src/share/classes/com/sun/tools/javac/comp/Check.java

Thu, 25 Feb 2010 09:42:35 -0800

author
jjg
date
Thu, 25 Feb 2010 09:42:35 -0800
changeset 505
87eb6edd4f21
parent 479
da0e3e2dd3ef
child 536
396b117c1743
permissions
-rw-r--r--

4880220: Add a warning when accessing a static method via an reference
Reviewed-by: darcy

duke@1 1 /*
xdono@229 2 * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30
duke@1 31 import com.sun.tools.javac.code.*;
duke@1 32 import com.sun.tools.javac.jvm.*;
duke@1 33 import com.sun.tools.javac.tree.*;
duke@1 34 import com.sun.tools.javac.util.*;
duke@1 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 36 import com.sun.tools.javac.util.List;
duke@1 37
duke@1 38 import com.sun.tools.javac.tree.JCTree.*;
duke@1 39 import com.sun.tools.javac.code.Lint;
duke@1 40 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 41 import com.sun.tools.javac.code.Type.*;
duke@1 42 import com.sun.tools.javac.code.Symbol.*;
duke@1 43
duke@1 44 import static com.sun.tools.javac.code.Flags.*;
duke@1 45 import static com.sun.tools.javac.code.Kinds.*;
duke@1 46 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 47
duke@1 48 /** Type checking helper class for the attribution phase.
duke@1 49 *
duke@1 50 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 51 * you write code that depends on this, you do so at your own risk.
duke@1 52 * This code and its internal interfaces are subject to change or
duke@1 53 * deletion without notice.</b>
duke@1 54 */
duke@1 55 public class Check {
duke@1 56 protected static final Context.Key<Check> checkKey =
duke@1 57 new Context.Key<Check>();
duke@1 58
jjg@113 59 private final Names names;
duke@1 60 private final Log log;
duke@1 61 private final Symtab syms;
duke@1 62 private final Infer infer;
duke@1 63 private final Types types;
mcimadamore@89 64 private final JCDiagnostic.Factory diags;
duke@1 65 private final boolean skipAnnotations;
mcimadamore@359 66 private boolean warnOnSyntheticConflicts;
duke@1 67 private final TreeInfo treeinfo;
duke@1 68
duke@1 69 // The set of lint options currently in effect. It is initialized
duke@1 70 // from the context, and then is set/reset as needed by Attr as it
duke@1 71 // visits all the various parts of the trees during attribution.
duke@1 72 private Lint lint;
duke@1 73
duke@1 74 public static Check instance(Context context) {
duke@1 75 Check instance = context.get(checkKey);
duke@1 76 if (instance == null)
duke@1 77 instance = new Check(context);
duke@1 78 return instance;
duke@1 79 }
duke@1 80
duke@1 81 protected Check(Context context) {
duke@1 82 context.put(checkKey, this);
duke@1 83
jjg@113 84 names = Names.instance(context);
duke@1 85 log = Log.instance(context);
duke@1 86 syms = Symtab.instance(context);
duke@1 87 infer = Infer.instance(context);
duke@1 88 this.types = Types.instance(context);
mcimadamore@89 89 diags = JCDiagnostic.Factory.instance(context);
duke@1 90 Options options = Options.instance(context);
duke@1 91 lint = Lint.instance(context);
duke@1 92 treeinfo = TreeInfo.instance(context);
duke@1 93
duke@1 94 Source source = Source.instance(context);
duke@1 95 allowGenerics = source.allowGenerics();
duke@1 96 allowAnnotations = source.allowAnnotations();
jjg@398 97 allowCovariantReturns = source.allowCovariantReturns();
duke@1 98 complexInference = options.get("-complexinference") != null;
duke@1 99 skipAnnotations = options.get("skipAnnotations") != null;
mcimadamore@359 100 warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
duke@1 101
jjg@398 102 Target target = Target.instance(context);
jjg@398 103 syntheticNameChar = target.syntheticNameChar();
jjg@398 104
duke@1 105 boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
duke@1 106 boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
jjg@377 107 boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
jjg@60 108 boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
duke@1 109
jjg@60 110 deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
jjg@60 111 enforceMandatoryWarnings, "deprecated");
jjg@60 112 uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
jjg@60 113 enforceMandatoryWarnings, "unchecked");
jjg@377 114 sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
jjg@377 115 enforceMandatoryWarnings, "sunapi");
duke@1 116 }
duke@1 117
duke@1 118 /** Switch: generics enabled?
duke@1 119 */
duke@1 120 boolean allowGenerics;
duke@1 121
duke@1 122 /** Switch: annotations enabled?
duke@1 123 */
duke@1 124 boolean allowAnnotations;
duke@1 125
jjg@398 126 /** Switch: covariant returns enabled?
jjg@398 127 */
jjg@398 128 boolean allowCovariantReturns;
jjg@398 129
duke@1 130 /** Switch: -complexinference option set?
duke@1 131 */
duke@1 132 boolean complexInference;
duke@1 133
jjg@398 134 /** Character for synthetic names
jjg@398 135 */
jjg@398 136 char syntheticNameChar;
jjg@398 137
duke@1 138 /** A table mapping flat names of all compiled classes in this run to their
duke@1 139 * symbols; maintained from outside.
duke@1 140 */
duke@1 141 public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
duke@1 142
duke@1 143 /** A handler for messages about deprecated usage.
duke@1 144 */
duke@1 145 private MandatoryWarningHandler deprecationHandler;
duke@1 146
duke@1 147 /** A handler for messages about unchecked or unsafe usage.
duke@1 148 */
duke@1 149 private MandatoryWarningHandler uncheckedHandler;
duke@1 150
jjg@377 151 /** A handler for messages about using Sun proprietary API.
jjg@377 152 */
jjg@377 153 private MandatoryWarningHandler sunApiHandler;
duke@1 154
duke@1 155 /* *************************************************************************
duke@1 156 * Errors and Warnings
duke@1 157 **************************************************************************/
duke@1 158
duke@1 159 Lint setLint(Lint newLint) {
duke@1 160 Lint prev = lint;
duke@1 161 lint = newLint;
duke@1 162 return prev;
duke@1 163 }
duke@1 164
duke@1 165 /** Warn about deprecated symbol.
duke@1 166 * @param pos Position to be used for error reporting.
duke@1 167 * @param sym The deprecated symbol.
duke@1 168 */
duke@1 169 void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
duke@1 170 if (!lint.isSuppressed(LintCategory.DEPRECATION))
duke@1 171 deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
duke@1 172 }
duke@1 173
duke@1 174 /** Warn about unchecked operation.
duke@1 175 * @param pos Position to be used for error reporting.
duke@1 176 * @param msg A string describing the problem.
duke@1 177 */
duke@1 178 public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
duke@1 179 if (!lint.isSuppressed(LintCategory.UNCHECKED))
duke@1 180 uncheckedHandler.report(pos, msg, args);
duke@1 181 }
duke@1 182
jjg@377 183 /** Warn about using Sun proprietary API.
jjg@377 184 * @param pos Position to be used for error reporting.
jjg@377 185 * @param msg A string describing the problem.
jjg@377 186 */
jjg@377 187 public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
jjg@377 188 if (!lint.isSuppressed(LintCategory.SUNAPI))
jjg@377 189 sunApiHandler.report(pos, msg, args);
jjg@377 190 }
jjg@377 191
jjg@505 192 public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
jjg@505 193 if (lint.isEnabled(LintCategory.STATIC))
jjg@505 194 log.warning(pos, msg, args);
jjg@505 195 }
jjg@505 196
duke@1 197 /**
duke@1 198 * Report any deferred diagnostics.
duke@1 199 */
duke@1 200 public void reportDeferredDiagnostics() {
duke@1 201 deprecationHandler.reportDeferredDiagnostic();
duke@1 202 uncheckedHandler.reportDeferredDiagnostic();
jjg@377 203 sunApiHandler.reportDeferredDiagnostic();
duke@1 204 }
duke@1 205
duke@1 206
duke@1 207 /** Report a failure to complete a class.
duke@1 208 * @param pos Position to be used for error reporting.
duke@1 209 * @param ex The failure to report.
duke@1 210 */
duke@1 211 public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
jjg@12 212 log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
duke@1 213 if (ex instanceof ClassReader.BadClassFile) throw new Abort();
duke@1 214 else return syms.errType;
duke@1 215 }
duke@1 216
duke@1 217 /** Report a type error.
duke@1 218 * @param pos Position to be used for error reporting.
duke@1 219 * @param problem A string describing the error.
duke@1 220 * @param found The type that was found.
duke@1 221 * @param req The type that was required.
duke@1 222 */
duke@1 223 Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
duke@1 224 log.error(pos, "prob.found.req",
duke@1 225 problem, found, req);
jjg@110 226 return types.createErrorType(found);
duke@1 227 }
duke@1 228
duke@1 229 Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
duke@1 230 log.error(pos, "prob.found.req.1", problem, found, req, explanation);
jjg@110 231 return types.createErrorType(found);
duke@1 232 }
duke@1 233
duke@1 234 /** Report an error that wrong type tag was found.
duke@1 235 * @param pos Position to be used for error reporting.
duke@1 236 * @param required An internationalized string describing the type tag
duke@1 237 * required.
duke@1 238 * @param found The type that was found.
duke@1 239 */
duke@1 240 Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
jrose@267 241 // this error used to be raised by the parser,
jrose@267 242 // but has been delayed to this point:
jrose@267 243 if (found instanceof Type && ((Type)found).tag == VOID) {
jrose@267 244 log.error(pos, "illegal.start.of.type");
jrose@267 245 return syms.errType;
jrose@267 246 }
duke@1 247 log.error(pos, "type.found.req", found, required);
jjg@110 248 return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
duke@1 249 }
duke@1 250
duke@1 251 /** Report an error that symbol cannot be referenced before super
duke@1 252 * has been called.
duke@1 253 * @param pos Position to be used for error reporting.
duke@1 254 * @param sym The referenced symbol.
duke@1 255 */
duke@1 256 void earlyRefError(DiagnosticPosition pos, Symbol sym) {
duke@1 257 log.error(pos, "cant.ref.before.ctor.called", sym);
duke@1 258 }
duke@1 259
duke@1 260 /** Report duplicate declaration error.
duke@1 261 */
duke@1 262 void duplicateError(DiagnosticPosition pos, Symbol sym) {
duke@1 263 if (!sym.type.isErroneous()) {
duke@1 264 log.error(pos, "already.defined", sym, sym.location());
duke@1 265 }
duke@1 266 }
duke@1 267
duke@1 268 /** Report array/varargs duplicate declaration
duke@1 269 */
duke@1 270 void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
duke@1 271 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
duke@1 272 log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
duke@1 273 }
duke@1 274 }
duke@1 275
duke@1 276 /* ************************************************************************
duke@1 277 * duplicate declaration checking
duke@1 278 *************************************************************************/
duke@1 279
duke@1 280 /** Check that variable does not hide variable with same name in
duke@1 281 * immediately enclosing local scope.
duke@1 282 * @param pos Position for error reporting.
duke@1 283 * @param v The symbol.
duke@1 284 * @param s The scope.
duke@1 285 */
duke@1 286 void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
duke@1 287 if (s.next != null) {
duke@1 288 for (Scope.Entry e = s.next.lookup(v.name);
duke@1 289 e.scope != null && e.sym.owner == v.owner;
duke@1 290 e = e.next()) {
duke@1 291 if (e.sym.kind == VAR &&
duke@1 292 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 293 v.name != names.error) {
duke@1 294 duplicateError(pos, e.sym);
duke@1 295 return;
duke@1 296 }
duke@1 297 }
duke@1 298 }
duke@1 299 }
duke@1 300
duke@1 301 /** Check that a class or interface does not hide a class or
duke@1 302 * interface with same name in immediately enclosing local scope.
duke@1 303 * @param pos Position for error reporting.
duke@1 304 * @param c The symbol.
duke@1 305 * @param s The scope.
duke@1 306 */
duke@1 307 void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
duke@1 308 if (s.next != null) {
duke@1 309 for (Scope.Entry e = s.next.lookup(c.name);
duke@1 310 e.scope != null && e.sym.owner == c.owner;
duke@1 311 e = e.next()) {
duke@1 312 if (e.sym.kind == TYP &&
duke@1 313 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 314 c.name != names.error) {
duke@1 315 duplicateError(pos, e.sym);
duke@1 316 return;
duke@1 317 }
duke@1 318 }
duke@1 319 }
duke@1 320 }
duke@1 321
duke@1 322 /** Check that class does not have the same name as one of
duke@1 323 * its enclosing classes, or as a class defined in its enclosing scope.
duke@1 324 * return true if class is unique in its enclosing scope.
duke@1 325 * @param pos Position for error reporting.
duke@1 326 * @param name The class name.
duke@1 327 * @param s The enclosing scope.
duke@1 328 */
duke@1 329 boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
duke@1 330 for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
duke@1 331 if (e.sym.kind == TYP && e.sym.name != names.error) {
duke@1 332 duplicateError(pos, e.sym);
duke@1 333 return false;
duke@1 334 }
duke@1 335 }
duke@1 336 for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
duke@1 337 if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
duke@1 338 duplicateError(pos, sym);
duke@1 339 return true;
duke@1 340 }
duke@1 341 }
duke@1 342 return true;
duke@1 343 }
duke@1 344
duke@1 345 /* *************************************************************************
duke@1 346 * Class name generation
duke@1 347 **************************************************************************/
duke@1 348
duke@1 349 /** Return name of local class.
