src/share/classes/com/sun/tools/javac/comp/Check.java

Wed, 02 Sep 2009 10:20:46 -0700

author
jjg
date
Wed, 02 Sep 2009 10:20:46 -0700
changeset 398
8d999cb7ec09
parent 383
8109aa93b212
child 479
da0e3e2dd3ef
permissions
-rw-r--r--

6874249: Check has duplicate local variable and field for "source"
Reviewed-by: mcimadamore

duke@1 1 /*
xdono@229 2 * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30
duke@1 31 import com.sun.tools.javac.code.*;
duke@1 32 import com.sun.tools.javac.jvm.*;
duke@1 33 import com.sun.tools.javac.tree.*;
duke@1 34 import com.sun.tools.javac.util.*;
duke@1 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 36 import com.sun.tools.javac.util.List;
duke@1 37
duke@1 38 import com.sun.tools.javac.tree.JCTree.*;
duke@1 39 import com.sun.tools.javac.code.Lint;
duke@1 40 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 41 import com.sun.tools.javac.code.Type.*;
duke@1 42 import com.sun.tools.javac.code.Symbol.*;
duke@1 43
duke@1 44 import static com.sun.tools.javac.code.Flags.*;
duke@1 45 import static com.sun.tools.javac.code.Kinds.*;
duke@1 46 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 47
duke@1 48 /** Type checking helper class for the attribution phase.
duke@1 49 *
duke@1 50 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 51 * you write code that depends on this, you do so at your own risk.
duke@1 52 * This code and its internal interfaces are subject to change or
duke@1 53 * deletion without notice.</b>
duke@1 54 */
duke@1 55 public class Check {
duke@1 56 protected static final Context.Key<Check> checkKey =
duke@1 57 new Context.Key<Check>();
duke@1 58
jjg@113 59 private final Names names;
duke@1 60 private final Log log;
duke@1 61 private final Symtab syms;
duke@1 62 private final Infer infer;
duke@1 63 private final Types types;
mcimadamore@89 64 private final JCDiagnostic.Factory diags;
duke@1 65 private final boolean skipAnnotations;
mcimadamore@359 66 private boolean warnOnSyntheticConflicts;
duke@1 67 private final TreeInfo treeinfo;
duke@1 68
duke@1 69 // The set of lint options currently in effect. It is initialized
duke@1 70 // from the context, and then is set/reset as needed by Attr as it
duke@1 71 // visits all the various parts of the trees during attribution.
duke@1 72 private Lint lint;
duke@1 73
duke@1 74 public static Check instance(Context context) {
duke@1 75 Check instance = context.get(checkKey);
duke@1 76 if (instance == null)
duke@1 77 instance = new Check(context);
duke@1 78 return instance;
duke@1 79 }
duke@1 80
duke@1 81 protected Check(Context context) {
duke@1 82 context.put(checkKey, this);
duke@1 83
jjg@113 84 names = Names.instance(context);
duke@1 85 log = Log.instance(context);
duke@1 86 syms = Symtab.instance(context);
duke@1 87 infer = Infer.instance(context);
duke@1 88 this.types = Types.instance(context);
mcimadamore@89 89 diags = JCDiagnostic.Factory.instance(context);
duke@1 90 Options options = Options.instance(context);
duke@1 91 lint = Lint.instance(context);
duke@1 92 treeinfo = TreeInfo.instance(context);
duke@1 93
duke@1 94 Source source = Source.instance(context);
duke@1 95 allowGenerics = source.allowGenerics();
duke@1 96 allowAnnotations = source.allowAnnotations();
jjg@398 97 allowCovariantReturns = source.allowCovariantReturns();
duke@1 98 complexInference = options.get("-complexinference") != null;
duke@1 99 skipAnnotations = options.get("skipAnnotations") != null;
mcimadamore@359 100 warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
duke@1 101
jjg@398 102 Target target = Target.instance(context);
jjg@398 103 syntheticNameChar = target.syntheticNameChar();
jjg@398 104
duke@1 105 boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
duke@1 106 boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
jjg@377 107 boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
jjg@60 108 boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
duke@1 109
jjg@60 110 deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
jjg@60 111 enforceMandatoryWarnings, "deprecated");
jjg@60 112 uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
jjg@60 113 enforceMandatoryWarnings, "unchecked");
jjg@377 114 sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
jjg@377 115 enforceMandatoryWarnings, "sunapi");
duke@1 116 }
duke@1 117
duke@1 118 /** Switch: generics enabled?
duke@1 119 */
duke@1 120 boolean allowGenerics;
duke@1 121
duke@1 122 /** Switch: annotations enabled?
duke@1 123 */
duke@1 124 boolean allowAnnotations;
duke@1 125
jjg@398 126 /** Switch: covariant returns enabled?
jjg@398 127 */
jjg@398 128 boolean allowCovariantReturns;
jjg@398 129
duke@1 130 /** Switch: -complexinference option set?
duke@1 131 */
duke@1 132 boolean complexInference;
duke@1 133
jjg@398 134 /** Character for synthetic names
jjg@398 135 */
jjg@398 136 char syntheticNameChar;
jjg@398 137
duke@1 138 /** A table mapping flat names of all compiled classes in this run to their
duke@1 139 * symbols; maintained from outside.
duke@1 140 */
duke@1 141 public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
duke@1 142
duke@1 143 /** A handler for messages about deprecated usage.
duke@1 144 */
duke@1 145 private MandatoryWarningHandler deprecationHandler;
duke@1 146
duke@1 147 /** A handler for messages about unchecked or unsafe usage.
duke@1 148 */
duke@1 149 private MandatoryWarningHandler uncheckedHandler;
duke@1 150
jjg@377 151 /** A handler for messages about using Sun proprietary API.
jjg@377 152 */
jjg@377 153 private MandatoryWarningHandler sunApiHandler;
duke@1 154
duke@1 155 /* *************************************************************************
duke@1 156 * Errors and Warnings
duke@1 157 **************************************************************************/
duke@1 158
duke@1 159 Lint setLint(Lint newLint) {
duke@1 160 Lint prev = lint;
duke@1 161 lint = newLint;
duke@1 162 return prev;
duke@1 163 }
duke@1 164
duke@1 165 /** Warn about deprecated symbol.
duke@1 166 * @param pos Position to be used for error reporting.
duke@1 167 * @param sym The deprecated symbol.
duke@1 168 */
duke@1 169 void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
duke@1 170 if (!lint.isSuppressed(LintCategory.DEPRECATION))
duke@1 171 deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
duke@1 172 }
duke@1 173
duke@1 174 /** Warn about unchecked operation.
duke@1 175 * @param pos Position to be used for error reporting.
duke@1 176 * @param msg A string describing the problem.
duke@1 177 */
duke@1 178 public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
duke@1 179 if (!lint.isSuppressed(LintCategory.UNCHECKED))
duke@1 180 uncheckedHandler.report(pos, msg, args);
duke@1 181 }
duke@1 182
jjg@377 183 /** Warn about using Sun proprietary API.
jjg@377 184 * @param pos Position to be used for error reporting.
jjg@377 185 * @param msg A string describing the problem.
jjg@377 186 */
jjg@377 187 public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
jjg@377 188 if (!lint.isSuppressed(LintCategory.SUNAPI))
jjg@377 189 sunApiHandler.report(pos, msg, args);
jjg@377 190 }
jjg@377 191
duke@1 192 /**
duke@1 193 * Report any deferred diagnostics.
duke@1 194 */
duke@1 195 public void reportDeferredDiagnostics() {
duke@1 196 deprecationHandler.reportDeferredDiagnostic();
duke@1 197 uncheckedHandler.reportDeferredDiagnostic();
jjg@377 198 sunApiHandler.reportDeferredDiagnostic();
duke@1 199 }
duke@1 200
duke@1 201
duke@1 202 /** Report a failure to complete a class.
duke@1 203 * @param pos Position to be used for error reporting.
duke@1 204 * @param ex The failure to report.
duke@1 205 */
duke@1 206 public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
jjg@12 207 log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
duke@1 208 if (ex instanceof ClassReader.BadClassFile) throw new Abort();
duke@1 209 else return syms.errType;
duke@1 210 }
duke@1 211
duke@1 212 /** Report a type error.
duke@1 213 * @param pos Position to be used for error reporting.
duke@1 214 * @param problem A string describing the error.
duke@1 215 * @param found The type that was found.
duke@1 216 * @param req The type that was required.
duke@1 217 */
duke@1 218 Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
duke@1 219 log.error(pos, "prob.found.req",
duke@1 220 problem, found, req);
jjg@110 221 return types.createErrorType(found);
duke@1 222 }
duke@1 223
duke@1 224 Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
duke@1 225 log.error(pos, "prob.found.req.1", problem, found, req, explanation);
jjg@110 226 return types.createErrorType(found);
duke@1 227 }
duke@1 228
duke@1 229 /** Report an error that wrong type tag was found.
duke@1 230 * @param pos Position to be used for error reporting.
duke@1 231 * @param required An internationalized string describing the type tag
duke@1 232 * required.
duke@1 233 * @param found The type that was found.
duke@1 234 */
duke@1 235 Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
jrose@267 236 // this error used to be raised by the parser,
jrose@267 237 // but has been delayed to this point:
jrose@267 238 if (found instanceof Type && ((Type)found).tag == VOID) {
jrose@267 239 log.error(pos, "illegal.start.of.type");
jrose@267 240 return syms.errType;
jrose@267 241 }
duke@1 242 log.error(pos, "type.found.req", found, required);
jjg@110 243 return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
duke@1 244 }
duke@1 245
duke@1 246 /** Report an error that symbol cannot be referenced before super
duke@1 247 * has been called.
duke@1 248 * @param pos Position to be used for error reporting.
duke@1 249 * @param sym The referenced symbol.
duke@1 250 */
duke@1 251 void earlyRefError(DiagnosticPosition pos, Symbol sym) {
duke@1 252 log.error(pos, "cant.ref.before.ctor.called", sym);
duke@1 253 }
duke@1 254
duke@1 255 /** Report duplicate declaration error.
duke@1 256 */
duke@1 257 void duplicateError(DiagnosticPosition pos, Symbol sym) {
duke@1 258 if (!sym.type.isErroneous()) {
duke@1 259 log.error(pos, "already.defined", sym, sym.location());
duke@1 260 }
duke@1 261 }
duke@1 262
duke@1 263 /** Report array/varargs duplicate declaration
duke@1 264 */
duke@1 265 void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
duke@1 266 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
duke@1 267 log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
duke@1 268 }
duke@1 269 }
duke@1 270
duke@1 271 /* ************************************************************************
duke@1 272 * duplicate declaration checking
duke@1 273 *************************************************************************/
duke@1 274
duke@1 275 /** Check that variable does not hide variable with same name in
duke@1 276 * immediately enclosing local scope.
duke@1 277 * @param pos Position for error reporting.
duke@1 278 * @param v The symbol.
duke@1 279 * @param s The scope.
duke@1 280 */
duke@1 281 void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
duke@1 282 if (s.next != null) {
duke@1 283 for (Scope.Entry e = s.next.lookup(v.name);
duke@1 284 e.scope != null && e.sym.owner == v.owner;
duke@1 285 e = e.next()) {
duke@1 286 if (e.sym.kind == VAR &&
duke@1 287 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 288 v.name != names.error) {
duke@1 289 duplicateError(pos, e.sym);
duke@1 290 return;
duke@1 291 }
duke@1 292 }
duke@1 293 }
duke@1 294 }
duke@1 295
duke@1 296 /** Check that a class or interface does not hide a class or
duke@1 297 * interface with same name in immediately enclosing local scope.
duke@1 298 * @param pos Position for error reporting.
duke@1 299 * @param c The symbol.
duke@1 300 * @param s The scope.
duke@1 301 */
duke@1 302 void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
duke@1 303 if (s.next != null) {
duke@1 304 for (Scope.Entry e = s.next.lookup(c.name);
duke@1 305 e.scope != null && e.sym.owner == c.owner;
duke@1 306 e = e.next()) {
duke@1 307 if (e.sym.kind == TYP &&
duke@1 308 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 309 c.name != names.error) {
duke@1 310 duplicateError(pos, e.sym);
duke@1 311 return;
duke@1 312 }
duke@1 313 }
duke@1 314 }
duke@1 315 }
duke@1 316
duke@1 317 /** Check that class does not have the same name as one of
duke@1 318 * its enclosing classes, or as a class defined in its enclosing scope.
duke@1 319 * return true if class is unique in its enclosing scope.
duke@1 320 * @param pos Position for error reporting.
duke@1 321 * @param name The class name.
duke@1 322 * @param s The enclosing scope.
duke@1 323 */
duke@1 324 boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
duke@1 325 for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
duke@1 326 if (e.sym.kind == TYP && e.sym.name != names.error) {
duke@1 327 duplicateError(pos, e.sym);
duke@1 328 return false;
duke@1 329 }
duke@1 330 }
duke@1 331 for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
duke@1 332 if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
duke@1 333 duplicateError(pos, sym);
duke@1 334 return true;
duke@1 335 }
duke@1 336 }
duke@1 337 return true;
duke@1 338 }
duke@1 339
duke@1 340 /* *************************************************************************
duke@1 341 * Class name generation
duke@1 342 **************************************************************************/
duke@1 343
duke@1 344 /** Return name of local class.
