src/share/classes/com/sun/tools/javac/comp/Check.java

Fri, 21 Aug 2009 14:58:21 -0700

author
jjg
date
Fri, 21 Aug 2009 14:58:21 -0700
changeset 377
d9febdd5ae21
parent 362
c4c424badb83
child 383
8109aa93b212
permissions
-rw-r--r--

6873845: refine access to symbol file
Reviewed-by: darcy

duke@1 1 /*
xdono@229 2 * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30
duke@1 31 import com.sun.tools.javac.code.*;
duke@1 32 import com.sun.tools.javac.jvm.*;
duke@1 33 import com.sun.tools.javac.tree.*;
duke@1 34 import com.sun.tools.javac.util.*;
duke@1 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 36 import com.sun.tools.javac.util.List;
duke@1 37
duke@1 38 import com.sun.tools.javac.tree.JCTree.*;
duke@1 39 import com.sun.tools.javac.code.Lint;
duke@1 40 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 41 import com.sun.tools.javac.code.Type.*;
duke@1 42 import com.sun.tools.javac.code.Symbol.*;
duke@1 43
duke@1 44 import static com.sun.tools.javac.code.Flags.*;
duke@1 45 import static com.sun.tools.javac.code.Kinds.*;
duke@1 46 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 47
duke@1 48 /** Type checking helper class for the attribution phase.
duke@1 49 *
duke@1 50 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 51 * you write code that depends on this, you do so at your own risk.
duke@1 52 * This code and its internal interfaces are subject to change or
duke@1 53 * deletion without notice.</b>
duke@1 54 */
duke@1 55 public class Check {
duke@1 56 protected static final Context.Key<Check> checkKey =
duke@1 57 new Context.Key<Check>();
duke@1 58
jjg@113 59 private final Names names;
duke@1 60 private final Log log;
duke@1 61 private final Symtab syms;
duke@1 62 private final Infer infer;
duke@1 63 private final Target target;
duke@1 64 private final Source source;
duke@1 65 private final Types types;
mcimadamore@89 66 private final JCDiagnostic.Factory diags;
duke@1 67 private final boolean skipAnnotations;
mcimadamore@359 68 private boolean warnOnSyntheticConflicts;
duke@1 69 private final TreeInfo treeinfo;
duke@1 70
duke@1 71 // The set of lint options currently in effect. It is initialized
duke@1 72 // from the context, and then is set/reset as needed by Attr as it
duke@1 73 // visits all the various parts of the trees during attribution.
duke@1 74 private Lint lint;
duke@1 75
duke@1 76 public static Check instance(Context context) {
duke@1 77 Check instance = context.get(checkKey);
duke@1 78 if (instance == null)
duke@1 79 instance = new Check(context);
duke@1 80 return instance;
duke@1 81 }
duke@1 82
duke@1 83 protected Check(Context context) {
duke@1 84 context.put(checkKey, this);
duke@1 85
jjg@113 86 names = Names.instance(context);
duke@1 87 log = Log.instance(context);
duke@1 88 syms = Symtab.instance(context);
duke@1 89 infer = Infer.instance(context);
duke@1 90 this.types = Types.instance(context);
mcimadamore@89 91 diags = JCDiagnostic.Factory.instance(context);
duke@1 92 Options options = Options.instance(context);
duke@1 93 target = Target.instance(context);
duke@1 94 source = Source.instance(context);
duke@1 95 lint = Lint.instance(context);
duke@1 96 treeinfo = TreeInfo.instance(context);
duke@1 97
duke@1 98 Source source = Source.instance(context);
duke@1 99 allowGenerics = source.allowGenerics();
duke@1 100 allowAnnotations = source.allowAnnotations();
duke@1 101 complexInference = options.get("-complexinference") != null;
duke@1 102 skipAnnotations = options.get("skipAnnotations") != null;
mcimadamore@359 103 warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
duke@1 104
duke@1 105 boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
duke@1 106 boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
jjg@377 107 boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
jjg@60 108 boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
duke@1 109
jjg@60 110 deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
jjg@60 111 enforceMandatoryWarnings, "deprecated");
jjg@60 112 uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
jjg@60 113 enforceMandatoryWarnings, "unchecked");
jjg@377 114 sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
jjg@377 115 enforceMandatoryWarnings, "sunapi");
duke@1 116 }
duke@1 117
duke@1 118 /** Switch: generics enabled?
duke@1 119 */
duke@1 120 boolean allowGenerics;
duke@1 121
duke@1 122 /** Switch: annotations enabled?
duke@1 123 */
duke@1 124 boolean allowAnnotations;
duke@1 125
duke@1 126 /** Switch: -complexinference option set?
duke@1 127 */
duke@1 128 boolean complexInference;
duke@1 129
duke@1 130 /** A table mapping flat names of all compiled classes in this run to their
duke@1 131 * symbols; maintained from outside.
duke@1 132 */
duke@1 133 public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
duke@1 134
duke@1 135 /** A handler for messages about deprecated usage.
duke@1 136 */
duke@1 137 private MandatoryWarningHandler deprecationHandler;
duke@1 138
duke@1 139 /** A handler for messages about unchecked or unsafe usage.
duke@1 140 */
duke@1 141 private MandatoryWarningHandler uncheckedHandler;
duke@1 142
jjg@377 143 /** A handler for messages about using Sun proprietary API.
jjg@377 144 */
jjg@377 145 private MandatoryWarningHandler sunApiHandler;
duke@1 146
duke@1 147 /* *************************************************************************
duke@1 148 * Errors and Warnings
duke@1 149 **************************************************************************/
duke@1 150
duke@1 151 Lint setLint(Lint newLint) {
duke@1 152 Lint prev = lint;
duke@1 153 lint = newLint;
duke@1 154 return prev;
duke@1 155 }
duke@1 156
duke@1 157 /** Warn about deprecated symbol.
duke@1 158 * @param pos Position to be used for error reporting.
duke@1 159 * @param sym The deprecated symbol.
duke@1 160 */
duke@1 161 void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
duke@1 162 if (!lint.isSuppressed(LintCategory.DEPRECATION))
duke@1 163 deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
duke@1 164 }
duke@1 165
duke@1 166 /** Warn about unchecked operation.
duke@1 167 * @param pos Position to be used for error reporting.
duke@1 168 * @param msg A string describing the problem.
duke@1 169 */
duke@1 170 public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
duke@1 171 if (!lint.isSuppressed(LintCategory.UNCHECKED))
duke@1 172 uncheckedHandler.report(pos, msg, args);
duke@1 173 }
duke@1 174
jjg@377 175 /** Warn about using Sun proprietary API.
jjg@377 176 * @param pos Position to be used for error reporting.
jjg@377 177 * @param msg A string describing the problem.
jjg@377 178 */
jjg@377 179 public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
jjg@377 180 if (!lint.isSuppressed(LintCategory.SUNAPI))
jjg@377 181 sunApiHandler.report(pos, msg, args);
jjg@377 182 }
jjg@377 183
duke@1 184 /**
duke@1 185 * Report any deferred diagnostics.
duke@1 186 */
duke@1 187 public void reportDeferredDiagnostics() {
duke@1 188 deprecationHandler.reportDeferredDiagnostic();
duke@1 189 uncheckedHandler.reportDeferredDiagnostic();
jjg@377 190 sunApiHandler.reportDeferredDiagnostic();
duke@1 191 }
duke@1 192
duke@1 193
duke@1 194 /** Report a failure to complete a class.
duke@1 195 * @param pos Position to be used for error reporting.
duke@1 196 * @param ex The failure to report.
duke@1 197 */
duke@1 198 public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
jjg@12 199 log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
duke@1 200 if (ex instanceof ClassReader.BadClassFile) throw new Abort();
duke@1 201 else return syms.errType;
duke@1 202 }
duke@1 203
duke@1 204 /** Report a type error.
duke@1 205 * @param pos Position to be used for error reporting.