duke@1 350 * This is of the form <enclClass> $ n <classname>
duke@1 351 * where
duke@1 352 * enclClass is the flat name of the enclosing class,
duke@1 353 * classname is the simple name of the local class
duke@1 354 */
duke@1 355 Name localClassName(ClassSymbol c) {
duke@1 356 for (int i=1; ; i++) {
duke@1 357 Name flatname = names.
duke@1 358 fromString("" + c.owner.enclClass().flatname +
jjg@398 359 syntheticNameChar + i +
duke@1 360 c.name);
duke@1 361 if (compiled.get(flatname) == null) return flatname;
duke@1 362 }
duke@1 363 }
duke@1 364
duke@1 365 /* *************************************************************************
duke@1 366 * Type Checking
duke@1 367 **************************************************************************/
duke@1 368
duke@1 369 /** Check that a given type is assignable to a given proto-type.
duke@1 370 * If it is, return the type, otherwise return errType.
duke@1 371 * @param pos Position to be used for error reporting.
duke@1 372 * @param found The type that was found.
duke@1 373 * @param req The type that was required.
duke@1 374 */
duke@1 375 Type checkType(DiagnosticPosition pos, Type found, Type req) {
duke@1 376 if (req.tag == ERROR)
duke@1 377 return req;
duke@1 378 if (req.tag == NONE)
duke@1 379 return found;
duke@1 380 if (types.isAssignable(found, req, convertWarner(pos, found, req)))
duke@1 381 return found;
duke@1 382 if (found.tag <= DOUBLE && req.tag <= DOUBLE)
mcimadamore@89 383 return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
duke@1 384 if (found.isSuperBound()) {
duke@1 385 log.error(pos, "assignment.from.super-bound", found);
jjg@110 386 return types.createErrorType(found);
duke@1 387 }
duke@1 388 if (req.isExtendsBound()) {
duke@1 389 log.error(pos, "assignment.to.extends-bound", req);
jjg@110 390 return types.createErrorType(found);
duke@1 391 }
mcimadamore@89 392 return typeError(pos, diags.fragment("incompatible.types"), found, req);
duke@1 393 }
duke@1 394
mcimadamore@383 395 Type checkReturnType(DiagnosticPosition pos, Type found, Type req) {
mcimadamore@383 396 if (found.tag == FORALL) {
mcimadamore@383 397 try {
mcimadamore@383 398 return instantiatePoly(pos, (ForAll) found, req, convertWarner(pos, found, req));
mcimadamore@383 399 } catch (Infer.NoInstanceException ex) {
mcimadamore@383 400 if (ex.isAmbiguous) {
mcimadamore@383 401 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@383 402 log.error(pos,
mcimadamore@383 403 "undetermined.type" + (d != null ? ".1" : ""),
mcimadamore@383 404 found, d);
mcimadamore@383 405 return types.createErrorType(req);
mcimadamore@383 406 } else {
mcimadamore@383 407 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@383 408 return typeError(pos,
mcimadamore@383 409 diags.fragment("incompatible.types" + (d != null ? ".1" : ""), d),
mcimadamore@383 410 found, req);
mcimadamore@383 411 }
mcimadamore@383 412 } catch (Infer.InvalidInstanceException ex) {
mcimadamore@383 413 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@383 414 log.error(pos, "invalid.inferred.types", ((ForAll)found).tvars, d);
mcimadamore@383 415 return types.createErrorType(req);
mcimadamore@383 416 }
mcimadamore@383 417 } else {
mcimadamore@383 418 return checkType(pos, found, req);
mcimadamore@383 419 }
mcimadamore@383 420 }
mcimadamore@383 421
duke@1 422 /** Instantiate polymorphic type to some prototype, unless
duke@1 423 * prototype is `anyPoly' in which case polymorphic type
duke@1 424 * is returned unchanged.
duke@1 425 */
mcimadamore@383 426 Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
duke@1 427 if (pt == Infer.anyPoly && complexInference) {
duke@1 428 return t;
duke@1 429 } else if (pt == Infer.anyPoly || pt.tag == NONE) {
duke@1 430 Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
duke@1 431 return instantiatePoly(pos, t, newpt, warn);
duke@1 432 } else if (pt.tag == ERROR) {
duke@1 433 return pt;
duke@1 434 } else {
mcimadamore@383 435 return infer.instantiateExpr(t, pt, warn);
duke@1 436 }
mcimadamore@383 437 }
duke@1 438
duke@1 439 /** Check that a given type can be cast to a given target type.
duke@1 440 * Return the result of the cast.
duke@1 441 * @param pos Position to be used for error reporting.
duke@1 442 * @param found The type that is being cast.
duke@1 443 * @param req The target type of the cast.
duke@1 444 */
duke@1 445 Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
duke@1 446 if (found.tag == FORALL) {
duke@1 447 instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
duke@1 448 return req;
duke@1 449 } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
duke@1 450 return req;
duke@1 451 } else {
duke@1 452 return typeError(pos,
mcimadamore@89 453 diags.fragment("inconvertible.types"),
duke@1 454 found, req);
duke@1 455 }
duke@1 456 }
duke@1 457 //where
duke@1 458 /** Is type a type variable, or a (possibly multi-dimensional) array of
duke@1 459 * type variables?
duke@1 460 */
duke@1 461 boolean isTypeVar(Type t) {
duke@1 462 return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
duke@1 463 }
duke@1 464
duke@1 465 /** Check that a type is within some bounds.
duke@1 466 *
duke@1 467 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
duke@1 468 * type argument.
duke@1 469 * @param pos Position to be used for error reporting.
duke@1 470 * @param a The type that should be bounded by bs.
duke@1 471 * @param bs The bound.
duke@1 472 */
duke@1 473 private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
mcimadamore@154 474 if (a.isUnbound()) {
mcimadamore@154 475 return;
mcimadamore@154 476 } else if (a.tag != WILDCARD) {
mcimadamore@154 477 a = types.upperBound(a);
mcimadamore@154 478 for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
mcimadamore@154 479 if (!types.isSubtype(a, l.head)) {
mcimadamore@154 480 log.error(pos, "not.within.bounds", a);
mcimadamore@154 481 return;
mcimadamore@154 482 }
mcimadamore@154 483 }
mcimadamore@154 484 } else if (a.isExtendsBound()) {
mcimadamore@154 485 if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
mcimadamore@154 486 log.error(pos, "not.within.bounds", a);
mcimadamore@154 487 } else if (a.isSuperBound()) {
mcimadamore@154 488 if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
mcimadamore@154 489 log.error(pos, "not.within.bounds", a);
mcimadamore@154 490 }
mcimadamore@154 491 }
mcimadamore@154 492
mcimadamore@154 493 /** Check that a type is within some bounds.
mcimadamore@154 494 *
mcimadamore@154 495 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
mcimadamore@154 496 * type argument.
mcimadamore@154 497 * @param pos Position to be used for error reporting.
mcimadamore@154 498 * @param a The type that should be bounded by bs.
mcimadamore@154 499 * @param bs The bound.
mcimadamore@154 500 */
mcimadamore@154 501 private void checkCapture(JCTypeApply tree) {
mcimadamore@154 502 List<JCExpression> args = tree.getTypeArguments();
mcimadamore@154 503 for (Type arg : types.capture(tree.type).getTypeArguments()) {
mcimadamore@154 504 if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
mcimadamore@154 505 log.error(args.head.pos, "not.within.bounds", args.head.type);
mcimadamore@154 506 break;
mcimadamore@79 507 }
mcimadamore@154 508 args = args.tail;
mcimadamore@79 509 }
mcimadamore@154 510 }
duke@1 511
duke@1 512 /** Check that type is different from 'void'.
duke@1 513 * @param pos Position to be used for error reporting.
duke@1 514 * @param t The type to be checked.
duke@1 515 */
duke@1 516 Type checkNonVoid(DiagnosticPosition pos, Type t) {
duke@1 517 if (t.tag == VOID) {
duke@1 518 log.error(pos, "void.not.allowed.here");
jjg@110 519 return types.createErrorType(t);
duke@1 520 } else {
duke@1 521 return t;
duke@1 522 }
duke@1 523 }
duke@1 524
duke@1 525 /** Check that type is a class or interface type.
duke@1 526 * @param pos Position to be used for error reporting.
duke@1 527 * @param t The type to be checked.
duke@1 528 */
duke@1 529 Type checkClassType(DiagnosticPosition pos, Type t) {
duke@1 530 if (t.tag != CLASS && t.tag != ERROR)
duke@1 531 return typeTagError(pos,
mcimadamore@89 532 diags.fragment("type.req.class"),
duke@1 533 (t.tag == TYPEVAR)
mcimadamore@89 534 ? diags.fragment("type.parameter", t)
duke@1 535 : t);
duke@1 536 else
duke@1 537 return t;
duke@1 538 }
duke@1 539
duke@1 540 /** Check that type is a class or interface type.
duke@1 541 * @param pos Position to be used for error reporting.
duke@1 542 * @param t The type to be checked.
duke@1 543 * @param noBounds True if type bounds are illegal here.
duke@1 544 */
duke@1 545 Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
duke@1 546 t = checkClassType(pos, t);
duke@1 547 if (noBounds && t.isParameterized()) {
duke@1 548 List<Type> args = t.getTypeArguments();
duke@1 549 while (args.nonEmpty()) {
duke@1 550 if (args.head.tag == WILDCARD)
duke@1 551 return typeTagError(pos,
jjg@398 552 Log.getLocalizedString("type.req.exact"),
duke@1 553 args.head);
duke@1 554 args = args.tail;
duke@1 555 }
duke@1 556 }
duke@1 557 return t;
duke@1 558 }
duke@1 559
mcimadamore@383 560 /** Check that type is a valid type for a new expression. If the type contains
mcimadamore@383 561 * some uninferred type variables, instantiate them exploiting the expected
mcimadamore@383 562 * type.
mcimadamore@383 563 *
mcimadamore@383 564 * @param pos Position to be used for error reporting.
mcimadamore@383 565 * @param t The type to be checked.
mcimadamore@383 566 * @param noBounds True if type bounds are illegal here.
mcimadamore@383 567 * @param pt Expected type (used with diamond operator)
mcimadamore@383 568 */
mcimadamore@383 569 Type checkNewClassType(DiagnosticPosition pos, Type t, boolean noBounds, Type pt) {
mcimadamore@383 570 if (t.tag == FORALL) {
mcimadamore@383 571 try {
mcimadamore@383 572 t = instantiatePoly(pos, (ForAll)t, pt, Warner.noWarnings);
mcimadamore@383 573 }
mcimadamore@383 574 catch (Infer.NoInstanceException ex) {
mcimadamore@383 575 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@383 576 log.error(pos, "cant.apply.diamond", t.getTypeArguments(), d);
mcimadamore@383 577 return types.createErrorType(pt);
mcimadamore@383 578 }
mcimadamore@383 579 }
mcimadamore@383 580 return checkClassType(pos, t, noBounds);
mcimadamore@383 581 }
mcimadamore@383 582
duke@1 583 /** Check that type is a reifiable class, interface or array type.
duke@1 584 * @param pos Position to be used for error reporting.
duke@1 585 * @param t The type to be checked.
duke@1 586 */
duke@1 587 Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
duke@1 588 if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
duke@1 589 return typeTagError(pos,
mcimadamore@89 590 diags.fragment("type.req.class.array"),
duke@1 591 t);
duke@1 592 } else if (!types.isReifiable(t)) {
duke@1 593 log.error(pos, "illegal.generic.type.for.instof");
jjg@110 594 return types.createErrorType(t);
duke@1 595 } else {
duke@1 596 return t;
duke@1 597 }
duke@1 598 }
duke@1 599
duke@1 600 /** Check that type is a reference type, i.e. a class, interface or array type
duke@1 601 * or a type variable.
duke@1 602 * @param pos Position to be used for error reporting.
duke@1 603 * @param t The type to be checked.
duke@1 604 */
duke@1 605 Type checkRefType(DiagnosticPosition pos, Type t) {
duke@1 606 switch (t.tag) {
duke@1 607 case CLASS:
duke@1 608 case ARRAY:
duke@1 609 case TYPEVAR:
duke@1 610 case WILDCARD:
duke@1 611 case ERROR:
duke@1 612 return t;
duke@1 613 default:
duke@1 614 return typeTagError(pos,
mcimadamore@89 615 diags.fragment("type.req.ref"),
duke@1 616 t);
duke@1 617 }
duke@1 618 }
duke@1 619
jrose@267 620 /** Check that each type is a reference type, i.e. a class, interface or array type
jrose@267 621 * or a type variable.
jrose@267 622 * @param trees Original trees, used for error reporting.
jrose@267 623 * @param types The types to be checked.
jrose@267 624 */
jrose@267 625 List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
jrose@267 626 List<JCExpression> tl = trees;
jrose@267 627 for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
jrose@267 628 l.head = checkRefType(tl.head.pos(), l.head);
jrose@267 629 tl = tl.tail;
jrose@267 630 }
jrose@267 631 return types;
jrose@267 632 }
jrose@267 633
duke@1 634 /** Check that type is a null or reference type.
duke@1 635 * @param pos Position to be used for error reporting.