duke@1 345 * This is of the form <enclClass> $ n <classname>
duke@1 346 * where
duke@1 347 * enclClass is the flat name of the enclosing class,
duke@1 348 * classname is the simple name of the local class
duke@1 349 */
duke@1 350 Name localClassName(ClassSymbol c) {
duke@1 351 for (int i=1; ; i++) {
duke@1 352 Name flatname = names.
duke@1 353 fromString("" + c.owner.enclClass().flatname +
jjg@398 354 syntheticNameChar + i +
duke@1 355 c.name);
duke@1 356 if (compiled.get(flatname) == null) return flatname;
duke@1 357 }
duke@1 358 }
duke@1 359
duke@1 360 /* *************************************************************************
duke@1 361 * Type Checking
duke@1 362 **************************************************************************/
duke@1 363
duke@1 364 /** Check that a given type is assignable to a given proto-type.
duke@1 365 * If it is, return the type, otherwise return errType.
duke@1 366 * @param pos Position to be used for error reporting.
duke@1 367 * @param found The type that was found.
duke@1 368 * @param req The type that was required.
duke@1 369 */
duke@1 370 Type checkType(DiagnosticPosition pos, Type found, Type req) {
duke@1 371 if (req.tag == ERROR)
duke@1 372 return req;
duke@1 373 if (req.tag == NONE)
duke@1 374 return found;
duke@1 375 if (types.isAssignable(found, req, convertWarner(pos, found, req)))
duke@1 376 return found;
duke@1 377 if (found.tag <= DOUBLE && req.tag <= DOUBLE)
mcimadamore@89 378 return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
duke@1 379 if (found.isSuperBound()) {
duke@1 380 log.error(pos, "assignment.from.super-bound", found);
jjg@110 381 return types.createErrorType(found);
duke@1 382 }
duke@1 383 if (req.isExtendsBound()) {
duke@1 384 log.error(pos, "assignment.to.extends-bound", req);
jjg@110 385 return types.createErrorType(found);
duke@1 386 }
mcimadamore@89 387 return typeError(pos, diags.fragment("incompatible.types"), found, req);
duke@1 388 }
duke@1 389
mcimadamore@383 390 Type checkReturnType(DiagnosticPosition pos, Type found, Type req) {
mcimadamore@383 391 if (found.tag == FORALL) {
mcimadamore@383 392 try {
mcimadamore@383 393 return instantiatePoly(pos, (ForAll) found, req, convertWarner(pos, found, req));
mcimadamore@383 394 } catch (Infer.NoInstanceException ex) {
mcimadamore@383 395 if (ex.isAmbiguous) {
mcimadamore@383 396 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@383 397 log.error(pos,
mcimadamore@383 398 "undetermined.type" + (d != null ? ".1" : ""),
mcimadamore@383 399 found, d);
mcimadamore@383 400 return types.createErrorType(req);
mcimadamore@383 401 } else {
mcimadamore@383 402 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@383 403 return typeError(pos,
mcimadamore@383 404 diags.fragment("incompatible.types" + (d != null ? ".1" : ""), d),
mcimadamore@383 405 found, req);
mcimadamore@383 406 }
mcimadamore@383 407 } catch (Infer.InvalidInstanceException ex) {
mcimadamore@383 408 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@383 409 log.error(pos, "invalid.inferred.types", ((ForAll)found).tvars, d);
mcimadamore@383 410 return types.createErrorType(req);
mcimadamore@383 411 }
mcimadamore@383 412 } else {
mcimadamore@383 413 return checkType(pos, found, req);
mcimadamore@383 414 }
mcimadamore@383 415 }
mcimadamore@383 416
duke@1 417 /** Instantiate polymorphic type to some prototype, unless
duke@1 418 * prototype is `anyPoly' in which case polymorphic type
duke@1 419 * is returned unchanged.
duke@1 420 */
mcimadamore@383 421 Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
duke@1 422 if (pt == Infer.anyPoly && complexInference) {
duke@1 423 return t;
duke@1 424 } else if (pt == Infer.anyPoly || pt.tag == NONE) {
duke@1 425 Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
duke@1 426 return instantiatePoly(pos, t, newpt, warn);
duke@1 427 } else if (pt.tag == ERROR) {
duke@1 428 return pt;
duke@1 429 } else {
mcimadamore@383 430 return infer.instantiateExpr(t, pt, warn);
duke@1 431 }
mcimadamore@383 432 }
duke@1 433
duke@1 434 /** Check that a given type can be cast to a given target type.
duke@1 435 * Return the result of the cast.
duke@1 436 * @param pos Position to be used for error reporting.
duke@1 437 * @param found The type that is being cast.
duke@1 438 * @param req The target type of the cast.
duke@1 439 */
duke@1 440 Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
duke@1 441 if (found.tag == FORALL) {
duke@1 442 instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
duke@1 443 return req;
duke@1 444 } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
duke@1 445 return req;
duke@1 446 } else {
duke@1 447 return typeError(pos,
mcimadamore@89 448 diags.fragment("inconvertible.types"),
duke@1 449 found, req);
duke@1 450 }
duke@1 451 }
duke@1 452 //where
duke@1 453 /** Is type a type variable, or a (possibly multi-dimensional) array of
duke@1 454 * type variables?
duke@1 455 */
duke@1 456 boolean isTypeVar(Type t) {
duke@1 457 return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
duke@1 458 }
duke@1 459
duke@1 460 /** Check that a type is within some bounds.
duke@1 461 *
duke@1 462 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
duke@1 463 * type argument.
duke@1 464 * @param pos Position to be used for error reporting.
duke@1 465 * @param a The type that should be bounded by bs.
duke@1 466 * @param bs The bound.
duke@1 467 */
duke@1 468 private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
mcimadamore@154 469 if (a.isUnbound()) {
mcimadamore@154 470 return;
mcimadamore@154 471 } else if (a.tag != WILDCARD) {
mcimadamore@154 472 a = types.upperBound(a);
mcimadamore@154 473 for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
mcimadamore@154 474 if (!types.isSubtype(a, l.head)) {
mcimadamore@154 475 log.error(pos, "not.within.bounds", a);
mcimadamore@154 476 return;
mcimadamore@154 477 }
mcimadamore@154 478 }
mcimadamore@154 479 } else if (a.isExtendsBound()) {
mcimadamore@154 480 if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
mcimadamore@154 481 log.error(pos, "not.within.bounds", a);
mcimadamore@154 482 } else if (a.isSuperBound()) {
mcimadamore@154 483 if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
mcimadamore@154 484 log.error(pos, "not.within.bounds", a);
mcimadamore@154 485 }
mcimadamore@154 486 }
mcimadamore@154 487
mcimadamore@154 488 /** Check that a type is within some bounds.
mcimadamore@154 489 *
mcimadamore@154 490 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
mcimadamore@154 491 * type argument.
mcimadamore@154 492 * @param pos Position to be used for error reporting.
mcimadamore@154 493 * @param a The type that should be bounded by bs.
mcimadamore@154 494 * @param bs The bound.
mcimadamore@154 495 */
mcimadamore@154 496 private void checkCapture(JCTypeApply tree) {
mcimadamore@154 497 List<JCExpression> args = tree.getTypeArguments();
mcimadamore@154 498 for (Type arg : types.capture(tree.type).getTypeArguments()) {
mcimadamore@154 499 if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
mcimadamore@154 500 log.error(args.head.pos, "not.within.bounds", args.head.type);
mcimadamore@154 501 break;
mcimadamore@79 502 }
mcimadamore@154 503 args = args.tail;
mcimadamore@79 504 }
mcimadamore@154 505 }
duke@1 506
duke@1 507 /** Check that type is different from 'void'.
duke@1 508 * @param pos Position to be used for error reporting.
duke@1 509 * @param t The type to be checked.
duke@1 510 */
duke@1 511 Type checkNonVoid(DiagnosticPosition pos, Type t) {
duke@1 512 if (t.tag == VOID) {
duke@1 513 log.error(pos, "void.not.allowed.here");
jjg@110 514 return types.createErrorType(t);
duke@1 515 } else {
duke@1 516 return t;
duke@1 517 }
duke@1 518 }
duke@1 519
duke@1 520 /** Check that type is a class or interface type.
duke@1 521 * @param pos Position to be used for error reporting.
duke@1 522 * @param t The type to be checked.
duke@1 523 */
duke@1 524 Type checkClassType(DiagnosticPosition pos, Type t) {
duke@1 525 if (t.tag != CLASS && t.tag != ERROR)
duke@1 526 return typeTagError(pos,
mcimadamore@89 527 diags.fragment("type.req.class"),
duke@1 528 (t.tag == TYPEVAR)
mcimadamore@89 529 ? diags.fragment("type.parameter", t)
duke@1 530 : t);
duke@1 531 else
duke@1 532 return t;
duke@1 533 }
duke@1 534
duke@1 535 /** Check that type is a class or interface type.
duke@1 536 * @param pos Position to be used for error reporting.
duke@1 537 * @param t The type to be checked.
duke@1 538 * @param noBounds True if type bounds are illegal here.
duke@1 539 */
duke@1 540 Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
duke@1 541 t = checkClassType(pos, t);
duke@1 542 if (noBounds && t.isParameterized()) {
duke@1 543 List<Type> args = t.getTypeArguments();
duke@1 544 while (args.nonEmpty()) {
duke@1 545 if (args.head.tag == WILDCARD)
duke@1 546 return typeTagError(pos,
jjg@398 547 Log.getLocalizedString("type.req.exact"),
duke@1 548 args.head);
duke@1 549 args = args.tail;
duke@1 550 }
duke@1 551 }
duke@1 552 return t;
duke@1 553 }
duke@1 554
mcimadamore@383 555 /** Check that type is a valid type for a new expression. If the type contains
mcimadamore@383 556 * some uninferred type variables, instantiate them exploiting the expected
mcimadamore@383 557 * type.
mcimadamore@383 558 *
mcimadamore@383 559 * @param pos Position to be used for error reporting.
mcimadamore@383 560 * @param t The type to be checked.
mcimadamore@383 561 * @param noBounds True if type bounds are illegal here.
mcimadamore@383 562 * @param pt Expected type (used with diamond operator)
mcimadamore@383 563 */
mcimadamore@383 564 Type checkNewClassType(DiagnosticPosition pos, Type t, boolean noBounds, Type pt) {
mcimadamore@383 565 if (t.tag == FORALL) {
mcimadamore@383 566 try {
mcimadamore@383 567 t = instantiatePoly(pos, (ForAll)t, pt, Warner.noWarnings);
mcimadamore@383 568 }
mcimadamore@383 569 catch (Infer.NoInstanceException ex) {
mcimadamore@383 570 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@383 571 log.error(pos, "cant.apply.diamond", t.getTypeArguments(), d);
mcimadamore@383 572 return types.createErrorType(pt);
mcimadamore@383 573 }
mcimadamore@383 574 }
mcimadamore@383 575 return checkClassType(pos, t, noBounds);
mcimadamore@383 576 }
mcimadamore@383 577
duke@1 578 /** Check that type is a reifiable class, interface or array type.
duke@1 579 * @param pos Position to be used for error reporting.
duke@1 580 * @param t The type to be checked.
duke@1 581 */
duke@1 582 Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
duke@1 583 if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
duke@1 584 return typeTagError(pos,
mcimadamore@89 585 diags.fragment("type.req.class.array"),
duke@1 586 t);
duke@1 587 } else if (!types.isReifiable(t)) {
duke@1 588 log.error(pos, "illegal.generic.type.for.instof");
jjg@110 589 return types.createErrorType(t);
duke@1 590 } else {
duke@1 591 return t;
duke@1 592 }
duke@1 593 }
duke@1 594
duke@1 595 /** Check that type is a reference type, i.e. a class, interface or array type
duke@1 596 * or a type variable.
duke@1 597 * @param pos Position to be used for error reporting.
duke@1 598 * @param t The type to be checked.
duke@1 599 */
duke@1 600 Type checkRefType(DiagnosticPosition pos, Type t) {
duke@1 601 switch (t.tag) {
duke@1 602 case CLASS:
duke@1 603 case ARRAY:
duke@1 604 case TYPEVAR:
duke@1 605 case WILDCARD:
duke@1 606 case ERROR:
duke@1 607 return t;
duke@1 608 default:
duke@1 609 return typeTagError(pos,
mcimadamore@89 610 diags.fragment("type.req.ref"),
duke@1 611 t);
duke@1 612 }
duke@1 613 }
duke@1 614
jrose@267 615 /** Check that each type is a reference type, i.e. a class, interface or array type
jrose@267 616 * or a type variable.
jrose@267 617 * @param trees Original trees, used for error reporting.
jrose@267 618 * @param types The types to be checked.
jrose@267 619 */
jrose@267 620 List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
jrose@267 621 List<JCExpression> tl = trees;
jrose@267 622 for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
jrose@267 623 l.head = checkRefType(tl.head.pos(), l.head);
jrose@267 624 tl = tl.tail;
jrose@267 625 }
jrose@267 626 return types;
jrose@267 627 }
jrose@267 628
duke@1 629 /** Check that type is a null or reference type.
duke@1 630 * @param pos Position to be used for error reporting.
duke@1 631 * @param t The type to be checked.