duke@1 206 * @param problem A string describing the error.
duke@1 207 * @param found The type that was found.
duke@1 208 * @param req The type that was required.
duke@1 209 */
duke@1 210 Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
duke@1 211 log.error(pos, "prob.found.req",
duke@1 212 problem, found, req);
jjg@110 213 return types.createErrorType(found);
duke@1 214 }
duke@1 215
duke@1 216 Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
duke@1 217 log.error(pos, "prob.found.req.1", problem, found, req, explanation);
jjg@110 218 return types.createErrorType(found);
duke@1 219 }
duke@1 220
duke@1 221 /** Report an error that wrong type tag was found.
duke@1 222 * @param pos Position to be used for error reporting.
duke@1 223 * @param required An internationalized string describing the type tag
duke@1 224 * required.
duke@1 225 * @param found The type that was found.
duke@1 226 */
duke@1 227 Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
jrose@267 228 // this error used to be raised by the parser,
jrose@267 229 // but has been delayed to this point:
jrose@267 230 if (found instanceof Type && ((Type)found).tag == VOID) {
jrose@267 231 log.error(pos, "illegal.start.of.type");
jrose@267 232 return syms.errType;
jrose@267 233 }
duke@1 234 log.error(pos, "type.found.req", found, required);
jjg@110 235 return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
duke@1 236 }
duke@1 237
duke@1 238 /** Report an error that symbol cannot be referenced before super
duke@1 239 * has been called.
duke@1 240 * @param pos Position to be used for error reporting.
duke@1 241 * @param sym The referenced symbol.
duke@1 242 */
duke@1 243 void earlyRefError(DiagnosticPosition pos, Symbol sym) {
duke@1 244 log.error(pos, "cant.ref.before.ctor.called", sym);
duke@1 245 }
duke@1 246
duke@1 247 /** Report duplicate declaration error.
duke@1 248 */
duke@1 249 void duplicateError(DiagnosticPosition pos, Symbol sym) {
duke@1 250 if (!sym.type.isErroneous()) {
duke@1 251 log.error(pos, "already.defined", sym, sym.location());
duke@1 252 }
duke@1 253 }
duke@1 254
duke@1 255 /** Report array/varargs duplicate declaration
duke@1 256 */
duke@1 257 void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
duke@1 258 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
duke@1 259 log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
duke@1 260 }
duke@1 261 }
duke@1 262
duke@1 263 /* ************************************************************************
duke@1 264 * duplicate declaration checking
duke@1 265 *************************************************************************/
duke@1 266
duke@1 267 /** Check that variable does not hide variable with same name in
duke@1 268 * immediately enclosing local scope.
duke@1 269 * @param pos Position for error reporting.
duke@1 270 * @param v The symbol.
duke@1 271 * @param s The scope.
duke@1 272 */
duke@1 273 void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
duke@1 274 if (s.next != null) {
duke@1 275 for (Scope.Entry e = s.next.lookup(v.name);
duke@1 276 e.scope != null && e.sym.owner == v.owner;
duke@1 277 e = e.next()) {
duke@1 278 if (e.sym.kind == VAR &&
duke@1 279 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 280 v.name != names.error) {
duke@1 281 duplicateError(pos, e.sym);
duke@1 282 return;
duke@1 283 }
duke@1 284 }
duke@1 285 }
duke@1 286 }
duke@1 287
duke@1 288 /** Check that a class or interface does not hide a class or
duke@1 289 * interface with same name in immediately enclosing local scope.
duke@1 290 * @param pos Position for error reporting.
duke@1 291 * @param c The symbol.
duke@1 292 * @param s The scope.
duke@1 293 */
duke@1 294 void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
duke@1 295 if (s.next != null) {
duke@1 296 for (Scope.Entry e = s.next.lookup(c.name);
duke@1 297 e.scope != null && e.sym.owner == c.owner;
duke@1 298 e = e.next()) {
duke@1 299 if (e.sym.kind == TYP &&
duke@1 300 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 301 c.name != names.error) {
duke@1 302 duplicateError(pos, e.sym);
duke@1 303 return;
duke@1 304 }
duke@1 305 }
duke@1 306 }
duke@1 307 }
duke@1 308
duke@1 309 /** Check that class does not have the same name as one of
duke@1 310 * its enclosing classes, or as a class defined in its enclosing scope.
duke@1 311 * return true if class is unique in its enclosing scope.
duke@1 312 * @param pos Position for error reporting.
duke@1 313 * @param name The class name.
duke@1 314 * @param s The enclosing scope.
duke@1 315 */
duke@1 316 boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
duke@1 317 for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
duke@1 318 if (e.sym.kind == TYP && e.sym.name != names.error) {
duke@1 319 duplicateError(pos, e.sym);
duke@1 320 return false;
duke@1 321 }
duke@1 322 }
duke@1 323 for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
duke@1 324 if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
duke@1 325 duplicateError(pos, sym);
duke@1 326 return true;
duke@1 327 }
duke@1 328 }
duke@1 329 return true;
duke@1 330 }
duke@1 331
duke@1 332 /* *************************************************************************
duke@1 333 * Class name generation
duke@1 334 **************************************************************************/
duke@1 335
duke@1 336 /** Return name of local class.
duke@1 337 * This is of the form <enclClass> $ n <classname>
duke@1 338 * where
duke@1 339 * enclClass is the flat name of the enclosing class,
duke@1 340 * classname is the simple name of the local class
duke@1 341 */
duke@1 342 Name localClassName(ClassSymbol c) {
duke@1 343 for (int i=1; ; i++) {
duke@1 344 Name flatname = names.
duke@1 345 fromString("" + c.owner.enclClass().flatname +
duke@1 346 target.syntheticNameChar() + i +
duke@1 347 c.name);
duke@1 348 if (compiled.get(flatname) == null) return flatname;
duke@1 349 }
duke@1 350 }
duke@1 351
duke@1 352 /* *************************************************************************
duke@1 353 * Type Checking
duke@1 354 **************************************************************************/
duke@1 355
duke@1 356 /** Check that a given type is assignable to a given proto-type.
duke@1 357 * If it is, return the type, otherwise return errType.
duke@1 358 * @param pos Position to be used for error reporting.
duke@1 359 * @param found The type that was found.
duke@1 360 * @param req The type that was required.
duke@1 361 */
duke@1 362 Type checkType(DiagnosticPosition pos, Type found, Type req) {
duke@1 363 if (req.tag == ERROR)
duke@1 364 return req;
duke@1 365 if (found.tag == FORALL)
duke@1 366 return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
duke@1 367 if (req.tag == NONE)
duke@1 368 return found;
duke@1 369 if (types.isAssignable(found, req, convertWarner(pos, found, req)))
duke@1 370 return found;
duke@1 371 if (found.tag <= DOUBLE && req.tag <= DOUBLE)
mcimadamore@89 372 return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
duke@1 373 if (found.isSuperBound()) {
duke@1 374 log.error(pos, "assignment.from.super-bound", found);
jjg@110 375 return types.createErrorType(found);
duke@1 376 }
duke@1 377 if (req.isExtendsBound()) {
duke@1 378 log.error(pos, "assignment.to.extends-bound", req);
jjg@110 379 return types.createErrorType(found);
duke@1 380 }
mcimadamore@89 381 return typeError(pos, diags.fragment("incompatible.types"), found, req);
duke@1 382 }
duke@1 383
duke@1 384 /** Instantiate polymorphic type to some prototype, unless
duke@1 385 * prototype is `anyPoly' in which case polymorphic type
duke@1 386 * is returned unchanged.
