a subclass of some class
duke@1 892 * in the list.
duke@1 893 */
duke@1 894 List<Type> incl(Type t, List<Type> ts) {
duke@1 895 return subset(t, ts) ? ts : excl(t, ts).prepend(t);
duke@1 896 }
duke@1 897
duke@1 898 /** Remove type set from type set list.
duke@1 899 */
duke@1 900 List<Type> excl(Type t, List<Type> ts) {
duke@1 901 if (ts.isEmpty()) {
duke@1 902 return ts;
duke@1 903 } else {
duke@1 904 List<Type> ts1 = excl(t, ts.tail);
duke@1 905 if (types.isSubtype(ts.head, t)) return ts1;
duke@1 906 else if (ts1 == ts.tail) return ts;
duke@1 907 else return ts1.prepend(ts.head);
duke@1 908 }
duke@1 909 }
duke@1 910
duke@1 911 /** Form the union of two type set lists.
duke@1 912 */
duke@1 913 List<Type> union(List<Type> ts1, List<Type> ts2) {
duke@1 914 List<Type> ts = ts1;
duke@1 915 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 916 ts = incl(l.head, ts);
duke@1 917 return ts;
duke@1 918 }
duke@1 919
duke@1 920 /** Form the difference of two type lists.
duke@1 921 */
duke@1 922 List<Type> diff(List<Type> ts1, List<Type> ts2) {
duke@1 923 List<Type> ts = ts1;
duke@1 924 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 925 ts = excl(l.head, ts);
duke@1 926 return ts;
duke@1 927 }
duke@1 928
duke@1 929 /** Form the intersection of two type lists.
duke@1 930 */
duke@1 931 public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
duke@1 932 List<Type> ts = List.nil();
duke@1 933 for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
duke@1 934 if (subset(l.head, ts2)) ts = incl(l.head, ts);
duke@1 935 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 936 if (subset(l.head, ts1)) ts = incl(l.head, ts);
duke@1 937 return ts;
duke@1 938 }
duke@1 939
duke@1 940 /** Is exc an exception symbol that need not be declared?
duke@1 941 */
duke@1 942 boolean isUnchecked(ClassSymbol exc) {
duke@1 943 return
duke@1 944 exc.kind == ERR ||
duke@1 945 exc.isSubClass(syms.errorType.tsym, types) ||
duke@1 946 exc.isSubClass(syms.runtimeExceptionType.tsym, types);
duke@1 947 }
duke@1 948
duke@1 949 /** Is exc an exception type that need not be declared?
duke@1 950 */
duke@1 951 boolean isUnchecked(Type exc) {
duke@1 952 return
duke@1 953 (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
duke@1 954 (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
duke@1 955 exc.tag == BOT;
duke@1 956 }
duke@1 957
duke@1 958 /** Same, but handling completion failures.
duke@1 959 */
duke@1 960 boolean isUnchecked(DiagnosticPosition pos, Type exc) {
duke@1 961 try {
duke@1 962 return isUnchecked(exc);
duke@1 963 } catch (CompletionFailure ex) {
duke@1 964 completionError(pos, ex);
duke@1 965 return true;
duke@1 966 }
duke@1 967 }
duke@1 968
duke@1 969 /** Is exc handled by given exception list?
duke@1 970 */
duke@1 971 boolean isHandled(Type exc, List<Type> handled) {
duke@1 972 return isUnchecked(exc) || subset(exc, handled);
duke@1 973 }
duke@1 974
duke@1 975 /** Return all exceptions in thrown list that are not in handled list.
duke@1 976 * @param thrown The list of thrown exceptions.
duke@1 977 * @param handled The list of handled exceptions.
duke@1 978 */
duke@1 979 List<Type> unHandled(List<Type> thrown, List<Type> handled) {
duke@1 980 List<Type> unhandled = List.nil();
duke@1 981 for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
duke@1 982 if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
duke@1 983 return unhandled;
duke@1 984 }
duke@1 985
duke@1 986 /* *************************************************************************
duke@1 987 * Overriding/Implementation checking
duke@1 988 **************************************************************************/
duke@1 989
duke@1 990 /** The level of access protection given by a flag set,
duke@1 991 * where PRIVATE is highest and PUBLIC is lowest.
duke@1 992 */
duke@1 993 static int protection(long flags) {
duke@1 994 switch ((short)(flags & AccessFlags)) {
duke@1 995 case PRIVATE: return 3;
duke@1 996 case PROTECTED: return 1;
duke@1 997 default:
duke@1 998 case PUBLIC: return 0;
duke@1 999 case 0: return 2;
duke@1 1000 }
duke@1 1001 }
duke@1 1002
duke@1 1003 /** A string describing the access permission given by a flag set.
duke@1 1004 * This always returns a space-separated list of Java Keywords.
duke@1 1005 */
duke@1 1006 private static String protectionString(long flags) {
duke@1 1007 long flags1 = flags & AccessFlags;
duke@1 1008 return (flags1 == 0) ? "package" : TreeInfo.flagNames(flags1);
duke@1 1009 }
duke@1 1010
duke@1 1011 /** A customized "cannot override" error message.
duke@1 1012 * @param m The overriding method.
duke@1 1013 * @param other The overridden method.
duke@1 1014 * @return An internationalized string.
duke@1 1015 */
duke@1 1016 static Object cannotOverride(MethodSymbol m, MethodSymbol other) {
duke@1 1017 String key;
duke@1 1018 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1019 key = "cant.override";
duke@1 1020 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1021 key = "cant.implement";
duke@1 1022 else
duke@1 1023 key = "clashes.with";
duke@1 1024 return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
duke@1 1025 }
duke@1 1026
duke@1 1027 /** A customized "override" warning message.
duke@1 1028 * @param m The overriding method.
duke@1 1029 * @param other The overridden method.
duke@1 1030 * @return An internationalized string.
duke@1 1031 */
duke@1 1032 static Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1033 String key;
duke@1 1034 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1035 key = "unchecked.override";
duke@1 1036 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1037 key = "unchecked.implement";
duke@1 1038 else
duke@1 1039 key = "unchecked.clash.with";
duke@1 1040 return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
duke@1 1041 }
duke@1 1042
duke@1 1043 /** A customized "override" warning message.
duke@1 1044 * @param m The overriding method.
duke@1 1045 * @param other The overridden method.
duke@1 1046 * @return An internationalized string.
duke@1 1047 */
duke@1 1048 static Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1049 String key;
duke@1 1050 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1051 key = "varargs.override";
duke@1 1052 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1053 key = "varargs.implement";
duke@1 1054 else
duke@1 1055 key = "varargs.clash.with";
duke@1 1056 return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
duke@1 1057 }
duke@1 1058
duke@1 1059 /** Check that this method conforms with overridden method 'other'.
duke@1 1060 * where `origin' is the class where checking started.
duke@1 1061 * Complications:
duke@1 1062 * (1) Do not check overriding of synthetic methods
duke@1 1063 * (reason: they might be final).
duke@1 1064 * todo: check whether this is still necessary.