duke@1 632 */
duke@1 633 Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
duke@1 634 switch (t.tag) {
duke@1 635 case CLASS:
duke@1 636 case ARRAY:
duke@1 637 case TYPEVAR:
duke@1 638 case WILDCARD:
duke@1 639 case BOT:
duke@1 640 case ERROR:
duke@1 641 return t;
duke@1 642 default:
duke@1 643 return typeTagError(pos,
mcimadamore@89 644 diags.fragment("type.req.ref"),
duke@1 645 t);
duke@1 646 }
duke@1 647 }
duke@1 648
duke@1 649 /** Check that flag set does not contain elements of two conflicting sets. s
duke@1 650 * Return true if it doesn't.
duke@1 651 * @param pos Position to be used for error reporting.
duke@1 652 * @param flags The set of flags to be checked.
duke@1 653 * @param set1 Conflicting flags set #1.
duke@1 654 * @param set2 Conflicting flags set #2.
duke@1 655 */
duke@1 656 boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
duke@1 657 if ((flags & set1) != 0 && (flags & set2) != 0) {
duke@1 658 log.error(pos,
duke@1 659 "illegal.combination.of.modifiers",
mcimadamore@80 660 asFlagSet(TreeInfo.firstFlag(flags & set1)),
mcimadamore@80 661 asFlagSet(TreeInfo.firstFlag(flags & set2)));
duke@1 662 return false;
duke@1 663 } else
duke@1 664 return true;
duke@1 665 }
duke@1 666
duke@1 667 /** Check that given modifiers are legal for given symbol and
duke@1 668 * return modifiers together with any implicit modififiers for that symbol.
duke@1 669 * Warning: we can't use flags() here since this method
duke@1 670 * is called during class enter, when flags() would cause a premature
duke@1 671 * completion.
duke@1 672 * @param pos Position to be used for error reporting.
duke@1 673 * @param flags The set of modifiers given in a definition.
duke@1 674 * @param sym The defined symbol.
duke@1 675 */
duke@1 676 long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
duke@1 677 long mask;
duke@1 678 long implicit = 0;
duke@1 679 switch (sym.kind) {
duke@1 680 case VAR:
duke@1 681 if (sym.owner.kind != TYP)
duke@1 682 mask = LocalVarFlags;
duke@1 683 else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 684 mask = implicit = InterfaceVarFlags;
duke@1 685 else
duke@1 686 mask = VarFlags;
duke@1 687 break;
duke@1 688 case MTH:
duke@1 689 if (sym.name == names.init) {
duke@1 690 if ((sym.owner.flags_field & ENUM) != 0) {
duke@1 691 // enum constructors cannot be declared public or
duke@1 692 // protected and must be implicitly or explicitly
duke@1 693 // private
duke@1 694 implicit = PRIVATE;
duke@1 695 mask = PRIVATE;
duke@1 696 } else
duke@1 697 mask = ConstructorFlags;
duke@1 698 } else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 699 mask = implicit = InterfaceMethodFlags;
duke@1 700 else {
duke@1 701 mask = MethodFlags;
duke@1 702 }
duke@1 703 // Imply STRICTFP if owner has STRICTFP set.
duke@1 704 if (((flags|implicit) & Flags.ABSTRACT) == 0)
duke@1 705 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 706 break;
duke@1 707 case TYP:
duke@1 708 if (sym.isLocal()) {
duke@1 709 mask = LocalClassFlags;
jjg@113 710 if (sym.name.isEmpty()) { // Anonymous class
duke@1 711 // Anonymous classes in static methods are themselves static;
duke@1 712 // that's why we admit STATIC here.
duke@1 713 mask |= STATIC;
duke@1 714 // JLS: Anonymous classes are final.
duke@1 715 implicit |= FINAL;
duke@1 716 }
duke@1 717 if ((sym.owner.flags_field & STATIC) == 0 &&
duke@1 718 (flags & ENUM) != 0)
duke@1 719 log.error(pos, "enums.must.be.static");
duke@1 720 } else if (sym.owner.kind == TYP) {
duke@1 721 mask = MemberClassFlags;
duke@1 722 if (sym.owner.owner.kind == PCK ||
duke@1 723 (sym.owner.flags_field & STATIC) != 0)
duke@1 724 mask |= STATIC;
duke@1 725 else if ((flags & ENUM) != 0)
duke@1 726 log.error(pos, "enums.must.be.static");
duke@1 727 // Nested interfaces and enums are always STATIC (Spec ???)
duke@1 728 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
duke@1 729 } else {
duke@1 730 mask = ClassFlags;
duke@1 731 }
duke@1 732 // Interfaces are always ABSTRACT
duke@1 733 if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
duke@1 734
duke@1 735 if ((flags & ENUM) != 0) {
duke@1 736 // enums can't be declared abstract or final
duke@1 737 mask &= ~(ABSTRACT | FINAL);
duke@1 738 implicit |= implicitEnumFinalFlag(tree);
duke@1 739 }
duke@1 740 // Imply STRICTFP if owner has STRICTFP set.
duke@1 741 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 742 break;
duke@1 743 default:
duke@1 744 throw new AssertionError();
duke@1 745 }
duke@1 746 long illegal = flags & StandardFlags & ~mask;
duke@1 747 if (illegal != 0) {
duke@1 748 if ((illegal & INTERFACE) != 0) {
duke@1 749 log.error(pos, "intf.not.allowed.here");
duke@1 750 mask |= INTERFACE;
duke@1 751 }
duke@1 752 else {
duke@1 753 log.error(pos,
mcimadamore@80 754 "mod.not.allowed.here", asFlagSet(illegal));
duke@1 755 }
duke@1 756 }
duke@1 757 else if ((sym.kind == TYP ||
duke@1 758 // ISSUE: Disallowing abstract&private is no longer appropriate
duke@1 759 // in the presence of inner classes. Should it be deleted here?
duke@1 760 checkDisjoint(pos, flags,
duke@1 761 ABSTRACT,
duke@1 762 PRIVATE | STATIC))
duke@1 763 &&
duke@1 764 checkDisjoint(pos, flags,
duke@1 765 ABSTRACT | INTERFACE,
duke@1 766 FINAL | NATIVE | SYNCHRONIZED)
duke@1 767 &&
duke@1 768 checkDisjoint(pos, flags,
duke@1 769 PUBLIC,
duke@1 770 PRIVATE | PROTECTED)
duke@1 771 &&
duke@1 772 checkDisjoint(pos, flags,
duke@1 773 PRIVATE,
duke@1 774 PUBLIC | PROTECTED)
duke@1 775 &&
duke@1 776 checkDisjoint(pos, flags,
duke@1 777 FINAL,
duke@1 778 VOLATILE)
duke@1 779 &&
duke@1 780 (sym.kind == TYP ||
duke@1 781 checkDisjoint(pos, flags,
duke@1 782 ABSTRACT | NATIVE,
duke@1 783 STRICTFP))) {
duke@1 784 // skip
duke@1 785 }
duke@1 786 return flags & (mask | ~StandardFlags) | implicit;
duke@1 787 }
duke@1 788
duke@1 789
duke@1 790 /** Determine if this enum should be implicitly final.
duke@1 791 *
duke@1 792 * If the enum has no specialized enum contants, it is final.
duke@1 793 *
duke@1 794 * If the enum does have specialized enum contants, it is
duke@1 795 * <i>not</i> final.
duke@1 796 */
duke@1 797 private long implicitEnumFinalFlag(JCTree tree) {
duke@1 798 if (tree.getTag() != JCTree.CLASSDEF) return 0;
duke@1 799 class SpecialTreeVisitor extends JCTree.Visitor {
duke@1 800 boolean specialized;
duke@1 801 SpecialTreeVisitor() {
duke@1 802 this.specialized = false;
duke@1 803 };
duke@1 804
jjg@398 805 @Override
duke@1 806 public void visitTree(JCTree tree) { /* no-op */ }
duke@1 807
jjg@398 808 @Override
duke@1 809 public void visitVarDef(JCVariableDecl tree) {
duke@1 810 if ((tree.mods.flags & ENUM) != 0) {
duke@1 811 if (tree.init instanceof JCNewClass &&
duke@1 812 ((JCNewClass) tree.init).def != null) {
duke@1 813 specialized = true;
duke@1 814 }
duke@1 815 }
duke@1 816 }
duke@1 817 }
duke@1 818
duke@1 819 SpecialTreeVisitor sts = new SpecialTreeVisitor();
duke@1 820 JCClassDecl cdef = (JCClassDecl) tree;
duke@1 821 for (JCTree defs: cdef.defs) {
duke@1 822 defs.accept(sts);
duke@1 823 if (sts.specialized) return 0;
duke@1 824 }
duke@1 825 return FINAL;
duke@1 826 }
duke@1 827
duke@1 828 /* *************************************************************************
duke@1 829 * Type Validation
duke@1 830 **************************************************************************/
duke@1 831
duke@1 832 /** Validate a type expression. That is,
duke@1 833 * check that all type arguments of a parametric type are within
duke@1 834 * their bounds. This must be done in a second phase after type attributon
duke@1 835 * since a class might have a subclass as type parameter bound. E.g:
duke@1 836 *
duke@1 837 * class B<A extends C> { ... }
duke@1 838 * class C extends B<C> { ... }
duke@1 839 *
duke@1 840 * and we can't make sure that the bound is already attributed because
duke@1 841 * of possible cycles.
duke@1 842 */
duke@1 843 private Validator validator = new Validator();
duke@1 844
duke@1 845 /** Visitor method: Validate a type expression, if it is not null, catching
duke@1 846 * and reporting any completion failures.
duke@1 847 */
mcimadamore@122 848 void validate(JCTree tree, Env<AttrContext> env) {
duke@1 849 try {
mcimadamore@122 850 if (tree != null) {
mcimadamore@122 851 validator.env = env;
mcimadamore@122 852 tree.accept(validator);
mcimadamore@122 853 checkRaw(tree, env);
mcimadamore@122 854 }
duke@1 855 } catch (CompletionFailure ex) {
duke@1 856 completionError(tree.pos(), ex);
duke@1 857 }
duke@1 858 }
mcimadamore@122 859 //where
mcimadamore@122 860 void checkRaw(JCTree tree, Env<AttrContext> env) {
mcimadamore@122 861 if (lint.isEnabled(Lint.LintCategory.RAW) &&
mcimadamore@122 862 tree.type.tag == CLASS &&
mcimadamore@122 863 !env.enclClass.name.isEmpty() && //anonymous or intersection
mcimadamore@122 864 tree.type.isRaw()) {
mcimadamore@122 865 log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
mcimadamore@122 866 }
mcimadamore@122 867 }
duke@1 868
duke@1 869 /** Visitor method: Validate a list of type expressions.
duke@1 870 */
mcimadamore@122 871 void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
duke@1 872 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
mcimadamore@122 873 validate(l.head, env);
duke@1 874 }
duke@1 875
duke@1 876 /** A visitor class for type validation.
duke@1 877 */
duke@1 878 class Validator extends JCTree.Visitor {
duke@1 879
jjg@398 880 @Override
duke@1 881 public void visitTypeArray(JCArrayTypeTree tree) {
mcimadamore@122 882 validate(tree.elemtype, env);
duke@1 883 }
duke@1 884
jjg@398 885 @Override
duke@1 886 public void visitTypeApply(JCTypeApply tree) {
duke@1 887 if (tree.type.tag == CLASS) {
mcimadamore@158 888 List<Type> formals = tree.type.tsym.type.allparams();
mcimadamore@158 889 List<Type> actuals = tree.type.allparams();
duke@1 890 List<JCExpression> args = tree.arguments;
mcimadamore@158 891 List<Type> forms = tree.type.tsym.type.getTypeArguments();
duke@1 892 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
duke@1 893
duke@1 894 // For matching pairs of actual argument types `a' and
duke@1 895 // formal type parameters with declared bound `b' ...
duke@1 896 while (args.nonEmpty() && forms.nonEmpty()) {
mcimadamore@122 897 validate(args.head, env);
duke@1 898
duke@1 899 // exact type arguments needs to know their
duke@1 900 // bounds (for upper and lower bound
duke@1 901 // calculations). So we create new TypeVars with
duke@1 902 // bounds substed with actuals.
duke@1 903 tvars_buf.append(types.substBound(((TypeVar)forms.head),
duke@1 904 formals,
mcimadamore@78 905 actuals));
duke@1 906
duke@1 907 args = args.tail;
duke@1 908 forms = forms.tail;
duke@1 909 }
duke@1 910
duke@1 911 args = tree.arguments;
mcimadamore@154 912 List<Type> tvars_cap = types.substBounds(formals,
mcimadamore@154 913 formals,
mcimadamore@158 914 types.capture(tree.type).allparams());
mcimadamore@154 915 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
mcimadamore@154 916 // Let the actual arguments know their bound
mcimadamore@154 917 args.head.type.withTypeVar((TypeVar)tvars_cap.head);
mcimadamore@154 918 args = args.tail;
mcimadamore@154 919 tvars_cap = tvars_cap.tail;
mcimadamore@154 920 }
mcimadamore@154 921
mcimadamore@154 922 args = tree.arguments;
duke@1 923 List<TypeVar> tvars = tvars_buf.toList();
mcimadamore@154 924
duke@1 925 while (args.nonEmpty() && tvars.nonEmpty()) {
mcimadamore@154 926 checkExtends(args.head.pos(),
mcimadamore@154 927 args.head.type,
mcimadamore@154 928 tvars.head);
duke@1 929 args = args.tail;
duke@1 930 tvars = tvars.tail;
duke@1 931 }
duke@1 932
mcimadamore@154 933 checkCapture(tree);
mcimadamore@383 934 }
mcimadamore@383 935 if (tree.type.tag == CLASS || tree.type.tag == FORALL) {
duke@1 936 // Check that this type is either fully parameterized, or
duke@1 937 // not parameterized at all.
