src/share/classes/com/sun/tools/javac/comp/Check.java

Mon, 12 Jul 2010 16:37:46 -0700

author
jjg
date
Mon, 12 Jul 2010 16:37:46 -0700
changeset 598
064468702a8d
parent 582
366a7b9b5627
child 608
472e74211e11
permissions
-rw-r--r--

6968497: localized text appears in raw diagnostic
Reviewed-by: darcy

duke@1 1 /*
ohair@554 2 * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30
duke@1 31 import com.sun.tools.javac.code.*;
duke@1 32 import com.sun.tools.javac.jvm.*;
duke@1 33 import com.sun.tools.javac.tree.*;
duke@1 34 import com.sun.tools.javac.util.*;
duke@1 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 36 import com.sun.tools.javac.util.List;
duke@1 37
duke@1 38 import com.sun.tools.javac.tree.JCTree.*;
duke@1 39 import com.sun.tools.javac.code.Lint;
duke@1 40 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 41 import com.sun.tools.javac.code.Type.*;
duke@1 42 import com.sun.tools.javac.code.Symbol.*;
duke@1 43
duke@1 44 import static com.sun.tools.javac.code.Flags.*;
duke@1 45 import static com.sun.tools.javac.code.Kinds.*;
duke@1 46 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 47
duke@1 48 /** Type checking helper class for the attribution phase.
duke@1 49 *
jjg@581 50 * <p><b>This is NOT part of any supported API.
jjg@581 51 * If you write code that depends on this, you do so at your own risk.
duke@1 52 * This code and its internal interfaces are subject to change or
duke@1 53 * deletion without notice.</b>
duke@1 54 */
duke@1 55 public class Check {
duke@1 56 protected static final Context.Key<Check> checkKey =
duke@1 57 new Context.Key<Check>();
duke@1 58
jjg@113 59 private final Names names;
duke@1 60 private final Log log;
duke@1 61 private final Symtab syms;
duke@1 62 private final Infer infer;
duke@1 63 private final Types types;
mcimadamore@89 64 private final JCDiagnostic.Factory diags;
duke@1 65 private final boolean skipAnnotations;
mcimadamore@359 66 private boolean warnOnSyntheticConflicts;
jjg@576 67 private boolean suppressAbortOnBadClassFile;
duke@1 68 private final TreeInfo treeinfo;
duke@1 69
duke@1 70 // The set of lint options currently in effect. It is initialized
duke@1 71 // from the context, and then is set/reset as needed by Attr as it
duke@1 72 // visits all the various parts of the trees during attribution.
duke@1 73 private Lint lint;
duke@1 74
duke@1 75 public static Check instance(Context context) {
duke@1 76 Check instance = context.get(checkKey);
duke@1 77 if (instance == null)
duke@1 78 instance = new Check(context);
duke@1 79 return instance;
duke@1 80 }
duke@1 81
duke@1 82 protected Check(Context context) {
duke@1 83 context.put(checkKey, this);
duke@1 84
jjg@113 85 names = Names.instance(context);
duke@1 86 log = Log.instance(context);
duke@1 87 syms = Symtab.instance(context);
duke@1 88 infer = Infer.instance(context);
duke@1 89 this.types = Types.instance(context);
mcimadamore@89 90 diags = JCDiagnostic.Factory.instance(context);
duke@1 91 Options options = Options.instance(context);
duke@1 92 lint = Lint.instance(context);
duke@1 93 treeinfo = TreeInfo.instance(context);
duke@1 94
duke@1 95 Source source = Source.instance(context);
duke@1 96 allowGenerics = source.allowGenerics();
duke@1 97 allowAnnotations = source.allowAnnotations();
jjg@398 98 allowCovariantReturns = source.allowCovariantReturns();
duke@1 99 complexInference = options.get("-complexinference") != null;
duke@1 100 skipAnnotations = options.get("skipAnnotations") != null;
mcimadamore@359 101 warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
jjg@576 102 suppressAbortOnBadClassFile = options.get("suppressAbortOnBadClassFile") != null;
duke@1 103
jjg@398 104 Target target = Target.instance(context);
jjg@398 105 syntheticNameChar = target.syntheticNameChar();
jjg@398 106
duke@1 107 boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
duke@1 108 boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
mcimadamore@580 109 boolean verboseVarargs = lint.isEnabled(LintCategory.VARARGS);
jjg@377 110 boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
jjg@60 111 boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
duke@1 112
jjg@60 113 deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
jjg@60 114 enforceMandatoryWarnings, "deprecated");
jjg@60 115 uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
jjg@60 116 enforceMandatoryWarnings, "unchecked");
mcimadamore@580 117 unsafeVarargsHandler = new MandatoryWarningHandler(log, verboseVarargs,
mcimadamore@580 118 enforceMandatoryWarnings, "varargs");
jjg@377 119 sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
jjg@377 120 enforceMandatoryWarnings, "sunapi");
duke@1 121 }
duke@1 122
duke@1 123 /** Switch: generics enabled?
duke@1 124 */
duke@1 125 boolean allowGenerics;
duke@1 126
duke@1 127 /** Switch: annotations enabled?
duke@1 128 */
duke@1 129 boolean allowAnnotations;
duke@1 130
jjg@398 131 /** Switch: covariant returns enabled?
jjg@398 132 */
jjg@398 133 boolean allowCovariantReturns;
jjg@398 134
duke@1 135 /** Switch: -complexinference option set?
duke@1 136 */
duke@1 137 boolean complexInference;
duke@1 138
jjg@398 139 /** Character for synthetic names
jjg@398 140 */
jjg@398 141 char syntheticNameChar;
jjg@398 142
duke@1 143 /** A table mapping flat names of all compiled classes in this run to their
duke@1 144 * symbols; maintained from outside.
duke@1 145 */
duke@1 146 public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
duke@1 147
duke@1 148 /** A handler for messages about deprecated usage.
duke@1 149 */
duke@1 150 private MandatoryWarningHandler deprecationHandler;
duke@1 151
duke@1 152 /** A handler for messages about unchecked or unsafe usage.
duke@1 153 */
duke@1 154 private MandatoryWarningHandler uncheckedHandler;
duke@1 155
mcimadamore@580 156 /** A handler for messages about unchecked or unsafe vararg method decl.
mcimadamore@580 157 */
mcimadamore@580 158 private MandatoryWarningHandler unsafeVarargsHandler;
mcimadamore@580 159
jjg@582 160 /** A handler for messages about using proprietary API.
jjg@377 161 */
jjg@377 162 private MandatoryWarningHandler sunApiHandler;
duke@1 163
duke@1 164 /* *************************************************************************
duke@1 165 * Errors and Warnings
duke@1 166 **************************************************************************/
duke@1 167
duke@1 168 Lint setLint(Lint newLint) {
duke@1 169 Lint prev = lint;
duke@1 170 lint = newLint;
duke@1 171 return prev;
duke@1 172 }
duke@1 173
duke@1 174 /** Warn about deprecated symbol.
duke@1 175 * @param pos Position to be used for error reporting.
duke@1 176 * @param sym The deprecated symbol.
duke@1 177 */
duke@1 178 void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
duke@1 179 if (!lint.isSuppressed(LintCategory.DEPRECATION))
duke@1 180 deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
duke@1 181 }
duke@1 182
duke@1 183 /** Warn about unchecked operation.
duke@1 184 * @param pos Position to be used for error reporting.
duke@1 185 * @param msg A string describing the problem.
duke@1 186 */
duke@1 187 public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
duke@1 188 if (!lint.isSuppressed(LintCategory.UNCHECKED))
duke@1 189 uncheckedHandler.report(pos, msg, args);
duke@1 190 }
duke@1 191
mcimadamore@580 192 /** Warn about unsafe vararg method decl.
mcimadamore@580 193 * @param pos Position to be used for error reporting.
mcimadamore@580 194 * @param sym The deprecated symbol.
mcimadamore@580 195 */
mcimadamore@580 196 void warnUnsafeVararg(DiagnosticPosition pos, Type elemType) {
mcimadamore@580 197 if (!lint.isSuppressed(LintCategory.VARARGS))
mcimadamore@580 198 unsafeVarargsHandler.report(pos, "varargs.non.reifiable.type", elemType);
mcimadamore@580 199 }
mcimadamore@580 200
jjg@582 201 /** Warn about using proprietary API.
jjg@377 202 * @param pos Position to be used for error reporting.
jjg@377 203 * @param msg A string describing the problem.
jjg@377 204 */
jjg@377 205 public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
jjg@377 206 if (!lint.isSuppressed(LintCategory.SUNAPI))
jjg@377 207 sunApiHandler.report(pos, msg, args);
jjg@377 208 }
jjg@377 209
jjg@505 210 public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
jjg@505 211 if (lint.isEnabled(LintCategory.STATIC))
jjg@505 212 log.warning(pos, msg, args);
jjg@505 213 }
jjg@505 214
duke@1 215 /**
duke@1 216 * Report any deferred diagnostics.
duke@1 217 */
duke@1 218 public void reportDeferredDiagnostics() {
duke@1 219 deprecationHandler.reportDeferredDiagnostic();
duke@1 220 uncheckedHandler.reportDeferredDiagnostic();
mcimadamore@580 221 unsafeVarargsHandler.reportDeferredDiagnostic();
jjg@377 222 sunApiHandler.reportDeferredDiagnostic();
duke@1 223 }
duke@1 224
duke@1 225
duke@1 226 /** Report a failure to complete a class.
duke@1 227 * @param pos Position to be used for error reporting.
duke@1 228 * @param ex The failure to report.
duke@1 229 */
duke@1 230 public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
jjg@12 231 log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
jjg@576 232 if (ex instanceof ClassReader.BadClassFile
jjg@576 233 && !suppressAbortOnBadClassFile) throw new Abort();
duke@1 234 else return syms.errType;
duke@1 235 }
duke@1 236
duke@1 237 /** Report a type error.
duke@1 238 * @param pos Position to be used for error reporting.
duke@1 239 * @param problem A string describing the error.
duke@1 240 * @param found The type that was found.
duke@1 241 * @param req The type that was required.
duke@1 242 */
duke@1 243 Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
duke@1 244 log.error(pos, "prob.found.req",
duke@1 245 problem, found, req);
jjg@110 246 return types.createErrorType(found);
duke@1 247 }
duke@1 248
duke@1 249 Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
duke@1 250 log.error(pos, "prob.found.req.1", problem, found, req, explanation);
jjg@110 251 return types.createErrorType(found);
duke@1 252 }
duke@1 253
duke@1 254 /** Report an error that wrong type tag was found.
duke@1 255 * @param pos Position to be used for error reporting.
duke@1 256 * @param required An internationalized string describing the type tag
duke@1 257 * required.
duke@1 258 * @param found The type that was found.
duke@1 259 */
duke@1 260 Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
jrose@267 261 // this error used to be raised by the parser,
jrose@267 262 // but has been delayed to this point:
jrose@267 263 if (found instanceof Type && ((Type)found).tag == VOID) {
jrose@267 264 log.error(pos, "illegal.start.of.type");
jrose@267 265 return syms.errType;
jrose@267 266 }
duke@1 267 log.error(pos, "type.found.req", found, required);
jjg@110 268 return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
duke@1 269 }
duke@1 270
duke@1 271 /** Report an error that symbol cannot be referenced before super
duke@1 272 * has been called.
duke@1 273 * @param pos Position to be used for error reporting.
duke@1 274 * @param sym The referenced symbol.
duke@1 275 */
duke@1 276 void earlyRefError(DiagnosticPosition pos, Symbol sym) {
duke@1 277 log.error(pos, "cant.ref.before.ctor.called", sym);
duke@1 278 }
duke@1 279
duke@1 280 /** Report duplicate declaration error.
duke@1 281 */
duke@1 282 void duplicateError(DiagnosticPosition pos, Symbol sym) {
duke@1 283 if (!sym.type.isErroneous()) {
duke@1 284 log.error(pos, "already.defined", sym, sym.location());
duke@1 285 }
duke@1 286 }
duke@1 287
duke@1 288 /** Report array/varargs duplicate declaration
duke@1 289 */
duke@1 290 void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
duke@1 291 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
duke@1 292 log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
duke@1 293 }
duke@1 294 }
duke@1 295
duke@1 296 /* ************************************************************************
duke@1 297 * duplicate declaration checking
duke@1 298 *************************************************************************/
duke@1 299
duke@1 300 /** Check that variable does not hide variable with same name in
duke@1 301 * immediately enclosing local scope.
duke@1 302 * @param pos Position for error reporting.
duke@1 303 * @param v The symbol.
duke@1 304 * @param s The scope.
duke@1 305 */
duke@1 306 void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
duke@1 307 if (s.next != null) {
duke@1 308 for (Scope.Entry e = s.next.lookup(v.name);
duke@1 309 e.scope != null && e.sym.owner == v.owner;
duke@1 310 e = e.next()) {
duke@1 311 if (e.sym.kind == VAR &&
duke@1 312 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 313 v.name != names.error) {
duke@1 314 duplicateError(pos, e.sym);
duke@1 315 return;
duke@1 316 }
duke@1 317 }
duke@1 318 }
duke@1 319 }
duke@1 320
duke@1 321 /** Check that a class or interface does not hide a class or
duke@1 322 * interface with same name in immediately enclosing local scope.
duke@1 323 * @param pos Position for error reporting.
duke@1 324 * @param c The symbol.
duke@1 325 * @param s The scope.
duke@1 326 */
duke@1 327 void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
duke@1 328 if (s.next != null) {
duke@1 329 for (Scope.Entry e = s.next.lookup(c.name);
duke@1 330 e.scope != null && e.sym.owner == c.owner;
duke@1 331 e = e.next()) {
duke@1 332 if (e.sym.kind == TYP &&
duke@1 333 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 334 c.name != names.error) {
duke@1 335 duplicateError(pos, e.sym);
duke@1 336 return;
duke@1 337 }
duke@1 338 }
duke@1 339 }
duke@1 340 }
duke@1 341
duke@1 342 /** Check that class does not have the same name as one of
duke@1 343 * its enclosing classes, or as a class defined in its enclosing scope.