duke@1 636 * @param t The type to be checked.
duke@1 637 */
duke@1 638 Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
duke@1 639 switch (t.tag) {
duke@1 640 case CLASS:
duke@1 641 case ARRAY:
duke@1 642 case TYPEVAR:
duke@1 643 case WILDCARD:
duke@1 644 case BOT:
duke@1 645 case ERROR:
duke@1 646 return t;
duke@1 647 default:
duke@1 648 return typeTagError(pos,
mcimadamore@89 649 diags.fragment("type.req.ref"),
duke@1 650 t);
duke@1 651 }
duke@1 652 }
duke@1 653
duke@1 654 /** Check that flag set does not contain elements of two conflicting sets. s
duke@1 655 * Return true if it doesn't.
duke@1 656 * @param pos Position to be used for error reporting.
duke@1 657 * @param flags The set of flags to be checked.
duke@1 658 * @param set1 Conflicting flags set #1.
duke@1 659 * @param set2 Conflicting flags set #2.
duke@1 660 */
duke@1 661 boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
duke@1 662 if ((flags & set1) != 0 && (flags & set2) != 0) {
duke@1 663 log.error(pos,
duke@1 664 "illegal.combination.of.modifiers",
mcimadamore@80 665 asFlagSet(TreeInfo.firstFlag(flags & set1)),
mcimadamore@80 666 asFlagSet(TreeInfo.firstFlag(flags & set2)));
duke@1 667 return false;
duke@1 668 } else
duke@1 669 return true;
duke@1 670 }
duke@1 671
duke@1 672 /** Check that given modifiers are legal for given symbol and
duke@1 673 * return modifiers together with any implicit modififiers for that symbol.
duke@1 674 * Warning: we can't use flags() here since this method
duke@1 675 * is called during class enter, when flags() would cause a premature
duke@1 676 * completion.
duke@1 677 * @param pos Position to be used for error reporting.
duke@1 678 * @param flags The set of modifiers given in a definition.
duke@1 679 * @param sym The defined symbol.
duke@1 680 */
duke@1 681 long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
duke@1 682 long mask;
duke@1 683 long implicit = 0;
duke@1 684 switch (sym.kind) {
duke@1 685 case VAR:
duke@1 686 if (sym.owner.kind != TYP)
duke@1 687 mask = LocalVarFlags;
duke@1 688 else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 689 mask = implicit = InterfaceVarFlags;
duke@1 690 else
duke@1 691 mask = VarFlags;
duke@1 692 break;
duke@1 693 case MTH:
duke@1 694 if (sym.name == names.init) {
duke@1 695 if ((sym.owner.flags_field & ENUM) != 0) {
duke@1 696 // enum constructors cannot be declared public or
duke@1 697 // protected and must be implicitly or explicitly
duke@1 698 // private
duke@1 699 implicit = PRIVATE;
duke@1 700 mask = PRIVATE;
duke@1 701 } else
duke@1 702 mask = ConstructorFlags;
duke@1 703 } else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 704 mask = implicit = InterfaceMethodFlags;
duke@1 705 else {
duke@1 706 mask = MethodFlags;
duke@1 707 }
duke@1 708 // Imply STRICTFP if owner has STRICTFP set.
duke@1 709 if (((flags|implicit) & Flags.ABSTRACT) == 0)
duke@1 710 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 711 break;
duke@1 712 case TYP:
duke@1 713 if (sym.isLocal()) {
duke@1 714 mask = LocalClassFlags;
jjg@113 715 if (sym.name.isEmpty()) { // Anonymous class
duke@1 716 // Anonymous classes in static methods are themselves static;
duke@1 717 // that's why we admit STATIC here.
duke@1 718 mask |= STATIC;
duke@1 719 // JLS: Anonymous classes are final.
duke@1 720 implicit |= FINAL;
duke@1 721 }
duke@1 722 if ((sym.owner.flags_field & STATIC) == 0 &&
duke@1 723 (flags & ENUM) != 0)
duke@1 724 log.error(pos, "enums.must.be.static");
duke@1 725 } else if (sym.owner.kind == TYP) {
duke@1 726 mask = MemberClassFlags;
duke@1 727 if (sym.owner.owner.kind == PCK ||
duke@1 728 (sym.owner.flags_field & STATIC) != 0)
duke@1 729 mask |= STATIC;
duke@1 730 else if ((flags & ENUM) != 0)
duke@1 731 log.error(pos, "enums.must.be.static");
duke@1 732 // Nested interfaces and enums are always STATIC (Spec ???)
duke@1 733 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
duke@1 734 } else {
duke@1 735 mask = ClassFlags;
duke@1 736 }
duke@1 737 // Interfaces are always ABSTRACT
duke@1 738 if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
duke@1 739
duke@1 740 if ((flags & ENUM) != 0) {
duke@1 741 // enums can't be declared abstract or final
duke@1 742 mask &= ~(ABSTRACT | FINAL);
duke@1 743 implicit |= implicitEnumFinalFlag(tree);
duke@1 744 }
duke@1 745 // Imply STRICTFP if owner has STRICTFP set.
duke@1 746 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 747 break;
duke@1 748 default:
duke@1 749 throw new AssertionError();
duke@1 750 }
duke@1 751 long illegal = flags & StandardFlags & ~mask;
duke@1 752 if (illegal != 0) {
duke@1 753 if ((illegal & INTERFACE) != 0) {
duke@1 754 log.error(pos, "intf.not.allowed.here");
duke@1 755 mask |= INTERFACE;
duke@1 756 }
duke@1 757 else {
duke@1 758 log.error(pos,
mcimadamore@80 759 "mod.not.allowed.here", asFlagSet(illegal));
duke@1 760 }
duke@1 761 }
duke@1 762 else if ((sym.kind == TYP ||
duke@1 763 // ISSUE: Disallowing abstract&private is no longer appropriate
duke@1 764 // in the presence of inner classes. Should it be deleted here?
duke@1 765 checkDisjoint(pos, flags,
duke@1 766 ABSTRACT,
duke@1 767 PRIVATE | STATIC))
duke@1 768 &&
duke@1 769 checkDisjoint(pos, flags,
duke@1 770 ABSTRACT | INTERFACE,
duke@1 771 FINAL | NATIVE | SYNCHRONIZED)
duke@1 772 &&
duke@1 773 checkDisjoint(pos, flags,
duke@1 774 PUBLIC,
duke@1 775 PRIVATE | PROTECTED)
duke@1 776 &&
duke@1 777 checkDisjoint(pos, flags,
duke@1 778 PRIVATE,
duke@1 779 PUBLIC | PROTECTED)
duke@1 780 &&
duke@1 781 checkDisjoint(pos, flags,
duke@1 782 FINAL,
duke@1 783 VOLATILE)
duke@1 784 &&
duke@1 785 (sym.kind == TYP ||
duke@1 786 checkDisjoint(pos, flags,
duke@1 787 ABSTRACT | NATIVE,
duke@1 788 STRICTFP))) {
duke@1 789 // skip
duke@1 790 }
duke@1 791 return flags & (mask | ~StandardFlags) | implicit;
duke@1 792 }
duke@1 793
duke@1 794
duke@1 795 /** Determine if this enum should be implicitly final.
duke@1 796 *
duke@1 797 * If the enum has no specialized enum contants, it is final.
duke@1 798 *
duke@1 799 * If the enum does have specialized enum contants, it is
duke@1 800 * <i>not</i> final.
duke@1 801 */
duke@1 802 private long implicitEnumFinalFlag(JCTree tree) {
duke@1 803 if (tree.getTag() != JCTree.CLASSDEF) return 0;
duke@1 804 class SpecialTreeVisitor extends JCTree.Visitor {
duke@1 805 boolean specialized;
duke@1 806 SpecialTreeVisitor() {
duke@1 807 this.specialized = false;
duke@1 808 };
duke@1 809
jjg@398 810 @Override
duke@1 811 public void visitTree(JCTree tree) { /* no-op */ }
duke@1 812
jjg@398 813 @Override
duke@1 814 public void visitVarDef(JCVariableDecl tree) {
duke@1 815 if ((tree.mods.flags & ENUM) != 0) {
duke@1 816 if (tree.init instanceof JCNewClass &&
duke@1 817 ((JCNewClass) tree.init).def != null) {
duke@1 818 specialized = true;
duke@1 819 }
duke@1 820 }
duke@1 821 }
duke@1 822 }
duke@1 823
duke@1 824 SpecialTreeVisitor sts = new SpecialTreeVisitor();
duke@1 825 JCClassDecl cdef = (JCClassDecl) tree;
duke@1 826 for (JCTree defs: cdef.defs) {
duke@1 827 defs.accept(sts);
duke@1 828 if (sts.specialized) return 0;
duke@1 829 }
duke@1 830 return FINAL;
duke@1 831 }
duke@1 832
duke@1 833 /* *************************************************************************
duke@1 834 * Type Validation
duke@1 835 **************************************************************************/
duke@1 836
duke@1 837 /** Validate a type expression. That is,
duke@1 838 * check that all type arguments of a parametric type are within
duke@1 839 * their bounds. This must be done in a second phase after type attributon
duke@1 840 * since a class might have a subclass as type parameter bound. E.g:
duke@1 841 *
duke@1 842 * class B<A extends C> { ... }
duke@1 843 * class C extends B<C> { ... }
duke@1 844 *
duke@1 845 * and we can't make sure that the bound is already attributed because
duke@1 846 * of possible cycles.
duke@1 847 */
duke@1 848 private Validator validator = new Validator();
duke@1 849
duke@1 850 /** Visitor method: Validate a type expression, if it is not null, catching
duke@1 851 * and reporting any completion failures.
duke@1 852 */
mcimadamore@122 853 void validate(JCTree tree, Env<AttrContext> env) {
duke@1 854 try {
mcimadamore@122 855 if (tree != null) {
mcimadamore@122 856 validator.env = env;
mcimadamore@122 857 tree.accept(validator);
mcimadamore@122 858 checkRaw(tree, env);
mcimadamore@122 859 }
duke@1 860 } catch (CompletionFailure ex) {
duke@1 861 completionError(tree.pos(), ex);
duke@1 862 }
duke@1 863 }
mcimadamore@122 864 //where
mcimadamore@122 865 void checkRaw(JCTree tree, Env<AttrContext> env) {
mcimadamore@122 866 if (lint.isEnabled(Lint.LintCategory.RAW) &&
mcimadamore@122 867 tree.type.tag == CLASS &&
mcimadamore@122 868 !env.enclClass.name.isEmpty() && //anonymous or intersection
mcimadamore@122 869 tree.type.isRaw()) {
mcimadamore@122 870 log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
mcimadamore@122 871 }
mcimadamore@122 872 }
duke@1 873
duke@1 874 /** Visitor method: Validate a list of type expressions.
duke@1 875 */
mcimadamore@122 876 void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
duke@1 877 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
mcimadamore@122 878 validate(l.head, env);
duke@1 879 }
duke@1 880
duke@1 881 /** A visitor class for type validation.
duke@1 882 */
duke@1 883 class Validator extends JCTree.Visitor {
duke@1 884
jjg@398 885 @Override
duke@1 886 public void visitTypeArray(JCArrayTypeTree tree) {
mcimadamore@122 887 validate(tree.elemtype, env);
duke@1 888 }
duke@1 889
jjg@398 890 @Override
duke@1 891 public void visitTypeApply(JCTypeApply tree) {
duke@1 892 if (tree.type.tag == CLASS) {
mcimadamore@158 893 List<Type> formals = tree.type.tsym.type.allparams();
mcimadamore@158 894 List<Type> actuals = tree.type.allparams();
duke@1 895 List<JCExpression> args = tree.arguments;
mcimadamore@158 896 List<Type> forms = tree.type.tsym.type.getTypeArguments();
duke@1 897 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
duke@1 898
duke@1 899 // For matching pairs of actual argument types `a' and
duke@1 900 // formal type parameters with declared bound `b' ...
duke@1 901 while (args.nonEmpty() && forms.nonEmpty()) {
mcimadamore@122 902 validate(args.head, env);
duke@1 903
duke@1 904 // exact type arguments needs to know their
duke@1 905 // bounds (for upper and lower bound
duke@1 906 // calculations). So we create new TypeVars with
duke@1 907 // bounds substed with actuals.
duke@1 908 tvars_buf.append(types.substBound(((TypeVar)forms.head),
duke@1 909 formals,
mcimadamore@78 910 actuals));
duke@1 911
duke@1 912 args = args.tail;
duke@1 913 forms = forms.tail;
duke@1 914 }
duke@1 915
duke@1 916 args = tree.arguments;
mcimadamore@154 917 List<Type> tvars_cap = types.substBounds(formals,
mcimadamore@154 918 formals,
mcimadamore@158 919 types.capture(tree.type).allparams());
mcimadamore@154 920 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
mcimadamore@154 921 // Let the actual arguments know their bound
mcimadamore@154 922 args.head.type.withTypeVar((TypeVar)tvars_cap.head);
mcimadamore@154 923 args = args.tail;
mcimadamore@154 924 tvars_cap = tvars_cap.tail;
mcimadamore@154 925 }
mcimadamore@154 926
mcimadamore@154 927 args = tree.arguments;
duke@1 928 List<TypeVar> tvars = tvars_buf.toList();
mcimadamore@154 929
duke@1 930 while (args.nonEmpty() && tvars.nonEmpty()) {
mcimadamore@154 931 checkExtends(args.head.pos(),
mcimadamore@154 932 args.head.type,
mcimadamore@154 933 tvars.head);
duke@1 934 args = args.tail;
duke@1 935 tvars = tvars.tail;
duke@1 936 }
duke@1 937
mcimadamore@154 938 checkCapture(tree);
mcimadamore@383 939 }
mcimadamore@383 940 if (tree.type.tag == CLASS || tree.type.tag == FORALL) {
duke@1 941 // Check that this type is either fully parameterized, or
duke@1 942 // not parameterized at all.