duke@1 938 if (tree.type.getEnclosingType().isRaw())
duke@1 939 log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
duke@1 940 if (tree.clazz.getTag() == JCTree.SELECT)
duke@1 941 visitSelectInternal((JCFieldAccess)tree.clazz);
duke@1 942 }
duke@1 943 }
duke@1 944
jjg@398 945 @Override
duke@1 946 public void visitTypeParameter(JCTypeParameter tree) {
mcimadamore@122 947 validate(tree.bounds, env);
duke@1 948 checkClassBounds(tree.pos(), tree.type);
duke@1 949 }
duke@1 950
duke@1 951 @Override
duke@1 952 public void visitWildcard(JCWildcard tree) {
duke@1 953 if (tree.inner != null)
mcimadamore@122 954 validate(tree.inner, env);
duke@1 955 }
duke@1 956
jjg@398 957 @Override
duke@1 958 public void visitSelect(JCFieldAccess tree) {
duke@1 959 if (tree.type.tag == CLASS) {
duke@1 960 visitSelectInternal(tree);
duke@1 961
duke@1 962 // Check that this type is either fully parameterized, or
duke@1 963 // not parameterized at all.
duke@1 964 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
duke@1 965 log.error(tree.pos(), "improperly.formed.type.param.missing");
duke@1 966 }
duke@1 967 }
duke@1 968 public void visitSelectInternal(JCFieldAccess tree) {
mcimadamore@122 969 if (tree.type.tsym.isStatic() &&
duke@1 970 tree.selected.type.isParameterized()) {
duke@1 971 // The enclosing type is not a class, so we are
duke@1 972 // looking at a static member type. However, the
duke@1 973 // qualifying expression is parameterized.
duke@1 974 log.error(tree.pos(), "cant.select.static.class.from.param.type");
duke@1 975 } else {
duke@1 976 // otherwise validate the rest of the expression
mcimadamore@122 977 tree.selected.accept(this);
duke@1 978 }
duke@1 979 }
duke@1 980
jjg@398 981 @Override
jjg@308 982 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 983 tree.underlyingType.accept(this);
jjg@308 984 }
jjg@308 985
duke@1 986 /** Default visitor method: do nothing.
duke@1 987 */
jjg@398 988 @Override
duke@1 989 public void visitTree(JCTree tree) {
duke@1 990 }
mcimadamore@122 991
mcimadamore@122 992 Env<AttrContext> env;
duke@1 993 }
duke@1 994
duke@1 995 /* *************************************************************************
duke@1 996 * Exception checking
duke@1 997 **************************************************************************/
duke@1 998
duke@1 999 /* The following methods treat classes as sets that contain
duke@1 1000 * the class itself and all their subclasses
duke@1 1001 */
duke@1 1002
duke@1 1003 /** Is given type a subtype of some of the types in given list?
duke@1 1004 */
duke@1 1005 boolean subset(Type t, List<Type> ts) {
duke@1 1006 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 1007 if (types.isSubtype(t, l.head)) return true;
duke@1 1008 return false;
duke@1 1009 }
duke@1 1010
duke@1 1011 /** Is given type a subtype or supertype of
duke@1 1012 * some of the types in given list?
duke@1 1013 */
duke@1 1014 boolean intersects(Type t, List<Type> ts) {
duke@1 1015 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 1016 if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
duke@1 1017 return false;
duke@1 1018 }
duke@1 1019
duke@1 1020 /** Add type set to given type list, unless it is a subclass of some class
duke@1 1021 * in the list.
duke@1 1022 */
duke@1 1023 List<Type> incl(Type t, List<Type> ts) {
duke@1 1024 return subset(t, ts) ? ts : excl(t, ts).prepend(t);
duke@1 1025 }
duke@1 1026
duke@1 1027 /** Remove type set from type set list.
duke@1 1028 */
duke@1 1029 List<Type> excl(Type t, List<Type> ts) {
duke@1 1030 if (ts.isEmpty()) {
duke@1 1031 return ts;
duke@1 1032 } else {
duke@1 1033 List<Type> ts1 = excl(t, ts.tail);
duke@1 1034 if (types.isSubtype(ts.head, t)) return ts1;
duke@1 1035 else if (ts1 == ts.tail) return ts;
duke@1 1036 else return ts1.prepend(ts.head);
duke@1 1037 }
duke@1 1038 }
duke@1 1039
duke@1 1040 /** Form the union of two type set lists.
duke@1 1041 */
duke@1 1042 List<Type> union(List<Type> ts1, List<Type> ts2) {
duke@1 1043 List<Type> ts = ts1;
duke@1 1044 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1045 ts = incl(l.head, ts);
duke@1 1046 return ts;
duke@1 1047 }
duke@1 1048
duke@1 1049 /** Form the difference of two type lists.
duke@1 1050 */
duke@1 1051 List<Type> diff(List<Type> ts1, List<Type> ts2) {
duke@1 1052 List<Type> ts = ts1;
duke@1 1053 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1054 ts = excl(l.head, ts);
duke@1 1055 return ts;
duke@1 1056 }
duke@1 1057
duke@1 1058 /** Form the intersection of two type lists.
duke@1 1059 */
duke@1 1060 public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
duke@1 1061 List<Type> ts = List.nil();
duke@1 1062 for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
duke@1 1063 if (subset(l.head, ts2)) ts = incl(l.head, ts);
duke@1 1064 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1065 if (subset(l.head, ts1)) ts = incl(l.head, ts);
duke@1 1066 return ts;
duke@1 1067 }
duke@1 1068
duke@1 1069 /** Is exc an exception symbol that need not be declared?
duke@1 1070 */
duke@1 1071 boolean isUnchecked(ClassSymbol exc) {
duke@1 1072 return
duke@1 1073 exc.kind == ERR ||
duke@1 1074 exc.isSubClass(syms.errorType.tsym, types) ||
duke@1 1075 exc.isSubClass(syms.runtimeExceptionType.tsym, types);
duke@1 1076 }
duke@1 1077
duke@1 1078 /** Is exc an exception type that need not be declared?
duke@1 1079 */
duke@1 1080 boolean isUnchecked(Type exc) {
duke@1 1081 return
duke@1 1082 (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
duke@1 1083 (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
duke@1 1084 exc.tag == BOT;
duke@1 1085 }
duke@1 1086
duke@1 1087 /** Same, but handling completion failures.
duke@1 1088 */
duke@1 1089 boolean isUnchecked(DiagnosticPosition pos, Type exc) {
duke@1 1090 try {
duke@1 1091 return isUnchecked(exc);
duke@1 1092 } catch (CompletionFailure ex) {
duke@1 1093 completionError(pos, ex);
duke@1 1094 return true;
duke@1 1095 }
duke@1 1096 }
duke@1 1097
duke@1 1098 /** Is exc handled by given exception list?
duke@1 1099 */
duke@1 1100 boolean isHandled(Type exc, List<Type> handled) {
duke@1 1101 return isUnchecked(exc) || subset(exc, handled);
duke@1 1102 }
duke@1 1103
duke@1 1104 /** Return all exceptions in thrown list that are not in handled list.
duke@1 1105 * @param thrown The list of thrown exceptions.
duke@1 1106 * @param handled The list of handled exceptions.
duke@1 1107 */
mcimadamore@362 1108 List<Type> unhandled(List<Type> thrown, List<Type> handled) {
duke@1 1109 List<Type> unhandled = List.nil();
duke@1 1110 for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
duke@1 1111 if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
duke@1 1112 return unhandled;
duke@1 1113 }
duke@1 1114
duke@1 1115 /* *************************************************************************
duke@1 1116 * Overriding/Implementation checking
duke@1 1117 **************************************************************************/
duke@1 1118
duke@1 1119 /** The level of access protection given by a flag set,
duke@1 1120 * where PRIVATE is highest and PUBLIC is lowest.
duke@1 1121 */
duke@1 1122 static int protection(long flags) {
duke@1 1123 switch ((short)(flags & AccessFlags)) {
duke@1 1124 case PRIVATE: return 3;
duke@1 1125 case PROTECTED: return 1;
duke@1 1126 default:
duke@1 1127 case PUBLIC: return 0;
duke@1 1128 case 0: return 2;
duke@1 1129 }
duke@1 1130 }
duke@1 1131
duke@1 1132 /** A customized "cannot override" error message.
duke@1 1133 * @param m The overriding method.
duke@1 1134 * @param other The overridden method.
duke@1 1135 * @return An internationalized string.
duke@1 1136 */
mcimadamore@89 1137 Object cannotOverride(MethodSymbol m, MethodSymbol other) {
duke@1 1138 String key;
duke@1 1139 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1140 key = "cant.override";
duke@1 1141 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1142 key = "cant.implement";
duke@1 1143 else
duke@1 1144 key = "clashes.with";
mcimadamore@89 1145 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1146 }
duke@1 1147
duke@1 1148 /** A customized "override" warning message.
duke@1 1149 * @param m The overriding method.
duke@1 1150 * @param other The overridden method.
duke@1 1151 * @return An internationalized string.
duke@1 1152 */
mcimadamore@89 1153 Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1154 String key;
duke@1 1155 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1156 key = "unchecked.override";
duke@1 1157 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1158 key = "unchecked.implement";
duke@1 1159 else
duke@1 1160 key = "unchecked.clash.with";
mcimadamore@89 1161 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1162 }
duke@1 1163
duke@1 1164 /** A customized "override" warning message.
duke@1 1165 * @param m The overriding method.
duke@1 1166 * @param other The overridden method.
duke@1 1167 * @return An internationalized string.
duke@1 1168 */
mcimadamore@89 1169 Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1170 String key;
duke@1 1171 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1172 key = "varargs.override";
duke@1 1173 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1174 key = "varargs.implement";
duke@1 1175 else
duke@1 1176 key = "varargs.clash.with";
mcimadamore@89 1177 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1178 }
duke@1 1179
duke@1 1180 /** Check that this method conforms with overridden method 'other'.
duke@1 1181 * where `origin' is the class where checking started.
duke@1 1182 * Complications:
duke@1 1183 * (1) Do not check overriding of synthetic methods
duke@1 1184 * (reason: they might be final).
duke@1 1185 * todo: check whether this is still necessary.
duke@1 1186 * (2) Admit the case where an interface proxy throws fewer exceptions
duke@1 1187 * than the method it implements. Augment the proxy methods with the
duke@1 1188 * undeclared exceptions in this case.
duke@1 1189 * (3) When generics are enabled, admit the case where an interface proxy
duke@1 1190 * has a result type
duke@1 1191 * extended by the result type of the method it implements.
duke@1 1192 * Change the proxies result type to the smaller type in this case.
duke@1 1193 *
duke@1 1194 * @param tree The tree from which positions
duke@1 1195 * are extracted for errors.
duke@1 1196 * @param m The overriding method.
duke@1 1197 * @param other The overridden method.
duke@1 1198 * @param origin The class of which the overriding method
duke@1 1199 * is a member.
duke@1 1200 */
duke@1 1201 void checkOverride(JCTree tree,
duke@1 1202 MethodSymbol m,
duke@1 1203 MethodSymbol other,
duke@1 1204 ClassSymbol origin) {
duke@1 1205 // Don't check overriding of synthetic methods or by bridge methods.
duke@1 1206 if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
duke@1 1207 return;
duke@1 1208 }
duke@1 1209
duke@1 1210 // Error if static method overrides instance method (JLS 8.4.6.2).
duke@1 1211 if ((m.flags() & STATIC) != 0 &&
duke@1 1212 (other.flags() & STATIC) == 0) {
duke@1 1213 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
duke@1 1214 cannotOverride(m, other));
duke@1 1215 return;
duke@1 1216 }
duke@1 1217
duke@1 1218 // Error if instance method overrides static or final
duke@1 1219 // method (JLS 8.4.6.1).
duke@1 1220 if ((other.flags() & FINAL) != 0 ||
duke@1 1221 (m.flags() & STATIC) == 0 &&
duke@1 1222 (other.flags() & STATIC) != 0) {
duke@1 1223 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
duke@1 1224 cannotOverride(m, other),
mcimadamore@80 1225 asFlagSet(other.flags() & (FINAL | STATIC)));
duke@1 1226 return;
duke@1 1227 }
duke@1 1228
duke@1 1229 if ((m.owner.flags() & ANNOTATION) != 0) {
duke@1 1230 // handled in validateAnnotationMethod
duke@1 1231 return;
duke@1 1232 }
duke@1 1233
duke@1 1234 // Error if overriding method has weaker access (JLS 8.4.6.3).
duke@1 1235 if ((origin.flags() & INTERFACE) == 0 &&
duke@1 1236 protection(m.flags()) > protection(other.flags())) {
duke@1 1237 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
duke@1 1238 cannotOverride(m, other),
mcimadamore@80 1239 other.flags() == 0 ?