duke@1 344 * return true if class is unique in its enclosing scope.
duke@1 345 * @param pos Position for error reporting.
duke@1 346 * @param name The class name.
duke@1 347 * @param s The enclosing scope.
duke@1 348 */
duke@1 349 boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
duke@1 350 for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
duke@1 351 if (e.sym.kind == TYP && e.sym.name != names.error) {
duke@1 352 duplicateError(pos, e.sym);
duke@1 353 return false;
duke@1 354 }
duke@1 355 }
duke@1 356 for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
duke@1 357 if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
duke@1 358 duplicateError(pos, sym);
duke@1 359 return true;
duke@1 360 }
duke@1 361 }
duke@1 362 return true;
duke@1 363 }
duke@1 364
duke@1 365 /* *************************************************************************
duke@1 366 * Class name generation
duke@1 367 **************************************************************************/
duke@1 368
duke@1 369 /** Return name of local class.
duke@1 370 * This is of the form <enclClass> $ n <classname>
duke@1 371 * where
duke@1 372 * enclClass is the flat name of the enclosing class,
duke@1 373 * classname is the simple name of the local class
duke@1 374 */
duke@1 375 Name localClassName(ClassSymbol c) {
duke@1 376 for (int i=1; ; i++) {
duke@1 377 Name flatname = names.
duke@1 378 fromString("" + c.owner.enclClass().flatname +
jjg@398 379 syntheticNameChar + i +
duke@1 380 c.name);
duke@1 381 if (compiled.get(flatname) == null) return flatname;
duke@1 382 }
duke@1 383 }
duke@1 384
duke@1 385 /* *************************************************************************
duke@1 386 * Type Checking
duke@1 387 **************************************************************************/
duke@1 388
duke@1 389 /** Check that a given type is assignable to a given proto-type.
duke@1 390 * If it is, return the type, otherwise return errType.
duke@1 391 * @param pos Position to be used for error reporting.
duke@1 392 * @param found The type that was found.
duke@1 393 * @param req The type that was required.
duke@1 394 */
duke@1 395 Type checkType(DiagnosticPosition pos, Type found, Type req) {
duke@1 396 if (req.tag == ERROR)
duke@1 397 return req;
mcimadamore@536 398 if (found.tag == FORALL)
mcimadamore@536 399 return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
duke@1 400 if (req.tag == NONE)
duke@1 401 return found;
duke@1 402 if (types.isAssignable(found, req, convertWarner(pos, found, req)))
duke@1 403 return found;
duke@1 404 if (found.tag <= DOUBLE && req.tag <= DOUBLE)
mcimadamore@89 405 return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
duke@1 406 if (found.isSuperBound()) {
duke@1 407 log.error(pos, "assignment.from.super-bound", found);
jjg@110 408 return types.createErrorType(found);
duke@1 409 }
duke@1 410 if (req.isExtendsBound()) {
duke@1 411 log.error(pos, "assignment.to.extends-bound", req);
jjg@110 412 return types.createErrorType(found);
duke@1 413 }
mcimadamore@89 414 return typeError(pos, diags.fragment("incompatible.types"), found, req);
duke@1 415 }
duke@1 416
duke@1 417 /** Instantiate polymorphic type to some prototype, unless
duke@1 418 * prototype is `anyPoly' in which case polymorphic type
duke@1 419 * is returned unchanged.
duke@1 420 */
mcimadamore@383 421 Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
duke@1 422 if (pt == Infer.anyPoly && complexInference) {
duke@1 423 return t;
duke@1 424 } else if (pt == Infer.anyPoly || pt.tag == NONE) {
duke@1 425 Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
duke@1 426 return instantiatePoly(pos, t, newpt, warn);
duke@1 427 } else if (pt.tag == ERROR) {
duke@1 428 return pt;
duke@1 429 } else {
mcimadamore@536 430 try {
mcimadamore@536 431 return infer.instantiateExpr(t, pt, warn);
mcimadamore@536 432 } catch (Infer.NoInstanceException ex) {
mcimadamore@536 433 if (ex.isAmbiguous) {
mcimadamore@536 434 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@536 435 log.error(pos,
mcimadamore@536 436 "undetermined.type" + (d!=null ? ".1" : ""),
mcimadamore@536 437 t, d);
mcimadamore@536 438 return types.createErrorType(pt);
mcimadamore@536 439 } else {
mcimadamore@536 440 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@536 441 return typeError(pos,
mcimadamore@536 442 diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
mcimadamore@536 443 t, pt);
mcimadamore@536 444 }
mcimadamore@536 445 } catch (Infer.InvalidInstanceException ex) {
mcimadamore@536 446 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@536 447 log.error(pos, "invalid.inferred.types", t.tvars, d);
mcimadamore@536 448 return types.createErrorType(pt);
mcimadamore@536 449 }
duke@1 450 }
mcimadamore@536 451 }
duke@1 452
duke@1 453 /** Check that a given type can be cast to a given target type.
duke@1 454 * Return the result of the cast.
duke@1 455 * @param pos Position to be used for error reporting.
duke@1 456 * @param found The type that is being cast.
duke@1 457 * @param req The target type of the cast.
duke@1 458 */
duke@1 459 Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
duke@1 460 if (found.tag == FORALL) {
duke@1 461 instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
duke@1 462 return req;
duke@1 463 } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
duke@1 464 return req;
duke@1 465 } else {
duke@1 466 return typeError(pos,
mcimadamore@89 467 diags.fragment("inconvertible.types"),
duke@1 468 found, req);
duke@1 469 }
duke@1 470 }
duke@1 471 //where
duke@1 472 /** Is type a type variable, or a (possibly multi-dimensional) array of
duke@1 473 * type variables?
duke@1 474 */
duke@1 475 boolean isTypeVar(Type t) {
duke@1 476 return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
duke@1 477 }
duke@1 478
duke@1 479 /** Check that a type is within some bounds.
duke@1 480 *
duke@1 481 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
duke@1 482 * type argument.
duke@1 483 * @param pos Position to be used for error reporting.
duke@1 484 * @param a The type that should be bounded by bs.
duke@1 485 * @param bs The bound.
duke@1 486 */
duke@1 487 private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
mcimadamore@154 488 if (a.isUnbound()) {
mcimadamore@154 489 return;
mcimadamore@154 490 } else if (a.tag != WILDCARD) {
mcimadamore@154 491 a = types.upperBound(a);
mcimadamore@154 492 for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
mcimadamore@154 493 if (!types.isSubtype(a, l.head)) {
mcimadamore@154 494 log.error(pos, "not.within.bounds", a);
mcimadamore@154 495 return;
mcimadamore@154 496 }
mcimadamore@154 497 }
mcimadamore@154 498 } else if (a.isExtendsBound()) {
mcimadamore@154 499 if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
mcimadamore@154 500 log.error(pos, "not.within.bounds", a);
mcimadamore@154 501 } else if (a.isSuperBound()) {
mcimadamore@154 502 if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
mcimadamore@154 503 log.error(pos, "not.within.bounds", a);
mcimadamore@154 504 }
mcimadamore@154 505 }
mcimadamore@154 506
mcimadamore@154 507 /** Check that a type is within some bounds.
mcimadamore@154 508 *
mcimadamore@154 509 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
mcimadamore@154 510 * type argument.
mcimadamore@154 511 * @param pos Position to be used for error reporting.
mcimadamore@154 512 * @param a The type that should be bounded by bs.
mcimadamore@154 513 * @param bs The bound.
mcimadamore@154 514 */
mcimadamore@154 515 private void checkCapture(JCTypeApply tree) {
mcimadamore@154 516 List<JCExpression> args = tree.getTypeArguments();
mcimadamore@154 517 for (Type arg : types.capture(tree.type).getTypeArguments()) {
mcimadamore@154 518 if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
mcimadamore@154 519 log.error(args.head.pos, "not.within.bounds", args.head.type);
mcimadamore@154 520 break;
mcimadamore@79 521 }
mcimadamore@154 522 args = args.tail;
mcimadamore@79 523 }
mcimadamore@154 524 }
duke@1 525
duke@1 526 /** Check that type is different from 'void'.
duke@1 527 * @param pos Position to be used for error reporting.
duke@1 528 * @param t The type to be checked.
duke@1 529 */
duke@1 530 Type checkNonVoid(DiagnosticPosition pos, Type t) {
duke@1 531 if (t.tag == VOID) {
duke@1 532 log.error(pos, "void.not.allowed.here");
jjg@110 533 return types.createErrorType(t);
duke@1 534 } else {
duke@1 535 return t;
duke@1 536 }
duke@1 537 }
duke@1 538
duke@1 539 /** Check that type is a class or interface type.
duke@1 540 * @param pos Position to be used for error reporting.
duke@1 541 * @param t The type to be checked.
duke@1 542 */
duke@1 543 Type checkClassType(DiagnosticPosition pos, Type t) {
duke@1 544 if (t.tag != CLASS && t.tag != ERROR)
duke@1 545 return typeTagError(pos,
mcimadamore@89 546 diags.fragment("type.req.class"),
duke@1 547 (t.tag == TYPEVAR)
mcimadamore@89 548 ? diags.fragment("type.parameter", t)
duke@1 549 : t);
duke@1 550 else
duke@1 551 return t;
duke@1 552 }
duke@1 553
duke@1 554 /** Check that type is a class or interface type.
duke@1 555 * @param pos Position to be used for error reporting.
duke@1 556 * @param t The type to be checked.
duke@1 557 * @param noBounds True if type bounds are illegal here.
duke@1 558 */
duke@1 559 Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
duke@1 560 t = checkClassType(pos, t);
duke@1 561 if (noBounds && t.isParameterized()) {
duke@1 562 List<Type> args = t.getTypeArguments();
duke@1 563 while (args.nonEmpty()) {
duke@1 564 if (args.head.tag == WILDCARD)
duke@1 565 return typeTagError(pos,
jjg@598 566 diags.fragment("type.req.exact"),
duke@1 567 args.head);
duke@1 568 args = args.tail;
duke@1 569 }
duke@1 570 }
duke@1 571 return t;
duke@1 572 }
duke@1 573
duke@1 574 /** Check that type is a reifiable class, interface or array type.
duke@1 575 * @param pos Position to be used for error reporting.
duke@1 576 * @param t The type to be checked.
duke@1 577 */
duke@1 578 Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
duke@1 579 if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
duke@1 580 return typeTagError(pos,
mcimadamore@89 581 diags.fragment("type.req.class.array"),
duke@1 582 t);
duke@1 583 } else if (!types.isReifiable(t)) {
duke@1 584 log.error(pos, "illegal.generic.type.for.instof");
jjg@110 585 return types.createErrorType(t);
duke@1 586 } else {
duke@1 587 return t;
duke@1 588 }
duke@1 589 }
duke@1 590
duke@1 591 /** Check that type is a reference type, i.e. a class, interface or array type
duke@1 592 * or a type variable.
duke@1 593 * @param pos Position to be used for error reporting.
duke@1 594 * @param t The type to be checked.
duke@1 595 */
duke@1 596 Type checkRefType(DiagnosticPosition pos, Type t) {
duke@1 597 switch (t.tag) {
duke@1 598 case CLASS:
duke@1 599 case ARRAY:
duke@1 600 case TYPEVAR:
duke@1 601 case WILDCARD:
duke@1 602 case ERROR:
duke@1 603 return t;
duke@1 604 default:
duke@1 605 return typeTagError(pos,
mcimadamore@89 606 diags.fragment("type.req.ref"),
duke@1 607 t);
duke@1 608 }
duke@1 609 }
duke@1 610
jrose@267 611 /** Check that each type is a reference type, i.e. a class, interface or array type
jrose@267 612 * or a type variable.
jrose@267 613 * @param trees Original trees, used for error reporting.
jrose@267 614 * @param types The types to be checked.
jrose@267 615 */
jrose@267 616 List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
jrose@267 617 List<JCExpression> tl = trees;
jrose@267 618 for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
jrose@267 619 l.head = checkRefType(tl.head.pos(), l.head);
jrose@267 620 tl = tl.tail;
jrose@267 621 }
jrose@267 622 return types;
jrose@267 623 }
jrose@267 624
duke@1 625 /** Check that type is a null or reference type.
duke@1 626 * @param pos Position to be used for error reporting.
duke@1 627 * @param t The type to be checked.
duke@1 628 */
duke@1 629 Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
duke@1 630 switch (t.tag) {
duke@1 631 case CLASS:
duke@1 632 case ARRAY:
duke@1 633 case TYPEVAR:
duke@1 634 case WILDCARD:
duke@1 635 case BOT:
duke@1 636 case ERROR:
duke@1 637 return t;
duke@1 638 default:
duke@1 639 return typeTagError(pos,
mcimadamore@89 640 diags.fragment("type.req.ref"),
duke@1 641 t);
duke@1 642 }
duke@1 643 }
duke@1 644
duke@1 645 /** Check that flag set does not contain elements of two conflicting sets. s
duke@1 646 * Return true if it doesn't.
duke@1 647 * @param pos Position to be used for error reporting.
duke@1 648 * @param flags The set of flags to be checked.
duke@1 649 * @param set1 Conflicting flags set #1.
duke@1 650 * @param set2 Conflicting flags set #2.