duke@1 943 if (tree.type.getEnclosingType().isRaw())
duke@1 944 log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
duke@1 945 if (tree.clazz.getTag() == JCTree.SELECT)
duke@1 946 visitSelectInternal((JCFieldAccess)tree.clazz);
duke@1 947 }
duke@1 948 }
duke@1 949
jjg@398 950 @Override
duke@1 951 public void visitTypeParameter(JCTypeParameter tree) {
mcimadamore@122 952 validate(tree.bounds, env);
duke@1 953 checkClassBounds(tree.pos(), tree.type);
duke@1 954 }
duke@1 955
duke@1 956 @Override
duke@1 957 public void visitWildcard(JCWildcard tree) {
duke@1 958 if (tree.inner != null)
mcimadamore@122 959 validate(tree.inner, env);
duke@1 960 }
duke@1 961
jjg@398 962 @Override
duke@1 963 public void visitSelect(JCFieldAccess tree) {
duke@1 964 if (tree.type.tag == CLASS) {
duke@1 965 visitSelectInternal(tree);
duke@1 966
duke@1 967 // Check that this type is either fully parameterized, or
duke@1 968 // not parameterized at all.
duke@1 969 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
duke@1 970 log.error(tree.pos(), "improperly.formed.type.param.missing");
duke@1 971 }
duke@1 972 }
duke@1 973 public void visitSelectInternal(JCFieldAccess tree) {
mcimadamore@122 974 if (tree.type.tsym.isStatic() &&
duke@1 975 tree.selected.type.isParameterized()) {
duke@1 976 // The enclosing type is not a class, so we are
duke@1 977 // looking at a static member type. However, the
duke@1 978 // qualifying expression is parameterized.
duke@1 979 log.error(tree.pos(), "cant.select.static.class.from.param.type");
duke@1 980 } else {
duke@1 981 // otherwise validate the rest of the expression
mcimadamore@122 982 tree.selected.accept(this);
duke@1 983 }
duke@1 984 }
duke@1 985
jjg@398 986 @Override
jjg@308 987 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 988 tree.underlyingType.accept(this);
jjg@308 989 }
jjg@308 990
duke@1 991 /** Default visitor method: do nothing.
duke@1 992 */
jjg@398 993 @Override
duke@1 994 public void visitTree(JCTree tree) {
duke@1 995 }
mcimadamore@122 996
mcimadamore@122 997 Env<AttrContext> env;
duke@1 998 }
duke@1 999
duke@1 1000 /* *************************************************************************
duke@1 1001 * Exception checking
duke@1 1002 **************************************************************************/
duke@1 1003
duke@1 1004 /* The following methods treat classes as sets that contain
duke@1 1005 * the class itself and all their subclasses
duke@1 1006 */
duke@1 1007
duke@1 1008 /** Is given type a subtype of some of the types in given list?
duke@1 1009 */
duke@1 1010 boolean subset(Type t, List<Type> ts) {
duke@1 1011 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 1012 if (types.isSubtype(t, l.head)) return true;
duke@1 1013 return false;
duke@1 1014 }
duke@1 1015
duke@1 1016 /** Is given type a subtype or supertype of
duke@1 1017 * some of the types in given list?
duke@1 1018 */
duke@1 1019 boolean intersects(Type t, List<Type> ts) {
duke@1 1020 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 1021 if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
duke@1 1022 return false;
duke@1 1023 }
duke@1 1024
duke@1 1025 /** Add type set to given type list, unless it is a subclass of some class
duke@1 1026 * in the list.
duke@1 1027 */
duke@1 1028 List<Type> incl(Type t, List<Type> ts) {
duke@1 1029 return subset(t, ts) ? ts : excl(t, ts).prepend(t);
duke@1 1030 }
duke@1 1031
duke@1 1032 /** Remove type set from type set list.
duke@1 1033 */
duke@1 1034 List<Type> excl(Type t, List<Type> ts) {
duke@1 1035 if (ts.isEmpty()) {
duke@1 1036 return ts;
duke@1 1037 } else {
duke@1 1038 List<Type> ts1 = excl(t, ts.tail);
duke@1 1039 if (types.isSubtype(ts.head, t)) return ts1;
duke@1 1040 else if (ts1 == ts.tail) return ts;
duke@1 1041 else return ts1.prepend(ts.head);
duke@1 1042 }
duke@1 1043 }
duke@1 1044
duke@1 1045 /** Form the union of two type set lists.
duke@1 1046 */
duke@1 1047 List<Type> union(List<Type> ts1, List<Type> ts2) {
duke@1 1048 List<Type> ts = ts1;
duke@1 1049 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1050 ts = incl(l.head, ts);
duke@1 1051 return ts;
duke@1 1052 }
duke@1 1053
duke@1 1054 /** Form the difference of two type lists.
duke@1 1055 */
duke@1 1056 List<Type> diff(List<Type> ts1, List<Type> ts2) {
duke@1 1057 List<Type> ts = ts1;
duke@1 1058 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1059 ts = excl(l.head, ts);
duke@1 1060 return ts;
duke@1 1061 }
duke@1 1062
duke@1 1063 /** Form the intersection of two type lists.
duke@1 1064 */
duke@1 1065 public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
duke@1 1066 List<Type> ts = List.nil();
duke@1 1067 for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
duke@1 1068 if (subset(l.head, ts2)) ts = incl(l.head, ts);
duke@1 1069 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1070 if (subset(l.head, ts1)) ts = incl(l.head, ts);
duke@1 1071 return ts;
duke@1 1072 }
duke@1 1073
duke@1 1074 /** Is exc an exception symbol that need not be declared?
duke@1 1075 */
duke@1 1076 boolean isUnchecked(ClassSymbol exc) {
duke@1 1077 return
duke@1 1078 exc.kind == ERR ||
duke@1 1079 exc.isSubClass(syms.errorType.tsym, types) ||
duke@1 1080 exc.isSubClass(syms.runtimeExceptionType.tsym, types);
duke@1 1081 }
duke@1 1082
duke@1 1083 /** Is exc an exception type that need not be declared?
duke@1 1084 */
duke@1 1085 boolean isUnchecked(Type exc) {
duke@1 1086 return
duke@1 1087 (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
duke@1 1088 (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
duke@1 1089 exc.tag == BOT;
duke@1 1090 }
duke@1 1091
duke@1 1092 /** Same, but handling completion failures.
duke@1 1093 */
duke@1 1094 boolean isUnchecked(DiagnosticPosition pos, Type exc) {
duke@1 1095 try {
duke@1 1096 return isUnchecked(exc);
duke@1 1097 } catch (CompletionFailure ex) {
duke@1 1098 completionError(pos, ex);
duke@1 1099 return true;
duke@1 1100 }
duke@1 1101 }
duke@1 1102
duke@1 1103 /** Is exc handled by given exception list?
duke@1 1104 */
duke@1 1105 boolean isHandled(Type exc, List<Type> handled) {
duke@1 1106 return isUnchecked(exc) || subset(exc, handled);
duke@1 1107 }
duke@1 1108
duke@1 1109 /** Return all exceptions in thrown list that are not in handled list.
duke@1 1110 * @param thrown The list of thrown exceptions.
duke@1 1111 * @param handled The list of handled exceptions.
duke@1 1112 */
mcimadamore@362 1113 List<Type> unhandled(List<Type> thrown, List<Type> handled) {
duke@1 1114 List<Type> unhandled = List.nil();
duke@1 1115 for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
duke@1 1116 if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
duke@1 1117 return unhandled;
duke@1 1118 }
duke@1 1119
duke@1 1120 /* *************************************************************************
duke@1 1121 * Overriding/Implementation checking
duke@1 1122 **************************************************************************/
duke@1 1123
duke@1 1124 /** The level of access protection given by a flag set,
duke@1 1125 * where PRIVATE is highest and PUBLIC is lowest.
duke@1 1126 */
duke@1 1127 static int protection(long flags) {
duke@1 1128 switch ((short)(flags & AccessFlags)) {
duke@1 1129 case PRIVATE: return 3;
duke@1 1130 case PROTECTED: return 1;
duke@1 1131 default:
duke@1 1132 case PUBLIC: return 0;
duke@1 1133 case 0: return 2;
duke@1 1134 }
duke@1 1135 }
duke@1 1136
duke@1 1137 /** A customized "cannot override" error message.
duke@1 1138 * @param m The overriding method.
duke@1 1139 * @param other The overridden method.
duke@1 1140 * @return An internationalized string.
duke@1 1141 */
mcimadamore@89 1142 Object cannotOverride(MethodSymbol m, MethodSymbol other) {
duke@1 1143 String key;
duke@1 1144 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1145 key = "cant.override";
duke@1 1146 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1147 key = "cant.implement";
duke@1 1148 else
duke@1 1149 key = "clashes.with";
mcimadamore@89 1150 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1151 }
duke@1 1152
duke@1 1153 /** A customized "override" warning message.
duke@1 1154 * @param m The overriding method.
duke@1 1155 * @param other The overridden method.
duke@1 1156 * @return An internationalized string.
duke@1 1157 */
mcimadamore@89 1158 Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1159 String key;
duke@1 1160 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1161 key = "unchecked.override";
duke@1 1162 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1163 key = "unchecked.implement";
duke@1 1164 else
duke@1 1165 key = "unchecked.clash.with";
mcimadamore@89 1166 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1167 }
duke@1 1168
duke@1 1169 /** A customized "override" warning message.
duke@1 1170 * @param m The overriding method.
duke@1 1171 * @param other The overridden method.
duke@1 1172 * @return An internationalized string.
duke@1 1173 */
mcimadamore@89 1174 Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1175 String key;
duke@1 1176 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1177 key = "varargs.override";
duke@1 1178 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1179 key = "varargs.implement";
duke@1 1180 else
duke@1 1181 key = "varargs.clash.with";
mcimadamore@89 1182 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1183 }
duke@1 1184
duke@1 1185 /** Check that this method conforms with overridden method 'other'.
duke@1 1186 * where `origin' is the class where checking started.
duke@1 1187 * Complications:
duke@1 1188 * (1) Do not check overriding of synthetic methods
duke@1 1189 * (reason: they might be final).
duke@1 1190 * todo: check whether this is still necessary.
duke@1 1191 * (2) Admit the case where an interface proxy throws fewer exceptions
duke@1 1192 * than the method it implements. Augment the proxy methods with the
duke@1 1193 * undeclared exceptions in this case.
duke@1 1194 * (3) When generics are enabled, admit the case where an interface proxy
duke@1 1195 * has a result type
duke@1 1196 * extended by the result type of the method it implements.
duke@1 1197 * Change the proxies result type to the smaller type in this case.
duke@1 1198 *
duke@1 1199 * @param tree The tree from which positions
duke@1 1200 * are extracted for errors.
duke@1 1201 * @param m The overriding method.
duke@1 1202 * @param other The overridden method.
duke@1 1203 * @param origin The class of which the overriding method
duke@1 1204 * is a member.
duke@1 1205 */
duke@1 1206 void checkOverride(JCTree tree,
duke@1 1207 MethodSymbol m,
duke@1 1208 MethodSymbol other,
duke@1 1209 ClassSymbol origin) {
duke@1 1210 // Don't check overriding of synthetic methods or by bridge methods.
duke@1 1211 if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
duke@1 1212 return;
duke@1 1213 }
duke@1 1214
duke@1 1215 // Error if static method overrides instance method (JLS 8.4.6.2).
duke@1 1216 if ((m.flags() & STATIC) != 0 &&
duke@1 1217 (other.flags() & STATIC) == 0) {
duke@1 1218 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
duke@1 1219 cannotOverride(m, other));
duke@1 1220 return;
duke@1 1221 }
duke@1 1222
duke@1 1223 // Error if instance method overrides static or final
duke@1 1224 // method (JLS 8.4.6.1).
duke@1 1225 if ((other.flags() & FINAL) != 0 ||
duke@1 1226 (m.flags() & STATIC) == 0 &&
duke@1 1227 (other.flags() & STATIC) != 0) {
duke@1 1228 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
duke@1 1229 cannotOverride(m, other),
mcimadamore@80 1230 asFlagSet(other.flags() & (FINAL | STATIC)));
duke@1 1231 return;
duke@1 1232 }
duke@1 1233
duke@1 1234 if ((m.owner.flags() & ANNOTATION) != 0) {
duke@1 1235 // handled in validateAnnotationMethod
duke@1 1236 return;
duke@1 1237 }
duke@1 1238
duke@1 1239 // Error if overriding method has weaker access (JLS 8.4.6.3).
duke@1 1240 if ((origin.flags() & INTERFACE) == 0 &&
duke@1 1241 protection(m.flags()) > protection(other.flags())) {
duke@1 1242 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
duke@1 1243 cannotOverride(m, other),
mcimadamore@80 1244 other.flags() == 0 ?