duke@1 1065 * (2) Admit the case where an interface proxy throws fewer exceptions
duke@1 1066 * than the method it implements. Augment the proxy methods with the
duke@1 1067 * undeclared exceptions in this case.
duke@1 1068 * (3) When generics are enabled, admit the case where an interface proxy
duke@1 1069 * has a result type
duke@1 1070 * extended by the result type of the method it implements.
duke@1 1071 * Change the proxies result type to the smaller type in this case.
duke@1 1072 *
duke@1 1073 * @param tree The tree from which positions
duke@1 1074 * are extracted for errors.
duke@1 1075 * @param m The overriding method.
duke@1 1076 * @param other The overridden method.
duke@1 1077 * @param origin The class of which the overriding method
duke@1 1078 * is a member.
duke@1 1079 */
duke@1 1080 void checkOverride(JCTree tree,
duke@1 1081 MethodSymbol m,
duke@1 1082 MethodSymbol other,
duke@1 1083 ClassSymbol origin) {
duke@1 1084 // Don't check overriding of synthetic methods or by bridge methods.
duke@1 1085 if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
duke@1 1086 return;
duke@1 1087 }
duke@1 1088
duke@1 1089 // Error if static method overrides instance method (JLS 8.4.6.2).
duke@1 1090 if ((m.flags() & STATIC) != 0 &&
duke@1 1091 (other.flags() & STATIC) == 0) {
duke@1 1092 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
duke@1 1093 cannotOverride(m, other));
duke@1 1094 return;
duke@1 1095 }
duke@1 1096
duke@1 1097 // Error if instance method overrides static or final
duke@1 1098 // method (JLS 8.4.6.1).
duke@1 1099 if ((other.flags() & FINAL) != 0 ||
duke@1 1100 (m.flags() & STATIC) == 0 &&
duke@1 1101 (other.flags() & STATIC) != 0) {
duke@1 1102 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
duke@1 1103 cannotOverride(m, other),
duke@1 1104 TreeInfo.flagNames(other.flags() & (FINAL | STATIC)));
duke@1 1105 return;
duke@1 1106 }
duke@1 1107
duke@1 1108 if ((m.owner.flags() & ANNOTATION) != 0) {
duke@1 1109 // handled in validateAnnotationMethod
duke@1 1110 return;
duke@1 1111 }
duke@1 1112
duke@1 1113 // Error if overriding method has weaker access (JLS 8.4.6.3).
duke@1 1114 if ((origin.flags() & INTERFACE) == 0 &&
duke@1 1115 protection(m.flags()) > protection(other.flags())) {
duke@1 1116 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
duke@1 1117 cannotOverride(m, other),
duke@1 1118 protectionString(other.flags()));
duke@1 1119 return;
duke@1 1120
duke@1 1121 }
duke@1 1122
duke@1 1123 Type mt = types.memberType(origin.type, m);
duke@1 1124 Type ot = types.memberType(origin.type, other);
duke@1 1125 // Error if overriding result type is different
duke@1 1126 // (or, in the case of generics mode, not a subtype) of
duke@1 1127 // overridden result type. We have to rename any type parameters
duke@1 1128 // before comparing types.
duke@1 1129 List<Type> mtvars = mt.getTypeArguments();
duke@1 1130 List<Type> otvars = ot.getTypeArguments();
duke@1 1131 Type mtres = mt.getReturnType();
duke@1 1132 Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
duke@1 1133
duke@1 1134 overrideWarner.warned = false;
duke@1 1135 boolean resultTypesOK =
duke@1 1136 types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
duke@1 1137 if (!resultTypesOK) {
duke@1 1138 if (!source.allowCovariantReturns() &&
duke@1 1139 m.owner != origin &&
duke@1 1140 m.owner.isSubClass(other.owner, types)) {
duke@1 1141 // allow limited interoperability with covariant returns
duke@1 1142 } else {
duke@1 1143 typeError(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1144 JCDiagnostic.fragment("override.incompatible.ret",
duke@1 1145 cannotOverride(m, other)),
duke@1 1146 mtres, otres);
duke@1 1147 return;
duke@1 1148 }
duke@1 1149 } else if (overrideWarner.warned) {
duke@1 1150 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1151 "prob.found.req",
duke@1 1152 JCDiagnostic.fragment("override.unchecked.ret",
duke@1 1153 uncheckedOverrides(m, other)),
duke@1 1154 mtres, otres);
duke@1 1155 }
duke@1 1156
duke@1 1157 // Error if overriding method throws an exception not reported
duke@1 1158 // by overridden method.
duke@1 1159 List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
duke@1 1160 List<Type> unhandled = unHandled(mt.getThrownTypes(), otthrown);
duke@1 1161 if (unhandled.nonEmpty()) {
duke@1 1162 log.error(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1163 "override.meth.doesnt.throw",
duke@1 1164 cannotOverride(m, other),
duke@1 1165 unhandled.head);
duke@1 1166 return;
duke@1 1167 }
duke@1 1168
duke@1 1169 // Optional warning if varargs don't agree
duke@1 1170 if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
duke@1 1171 && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
duke@1 1172 log.warning(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1173 ((m.flags() & Flags.VARARGS) != 0)
duke@1 1174 ? "override.varargs.missing"
duke@1 1175 : "override.varargs.extra",
duke@1 1176 varargsOverrides(m, other));
duke@1 1177 }
duke@1 1178
duke@1 1179 // Warn if instance method overrides bridge method (compiler spec ??)
duke@1 1180 if ((other.flags() & BRIDGE) != 0) {
duke@1 1181 log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
duke@1 1182 uncheckedOverrides(m, other));
duke@1 1183 }
duke@1 1184
duke@1 1185 // Warn if a deprecated method overridden by a non-deprecated one.
duke@1 1186 if ((other.flags() & DEPRECATED) != 0
duke@1 1187 && (m.flags() & DEPRECATED) == 0
duke@1 1188 && m.outermostClass() != other.outermostClass()
duke@1 1189 && !isDeprecatedOverrideIgnorable(other, origin)) {
duke@1 1190 warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
duke@1 1191 }
duke@1 1192 }
duke@1 1193 // where
duke@1 1194 private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
duke@1 1195 // If the method, m, is defined in an interface, then ignore the issue if the method
duke@1 1196 // is only inherited via a supertype and also implemented in the supertype,
duke@1 1197 // because in that case, we will rediscover the issue when examining the method
duke@1 1198 // in the supertype.
duke@1 1199 // If the method, m, is not defined in an interface, then the only time we need to
duke@1 1200 // address the issue is when the method is the supertype implemementation: any other
duke@1 1201 // case, we will have dealt with when examining the supertype classes
duke@1 1202 ClassSymbol mc = m.enclClass();
duke@1 1203 Type st = types.supertype(origin.type);
duke@1 1204 if (st.tag != CLASS)
duke@1 1205 return true;
duke@1 1206 MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
duke@1 1207
duke@1 1208 if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
duke@1 1209 List<Type> intfs = types.interfaces(origin.type);
duke@1 1210 return (intfs.contains(mc.type) ? false : (stimpl != null));
duke@1 1211 }
duke@1 1212 else
duke@1 1213 return (stimpl != m);
duke@1 1214 }
duke@1 1215
duke@1 1216
duke@1 1217 // used to check if there were any unchecked conversions
duke@1 1218 Warner overrideWarner = new Warner();
duke@1 1219
duke@1 1220 /** Check that a class does not inherit two concrete methods
duke@1 1221 * with the same signature.