duke@1 651 */
duke@1 652 boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
duke@1 653 if ((flags & set1) != 0 && (flags & set2) != 0) {
duke@1 654 log.error(pos,
duke@1 655 "illegal.combination.of.modifiers",
mcimadamore@80 656 asFlagSet(TreeInfo.firstFlag(flags & set1)),
mcimadamore@80 657 asFlagSet(TreeInfo.firstFlag(flags & set2)));
duke@1 658 return false;
duke@1 659 } else
duke@1 660 return true;
duke@1 661 }
duke@1 662
mcimadamore@537 663 /** Check that the type inferred using the diamond operator does not contain
mcimadamore@537 664 * non-denotable types such as captured types or intersection types.
mcimadamore@537 665 * @param t the type inferred using the diamond operator
mcimadamore@537 666 */
mcimadamore@537 667 List<Type> checkDiamond(ClassType t) {
mcimadamore@537 668 DiamondTypeChecker dtc = new DiamondTypeChecker();
mcimadamore@537 669 ListBuffer<Type> buf = ListBuffer.lb();
mcimadamore@537 670 for (Type arg : t.getTypeArguments()) {
mcimadamore@537 671 if (!dtc.visit(arg, null)) {
mcimadamore@537 672 buf.append(arg);
mcimadamore@537 673 }
mcimadamore@537 674 }
mcimadamore@537 675 return buf.toList();
mcimadamore@537 676 }
mcimadamore@537 677
mcimadamore@537 678 static class DiamondTypeChecker extends Types.SimpleVisitor<Boolean, Void> {
mcimadamore@537 679 public Boolean visitType(Type t, Void s) {
mcimadamore@537 680 return true;
mcimadamore@537 681 }
mcimadamore@537 682 @Override
mcimadamore@537 683 public Boolean visitClassType(ClassType t, Void s) {
mcimadamore@537 684 if (t.isCompound()) {
mcimadamore@537 685 return false;
mcimadamore@537 686 }
mcimadamore@537 687 for (Type targ : t.getTypeArguments()) {
mcimadamore@537 688 if (!visit(targ, s)) {
mcimadamore@537 689 return false;
mcimadamore@537 690 }
mcimadamore@537 691 }
mcimadamore@537 692 return true;
mcimadamore@537 693 }
mcimadamore@537 694 @Override
mcimadamore@537 695 public Boolean visitCapturedType(CapturedType t, Void s) {
mcimadamore@537 696 return false;
mcimadamore@537 697 }
mcimadamore@537 698 }
mcimadamore@537 699
mcimadamore@580 700 void checkVarargMethodDecl(JCMethodDecl tree) {
mcimadamore@580 701 MethodSymbol m = tree.sym;
mcimadamore@580 702 //check the element type of the vararg
mcimadamore@580 703 if (m.isVarArgs()) {
mcimadamore@580 704 Type varargElemType = types.elemtype(tree.params.last().type);
mcimadamore@580 705 if (!types.isReifiable(varargElemType)) {
mcimadamore@580 706 warnUnsafeVararg(tree.params.head.pos(), varargElemType);
mcimadamore@580 707 }
mcimadamore@580 708 }
mcimadamore@580 709 }
mcimadamore@580 710
mcimadamore@547 711 /**
mcimadamore@547 712 * Check that vararg method call is sound
mcimadamore@547 713 * @param pos Position to be used for error reporting.
mcimadamore@547 714 * @param argtypes Actual arguments supplied to vararg method.
mcimadamore@547 715 */
mcimadamore@580 716 void checkVararg(DiagnosticPosition pos, List<Type> argtypes, Symbol msym, Env<AttrContext> env) {
mcimadamore@580 717 Env<AttrContext> calleeLintEnv = env;
mcimadamore@580 718 while (calleeLintEnv.info.lint == null)
mcimadamore@580 719 calleeLintEnv = calleeLintEnv.next;
mcimadamore@580 720 Lint calleeLint = calleeLintEnv.info.lint.augment(msym.attributes_field, msym.flags());
mcimadamore@547 721 Type argtype = argtypes.last();
mcimadamore@580 722 if (!types.isReifiable(argtype) && !calleeLint.isSuppressed(Lint.LintCategory.VARARGS)) {
mcimadamore@547 723 warnUnchecked(pos,
mcimadamore@547 724 "unchecked.generic.array.creation",
mcimadamore@547 725 argtype);
mcimadamore@580 726 }
mcimadamore@547 727 }
mcimadamore@547 728
duke@1 729 /** Check that given modifiers are legal for given symbol and
duke@1 730 * return modifiers together with any implicit modififiers for that symbol.
duke@1 731 * Warning: we can't use flags() here since this method
duke@1 732 * is called during class enter, when flags() would cause a premature
duke@1 733 * completion.
duke@1 734 * @param pos Position to be used for error reporting.
duke@1 735 * @param flags The set of modifiers given in a definition.
duke@1 736 * @param sym The defined symbol.
duke@1 737 */
duke@1 738 long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
duke@1 739 long mask;
duke@1 740 long implicit = 0;
duke@1 741 switch (sym.kind) {
duke@1 742 case VAR:
duke@1 743 if (sym.owner.kind != TYP)
duke@1 744 mask = LocalVarFlags;
duke@1 745 else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 746 mask = implicit = InterfaceVarFlags;
duke@1 747 else
duke@1 748 mask = VarFlags;
duke@1 749 break;
duke@1 750 case MTH:
duke@1 751 if (sym.name == names.init) {
duke@1 752 if ((sym.owner.flags_field & ENUM) != 0) {
duke@1 753 // enum constructors cannot be declared public or
duke@1 754 // protected and must be implicitly or explicitly
duke@1 755 // private
duke@1 756 implicit = PRIVATE;
duke@1 757 mask = PRIVATE;
duke@1 758 } else
duke@1 759 mask = ConstructorFlags;
duke@1 760 } else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 761 mask = implicit = InterfaceMethodFlags;
duke@1 762 else {
duke@1 763 mask = MethodFlags;
duke@1 764 }
duke@1 765 // Imply STRICTFP if owner has STRICTFP set.
duke@1 766 if (((flags|implicit) & Flags.ABSTRACT) == 0)
duke@1 767 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 768 break;
duke@1 769 case TYP:
duke@1 770 if (sym.isLocal()) {
duke@1 771 mask = LocalClassFlags;
jjg@113 772 if (sym.name.isEmpty()) { // Anonymous class
duke@1 773 // Anonymous classes in static methods are themselves static;
duke@1 774 // that's why we admit STATIC here.
duke@1 775 mask |= STATIC;
duke@1 776 // JLS: Anonymous classes are final.
duke@1 777 implicit |= FINAL;
duke@1 778 }
duke@1 779 if ((sym.owner.flags_field & STATIC) == 0 &&
duke@1 780 (flags & ENUM) != 0)
duke@1 781 log.error(pos, "enums.must.be.static");
duke@1 782 } else if (sym.owner.kind == TYP) {
duke@1 783 mask = MemberClassFlags;
duke@1 784 if (sym.owner.owner.kind == PCK ||
duke@1 785 (sym.owner.flags_field & STATIC) != 0)
duke@1 786 mask |= STATIC;
duke@1 787 else if ((flags & ENUM) != 0)
duke@1 788 log.error(pos, "enums.must.be.static");
duke@1 789 // Nested interfaces and enums are always STATIC (Spec ???)
duke@1 790 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
duke@1 791 } else {
duke@1 792 mask = ClassFlags;
duke@1 793 }
duke@1 794 // Interfaces are always ABSTRACT
duke@1 795 if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
duke@1 796
duke@1 797 if ((flags & ENUM) != 0) {
duke@1 798 // enums can't be declared abstract or final
duke@1 799 mask &= ~(ABSTRACT | FINAL);
duke@1 800 implicit |= implicitEnumFinalFlag(tree);
duke@1 801 }
duke@1 802 // Imply STRICTFP if owner has STRICTFP set.
duke@1 803 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 804 break;
duke@1 805 default:
duke@1 806 throw new AssertionError();
duke@1 807 }
duke@1 808 long illegal = flags & StandardFlags & ~mask;
duke@1 809 if (illegal != 0) {
duke@1 810 if ((illegal & INTERFACE) != 0) {
duke@1 811 log.error(pos, "intf.not.allowed.here");
duke@1 812 mask |= INTERFACE;
duke@1 813 }
duke@1 814 else {
duke@1 815 log.error(pos,
mcimadamore@80 816 "mod.not.allowed.here", asFlagSet(illegal));
duke@1 817 }
duke@1 818 }
duke@1 819 else if ((sym.kind == TYP ||
duke@1 820 // ISSUE: Disallowing abstract&private is no longer appropriate
duke@1 821 // in the presence of inner classes. Should it be deleted here?
duke@1 822 checkDisjoint(pos, flags,
duke@1 823 ABSTRACT,
duke@1 824 PRIVATE | STATIC))
duke@1 825 &&
duke@1 826 checkDisjoint(pos, flags,
duke@1 827 ABSTRACT | INTERFACE,
duke@1 828 FINAL | NATIVE | SYNCHRONIZED)
duke@1 829 &&
duke@1 830 checkDisjoint(pos, flags,
duke@1 831 PUBLIC,
duke@1 832 PRIVATE | PROTECTED)
duke@1 833 &&
duke@1 834 checkDisjoint(pos, flags,
duke@1 835 PRIVATE,
duke@1 836 PUBLIC | PROTECTED)
duke@1 837 &&
duke@1 838 checkDisjoint(pos, flags,
duke@1 839 FINAL,
duke@1 840 VOLATILE)
duke@1 841 &&
duke@1 842 (sym.kind == TYP ||
duke@1 843 checkDisjoint(pos, flags,
duke@1 844 ABSTRACT | NATIVE,
duke@1 845 STRICTFP))) {
duke@1 846 // skip
duke@1 847 }
duke@1 848 return flags & (mask | ~StandardFlags) | implicit;
duke@1 849 }
duke@1 850
duke@1 851
duke@1 852 /** Determine if this enum should be implicitly final.
duke@1 853 *
duke@1 854 * If the enum has no specialized enum contants, it is final.
duke@1 855 *
duke@1 856 * If the enum does have specialized enum contants, it is
duke@1 857 * <i>not</i> final.
duke@1 858 */
duke@1 859 private long implicitEnumFinalFlag(JCTree tree) {
duke@1 860 if (tree.getTag() != JCTree.CLASSDEF) return 0;
duke@1 861 class SpecialTreeVisitor extends JCTree.Visitor {
duke@1 862 boolean specialized;
duke@1 863 SpecialTreeVisitor() {
duke@1 864 this.specialized = false;
duke@1 865 };
duke@1 866
jjg@398 867 @Override
duke@1 868 public void visitTree(JCTree tree) { /* no-op */ }
duke@1 869
jjg@398 870 @Override
duke@1 871 public void visitVarDef(JCVariableDecl tree) {
duke@1 872 if ((tree.mods.flags & ENUM) != 0) {
duke@1 873 if (tree.init instanceof JCNewClass &&
duke@1 874 ((JCNewClass) tree.init).def != null) {
duke@1 875 specialized = true;
duke@1 876 }
duke@1 877 }
duke@1 878 }
duke@1 879 }
duke@1 880
duke@1 881 SpecialTreeVisitor sts = new SpecialTreeVisitor();
duke@1 882 JCClassDecl cdef = (JCClassDecl) tree;
duke@1 883 for (JCTree defs: cdef.defs) {
duke@1 884 defs.accept(sts);
duke@1 885 if (sts.specialized) return 0;
duke@1 886 }
duke@1 887 return FINAL;
duke@1 888 }
duke@1 889
duke@1 890 /* *************************************************************************
duke@1 891 * Type Validation
duke@1 892 **************************************************************************/
duke@1 893
duke@1 894 /** Validate a type expression. That is,
duke@1 895 * check that all type arguments of a parametric type are within
duke@1 896 * their bounds. This must be done in a second phase after type attributon
duke@1 897 * since a class might have a subclass as type parameter bound. E.g:
duke@1 898 *
duke@1 899 * class B<A extends C> { ... }
duke@1 900 * class C extends B<C> { ... }
duke@1 901 *
duke@1 902 * and we can't make sure that the bound is already attributed because
duke@1 903 * of possible cycles.
duke@1 904 */
duke@1 905 private Validator validator = new Validator();
duke@1 906
duke@1 907 /** Visitor method: Validate a type expression, if it is not null, catching
duke@1 908 * and reporting any completion failures.
duke@1 909 */
mcimadamore@122 910 void validate(JCTree tree, Env<AttrContext> env) {
duke@1 911 try {
mcimadamore@122 912 if (tree != null) {
mcimadamore@122 913 validator.env = env;
mcimadamore@122 914 tree.accept(validator);
mcimadamore@122 915 checkRaw(tree, env);
mcimadamore@122 916 }
duke@1 917 } catch (CompletionFailure ex) {
duke@1 918 completionError(tree.pos(), ex);
duke@1 919 }
duke@1 920 }
mcimadamore@122 921 //where
mcimadamore@122 922 void checkRaw(JCTree tree, Env<AttrContext> env) {
mcimadamore@122 923 if (lint.isEnabled(Lint.LintCategory.RAW) &&
mcimadamore@122 924 tree.type.tag == CLASS &&
mcimadamore@564 925 !TreeInfo.isDiamond(tree) &&
mcimadamore@122 926 !env.enclClass.name.isEmpty() && //anonymous or intersection
mcimadamore@122 927 tree.type.isRaw()) {
mcimadamore@122 928 log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
mcimadamore@122 929 }
mcimadamore@122 930 }
duke@1 931
duke@1 932 /** Visitor method: Validate a list of type expressions.
duke@1 933 */
mcimadamore@122 934 void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
duke@1 935 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
mcimadamore@122 936 validate(l.head, env);
duke@1 937 }
duke@1 938
duke@1 939 /** A visitor class for type validation.