mcimadamore@80 1240 Flag.PACKAGE :
mcimadamore@80 1241 asFlagSet(other.flags() & AccessFlags));
duke@1 1242 return;
duke@1 1243 }
duke@1 1244
duke@1 1245 Type mt = types.memberType(origin.type, m);
duke@1 1246 Type ot = types.memberType(origin.type, other);
duke@1 1247 // Error if overriding result type is different
duke@1 1248 // (or, in the case of generics mode, not a subtype) of
duke@1 1249 // overridden result type. We have to rename any type parameters
duke@1 1250 // before comparing types.
duke@1 1251 List<Type> mtvars = mt.getTypeArguments();
duke@1 1252 List<Type> otvars = ot.getTypeArguments();
duke@1 1253 Type mtres = mt.getReturnType();
duke@1 1254 Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
duke@1 1255
duke@1 1256 overrideWarner.warned = false;
duke@1 1257 boolean resultTypesOK =
tbell@202 1258 types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
duke@1 1259 if (!resultTypesOK) {
jjg@398 1260 if (!allowCovariantReturns &&
duke@1 1261 m.owner != origin &&
duke@1 1262 m.owner.isSubClass(other.owner, types)) {
duke@1 1263 // allow limited interoperability with covariant returns
duke@1 1264 } else {
mcimadamore@362 1265 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1266 "override.incompatible.ret",
mcimadamore@362 1267 cannotOverride(m, other),
duke@1 1268 mtres, otres);
duke@1 1269 return;
duke@1 1270 }
duke@1 1271 } else if (overrideWarner.warned) {
duke@1 1272 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1273 "override.unchecked.ret",
mcimadamore@362 1274 uncheckedOverrides(m, other),
mcimadamore@362 1275 mtres, otres);
duke@1 1276 }
duke@1 1277
duke@1 1278 // Error if overriding method throws an exception not reported
duke@1 1279 // by overridden method.
duke@1 1280 List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
mcimadamore@362 1281 List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
mcimadamore@362 1282 List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
mcimadamore@362 1283 if (unhandledErased.nonEmpty()) {
duke@1 1284 log.error(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1285 "override.meth.doesnt.throw",
duke@1 1286 cannotOverride(m, other),
mcimadamore@362 1287 unhandledUnerased.head);
mcimadamore@362 1288 return;
mcimadamore@362 1289 }
mcimadamore@362 1290 else if (unhandledUnerased.nonEmpty()) {
mcimadamore@362 1291 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1292 "override.unchecked.thrown",
mcimadamore@362 1293 cannotOverride(m, other),
mcimadamore@362 1294 unhandledUnerased.head);
duke@1 1295 return;
duke@1 1296 }
duke@1 1297
duke@1 1298 // Optional warning if varargs don't agree
duke@1 1299 if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
duke@1 1300 && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
duke@1 1301 log.warning(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1302 ((m.flags() & Flags.VARARGS) != 0)
duke@1 1303 ? "override.varargs.missing"
duke@1 1304 : "override.varargs.extra",
duke@1 1305 varargsOverrides(m, other));
duke@1 1306 }
duke@1 1307
duke@1 1308 // Warn if instance method overrides bridge method (compiler spec ??)
duke@1 1309 if ((other.flags() & BRIDGE) != 0) {
duke@1 1310 log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
duke@1 1311 uncheckedOverrides(m, other));
duke@1 1312 }
duke@1 1313
duke@1 1314 // Warn if a deprecated method overridden by a non-deprecated one.
duke@1 1315 if ((other.flags() & DEPRECATED) != 0
duke@1 1316 && (m.flags() & DEPRECATED) == 0
duke@1 1317 && m.outermostClass() != other.outermostClass()
duke@1 1318 && !isDeprecatedOverrideIgnorable(other, origin)) {
duke@1 1319 warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
duke@1 1320 }
duke@1 1321 }
duke@1 1322 // where
duke@1 1323 private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
duke@1 1324 // If the method, m, is defined in an interface, then ignore the issue if the method
duke@1 1325 // is only inherited via a supertype and also implemented in the supertype,
duke@1 1326 // because in that case, we will rediscover the issue when examining the method
duke@1 1327 // in the supertype.
duke@1 1328 // If the method, m, is not defined in an interface, then the only time we need to
duke@1 1329 // address the issue is when the method is the supertype implemementation: any other
duke@1 1330 // case, we will have dealt with when examining the supertype classes
duke@1 1331 ClassSymbol mc = m.enclClass();
duke@1 1332 Type st = types.supertype(origin.type);
duke@1 1333 if (st.tag != CLASS)
duke@1 1334 return true;
duke@1 1335 MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
duke@1 1336
duke@1 1337 if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
duke@1 1338 List<Type> intfs = types.interfaces(origin.type);
duke@1 1339 return (intfs.contains(mc.type) ? false : (stimpl != null));
duke@1 1340 }
duke@1 1341 else
duke@1 1342 return (stimpl != m);
duke@1 1343 }
duke@1 1344
duke@1 1345
duke@1 1346 // used to check if there were any unchecked conversions
duke@1 1347 Warner overrideWarner = new Warner();
duke@1 1348
duke@1 1349 /** Check that a class does not inherit two concrete methods
duke@1 1350 * with the same signature.
duke@1 1351 * @param pos Position to be used for error reporting.
duke@1 1352 * @param site The class type to be checked.
duke@1 1353 */
duke@1 1354 public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
duke@1 1355 Type sup = types.supertype(site);
duke@1 1356 if (sup.tag != CLASS) return;
duke@1 1357
duke@1 1358 for (Type t1 = sup;
duke@1 1359 t1.tsym.type.isParameterized();
duke@1 1360 t1 = types.supertype(t1)) {
duke@1 1361 for (Scope.Entry e1 = t1.tsym.members().elems;
duke@1 1362 e1 != null;
duke@1 1363 e1 = e1.sibling) {
duke@1 1364 Symbol s1 = e1.sym;
duke@1 1365 if (s1.kind != MTH ||
duke@1 1366 (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1367 !s1.isInheritedIn(site.tsym, types) ||
duke@1 1368 ((MethodSymbol)s1).implementation(site.tsym,
duke@1 1369 types,
duke@1 1370 true) != s1)
duke@1 1371 continue;
duke@1 1372 Type st1 = types.memberType(t1, s1);
duke@1 1373 int s1ArgsLength = st1.getParameterTypes().length();
duke@1 1374 if (st1 == s1.type) continue;
duke@1 1375
duke@1 1376 for (Type t2 = sup;
duke@1 1377 t2.tag == CLASS;
duke@1 1378 t2 = types.supertype(t2)) {
mcimadamore@24 1379 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
duke@1 1380 e2.scope != null;
duke@1 1381 e2 = e2.next()) {
duke@1 1382 Symbol s2 = e2.sym;
duke@1 1383 if (s2 == s1 ||
duke@1 1384 s2.kind != MTH ||
duke@1 1385 (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1386 s2.type.getParameterTypes().length() != s1ArgsLength ||
duke@1 1387 !s2.isInheritedIn(site.tsym, types) ||
duke@1 1388 ((MethodSymbol)s2).implementation(site.tsym,
duke@1 1389 types,
duke@1 1390 true) != s2)
duke@1 1391 continue;
duke@1 1392 Type st2 = types.memberType(t2, s2);
duke@1 1393 if (types.overrideEquivalent(st1, st2))
duke@1 1394 log.error(pos, "concrete.inheritance.conflict",
duke@1 1395 s1, t1, s2, t2, sup);
duke@1 1396 }
duke@1 1397 }
duke@1 1398 }
duke@1 1399 }
duke@1 1400 }
duke@1 1401
duke@1 1402 /** Check that classes (or interfaces) do not each define an abstract
duke@1 1403 * method with same name and arguments but incompatible return types.
duke@1 1404 * @param pos Position to be used for error reporting.
duke@1 1405 * @param t1 The first argument type.
duke@1 1406 * @param t2 The second argument type.
duke@1 1407 */
duke@1 1408 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1409 Type t1,
duke@1 1410 Type t2) {
duke@1 1411 return checkCompatibleAbstracts(pos, t1, t2,
duke@1 1412 types.makeCompoundType(t1, t2));
duke@1 1413 }
duke@1 1414
duke@1 1415 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1416 Type t1,
duke@1 1417 Type t2,
duke@1 1418 Type site) {
duke@1 1419 Symbol sym = firstIncompatibility(t1, t2, site);
duke@1 1420 if (sym != null) {
duke@1 1421 log.error(pos, "types.incompatible.diff.ret",
duke@1 1422 t1, t2, sym.name +
duke@1 1423 "(" + types.memberType(t2, sym).getParameterTypes() + ")");
duke@1 1424 return false;
duke@1 1425 }
duke@1 1426 return true;
duke@1 1427 }
duke@1 1428
duke@1 1429 /** Return the first method which is defined with same args
duke@1 1430 * but different return types in two given interfaces, or null if none
duke@1 1431 * exists.
duke@1 1432 * @param t1 The first type.
duke@1 1433 * @param t2 The second type.
duke@1 1434 * @param site The most derived type.
duke@1 1435 * @returns symbol from t2 that conflicts with one in t1.
duke@1 1436 */
duke@1 1437 private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
duke@1 1438 Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
duke@1 1439 closure(t1, interfaces1);
duke@1 1440 Map<TypeSymbol,Type> interfaces2;
duke@1 1441 if (t1 == t2)
duke@1 1442 interfaces2 = interfaces1;
duke@1 1443 else
duke@1 1444 closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
duke@1 1445
duke@1 1446 for (Type t3 : interfaces1.values()) {
duke@1 1447 for (Type t4 : interfaces2.values()) {
duke@1 1448 Symbol s = firstDirectIncompatibility(t3, t4, site);
duke@1 1449 if (s != null) return s;
duke@1 1450 }
duke@1 1451 }
duke@1 1452 return null;
duke@1 1453 }
duke@1 1454
duke@1 1455 /** Compute all the supertypes of t, indexed by type symbol. */
duke@1 1456 private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
duke@1 1457 if (t.tag != CLASS) return;
duke@1 1458 if (typeMap.put(t.tsym, t) == null) {
duke@1 1459 closure(types.supertype(t), typeMap);
duke@1 1460 for (Type i : types.interfaces(t))
duke@1 1461 closure(i, typeMap);
duke@1 1462 }
duke@1 1463 }
duke@1 1464
duke@1 1465 /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
duke@1 1466 private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
duke@1 1467 if (t.tag != CLASS) return;
duke@1 1468 if (typesSkip.get(t.tsym) != null) return;
duke@1 1469 if (typeMap.put(t.tsym, t) == null) {
duke@1 1470 closure(types.supertype(t), typesSkip, typeMap);
duke@1 1471 for (Type i : types.interfaces(t))
duke@1 1472 closure(i, typesSkip, typeMap);
duke@1 1473 }
duke@1 1474 }
duke@1 1475
duke@1 1476 /** Return the first method in t2 that conflicts with a method from t1. */
duke@1 1477 private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
duke@1 1478 for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
duke@1 1479 Symbol s1 = e1.sym;
duke@1 1480 Type st1 = null;
duke@1 1481 if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
duke@1 1482 Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
duke@1 1483 if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
duke@1 1484 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
duke@1 1485 Symbol s2 = e2.sym;
duke@1 1486 if (s1 == s2) continue;
duke@1 1487 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
duke@1 1488 if (st1 == null) st1 = types.memberType(t1, s1);
duke@1 1489 Type st2 = types.memberType(t2, s2);
duke@1 1490 if (types.overrideEquivalent(st1, st2)) {
duke@1 1491 List<Type> tvars1 = st1.getTypeArguments();
duke@1 1492 List<Type> tvars2 = st2.getTypeArguments();
duke@1 1493 Type rt1 = st1.getReturnType();
duke@1 1494 Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
duke@1 1495 boolean compat =
duke@1 1496 types.isSameType(rt1, rt2) ||
duke@1 1497 rt1.tag >= CLASS && rt2.tag >= CLASS &&
duke@1 1498 (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
mcimadamore@59 1499 types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
mcimadamore@59 1500 checkCommonOverriderIn(s1,s2,site);
duke@1 1501 if (!compat) return s2;
duke@1 1502 }
duke@1 1503 }
duke@1 1504 }
duke@1 1505 return null;
duke@1 1506 }
mcimadamore@59 1507 //WHERE
mcimadamore@59 1508 boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
mcimadamore@59 1509 Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
mcimadamore@59 1510 Type st1 = types.memberType(site, s1);
mcimadamore@59 1511 Type st2 = types.memberType(site, s2);
mcimadamore@59 1512 closure(site, supertypes);
mcimadamore@59 1513 for (Type t : supertypes.values()) {
mcimadamore@59 1514 for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
mcimadamore@59 1515 Symbol s3 = e.sym;
mcimadamore@59 1516 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
mcimadamore@59 1517 Type st3 = types.memberType(site,s3);
mcimadamore@59 1518 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
mcimadamore@59 1519 if (s3.owner == site.tsym) {
mcimadamore@59 1520 return true;
mcimadamore@59 1521 }
mcimadamore@59 1522 List<Type> tvars1 = st1.getTypeArguments();
mcimadamore@59 1523 List<Type> tvars2 = st2.getTypeArguments();
mcimadamore@59 1524 List<Type> tvars3 = st3.getTypeArguments();
mcimadamore@59 1525 Type rt1 = st1.getReturnType();
mcimadamore@59 1526 Type rt2 = st2.getReturnType();
mcimadamore@59 1527 Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
mcimadamore@59 1528 Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
mcimadamore@59 1529 boolean compat =
mcimadamore@59 1530 rt13.tag >= CLASS && rt23.tag >= CLASS &&
mcimadamore@59 1531 (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
mcimadamore@59 1532 types.covariantReturnType(rt23, rt2, Warner.noWarnings));
mcimadamore@59 1533 if (compat)
mcimadamore@59 1534 return true;
mcimadamore@59 1535 }
mcimadamore@59 1536 }
mcimadamore@59 1537 }
mcimadamore@59 1538 return false;
mcimadamore@59 1539 }
duke@1 1540
duke@1 1541 /** Check that a given method conforms with any method it overrides.