duke@1 387 */
duke@1 388 Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) {
duke@1 389 if (pt == Infer.anyPoly && complexInference) {
duke@1 390 return t;
duke@1 391 } else if (pt == Infer.anyPoly || pt.tag == NONE) {
duke@1 392 Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
duke@1 393 return instantiatePoly(pos, t, newpt, warn);
duke@1 394 } else if (pt.tag == ERROR) {
duke@1 395 return pt;
duke@1 396 } else {
duke@1 397 try {
duke@1 398 return infer.instantiateExpr(t, pt, warn);
duke@1 399 } catch (Infer.NoInstanceException ex) {
duke@1 400 if (ex.isAmbiguous) {
duke@1 401 JCDiagnostic d = ex.getDiagnostic();
duke@1 402 log.error(pos,
duke@1 403 "undetermined.type" + (d!=null ? ".1" : ""),
duke@1 404 t, d);
jjg@110 405 return types.createErrorType(pt);
duke@1 406 } else {
duke@1 407 JCDiagnostic d = ex.getDiagnostic();
duke@1 408 return typeError(pos,
mcimadamore@89 409 diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
duke@1 410 t, pt);
duke@1 411 }
mcimadamore@299 412 } catch (Infer.InvalidInstanceException ex) {
mcimadamore@299 413 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@299 414 log.error(pos, "invalid.inferred.types", t.tvars, d);
mcimadamore@299 415 return types.createErrorType(pt);
duke@1 416 }
duke@1 417 }
duke@1 418 }
duke@1 419
duke@1 420 /** Check that a given type can be cast to a given target type.
duke@1 421 * Return the result of the cast.
duke@1 422 * @param pos Position to be used for error reporting.
duke@1 423 * @param found The type that is being cast.
duke@1 424 * @param req The target type of the cast.
duke@1 425 */
duke@1 426 Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
duke@1 427 if (found.tag == FORALL) {
duke@1 428 instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
duke@1 429 return req;
duke@1 430 } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
duke@1 431 return req;
duke@1 432 } else {
duke@1 433 return typeError(pos,
mcimadamore@89 434 diags.fragment("inconvertible.types"),
duke@1 435 found, req);
duke@1 436 }
duke@1 437 }
duke@1 438 //where
duke@1 439 /** Is type a type variable, or a (possibly multi-dimensional) array of
duke@1 440 * type variables?
duke@1 441 */
duke@1 442 boolean isTypeVar(Type t) {
duke@1 443 return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
duke@1 444 }
duke@1 445
duke@1 446 /** Check that a type is within some bounds.
duke@1 447 *
duke@1 448 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
duke@1 449 * type argument.
duke@1 450 * @param pos Position to be used for error reporting.
duke@1 451 * @param a The type that should be bounded by bs.
duke@1 452 * @param bs The bound.
duke@1 453 */
duke@1 454 private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
mcimadamore@154 455 if (a.isUnbound()) {
mcimadamore@154 456 return;
mcimadamore@154 457 } else if (a.tag != WILDCARD) {
mcimadamore@154 458 a = types.upperBound(a);
mcimadamore@154 459 for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
mcimadamore@154 460 if (!types.isSubtype(a, l.head)) {
mcimadamore@154 461 log.error(pos, "not.within.bounds", a);
mcimadamore@154 462 return;
mcimadamore@154 463 }
mcimadamore@154 464 }
mcimadamore@154 465 } else if (a.isExtendsBound()) {
mcimadamore@154 466 if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
mcimadamore@154 467 log.error(pos, "not.within.bounds", a);
mcimadamore@154 468 } else if (a.isSuperBound()) {
mcimadamore@154 469 if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
mcimadamore@154 470 log.error(pos, "not.within.bounds", a);
mcimadamore@154 471 }
mcimadamore@154 472 }
mcimadamore@154 473
mcimadamore@154 474 /** Check that a type is within some bounds.
mcimadamore@154 475 *
mcimadamore@154 476 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
mcimadamore@154 477 * type argument.
mcimadamore@154 478 * @param pos Position to be used for error reporting.
mcimadamore@154 479 * @param a The type that should be bounded by bs.
mcimadamore@154 480 * @param bs The bound.
mcimadamore@154 481 */
mcimadamore@154 482 private void checkCapture(JCTypeApply tree) {
mcimadamore@154 483 List<JCExpression> args = tree.getTypeArguments();
mcimadamore@154 484 for (Type arg : types.capture(tree.type).getTypeArguments()) {
mcimadamore@154 485 if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
mcimadamore@154 486 log.error(args.head.pos, "not.within.bounds", args.head.type);
mcimadamore@154 487 break;
mcimadamore@79 488 }
mcimadamore@154 489 args = args.tail;
mcimadamore@79 490 }
mcimadamore@154 491 }
duke@1 492
duke@1 493 /** Check that type is different from 'void'.
duke@1 494 * @param pos Position to be used for error reporting.
duke@1 495 * @param t The type to be checked.
duke@1 496 */
duke@1 497 Type checkNonVoid(DiagnosticPosition pos, Type t) {
duke@1 498 if (t.tag == VOID) {
duke@1 499 log.error(pos, "void.not.allowed.here");
jjg@110 500 return types.createErrorType(t);
duke@1 501 } else {
duke@1 502 return t;
duke@1 503 }
duke@1 504 }
duke@1 505
duke@1 506 /** Check that type is a class or interface type.
duke@1 507 * @param pos Position to be used for error reporting.
duke@1 508 * @param t The type to be checked.
duke@1 509 */
duke@1 510 Type checkClassType(DiagnosticPosition pos, Type t) {
duke@1 511 if (t.tag != CLASS && t.tag != ERROR)
duke@1 512 return typeTagError(pos,
mcimadamore@89 513 diags.fragment("type.req.class"),
duke@1 514 (t.tag == TYPEVAR)
mcimadamore@89 515 ? diags.fragment("type.parameter", t)
duke@1 516 : t);
duke@1 517 else
duke@1 518 return t;
duke@1 519 }
duke@1 520
duke@1 521 /** Check that type is a class or interface type.
duke@1 522 * @param pos Position to be used for error reporting.
duke@1 523 * @param t The type to be checked.
duke@1 524 * @param noBounds True if type bounds are illegal here.
duke@1 525 */
duke@1 526 Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
duke@1 527 t = checkClassType(pos, t);
duke@1 528 if (noBounds && t.isParameterized()) {
duke@1 529 List<Type> args = t.getTypeArguments();
duke@1 530 while (args.nonEmpty()) {
duke@1 531 if (args.head.tag == WILDCARD)
duke@1 532 return typeTagError(pos,
duke@1 533 log.getLocalizedString("type.req.exact"),
duke@1 534 args.head);
duke@1 535 args = args.tail;
duke@1 536 }
duke@1 537 }
duke@1 538 return t;
duke@1 539 }
duke@1 540
duke@1 541 /** Check that type is a reifiable class, interface or array type.
duke@1 542 * @param pos Position to be used for error reporting.
duke@1 543 * @param t The type to be checked.
duke@1 544 */
duke@1 545 Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
duke@1 546 if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
duke@1 547 return typeTagError(pos,
mcimadamore@89 548 diags.fragment("type.req.class.array"),
duke@1 549 t);
duke@1 550 } else if (!types.isReifiable(t)) {
duke@1 551 log.error(pos, "illegal.generic.type.for.instof");
jjg@110 552 return types.createErrorType(t);
duke@1 553 } else {
duke@1 554 return t;
duke@1 555 }
duke@1 556 }
duke@1 557
duke@1 558 /** Check that type is a reference type, i.e. a class, interface or array type
duke@1 559 * or a type variable.
duke@1 560 * @param pos Position to be used for error reporting.
duke@1 561 * @param t The type to be checked.
duke@1 562 */
duke@1 563 Type checkRefType(DiagnosticPosition pos, Type t) {
duke@1 564 switch (t.tag) {
duke@1 565 case CLASS:
duke@1 566 case ARRAY:
duke@1 567 case TYPEVAR:
duke@1 568 case WILDCARD:
duke@1 569 case ERROR:
duke@1 570 return t;
duke@1 571 default:
duke@1 572 return typeTagError(pos,
mcimadamore@89 573 diags.fragment("type.req.ref"),
duke@1 574 t);
duke@1 575 }
duke@1 576 }
duke@1 577
jrose@267 578 /** Check that each type is a reference type, i.e. a class, interface or array type
jrose@267 579 * or a type variable.