mcimadamore@80 1245 Flag.PACKAGE :
mcimadamore@80 1246 asFlagSet(other.flags() & AccessFlags));
duke@1 1247 return;
duke@1 1248 }
duke@1 1249
duke@1 1250 Type mt = types.memberType(origin.type, m);
duke@1 1251 Type ot = types.memberType(origin.type, other);
duke@1 1252 // Error if overriding result type is different
duke@1 1253 // (or, in the case of generics mode, not a subtype) of
duke@1 1254 // overridden result type. We have to rename any type parameters
duke@1 1255 // before comparing types.
duke@1 1256 List<Type> mtvars = mt.getTypeArguments();
duke@1 1257 List<Type> otvars = ot.getTypeArguments();
duke@1 1258 Type mtres = mt.getReturnType();
duke@1 1259 Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
duke@1 1260
duke@1 1261 overrideWarner.warned = false;
duke@1 1262 boolean resultTypesOK =
tbell@202 1263 types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
duke@1 1264 if (!resultTypesOK) {
jjg@398 1265 if (!allowCovariantReturns &&
duke@1 1266 m.owner != origin &&
duke@1 1267 m.owner.isSubClass(other.owner, types)) {
duke@1 1268 // allow limited interoperability with covariant returns
duke@1 1269 } else {
mcimadamore@362 1270 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1271 "override.incompatible.ret",
mcimadamore@362 1272 cannotOverride(m, other),
duke@1 1273 mtres, otres);
duke@1 1274 return;
duke@1 1275 }
duke@1 1276 } else if (overrideWarner.warned) {
duke@1 1277 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1278 "override.unchecked.ret",
mcimadamore@362 1279 uncheckedOverrides(m, other),
mcimadamore@362 1280 mtres, otres);
duke@1 1281 }
duke@1 1282
duke@1 1283 // Error if overriding method throws an exception not reported
duke@1 1284 // by overridden method.
duke@1 1285 List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
mcimadamore@362 1286 List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
mcimadamore@362 1287 List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
mcimadamore@362 1288 if (unhandledErased.nonEmpty()) {
duke@1 1289 log.error(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1290 "override.meth.doesnt.throw",
duke@1 1291 cannotOverride(m, other),
mcimadamore@362 1292 unhandledUnerased.head);
mcimadamore@362 1293 return;
mcimadamore@362 1294 }
mcimadamore@362 1295 else if (unhandledUnerased.nonEmpty()) {
mcimadamore@362 1296 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1297 "override.unchecked.thrown",
mcimadamore@362 1298 cannotOverride(m, other),
mcimadamore@362 1299 unhandledUnerased.head);
duke@1 1300 return;
duke@1 1301 }
duke@1 1302
duke@1 1303 // Optional warning if varargs don't agree
duke@1 1304 if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
duke@1 1305 && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
duke@1 1306 log.warning(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1307 ((m.flags() & Flags.VARARGS) != 0)
duke@1 1308 ? "override.varargs.missing"
duke@1 1309 : "override.varargs.extra",
duke@1 1310 varargsOverrides(m, other));
duke@1 1311 }
duke@1 1312
duke@1 1313 // Warn if instance method overrides bridge method (compiler spec ??)
duke@1 1314 if ((other.flags() & BRIDGE) != 0) {
duke@1 1315 log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
duke@1 1316 uncheckedOverrides(m, other));
duke@1 1317 }
duke@1 1318
duke@1 1319 // Warn if a deprecated method overridden by a non-deprecated one.
duke@1 1320 if ((other.flags() & DEPRECATED) != 0
duke@1 1321 && (m.flags() & DEPRECATED) == 0
duke@1 1322 && m.outermostClass() != other.outermostClass()
duke@1 1323 && !isDeprecatedOverrideIgnorable(other, origin)) {
duke@1 1324 warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
duke@1 1325 }
duke@1 1326 }
duke@1 1327 // where
duke@1 1328 private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
duke@1 1329 // If the method, m, is defined in an interface, then ignore the issue if the method
duke@1 1330 // is only inherited via a supertype and also implemented in the supertype,
duke@1 1331 // because in that case, we will rediscover the issue when examining the method
duke@1 1332 // in the supertype.
duke@1 1333 // If the method, m, is not defined in an interface, then the only time we need to
duke@1 1334 // address the issue is when the method is the supertype implemementation: any other
duke@1 1335 // case, we will have dealt with when examining the supertype classes
duke@1 1336 ClassSymbol mc = m.enclClass();
duke@1 1337 Type st = types.supertype(origin.type);
duke@1 1338 if (st.tag != CLASS)
duke@1 1339 return true;
duke@1 1340 MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
duke@1 1341
duke@1 1342 if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
duke@1 1343 List<Type> intfs = types.interfaces(origin.type);
duke@1 1344 return (intfs.contains(mc.type) ? false : (stimpl != null));
duke@1 1345 }
duke@1 1346 else
duke@1 1347 return (stimpl != m);
duke@1 1348 }
duke@1 1349
duke@1 1350
duke@1 1351 // used to check if there were any unchecked conversions
duke@1 1352 Warner overrideWarner = new Warner();
duke@1 1353
duke@1 1354 /** Check that a class does not inherit two concrete methods
duke@1 1355 * with the same signature.
duke@1 1356 * @param pos Position to be used for error reporting.
duke@1 1357 * @param site The class type to be checked.
duke@1 1358 */
duke@1 1359 public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
duke@1 1360 Type sup = types.supertype(site);
duke@1 1361 if (sup.tag != CLASS) return;
duke@1 1362
duke@1 1363 for (Type t1 = sup;
duke@1 1364 t1.tsym.type.isParameterized();
duke@1 1365 t1 = types.supertype(t1)) {
duke@1 1366 for (Scope.Entry e1 = t1.tsym.members().elems;
duke@1 1367 e1 != null;
duke@1 1368 e1 = e1.sibling) {
duke@1 1369 Symbol s1 = e1.sym;
duke@1 1370 if (s1.kind != MTH ||
duke@1 1371 (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1372 !s1.isInheritedIn(site.tsym, types) ||
duke@1 1373 ((MethodSymbol)s1).implementation(site.tsym,
duke@1 1374 types,
duke@1 1375 true) != s1)
duke@1 1376 continue;
duke@1 1377 Type st1 = types.memberType(t1, s1);
duke@1 1378 int s1ArgsLength = st1.getParameterTypes().length();
duke@1 1379 if (st1 == s1.type) continue;
duke@1 1380
duke@1 1381 for (Type t2 = sup;
duke@1 1382 t2.tag == CLASS;
duke@1 1383 t2 = types.supertype(t2)) {
mcimadamore@24 1384 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
duke@1 1385 e2.scope != null;
duke@1 1386 e2 = e2.next()) {
duke@1 1387 Symbol s2 = e2.sym;
duke@1 1388 if (s2 == s1 ||
duke@1 1389 s2.kind != MTH ||
duke@1 1390 (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1391 s2.type.getParameterTypes().length() != s1ArgsLength ||
duke@1 1392 !s2.isInheritedIn(site.tsym, types) ||
duke@1 1393 ((MethodSymbol)s2).implementation(site.tsym,
duke@1 1394 types,
duke@1 1395 true) != s2)
duke@1 1396 continue;
duke@1 1397 Type st2 = types.memberType(t2, s2);
duke@1 1398 if (types.overrideEquivalent(st1, st2))
duke@1 1399 log.error(pos, "concrete.inheritance.conflict",
duke@1 1400 s1, t1, s2, t2, sup);
duke@1 1401 }
duke@1 1402 }
duke@1 1403 }
duke@1 1404 }
duke@1 1405 }
duke@1 1406
duke@1 1407 /** Check that classes (or interfaces) do not each define an abstract
duke@1 1408 * method with same name and arguments but incompatible return types.
duke@1 1409 * @param pos Position to be used for error reporting.
duke@1 1410 * @param t1 The first argument type.
duke@1 1411 * @param t2 The second argument type.
duke@1 1412 */
duke@1 1413 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1414 Type t1,
duke@1 1415 Type t2) {
duke@1 1416 return checkCompatibleAbstracts(pos, t1, t2,
duke@1 1417 types.makeCompoundType(t1, t2));
duke@1 1418 }
duke@1 1419
duke@1 1420 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1421 Type t1,
duke@1 1422 Type t2,
duke@1 1423 Type site) {
duke@1 1424 Symbol sym = firstIncompatibility(t1, t2, site);
duke@1 1425 if (sym != null) {
duke@1 1426 log.error(pos, "types.incompatible.diff.ret",
duke@1 1427 t1, t2, sym.name +
duke@1 1428 "(" + types.memberType(t2, sym).getParameterTypes() + ")");
duke@1 1429 return false;
duke@1 1430 }
duke@1 1431 return true;
duke@1 1432 }
duke@1 1433
duke@1 1434 /** Return the first method which is defined with same args
duke@1 1435 * but different return types in two given interfaces, or null if none
duke@1 1436 * exists.
duke@1 1437 * @param t1 The first type.
duke@1 1438 * @param t2 The second type.
duke@1 1439 * @param site The most derived type.
duke@1 1440 * @returns symbol from t2 that conflicts with one in t1.
duke@1 1441 */
duke@1 1442 private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
duke@1 1443 Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
duke@1 1444 closure(t1, interfaces1);
duke@1 1445 Map<TypeSymbol,Type> interfaces2;
duke@1 1446 if (t1 == t2)
duke@1 1447 interfaces2 = interfaces1;
duke@1 1448 else
duke@1 1449 closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
duke@1 1450
duke@1 1451 for (Type t3 : interfaces1.values()) {
duke@1 1452 for (Type t4 : interfaces2.values()) {
duke@1 1453 Symbol s = firstDirectIncompatibility(t3, t4, site);
duke@1 1454 if (s != null) return s;
duke@1 1455 }
duke@1 1456 }
duke@1 1457 return null;
duke@1 1458 }
duke@1 1459
duke@1 1460 /** Compute all the supertypes of t, indexed by type symbol. */
duke@1 1461 private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
duke@1 1462 if (t.tag != CLASS) return;
duke@1 1463 if (typeMap.put(t.tsym, t) == null) {
duke@1 1464 closure(types.supertype(t), typeMap);
duke@1 1465 for (Type i : types.interfaces(t))
duke@1 1466 closure(i, typeMap);
duke@1 1467 }
duke@1 1468 }
duke@1 1469
duke@1 1470 /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
duke@1 1471 private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
duke@1 1472 if (t.tag != CLASS) return;
duke@1 1473 if (typesSkip.get(t.tsym) != null) return;
duke@1 1474 if (typeMap.put(t.tsym, t) == null) {
duke@1 1475 closure(types.supertype(t), typesSkip, typeMap);
duke@1 1476 for (Type i : types.interfaces(t))
duke@1 1477 closure(i, typesSkip, typeMap);
duke@1 1478 }
duke@1 1479 }
duke@1 1480
duke@1 1481 /** Return the first method in t2 that conflicts with a method from t1. */
duke@1 1482 private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
duke@1 1483 for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
duke@1 1484 Symbol s1 = e1.sym;
duke@1 1485 Type st1 = null;
duke@1 1486 if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
duke@1 1487 Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
duke@1 1488 if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
duke@1 1489 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
duke@1 1490 Symbol s2 = e2.sym;
duke@1 1491 if (s1 == s2) continue;
duke@1 1492 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
duke@1 1493 if (st1 == null) st1 = types.memberType(t1, s1);
duke@1 1494 Type st2 = types.memberType(t2, s2);
duke@1 1495 if (types.overrideEquivalent(st1, st2)) {
duke@1 1496 List<Type> tvars1 = st1.getTypeArguments();
duke@1 1497 List<Type> tvars2 = st2.getTypeArguments();
duke@1 1498 Type rt1 = st1.getReturnType();
duke@1 1499 Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
duke@1 1500 boolean compat =
duke@1 1501 types.isSameType(rt1, rt2) ||
duke@1 1502 rt1.tag >= CLASS && rt2.tag >= CLASS &&
duke@1 1503 (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
mcimadamore@59 1504 types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
mcimadamore@59 1505 checkCommonOverriderIn(s1,s2,site);
duke@1 1506 if (!compat) return s2;
duke@1 1507 }
duke@1 1508 }
duke@1 1509 }
duke@1 1510 return null;
duke@1 1511 }
mcimadamore@59 1512 //WHERE
mcimadamore@59 1513 boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
mcimadamore@59 1514 Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
mcimadamore@59 1515 Type st1 = types.memberType(site, s1);
mcimadamore@59 1516 Type st2 = types.memberType(site, s2);
mcimadamore@59 1517 closure(site, supertypes);
mcimadamore@59 1518 for (Type t : supertypes.values()) {
mcimadamore@59 1519 for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
mcimadamore@59 1520 Symbol s3 = e.sym;
mcimadamore@59 1521 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
mcimadamore@59 1522 Type st3 = types.memberType(site,s3);
mcimadamore@59 1523 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
mcimadamore@59 1524 if (s3.owner == site.tsym) {
mcimadamore@59 1525 return true;
mcimadamore@59 1526 }
mcimadamore@59 1527 List<Type> tvars1 = st1.getTypeArguments();
mcimadamore@59 1528 List<Type> tvars2 = st2.getTypeArguments();
mcimadamore@59 1529 List<Type> tvars3 = st3.getTypeArguments();
mcimadamore@59 1530 Type rt1 = st1.getReturnType();
mcimadamore@59 1531 Type rt2 = st2.getReturnType();
mcimadamore@59 1532 Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
mcimadamore@59 1533 Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
mcimadamore@59 1534 boolean compat =
mcimadamore@59 1535 rt13.tag >= CLASS && rt23.tag >= CLASS &&
mcimadamore@59 1536 (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
mcimadamore@59 1537 types.covariantReturnType(rt23, rt2, Warner.noWarnings));
mcimadamore@59 1538 if (compat)
mcimadamore@59 1539 return true;
mcimadamore@59 1540 }
mcimadamore@59 1541 }
mcimadamore@59 1542 }
mcimadamore@59 1543 return false;
mcimadamore@59 1544 }
duke@1 1545
duke@1 1546 /** Check that a given method conforms with any method it overrides.