duke@1 1542 * @param tree The tree from which positions are extracted
duke@1 1543 * for errors.
duke@1 1544 * @param m The overriding method.
duke@1 1545 */
duke@1 1546 void checkOverride(JCTree tree, MethodSymbol m) {
duke@1 1547 ClassSymbol origin = (ClassSymbol)m.owner;
duke@1 1548 if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
duke@1 1549 if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
duke@1 1550 log.error(tree.pos(), "enum.no.finalize");
duke@1 1551 return;
duke@1 1552 }
duke@1 1553 for (Type t = types.supertype(origin.type); t.tag == CLASS;
duke@1 1554 t = types.supertype(t)) {
duke@1 1555 TypeSymbol c = t.tsym;
duke@1 1556 Scope.Entry e = c.members().lookup(m.name);
duke@1 1557 while (e.scope != null) {
duke@1 1558 if (m.overrides(e.sym, origin, types, false))
duke@1 1559 checkOverride(tree, m, (MethodSymbol)e.sym, origin);
mcimadamore@252 1560 else if (e.sym.kind == MTH &&
mcimadamore@252 1561 e.sym.isInheritedIn(origin, types) &&
mcimadamore@252 1562 (e.sym.flags() & SYNTHETIC) == 0 &&
mcimadamore@252 1563 !m.isConstructor()) {
mcimadamore@24 1564 Type er1 = m.erasure(types);
mcimadamore@24 1565 Type er2 = e.sym.erasure(types);
mcimadamore@252 1566 if (types.isSameTypes(er1.getParameterTypes(),
mcimadamore@252 1567 er2.getParameterTypes())) {
mcimadamore@24 1568 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@24 1569 "name.clash.same.erasure.no.override",
mcimadamore@24 1570 m, m.location(),
mcimadamore@24 1571 e.sym, e.sym.location());
mcimadamore@24 1572 }
mcimadamore@24 1573 }
duke@1 1574 e = e.next();
duke@1 1575 }
duke@1 1576 }
duke@1 1577 }
duke@1 1578
duke@1 1579 /** Check that all abstract members of given class have definitions.
duke@1 1580 * @param pos Position to be used for error reporting.
duke@1 1581 * @param c The class.
duke@1 1582 */
duke@1 1583 void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1584 try {
duke@1 1585 MethodSymbol undef = firstUndef(c, c);
duke@1 1586 if (undef != null) {
duke@1 1587 if ((c.flags() & ENUM) != 0 &&
duke@1 1588 types.supertype(c.type).tsym == syms.enumSym &&
duke@1 1589 (c.flags() & FINAL) == 0) {
duke@1 1590 // add the ABSTRACT flag to an enum
duke@1 1591 c.flags_field |= ABSTRACT;
duke@1 1592 } else {
duke@1 1593 MethodSymbol undef1 =
duke@1 1594 new MethodSymbol(undef.flags(), undef.name,
duke@1 1595 types.memberType(c.type, undef), undef.owner);
duke@1 1596 log.error(pos, "does.not.override.abstract",
duke@1 1597 c, undef1, undef1.location());
duke@1 1598 }
duke@1 1599 }
duke@1 1600 } catch (CompletionFailure ex) {
duke@1 1601 completionError(pos, ex);
duke@1 1602 }
duke@1 1603 }
duke@1 1604 //where
duke@1 1605 /** Return first abstract member of class `c' that is not defined
duke@1 1606 * in `impl', null if there is none.
duke@1 1607 */
duke@1 1608 private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
duke@1 1609 MethodSymbol undef = null;
duke@1 1610 // Do not bother to search in classes that are not abstract,
duke@1 1611 // since they cannot have abstract members.
duke@1 1612 if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1613 Scope s = c.members();
duke@1 1614 for (Scope.Entry e = s.elems;
duke@1 1615 undef == null && e != null;
duke@1 1616 e = e.sibling) {
duke@1 1617 if (e.sym.kind == MTH &&
duke@1 1618 (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
duke@1 1619 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1620 MethodSymbol implmeth = absmeth.implementation(impl, types, true);
duke@1 1621 if (implmeth == null || implmeth == absmeth)
duke@1 1622 undef = absmeth;
duke@1 1623 }
duke@1 1624 }
duke@1 1625 if (undef == null) {
duke@1 1626 Type st = types.supertype(c.type);
duke@1 1627 if (st.tag == CLASS)
duke@1 1628 undef = firstUndef(impl, (ClassSymbol)st.tsym);
duke@1 1629 }
duke@1 1630 for (List<Type> l = types.interfaces(c.type);
duke@1 1631 undef == null && l.nonEmpty();
duke@1 1632 l = l.tail) {
duke@1 1633 undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
duke@1 1634 }
duke@1 1635 }
duke@1 1636 return undef;
duke@1 1637 }
duke@1 1638
duke@1 1639 /** Check for cyclic references. Issue an error if the
duke@1 1640 * symbol of the type referred to has a LOCKED flag set.
duke@1 1641 *
duke@1 1642 * @param pos Position to be used for error reporting.
duke@1 1643 * @param t The type referred to.
duke@1 1644 */
duke@1 1645 void checkNonCyclic(DiagnosticPosition pos, Type t) {
duke@1 1646 checkNonCyclicInternal(pos, t);
duke@1 1647 }
duke@1 1648
duke@1 1649
duke@1 1650 void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
mcimadamore@236 1651 checkNonCyclic1(pos, t, List.<TypeVar>nil());
duke@1 1652 }
duke@1 1653
mcimadamore@236 1654 private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
duke@1 1655 final TypeVar tv;
mcimadamore@42 1656 if (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
mcimadamore@42 1657 return;
duke@1 1658 if (seen.contains(t)) {
duke@1 1659 tv = (TypeVar)t;
jjg@110 1660 tv.bound = types.createErrorType(t);
duke@1 1661 log.error(pos, "cyclic.inheritance", t);
duke@1 1662 } else if (t.tag == TYPEVAR) {
duke@1 1663 tv = (TypeVar)t;
mcimadamore@236 1664 seen = seen.prepend(tv);
duke@1 1665 for (Type b : types.getBounds(tv))
duke@1 1666 checkNonCyclic1(pos, b, seen);
duke@1 1667 }
duke@1 1668 }
duke@1 1669
duke@1 1670 /** Check for cyclic references. Issue an error if the
duke@1 1671 * symbol of the type referred to has a LOCKED flag set.
duke@1 1672 *
duke@1 1673 * @param pos Position to be used for error reporting.
duke@1 1674 * @param t The type referred to.
duke@1 1675 * @returns True if the check completed on all attributed classes
duke@1 1676 */
duke@1 1677 private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
duke@1 1678 boolean complete = true; // was the check complete?
duke@1 1679 //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
duke@1 1680 Symbol c = t.tsym;
duke@1 1681 if ((c.flags_field & ACYCLIC) != 0) return true;
duke@1 1682
duke@1 1683 if ((c.flags_field & LOCKED) != 0) {
duke@1 1684 noteCyclic(pos, (ClassSymbol)c);
duke@1 1685 } else if (!c.type.isErroneous()) {
duke@1 1686 try {
duke@1 1687 c.flags_field |= LOCKED;
duke@1 1688 if (c.type.tag == CLASS) {
duke@1 1689 ClassType clazz = (ClassType)c.type;
duke@1 1690 if (clazz.interfaces_field != null)
duke@1 1691 for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
duke@1 1692 complete &= checkNonCyclicInternal(pos, l.head);
duke@1 1693 if (clazz.supertype_field != null) {
duke@1 1694 Type st = clazz.supertype_field;
duke@1 1695 if (st != null && st.tag == CLASS)
duke@1 1696 complete &= checkNonCyclicInternal(pos, st);
duke@1 1697 }
duke@1 1698 if (c.owner.kind == TYP)
duke@1 1699 complete &= checkNonCyclicInternal(pos, c.owner.type);
duke@1 1700 }
duke@1 1701 } finally {
duke@1 1702 c.flags_field &= ~LOCKED;
duke@1 1703 }
duke@1 1704 }
duke@1 1705 if (complete)
duke@1 1706 complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
duke@1 1707 if (complete) c.flags_field |= ACYCLIC;
duke@1 1708 return complete;
duke@1 1709 }
duke@1 1710
duke@1 1711 /** Note that we found an inheritance cycle. */
duke@1 1712 private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1713 log.error(pos, "cyclic.inheritance", c);
duke@1 1714 for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
jjg@110 1715 l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
duke@1 1716 Type st = types.supertype(c.type);
duke@1 1717 if (st.tag == CLASS)
jjg@110 1718 ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
jjg@110 1719 c.type = types.createErrorType(c, c.type);
duke@1 1720 c.flags_field |= ACYCLIC;
duke@1 1721 }
duke@1 1722
duke@1 1723 /** Check that all methods which implement some
duke@1 1724 * method conform to the method they implement.
duke@1 1725 * @param tree The class definition whose members are checked.
duke@1 1726 */
duke@1 1727 void checkImplementations(JCClassDecl tree) {
duke@1 1728 checkImplementations(tree, tree.sym);
duke@1 1729 }
duke@1 1730 //where
duke@1 1731 /** Check that all methods which implement some
duke@1 1732 * method in `ic' conform to the method they implement.
duke@1 1733 */
duke@1 1734 void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
duke@1 1735 ClassSymbol origin = tree.sym;
duke@1 1736 for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
duke@1 1737 ClassSymbol lc = (ClassSymbol)l.head.tsym;
duke@1 1738 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
duke@1 1739 for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
duke@1 1740 if (e.sym.kind == MTH &&
duke@1 1741 (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
duke@1 1742 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1743 MethodSymbol implmeth = absmeth.implementation(origin, types, false);
duke@1 1744 if (implmeth != null && implmeth != absmeth &&
duke@1 1745 (implmeth.owner.flags() & INTERFACE) ==
duke@1 1746 (origin.flags() & INTERFACE)) {
duke@1 1747 // don't check if implmeth is in a class, yet
duke@1 1748 // origin is an interface. This case arises only
duke@1 1749 // if implmeth is declared in Object. The reason is
duke@1 1750 // that interfaces really don't inherit from
duke@1 1751 // Object it's just that the compiler represents
duke@1 1752 // things that way.
duke@1 1753 checkOverride(tree, implmeth, absmeth, origin);
duke@1 1754 }
duke@1 1755 }
duke@1 1756 }
duke@1 1757 }
duke@1 1758 }
duke@1 1759 }
duke@1 1760
duke@1 1761 /** Check that all abstract methods implemented by a class are
duke@1 1762 * mutually compatible.
duke@1 1763 * @param pos Position to be used for error reporting.
duke@1 1764 * @param c The class whose interfaces are checked.
duke@1 1765 */
duke@1 1766 void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
duke@1 1767 List<Type> supertypes = types.interfaces(c);
duke@1 1768 Type supertype = types.supertype(c);
duke@1 1769 if (supertype.tag == CLASS &&
duke@1 1770 (supertype.tsym.flags() & ABSTRACT) != 0)
duke@1 1771 supertypes = supertypes.prepend(supertype);
duke@1 1772 for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
duke@1 1773 if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
duke@1 1774 !checkCompatibleAbstracts(pos, l.head, l.head, c))
duke@1 1775 return;
duke@1 1776 for (List<Type> m = supertypes; m != l; m = m.tail)
duke@1 1777 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
duke@1 1778 return;
duke@1 1779 }
duke@1 1780 checkCompatibleConcretes(pos, c);
duke@1 1781 }
duke@1 1782
mcimadamore@359 1783 void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
mcimadamore@359 1784 for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
mcimadamore@359 1785 for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
mcimadamore@359 1786 // VM allows methods and variables with differing types
mcimadamore@359 1787 if (sym.kind == e.sym.kind &&
mcimadamore@359 1788 types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
mcimadamore@359 1789 sym != e.sym &&
mcimadamore@359 1790 (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
mcimadamore@359 1791 (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
mcimadamore@359 1792 syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
mcimadamore@359 1793 return;
mcimadamore@359 1794 }
mcimadamore@359 1795 }
mcimadamore@359 1796 }
mcimadamore@359 1797 }
mcimadamore@359 1798
mcimadamore@359 1799 /** Report a conflict between a user symbol and a synthetic symbol.