jrose@267 580 * @param trees Original trees, used for error reporting.
jrose@267 581 * @param types The types to be checked.
jrose@267 582 */
jrose@267 583 List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
jrose@267 584 List<JCExpression> tl = trees;
jrose@267 585 for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
jrose@267 586 l.head = checkRefType(tl.head.pos(), l.head);
jrose@267 587 tl = tl.tail;
jrose@267 588 }
jrose@267 589 return types;
jrose@267 590 }
jrose@267 591
duke@1 592 /** Check that type is a null or reference type.
duke@1 593 * @param pos Position to be used for error reporting.
duke@1 594 * @param t The type to be checked.
duke@1 595 */
duke@1 596 Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
duke@1 597 switch (t.tag) {
duke@1 598 case CLASS:
duke@1 599 case ARRAY:
duke@1 600 case TYPEVAR:
duke@1 601 case WILDCARD:
duke@1 602 case BOT:
duke@1 603 case ERROR:
duke@1 604 return t;
duke@1 605 default:
duke@1 606 return typeTagError(pos,
mcimadamore@89 607 diags.fragment("type.req.ref"),
duke@1 608 t);
duke@1 609 }
duke@1 610 }
duke@1 611
duke@1 612 /** Check that flag set does not contain elements of two conflicting sets. s
duke@1 613 * Return true if it doesn't.
duke@1 614 * @param pos Position to be used for error reporting.
duke@1 615 * @param flags The set of flags to be checked.
duke@1 616 * @param set1 Conflicting flags set #1.
duke@1 617 * @param set2 Conflicting flags set #2.
duke@1 618 */
duke@1 619 boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
duke@1 620 if ((flags & set1) != 0 && (flags & set2) != 0) {
duke@1 621 log.error(pos,
duke@1 622 "illegal.combination.of.modifiers",
mcimadamore@80 623 asFlagSet(TreeInfo.firstFlag(flags & set1)),
mcimadamore@80 624 asFlagSet(TreeInfo.firstFlag(flags & set2)));
duke@1 625 return false;
duke@1 626 } else
duke@1 627 return true;
duke@1 628 }
duke@1 629
duke@1 630 /** Check that given modifiers are legal for given symbol and
duke@1 631 * return modifiers together with any implicit modififiers for that symbol.
duke@1 632 * Warning: we can't use flags() here since this method
duke@1 633 * is called during class enter, when flags() would cause a premature
duke@1 634 * completion.
duke@1 635 * @param pos Position to be used for error reporting.
duke@1 636 * @param flags The set of modifiers given in a definition.
duke@1 637 * @param sym The defined symbol.
duke@1 638 */
duke@1 639 long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
duke@1 640 long mask;
duke@1 641 long implicit = 0;
duke@1 642 switch (sym.kind) {
duke@1 643 case VAR:
duke@1 644 if (sym.owner.kind != TYP)
duke@1 645 mask = LocalVarFlags;
duke@1 646 else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 647 mask = implicit = InterfaceVarFlags;
duke@1 648 else
duke@1 649 mask = VarFlags;
duke@1 650 break;
duke@1 651 case MTH:
duke@1 652 if (sym.name == names.init) {
duke@1 653 if ((sym.owner.flags_field & ENUM) != 0) {
duke@1 654 // enum constructors cannot be declared public or
duke@1 655 // protected and must be implicitly or explicitly
duke@1 656 // private
duke@1 657 implicit = PRIVATE;
duke@1 658 mask = PRIVATE;
duke@1 659 } else
duke@1 660 mask = ConstructorFlags;
duke@1 661 } else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 662 mask = implicit = InterfaceMethodFlags;
duke@1 663 else {
duke@1 664 mask = MethodFlags;
duke@1 665 }
duke@1 666 // Imply STRICTFP if owner has STRICTFP set.
duke@1 667 if (((flags|implicit) & Flags.ABSTRACT) == 0)
duke@1 668 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 669 break;
duke@1 670 case TYP:
duke@1 671 if (sym.isLocal()) {
duke@1 672 mask = LocalClassFlags;
jjg@113 673 if (sym.name.isEmpty()) { // Anonymous class
duke@1 674 // Anonymous classes in static methods are themselves static;
duke@1 675 // that's why we admit STATIC here.
duke@1 676 mask |= STATIC;
duke@1 677 // JLS: Anonymous classes are final.
duke@1 678 implicit |= FINAL;
duke@1 679 }
duke@1 680 if ((sym.owner.flags_field & STATIC) == 0 &&
duke@1 681 (flags & ENUM) != 0)
duke@1 682 log.error(pos, "enums.must.be.static");
duke@1 683 } else if (sym.owner.kind == TYP) {
duke@1 684 mask = MemberClassFlags;
duke@1 685 if (sym.owner.owner.kind == PCK ||
duke@1 686 (sym.owner.flags_field & STATIC) != 0)
duke@1 687 mask |= STATIC;
duke@1 688 else if ((flags & ENUM) != 0)
duke@1 689 log.error(pos, "enums.must.be.static");
duke@1 690 // Nested interfaces and enums are always STATIC (Spec ???)
duke@1 691 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
duke@1 692 } else {
duke@1 693 mask = ClassFlags;
duke@1 694 }
duke@1 695 // Interfaces are always ABSTRACT
duke@1 696 if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
duke@1 697
duke@1 698 if ((flags & ENUM) != 0) {
duke@1 699 // enums can't be declared abstract or final
duke@1 700 mask &= ~(ABSTRACT | FINAL);
duke@1 701 implicit |= implicitEnumFinalFlag(tree);
duke@1 702 }
duke@1 703 // Imply STRICTFP if owner has STRICTFP set.
duke@1 704 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 705 break;
duke@1 706 default:
duke@1 707 throw new AssertionError();
duke@1 708 }
duke@1 709 long illegal = flags & StandardFlags & ~mask;
duke@1 710 if (illegal != 0) {
duke@1 711 if ((illegal & INTERFACE) != 0) {
duke@1 712 log.error(pos, "intf.not.allowed.here");
duke@1 713 mask |= INTERFACE;
duke@1 714 }
duke@1 715 else {
duke@1 716 log.error(pos,
mcimadamore@80 717 "mod.not.allowed.here", asFlagSet(illegal));
duke@1 718 }
duke@1 719 }
duke@1 720 else if ((sym.kind == TYP ||
duke@1 721 // ISSUE: Disallowing abstract&private is no longer appropriate
duke@1 722 // in the presence of inner classes. Should it be deleted here?
duke@1 723 checkDisjoint(pos, flags,
duke@1 724 ABSTRACT,
duke@1 725 PRIVATE | STATIC))
duke@1 726 &&
duke@1 727 checkDisjoint(pos, flags,
duke@1 728 ABSTRACT | INTERFACE,
duke@1 729 FINAL | NATIVE | SYNCHRONIZED)
duke@1 730 &&
duke@1 731 checkDisjoint(pos, flags,
duke@1 732 PUBLIC,
duke@1 733 PRIVATE | PROTECTED)
duke@1 734 &&
duke@1 735 checkDisjoint(pos, flags,
duke@1 736 PRIVATE,
duke@1 737 PUBLIC | PROTECTED)
duke@1 738 &&
duke@1 739 checkDisjoint(pos, flags,
duke@1 740 FINAL,
duke@1 741 VOLATILE)
duke@1 742 &&
duke@1 743 (sym.kind == TYP ||
duke@1 744 checkDisjoint(pos, flags,
duke@1 745 ABSTRACT | NATIVE,
duke@1 746 STRICTFP))) {
duke@1 747 // skip
duke@1 748 }
duke@1 749 return flags & (mask | ~StandardFlags) | implicit;
duke@1 750 }
duke@1 751
duke@1 752
duke@1 753 /** Determine if this enum should be implicitly final.
duke@1 754 *
duke@1 755 * If the enum has no specialized enum contants, it is final.