duke@1 1222 * @param pos Position to be used for error reporting.
duke@1 1223 * @param site The class type to be checked.
duke@1 1224 */
duke@1 1225 public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
duke@1 1226 Type sup = types.supertype(site);
duke@1 1227 if (sup.tag != CLASS) return;
duke@1 1228
duke@1 1229 for (Type t1 = sup;
duke@1 1230 t1.tsym.type.isParameterized();
duke@1 1231 t1 = types.supertype(t1)) {
duke@1 1232 for (Scope.Entry e1 = t1.tsym.members().elems;
duke@1 1233 e1 != null;
duke@1 1234 e1 = e1.sibling) {
duke@1 1235 Symbol s1 = e1.sym;
duke@1 1236 if (s1.kind != MTH ||
duke@1 1237 (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1238 !s1.isInheritedIn(site.tsym, types) ||
duke@1 1239 ((MethodSymbol)s1).implementation(site.tsym,
duke@1 1240 types,
duke@1 1241 true) != s1)
duke@1 1242 continue;
duke@1 1243 Type st1 = types.memberType(t1, s1);
duke@1 1244 int s1ArgsLength = st1.getParameterTypes().length();
duke@1 1245 if (st1 == s1.type) continue;
duke@1 1246
duke@1 1247 for (Type t2 = sup;
duke@1 1248 t2.tag == CLASS;
duke@1 1249 t2 = types.supertype(t2)) {
duke@1 1250 for (Scope.Entry e2 = t1.tsym.members().lookup(s1.name);
duke@1 1251 e2.scope != null;
duke@1 1252 e2 = e2.next()) {
duke@1 1253 Symbol s2 = e2.sym;
duke@1 1254 if (s2 == s1 ||
duke@1 1255 s2.kind != MTH ||
duke@1 1256 (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1257 s2.type.getParameterTypes().length() != s1ArgsLength ||
duke@1 1258 !s2.isInheritedIn(site.tsym, types) ||
duke@1 1259 ((MethodSymbol)s2).implementation(site.tsym,
duke@1 1260 types,
duke@1 1261 true) != s2)
duke@1 1262 continue;
duke@1 1263 Type st2 = types.memberType(t2, s2);
duke@1 1264 if (types.overrideEquivalent(st1, st2))
duke@1 1265 log.error(pos, "concrete.inheritance.conflict",
duke@1 1266 s1, t1, s2, t2, sup);
duke@1 1267 }
duke@1 1268 }
duke@1 1269 }
duke@1 1270 }
duke@1 1271 }
duke@1 1272
duke@1 1273 /** Check that classes (or interfaces) do not each define an abstract
duke@1 1274 * method with same name and arguments but incompatible return types.
duke@1 1275 * @param pos Position to be used for error reporting.
duke@1 1276 * @param t1 The first argument type.
duke@1 1277 * @param t2 The second argument type.
duke@1 1278 */
duke@1 1279 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1280 Type t1,
duke@1 1281 Type t2) {
duke@1 1282 return checkCompatibleAbstracts(pos, t1, t2,
duke@1 1283 types.makeCompoundType(t1, t2));
duke@1 1284 }
duke@1 1285
duke@1 1286 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1287 Type t1,
duke@1 1288 Type t2,
duke@1 1289 Type site) {
duke@1 1290 Symbol sym = firstIncompatibility(t1, t2, site);
duke@1 1291 if (sym != null) {
duke@1 1292 log.error(pos, "types.incompatible.diff.ret",
duke@1 1293 t1, t2, sym.name +
duke@1 1294 "(" + types.memberType(t2, sym).getParameterTypes() + ")");
duke@1 1295 return false;
duke@1 1296 }
duke@1 1297 return true;
duke@1 1298 }
duke@1 1299
duke@1 1300 /** Return the first method which is defined with same args
duke@1 1301 * but different return types in two given interfaces, or null if none
duke@1 1302 * exists.
duke@1 1303 * @param t1 The first type.
duke@1 1304 * @param t2 The second type.
duke@1 1305 * @param site The most derived type.
duke@1 1306 * @returns symbol from t2 that conflicts with one in t1.
duke@1 1307 */
duke@1 1308 private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
duke@1 1309 Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
duke@1 1310 closure(t1, interfaces1);
duke@1 1311 Map<TypeSymbol,Type> interfaces2;
duke@1 1312 if (t1 == t2)
duke@1 1313 interfaces2 = interfaces1;
duke@1 1314 else
duke@1 1315 closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
duke@1 1316
duke@1 1317 for (Type t3 : interfaces1.values()) {
duke@1 1318 for (Type t4 : interfaces2.values()) {
duke@1 1319 Symbol s = firstDirectIncompatibility(t3, t4, site);
duke@1 1320 if (s != null) return s;
duke@1 1321 }
duke@1 1322 }
duke@1 1323 return null;
duke@1 1324 }
duke@1 1325
duke@1 1326 /** Compute all the supertypes of t, indexed by type symbol. */
duke@1 1327 private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
duke@1 1328 if (t.tag != CLASS) return;
duke@1 1329 if (typeMap.put(t.tsym, t) == null) {
duke@1 1330 closure(types.supertype(t), typeMap);
duke@1 1331 for (Type i : types.interfaces(t))
duke@1 1332 closure(i, typeMap);
duke@1 1333 }
duke@1 1334 }
duke@1 1335
duke@1 1336 /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
duke@1 1337 private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
duke@1 1338 if (t.tag != CLASS) return;
duke@1 1339 if (typesSkip.get(t.tsym) != null) return;
duke@1 1340 if (typeMap.put(t.tsym, t) == null) {
duke@1 1341 closure(types.supertype(t), typesSkip, typeMap);
duke@1 1342 for (Type i : types.interfaces(t))
duke@1 1343 closure(i, typesSkip, typeMap);
duke@1 1344 }
duke@1 1345 }
duke@1 1346
duke@1 1347 /** Return the first method in t2 that conflicts with a method from t1. */
duke@1 1348 private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
duke@1 1349 for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
duke@1 1350 Symbol s1 = e1.sym;
duke@1 1351 Type st1 = null;
duke@1 1352 if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
duke@1 1353 Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
duke@1 1354 if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
duke@1 1355 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
duke@1 1356 Symbol s2 = e2.sym;
duke@1 1357 if (s1 == s2) continue;
duke@1 1358 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
duke@1 1359 if (st1 == null) st1 = types.memberType(t1, s1);
duke@1 1360 Type st2 = types.memberType(t2, s2);
duke@1 1361 if (types.overrideEquivalent(st1, st2)) {
duke@1 1362 List<Type> tvars1 = st1.getTypeArguments();
duke@1 1363 List<Type> tvars2 = st2.getTypeArguments();
duke@1 1364 Type rt1 = st1.getReturnType();
duke@1 1365 Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
duke@1 1366 boolean compat =
duke@1 1367 types.isSameType(rt1, rt2) ||
duke@1 1368 rt1.tag >= CLASS && rt2.tag >= CLASS &&
duke@1 1369 (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
duke@1 1370 types.covariantReturnType(rt2, rt1, Warner.noWarnings));
duke@1 1371 if (!compat) return s2;
duke@1 1372 }
duke@1 1373 }
duke@1 1374 }
duke@1 1375 return null;
duke@1 1376 }
duke@1 1377
duke@1 1378 /** Check that a given method conforms with any method it overrides.