duke@1 940 */
duke@1 941 class Validator extends JCTree.Visitor {
duke@1 942
jjg@398 943 @Override
duke@1 944 public void visitTypeArray(JCArrayTypeTree tree) {
mcimadamore@122 945 validate(tree.elemtype, env);
duke@1 946 }
duke@1 947
jjg@398 948 @Override
duke@1 949 public void visitTypeApply(JCTypeApply tree) {
duke@1 950 if (tree.type.tag == CLASS) {
mcimadamore@158 951 List<Type> formals = tree.type.tsym.type.allparams();
mcimadamore@158 952 List<Type> actuals = tree.type.allparams();
duke@1 953 List<JCExpression> args = tree.arguments;
mcimadamore@158 954 List<Type> forms = tree.type.tsym.type.getTypeArguments();
mcimadamore@561 955 ListBuffer<Type> tvars_buf = new ListBuffer<Type>();
duke@1 956
duke@1 957 // For matching pairs of actual argument types `a' and
duke@1 958 // formal type parameters with declared bound `b' ...
duke@1 959 while (args.nonEmpty() && forms.nonEmpty()) {
mcimadamore@122 960 validate(args.head, env);
duke@1 961
duke@1 962 // exact type arguments needs to know their
duke@1 963 // bounds (for upper and lower bound
duke@1 964 // calculations). So we create new TypeVars with
duke@1 965 // bounds substed with actuals.
duke@1 966 tvars_buf.append(types.substBound(((TypeVar)forms.head),
duke@1 967 formals,
mcimadamore@78 968 actuals));
duke@1 969
duke@1 970 args = args.tail;
duke@1 971 forms = forms.tail;
duke@1 972 }
duke@1 973
duke@1 974 args = tree.arguments;
mcimadamore@154 975 List<Type> tvars_cap = types.substBounds(formals,
mcimadamore@154 976 formals,
mcimadamore@158 977 types.capture(tree.type).allparams());
mcimadamore@154 978 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
mcimadamore@154 979 // Let the actual arguments know their bound
mcimadamore@154 980 args.head.type.withTypeVar((TypeVar)tvars_cap.head);
mcimadamore@154 981 args = args.tail;
mcimadamore@154 982 tvars_cap = tvars_cap.tail;
mcimadamore@154 983 }
mcimadamore@154 984
mcimadamore@154 985 args = tree.arguments;
mcimadamore@561 986 List<Type> tvars = tvars_buf.toList();
mcimadamore@154 987
duke@1 988 while (args.nonEmpty() && tvars.nonEmpty()) {
mcimadamore@561 989 Type actual = types.subst(args.head.type,
mcimadamore@561 990 tree.type.tsym.type.getTypeArguments(),
mcimadamore@561 991 tvars_buf.toList());
mcimadamore@154 992 checkExtends(args.head.pos(),
mcimadamore@561 993 actual,
mcimadamore@561 994 (TypeVar)tvars.head);
duke@1 995 args = args.tail;
duke@1 996 tvars = tvars.tail;
duke@1 997 }
duke@1 998
mcimadamore@154 999 checkCapture(tree);
mcimadamore@536 1000
duke@1 1001 // Check that this type is either fully parameterized, or
duke@1 1002 // not parameterized at all.
duke@1 1003 if (tree.type.getEnclosingType().isRaw())
duke@1 1004 log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
duke@1 1005 if (tree.clazz.getTag() == JCTree.SELECT)
duke@1 1006 visitSelectInternal((JCFieldAccess)tree.clazz);
duke@1 1007 }
duke@1 1008 }
duke@1 1009
jjg@398 1010 @Override
duke@1 1011 public void visitTypeParameter(JCTypeParameter tree) {
mcimadamore@122 1012 validate(tree.bounds, env);
duke@1 1013 checkClassBounds(tree.pos(), tree.type);
duke@1 1014 }
duke@1 1015
duke@1 1016 @Override
duke@1 1017 public void visitWildcard(JCWildcard tree) {
duke@1 1018 if (tree.inner != null)
mcimadamore@122 1019 validate(tree.inner, env);
duke@1 1020 }
duke@1 1021
jjg@398 1022 @Override
duke@1 1023 public void visitSelect(JCFieldAccess tree) {
duke@1 1024 if (tree.type.tag == CLASS) {
duke@1 1025 visitSelectInternal(tree);
duke@1 1026
duke@1 1027 // Check that this type is either fully parameterized, or
duke@1 1028 // not parameterized at all.
duke@1 1029 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
duke@1 1030 log.error(tree.pos(), "improperly.formed.type.param.missing");
duke@1 1031 }
duke@1 1032 }
duke@1 1033 public void visitSelectInternal(JCFieldAccess tree) {
mcimadamore@122 1034 if (tree.type.tsym.isStatic() &&
duke@1 1035 tree.selected.type.isParameterized()) {
duke@1 1036 // The enclosing type is not a class, so we are
duke@1 1037 // looking at a static member type. However, the
duke@1 1038 // qualifying expression is parameterized.
duke@1 1039 log.error(tree.pos(), "cant.select.static.class.from.param.type");
duke@1 1040 } else {
duke@1 1041 // otherwise validate the rest of the expression
mcimadamore@122 1042 tree.selected.accept(this);
duke@1 1043 }
duke@1 1044 }
duke@1 1045
jjg@398 1046 @Override
jjg@308 1047 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 1048 tree.underlyingType.accept(this);
jjg@308 1049 }
jjg@308 1050
duke@1 1051 /** Default visitor method: do nothing.
duke@1 1052 */
jjg@398 1053 @Override
duke@1 1054 public void visitTree(JCTree tree) {
duke@1 1055 }
mcimadamore@122 1056
mcimadamore@122 1057 Env<AttrContext> env;
duke@1 1058 }
duke@1 1059
duke@1 1060 /* *************************************************************************
duke@1 1061 * Exception checking
duke@1 1062 **************************************************************************/
duke@1 1063
duke@1 1064 /* The following methods treat classes as sets that contain
duke@1 1065 * the class itself and all their subclasses
duke@1 1066 */
duke@1 1067
duke@1 1068 /** Is given type a subtype of some of the types in given list?
duke@1 1069 */
duke@1 1070 boolean subset(Type t, List<Type> ts) {
duke@1 1071 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 1072 if (types.isSubtype(t, l.head)) return true;
duke@1 1073 return false;
duke@1 1074 }
duke@1 1075
duke@1 1076 /** Is given type a subtype or supertype of
duke@1 1077 * some of the types in given list?
duke@1 1078 */
duke@1 1079 boolean intersects(Type t, List<Type> ts) {
duke@1 1080 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 1081 if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
duke@1 1082 return false;
duke@1 1083 }
duke@1 1084
duke@1 1085 /** Add type set to given type list, unless it is a subclass of some class
duke@1 1086 * in the list.
duke@1 1087 */
duke@1 1088 List<Type> incl(Type t, List<Type> ts) {
duke@1 1089 return subset(t, ts) ? ts : excl(t, ts).prepend(t);
duke@1 1090 }
duke@1 1091
duke@1 1092 /** Remove type set from type set list.
duke@1 1093 */
duke@1 1094 List<Type> excl(Type t, List<Type> ts) {
duke@1 1095 if (ts.isEmpty()) {
duke@1 1096 return ts;
duke@1 1097 } else {
duke@1 1098 List<Type> ts1 = excl(t, ts.tail);
duke@1 1099 if (types.isSubtype(ts.head, t)) return ts1;
duke@1 1100 else if (ts1 == ts.tail) return ts;
duke@1 1101 else return ts1.prepend(ts.head);
duke@1 1102 }
duke@1 1103 }
duke@1 1104
duke@1 1105 /** Form the union of two type set lists.
duke@1 1106 */
duke@1 1107 List<Type> union(List<Type> ts1, List<Type> ts2) {
duke@1 1108 List<Type> ts = ts1;
duke@1 1109 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1110 ts = incl(l.head, ts);
duke@1 1111 return ts;
duke@1 1112 }
duke@1 1113
duke@1 1114 /** Form the difference of two type lists.
duke@1 1115 */
duke@1 1116 List<Type> diff(List<Type> ts1, List<Type> ts2) {
duke@1 1117 List<Type> ts = ts1;
duke@1 1118 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1119 ts = excl(l.head, ts);
duke@1 1120 return ts;
duke@1 1121 }
duke@1 1122
duke@1 1123 /** Form the intersection of two type lists.
duke@1 1124 */
duke@1 1125 public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
duke@1 1126 List<Type> ts = List.nil();
duke@1 1127 for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
duke@1 1128 if (subset(l.head, ts2)) ts = incl(l.head, ts);
duke@1 1129 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1130 if (subset(l.head, ts1)) ts = incl(l.head, ts);
duke@1 1131 return ts;
duke@1 1132 }
duke@1 1133
duke@1 1134 /** Is exc an exception symbol that need not be declared?
duke@1 1135 */
duke@1 1136 boolean isUnchecked(ClassSymbol exc) {
duke@1 1137 return
duke@1 1138 exc.kind == ERR ||
duke@1 1139 exc.isSubClass(syms.errorType.tsym, types) ||
duke@1 1140 exc.isSubClass(syms.runtimeExceptionType.tsym, types);
duke@1 1141 }
duke@1 1142
duke@1 1143 /** Is exc an exception type that need not be declared?
duke@1 1144 */
duke@1 1145 boolean isUnchecked(Type exc) {
duke@1 1146 return
duke@1 1147 (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
duke@1 1148 (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
duke@1 1149 exc.tag == BOT;
duke@1 1150 }
duke@1 1151
duke@1 1152 /** Same, but handling completion failures.
duke@1 1153 */
duke@1 1154 boolean isUnchecked(DiagnosticPosition pos, Type exc) {
duke@1 1155 try {
duke@1 1156 return isUnchecked(exc);
duke@1 1157 } catch (CompletionFailure ex) {
duke@1 1158 completionError(pos, ex);
duke@1 1159 return true;
duke@1 1160 }
duke@1 1161 }
duke@1 1162
duke@1 1163 /** Is exc handled by given exception list?
duke@1 1164 */
duke@1 1165 boolean isHandled(Type exc, List<Type> handled) {
duke@1 1166 return isUnchecked(exc) || subset(exc, handled);
duke@1 1167 }
duke@1 1168
duke@1 1169 /** Return all exceptions in thrown list that are not in handled list.
duke@1 1170 * @param thrown The list of thrown exceptions.
duke@1 1171 * @param handled The list of handled exceptions.
duke@1 1172 */
mcimadamore@362 1173 List<Type> unhandled(List<Type> thrown, List<Type> handled) {
duke@1 1174 List<Type> unhandled = List.nil();
duke@1 1175 for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
duke@1 1176 if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
duke@1 1177 return unhandled;
duke@1 1178 }
duke@1 1179
duke@1 1180 /* *************************************************************************
duke@1 1181 * Overriding/Implementation checking
duke@1 1182 **************************************************************************/
duke@1 1183
duke@1 1184 /** The level of access protection given by a flag set,
duke@1 1185 * where PRIVATE is highest and PUBLIC is lowest.
duke@1 1186 */
duke@1 1187 static int protection(long flags) {
duke@1 1188 switch ((short)(flags & AccessFlags)) {
duke@1 1189 case PRIVATE: return 3;
duke@1 1190 case PROTECTED: return 1;
duke@1 1191 default:
duke@1 1192 case PUBLIC: return 0;
duke@1 1193 case 0: return 2;
duke@1 1194 }
duke@1 1195 }
duke@1 1196
duke@1 1197 /** A customized "cannot override" error message.
duke@1 1198 * @param m The overriding method.
duke@1 1199 * @param other The overridden method.
duke@1 1200 * @return An internationalized string.
duke@1 1201 */
mcimadamore@89 1202 Object cannotOverride(MethodSymbol m, MethodSymbol other) {
duke@1 1203 String key;
duke@1 1204 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1205 key = "cant.override";
duke@1 1206 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1207 key = "cant.implement";
duke@1 1208 else
duke@1 1209 key = "clashes.with";
mcimadamore@89 1210 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1211 }
duke@1 1212
duke@1 1213 /** A customized "override" warning message.
duke@1 1214 * @param m The overriding method.
duke@1 1215 * @param other The overridden method.
duke@1 1216 * @return An internationalized string.
duke@1 1217 */
mcimadamore@89 1218 Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1219 String key;
duke@1 1220 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1221 key = "unchecked.override";
duke@1 1222 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1223 key = "unchecked.implement";
duke@1 1224 else
duke@1 1225 key = "unchecked.clash.with";
mcimadamore@89 1226 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1227 }
duke@1 1228
duke@1 1229 /** A customized "override" warning message.
duke@1 1230 * @param m The overriding method.
duke@1 1231 * @param other The overridden method.
duke@1 1232 * @return An internationalized string.
duke@1 1233 */
mcimadamore@89 1234 Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1235 String key;
duke@1 1236 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1237 key = "varargs.override";
duke@1 1238 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1239 key = "varargs.implement";
duke@1 1240 else
duke@1 1241 key = "varargs.clash.with";
mcimadamore@89 1242 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1243 }
duke@1 1244
duke@1 1245 /** Check that this method conforms with overridden method 'other'.
duke@1 1246 * where `origin' is the class where checking started.
duke@1 1247 * Complications:
duke@1 1248 * (1) Do not check overriding of synthetic methods
duke@1 1249 * (reason: they might be final).
duke@1 1250 * todo: check whether this is still necessary.
duke@1 1251 * (2) Admit the case where an interface proxy throws fewer exceptions
duke@1 1252 * than the method it implements. Augment the proxy methods with the
duke@1 1253 * undeclared exceptions in this case.
duke@1 1254 * (3) When generics are enabled, admit the case where an interface proxy
duke@1 1255 * has a result type
duke@1 1256 * extended by the result type of the method it implements.
duke@1 1257 * Change the proxies result type to the smaller type in this case.
duke@1 1258 *
duke@1 1259 * @param tree The tree from which positions
duke@1 1260 * are extracted for errors.
duke@1 1261 * @param m The overriding method.