duke@1 756 *
duke@1 757 * If the enum does have specialized enum contants, it is
duke@1 758 * <i>not</i> final.
duke@1 759 */
duke@1 760 private long implicitEnumFinalFlag(JCTree tree) {
duke@1 761 if (tree.getTag() != JCTree.CLASSDEF) return 0;
duke@1 762 class SpecialTreeVisitor extends JCTree.Visitor {
duke@1 763 boolean specialized;
duke@1 764 SpecialTreeVisitor() {
duke@1 765 this.specialized = false;
duke@1 766 };
duke@1 767
duke@1 768 public void visitTree(JCTree tree) { /* no-op */ }
duke@1 769
duke@1 770 public void visitVarDef(JCVariableDecl tree) {
duke@1 771 if ((tree.mods.flags & ENUM) != 0) {
duke@1 772 if (tree.init instanceof JCNewClass &&
duke@1 773 ((JCNewClass) tree.init).def != null) {
duke@1 774 specialized = true;
duke@1 775 }
duke@1 776 }
duke@1 777 }
duke@1 778 }
duke@1 779
duke@1 780 SpecialTreeVisitor sts = new SpecialTreeVisitor();
duke@1 781 JCClassDecl cdef = (JCClassDecl) tree;
duke@1 782 for (JCTree defs: cdef.defs) {
duke@1 783 defs.accept(sts);
duke@1 784 if (sts.specialized) return 0;
duke@1 785 }
duke@1 786 return FINAL;
duke@1 787 }
duke@1 788
duke@1 789 /* *************************************************************************
duke@1 790 * Type Validation
duke@1 791 **************************************************************************/
duke@1 792
duke@1 793 /** Validate a type expression. That is,
duke@1 794 * check that all type arguments of a parametric type are within
duke@1 795 * their bounds. This must be done in a second phase after type attributon
duke@1 796 * since a class might have a subclass as type parameter bound. E.g:
duke@1 797 *
duke@1 798 * class B<A extends C> { ... }
duke@1 799 * class C extends B<C> { ... }
duke@1 800 *
duke@1 801 * and we can't make sure that the bound is already attributed because
duke@1 802 * of possible cycles.
duke@1 803 */
duke@1 804 private Validator validator = new Validator();
duke@1 805
duke@1 806 /** Visitor method: Validate a type expression, if it is not null, catching
duke@1 807 * and reporting any completion failures.
duke@1 808 */
mcimadamore@122 809 void validate(JCTree tree, Env<AttrContext> env) {
duke@1 810 try {
mcimadamore@122 811 if (tree != null) {
mcimadamore@122 812 validator.env = env;
mcimadamore@122 813 tree.accept(validator);
mcimadamore@122 814 checkRaw(tree, env);
mcimadamore@122 815 }
duke@1 816 } catch (CompletionFailure ex) {
duke@1 817 completionError(tree.pos(), ex);
duke@1 818 }
duke@1 819 }
mcimadamore@122 820 //where
mcimadamore@122 821 void checkRaw(JCTree tree, Env<AttrContext> env) {
mcimadamore@122 822 if (lint.isEnabled(Lint.LintCategory.RAW) &&
mcimadamore@122 823 tree.type.tag == CLASS &&
mcimadamore@122 824 !env.enclClass.name.isEmpty() && //anonymous or intersection
mcimadamore@122 825 tree.type.isRaw()) {
mcimadamore@122 826 log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
mcimadamore@122 827 }
mcimadamore@122 828 }
duke@1 829
duke@1 830 /** Visitor method: Validate a list of type expressions.
duke@1 831 */
mcimadamore@122 832 void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
duke@1 833 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
mcimadamore@122 834 validate(l.head, env);
duke@1 835 }
duke@1 836
duke@1 837 /** A visitor class for type validation.
duke@1 838 */
duke@1 839 class Validator extends JCTree.Visitor {
duke@1 840
duke@1 841 public void visitTypeArray(JCArrayTypeTree tree) {
mcimadamore@122 842 validate(tree.elemtype, env);
duke@1 843 }
duke@1 844
duke@1 845 public void visitTypeApply(JCTypeApply tree) {
duke@1 846 if (tree.type.tag == CLASS) {
mcimadamore@158 847 List<Type> formals = tree.type.tsym.type.allparams();
mcimadamore@158 848 List<Type> actuals = tree.type.allparams();
duke@1 849 List<JCExpression> args = tree.arguments;
mcimadamore@158 850 List<Type> forms = tree.type.tsym.type.getTypeArguments();
duke@1 851 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
duke@1 852
duke@1 853 // For matching pairs of actual argument types `a' and
duke@1 854 // formal type parameters with declared bound `b' ...
duke@1 855 while (args.nonEmpty() && forms.nonEmpty()) {
mcimadamore@122 856 validate(args.head, env);
duke@1 857
duke@1 858 // exact type arguments needs to know their
duke@1 859 // bounds (for upper and lower bound
duke@1 860 // calculations). So we create new TypeVars with
duke@1 861 // bounds substed with actuals.
duke@1 862 tvars_buf.append(types.substBound(((TypeVar)forms.head),
duke@1 863 formals,
mcimadamore@78 864 actuals));
duke@1 865
duke@1 866 args = args.tail;
duke@1 867 forms = forms.tail;
duke@1 868 }
duke@1 869
duke@1 870 args = tree.arguments;
mcimadamore@154 871 List<Type> tvars_cap = types.substBounds(formals,
mcimadamore@154 872 formals,
mcimadamore@158 873 types.capture(tree.type).allparams());
mcimadamore@154 874 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
mcimadamore@154 875 // Let the actual arguments know their bound
mcimadamore@154 876 args.head.type.withTypeVar((TypeVar)tvars_cap.head);
mcimadamore@154 877 args = args.tail;
mcimadamore@154 878 tvars_cap = tvars_cap.tail;
mcimadamore@154 879 }
mcimadamore@154 880
mcimadamore@154 881 args = tree.arguments;
duke@1 882 List<TypeVar> tvars = tvars_buf.toList();
mcimadamore@154 883
duke@1 884 while (args.nonEmpty() && tvars.nonEmpty()) {
mcimadamore@154 885 checkExtends(args.head.pos(),
mcimadamore@154 886 args.head.type,
mcimadamore@154 887 tvars.head);
duke@1 888 args = args.tail;
duke@1 889 tvars = tvars.tail;
duke@1 890 }
duke@1 891
mcimadamore@154 892 checkCapture(tree);
duke@1 893
duke@1 894 // Check that this type is either fully parameterized, or
duke@1 895 // not parameterized at all.
duke@1 896 if (tree.type.getEnclosingType().isRaw())
duke@1 897 log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
duke@1 898 if (tree.clazz.getTag() == JCTree.SELECT)
duke@1 899 visitSelectInternal((JCFieldAccess)tree.clazz);
duke@1 900 }
duke@1 901 }
duke@1 902
duke@1 903 public void visitTypeParameter(JCTypeParameter tree) {
mcimadamore@122 904 validate(tree.bounds, env);
duke@1 905 checkClassBounds(tree.pos(), tree.type);
duke@1 906 }
duke@1 907
duke@1 908 @Override
duke@1 909 public void visitWildcard(JCWildcard tree) {
duke@1 910 if (tree.inner != null)
mcimadamore@122 911 validate(tree.inner, env);
duke@1 912 }
duke@1 913
duke@1 914 public void visitSelect(JCFieldAccess tree) {
duke@1 915 if (tree.type.tag == CLASS) {
duke@1 916 visitSelectInternal(tree);
duke@1 917
duke@1 918 // Check that this type is either fully parameterized, or
duke@1 919 // not parameterized at all.