duke@1 1379 * @param tree The tree from which positions are extracted
duke@1 1380 * for errors.
duke@1 1381 * @param m The overriding method.
duke@1 1382 */
duke@1 1383 void checkOverride(JCTree tree, MethodSymbol m) {
duke@1 1384 ClassSymbol origin = (ClassSymbol)m.owner;
duke@1 1385 if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
duke@1 1386 if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
duke@1 1387 log.error(tree.pos(), "enum.no.finalize");
duke@1 1388 return;
duke@1 1389 }
duke@1 1390 for (Type t = types.supertype(origin.type); t.tag == CLASS;
duke@1 1391 t = types.supertype(t)) {
duke@1 1392 TypeSymbol c = t.tsym;
duke@1 1393 Scope.Entry e = c.members().lookup(m.name);
duke@1 1394 while (e.scope != null) {
duke@1 1395 if (m.overrides(e.sym, origin, types, false))
duke@1 1396 checkOverride(tree, m, (MethodSymbol)e.sym, origin);
duke@1 1397 e = e.next();
duke@1 1398 }
duke@1 1399 }
duke@1 1400 }
duke@1 1401
duke@1 1402 /** Check that all abstract members of given class have definitions.
duke@1 1403 * @param pos Position to be used for error reporting.
duke@1 1404 * @param c The class.
duke@1 1405 */
duke@1 1406 void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1407 try {
duke@1 1408 MethodSymbol undef = firstUndef(c, c);
duke@1 1409 if (undef != null) {
duke@1 1410 if ((c.flags() & ENUM) != 0 &&
duke@1 1411 types.supertype(c.type).tsym == syms.enumSym &&
duke@1 1412 (c.flags() & FINAL) == 0) {
duke@1 1413 // add the ABSTRACT flag to an enum
duke@1 1414 c.flags_field |= ABSTRACT;
duke@1 1415 } else {
duke@1 1416 MethodSymbol undef1 =
duke@1 1417 new MethodSymbol(undef.flags(), undef.name,
duke@1 1418 types.memberType(c.type, undef), undef.owner);
duke@1 1419 log.error(pos, "does.not.override.abstract",
duke@1 1420 c, undef1, undef1.location());
duke@1 1421 }
duke@1 1422 }
duke@1 1423 } catch (CompletionFailure ex) {
duke@1 1424 completionError(pos, ex);
duke@1 1425 }
duke@1 1426 }
duke@1 1427 //where
duke@1 1428 /** Return first abstract member of class `c' that is not defined
duke@1 1429 * in `impl', null if there is none.
duke@1 1430 */
duke@1 1431 private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
duke@1 1432 MethodSymbol undef = null;
duke@1 1433 // Do not bother to search in classes that are not abstract,
duke@1 1434 // since they cannot have abstract members.
duke@1 1435 if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1436 Scope s = c.members();
duke@1 1437 for (Scope.Entry e = s.elems;
duke@1 1438 undef == null && e != null;
duke@1 1439 e = e.sibling) {
duke@1 1440 if (e.sym.kind == MTH &&
duke@1 1441 (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
duke@1 1442 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1443 MethodSymbol implmeth = absmeth.implementation(impl, types, true);
duke@1 1444 if (implmeth == null || implmeth == absmeth)
duke@1 1445 undef = absmeth;
duke@1 1446 }
duke@1 1447 }
duke@1 1448 if (undef == null) {
duke@1 1449 Type st = types.supertype(c.type);
duke@1 1450 if (st.tag == CLASS)
duke@1 1451 undef = firstUndef(impl, (ClassSymbol)st.tsym);
duke@1 1452 }
duke@1 1453 for (List<Type> l = types.interfaces(c.type);
duke@1 1454 undef == null && l.nonEmpty();
duke@1 1455 l = l.tail) {
duke@1 1456 undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
duke@1 1457 }
duke@1 1458 }
duke@1 1459 return undef;
duke@1 1460 }
duke@1 1461
duke@1 1462 /** Check for cyclic references. Issue an error if the
duke@1 1463 * symbol of the type referred to has a LOCKED flag set.
duke@1 1464 *
duke@1 1465 * @param pos Position to be used for error reporting.
duke@1 1466 * @param t The type referred to.
duke@1 1467 */
duke@1 1468 void checkNonCyclic(DiagnosticPosition pos, Type t) {
duke@1 1469 checkNonCyclicInternal(pos, t);
duke@1 1470 }
duke@1 1471
duke@1 1472
duke@1 1473 void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
duke@1 1474 checkNonCyclic1(pos, t, new HashSet<TypeVar>());
duke@1 1475 }
duke@1 1476
duke@1 1477 private void checkNonCyclic1(DiagnosticPosition pos, Type t, Set<TypeVar> seen) {
duke@1 1478 final TypeVar tv;
duke@1 1479 if (seen.contains(t)) {
duke@1 1480 tv = (TypeVar)t;
duke@1 1481 tv.bound = new ErrorType();
duke@1 1482 log.error(pos, "cyclic.inheritance", t);
duke@1 1483 } else if (t.tag == TYPEVAR) {
duke@1 1484 tv = (TypeVar)t;
duke@1 1485 seen.add(tv);
duke@1 1486 for (Type b : types.getBounds(tv))
duke@1 1487 checkNonCyclic1(pos, b, seen);
duke@1 1488 }
duke@1 1489 }
duke@1 1490
duke@1 1491 /** Check for cyclic references. Issue an error if the
duke@1 1492 * symbol of the type referred to has a LOCKED flag set.
duke@1 1493 *
duke@1 1494 * @param pos Position to be used for error reporting.
duke@1 1495 * @param t The type referred to.
duke@1 1496 * @returns True if the check completed on all attributed classes
duke@1 1497 */
duke@1 1498 private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
duke@1 1499 boolean complete = true; // was the check complete?