duke@1 1262 * @param other The overridden method.
duke@1 1263 * @param origin The class of which the overriding method
duke@1 1264 * is a member.
duke@1 1265 */
duke@1 1266 void checkOverride(JCTree tree,
duke@1 1267 MethodSymbol m,
duke@1 1268 MethodSymbol other,
duke@1 1269 ClassSymbol origin) {
duke@1 1270 // Don't check overriding of synthetic methods or by bridge methods.
duke@1 1271 if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
duke@1 1272 return;
duke@1 1273 }
duke@1 1274
duke@1 1275 // Error if static method overrides instance method (JLS 8.4.6.2).
duke@1 1276 if ((m.flags() & STATIC) != 0 &&
duke@1 1277 (other.flags() & STATIC) == 0) {
duke@1 1278 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
duke@1 1279 cannotOverride(m, other));
duke@1 1280 return;
duke@1 1281 }
duke@1 1282
duke@1 1283 // Error if instance method overrides static or final
duke@1 1284 // method (JLS 8.4.6.1).
duke@1 1285 if ((other.flags() & FINAL) != 0 ||
duke@1 1286 (m.flags() & STATIC) == 0 &&
duke@1 1287 (other.flags() & STATIC) != 0) {
duke@1 1288 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
duke@1 1289 cannotOverride(m, other),
mcimadamore@80 1290 asFlagSet(other.flags() & (FINAL | STATIC)));
duke@1 1291 return;
duke@1 1292 }
duke@1 1293
duke@1 1294 if ((m.owner.flags() & ANNOTATION) != 0) {
duke@1 1295 // handled in validateAnnotationMethod
duke@1 1296 return;
duke@1 1297 }
duke@1 1298
duke@1 1299 // Error if overriding method has weaker access (JLS 8.4.6.3).
duke@1 1300 if ((origin.flags() & INTERFACE) == 0 &&
duke@1 1301 protection(m.flags()) > protection(other.flags())) {
duke@1 1302 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
duke@1 1303 cannotOverride(m, other),
mcimadamore@80 1304 other.flags() == 0 ?
mcimadamore@80 1305 Flag.PACKAGE :
mcimadamore@80 1306 asFlagSet(other.flags() & AccessFlags));
duke@1 1307 return;
duke@1 1308 }
duke@1 1309
duke@1 1310 Type mt = types.memberType(origin.type, m);
duke@1 1311 Type ot = types.memberType(origin.type, other);
duke@1 1312 // Error if overriding result type is different
duke@1 1313 // (or, in the case of generics mode, not a subtype) of
duke@1 1314 // overridden result type. We have to rename any type parameters
duke@1 1315 // before comparing types.
duke@1 1316 List<Type> mtvars = mt.getTypeArguments();
duke@1 1317 List<Type> otvars = ot.getTypeArguments();
duke@1 1318 Type mtres = mt.getReturnType();
duke@1 1319 Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
duke@1 1320
duke@1 1321 overrideWarner.warned = false;
duke@1 1322 boolean resultTypesOK =
tbell@202 1323 types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
duke@1 1324 if (!resultTypesOK) {
jjg@398 1325 if (!allowCovariantReturns &&
duke@1 1326 m.owner != origin &&
duke@1 1327 m.owner.isSubClass(other.owner, types)) {
duke@1 1328 // allow limited interoperability with covariant returns
duke@1 1329 } else {
mcimadamore@362 1330 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1331 "override.incompatible.ret",
mcimadamore@362 1332 cannotOverride(m, other),
duke@1 1333 mtres, otres);
duke@1 1334 return;
duke@1 1335 }
duke@1 1336 } else if (overrideWarner.warned) {
duke@1 1337 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1338 "override.unchecked.ret",
mcimadamore@362 1339 uncheckedOverrides(m, other),
mcimadamore@362 1340 mtres, otres);
duke@1 1341 }
duke@1 1342
duke@1 1343 // Error if overriding method throws an exception not reported
duke@1 1344 // by overridden method.
duke@1 1345 List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
mcimadamore@362 1346 List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
mcimadamore@362 1347 List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
mcimadamore@362 1348 if (unhandledErased.nonEmpty()) {
duke@1 1349 log.error(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1350 "override.meth.doesnt.throw",
duke@1 1351 cannotOverride(m, other),
mcimadamore@362 1352 unhandledUnerased.head);
mcimadamore@362 1353 return;
mcimadamore@362 1354 }
mcimadamore@362 1355 else if (unhandledUnerased.nonEmpty()) {
mcimadamore@362 1356 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1357 "override.unchecked.thrown",
mcimadamore@362 1358 cannotOverride(m, other),
mcimadamore@362 1359 unhandledUnerased.head);
duke@1 1360 return;
duke@1 1361 }
duke@1 1362
duke@1 1363 // Optional warning if varargs don't agree
duke@1 1364 if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
duke@1 1365 && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
duke@1 1366 log.warning(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1367 ((m.flags() & Flags.VARARGS) != 0)
duke@1 1368 ? "override.varargs.missing"
duke@1 1369 : "override.varargs.extra",
duke@1 1370 varargsOverrides(m, other));
duke@1 1371 }
duke@1 1372
duke@1 1373 // Warn if instance method overrides bridge method (compiler spec ??)
duke@1 1374 if ((other.flags() & BRIDGE) != 0) {
duke@1 1375 log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
duke@1 1376 uncheckedOverrides(m, other));
duke@1 1377 }
duke@1 1378
duke@1 1379 // Warn if a deprecated method overridden by a non-deprecated one.
duke@1 1380 if ((other.flags() & DEPRECATED) != 0
duke@1 1381 && (m.flags() & DEPRECATED) == 0
duke@1 1382 && m.outermostClass() != other.outermostClass()
duke@1 1383 && !isDeprecatedOverrideIgnorable(other, origin)) {
duke@1 1384 warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
duke@1 1385 }
duke@1 1386 }
duke@1 1387 // where
duke@1 1388 private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
duke@1 1389 // If the method, m, is defined in an interface, then ignore the issue if the method
duke@1 1390 // is only inherited via a supertype and also implemented in the supertype,
duke@1 1391 // because in that case, we will rediscover the issue when examining the method
duke@1 1392 // in the supertype.
duke@1 1393 // If the method, m, is not defined in an interface, then the only time we need to
duke@1 1394 // address the issue is when the method is the supertype implemementation: any other
duke@1 1395 // case, we will have dealt with when examining the supertype classes
duke@1 1396 ClassSymbol mc = m.enclClass();
duke@1 1397 Type st = types.supertype(origin.type);
duke@1 1398 if (st.tag != CLASS)
duke@1 1399 return true;
duke@1 1400 MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
duke@1 1401
duke@1 1402 if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
duke@1 1403 List<Type> intfs = types.interfaces(origin.type);
duke@1 1404 return (intfs.contains(mc.type) ? false : (stimpl != null));
duke@1 1405 }
duke@1 1406 else
duke@1 1407 return (stimpl != m);
duke@1 1408 }
duke@1 1409
duke@1 1410
duke@1 1411 // used to check if there were any unchecked conversions
duke@1 1412 Warner overrideWarner = new Warner();
duke@1 1413
duke@1 1414 /** Check that a class does not inherit two concrete methods
duke@1 1415 * with the same signature.
duke@1 1416 * @param pos Position to be used for error reporting.
duke@1 1417 * @param site The class type to be checked.
duke@1 1418 */
duke@1 1419 public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
duke@1 1420 Type sup = types.supertype(site);
duke@1 1421 if (sup.tag != CLASS) return;
duke@1 1422
duke@1 1423 for (Type t1 = sup;
duke@1 1424 t1.tsym.type.isParameterized();
duke@1 1425 t1 = types.supertype(t1)) {
duke@1 1426 for (Scope.Entry e1 = t1.tsym.members().elems;
duke@1 1427 e1 != null;
duke@1 1428 e1 = e1.sibling) {
duke@1 1429 Symbol s1 = e1.sym;
duke@1 1430 if (s1.kind != MTH ||
duke@1 1431 (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1432 !s1.isInheritedIn(site.tsym, types) ||
duke@1 1433 ((MethodSymbol)s1).implementation(site.tsym,
duke@1 1434 types,
duke@1 1435 true) != s1)
duke@1 1436 continue;
duke@1 1437 Type st1 = types.memberType(t1, s1);
duke@1 1438 int s1ArgsLength = st1.getParameterTypes().length();
duke@1 1439 if (st1 == s1.type) continue;
duke@1 1440
duke@1 1441 for (Type t2 = sup;
duke@1 1442 t2.tag == CLASS;
duke@1 1443 t2 = types.supertype(t2)) {
mcimadamore@24 1444 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
duke@1 1445 e2.scope != null;
duke@1 1446 e2 = e2.next()) {
duke@1 1447 Symbol s2 = e2.sym;
duke@1 1448 if (s2 == s1 ||
duke@1 1449 s2.kind != MTH ||
duke@1 1450 (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1451 s2.type.getParameterTypes().length() != s1ArgsLength ||
duke@1 1452 !s2.isInheritedIn(site.tsym, types) ||
duke@1 1453 ((MethodSymbol)s2).implementation(site.tsym,
duke@1 1454 types,
duke@1 1455 true) != s2)
duke@1 1456 continue;
duke@1 1457 Type st2 = types.memberType(t2, s2);
duke@1 1458 if (types.overrideEquivalent(st1, st2))
duke@1 1459 log.error(pos, "concrete.inheritance.conflict",
duke@1 1460 s1, t1, s2, t2, sup);
duke@1 1461 }
duke@1 1462 }
duke@1 1463 }
duke@1 1464 }
duke@1 1465 }
duke@1 1466
duke@1 1467 /** Check that classes (or interfaces) do not each define an abstract
duke@1 1468 * method with same name and arguments but incompatible return types.
duke@1 1469 * @param pos Position to be used for error reporting.
duke@1 1470 * @param t1 The first argument type.
duke@1 1471 * @param t2 The second argument type.
duke@1 1472 */
duke@1 1473 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1474 Type t1,
duke@1 1475 Type t2) {
duke@1 1476 return checkCompatibleAbstracts(pos, t1, t2,
duke@1 1477 types.makeCompoundType(t1, t2));
duke@1 1478 }
duke@1 1479
duke@1 1480 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1481 Type t1,
duke@1 1482 Type t2,
duke@1 1483 Type site) {
duke@1 1484 Symbol sym = firstIncompatibility(t1, t2, site);
duke@1 1485 if (sym != null) {
duke@1 1486 log.error(pos, "types.incompatible.diff.ret",
duke@1 1487 t1, t2, sym.name +
duke@1 1488 "(" + types.memberType(t2, sym).getParameterTypes() + ")");
duke@1 1489 return false;
duke@1 1490 }
duke@1 1491 return true;
duke@1 1492 }
duke@1 1493
duke@1 1494 /** Return the first method which is defined with same args
duke@1 1495 * but different return types in two given interfaces, or null if none
duke@1 1496 * exists.
duke@1 1497 * @param t1 The first type.
duke@1 1498 * @param t2 The second type.
duke@1 1499 * @param site The most derived type.
duke@1 1500 * @returns symbol from t2 that conflicts with one in t1.
duke@1 1501 */
duke@1 1502 private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
duke@1 1503 Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
duke@1 1504 closure(t1, interfaces1);
duke@1 1505 Map<TypeSymbol,Type> interfaces2;
duke@1 1506 if (t1 == t2)
duke@1 1507 interfaces2 = interfaces1;
duke@1 1508 else
duke@1 1509 closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
duke@1 1510
duke@1 1511 for (Type t3 : interfaces1.values()) {
duke@1 1512 for (Type t4 : interfaces2.values()) {
duke@1 1513 Symbol s = firstDirectIncompatibility(t3, t4, site);
duke@1 1514 if (s != null) return s;
duke@1 1515 }
duke@1 1516 }
duke@1 1517 return null;
duke@1 1518 }
duke@1 1519
duke@1 1520 /** Compute all the supertypes of t, indexed by type symbol. */
duke@1 1521 private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
duke@1 1522 if (t.tag != CLASS) return;
duke@1 1523 if (typeMap.put(t.tsym, t) == null) {
duke@1 1524 closure(types.supertype(t), typeMap);
duke@1 1525 for (Type i : types.interfaces(t))
duke@1 1526 closure(i, typeMap);
duke@1 1527 }
duke@1 1528 }
duke@1 1529
duke@1 1530 /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
duke@1 1531 private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
duke@1 1532 if (t.tag != CLASS) return;
duke@1 1533 if (typesSkip.get(t.tsym) != null) return;
duke@1 1534 if (typeMap.put(t.tsym, t) == null) {
duke@1 1535 closure(types.supertype(t), typesSkip, typeMap);
duke@1 1536 for (Type i : types.interfaces(t))
duke@1 1537 closure(i, typesSkip, typeMap);
duke@1 1538 }
duke@1 1539 }
duke@1 1540
duke@1 1541 /** Return the first method in t2 that conflicts with a method from t1. */
duke@1 1542 private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
duke@1 1543 for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
duke@1 1544 Symbol s1 = e1.sym;
duke@1 1545 Type st1 = null;
duke@1 1546 if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
duke@1 1547 Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
duke@1 1548 if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
duke@1 1549 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
duke@1 1550 Symbol s2 = e2.sym;
duke@1 1551 if (s1 == s2) continue;
duke@1 1552 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
duke@1 1553 if (st1 == null) st1 = types.memberType(t1, s1);
duke@1 1554 Type st2 = types.memberType(t2, s2);
duke@1 1555 if (types.overrideEquivalent(st1, st2)) {
duke@1 1556 List<Type> tvars1 = st1.getTypeArguments();
duke@1 1557 List<Type> tvars2 = st2.getTypeArguments();
duke@1 1558 Type rt1 = st1.getReturnType();
duke@1 1559 Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
duke@1 1560 boolean compat =
duke@1 1561 types.isSameType(rt1, rt2) ||
duke@1 1562 rt1.tag >= CLASS && rt2.tag >= CLASS &&
duke@1 1563 (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
mcimadamore@59 1564 types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
mcimadamore@59 1565 checkCommonOverriderIn(s1,s2,site);
duke@1 1566 if (!compat) return s2;
duke@1 1567 }
duke@1 1568 }
duke@1 1569 }
duke@1 1570 return null;
duke@1 1571 }
mcimadamore@59 1572 //WHERE
mcimadamore@59 1573 boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
mcimadamore@59 1574 Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
mcimadamore@59 1575 Type st1 = types.memberType(site, s1);
mcimadamore@59 1576 Type st2 = types.memberType(site, s2);
mcimadamore@59 1577 closure(site, supertypes);
mcimadamore@59 1578 for (Type t : supertypes.values()) {
mcimadamore@59 1579 for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
mcimadamore@59 1580 Symbol s3 = e.sym;
mcimadamore@59 1581 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
mcimadamore@59 1582 Type st3 = types.memberType(site,s3);
mcimadamore@59 1583 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
mcimadamore@59 1584 if (s3.owner == site.tsym) {
mcimadamore@59 1585 return true;
mcimadamore@59 1586 }
mcimadamore@59 1587 List<Type> tvars1 = st1.getTypeArguments();
mcimadamore@59 1588 List<Type> tvars2 = st2.getTypeArguments();
mcimadamore@59 1589 List<Type> tvars3 = st3.getTypeArguments();
mcimadamore@59 1590 Type rt1 = st1.getReturnType();
mcimadamore@59 1591 Type rt2 = st2.getReturnType();
mcimadamore@59 1592 Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
mcimadamore@59 1593 Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
mcimadamore@59 1594 boolean compat =
mcimadamore@59 1595 rt13.tag >= CLASS && rt23.tag >= CLASS &&
mcimadamore@59 1596 (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
mcimadamore@59 1597 types.covariantReturnType(rt23, rt2, Warner.noWarnings));
mcimadamore@59 1598 if (compat)
mcimadamore@59 1599 return true;
mcimadamore@59 1600 }
mcimadamore@59 1601 }
mcimadamore@59 1602 }
mcimadamore@59 1603 return false;
mcimadamore@59 1604 }
duke@1 1605
duke@1 1606 /** Check that a given method conforms with any method it overrides.