duke@1 1547 * @param tree The tree from which positions are extracted
duke@1 1548 * for errors.
duke@1 1549 * @param m The overriding method.
duke@1 1550 */
duke@1 1551 void checkOverride(JCTree tree, MethodSymbol m) {
duke@1 1552 ClassSymbol origin = (ClassSymbol)m.owner;
duke@1 1553 if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
duke@1 1554 if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
duke@1 1555 log.error(tree.pos(), "enum.no.finalize");
duke@1 1556 return;
duke@1 1557 }
duke@1 1558 for (Type t = types.supertype(origin.type); t.tag == CLASS;
duke@1 1559 t = types.supertype(t)) {
duke@1 1560 TypeSymbol c = t.tsym;
duke@1 1561 Scope.Entry e = c.members().lookup(m.name);
duke@1 1562 while (e.scope != null) {
duke@1 1563 if (m.overrides(e.sym, origin, types, false))
duke@1 1564 checkOverride(tree, m, (MethodSymbol)e.sym, origin);
mcimadamore@252 1565 else if (e.sym.kind == MTH &&
mcimadamore@252 1566 e.sym.isInheritedIn(origin, types) &&
mcimadamore@252 1567 (e.sym.flags() & SYNTHETIC) == 0 &&
mcimadamore@252 1568 !m.isConstructor()) {
mcimadamore@24 1569 Type er1 = m.erasure(types);
mcimadamore@24 1570 Type er2 = e.sym.erasure(types);
mcimadamore@252 1571 if (types.isSameTypes(er1.getParameterTypes(),
mcimadamore@252 1572 er2.getParameterTypes())) {
mcimadamore@24 1573 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@24 1574 "name.clash.same.erasure.no.override",
mcimadamore@24 1575 m, m.location(),
mcimadamore@24 1576 e.sym, e.sym.location());
mcimadamore@24 1577 }
mcimadamore@24 1578 }
duke@1 1579 e = e.next();
duke@1 1580 }
duke@1 1581 }
duke@1 1582 }
duke@1 1583
duke@1 1584 /** Check that all abstract members of given class have definitions.
duke@1 1585 * @param pos Position to be used for error reporting.
duke@1 1586 * @param c The class.
duke@1 1587 */
duke@1 1588 void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1589 try {
duke@1 1590 MethodSymbol undef = firstUndef(c, c);
duke@1 1591 if (undef != null) {
duke@1 1592 if ((c.flags() & ENUM) != 0 &&
duke@1 1593 types.supertype(c.type).tsym == syms.enumSym &&
duke@1 1594 (c.flags() & FINAL) == 0) {
duke@1 1595 // add the ABSTRACT flag to an enum
duke@1 1596 c.flags_field |= ABSTRACT;
duke@1 1597 } else {
duke@1 1598 MethodSymbol undef1 =
duke@1 1599 new MethodSymbol(undef.flags(), undef.name,
duke@1 1600 types.memberType(c.type, undef), undef.owner);
duke@1 1601 log.error(pos, "does.not.override.abstract",
duke@1 1602 c, undef1, undef1.location());
duke@1 1603 }
duke@1 1604 }
duke@1 1605 } catch (CompletionFailure ex) {
duke@1 1606 completionError(pos, ex);
duke@1 1607 }
duke@1 1608 }
duke@1 1609 //where
duke@1 1610 /** Return first abstract member of class `c' that is not defined
duke@1 1611 * in `impl', null if there is none.
duke@1 1612 */
duke@1 1613 private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
duke@1 1614 MethodSymbol undef = null;
duke@1 1615 // Do not bother to search in classes that are not abstract,
duke@1 1616 // since they cannot have abstract members.
duke@1 1617 if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1618 Scope s = c.members();
duke@1 1619 for (Scope.Entry e = s.elems;
duke@1 1620 undef == null && e != null;
duke@1 1621 e = e.sibling) {
duke@1 1622 if (e.sym.kind == MTH &&
duke@1 1623 (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
duke@1 1624 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1625 MethodSymbol implmeth = absmeth.implementation(impl, types, true);
duke@1 1626 if (implmeth == null || implmeth == absmeth)
duke@1 1627 undef = absmeth;
duke@1 1628 }
duke@1 1629 }
duke@1 1630 if (undef == null) {
duke@1 1631 Type st = types.supertype(c.type);
duke@1 1632 if (st.tag == CLASS)
duke@1 1633 undef = firstUndef(impl, (ClassSymbol)st.tsym);
duke@1 1634 }
duke@1 1635 for (List<Type> l = types.interfaces(c.type);
duke@1 1636 undef == null && l.nonEmpty();
duke@1 1637 l = l.tail) {
duke@1 1638 undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
duke@1 1639 }
duke@1 1640 }
duke@1 1641 return undef;
duke@1 1642 }
duke@1 1643
duke@1 1644 /** Check for cyclic references. Issue an error if the
duke@1 1645 * symbol of the type referred to has a LOCKED flag set.
duke@1 1646 *
duke@1 1647 * @param pos Position to be used for error reporting.
duke@1 1648 * @param t The type referred to.
duke@1 1649 */
duke@1 1650 void checkNonCyclic(DiagnosticPosition pos, Type t) {
duke@1 1651 checkNonCyclicInternal(pos, t);
duke@1 1652 }
duke@1 1653
duke@1 1654
duke@1 1655 void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
mcimadamore@236 1656 checkNonCyclic1(pos, t, List.<TypeVar>nil());
duke@1 1657 }
duke@1 1658
mcimadamore@236 1659 private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
duke@1 1660 final TypeVar tv;
mcimadamore@42 1661 if (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
mcimadamore@42 1662 return;
duke@1 1663 if (seen.contains(t)) {
duke@1 1664 tv = (TypeVar)t;
jjg@110 1665 tv.bound = types.createErrorType(t);
duke@1 1666 log.error(pos, "cyclic.inheritance", t);
duke@1 1667 } else if (t.tag == TYPEVAR) {
duke@1 1668 tv = (TypeVar)t;
mcimadamore@236 1669 seen = seen.prepend(tv);
duke@1 1670 for (Type b : types.getBounds(tv))
duke@1 1671 checkNonCyclic1(pos, b, seen);
duke@1 1672 }
duke@1 1673 }
duke@1 1674
duke@1 1675 /** Check for cyclic references. Issue an error if the
duke@1 1676 * symbol of the type referred to has a LOCKED flag set.
duke@1 1677 *
duke@1 1678 * @param pos Position to be used for error reporting.
duke@1 1679 * @param t The type referred to.
duke@1 1680 * @returns True if the check completed on all attributed classes
duke@1 1681 */
duke@1 1682 private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
duke@1 1683 boolean complete = true; // was the check complete?
duke@1 1684 //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
duke@1 1685 Symbol c = t.tsym;
duke@1 1686 if ((c.flags_field & ACYCLIC) != 0) return true;
duke@1 1687
duke@1 1688 if ((c.flags_field & LOCKED) != 0) {
duke@1 1689 noteCyclic(pos, (ClassSymbol)c);
duke@1 1690 } else if (!c.type.isErroneous()) {
duke@1 1691 try {
duke@1 1692 c.flags_field |= LOCKED;
duke@1 1693 if (c.type.tag == CLASS) {
duke@1 1694 ClassType clazz = (ClassType)c.type;
duke@1 1695 if (clazz.interfaces_field != null)
duke@1 1696 for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
duke@1 1697 complete &= checkNonCyclicInternal(pos, l.head);
duke@1 1698 if (clazz.supertype_field != null) {
duke@1 1699 Type st = clazz.supertype_field;
duke@1 1700 if (st != null && st.tag == CLASS)
duke@1 1701 complete &= checkNonCyclicInternal(pos, st);
duke@1 1702 }
duke@1 1703 if (c.owner.kind == TYP)
duke@1 1704 complete &= checkNonCyclicInternal(pos, c.owner.type);
duke@1 1705 }
duke@1 1706 } finally {
duke@1 1707 c.flags_field &= ~LOCKED;
duke@1 1708 }
duke@1 1709 }
duke@1 1710 if (complete)
duke@1 1711 complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
duke@1 1712 if (complete) c.flags_field |= ACYCLIC;
duke@1 1713 return complete;
duke@1 1714 }
duke@1 1715
duke@1 1716 /** Note that we found an inheritance cycle. */
duke@1 1717 private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1718 log.error(pos, "cyclic.inheritance", c);
duke@1 1719 for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
jjg@110 1720 l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
duke@1 1721 Type st = types.supertype(c.type);
duke@1 1722 if (st.tag == CLASS)
jjg@110 1723 ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
jjg@110 1724 c.type = types.createErrorType(c, c.type);
duke@1 1725 c.flags_field |= ACYCLIC;
duke@1 1726 }
duke@1 1727
duke@1 1728 /** Check that all methods which implement some
duke@1 1729 * method conform to the method they implement.
duke@1 1730 * @param tree The class definition whose members are checked.
duke@1 1731 */
duke@1 1732 void checkImplementations(JCClassDecl tree) {
duke@1 1733 checkImplementations(tree, tree.sym);
duke@1 1734 }
duke@1 1735 //where
duke@1 1736 /** Check that all methods which implement some
duke@1 1737 * method in `ic' conform to the method they implement.
duke@1 1738 */
duke@1 1739 void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
duke@1 1740 ClassSymbol origin = tree.sym;
duke@1 1741 for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
duke@1 1742 ClassSymbol lc = (ClassSymbol)l.head.tsym;
duke@1 1743 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
duke@1 1744 for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
duke@1 1745 if (e.sym.kind == MTH &&
duke@1 1746 (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
duke@1 1747 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1748 MethodSymbol implmeth = absmeth.implementation(origin, types, false);
duke@1 1749 if (implmeth != null && implmeth != absmeth &&
duke@1 1750 (implmeth.owner.flags() & INTERFACE) ==
duke@1 1751 (origin.flags() & INTERFACE)) {
duke@1 1752 // don't check if implmeth is in a class, yet
duke@1 1753 // origin is an interface. This case arises only
duke@1 1754 // if implmeth is declared in Object. The reason is
duke@1 1755 // that interfaces really don't inherit from
duke@1 1756 // Object it's just that the compiler represents
duke@1 1757 // things that way.
duke@1 1758 checkOverride(tree, implmeth, absmeth, origin);
duke@1 1759 }
duke@1 1760 }
duke@1 1761 }
duke@1 1762 }
duke@1 1763 }
duke@1 1764 }
duke@1 1765
duke@1 1766 /** Check that all abstract methods implemented by a class are
duke@1 1767 * mutually compatible.
duke@1 1768 * @param pos Position to be used for error reporting.
duke@1 1769 * @param c The class whose interfaces are checked.
duke@1 1770 */
duke@1 1771 void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
duke@1 1772 List<Type> supertypes = types.interfaces(c);
duke@1 1773 Type supertype = types.supertype(c);
duke@1 1774 if (supertype.tag == CLASS &&
duke@1 1775 (supertype.tsym.flags() & ABSTRACT) != 0)
duke@1 1776 supertypes = supertypes.prepend(supertype);
duke@1 1777 for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
duke@1 1778 if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
duke@1 1779 !checkCompatibleAbstracts(pos, l.head, l.head, c))
duke@1 1780 return;
duke@1 1781 for (List<Type> m = supertypes; m != l; m = m.tail)
duke@1 1782 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
duke@1 1783 return;
duke@1 1784 }
duke@1 1785 checkCompatibleConcretes(pos, c);
duke@1 1786 }
duke@1 1787
mcimadamore@359 1788 void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
mcimadamore@359 1789 for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
mcimadamore@359 1790 for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
mcimadamore@359 1791 // VM allows methods and variables with differing types
mcimadamore@359 1792 if (sym.kind == e.sym.kind &&
mcimadamore@359 1793 types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
mcimadamore@359 1794 sym != e.sym &&
mcimadamore@359 1795 (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
mcimadamore@359 1796 (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
mcimadamore@359 1797 syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
mcimadamore@359 1798 return;
mcimadamore@359 1799 }
mcimadamore@359 1800 }
mcimadamore@359 1801 }
mcimadamore@359 1802 }
mcimadamore@359 1803
mcimadamore@359 1804 /** Report a conflict between a user symbol and a synthetic symbol.