duke@1 1500 //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
duke@1 1501 Symbol c = t.tsym;
duke@1 1502 if ((c.flags_field & ACYCLIC) != 0) return true;
duke@1 1503
duke@1 1504 if ((c.flags_field & LOCKED) != 0) {
duke@1 1505 noteCyclic(pos, (ClassSymbol)c);
duke@1 1506 } else if (!c.type.isErroneous()) {
duke@1 1507 try {
duke@1 1508 c.flags_field |= LOCKED;
duke@1 1509 if (c.type.tag == CLASS) {
duke@1 1510 ClassType clazz = (ClassType)c.type;
duke@1 1511 if (clazz.interfaces_field != null)
duke@1 1512 for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
duke@1 1513 complete &= checkNonCyclicInternal(pos, l.head);
duke@1 1514 if (clazz.supertype_field != null) {
duke@1 1515 Type st = clazz.supertype_field;
duke@1 1516 if (st != null && st.tag == CLASS)
duke@1 1517 complete &= checkNonCyclicInternal(pos, st);
duke@1 1518 }
duke@1 1519 if (c.owner.kind == TYP)
duke@1 1520 complete &= checkNonCyclicInternal(pos, c.owner.type);
duke@1 1521 }
duke@1 1522 } finally {
duke@1 1523 c.flags_field &= ~LOCKED;
duke@1 1524 }
duke@1 1525 }
duke@1 1526 if (complete)
duke@1 1527 complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
duke@1 1528 if (complete) c.flags_field |= ACYCLIC;
duke@1 1529 return complete;
duke@1 1530 }
duke@1 1531
duke@1 1532 /** Note that we found an inheritance cycle. */
duke@1 1533 private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1534 log.error(pos, "cyclic.inheritance", c);
duke@1 1535 for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
duke@1 1536 l.head = new ErrorType((ClassSymbol)l.head.tsym);
duke@1 1537 Type st = types.supertype(c.type);
duke@1 1538 if (st.tag == CLASS)
duke@1 1539 ((ClassType)c.type).supertype_field = new ErrorType((ClassSymbol)st.tsym);
duke@1 1540 c.type = new ErrorType(c);
duke@1 1541 c.flags_field |= ACYCLIC;
duke@1 1542 }
duke@1 1543
duke@1 1544 /** Check that all methods which implement some
duke@1 1545 * method conform to the method they implement.
duke@1 1546 * @param tree The class definition whose members are checked.
duke@1 1547 */
duke@1 1548 void checkImplementations(JCClassDecl tree) {
duke@1 1549 checkImplementations(tree, tree.sym);
duke@1 1550 }
duke@1 1551 //where
duke@1 1552 /** Check that all methods which implement some
duke@1 1553 * method in `ic' conform to the method they implement.
duke@1 1554 */
duke@1 1555 void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
duke@1 1556 ClassSymbol origin = tree.sym;
duke@1 1557 for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
duke@1 1558 ClassSymbol lc = (ClassSymbol)l.head.tsym;
duke@1 1559 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
duke@1 1560 for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
duke@1 1561 if (e.sym.kind == MTH &&
duke@1 1562 (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
duke@1 1563 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1564 MethodSymbol implmeth = absmeth.implementation(origin, types, false);
duke@1 1565 if (implmeth != null && implmeth != absmeth &&
duke@1 1566 (implmeth.owner.flags() & INTERFACE) ==
duke@1 1567 (origin.flags() & INTERFACE)) {
duke@1 1568 // don't check if implmeth is in a class, yet
duke@1 1569 // origin is an interface. This case arises only
duke@1 1570 // if implmeth is declared in Object. The reason is
duke@1 1571 // that interfaces really don't inherit from
duke@1 1572 // Object it's just that the compiler represents
duke@1 1573 // things that way.
duke@1 1574 checkOverride(tree, implmeth, absmeth, origin);
duke@1 1575 }
duke@1 1576 }
duke@1 1577 }
duke@1 1578 }
duke@1 1579 }
duke@1 1580 }
duke@1 1581
duke@1 1582 /** Check that all abstract methods implemented by a class are
duke@1 1583 * mutually compatible.
duke@1 1584 * @param pos Position to be used for error reporting.
duke@1 1585 * @param c The class whose interfaces are checked.
duke@1 1586 */
duke@1 1587 void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
duke@1 1588 List<Type> supertypes = types.interfaces(c);
duke@1 1589 Type supertype = types.supertype(c);
duke@1 1590 if (supertype.tag == CLASS &&
duke@1 1591 (supertype.tsym.flags() & ABSTRACT) != 0)
duke@1 1592 supertypes = supertypes.prepend(supertype);
duke@1 1593 for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
duke@1 1594 if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
duke@1 1595 !checkCompatibleAbstracts(pos, l.head, l.head, c))
duke@1 1596 return;
duke@1 1597 for (List<Type> m = supertypes; m != l; m = m.tail)
duke@1 1598 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
duke@1 1599 return;
duke@1 1600 }
duke@1 1601 checkCompatibleConcretes(pos, c);
duke@1 1602 }
duke@1 1603
duke@1 1604 /** Check that class c does not implement directly or indirectly
duke@1 1605 * the same parameterized interface with two different argument lists.
duke@1 1606 * @param pos Position to be used for error reporting.
duke@1 1607 * @param type The type whose interfaces are checked.
duke@1 1608 */
duke@1 1609 void checkClassBounds(DiagnosticPosition pos, Type type) {
duke@1 1610 checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
duke@1 1611 }
duke@1 1612 //where
duke@1 1613 /** Enter all interfaces of type `type' into the hash table `seensofar'
duke@1 1614 * with their class symbol as key and their type as value. Make
duke@1 1615 * sure no class is entered with two different types.
duke@1 1616 */
duke@1 1617 void checkClassBounds(DiagnosticPosition pos,
duke@1 1618 Map<TypeSymbol,Type> seensofar,
duke@1 1619 Type type) {
duke@1 1620 if (type.isErroneous()) return;
duke@1 1621 for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
duke@1 1622 Type it = l.head;
duke@1 1623 Type oldit = seensofar.put(it.tsym, it);
duke@1 1624 if (oldit != null) {
duke@1 1625 List<Type> oldparams = oldit.allparams();
duke@1 1626 List<Type> newparams = it.allparams();
duke@1 1627 if (!types.containsTypeEquivalent(oldparams, newparams))
duke@1 1628 log.error(pos, "cant.inherit.diff.arg",
duke@1 1629 it.tsym, Type.toString(oldparams),
duke@1 1630 Type.toString(newparams));
duke@1 1631 }
duke@1 1632 checkClassBounds(pos, seensofar, it);
duke@1 1633 }
duke@1 1634 Type st = types.supertype(type);
duke@1 1635 if (st != null) checkClassBounds(pos, seensofar, st);
duke@1 1636 }
duke@1 1637
duke@1 1638 /** Enter interface into into set.
duke@1 1639 * If it existed already, issue a "repeated interface" error.
duke@1 1640 */
duke@1 1641 void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
duke@1 1642 if (its.contains(it))
duke@1 1643 log.error(pos, "repeated.interface");
duke@1 1644 else {
duke@1 1645 its.add(it);
duke@1 1646 }
duke@1 1647 }
duke@1 1648
duke@1 1649 /* *************************************************************************
duke@1 1650 * Check annotations
duke@1 1651 **************************************************************************/
duke@1 1652
duke@1 1653 /** Annotation types are restricted to primitives, String, an
duke@1 1654 * enum, an annotation, Class, Class<?>, Class<? extends
duke@1 1655 * Anything>, arrays of the preceding.