duke@1 1607 * @param tree The tree from which positions are extracted
duke@1 1608 * for errors.
duke@1 1609 * @param m The overriding method.
duke@1 1610 */
duke@1 1611 void checkOverride(JCTree tree, MethodSymbol m) {
duke@1 1612 ClassSymbol origin = (ClassSymbol)m.owner;
duke@1 1613 if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
duke@1 1614 if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
duke@1 1615 log.error(tree.pos(), "enum.no.finalize");
duke@1 1616 return;
duke@1 1617 }
duke@1 1618 for (Type t = types.supertype(origin.type); t.tag == CLASS;
duke@1 1619 t = types.supertype(t)) {
duke@1 1620 TypeSymbol c = t.tsym;
duke@1 1621 Scope.Entry e = c.members().lookup(m.name);
duke@1 1622 while (e.scope != null) {
duke@1 1623 if (m.overrides(e.sym, origin, types, false))
duke@1 1624 checkOverride(tree, m, (MethodSymbol)e.sym, origin);
mcimadamore@252 1625 else if (e.sym.kind == MTH &&
mcimadamore@252 1626 e.sym.isInheritedIn(origin, types) &&
mcimadamore@252 1627 (e.sym.flags() & SYNTHETIC) == 0 &&
mcimadamore@252 1628 !m.isConstructor()) {
mcimadamore@24 1629 Type er1 = m.erasure(types);
mcimadamore@24 1630 Type er2 = e.sym.erasure(types);
mcimadamore@252 1631 if (types.isSameTypes(er1.getParameterTypes(),
mcimadamore@252 1632 er2.getParameterTypes())) {
mcimadamore@24 1633 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@24 1634 "name.clash.same.erasure.no.override",
mcimadamore@24 1635 m, m.location(),
mcimadamore@24 1636 e.sym, e.sym.location());
mcimadamore@24 1637 }
mcimadamore@24 1638 }
duke@1 1639 e = e.next();
duke@1 1640 }
duke@1 1641 }
duke@1 1642 }
duke@1 1643
duke@1 1644 /** Check that all abstract members of given class have definitions.
duke@1 1645 * @param pos Position to be used for error reporting.
duke@1 1646 * @param c The class.
duke@1 1647 */
duke@1 1648 void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1649 try {
duke@1 1650 MethodSymbol undef = firstUndef(c, c);
duke@1 1651 if (undef != null) {
duke@1 1652 if ((c.flags() & ENUM) != 0 &&
duke@1 1653 types.supertype(c.type).tsym == syms.enumSym &&
duke@1 1654 (c.flags() & FINAL) == 0) {
duke@1 1655 // add the ABSTRACT flag to an enum
duke@1 1656 c.flags_field |= ABSTRACT;
duke@1 1657 } else {
duke@1 1658 MethodSymbol undef1 =
duke@1 1659 new MethodSymbol(undef.flags(), undef.name,
duke@1 1660 types.memberType(c.type, undef), undef.owner);
duke@1 1661 log.error(pos, "does.not.override.abstract",
duke@1 1662 c, undef1, undef1.location());
duke@1 1663 }
duke@1 1664 }
duke@1 1665 } catch (CompletionFailure ex) {
duke@1 1666 completionError(pos, ex);
duke@1 1667 }
duke@1 1668 }
duke@1 1669 //where
duke@1 1670 /** Return first abstract member of class `c' that is not defined
duke@1 1671 * in `impl', null if there is none.
duke@1 1672 */
duke@1 1673 private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
duke@1 1674 MethodSymbol undef = null;
duke@1 1675 // Do not bother to search in classes that are not abstract,
duke@1 1676 // since they cannot have abstract members.
duke@1 1677 if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1678 Scope s = c.members();
duke@1 1679 for (Scope.Entry e = s.elems;
duke@1 1680 undef == null && e != null;
duke@1 1681 e = e.sibling) {
duke@1 1682 if (e.sym.kind == MTH &&
duke@1 1683 (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
duke@1 1684 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1685 MethodSymbol implmeth = absmeth.implementation(impl, types, true);
duke@1 1686 if (implmeth == null || implmeth == absmeth)
duke@1 1687 undef = absmeth;
duke@1 1688 }
duke@1 1689 }
duke@1 1690 if (undef == null) {
duke@1 1691 Type st = types.supertype(c.type);
duke@1 1692 if (st.tag == CLASS)
duke@1 1693 undef = firstUndef(impl, (ClassSymbol)st.tsym);
duke@1 1694 }
duke@1 1695 for (List<Type> l = types.interfaces(c.type);
duke@1 1696 undef == null && l.nonEmpty();
duke@1 1697 l = l.tail) {
duke@1 1698 undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
duke@1 1699 }
duke@1 1700 }
duke@1 1701 return undef;
duke@1 1702 }
duke@1 1703
duke@1 1704 /** Check for cyclic references. Issue an error if the
duke@1 1705 * symbol of the type referred to has a LOCKED flag set.
duke@1 1706 *
duke@1 1707 * @param pos Position to be used for error reporting.
duke@1 1708 * @param t The type referred to.
duke@1 1709 */
duke@1 1710 void checkNonCyclic(DiagnosticPosition pos, Type t) {
duke@1 1711 checkNonCyclicInternal(pos, t);
duke@1 1712 }
duke@1 1713
duke@1 1714
duke@1 1715 void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
mcimadamore@236 1716 checkNonCyclic1(pos, t, List.<TypeVar>nil());
duke@1 1717 }
duke@1 1718
mcimadamore@236 1719 private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
duke@1 1720 final TypeVar tv;
mcimadamore@42 1721 if (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
mcimadamore@42 1722 return;
duke@1 1723 if (seen.contains(t)) {
duke@1 1724 tv = (TypeVar)t;
jjg@110 1725 tv.bound = types.createErrorType(t);
duke@1 1726 log.error(pos, "cyclic.inheritance", t);
duke@1 1727 } else if (t.tag == TYPEVAR) {
duke@1 1728 tv = (TypeVar)t;
mcimadamore@236 1729 seen = seen.prepend(tv);
duke@1 1730 for (Type b : types.getBounds(tv))
duke@1 1731 checkNonCyclic1(pos, b, seen);
duke@1 1732 }
duke@1 1733 }
duke@1 1734
duke@1 1735 /** Check for cyclic references. Issue an error if the
duke@1 1736 * symbol of the type referred to has a LOCKED flag set.
duke@1 1737 *
duke@1 1738 * @param pos Position to be used for error reporting.
duke@1 1739 * @param t The type referred to.
duke@1 1740 * @returns True if the check completed on all attributed classes
duke@1 1741 */
duke@1 1742 private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
duke@1 1743 boolean complete = true; // was the check complete?
duke@1 1744 //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
duke@1 1745 Symbol c = t.tsym;
duke@1 1746 if ((c.flags_field & ACYCLIC) != 0) return true;
duke@1 1747
duke@1 1748 if ((c.flags_field & LOCKED) != 0) {
duke@1 1749 noteCyclic(pos, (ClassSymbol)c);
duke@1 1750 } else if (!c.type.isErroneous()) {
duke@1 1751 try {
duke@1 1752 c.flags_field |= LOCKED;
duke@1 1753 if (c.type.tag == CLASS) {
duke@1 1754 ClassType clazz = (ClassType)c.type;
duke@1 1755 if (clazz.interfaces_field != null)
duke@1 1756 for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
duke@1 1757 complete &= checkNonCyclicInternal(pos, l.head);
duke@1 1758 if (clazz.supertype_field != null) {
duke@1 1759 Type st = clazz.supertype_field;
duke@1 1760 if (st != null && st.tag == CLASS)
duke@1 1761 complete &= checkNonCyclicInternal(pos, st);
duke@1 1762 }
duke@1 1763 if (c.owner.kind == TYP)
duke@1 1764 complete &= checkNonCyclicInternal(pos, c.owner.type);
duke@1 1765 }
duke@1 1766 } finally {
duke@1 1767 c.flags_field &= ~LOCKED;
duke@1 1768 }
duke@1 1769 }
duke@1 1770 if (complete)
duke@1 1771 complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
duke@1 1772 if (complete) c.flags_field |= ACYCLIC;
duke@1 1773 return complete;
duke@1 1774 }
duke@1 1775
duke@1 1776 /** Note that we found an inheritance cycle. */
duke@1 1777 private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1778 log.error(pos, "cyclic.inheritance", c);
duke@1 1779 for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
jjg@110 1780 l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
duke@1 1781 Type st = types.supertype(c.type);
duke@1 1782 if (st.tag == CLASS)
jjg@110 1783 ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
jjg@110 1784 c.type = types.createErrorType(c, c.type);
duke@1 1785 c.flags_field |= ACYCLIC;
duke@1 1786 }
duke@1 1787
duke@1 1788 /** Check that all methods which implement some
duke@1 1789 * method conform to the method they implement.
duke@1 1790 * @param tree The class definition whose members are checked.
duke@1 1791 */
duke@1 1792 void checkImplementations(JCClassDecl tree) {
duke@1 1793 checkImplementations(tree, tree.sym);
duke@1 1794 }
duke@1 1795 //where
duke@1 1796 /** Check that all methods which implement some
duke@1 1797 * method in `ic' conform to the method they implement.
duke@1 1798 */
duke@1 1799 void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
duke@1 1800 ClassSymbol origin = tree.sym;
duke@1 1801 for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
duke@1 1802 ClassSymbol lc = (ClassSymbol)l.head.tsym;
duke@1 1803 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
duke@1 1804 for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
duke@1 1805 if (e.sym.kind == MTH &&
duke@1 1806 (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
duke@1 1807 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1808 MethodSymbol implmeth = absmeth.implementation(origin, types, false);
duke@1 1809 if (implmeth != null && implmeth != absmeth &&
duke@1 1810 (implmeth.owner.flags() & INTERFACE) ==
duke@1 1811 (origin.flags() & INTERFACE)) {
duke@1 1812 // don't check if implmeth is in a class, yet
duke@1 1813 // origin is an interface. This case arises only
duke@1 1814 // if implmeth is declared in Object. The reason is
duke@1 1815 // that interfaces really don't inherit from
duke@1 1816 // Object it's just that the compiler represents
duke@1 1817 // things that way.
duke@1 1818 checkOverride(tree, implmeth, absmeth, origin);
duke@1 1819 }
duke@1 1820 }
duke@1 1821 }
duke@1 1822 }
duke@1 1823 }
duke@1 1824 }
duke@1 1825
duke@1 1826 /** Check that all abstract methods implemented by a class are
duke@1 1827 * mutually compatible.
duke@1 1828 * @param pos Position to be used for error reporting.
duke@1 1829 * @param c The class whose interfaces are checked.