duke@1 920 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
duke@1 921 log.error(tree.pos(), "improperly.formed.type.param.missing");
duke@1 922 }
duke@1 923 }
duke@1 924 public void visitSelectInternal(JCFieldAccess tree) {
mcimadamore@122 925 if (tree.type.tsym.isStatic() &&
duke@1 926 tree.selected.type.isParameterized()) {
duke@1 927 // The enclosing type is not a class, so we are
duke@1 928 // looking at a static member type. However, the
duke@1 929 // qualifying expression is parameterized.
duke@1 930 log.error(tree.pos(), "cant.select.static.class.from.param.type");
duke@1 931 } else {
duke@1 932 // otherwise validate the rest of the expression
mcimadamore@122 933 tree.selected.accept(this);
duke@1 934 }
duke@1 935 }
duke@1 936
jjg@308 937 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 938 tree.underlyingType.accept(this);
jjg@308 939 }
jjg@308 940
duke@1 941 /** Default visitor method: do nothing.
duke@1 942 */
duke@1 943 public void visitTree(JCTree tree) {
duke@1 944 }
mcimadamore@122 945
mcimadamore@122 946 Env<AttrContext> env;
duke@1 947 }
duke@1 948
duke@1 949 /* *************************************************************************
duke@1 950 * Exception checking
duke@1 951 **************************************************************************/
duke@1 952
duke@1 953 /* The following methods treat classes as sets that contain
duke@1 954 * the class itself and all their subclasses
duke@1 955 */
duke@1 956
duke@1 957 /** Is given type a subtype of some of the types in given list?
duke@1 958 */
duke@1 959 boolean subset(Type t, List<Type> ts) {
duke@1 960 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 961 if (types.isSubtype(t, l.head)) return true;
duke@1 962 return false;
duke@1 963 }
duke@1 964
duke@1 965 /** Is given type a subtype or supertype of
duke@1 966 * some of the types in given list?
duke@1 967 */
duke@1 968 boolean intersects(Type t, List<Type> ts) {
duke@1 969 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 970 if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
duke@1 971 return false;
duke@1 972 }
duke@1 973
duke@1 974 /** Add type set to given type list, unless it is a subclass of some class
duke@1 975 * in the list.
duke@1 976 */
duke@1 977 List<Type> incl(Type t, List<Type> ts) {
duke@1 978 return subset(t, ts) ? ts : excl(t, ts).prepend(t);
duke@1 979 }
duke@1 980
duke@1 981 /** Remove type set from type set list.
duke@1 982 */
duke@1 983 List<Type> excl(Type t, List<Type> ts) {
duke@1 984 if (ts.isEmpty()) {
duke@1 985 return ts;
duke@1 986 } else {
duke@1 987 List<Type> ts1 = excl(t, ts.tail);
duke@1 988 if (types.isSubtype(ts.head, t)) return ts1;
duke@1 989 else if (ts1 == ts.tail) return ts;
duke@1 990 else return ts1.prepend(ts.head);
duke@1 991 }
duke@1 992 }
duke@1 993
duke@1 994 /** Form the union of two type set lists.
duke@1 995 */
duke@1 996 List<Type> union(List<Type> ts1, List<Type> ts2) {
duke@1 997 List<Type> ts = ts1;
duke@1 998 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 999 ts = incl(l.head, ts);
duke@1 1000 return ts;
duke@1 1001 }
duke@1 1002
duke@1 1003 /** Form the difference of two type lists.
duke@1 1004 */
duke@1 1005 List<Type> diff(List<Type> ts1, List<Type> ts2) {
duke@1 1006 List<Type> ts = ts1;
duke@1 1007 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1008 ts = excl(l.head, ts);
duke@1 1009 return ts;
duke@1 1010 }
duke@1 1011
duke@1 1012 /** Form the intersection of two type lists.
duke@1 1013 */
duke@1 1014 public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
duke@1 1015 List<Type> ts = List.nil();
duke@1 1016 for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
duke@1 1017 if (subset(l.head, ts2)) ts = incl(l.head, ts);
duke@1 1018 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1019 if (subset(l.head, ts1)) ts = incl(l.head, ts);
duke@1 1020 return ts;
duke@1 1021 }
duke@1 1022
duke@1 1023 /** Is exc an exception symbol that need not be declared?
duke@1 1024 */
duke@1 1025 boolean isUnchecked(ClassSymbol exc) {
duke@1 1026 return
duke@1 1027 exc.kind == ERR ||
duke@1 1028 exc.isSubClass(syms.errorType.tsym, types) ||
duke@1 1029 exc.isSubClass(syms.runtimeExceptionType.tsym, types);
duke@1 1030 }
duke@1 1031
duke@1 1032 /** Is exc an exception type that need not be declared?
duke@1 1033 */
duke@1 1034 boolean isUnchecked(Type exc) {
duke@1 1035 return
duke@1 1036 (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
duke@1 1037 (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
duke@1 1038 exc.tag == BOT;
duke@1 1039 }
duke@1 1040
duke@1 1041 /** Same, but handling completion failures.
duke@1 1042 */
duke@1 1043 boolean isUnchecked(DiagnosticPosition pos, Type exc) {
duke@1 1044 try {
duke@1 1045 return isUnchecked(exc);
duke@1 1046 } catch (CompletionFailure ex) {
duke@1 1047 completionError(pos, ex);
duke@1 1048 return true;
duke@1 1049 }
duke@1 1050 }
duke@1 1051
duke@1 1052 /** Is exc handled by given exception list?
duke@1 1053 */
duke@1 1054 boolean isHandled(Type exc, List<Type> handled) {
duke@1 1055 return isUnchecked(exc) || subset(exc, handled);
duke@1 1056 }
duke@1 1057
duke@1 1058 /** Return all exceptions in thrown list that are not in handled list.
duke@1 1059 * @param thrown The list of thrown exceptions.
duke@1 1060 * @param handled The list of handled exceptions.
duke@1 1061 */
mcimadamore@362 1062 List<Type> unhandled(List<Type> thrown, List<Type> handled) {
duke@1 1063 List<Type> unhandled = List.nil();
duke@1 1064 for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
duke@1 1065 if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
duke@1 1066 return unhandled;
duke@1 1067 }
duke@1 1068
duke@1 1069 /* *************************************************************************
duke@1 1070 * Overriding/Implementation checking
duke@1 1071 **************************************************************************/
duke@1 1072
duke@1 1073 /** The level of access protection given by a flag set,
duke@1 1074 * where PRIVATE is highest and PUBLIC is lowest.
duke@1 1075 */
duke@1 1076 static int protection(long flags) {
duke@1 1077 switch ((short)(flags & AccessFlags)) {
duke@1 1078 case PRIVATE: return 3;
duke@1 1079 case PROTECTED: return 1;
duke@1 1080 default:
duke@1 1081 case PUBLIC: return 0;
duke@1 1082 case 0: return 2;
duke@1 1083 }
duke@1 1084 }
duke@1 1085
duke@1 1086 /** A customized "cannot override" error message.
duke@1 1087 * @param m The overriding method.
duke@1 1088 * @param other The overridden method.
duke@1 1089 * @return An internationalized string.
duke@1 1090 */
mcimadamore@89 1091 Object cannotOverride(MethodSymbol m, MethodSymbol other) {
duke@1 1092 String key;
duke@1 1093 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1094 key = "cant.override";
duke@1 1095 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1096 key = "cant.implement";
duke@1 1097 else
duke@1 1098 key = "clashes.with";
mcimadamore@89 1099 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1100 }
duke@1 1101
duke@1 1102 /** A customized "override" warning message.
duke@1 1103 * @param m The overriding method.
duke@1 1104 * @param other The overridden method.
duke@1 1105 * @return An internationalized string.
duke@1 1106 */
mcimadamore@89 1107 Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1108 String key;
duke@1 1109 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1110 key = "unchecked.override";
duke@1 1111 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1112 key = "unchecked.implement";
duke@1 1113 else
duke@1 1114 key = "unchecked.clash.with";
mcimadamore@89 1115 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1116 }
duke@1 1117
duke@1 1118 /** A customized "override" warning message.
duke@1 1119 * @param m The overriding method.