duke@1 1656 */
duke@1 1657 void validateAnnotationType(JCTree restype) {
duke@1 1658 // restype may be null if an error occurred, so don't bother validating it
duke@1 1659 if (restype != null) {
duke@1 1660 validateAnnotationType(restype.pos(), restype.type);
duke@1 1661 }
duke@1 1662 }
duke@1 1663
duke@1 1664 void validateAnnotationType(DiagnosticPosition pos, Type type) {
duke@1 1665 if (type.isPrimitive()) return;
duke@1 1666 if (types.isSameType(type, syms.stringType)) return;
duke@1 1667 if ((type.tsym.flags() & Flags.ENUM) != 0) return;
duke@1 1668 if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
duke@1 1669 if (types.lowerBound(type).tsym == syms.classType.tsym) return;
duke@1 1670 if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
duke@1 1671 validateAnnotationType(pos, types.elemtype(type));
duke@1 1672 return;
duke@1 1673 }
duke@1 1674 log.error(pos, "invalid.annotation.member.type");
duke@1 1675 }
duke@1 1676
duke@1 1677 /**
duke@1 1678 * "It is also a compile-time error if any method declared in an
duke@1 1679 * annotation type has a signature that is override-equivalent to
duke@1 1680 * that of any public or protected method declared in class Object
duke@1 1681 * or in the interface annotation.Annotation."
duke@1 1682 *
duke@1 1683 * @jls3 9.6 Annotation Types
duke@1 1684 */
duke@1 1685 void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
duke@1 1686 for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
duke@1 1687 Scope s = sup.tsym.members();
duke@1 1688 for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1689 if (e.sym.kind == MTH &&
duke@1 1690 (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
duke@1 1691 types.overrideEquivalent(m.type, e.sym.type))
duke@1 1692 log.error(pos, "intf.annotation.member.clash", e.sym, sup);
duke@1 1693 }
duke@1 1694 }
duke@1 1695 }
duke@1 1696
duke@1 1697 /** Check the annotations of a symbol.
duke@1 1698 */
duke@1 1699 public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
duke@1 1700 if (skipAnnotations) return;
duke@1 1701 for (JCAnnotation a : annotations)
duke@1 1702 validateAnnotation(a, s);
duke@1 1703 }
duke@1 1704
duke@1 1705 /** Check an annotation of a symbol.
duke@1 1706 */
duke@1 1707 public void validateAnnotation(JCAnnotation a, Symbol s) {
duke@1 1708 validateAnnotation(a);
duke@1 1709
duke@1 1710 if (!annotationApplicable(a, s))
duke@1 1711 log.error(a.pos(), "annotation.type.not.applicable");
duke@1 1712
duke@1 1713 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
duke@1 1714 if (!isOverrider(s))
duke@1 1715 log.error(a.pos(), "method.does.not.override.superclass");
duke@1 1716 }
duke@1 1717 }
duke@1 1718
duke@1 1719 /** Is s a method symbol that overrides a method in a superclass? */
duke@1 1720 boolean isOverrider(Symbol s) {
duke@1 1721 if (s.kind != MTH || s.isStatic())
duke@1 1722 return false;
duke@1 1723 MethodSymbol m = (MethodSymbol)s;
duke@1 1724 TypeSymbol owner = (TypeSymbol)m.owner;
duke@1 1725 for (Type sup : types.closure(owner.type)) {
duke@1 1726 if (sup == owner.type)
duke@1 1727 continue; // skip "this"
duke@1 1728 Scope scope = sup.tsym.members();
duke@1 1729 for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1730 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
duke@1 1731 return true;
duke@1 1732 }
duke@1 1733 }
duke@1 1734 return false;
duke@1 1735 }
duke@1 1736
duke@1 1737 /** Is the annotation applicable to the symbol? */
duke@1 1738 boolean annotationApplicable(JCAnnotation a, Symbol s) {
duke@1 1739 Attribute.Compound atTarget =
duke@1 1740 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
duke@1 1741 if (atTarget == null) return true;
duke@1 1742 Attribute atValue = atTarget.member(names.value);
duke@1 1743 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
duke@1 1744 Attribute.Array arr = (Attribute.Array) atValue;
duke@1 1745 for (Attribute app : arr.values) {
duke@1 1746 if (!(app instanceof Attribute.Enum)) return true; // recovery
duke@1 1747 Attribute.Enum e = (Attribute.Enum) app;
duke@1 1748 if (e.value.name == names.TYPE)
duke@1 1749 { if (s.kind == TYP) return true; }
duke@1 1750 else if (e.value.name == names.FIELD)
duke@1 1751 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
duke@1 1752 else if (e.value.name == names.METHOD)
duke@1 1753 { if (s.kind == MTH && !s.isConstructor()) return true; }
duke@1 1754 else if (e.value.name == names.PARAMETER)
duke@1 1755 { if (s.kind == VAR &&
duke@1 1756 s.owner.kind == MTH &&
duke@1 1757 (s.flags() & PARAMETER) != 0)
duke@1 1758 return true;
duke@1 1759 }
duke@1 1760 else if (e.value.name == names.CONSTRUCTOR)
duke@1 1761 { if (s.kind == MTH && s.isConstructor()) return true; }
duke@1 1762 else if (e.value.name == names.LOCAL_VARIABLE)
duke@1 1763 { if (s.kind == VAR && s.owner.kind == MTH &&
duke@1 1764 (s.flags() & PARAMETER) == 0)
duke@1 1765 return true;
duke@1 1766 }
duke@1 1767 else if (e.value.name == names.ANNOTATION_TYPE)
duke@1 1768 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
duke@1 1769 return true;
duke@1 1770 }
duke@1 1771 else if (e.value.name == names.PACKAGE)
duke@1 1772 { if (s.kind == PCK) return true; }
duke@1 1773 else
duke@1 1774 return true; // recovery
duke@1 1775 }
duke@1 1776 return false;
duke@1 1777 }
duke@1 1778
duke@1 1779 /** Check an annotation value.