duke@1 1830 */
duke@1 1831 void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
duke@1 1832 List<Type> supertypes = types.interfaces(c);
duke@1 1833 Type supertype = types.supertype(c);
duke@1 1834 if (supertype.tag == CLASS &&
duke@1 1835 (supertype.tsym.flags() & ABSTRACT) != 0)
duke@1 1836 supertypes = supertypes.prepend(supertype);
duke@1 1837 for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
duke@1 1838 if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
duke@1 1839 !checkCompatibleAbstracts(pos, l.head, l.head, c))
duke@1 1840 return;
duke@1 1841 for (List<Type> m = supertypes; m != l; m = m.tail)
duke@1 1842 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
duke@1 1843 return;
duke@1 1844 }
duke@1 1845 checkCompatibleConcretes(pos, c);
duke@1 1846 }
duke@1 1847
mcimadamore@359 1848 void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
mcimadamore@359 1849 for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
mcimadamore@359 1850 for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
mcimadamore@359 1851 // VM allows methods and variables with differing types
mcimadamore@359 1852 if (sym.kind == e.sym.kind &&
mcimadamore@359 1853 types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
mcimadamore@359 1854 sym != e.sym &&
mcimadamore@359 1855 (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
mcimadamore@359 1856 (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
mcimadamore@359 1857 syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
mcimadamore@359 1858 return;
mcimadamore@359 1859 }
mcimadamore@359 1860 }
mcimadamore@359 1861 }
mcimadamore@359 1862 }
mcimadamore@359 1863
mcimadamore@359 1864 /** Report a conflict between a user symbol and a synthetic symbol.
mcimadamore@359 1865 */
mcimadamore@359 1866 private void syntheticError(DiagnosticPosition pos, Symbol sym) {
mcimadamore@359 1867 if (!sym.type.isErroneous()) {
mcimadamore@359 1868 if (warnOnSyntheticConflicts) {
mcimadamore@359 1869 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
mcimadamore@359 1870 }
mcimadamore@359 1871 else {
mcimadamore@359 1872 log.error(pos, "synthetic.name.conflict", sym, sym.location());
mcimadamore@359 1873 }
mcimadamore@359 1874 }
mcimadamore@359 1875 }
mcimadamore@359 1876
duke@1 1877 /** Check that class c does not implement directly or indirectly
duke@1 1878 * the same parameterized interface with two different argument lists.
duke@1 1879 * @param pos Position to be used for error reporting.
duke@1 1880 * @param type The type whose interfaces are checked.
duke@1 1881 */
duke@1 1882 void checkClassBounds(DiagnosticPosition pos, Type type) {
duke@1 1883 checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
duke@1 1884 }
duke@1 1885 //where
duke@1 1886 /** Enter all interfaces of type `type' into the hash table `seensofar'
duke@1 1887 * with their class symbol as key and their type as value. Make
duke@1 1888 * sure no class is entered with two different types.
duke@1 1889 */
duke@1 1890 void checkClassBounds(DiagnosticPosition pos,
duke@1 1891 Map<TypeSymbol,Type> seensofar,
duke@1 1892 Type type) {
duke@1 1893 if (type.isErroneous()) return;
duke@1 1894 for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
duke@1 1895 Type it = l.head;
duke@1 1896 Type oldit = seensofar.put(it.tsym, it);
duke@1 1897 if (oldit != null) {
duke@1 1898 List<Type> oldparams = oldit.allparams();
duke@1 1899 List<Type> newparams = it.allparams();
duke@1 1900 if (!types.containsTypeEquivalent(oldparams, newparams))
duke@1 1901 log.error(pos, "cant.inherit.diff.arg",
duke@1 1902 it.tsym, Type.toString(oldparams),
duke@1 1903 Type.toString(newparams));
duke@1 1904 }
duke@1 1905 checkClassBounds(pos, seensofar, it);
duke@1 1906 }
duke@1 1907 Type st = types.supertype(type);
duke@1 1908 if (st != null) checkClassBounds(pos, seensofar, st);
duke@1 1909 }
duke@1 1910
duke@1 1911 /** Enter interface into into set.
duke@1 1912 * If it existed already, issue a "repeated interface" error.
duke@1 1913 */
duke@1 1914 void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
duke@1 1915 if (its.contains(it))
duke@1 1916 log.error(pos, "repeated.interface");
duke@1 1917 else {
duke@1 1918 its.add(it);
duke@1 1919 }
duke@1 1920 }
duke@1 1921
duke@1 1922 /* *************************************************************************
duke@1 1923 * Check annotations
duke@1 1924 **************************************************************************/
duke@1 1925
duke@1 1926 /** Annotation types are restricted to primitives, String, an
duke@1 1927 * enum, an annotation, Class, Class<?>, Class<? extends
duke@1 1928 * Anything>, arrays of the preceding.
duke@1 1929 */
duke@1 1930 void validateAnnotationType(JCTree restype) {
duke@1 1931 // restype may be null if an error occurred, so don't bother validating it
duke@1 1932 if (restype != null) {
duke@1 1933 validateAnnotationType(restype.pos(), restype.type);
duke@1 1934 }
duke@1 1935 }
duke@1 1936
duke@1 1937 void validateAnnotationType(DiagnosticPosition pos, Type type) {
duke@1 1938 if (type.isPrimitive()) return;
duke@1 1939 if (types.isSameType(type, syms.stringType)) return;
duke@1 1940 if ((type.tsym.flags() & Flags.ENUM) != 0) return;
duke@1 1941 if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
duke@1 1942 if (types.lowerBound(type).tsym == syms.classType.tsym) return;
duke@1 1943 if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
duke@1 1944 validateAnnotationType(pos, types.elemtype(type));
duke@1 1945 return;
duke@1 1946 }
duke@1 1947 log.error(pos, "invalid.annotation.member.type");
duke@1 1948 }
duke@1 1949
duke@1 1950 /**
duke@1 1951 * "It is also a compile-time error if any method declared in an
duke@1 1952 * annotation type has a signature that is override-equivalent to
duke@1 1953 * that of any public or protected method declared in class Object
duke@1 1954 * or in the interface annotation.Annotation."
duke@1 1955 *
duke@1 1956 * @jls3 9.6 Annotation Types
duke@1 1957 */
duke@1 1958 void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
duke@1 1959 for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
duke@1 1960 Scope s = sup.tsym.members();
duke@1 1961 for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1962 if (e.sym.kind == MTH &&
duke@1 1963 (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
duke@1 1964 types.overrideEquivalent(m.type, e.sym.type))
duke@1 1965 log.error(pos, "intf.annotation.member.clash", e.sym, sup);
duke@1 1966 }
duke@1 1967 }
duke@1 1968 }
duke@1 1969
duke@1 1970 /** Check the annotations of a symbol.
duke@1 1971 */
duke@1 1972 public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
duke@1 1973 if (skipAnnotations) return;
duke@1 1974 for (JCAnnotation a : annotations)
duke@1 1975 validateAnnotation(a, s);
duke@1 1976 }
duke@1 1977
jjg@308 1978 /** Check the type annotations
jjg@308 1979 */
jjg@308 1980 public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
jjg@308 1981 if (skipAnnotations) return;
jjg@308 1982 for (JCTypeAnnotation a : annotations)
jjg@308 1983 validateTypeAnnotation(a, isTypeParameter);
jjg@308 1984 }
jjg@308 1985
duke@1 1986 /** Check an annotation of a symbol.
duke@1 1987 */
duke@1 1988 public void validateAnnotation(JCAnnotation a, Symbol s) {
duke@1 1989 validateAnnotation(a);
duke@1 1990
duke@1 1991 if (!annotationApplicable(a, s))
duke@1 1992 log.error(a.pos(), "annotation.type.not.applicable");
duke@1 1993
duke@1 1994 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
duke@1 1995 if (!isOverrider(s))
duke@1 1996 log.error(a.pos(), "method.does.not.override.superclass");
duke@1 1997 }
duke@1 1998 }
duke@1 1999
jjg@308 2000 public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
jjg@308 2001 if (a.type == null)
jjg@308 2002 throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
jjg@308 2003 validateAnnotation(a);
jjg@308 2004
jjg@308 2005 if (!isTypeAnnotation(a, isTypeParameter))
jjg@308 2006 log.error(a.pos(), "annotation.type.not.applicable");
jjg@308 2007 }
jjg@308 2008
duke@1 2009 /** Is s a method symbol that overrides a method in a superclass? */
duke@1 2010 boolean isOverrider(Symbol s) {
duke@1 2011 if (s.kind != MTH || s.isStatic())
duke@1 2012 return false;
duke@1 2013 MethodSymbol m = (MethodSymbol)s;
duke@1 2014 TypeSymbol owner = (TypeSymbol)m.owner;
duke@1 2015 for (Type sup : types.closure(owner.type)) {
duke@1 2016 if (sup == owner.type)
duke@1 2017 continue; // skip "this"
duke@1 2018 Scope scope = sup.tsym.members();
duke@1 2019 for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 2020 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
duke@1 2021 return true;
duke@1 2022 }
duke@1 2023 }
duke@1 2024 return false;
duke@1 2025 }
duke@1 2026
jjg@308 2027 /** Is the annotation applicable to type annotations */
jjg@308 2028 boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
jjg@308 2029 Attribute.Compound atTarget =
jjg@308 2030 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
jjg@308 2031 if (atTarget == null) return true;
jjg@308 2032 Attribute atValue = atTarget.member(names.value);
jjg@308 2033 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
jjg@308 2034 Attribute.Array arr = (Attribute.Array) atValue;
jjg@308 2035 for (Attribute app : arr.values) {
jjg@308 2036 if (!(app instanceof Attribute.Enum)) return true; // recovery
jjg@308 2037 Attribute.Enum e = (Attribute.Enum) app;
jjg@308 2038 if (!isTypeParameter && e.value.name == names.TYPE_USE)
jjg@308 2039 return true;
jjg@308 2040 else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
jjg@308 2041 return true;
jjg@308 2042 }
jjg@308 2043 return false;
jjg@308 2044 }
jjg@308 2045
duke@1 2046 /** Is the annotation applicable to the symbol? */
duke@1 2047 boolean annotationApplicable(JCAnnotation a, Symbol s) {
duke@1 2048 Attribute.Compound atTarget =
duke@1 2049 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
duke@1 2050 if (atTarget == null) return true;
duke@1 2051 Attribute atValue = atTarget.member(names.value);
duke@1 2052 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
duke@1 2053 Attribute.Array arr = (Attribute.Array) atValue;
duke@1 2054 for (Attribute app : arr.values) {
duke@1 2055 if (!(app instanceof Attribute.Enum)) return true; // recovery
duke@1 2056 Attribute.Enum e = (Attribute.Enum) app;
duke@1 2057 if (e.value.name == names.TYPE)
duke@1 2058 { if (s.kind == TYP) return true; }
duke@1 2059 else if (e.value.name == names.FIELD)
duke@1 2060 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
duke@1 2061 else if (e.value.name == names.METHOD)
duke@1 2062 { if (s.kind == MTH && !s.isConstructor()) return true; }
duke@1 2063 else if (e.value.name == names.PARAMETER)
duke@1 2064 { if (s.kind == VAR &&
duke@1 2065 s.owner.kind == MTH &&
duke@1 2066 (s.flags() & PARAMETER) != 0)
duke@1 2067 return true;
duke@1 2068 }
duke@1 2069 else if (e.value.name == names.CONSTRUCTOR)
duke@1 2070 { if (s.kind == MTH && s.isConstructor()) return true; }
duke@1 2071 else if (e.value.name == names.LOCAL_VARIABLE)
duke@1 2072 { if (s.kind == VAR && s.owner.kind == MTH &&
duke@1 2073 (s.flags() & PARAMETER) == 0)
duke@1 2074 return true;
duke@1 2075 }
duke@1 2076 else if (e.value.name == names.ANNOTATION_TYPE)
duke@1 2077 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
duke@1 2078 return true;
duke@1 2079 }
duke@1 2080 else if (e.value.name == names.PACKAGE)
duke@1 2081 { if (s.kind == PCK) return true; }
jjg@308 2082 else if (e.value.name == names.TYPE_USE)
jjg@308 2083 { if (s.kind == TYP ||
jjg@308 2084 s.kind == VAR ||
jjg@308 2085 (s.kind == MTH && !s.isConstructor() &&
jjg@308 2086 s.type.getReturnType().tag != VOID))
jjg@308 2087 return true;
jjg@308 2088 }
duke@1 2089 else
duke@1 2090 return true; // recovery
duke@1 2091 }
duke@1 2092 return false;
duke@1 2093 }
duke@1 2094
duke@1 2095 /** Check an annotation value.
duke@1 2096 */
duke@1 2097 public void validateAnnotation(JCAnnotation a) {
duke@1 2098 if (a.type.isErroneous()) return;
duke@1 2099
duke@1 2100 // collect an inventory of the members
duke@1 2101 Set<MethodSymbol> members = new HashSet<MethodSymbol>();
duke@1 2102 for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
duke@1 2103 e != null;
duke@1 2104 e = e.sibling)
duke@1 2105 if (e.sym.kind == MTH)
duke@1 2106 members.add((MethodSymbol) e.sym);
duke@1 2107
duke@1 2108 // count them off as they're annotated
duke@1 2109 for (JCTree arg : a.args) {
duke@1 2110 if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
duke@1 2111 JCAssign assign = (JCAssign) arg;
duke@1 2112 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 2113 if (m == null || m.type.isErroneous()) continue;
duke@1 2114 if (!members.remove(m))
jjg@479 2115 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
duke@1 2116 m.name, a.type);
duke@1 2117 if (assign.rhs.getTag() == ANNOTATION)
duke@1 2118 validateAnnotation((JCAnnotation)assign.rhs);
duke@1 2119 }
duke@1 2120
duke@1 2121 // all the remaining ones better have default values
duke@1 2122 for (MethodSymbol m : members)
duke@1 2123 if (m.defaultValue == null && !m.type.isErroneous())
duke@1 2124 log.error(a.pos(), "annotation.missing.default.value",
duke@1 2125 a.type, m.name);
duke@1 2126
duke@1 2127 // special case: java.lang.annotation.Target must not have
duke@1 2128 // repeated values in its value member
duke@1 2129 if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
duke@1 2130 a.args.tail == null)
duke@1 2131 return;
duke@1 2132
duke@1 2133 if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
duke@1 2134 JCAssign assign = (JCAssign) a.args.head;
duke@1 2135 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 2136 if (m.name != names.value) return;
duke@1 2137 JCTree rhs = assign.rhs;
duke@1 2138 if (rhs.getTag() != JCTree.NEWARRAY) return;
duke@1 2139 JCNewArray na = (JCNewArray) rhs;
duke@1 2140 Set<Symbol> targets = new HashSet<Symbol>();
duke@1 2141 for (JCTree elem : na.elems) {
duke@1 2142 if (!targets.add(TreeInfo.symbol(elem))) {
duke@1 2143 log.error(elem.pos(), "repeated.annotation.target");
duke@1 2144 }
duke@1 2145 }
duke@1 2146 }
duke@1 2147
duke@1 2148 void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
duke@1 2149 if (allowAnnotations &&
duke@1 2150 lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
duke@1 2151 (s.flags() & DEPRECATED) != 0 &&
duke@1 2152 !syms.deprecatedType.isErroneous() &&
duke@1 2153 s.attribute(syms.deprecatedType.tsym) == null) {
duke@1 2154 log.warning(pos, "missing.deprecated.annotation");
duke@1 2155 }
duke@1 2156 }
duke@1 2157
duke@1 2158 /* *************************************************************************
duke@1 2159 * Check for recursive annotation elements.