mcimadamore@359 1805 */
mcimadamore@359 1806 private void syntheticError(DiagnosticPosition pos, Symbol sym) {
mcimadamore@359 1807 if (!sym.type.isErroneous()) {
mcimadamore@359 1808 if (warnOnSyntheticConflicts) {
mcimadamore@359 1809 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
mcimadamore@359 1810 }
mcimadamore@359 1811 else {
mcimadamore@359 1812 log.error(pos, "synthetic.name.conflict", sym, sym.location());
mcimadamore@359 1813 }
mcimadamore@359 1814 }
mcimadamore@359 1815 }
mcimadamore@359 1816
duke@1 1817 /** Check that class c does not implement directly or indirectly
duke@1 1818 * the same parameterized interface with two different argument lists.
duke@1 1819 * @param pos Position to be used for error reporting.
duke@1 1820 * @param type The type whose interfaces are checked.
duke@1 1821 */
duke@1 1822 void checkClassBounds(DiagnosticPosition pos, Type type) {
duke@1 1823 checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
duke@1 1824 }
duke@1 1825 //where
duke@1 1826 /** Enter all interfaces of type `type' into the hash table `seensofar'
duke@1 1827 * with their class symbol as key and their type as value. Make
duke@1 1828 * sure no class is entered with two different types.
duke@1 1829 */
duke@1 1830 void checkClassBounds(DiagnosticPosition pos,
duke@1 1831 Map<TypeSymbol,Type> seensofar,
duke@1 1832 Type type) {
duke@1 1833 if (type.isErroneous()) return;
duke@1 1834 for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
duke@1 1835 Type it = l.head;
duke@1 1836 Type oldit = seensofar.put(it.tsym, it);
duke@1 1837 if (oldit != null) {
duke@1 1838 List<Type> oldparams = oldit.allparams();
duke@1 1839 List<Type> newparams = it.allparams();
duke@1 1840 if (!types.containsTypeEquivalent(oldparams, newparams))
duke@1 1841 log.error(pos, "cant.inherit.diff.arg",
duke@1 1842 it.tsym, Type.toString(oldparams),
duke@1 1843 Type.toString(newparams));
duke@1 1844 }
duke@1 1845 checkClassBounds(pos, seensofar, it);
duke@1 1846 }
duke@1 1847 Type st = types.supertype(type);
duke@1 1848 if (st != null) checkClassBounds(pos, seensofar, st);
duke@1 1849 }
duke@1 1850
duke@1 1851 /** Enter interface into into set.
duke@1 1852 * If it existed already, issue a "repeated interface" error.
duke@1 1853 */
duke@1 1854 void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
duke@1 1855 if (its.contains(it))
duke@1 1856 log.error(pos, "repeated.interface");
duke@1 1857 else {
duke@1 1858 its.add(it);
duke@1 1859 }
duke@1 1860 }
duke@1 1861
duke@1 1862 /* *************************************************************************
duke@1 1863 * Check annotations
duke@1 1864 **************************************************************************/
duke@1 1865
duke@1 1866 /** Annotation types are restricted to primitives, String, an
duke@1 1867 * enum, an annotation, Class, Class<?>, Class<? extends
duke@1 1868 * Anything>, arrays of the preceding.
duke@1 1869 */
duke@1 1870 void validateAnnotationType(JCTree restype) {
duke@1 1871 // restype may be null if an error occurred, so don't bother validating it
duke@1 1872 if (restype != null) {
duke@1 1873 validateAnnotationType(restype.pos(), restype.type);
duke@1 1874 }
duke@1 1875 }
duke@1 1876
duke@1 1877 void validateAnnotationType(DiagnosticPosition pos, Type type) {
duke@1 1878 if (type.isPrimitive()) return;
duke@1 1879 if (types.isSameType(type, syms.stringType)) return;
duke@1 1880 if ((type.tsym.flags() & Flags.ENUM) != 0) return;
duke@1 1881 if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
duke@1 1882 if (types.lowerBound(type).tsym == syms.classType.tsym) return;
duke@1 1883 if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
duke@1 1884 validateAnnotationType(pos, types.elemtype(type));
duke@1 1885 return;
duke@1 1886 }
duke@1 1887 log.error(pos, "invalid.annotation.member.type");
duke@1 1888 }
duke@1 1889
duke@1 1890 /**
duke@1 1891 * "It is also a compile-time error if any method declared in an
duke@1 1892 * annotation type has a signature that is override-equivalent to
duke@1 1893 * that of any public or protected method declared in class Object
duke@1 1894 * or in the interface annotation.Annotation."
duke@1 1895 *
duke@1 1896 * @jls3 9.6 Annotation Types
duke@1 1897 */
duke@1 1898 void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
duke@1 1899 for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
duke@1 1900 Scope s = sup.tsym.members();
duke@1 1901 for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1902 if (e.sym.kind == MTH &&
duke@1 1903 (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
duke@1 1904 types.overrideEquivalent(m.type, e.sym.type))
duke@1 1905 log.error(pos, "intf.annotation.member.clash", e.sym, sup);
duke@1 1906 }
duke@1 1907 }
duke@1 1908 }
duke@1 1909
duke@1 1910 /** Check the annotations of a symbol.
duke@1 1911 */
duke@1 1912 public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
duke@1 1913 if (skipAnnotations) return;
duke@1 1914 for (JCAnnotation a : annotations)
duke@1 1915 validateAnnotation(a, s);
duke@1 1916 }
duke@1 1917
jjg@308 1918 /** Check the type annotations
jjg@308 1919 */
jjg@308 1920 public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
jjg@308 1921 if (skipAnnotations) return;
jjg@308 1922 for (JCTypeAnnotation a : annotations)
jjg@308 1923 validateTypeAnnotation(a, isTypeParameter);
jjg@308 1924 }
jjg@308 1925
duke@1 1926 /** Check an annotation of a symbol.
duke@1 1927 */
duke@1 1928 public void validateAnnotation(JCAnnotation a, Symbol s) {
duke@1 1929 validateAnnotation(a);
duke@1 1930
duke@1 1931 if (!annotationApplicable(a, s))
duke@1 1932 log.error(a.pos(), "annotation.type.not.applicable");
duke@1 1933
duke@1 1934 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
duke@1 1935 if (!isOverrider(s))
duke@1 1936 log.error(a.pos(), "method.does.not.override.superclass");
duke@1 1937 }
duke@1 1938 }
duke@1 1939
jjg@308 1940 public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
jjg@308 1941 if (a.type == null)
jjg@308 1942 throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
jjg@308 1943 validateAnnotation(a);
jjg@308 1944
jjg@308 1945 if (!isTypeAnnotation(a, isTypeParameter))
jjg@308 1946 log.error(a.pos(), "annotation.type.not.applicable");
jjg@308 1947 }
jjg@308 1948
duke@1 1949 /** Is s a method symbol that overrides a method in a superclass? */
duke@1 1950 boolean isOverrider(Symbol s) {
duke@1 1951 if (s.kind != MTH || s.isStatic())
duke@1 1952 return false;
duke@1 1953 MethodSymbol m = (MethodSymbol)s;
duke@1 1954 TypeSymbol owner = (TypeSymbol)m.owner;
duke@1 1955 for (Type sup : types.closure(owner.type)) {
duke@1 1956 if (sup == owner.type)
duke@1 1957 continue; // skip "this"
duke@1 1958 Scope scope = sup.tsym.members();
duke@1 1959 for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1960 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
duke@1 1961 return true;
duke@1 1962 }
duke@1 1963 }
duke@1 1964 return false;
duke@1 1965 }
duke@1 1966
jjg@308 1967 /** Is the annotation applicable to type annotations */
jjg@308 1968 boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
jjg@308 1969 Attribute.Compound atTarget =
jjg@308 1970 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
jjg@308 1971 if (atTarget == null) return true;
jjg@308 1972 Attribute atValue = atTarget.member(names.value);
jjg@308 1973 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
jjg@308 1974 Attribute.Array arr = (Attribute.Array) atValue;
jjg@308 1975 for (Attribute app : arr.values) {
jjg@308 1976 if (!(app instanceof Attribute.Enum)) return true; // recovery
jjg@308 1977 Attribute.Enum e = (Attribute.Enum) app;
jjg@308 1978 if (!isTypeParameter && e.value.name == names.TYPE_USE)
jjg@308 1979 return true;
jjg@308 1980 else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
jjg@308 1981 return true;
jjg@308 1982 }
jjg@308 1983 return false;
jjg@308 1984 }
jjg@308 1985
duke@1 1986 /** Is the annotation applicable to the symbol? */
duke@1 1987 boolean annotationApplicable(JCAnnotation a, Symbol s) {
duke@1 1988 Attribute.Compound atTarget =
duke@1 1989 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
duke@1 1990 if (atTarget == null) return true;
duke@1 1991 Attribute atValue = atTarget.member(names.value);
duke@1 1992 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
duke@1 1993 Attribute.Array arr = (Attribute.Array) atValue;
duke@1 1994 for (Attribute app : arr.values) {
duke@1 1995 if (!(app instanceof Attribute.Enum)) return true; // recovery
duke@1 1996 Attribute.Enum e = (Attribute.Enum) app;
duke@1 1997 if (e.value.name == names.TYPE)
duke@1 1998 { if (s.kind == TYP) return true; }
duke@1 1999 else if (e.value.name == names.FIELD)
duke@1 2000 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
duke@1 2001 else if (e.value.name == names.METHOD)
duke@1 2002 { if (s.kind == MTH && !s.isConstructor()) return true; }
duke@1 2003 else if (e.value.name == names.PARAMETER)
duke@1 2004 { if (s.kind == VAR &&
duke@1 2005 s.owner.kind == MTH &&
duke@1 2006 (s.flags() & PARAMETER) != 0)
duke@1 2007 return true;
duke@1 2008 }
duke@1 2009 else if (e.value.name == names.CONSTRUCTOR)
duke@1 2010 { if (s.kind == MTH && s.isConstructor()) return true; }
duke@1 2011 else if (e.value.name == names.LOCAL_VARIABLE)
duke@1 2012 { if (s.kind == VAR && s.owner.kind == MTH &&
duke@1 2013 (s.flags() & PARAMETER) == 0)
duke@1 2014 return true;
duke@1 2015 }
duke@1 2016 else if (e.value.name == names.ANNOTATION_TYPE)
duke@1 2017 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
duke@1 2018 return true;
duke@1 2019 }
duke@1 2020 else if (e.value.name == names.PACKAGE)
duke@1 2021 { if (s.kind == PCK) return true; }
jjg@308 2022 else if (e.value.name == names.TYPE_USE)
jjg@308 2023 { if (s.kind == TYP ||
jjg@308 2024 s.kind == VAR ||
jjg@308 2025 (s.kind == MTH && !s.isConstructor() &&
jjg@308 2026 s.type.getReturnType().tag != VOID))
jjg@308 2027 return true;
jjg@308 2028 }
duke@1 2029 else
duke@1 2030 return true; // recovery
duke@1 2031 }
duke@1 2032 return false;
duke@1 2033 }
duke@1 2034
duke@1 2035 /** Check an annotation value.
duke@1 2036 */
duke@1 2037 public void validateAnnotation(JCAnnotation a) {
duke@1 2038 if (a.type.isErroneous()) return;
duke@1 2039
duke@1 2040 // collect an inventory of the members
duke@1 2041 Set<MethodSymbol> members = new HashSet<MethodSymbol>();
duke@1 2042 for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
duke@1 2043 e != null;
duke@1 2044 e = e.sibling)
duke@1 2045 if (e.sym.kind == MTH)
duke@1 2046 members.add((MethodSymbol) e.sym);
duke@1 2047
duke@1 2048 // count them off as they're annotated
duke@1 2049 for (JCTree arg : a.args) {
duke@1 2050 if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
duke@1 2051 JCAssign assign = (JCAssign) arg;
duke@1 2052 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 2053 if (m == null || m.type.isErroneous()) continue;
duke@1 2054 if (!members.remove(m))
jjg@479 2055 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
duke@1 2056 m.name, a.type);
duke@1 2057 if (assign.rhs.getTag() == ANNOTATION)
duke@1 2058 validateAnnotation((JCAnnotation)assign.rhs);
duke@1 2059 }
duke@1 2060
duke@1 2061 // all the remaining ones better have default values
duke@1 2062 for (MethodSymbol m : members)
duke@1 2063 if (m.defaultValue == null && !m.type.isErroneous())
duke@1 2064 log.error(a.pos(), "annotation.missing.default.value",
duke@1 2065 a.type, m.name);
duke@1 2066
duke@1 2067 // special case: java.lang.annotation.Target must not have
duke@1 2068 // repeated values in its value member
duke@1 2069 if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
duke@1 2070 a.args.tail == null)
duke@1 2071 return;
duke@1 2072
duke@1 2073 if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
duke@1 2074 JCAssign assign = (JCAssign) a.args.head;
duke@1 2075 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 2076 if (m.name != names.value) return;
duke@1 2077 JCTree rhs = assign.rhs;
duke@1 2078 if (rhs.getTag() != JCTree.NEWARRAY) return;
duke@1 2079 JCNewArray na = (JCNewArray) rhs;
duke@1 2080 Set<Symbol> targets = new HashSet<Symbol>();
duke@1 2081 for (JCTree elem : na.elems) {
duke@1 2082 if (!targets.add(TreeInfo.symbol(elem))) {
duke@1 2083 log.error(elem.pos(), "repeated.annotation.target");
duke@1 2084 }
duke@1 2085 }
duke@1 2086 }
duke@1 2087
duke@1 2088 void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
duke@1 2089 if (allowAnnotations &&
duke@1 2090 lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
duke@1 2091 (s.flags() & DEPRECATED) != 0 &&
duke@1 2092 !syms.deprecatedType.isErroneous() &&
duke@1 2093 s.attribute(syms.deprecatedType.tsym) == null) {
duke@1 2094 log.warning(pos, "missing.deprecated.annotation");
duke@1 2095 }
duke@1 2096 }
duke@1 2097
duke@1 2098 /* *************************************************************************
duke@1 2099 * Check for recursive annotation elements.