duke@1 1780 */
duke@1 1781 public void validateAnnotation(JCAnnotation a) {
duke@1 1782 if (a.type.isErroneous()) return;
duke@1 1783
duke@1 1784 // collect an inventory of the members
duke@1 1785 Set<MethodSymbol> members = new HashSet<MethodSymbol>();
duke@1 1786 for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
duke@1 1787 e != null;
duke@1 1788 e = e.sibling)
duke@1 1789 if (e.sym.kind == MTH)
duke@1 1790 members.add((MethodSymbol) e.sym);
duke@1 1791
duke@1 1792 // count them off as they're annotated
duke@1 1793 for (JCTree arg : a.args) {
duke@1 1794 if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
duke@1 1795 JCAssign assign = (JCAssign) arg;
duke@1 1796 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 1797 if (m == null || m.type.isErroneous()) continue;
duke@1 1798 if (!members.remove(m))
duke@1 1799 log.error(arg.pos(), "duplicate.annotation.member.value",
duke@1 1800 m.name, a.type);
duke@1 1801 if (assign.rhs.getTag() == ANNOTATION)
duke@1 1802 validateAnnotation((JCAnnotation)assign.rhs);
duke@1 1803 }
duke@1 1804
duke@1 1805 // all the remaining ones better have default values
duke@1 1806 for (MethodSymbol m : members)
duke@1 1807 if (m.defaultValue == null && !m.type.isErroneous())
duke@1 1808 log.error(a.pos(), "annotation.missing.default.value",
duke@1 1809 a.type, m.name);
duke@1 1810
duke@1 1811 // special case: java.lang.annotation.Target must not have
duke@1 1812 // repeated values in its value member
duke@1 1813 if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
duke@1 1814 a.args.tail == null)
duke@1 1815 return;
duke@1 1816
duke@1 1817 if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
duke@1 1818 JCAssign assign = (JCAssign) a.args.head;
duke@1 1819 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 1820 if (m.name != names.value) return;
duke@1 1821 JCTree rhs = assign.rhs;
duke@1 1822 if (rhs.getTag() != JCTree.NEWARRAY) return;
duke@1 1823 JCNewArray na = (JCNewArray) rhs;
duke@1 1824 Set<Symbol> targets = new HashSet<Symbol>();
duke@1 1825 for (JCTree elem : na.elems) {
duke@1 1826 if (!targets.add(TreeInfo.symbol(elem))) {
duke@1 1827 log.error(elem.pos(), "repeated.annotation.target");
duke@1 1828 }
duke@1 1829 }
duke@1 1830 }
duke@1 1831
duke@1 1832 void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
duke@1 1833 if (allowAnnotations &&
duke@1 1834 lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
duke@1 1835 (s.flags() & DEPRECATED) != 0 &&
duke@1 1836 !syms.deprecatedType.isErroneous() &&
duke@1 1837 s.attribute(syms.deprecatedType.tsym) == null) {
duke@1 1838 log.warning(pos, "missing.deprecated.annotation");
duke@1 1839 }
duke@1 1840 }
duke@1 1841
duke@1 1842 /* *************************************************************************
duke@1 1843 * Check for recursive annotation elements.
duke@1 1844 **************************************************************************/
duke@1 1845
duke@1 1846 /** Check for cycles in the graph of annotation elements.
duke@1 1847 */
duke@1 1848 void checkNonCyclicElements(JCClassDecl tree) {
duke@1 1849 if ((tree.sym.flags_field & ANNOTATION) == 0) return;
duke@1 1850 assert (tree.sym.flags_field & LOCKED) == 0;
duke@1 1851 try {
duke@1 1852 tree.sym.flags_field |= LOCKED;
duke@1 1853 for (JCTree def : tree.defs) {
duke@1 1854 if (def.getTag() != JCTree.METHODDEF) continue;
duke@1 1855 JCMethodDecl meth = (JCMethodDecl)def;
duke@1 1856 checkAnnotationResType(meth.pos(), meth.restype.type);
duke@1 1857 }
duke@1 1858 } finally {
duke@1 1859 tree.sym.flags_field &= ~LOCKED;
duke@1 1860 tree.sym.flags_field |= ACYCLIC_ANN;
duke@1 1861 }
duke@1 1862 }
duke@1 1863
duke@1 1864 void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
duke@1 1865 if ((tsym.flags_field & ACYCLIC_ANN) != 0)
duke@1 1866 return;
duke@1 1867 if ((tsym.flags_field & LOCKED) != 0) {
duke@1 1868 log.error(pos, "cyclic.annotation.element");
duke@1 1869 return;
duke@1 1870 }
duke@1 1871 try {
duke@1 1872 tsym.flags_field |= LOCKED;
duke@1 1873 for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
duke@1 1874 Symbol s = e.sym;
duke@1 1875 if (s.kind != Kinds.MTH)
duke@1 1876 continue;
duke@1 1877 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
duke@1 1878 }
duke@1 1879 } finally {
duke@1 1880 tsym.flags_field &= ~LOCKED;
duke@1 1881 tsym.flags_field |= ACYCLIC_ANN;
duke@1 1882 }
duke@1 1883 }
duke@1 1884
duke@1 1885 void checkAnnotationResType(DiagnosticPosition pos, Type type) {
duke@1 1886 switch (type.tag) {
duke@1 1887 case TypeTags.CLASS:
duke@1 1888 if ((type.tsym.flags() & ANNOTATION) != 0)
duke@1 1889 checkNonCyclicElementsInternal(pos, type.tsym);
duke@1 1890 break;
duke@1 1891 case TypeTags.ARRAY:
duke@1 1892 checkAnnotationResType(pos, types.elemtype(type));
duke@1 1893 break;
duke@1 1894 default:
duke@1 1895 break; // int etc
duke@1 1896 }
duke@1 1897 }
duke@1 1898
duke@1 1899 /* *************************************************************************
duke@1 1900 * Check for cycles in the constructor call graph.
duke@1 1901 **************************************************************************/
duke@1 1902
duke@1 1903 /** Check for cycles in the graph of constructors calling other
duke@1 1904 * constructors.
duke@1 1905 */
duke@1 1906 void checkCyclicConstructors(JCClassDecl tree) {
duke@1 1907 Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
duke@1 1908
duke@1 1909 // enter each constructor this-call into the map
duke@1 1910 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 1911 JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
duke@1 1912 if (app == null) continue;
duke@1 1913 JCMethodDecl meth = (JCMethodDecl) l.head;
duke@1 1914 if (TreeInfo.name(app.meth) == names._this) {
duke@1 1915 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
duke@1 1916 } else {
duke@1 1917 meth.sym.flags_field |= ACYCLIC;
duke@1 1918 }
duke@1 1919 }
duke@1 1920
duke@1 1921 // Check for cycles in the map
duke@1 1922 Symbol[] ctors = new Symbol[0];
duke@1 1923 ctors = callMap.keySet().toArray(ctors);
duke@1 1924 for (Symbol caller : ctors) {
duke@1 1925 checkCyclicConstructor(tree, caller, callMap);
duke@1 1926 }
duke@1 1927 }
duke@1 1928
duke@1 1929 /** Look in the map to see if the given constructor is part of a
duke@1 1930 * call cycle.
duke@1 1931 */
duke@1 1932 private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
duke@1 1933 Map<Symbol,Symbol> callMap) {
duke@1 1934 if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
duke@1 1935 if ((ctor.flags_field & LOCKED) != 0) {
duke@1 1936 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
duke@1 1937 "recursive.ctor.invocation");
duke@1 1938 } else {
duke@1 1939 ctor.flags_field |= LOCKED;
duke@1 1940 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
duke@1 1941 ctor.flags_field &= ~LOCKED;
duke@1 1942 }
duke@1 1943 ctor.flags_field |= ACYCLIC;
duke@1 1944 }
duke@1 1945 }
duke@1 1946
duke@1 1947 /* *************************************************************************
duke@1 1948 * Miscellaneous
duke@1 1949 **************************************************************************/
duke@1 1950
duke@1 1951 /**
duke@1 1952 * Return the opcode of the operator but emit an error if it is an
duke@1 1953 * error.
duke@1 1954 * @param pos position for error reporting.