duke@1 1120 * @param other The overridden method.
duke@1 1121 * @return An internationalized string.
duke@1 1122 */
mcimadamore@89 1123 Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1124 String key;
duke@1 1125 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1126 key = "varargs.override";
duke@1 1127 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1128 key = "varargs.implement";
duke@1 1129 else
duke@1 1130 key = "varargs.clash.with";
mcimadamore@89 1131 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1132 }
duke@1 1133
duke@1 1134 /** Check that this method conforms with overridden method 'other'.
duke@1 1135 * where `origin' is the class where checking started.
duke@1 1136 * Complications:
duke@1 1137 * (1) Do not check overriding of synthetic methods
duke@1 1138 * (reason: they might be final).
duke@1 1139 * todo: check whether this is still necessary.
duke@1 1140 * (2) Admit the case where an interface proxy throws fewer exceptions
duke@1 1141 * than the method it implements. Augment the proxy methods with the
duke@1 1142 * undeclared exceptions in this case.
duke@1 1143 * (3) When generics are enabled, admit the case where an interface proxy
duke@1 1144 * has a result type
duke@1 1145 * extended by the result type of the method it implements.
duke@1 1146 * Change the proxies result type to the smaller type in this case.
duke@1 1147 *
duke@1 1148 * @param tree The tree from which positions
duke@1 1149 * are extracted for errors.
duke@1 1150 * @param m The overriding method.
duke@1 1151 * @param other The overridden method.
duke@1 1152 * @param origin The class of which the overriding method
duke@1 1153 * is a member.
duke@1 1154 */
duke@1 1155 void checkOverride(JCTree tree,
duke@1 1156 MethodSymbol m,
duke@1 1157 MethodSymbol other,
duke@1 1158 ClassSymbol origin) {
duke@1 1159 // Don't check overriding of synthetic methods or by bridge methods.
duke@1 1160 if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
duke@1 1161 return;
duke@1 1162 }
duke@1 1163
duke@1 1164 // Error if static method overrides instance method (JLS 8.4.6.2).
duke@1 1165 if ((m.flags() & STATIC) != 0 &&
duke@1 1166 (other.flags() & STATIC) == 0) {
duke@1 1167 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
duke@1 1168 cannotOverride(m, other));
duke@1 1169 return;
duke@1 1170 }
duke@1 1171
duke@1 1172 // Error if instance method overrides static or final
duke@1 1173 // method (JLS 8.4.6.1).
duke@1 1174 if ((other.flags() & FINAL) != 0 ||
duke@1 1175 (m.flags() & STATIC) == 0 &&
duke@1 1176 (other.flags() & STATIC) != 0) {
duke@1 1177 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
duke@1 1178 cannotOverride(m, other),
mcimadamore@80 1179 asFlagSet(other.flags() & (FINAL | STATIC)));
duke@1 1180 return;
duke@1 1181 }
duke@1 1182
duke@1 1183 if ((m.owner.flags() & ANNOTATION) != 0) {
duke@1 1184 // handled in validateAnnotationMethod
duke@1 1185 return;
duke@1 1186 }
duke@1 1187
duke@1 1188 // Error if overriding method has weaker access (JLS 8.4.6.3).
duke@1 1189 if ((origin.flags() & INTERFACE) == 0 &&
duke@1 1190 protection(m.flags()) > protection(other.flags())) {
duke@1 1191 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
duke@1 1192 cannotOverride(m, other),
mcimadamore@80 1193 other.flags() == 0 ?
mcimadamore@80 1194 Flag.PACKAGE :
mcimadamore@80 1195 asFlagSet(other.flags() & AccessFlags));
duke@1 1196 return;
duke@1 1197 }
duke@1 1198
duke@1 1199 Type mt = types.memberType(origin.type, m);
duke@1 1200 Type ot = types.memberType(origin.type, other);
duke@1 1201 // Error if overriding result type is different
duke@1 1202 // (or, in the case of generics mode, not a subtype) of
duke@1 1203 // overridden result type. We have to rename any type parameters
duke@1 1204 // before comparing types.
duke@1 1205 List<Type> mtvars = mt.getTypeArguments();
duke@1 1206 List<Type> otvars = ot.getTypeArguments();
duke@1 1207 Type mtres = mt.getReturnType();
duke@1 1208 Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
duke@1 1209
duke@1 1210 overrideWarner.warned = false;
duke@1 1211 boolean resultTypesOK =
tbell@202 1212 types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
duke@1 1213 if (!resultTypesOK) {
duke@1 1214 if (!source.allowCovariantReturns() &&
duke@1 1215 m.owner != origin &&
duke@1 1216 m.owner.isSubClass(other.owner, types)) {
duke@1 1217 // allow limited interoperability with covariant returns
duke@1 1218 } else {
mcimadamore@362 1219 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1220 "override.incompatible.ret",
mcimadamore@362 1221 cannotOverride(m, other),
duke@1 1222 mtres, otres);
duke@1 1223 return;
duke@1 1224 }
duke@1 1225 } else if (overrideWarner.warned) {
duke@1 1226 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1227 "override.unchecked.ret",
mcimadamore@362 1228 uncheckedOverrides(m, other),
mcimadamore@362 1229 mtres, otres);
duke@1 1230 }
duke@1 1231
duke@1 1232 // Error if overriding method throws an exception not reported
duke@1 1233 // by overridden method.
duke@1 1234 List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
mcimadamore@362 1235 List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
mcimadamore@362 1236 List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
mcimadamore@362 1237 if (unhandledErased.nonEmpty()) {
duke@1 1238 log.error(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1239 "override.meth.doesnt.throw",
duke@1 1240 cannotOverride(m, other),
mcimadamore@362 1241 unhandledUnerased.head);
mcimadamore@362 1242 return;
mcimadamore@362 1243 }
mcimadamore@362 1244 else if (unhandledUnerased.nonEmpty()) {
mcimadamore@362 1245 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1246 "override.unchecked.thrown",
mcimadamore@362 1247 cannotOverride(m, other),
mcimadamore@362 1248 unhandledUnerased.head);
duke@1 1249 return;
duke@1 1250 }
duke@1 1251
duke@1 1252 // Optional warning if varargs don't agree
duke@1 1253 if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
duke@1 1254 && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
duke@1 1255 log.warning(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1256 ((m.flags() & Flags.VARARGS) != 0)
duke@1 1257 ? "override.varargs.missing"
duke@1 1258 : "override.varargs.extra",
duke@1 1259 varargsOverrides(m, other));
duke@1 1260 }
duke@1 1261
duke@1 1262 // Warn if instance method overrides bridge method (compiler spec ??)
duke@1 1263 if ((other.flags() & BRIDGE) != 0) {
duke@1 1264 log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
duke@1 1265 uncheckedOverrides(m, other));
duke@1 1266 }
duke@1 1267
duke@1 1268 // Warn if a deprecated method overridden by a non-deprecated one.
duke@1 1269 if ((other.flags() & DEPRECATED) != 0
duke@1 1270 && (m.flags() & DEPRECATED) == 0
duke@1 1271 && m.outermostClass() != other.outermostClass()
duke@1 1272 && !isDeprecatedOverrideIgnorable(other, origin)) {
duke@1 1273 warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
duke@1 1274 }
duke@1 1275 }
duke@1 1276 // where
duke@1 1277 private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
duke@1 1278 // If the method, m, is defined in an interface, then ignore the issue if the method
duke@1 1279 // is only inherited via a supertype and also implemented in the supertype,
duke@1 1280 // because in that case, we will rediscover the issue when examining the method
duke@1 1281 // in the supertype.