mcimadamore@359 1800 */
mcimadamore@359 1801 private void syntheticError(DiagnosticPosition pos, Symbol sym) {
mcimadamore@359 1802 if (!sym.type.isErroneous()) {
mcimadamore@359 1803 if (warnOnSyntheticConflicts) {
mcimadamore@359 1804 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
mcimadamore@359 1805 }
mcimadamore@359 1806 else {
mcimadamore@359 1807 log.error(pos, "synthetic.name.conflict", sym, sym.location());
mcimadamore@359 1808 }
mcimadamore@359 1809 }
mcimadamore@359 1810 }
mcimadamore@359 1811
duke@1 1812 /** Check that class c does not implement directly or indirectly
duke@1 1813 * the same parameterized interface with two different argument lists.
duke@1 1814 * @param pos Position to be used for error reporting.
duke@1 1815 * @param type The type whose interfaces are checked.
duke@1 1816 */
duke@1 1817 void checkClassBounds(DiagnosticPosition pos, Type type) {
duke@1 1818 checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
duke@1 1819 }
duke@1 1820 //where
duke@1 1821 /** Enter all interfaces of type `type' into the hash table `seensofar'
duke@1 1822 * with their class symbol as key and their type as value. Make
duke@1 1823 * sure no class is entered with two different types.
duke@1 1824 */
duke@1 1825 void checkClassBounds(DiagnosticPosition pos,
duke@1 1826 Map<TypeSymbol,Type> seensofar,
duke@1 1827 Type type) {
duke@1 1828 if (type.isErroneous()) return;
duke@1 1829 for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
duke@1 1830 Type it = l.head;
duke@1 1831 Type oldit = seensofar.put(it.tsym, it);
duke@1 1832 if (oldit != null) {
duke@1 1833 List<Type> oldparams = oldit.allparams();
duke@1 1834 List<Type> newparams = it.allparams();
duke@1 1835 if (!types.containsTypeEquivalent(oldparams, newparams))
duke@1 1836 log.error(pos, "cant.inherit.diff.arg",
duke@1 1837 it.tsym, Type.toString(oldparams),
duke@1 1838 Type.toString(newparams));
duke@1 1839 }
duke@1 1840 checkClassBounds(pos, seensofar, it);
duke@1 1841 }
duke@1 1842 Type st = types.supertype(type);
duke@1 1843 if (st != null) checkClassBounds(pos, seensofar, st);
duke@1 1844 }
duke@1 1845
duke@1 1846 /** Enter interface into into set.
duke@1 1847 * If it existed already, issue a "repeated interface" error.
duke@1 1848 */
duke@1 1849 void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
duke@1 1850 if (its.contains(it))
duke@1 1851 log.error(pos, "repeated.interface");
duke@1 1852 else {
duke@1 1853 its.add(it);
duke@1 1854 }
duke@1 1855 }
duke@1 1856
duke@1 1857 /* *************************************************************************
duke@1 1858 * Check annotations
duke@1 1859 **************************************************************************/
duke@1 1860
duke@1 1861 /** Annotation types are restricted to primitives, String, an
duke@1 1862 * enum, an annotation, Class, Class<?>, Class<? extends
duke@1 1863 * Anything>, arrays of the preceding.
duke@1 1864 */
duke@1 1865 void validateAnnotationType(JCTree restype) {
duke@1 1866 // restype may be null if an error occurred, so don't bother validating it
duke@1 1867 if (restype != null) {
duke@1 1868 validateAnnotationType(restype.pos(), restype.type);
duke@1 1869 }
duke@1 1870 }
duke@1 1871
duke@1 1872 void validateAnnotationType(DiagnosticPosition pos, Type type) {
duke@1 1873 if (type.isPrimitive()) return;
duke@1 1874 if (types.isSameType(type, syms.stringType)) return;
duke@1 1875 if ((type.tsym.flags() & Flags.ENUM) != 0) return;
duke@1 1876 if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
duke@1 1877 if (types.lowerBound(type).tsym == syms.classType.tsym) return;
duke@1 1878 if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
duke@1 1879 validateAnnotationType(pos, types.elemtype(type));
duke@1 1880 return;
duke@1 1881 }
duke@1 1882 log.error(pos, "invalid.annotation.member.type");
duke@1 1883 }
duke@1 1884
duke@1 1885 /**
duke@1 1886 * "It is also a compile-time error if any method declared in an
duke@1 1887 * annotation type has a signature that is override-equivalent to
duke@1 1888 * that of any public or protected method declared in class Object
duke@1 1889 * or in the interface annotation.Annotation."
duke@1 1890 *
duke@1 1891 * @jls3 9.6 Annotation Types
duke@1 1892 */
duke@1 1893 void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
duke@1 1894 for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
duke@1 1895 Scope s = sup.tsym.members();
duke@1 1896 for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1897 if (e.sym.kind == MTH &&
duke@1 1898 (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
duke@1 1899 types.overrideEquivalent(m.type, e.sym.type))
duke@1 1900 log.error(pos, "intf.annotation.member.clash", e.sym, sup);
duke@1 1901 }
duke@1 1902 }
duke@1 1903 }
duke@1 1904
duke@1 1905 /** Check the annotations of a symbol.
duke@1 1906 */
duke@1 1907 public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
duke@1 1908 if (skipAnnotations) return;
duke@1 1909 for (JCAnnotation a : annotations)
duke@1 1910 validateAnnotation(a, s);
duke@1 1911 }
duke@1 1912
jjg@308 1913 /** Check the type annotations
jjg@308 1914 */
jjg@308 1915 public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
jjg@308 1916 if (skipAnnotations) return;
jjg@308 1917 for (JCTypeAnnotation a : annotations)
jjg@308 1918 validateTypeAnnotation(a, isTypeParameter);
jjg@308 1919 }
jjg@308 1920
duke@1 1921 /** Check an annotation of a symbol.
duke@1 1922 */
duke@1 1923 public void validateAnnotation(JCAnnotation a, Symbol s) {
duke@1 1924 validateAnnotation(a);
duke@1 1925
duke@1 1926 if (!annotationApplicable(a, s))
duke@1 1927 log.error(a.pos(), "annotation.type.not.applicable");
duke@1 1928
duke@1 1929 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
duke@1 1930 if (!isOverrider(s))
duke@1 1931 log.error(a.pos(), "method.does.not.override.superclass");
duke@1 1932 }
duke@1 1933 }
duke@1 1934
jjg@308 1935 public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
jjg@308 1936 if (a.type == null)
jjg@308 1937 throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
jjg@308 1938 validateAnnotation(a);
jjg@308 1939
jjg@308 1940 if (!isTypeAnnotation(a, isTypeParameter))
jjg@308 1941 log.error(a.pos(), "annotation.type.not.applicable");
jjg@308 1942 }
jjg@308 1943
duke@1 1944 /** Is s a method symbol that overrides a method in a superclass? */
duke@1 1945 boolean isOverrider(Symbol s) {
duke@1 1946 if (s.kind != MTH || s.isStatic())
duke@1 1947 return false;
duke@1 1948 MethodSymbol m = (MethodSymbol)s;
duke@1 1949 TypeSymbol owner = (TypeSymbol)m.owner;
duke@1 1950 for (Type sup : types.closure(owner.type)) {
duke@1 1951 if (sup == owner.type)
duke@1 1952 continue; // skip "this"
duke@1 1953 Scope scope = sup.tsym.members();
duke@1 1954 for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1955 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
duke@1 1956 return true;
duke@1 1957 }
duke@1 1958 }
duke@1 1959 return false;
duke@1 1960 }
duke@1 1961
jjg@308 1962 /** Is the annotation applicable to type annotations */
jjg@308 1963 boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
jjg@308 1964 Attribute.Compound atTarget =
jjg@308 1965 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
jjg@308 1966 if (atTarget == null) return true;
jjg@308 1967 Attribute atValue = atTarget.member(names.value);
jjg@308 1968 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
jjg@308 1969 Attribute.Array arr = (Attribute.Array) atValue;
jjg@308 1970 for (Attribute app : arr.values) {
jjg@308 1971 if (!(app instanceof Attribute.Enum)) return true; // recovery
jjg@308 1972 Attribute.Enum e = (Attribute.Enum) app;
jjg@308 1973 if (!isTypeParameter && e.value.name == names.TYPE_USE)
jjg@308 1974 return true;
jjg@308 1975 else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
jjg@308 1976 return true;
jjg@308 1977 }
jjg@308 1978 return false;
jjg@308 1979 }
jjg@308 1980
duke@1 1981 /** Is the annotation applicable to the symbol? */
duke@1 1982 boolean annotationApplicable(JCAnnotation a, Symbol s) {
duke@1 1983 Attribute.Compound atTarget =
duke@1 1984 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
duke@1 1985 if (atTarget == null) return true;
duke@1 1986 Attribute atValue = atTarget.member(names.value);
duke@1 1987 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
duke@1 1988 Attribute.Array arr = (Attribute.Array) atValue;
duke@1 1989 for (Attribute app : arr.values) {
duke@1 1990 if (!(app instanceof Attribute.Enum)) return true; // recovery
duke@1 1991 Attribute.Enum e = (Attribute.Enum) app;
duke@1 1992 if (e.value.name == names.TYPE)
duke@1 1993 { if (s.kind == TYP) return true; }
duke@1 1994 else if (e.value.name == names.FIELD)
duke@1 1995 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
duke@1 1996 else if (e.value.name == names.METHOD)
duke@1 1997 { if (s.kind == MTH && !s.isConstructor()) return true; }
duke@1 1998 else if (e.value.name == names.PARAMETER)
duke@1 1999 { if (s.kind == VAR &&
duke@1 2000 s.owner.kind == MTH &&
duke@1 2001 (s.flags() & PARAMETER) != 0)
duke@1 2002 return true;
duke@1 2003 }
duke@1 2004 else if (e.value.name == names.CONSTRUCTOR)
duke@1 2005 { if (s.kind == MTH && s.isConstructor()) return true; }
duke@1 2006 else if (e.value.name == names.LOCAL_VARIABLE)
duke@1 2007 { if (s.kind == VAR && s.owner.kind == MTH &&
duke@1 2008 (s.flags() & PARAMETER) == 0)
duke@1 2009 return true;
duke@1 2010 }
duke@1 2011 else if (e.value.name == names.ANNOTATION_TYPE)
duke@1 2012 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
duke@1 2013 return true;
duke@1 2014 }
duke@1 2015 else if (e.value.name == names.PACKAGE)
duke@1 2016 { if (s.kind == PCK) return true; }
jjg@308 2017 else if (e.value.name == names.TYPE_USE)
jjg@308 2018 { if (s.kind == TYP ||
jjg@308 2019 s.kind == VAR ||
jjg@308 2020 (s.kind == MTH && !s.isConstructor() &&
jjg@308 2021 s.type.getReturnType().tag != VOID))
jjg@308 2022 return true;
jjg@308 2023 }
duke@1 2024 else
duke@1 2025 return true; // recovery
duke@1 2026 }
duke@1 2027 return false;
duke@1 2028 }
duke@1 2029
duke@1 2030 /** Check an annotation value.
duke@1 2031 */
duke@1 2032 public void validateAnnotation(JCAnnotation a) {
duke@1 2033 if (a.type.isErroneous()) return;
duke@1 2034
duke@1 2035 // collect an inventory of the members
duke@1 2036 Set<MethodSymbol> members = new HashSet<MethodSymbol>();
duke@1 2037 for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
duke@1 2038 e != null;
duke@1 2039 e = e.sibling)
duke@1 2040 if (e.sym.kind == MTH)
duke@1 2041 members.add((MethodSymbol) e.sym);
duke@1 2042
duke@1 2043 // count them off as they're annotated
duke@1 2044 for (JCTree arg : a.args) {
duke@1 2045 if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
duke@1 2046 JCAssign assign = (JCAssign) arg;
duke@1 2047 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 2048 if (m == null || m.type.isErroneous()) continue;
duke@1 2049 if (!members.remove(m))
duke@1 2050 log.error(arg.pos(), "duplicate.annotation.member.value",
duke@1 2051 m.name, a.type);
duke@1 2052 if (assign.rhs.getTag() == ANNOTATION)
duke@1 2053 validateAnnotation((JCAnnotation)assign.rhs);
duke@1 2054 }
duke@1 2055
duke@1 2056 // all the remaining ones better have default values
duke@1 2057 for (MethodSymbol m : members)
duke@1 2058 if (m.defaultValue == null && !m.type.isErroneous())
duke@1 2059 log.error(a.pos(), "annotation.missing.default.value",
duke@1 2060 a.type, m.name);
duke@1 2061
duke@1 2062 // special case: java.lang.annotation.Target must not have
duke@1 2063 // repeated values in its value member
duke@1 2064 if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
duke@1 2065 a.args.tail == null)
duke@1 2066 return;
duke@1 2067
duke@1 2068 if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
duke@1 2069 JCAssign assign = (JCAssign) a.args.head;
duke@1 2070 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 2071 if (m.name != names.value) return;
duke@1 2072 JCTree rhs = assign.rhs;
duke@1 2073 if (rhs.getTag() != JCTree.NEWARRAY) return;
duke@1 2074 JCNewArray na = (JCNewArray) rhs;
duke@1 2075 Set<Symbol> targets = new HashSet<Symbol>();
duke@1 2076 for (JCTree elem : na.elems) {
duke@1 2077 if (!targets.add(TreeInfo.symbol(elem))) {
duke@1 2078 log.error(elem.pos(), "repeated.annotation.target");
duke@1 2079 }
duke@1 2080 }
duke@1 2081 }
duke@1 2082
duke@1 2083 void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
duke@1 2084 if (allowAnnotations &&
duke@1 2085 lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
duke@1 2086 (s.flags() & DEPRECATED) != 0 &&
duke@1 2087 !syms.deprecatedType.isErroneous() &&
duke@1 2088 s.attribute(syms.deprecatedType.tsym) == null) {
duke@1 2089 log.warning(pos, "missing.deprecated.annotation");
duke@1 2090 }
duke@1 2091 }
duke@1 2092
duke@1 2093 /* *************************************************************************
duke@1 2094 * Check for recursive annotation elements.