duke@1 1955 * @param operator an operator
duke@1 1956 * @param tag a tree tag
duke@1 1957 * @param left type of left hand side
duke@1 1958 * @param right type of right hand side
duke@1 1959 */
duke@1 1960 int checkOperator(DiagnosticPosition pos,
duke@1 1961 OperatorSymbol operator,
duke@1 1962 int tag,
duke@1 1963 Type left,
duke@1 1964 Type right) {
duke@1 1965 if (operator.opcode == ByteCodes.error) {
duke@1 1966 log.error(pos,
duke@1 1967 "operator.cant.be.applied",
duke@1 1968 treeinfo.operatorName(tag),
duke@1 1969 left + "," + right);
duke@1 1970 }
duke@1 1971 return operator.opcode;
duke@1 1972 }
duke@1 1973
duke@1 1974
duke@1 1975 /**
duke@1 1976 * Check for division by integer constant zero
duke@1 1977 * @param pos Position for error reporting.
duke@1 1978 * @param operator The operator for the expression
duke@1 1979 * @param operand The right hand operand for the expression
duke@1 1980 */
duke@1 1981 void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
duke@1 1982 if (operand.constValue() != null
duke@1 1983 && lint.isEnabled(Lint.LintCategory.DIVZERO)
duke@1 1984 && operand.tag <= LONG
duke@1 1985 && ((Number) (operand.constValue())).longValue() == 0) {
duke@1 1986 int opc = ((OperatorSymbol)operator).opcode;
duke@1 1987 if (opc == ByteCodes.idiv || opc == ByteCodes.imod
duke@1 1988 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
duke@1 1989 log.warning(pos, "div.zero");
duke@1 1990 }
duke@1 1991 }
duke@1 1992 }
duke@1 1993
duke@1 1994 /**
duke@1 1995 * Check for empty statements after if
duke@1 1996 */
duke@1 1997 void checkEmptyIf(JCIf tree) {
duke@1 1998 if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
duke@1 1999 log.warning(tree.thenpart.pos(), "empty.if");
duke@1 2000 }
duke@1 2001
duke@1 2002 /** Check that symbol is unique in given scope.
duke@1 2003 * @param pos Position for error reporting.
duke@1 2004 * @param sym The symbol.
duke@1 2005 * @param s The scope.
duke@1 2006 */
duke@1 2007 boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2008 if (sym.type.isErroneous())
duke@1 2009 return true;
duke@1 2010 if (sym.owner.name == names.any) return false;
duke@1 2011 for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
duke@1 2012 if (sym != e.sym &&
duke@1 2013 sym.kind == e.sym.kind &&
duke@1 2014 sym.name != names.error &&
duke@1 2015 (sym.kind != MTH || types.overrideEquivalent(sym.type, e.sym.type))) {
duke@1 2016 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
duke@1 2017 varargsDuplicateError(pos, sym, e.sym);
duke@1 2018 else
duke@1 2019 duplicateError(pos, e.sym);
duke@1 2020 return false;
duke@1 2021 }
duke@1 2022 }
duke@1 2023 return true;
duke@1 2024 }
duke@1 2025
duke@1 2026 /** Check that single-type import is not already imported or top-level defined,
duke@1 2027 * but make an exception for two single-type imports which denote the same type.
duke@1 2028 * @param pos Position for error reporting.
duke@1 2029 * @param sym The symbol.
duke@1 2030 * @param s The scope
duke@1 2031 */
duke@1 2032 boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2033 return checkUniqueImport(pos, sym, s, false);
duke@1 2034 }
duke@1 2035
duke@1 2036 /** Check that static single-type import is not already imported or top-level defined,
duke@1 2037 * but make an exception for two single-type imports which denote the same type.
duke@1 2038 * @param pos Position for error reporting.
duke@1 2039 * @param sym The symbol.
duke@1 2040 * @param s The scope
duke@1 2041 * @param staticImport Whether or not this was a static import
duke@1 2042 */
duke@1 2043 boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2044 return checkUniqueImport(pos, sym, s, true);
duke@1 2045 }
duke@1 2046
duke@1 2047 /** Check that single-type import is not already imported or top-level defined,
duke@1 2048 * but make an exception for two single-type imports which denote the same type.
duke@1 2049 * @param pos Position for error reporting.
duke@1 2050 * @param sym The symbol.
duke@1 2051 * @param s The scope.
duke@1 2052 * @param staticImport Whether or not this was a static import
duke@1 2053 */
duke@1 2054 private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
duke@1 2055 for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
duke@1 2056 // is encountered class entered via a class declaration?
duke@1 2057 boolean isClassDecl = e.scope == s;
duke@1 2058 if ((isClassDecl || sym != e.sym) &&
duke@1 2059 sym.kind == e.sym.kind &&
duke@1 2060 sym.name != names.error) {
duke@1 2061 if (!e.sym.type.isErroneous()) {
duke@1 2062 String what = e.sym.toString();
duke@1 2063 if (!isClassDecl) {
duke@1 2064 if (staticImport)
duke@1 2065 log.error(pos, "already.defined.static.single.import", what);
duke@1 2066 else
duke@1 2067 log.error(pos, "already.defined.single.import", what);
duke@1 2068 }
duke@1 2069 else if (sym != e.sym)
duke@1 2070 log.error(pos, "already.defined.this.unit", what);
duke@1 2071 }
duke@1 2072 return false;
duke@1 2073 }
duke@1 2074 }
duke@1 2075 return true;
duke@1 2076 }
duke@1 2077
duke@1 2078 /** Check that a qualified name is in canonical form (for import decls).
duke@1 2079 */
duke@1 2080 public void checkCanonical(JCTree tree) {
duke@1 2081 if (!isCanonical(tree))
duke@1 2082 log.error(tree.pos(), "import.requires.canonical",
duke@1 2083 TreeInfo.symbol(tree));
duke@1 2084 }
duke@1 2085 // where
duke@1 2086 private boolean isCanonical(JCTree tree) {
duke@1 2087 while (tree.getTag() == JCTree.SELECT) {
duke@1 2088 JCFieldAccess s = (JCFieldAccess) tree;
duke@1 2089 if (s.sym.owner != TreeInfo.symbol(s.selected))
duke@1 2090 return false;
duke@1 2091 tree = s.selected;
duke@1 2092 }
duke@1 2093 return true;
duke@1 2094 }
duke@1 2095
duke@1 2096 private class ConversionWarner extends Warner {
duke@1 2097 final String key;
duke@1 2098 final Type found;
duke@1 2099 final Type expected;
duke@1 2100 public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
duke@1 2101 super(pos);
duke@1 2102 this.key = key;
duke@1 2103 this.found = found;
duke@1 2104 this.expected = expected;
duke@1 2105 }
duke@1 2106
duke@1 2107 public void warnUnchecked() {
duke@1 2108 boolean warned = this.warned;
duke@1 2109 super.warnUnchecked();
duke@1 2110 if (warned) return; // suppress redundant diagnostics
duke@1 2111 Object problem = JCDiagnostic.fragment(key);
duke@1 2112 Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
duke@1 2113 }
duke@1 2114 }
duke@1 2115
duke@1 2116 public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2117 return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
duke@1 2118 }
duke@1 2119
duke@1 2120 public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2121 return new ConversionWarner(pos, "unchecked.assign", found, expected);
duke@1 2122 }
duke@1 2123 }

mercurial