duke@1 2160 **************************************************************************/
duke@1 2161
duke@1 2162 /** Check for cycles in the graph of annotation elements.
duke@1 2163 */
duke@1 2164 void checkNonCyclicElements(JCClassDecl tree) {
duke@1 2165 if ((tree.sym.flags_field & ANNOTATION) == 0) return;
duke@1 2166 assert (tree.sym.flags_field & LOCKED) == 0;
duke@1 2167 try {
duke@1 2168 tree.sym.flags_field |= LOCKED;
duke@1 2169 for (JCTree def : tree.defs) {
duke@1 2170 if (def.getTag() != JCTree.METHODDEF) continue;
duke@1 2171 JCMethodDecl meth = (JCMethodDecl)def;
duke@1 2172 checkAnnotationResType(meth.pos(), meth.restype.type);
duke@1 2173 }
duke@1 2174 } finally {
duke@1 2175 tree.sym.flags_field &= ~LOCKED;
duke@1 2176 tree.sym.flags_field |= ACYCLIC_ANN;
duke@1 2177 }
duke@1 2178 }
duke@1 2179
duke@1 2180 void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
duke@1 2181 if ((tsym.flags_field & ACYCLIC_ANN) != 0)
duke@1 2182 return;
duke@1 2183 if ((tsym.flags_field & LOCKED) != 0) {
duke@1 2184 log.error(pos, "cyclic.annotation.element");
duke@1 2185 return;
duke@1 2186 }
duke@1 2187 try {
duke@1 2188 tsym.flags_field |= LOCKED;
duke@1 2189 for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
duke@1 2190 Symbol s = e.sym;
duke@1 2191 if (s.kind != Kinds.MTH)
duke@1 2192 continue;
duke@1 2193 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
duke@1 2194 }
duke@1 2195 } finally {
duke@1 2196 tsym.flags_field &= ~LOCKED;
duke@1 2197 tsym.flags_field |= ACYCLIC_ANN;
duke@1 2198 }
duke@1 2199 }
duke@1 2200
duke@1 2201 void checkAnnotationResType(DiagnosticPosition pos, Type type) {
duke@1 2202 switch (type.tag) {
duke@1 2203 case TypeTags.CLASS:
duke@1 2204 if ((type.tsym.flags() & ANNOTATION) != 0)
duke@1 2205 checkNonCyclicElementsInternal(pos, type.tsym);
duke@1 2206 break;
duke@1 2207 case TypeTags.ARRAY:
duke@1 2208 checkAnnotationResType(pos, types.elemtype(type));
duke@1 2209 break;
duke@1 2210 default:
duke@1 2211 break; // int etc
duke@1 2212 }
duke@1 2213 }
duke@1 2214
duke@1 2215 /* *************************************************************************
duke@1 2216 * Check for cycles in the constructor call graph.
duke@1 2217 **************************************************************************/
duke@1 2218
duke@1 2219 /** Check for cycles in the graph of constructors calling other
duke@1 2220 * constructors.
duke@1 2221 */
duke@1 2222 void checkCyclicConstructors(JCClassDecl tree) {
duke@1 2223 Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
duke@1 2224
duke@1 2225 // enter each constructor this-call into the map
duke@1 2226 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 2227 JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
duke@1 2228 if (app == null) continue;
duke@1 2229 JCMethodDecl meth = (JCMethodDecl) l.head;
duke@1 2230 if (TreeInfo.name(app.meth) == names._this) {
duke@1 2231 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
duke@1 2232 } else {
duke@1 2233 meth.sym.flags_field |= ACYCLIC;
duke@1 2234 }
duke@1 2235 }
duke@1 2236
duke@1 2237 // Check for cycles in the map
duke@1 2238 Symbol[] ctors = new Symbol[0];
duke@1 2239 ctors = callMap.keySet().toArray(ctors);
duke@1 2240 for (Symbol caller : ctors) {
duke@1 2241 checkCyclicConstructor(tree, caller, callMap);
duke@1 2242 }
duke@1 2243 }
duke@1 2244
duke@1 2245 /** Look in the map to see if the given constructor is part of a
duke@1 2246 * call cycle.
duke@1 2247 */
duke@1 2248 private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
duke@1 2249 Map<Symbol,Symbol> callMap) {
duke@1 2250 if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
duke@1 2251 if ((ctor.flags_field & LOCKED) != 0) {
duke@1 2252 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
duke@1 2253 "recursive.ctor.invocation");
duke@1 2254 } else {
duke@1 2255 ctor.flags_field |= LOCKED;
duke@1 2256 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
duke@1 2257 ctor.flags_field &= ~LOCKED;
duke@1 2258 }
duke@1 2259 ctor.flags_field |= ACYCLIC;
duke@1 2260 }
duke@1 2261 }
duke@1 2262
duke@1 2263 /* *************************************************************************
duke@1 2264 * Miscellaneous
duke@1 2265 **************************************************************************/
duke@1 2266
duke@1 2267 /**
duke@1 2268 * Return the opcode of the operator but emit an error if it is an
duke@1 2269 * error.
duke@1 2270 * @param pos position for error reporting.
duke@1 2271 * @param operator an operator
duke@1 2272 * @param tag a tree tag
duke@1 2273 * @param left type of left hand side
duke@1 2274 * @param right type of right hand side
duke@1 2275 */
duke@1 2276 int checkOperator(DiagnosticPosition pos,
duke@1 2277 OperatorSymbol operator,
duke@1 2278 int tag,
duke@1 2279 Type left,
duke@1 2280 Type right) {
duke@1 2281 if (operator.opcode == ByteCodes.error) {
duke@1 2282 log.error(pos,
duke@1 2283 "operator.cant.be.applied",
duke@1 2284 treeinfo.operatorName(tag),
mcimadamore@80 2285 List.of(left, right));
duke@1 2286 }
duke@1 2287 return operator.opcode;
duke@1 2288 }
duke@1 2289
duke@1 2290
duke@1 2291 /**
duke@1 2292 * Check for division by integer constant zero
duke@1 2293 * @param pos Position for error reporting.
duke@1 2294 * @param operator The operator for the expression
duke@1 2295 * @param operand The right hand operand for the expression
duke@1 2296 */
duke@1 2297 void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
duke@1 2298 if (operand.constValue() != null
duke@1 2299 && lint.isEnabled(Lint.LintCategory.DIVZERO)
duke@1 2300 && operand.tag <= LONG
duke@1 2301 && ((Number) (operand.constValue())).longValue() == 0) {
duke@1 2302 int opc = ((OperatorSymbol)operator).opcode;
duke@1 2303 if (opc == ByteCodes.idiv || opc == ByteCodes.imod
duke@1 2304 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
duke@1 2305 log.warning(pos, "div.zero");
duke@1 2306 }
duke@1 2307 }
duke@1 2308 }
duke@1 2309
duke@1 2310 /**
duke@1 2311 * Check for empty statements after if
duke@1 2312 */
duke@1 2313 void checkEmptyIf(JCIf tree) {
duke@1 2314 if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
duke@1 2315 log.warning(tree.thenpart.pos(), "empty.if");
duke@1 2316 }
duke@1 2317
duke@1 2318 /** Check that symbol is unique in given scope.
duke@1 2319 * @param pos Position for error reporting.
duke@1 2320 * @param sym The symbol.
duke@1 2321 * @param s The scope.
duke@1 2322 */
duke@1 2323 boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2324 if (sym.type.isErroneous())
duke@1 2325 return true;
duke@1 2326 if (sym.owner.name == names.any) return false;
duke@1 2327 for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
duke@1 2328 if (sym != e.sym &&
duke@1 2329 sym.kind == e.sym.kind &&
duke@1 2330 sym.name != names.error &&
mcimadamore@252 2331 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
duke@1 2332 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
duke@1 2333 varargsDuplicateError(pos, sym, e.sym);
mcimadamore@252 2334 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
mcimadamore@252 2335 duplicateErasureError(pos, sym, e.sym);
duke@1 2336 else
duke@1 2337 duplicateError(pos, e.sym);
duke@1 2338 return false;
duke@1 2339 }
duke@1 2340 }
duke@1 2341 return true;
duke@1 2342 }
mcimadamore@252 2343 //where
mcimadamore@252 2344 /** Report duplicate declaration error.
mcimadamore@252 2345 */
mcimadamore@252 2346 void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
mcimadamore@252 2347 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
mcimadamore@252 2348 log.error(pos, "name.clash.same.erasure", sym1, sym2);
mcimadamore@252 2349 }
mcimadamore@252 2350 }
duke@1 2351
duke@1 2352 /** Check that single-type import is not already imported or top-level defined,
duke@1 2353 * but make an exception for two single-type imports which denote the same type.
duke@1 2354 * @param pos Position for error reporting.
duke@1 2355 * @param sym The symbol.
duke@1 2356 * @param s The scope
duke@1 2357 */
duke@1 2358 boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2359 return checkUniqueImport(pos, sym, s, false);
duke@1 2360 }
duke@1 2361
duke@1 2362 /** Check that static single-type import is not already imported or top-level defined,
duke@1 2363 * but make an exception for two single-type imports which denote the same type.
duke@1 2364 * @param pos Position for error reporting.
duke@1 2365 * @param sym The symbol.
duke@1 2366 * @param s The scope
duke@1 2367 * @param staticImport Whether or not this was a static import
duke@1 2368 */
duke@1 2369 boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2370 return checkUniqueImport(pos, sym, s, true);
duke@1 2371 }
duke@1 2372
duke@1 2373 /** Check that single-type import is not already imported or top-level defined,
duke@1 2374 * but make an exception for two single-type imports which denote the same type.
duke@1 2375 * @param pos Position for error reporting.
duke@1 2376 * @param sym The symbol.
duke@1 2377 * @param s The scope.
duke@1 2378 * @param staticImport Whether or not this was a static import
duke@1 2379 */
duke@1 2380 private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
duke@1 2381 for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
duke@1 2382 // is encountered class entered via a class declaration?
duke@1 2383 boolean isClassDecl = e.scope == s;
duke@1 2384 if ((isClassDecl || sym != e.sym) &&
duke@1 2385 sym.kind == e.sym.kind &&
duke@1 2386 sym.name != names.error) {
duke@1 2387 if (!e.sym.type.isErroneous()) {
duke@1 2388 String what = e.sym.toString();
duke@1 2389 if (!isClassDecl) {
duke@1 2390 if (staticImport)
duke@1 2391 log.error(pos, "already.defined.static.single.import", what);
duke@1 2392 else
duke@1 2393 log.error(pos, "already.defined.single.import", what);
duke@1 2394 }
duke@1 2395 else if (sym != e.sym)
duke@1 2396 log.error(pos, "already.defined.this.unit", what);
duke@1 2397 }
duke@1 2398 return false;
duke@1 2399 }
duke@1 2400 }
duke@1 2401 return true;
duke@1 2402 }
duke@1 2403
duke@1 2404 /** Check that a qualified name is in canonical form (for import decls).
duke@1 2405 */
duke@1 2406 public void checkCanonical(JCTree tree) {
duke@1 2407 if (!isCanonical(tree))
duke@1 2408 log.error(tree.pos(), "import.requires.canonical",
duke@1 2409 TreeInfo.symbol(tree));
duke@1 2410 }
duke@1 2411 // where
duke@1 2412 private boolean isCanonical(JCTree tree) {
duke@1 2413 while (tree.getTag() == JCTree.SELECT) {
duke@1 2414 JCFieldAccess s = (JCFieldAccess) tree;
duke@1 2415 if (s.sym.owner != TreeInfo.symbol(s.selected))
duke@1 2416 return false;
duke@1 2417 tree = s.selected;
duke@1 2418 }
duke@1 2419 return true;
duke@1 2420 }
duke@1 2421
duke@1 2422 private class ConversionWarner extends Warner {
duke@1 2423 final String key;
duke@1 2424 final Type found;
duke@1 2425 final Type expected;
duke@1 2426 public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
duke@1 2427 super(pos);
duke@1 2428 this.key = key;
duke@1 2429 this.found = found;
duke@1 2430 this.expected = expected;
duke@1 2431 }
duke@1 2432
jjg@398 2433 @Override
duke@1 2434 public void warnUnchecked() {
duke@1 2435 boolean warned = this.warned;
duke@1 2436 super.warnUnchecked();
duke@1 2437 if (warned) return; // suppress redundant diagnostics
mcimadamore@89 2438 Object problem = diags.fragment(key);
duke@1 2439 Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
duke@1 2440 }
duke@1 2441 }
duke@1 2442
duke@1 2443 public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2444 return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
duke@1 2445 }
duke@1 2446
duke@1 2447 public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2448 return new ConversionWarner(pos, "unchecked.assign", found, expected);
duke@1 2449 }
duke@1 2450 }

mercurial