duke@1 2095 **************************************************************************/
duke@1 2096
duke@1 2097 /** Check for cycles in the graph of annotation elements.
duke@1 2098 */
duke@1 2099 void checkNonCyclicElements(JCClassDecl tree) {
duke@1 2100 if ((tree.sym.flags_field & ANNOTATION) == 0) return;
duke@1 2101 assert (tree.sym.flags_field & LOCKED) == 0;
duke@1 2102 try {
duke@1 2103 tree.sym.flags_field |= LOCKED;
duke@1 2104 for (JCTree def : tree.defs) {
duke@1 2105 if (def.getTag() != JCTree.METHODDEF) continue;
duke@1 2106 JCMethodDecl meth = (JCMethodDecl)def;
duke@1 2107 checkAnnotationResType(meth.pos(), meth.restype.type);
duke@1 2108 }
duke@1 2109 } finally {
duke@1 2110 tree.sym.flags_field &= ~LOCKED;
duke@1 2111 tree.sym.flags_field |= ACYCLIC_ANN;
duke@1 2112 }
duke@1 2113 }
duke@1 2114
duke@1 2115 void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
duke@1 2116 if ((tsym.flags_field & ACYCLIC_ANN) != 0)
duke@1 2117 return;
duke@1 2118 if ((tsym.flags_field & LOCKED) != 0) {
duke@1 2119 log.error(pos, "cyclic.annotation.element");
duke@1 2120 return;
duke@1 2121 }
duke@1 2122 try {
duke@1 2123 tsym.flags_field |= LOCKED;
duke@1 2124 for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
duke@1 2125 Symbol s = e.sym;
duke@1 2126 if (s.kind != Kinds.MTH)
duke@1 2127 continue;
duke@1 2128 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
duke@1 2129 }
duke@1 2130 } finally {
duke@1 2131 tsym.flags_field &= ~LOCKED;
duke@1 2132 tsym.flags_field |= ACYCLIC_ANN;
duke@1 2133 }
duke@1 2134 }
duke@1 2135
duke@1 2136 void checkAnnotationResType(DiagnosticPosition pos, Type type) {
duke@1 2137 switch (type.tag) {
duke@1 2138 case TypeTags.CLASS:
duke@1 2139 if ((type.tsym.flags() & ANNOTATION) != 0)
duke@1 2140 checkNonCyclicElementsInternal(pos, type.tsym);
duke@1 2141 break;
duke@1 2142 case TypeTags.ARRAY:
duke@1 2143 checkAnnotationResType(pos, types.elemtype(type));
duke@1 2144 break;
duke@1 2145 default:
duke@1 2146 break; // int etc
duke@1 2147 }
duke@1 2148 }
duke@1 2149
duke@1 2150 /* *************************************************************************
duke@1 2151 * Check for cycles in the constructor call graph.
duke@1 2152 **************************************************************************/
duke@1 2153
duke@1 2154 /** Check for cycles in the graph of constructors calling other
duke@1 2155 * constructors.
duke@1 2156 */
duke@1 2157 void checkCyclicConstructors(JCClassDecl tree) {
duke@1 2158 Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
duke@1 2159
duke@1 2160 // enter each constructor this-call into the map
duke@1 2161 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 2162 JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
duke@1 2163 if (app == null) continue;
duke@1 2164 JCMethodDecl meth = (JCMethodDecl) l.head;
duke@1 2165 if (TreeInfo.name(app.meth) == names._this) {
duke@1 2166 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
duke@1 2167 } else {
duke@1 2168 meth.sym.flags_field |= ACYCLIC;
duke@1 2169 }
duke@1 2170 }
duke@1 2171
duke@1 2172 // Check for cycles in the map
duke@1 2173 Symbol[] ctors = new Symbol[0];
duke@1 2174 ctors = callMap.keySet().toArray(ctors);
duke@1 2175 for (Symbol caller : ctors) {
duke@1 2176 checkCyclicConstructor(tree, caller, callMap);
duke@1 2177 }
duke@1 2178 }
duke@1 2179
duke@1 2180 /** Look in the map to see if the given constructor is part of a
duke@1 2181 * call cycle.
duke@1 2182 */
duke@1 2183 private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
duke@1 2184 Map<Symbol,Symbol> callMap) {
duke@1 2185 if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
duke@1 2186 if ((ctor.flags_field & LOCKED) != 0) {
duke@1 2187 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
duke@1 2188 "recursive.ctor.invocation");
duke@1 2189 } else {
duke@1 2190 ctor.flags_field |= LOCKED;
duke@1 2191 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
duke@1 2192 ctor.flags_field &= ~LOCKED;
duke@1 2193 }
duke@1 2194 ctor.flags_field |= ACYCLIC;
duke@1 2195 }
duke@1 2196 }
duke@1 2197
duke@1 2198 /* *************************************************************************
duke@1 2199 * Miscellaneous
duke@1 2200 **************************************************************************/
duke@1 2201
duke@1 2202 /**
duke@1 2203 * Return the opcode of the operator but emit an error if it is an
duke@1 2204 * error.
duke@1 2205 * @param pos position for error reporting.
duke@1 2206 * @param operator an operator
duke@1 2207 * @param tag a tree tag
duke@1 2208 * @param left type of left hand side
duke@1 2209 * @param right type of right hand side
duke@1 2210 */
duke@1 2211 int checkOperator(DiagnosticPosition pos,
duke@1 2212 OperatorSymbol operator,
duke@1 2213 int tag,
duke@1 2214 Type left,
duke@1 2215 Type right) {
duke@1 2216 if (operator.opcode == ByteCodes.error) {
duke@1 2217 log.error(pos,
duke@1 2218 "operator.cant.be.applied",
duke@1 2219 treeinfo.operatorName(tag),
mcimadamore@80 2220 List.of(left, right));
duke@1 2221 }
duke@1 2222 return operator.opcode;
duke@1 2223 }
duke@1 2224
duke@1 2225
duke@1 2226 /**
duke@1 2227 * Check for division by integer constant zero
duke@1 2228 * @param pos Position for error reporting.
duke@1 2229 * @param operator The operator for the expression
duke@1 2230 * @param operand The right hand operand for the expression
duke@1 2231 */
duke@1 2232 void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
duke@1 2233 if (operand.constValue() != null
duke@1 2234 && lint.isEnabled(Lint.LintCategory.DIVZERO)
duke@1 2235 && operand.tag <= LONG
duke@1 2236 && ((Number) (operand.constValue())).longValue() == 0) {
duke@1 2237 int opc = ((OperatorSymbol)operator).opcode;
duke@1 2238 if (opc == ByteCodes.idiv || opc == ByteCodes.imod
duke@1 2239 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
duke@1 2240 log.warning(pos, "div.zero");
duke@1 2241 }
duke@1 2242 }
duke@1 2243 }
duke@1 2244
duke@1 2245 /**
duke@1 2246 * Check for empty statements after if
duke@1 2247 */
duke@1 2248 void checkEmptyIf(JCIf tree) {
duke@1 2249 if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
duke@1 2250 log.warning(tree.thenpart.pos(), "empty.if");
duke@1 2251 }
duke@1 2252
duke@1 2253 /** Check that symbol is unique in given scope.
duke@1 2254 * @param pos Position for error reporting.
duke@1 2255 * @param sym The symbol.
duke@1 2256 * @param s The scope.
duke@1 2257 */
duke@1 2258 boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2259 if (sym.type.isErroneous())
duke@1 2260 return true;
duke@1 2261 if (sym.owner.name == names.any) return false;
duke@1 2262 for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
duke@1 2263 if (sym != e.sym &&
duke@1 2264 sym.kind == e.sym.kind &&
duke@1 2265 sym.name != names.error &&
mcimadamore@252 2266 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
duke@1 2267 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
duke@1 2268 varargsDuplicateError(pos, sym, e.sym);
mcimadamore@252 2269 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
mcimadamore@252 2270 duplicateErasureError(pos, sym, e.sym);
duke@1 2271 else
duke@1 2272 duplicateError(pos, e.sym);
duke@1 2273 return false;
duke@1 2274 }
duke@1 2275 }
duke@1 2276 return true;
duke@1 2277 }
mcimadamore@252 2278 //where
mcimadamore@252 2279 /** Report duplicate declaration error.
mcimadamore@252 2280 */
mcimadamore@252 2281 void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
mcimadamore@252 2282 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
mcimadamore@252 2283 log.error(pos, "name.clash.same.erasure", sym1, sym2);
mcimadamore@252 2284 }
mcimadamore@252 2285 }
duke@1 2286
duke@1 2287 /** Check that single-type import is not already imported or top-level defined,
duke@1 2288 * but make an exception for two single-type imports which denote the same type.
duke@1 2289 * @param pos Position for error reporting.
duke@1 2290 * @param sym The symbol.
duke@1 2291 * @param s The scope
duke@1 2292 */
duke@1 2293 boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2294 return checkUniqueImport(pos, sym, s, false);
duke@1 2295 }
duke@1 2296
duke@1 2297 /** Check that static single-type import is not already imported or top-level defined,
duke@1 2298 * but make an exception for two single-type imports which denote the same type.
duke@1 2299 * @param pos Position for error reporting.
duke@1 2300 * @param sym The symbol.
duke@1 2301 * @param s The scope
duke@1 2302 * @param staticImport Whether or not this was a static import
duke@1 2303 */
duke@1 2304 boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2305 return checkUniqueImport(pos, sym, s, true);
duke@1 2306 }
duke@1 2307
duke@1 2308 /** Check that single-type import is not already imported or top-level defined,
duke@1 2309 * but make an exception for two single-type imports which denote the same type.
duke@1 2310 * @param pos Position for error reporting.
duke@1 2311 * @param sym The symbol.
duke@1 2312 * @param s The scope.
duke@1 2313 * @param staticImport Whether or not this was a static import
duke@1 2314 */
duke@1 2315 private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
duke@1 2316 for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
duke@1 2317 // is encountered class entered via a class declaration?
duke@1 2318 boolean isClassDecl = e.scope == s;
duke@1 2319 if ((isClassDecl || sym != e.sym) &&
duke@1 2320 sym.kind == e.sym.kind &&
duke@1 2321 sym.name != names.error) {
duke@1 2322 if (!e.sym.type.isErroneous()) {
duke@1 2323 String what = e.sym.toString();
duke@1 2324 if (!isClassDecl) {
duke@1 2325 if (staticImport)
duke@1 2326 log.error(pos, "already.defined.static.single.import", what);
duke@1 2327 else
duke@1 2328 log.error(pos, "already.defined.single.import", what);
duke@1 2329 }
duke@1 2330 else if (sym != e.sym)
duke@1 2331 log.error(pos, "already.defined.this.unit", what);
duke@1 2332 }
duke@1 2333 return false;
duke@1 2334 }
duke@1 2335 }
duke@1 2336 return true;
duke@1 2337 }
duke@1 2338
duke@1 2339 /** Check that a qualified name is in canonical form (for import decls).
duke@1 2340 */
duke@1 2341 public void checkCanonical(JCTree tree) {
duke@1 2342 if (!isCanonical(tree))
duke@1 2343 log.error(tree.pos(), "import.requires.canonical",
duke@1 2344 TreeInfo.symbol(tree));
duke@1 2345 }
duke@1 2346 // where
duke@1 2347 private boolean isCanonical(JCTree tree) {
duke@1 2348 while (tree.getTag() == JCTree.SELECT) {
duke@1 2349 JCFieldAccess s = (JCFieldAccess) tree;
duke@1 2350 if (s.sym.owner != TreeInfo.symbol(s.selected))
duke@1 2351 return false;
duke@1 2352 tree = s.selected;
duke@1 2353 }
duke@1 2354 return true;
duke@1 2355 }
duke@1 2356
duke@1 2357 private class ConversionWarner extends Warner {
duke@1 2358 final String key;
duke@1 2359 final Type found;
duke@1 2360 final Type expected;
duke@1 2361 public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
duke@1 2362 super(pos);
duke@1 2363 this.key = key;
duke@1 2364 this.found = found;
duke@1 2365 this.expected = expected;
duke@1 2366 }
duke@1 2367
jjg@398 2368 @Override
duke@1 2369 public void warnUnchecked() {
duke@1 2370 boolean warned = this.warned;
duke@1 2371 super.warnUnchecked();
duke@1 2372 if (warned) return; // suppress redundant diagnostics
mcimadamore@89 2373 Object problem = diags.fragment(key);
duke@1 2374 Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
duke@1 2375 }
duke@1 2376 }
duke@1 2377
duke@1 2378 public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2379 return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
duke@1 2380 }
duke@1 2381
duke@1 2382 public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2383 return new ConversionWarner(pos, "unchecked.assign", found, expected);
duke@1 2384 }
duke@1 2385 }

mercurial