duke@1 2100 **************************************************************************/
duke@1 2101
duke@1 2102 /** Check for cycles in the graph of annotation elements.
duke@1 2103 */
duke@1 2104 void checkNonCyclicElements(JCClassDecl tree) {
duke@1 2105 if ((tree.sym.flags_field & ANNOTATION) == 0) return;
duke@1 2106 assert (tree.sym.flags_field & LOCKED) == 0;
duke@1 2107 try {
duke@1 2108 tree.sym.flags_field |= LOCKED;
duke@1 2109 for (JCTree def : tree.defs) {
duke@1 2110 if (def.getTag() != JCTree.METHODDEF) continue;
duke@1 2111 JCMethodDecl meth = (JCMethodDecl)def;
duke@1 2112 checkAnnotationResType(meth.pos(), meth.restype.type);
duke@1 2113 }
duke@1 2114 } finally {
duke@1 2115 tree.sym.flags_field &= ~LOCKED;
duke@1 2116 tree.sym.flags_field |= ACYCLIC_ANN;
duke@1 2117 }
duke@1 2118 }
duke@1 2119
duke@1 2120 void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
duke@1 2121 if ((tsym.flags_field & ACYCLIC_ANN) != 0)
duke@1 2122 return;
duke@1 2123 if ((tsym.flags_field & LOCKED) != 0) {
duke@1 2124 log.error(pos, "cyclic.annotation.element");
duke@1 2125 return;
duke@1 2126 }
duke@1 2127 try {
duke@1 2128 tsym.flags_field |= LOCKED;
duke@1 2129 for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
duke@1 2130 Symbol s = e.sym;
duke@1 2131 if (s.kind != Kinds.MTH)
duke@1 2132 continue;
duke@1 2133 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
duke@1 2134 }
duke@1 2135 } finally {
duke@1 2136 tsym.flags_field &= ~LOCKED;
duke@1 2137 tsym.flags_field |= ACYCLIC_ANN;
duke@1 2138 }
duke@1 2139 }
duke@1 2140
duke@1 2141 void checkAnnotationResType(DiagnosticPosition pos, Type type) {
duke@1 2142 switch (type.tag) {
duke@1 2143 case TypeTags.CLASS:
duke@1 2144 if ((type.tsym.flags() & ANNOTATION) != 0)
duke@1 2145 checkNonCyclicElementsInternal(pos, type.tsym);
duke@1 2146 break;
duke@1 2147 case TypeTags.ARRAY:
duke@1 2148 checkAnnotationResType(pos, types.elemtype(type));
duke@1 2149 break;
duke@1 2150 default:
duke@1 2151 break; // int etc
duke@1 2152 }
duke@1 2153 }
duke@1 2154
duke@1 2155 /* *************************************************************************
duke@1 2156 * Check for cycles in the constructor call graph.
duke@1 2157 **************************************************************************/
duke@1 2158
duke@1 2159 /** Check for cycles in the graph of constructors calling other
duke@1 2160 * constructors.
duke@1 2161 */
duke@1 2162 void checkCyclicConstructors(JCClassDecl tree) {
duke@1 2163 Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
duke@1 2164
duke@1 2165 // enter each constructor this-call into the map
duke@1 2166 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 2167 JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
duke@1 2168 if (app == null) continue;
duke@1 2169 JCMethodDecl meth = (JCMethodDecl) l.head;
duke@1 2170 if (TreeInfo.name(app.meth) == names._this) {
duke@1 2171 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
duke@1 2172 } else {
duke@1 2173 meth.sym.flags_field |= ACYCLIC;
duke@1 2174 }
duke@1 2175 }
duke@1 2176
duke@1 2177 // Check for cycles in the map
duke@1 2178 Symbol[] ctors = new Symbol[0];
duke@1 2179 ctors = callMap.keySet().toArray(ctors);
duke@1 2180 for (Symbol caller : ctors) {
duke@1 2181 checkCyclicConstructor(tree, caller, callMap);
duke@1 2182 }
duke@1 2183 }
duke@1 2184
duke@1 2185 /** Look in the map to see if the given constructor is part of a
duke@1 2186 * call cycle.
duke@1 2187 */
duke@1 2188 private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
duke@1 2189 Map<Symbol,Symbol> callMap) {
duke@1 2190 if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
duke@1 2191 if ((ctor.flags_field & LOCKED) != 0) {
duke@1 2192 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
duke@1 2193 "recursive.ctor.invocation");
duke@1 2194 } else {
duke@1 2195 ctor.flags_field |= LOCKED;
duke@1 2196 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
duke@1 2197 ctor.flags_field &= ~LOCKED;
duke@1 2198 }
duke@1 2199 ctor.flags_field |= ACYCLIC;
duke@1 2200 }
duke@1 2201 }
duke@1 2202
duke@1 2203 /* *************************************************************************
duke@1 2204 * Miscellaneous
duke@1 2205 **************************************************************************/
duke@1 2206
duke@1 2207 /**
duke@1 2208 * Return the opcode of the operator but emit an error if it is an
duke@1 2209 * error.
duke@1 2210 * @param pos position for error reporting.
duke@1 2211 * @param operator an operator
duke@1 2212 * @param tag a tree tag
duke@1 2213 * @param left type of left hand side
duke@1 2214 * @param right type of right hand side
duke@1 2215 */
duke@1 2216 int checkOperator(DiagnosticPosition pos,
duke@1 2217 OperatorSymbol operator,
duke@1 2218 int tag,
duke@1 2219 Type left,
duke@1 2220 Type right) {
duke@1 2221 if (operator.opcode == ByteCodes.error) {
duke@1 2222 log.error(pos,
duke@1 2223 "operator.cant.be.applied",
duke@1 2224 treeinfo.operatorName(tag),
mcimadamore@80 2225 List.of(left, right));
duke@1 2226 }
duke@1 2227 return operator.opcode;
duke@1 2228 }
duke@1 2229
duke@1 2230
duke@1 2231 /**
duke@1 2232 * Check for division by integer constant zero
duke@1 2233 * @param pos Position for error reporting.
duke@1 2234 * @param operator The operator for the expression
duke@1 2235 * @param operand The right hand operand for the expression
duke@1 2236 */
duke@1 2237 void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
duke@1 2238 if (operand.constValue() != null
duke@1 2239 && lint.isEnabled(Lint.LintCategory.DIVZERO)
duke@1 2240 && operand.tag <= LONG
duke@1 2241 && ((Number) (operand.constValue())).longValue() == 0) {
duke@1 2242 int opc = ((OperatorSymbol)operator).opcode;
duke@1 2243 if (opc == ByteCodes.idiv || opc == ByteCodes.imod
duke@1 2244 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
duke@1 2245 log.warning(pos, "div.zero");
duke@1 2246 }
duke@1 2247 }
duke@1 2248 }
duke@1 2249
duke@1 2250 /**
duke@1 2251 * Check for empty statements after if
duke@1 2252 */
duke@1 2253 void checkEmptyIf(JCIf tree) {
duke@1 2254 if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
duke@1 2255 log.warning(tree.thenpart.pos(), "empty.if");
duke@1 2256 }
duke@1 2257
duke@1 2258 /** Check that symbol is unique in given scope.
duke@1 2259 * @param pos Position for error reporting.
duke@1 2260 * @param sym The symbol.
duke@1 2261 * @param s The scope.
duke@1 2262 */
duke@1 2263 boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2264 if (sym.type.isErroneous())
duke@1 2265 return true;
duke@1 2266 if (sym.owner.name == names.any) return false;
duke@1 2267 for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
duke@1 2268 if (sym != e.sym &&
duke@1 2269 sym.kind == e.sym.kind &&
duke@1 2270 sym.name != names.error &&
mcimadamore@252 2271 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
duke@1 2272 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
duke@1 2273 varargsDuplicateError(pos, sym, e.sym);
mcimadamore@252 2274 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
mcimadamore@252 2275 duplicateErasureError(pos, sym, e.sym);
duke@1 2276 else
duke@1 2277 duplicateError(pos, e.sym);
duke@1 2278 return false;
duke@1 2279 }
duke@1 2280 }
duke@1 2281 return true;
duke@1 2282 }
mcimadamore@252 2283 //where
mcimadamore@252 2284 /** Report duplicate declaration error.
mcimadamore@252 2285 */
mcimadamore@252 2286 void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
mcimadamore@252 2287 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
mcimadamore@252 2288 log.error(pos, "name.clash.same.erasure", sym1, sym2);
mcimadamore@252 2289 }
mcimadamore@252 2290 }
duke@1 2291
duke@1 2292 /** Check that single-type import is not already imported or top-level defined,
duke@1 2293 * but make an exception for two single-type imports which denote the same type.
duke@1 2294 * @param pos Position for error reporting.
duke@1 2295 * @param sym The symbol.
duke@1 2296 * @param s The scope
duke@1 2297 */
duke@1 2298 boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2299 return checkUniqueImport(pos, sym, s, false);
duke@1 2300 }
duke@1 2301
duke@1 2302 /** Check that static single-type import is not already imported or top-level defined,
duke@1 2303 * but make an exception for two single-type imports which denote the same type.
duke@1 2304 * @param pos Position for error reporting.
duke@1 2305 * @param sym The symbol.
duke@1 2306 * @param s The scope
duke@1 2307 * @param staticImport Whether or not this was a static import
duke@1 2308 */
duke@1 2309 boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2310 return checkUniqueImport(pos, sym, s, true);
duke@1 2311 }
duke@1 2312
duke@1 2313 /** Check that single-type import is not already imported or top-level defined,
duke@1 2314 * but make an exception for two single-type imports which denote the same type.
duke@1 2315 * @param pos Position for error reporting.
duke@1 2316 * @param sym The symbol.
duke@1 2317 * @param s The scope.
duke@1 2318 * @param staticImport Whether or not this was a static import
duke@1 2319 */
duke@1 2320 private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
duke@1 2321 for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
duke@1 2322 // is encountered class entered via a class declaration?
duke@1 2323 boolean isClassDecl = e.scope == s;
duke@1 2324 if ((isClassDecl || sym != e.sym) &&
duke@1 2325 sym.kind == e.sym.kind &&
duke@1 2326 sym.name != names.error) {
duke@1 2327 if (!e.sym.type.isErroneous()) {
duke@1 2328 String what = e.sym.toString();
duke@1 2329 if (!isClassDecl) {
duke@1 2330 if (staticImport)
duke@1 2331 log.error(pos, "already.defined.static.single.import", what);
duke@1 2332 else
duke@1 2333 log.error(pos, "already.defined.single.import", what);
duke@1 2334 }
duke@1 2335 else if (sym != e.sym)
duke@1 2336 log.error(pos, "already.defined.this.unit", what);
duke@1 2337 }
duke@1 2338 return false;
duke@1 2339 }
duke@1 2340 }
duke@1 2341 return true;
duke@1 2342 }
duke@1 2343
duke@1 2344 /** Check that a qualified name is in canonical form (for import decls).
duke@1 2345 */
duke@1 2346 public void checkCanonical(JCTree tree) {
duke@1 2347 if (!isCanonical(tree))
duke@1 2348 log.error(tree.pos(), "import.requires.canonical",
duke@1 2349 TreeInfo.symbol(tree));
duke@1 2350 }
duke@1 2351 // where
duke@1 2352 private boolean isCanonical(JCTree tree) {
duke@1 2353 while (tree.getTag() == JCTree.SELECT) {
duke@1 2354 JCFieldAccess s = (JCFieldAccess) tree;
duke@1 2355 if (s.sym.owner != TreeInfo.symbol(s.selected))
duke@1 2356 return false;
duke@1 2357 tree = s.selected;
duke@1 2358 }
duke@1 2359 return true;
duke@1 2360 }
duke@1 2361
duke@1 2362 private class ConversionWarner extends Warner {
duke@1 2363 final String key;
duke@1 2364 final Type found;
duke@1 2365 final Type expected;
duke@1 2366 public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
duke@1 2367 super(pos);
duke@1 2368 this.key = key;
duke@1 2369 this.found = found;
duke@1 2370 this.expected = expected;
duke@1 2371 }
duke@1 2372
jjg@398 2373 @Override
duke@1 2374 public void warnUnchecked() {
duke@1 2375 boolean warned = this.warned;
duke@1 2376 super.warnUnchecked();
duke@1 2377 if (warned) return; // suppress redundant diagnostics
mcimadamore@89 2378 Object problem = diags.fragment(key);
duke@1 2379 Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
duke@1 2380 }
duke@1 2381 }
duke@1 2382
duke@1 2383 public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2384 return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
duke@1 2385 }
duke@1 2386
duke@1 2387 public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2388 return new ConversionWarner(pos, "unchecked.assign", found, expected);
duke@1 2389 }
duke@1 2390 }

mercurial