duke@1 1282 // If the method, m, is not defined in an interface, then the only time we need to
duke@1 1283 // address the issue is when the method is the supertype implemementation: any other
duke@1 1284 // case, we will have dealt with when examining the supertype classes
duke@1 1285 ClassSymbol mc = m.enclClass();
duke@1 1286 Type st = types.supertype(origin.type);
duke@1 1287 if (st.tag != CLASS)
duke@1 1288 return true;
duke@1 1289 MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
duke@1 1290
duke@1 1291 if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
duke@1 1292 List<Type> intfs = types.interfaces(origin.type);
duke@1 1293 return (intfs.contains(mc.type) ? false : (stimpl != null));
duke@1 1294 }
duke@1 1295 else
duke@1 1296 return (stimpl != m);
duke@1 1297 }
duke@1 1298
duke@1 1299
duke@1 1300 // used to check if there were any unchecked conversions
duke@1 1301 Warner overrideWarner = new Warner();
duke@1 1302
duke@1 1303 /** Check that a class does not inherit two concrete methods
duke@1 1304 * with the same signature.
duke@1 1305 * @param pos Position to be used for error reporting.
duke@1 1306 * @param site The class type to be checked.
duke@1 1307 */
duke@1 1308 public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
duke@1 1309 Type sup = types.supertype(site);
duke@1 1310 if (sup.tag != CLASS) return;
duke@1 1311
duke@1 1312 for (Type t1 = sup;
duke@1 1313 t1.tsym.type.isParameterized();
duke@1 1314 t1 = types.supertype(t1)) {
duke@1 1315 for (Scope.Entry e1 = t1.tsym.members().elems;
duke@1 1316 e1 != null;
duke@1 1317 e1 = e1.sibling) {
duke@1 1318 Symbol s1 = e1.sym;
duke@1 1319 if (s1.kind != MTH ||
duke@1 1320 (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1321 !s1.isInheritedIn(site.tsym, types) ||
duke@1 1322 ((MethodSymbol)s1).implementation(site.tsym,
duke@1 1323 types,
duke@1 1324 true) != s1)
duke@1 1325 continue;
duke@1 1326 Type st1 = types.memberType(t1, s1);
duke@1 1327 int s1ArgsLength = st1.getParameterTypes().length();
duke@1 1328 if (st1 == s1.type) continue;
duke@1 1329
duke@1 1330 for (Type t2 = sup;
duke@1 1331 t2.tag == CLASS;
duke@1 1332 t2 = types.supertype(t2)) {
mcimadamore@24 1333 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
duke@1 1334 e2.scope != null;
duke@1 1335 e2 = e2.next()) {
duke@1 1336 Symbol s2 = e2.sym;
duke@1 1337 if (s2 == s1 ||
duke@1 1338 s2.kind != MTH ||
duke@1 1339 (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1340 s2.type.getParameterTypes().length() != s1ArgsLength ||
duke@1 1341 !s2.isInheritedIn(site.tsym, types) ||
duke@1 1342 ((MethodSymbol)s2).implementation(site.tsym,
duke@1 1343 types,
duke@1 1344 true) != s2)
duke@1 1345 continue;
duke@1 1346 Type st2 = types.memberType(t2, s2);
duke@1 1347 if (types.overrideEquivalent(st1, st2))
duke@1 1348 log.error(pos, "concrete.inheritance.conflict",
duke@1 1349 s1, t1, s2, t2, sup);
duke@1 1350 }
duke@1 1351 }
duke@1 1352 }
duke@1 1353 }
duke@1 1354 }
duke@1 1355
duke@1 1356 /** Check that classes (or interfaces) do not each define an abstract
duke@1 1357 * method with same name and arguments but incompatible return types.
duke@1 1358 * @param pos Position to be used for error reporting.
duke@1 1359 * @param t1 The first argument type.
duke@1 1360 * @param t2 The second argument type.
duke@1 1361 */
duke@1 1362 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1363 Type t1,
duke@1 1364 Type t2) {
duke@1 1365 return checkCompatibleAbstracts(pos, t1, t2,
duke@1 1366 types.makeCompoundType(t1, t2));
duke@1 1367 }
duke@1 1368
duke@1 1369 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1370 Type t1,
duke@1 1371 Type t2,
duke@1 1372 Type site) {
duke@1 1373 Symbol sym = firstIncompatibility(t1, t2, site);
duke@1 1374 if (sym != null) {
duke@1 1375 log.error(pos, "types.incompatible.diff.ret",
duke@1 1376 t1, t2, sym.name +
duke@1 1377 "(" + types.memberType(t2, sym).getParameterTypes() + ")");
duke@1 1378 return false;
duke@1 1379 }
duke@1 1380 return true;
duke@1 1381 }
duke@1 1382
duke@1 1383 /** Return the first method which is defined with same args
duke@1 1384 * but different return types in two given interfaces, or null if none
duke@1 1385 * exists.
duke@1 1386 * @param t1 The first type.
duke@1 1387 * @param t2 The second type.
duke@1 1388 * @param site The most derived type.
duke@1 1389 * @returns symbol from t2 that conflicts with one in t1.
duke@1 1390 */
duke@1 1391 private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
duke@1 1392 Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
duke@1 1393 closure(t1, interfaces1);
duke@1 1394 Map<TypeSymbol,Type> interfaces2;
duke@1 1395 if (t1 == t2)
duke@1 1396 interfaces2 = interfaces1;
duke@1 1397 else
duke@1 1398 closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
duke@1 1399
duke@1 1400 for (Type t3 : interfaces1.values()) {
duke@1 1401 for (Type t4 : interfaces2.values()) {
duke@1 1402 Symbol s = firstDirectIncompatibility(t3, t4, site);
duke@1 1403 if (s != null) return s;
duke@1 1404 }
duke@1 1405 }
duke@1 1406 return null;
duke@1 1407 }
duke@1 1408
duke@1 1409 /** Compute all the supertypes of t, indexed by type symbol. */
duke@1 1410 private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
duke@1 1411 if (t.tag != CLASS) return;
duke@1 1412 if (typeMap.put(t.tsym, t) == null) {
duke@1 1413 closure(types.supertype(t), typeMap);
duke@1 1414 for (Type i : types.interfaces(t))
duke@1 1415 closure(i, typeMap);
duke@1 1416 }
duke@1 1417 }
duke@1 1418
duke@1 1419 /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
duke@1 1420 private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
duke@1 1421 if (t.tag != CLASS) return;
duke@1 1422 if (typesSkip.get(t.tsym) != null) return;
duke@1 1423 if (typeMap.put(t.tsym, t) == null) {
duke@1 1424 closure(types.supertype(t), typesSkip, typeMap);
duke@1 1425 for (Type i : types.interfaces(t))
duke@1 1426 closure(i, typesSkip, typeMap);
duke@1 1427 }
duke@1 1428 }
duke@1 1429
duke@1 1430 /** Return the first method in t2 that conflicts with a method from t1. */
duke@1 1431 private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
duke@1 1432 for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
duke@1 1433 Symbol s1 = e1.sym;
duke@1 1434 Type st1 = null;
duke@1 1435 if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
duke@1 1436 Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
duke@1 1437 if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
duke@1 1438 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
duke@1 1439 Symbol s2 = e2.sym;
duke@1 1440 if (s1 == s2) continue;
duke@1 1441 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
duke@1 1442 if (st1 == null) st1 = types.memberType(t1, s1);
duke@1 1443 Type st2 = types.memberType(t2, s2);
duke@1 1444 if (types.overrideEquivalent(st1, st2)) {
duke@1 1445 List<Type> tvars1 = st1.getTypeArguments();
duke@1 1446 List<Type> tvars2 = st2.getTypeArguments();
duke@1 1447 Type rt1 = st1.getReturnType();
duke@1 1448 Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
duke@1 1449 boolean compat =
duke@1 1450 types.isSameType(rt1, rt2) ||
duke@1 1451 rt1.tag >= CLASS && rt2.tag >= CLASS &&
duke@1 1452 (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
mcimadamore@59 1453 types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
mcimadamore@59 1454 checkCommonOverriderIn(s1,s2,site);
duke@1 1455 if (!compat) return s2;
duke@1 1456 }
duke@1 1457 }
duke@1 1458 }
duke@1 1459 return null;
duke@1 1460 }
mcimadamore@59 1461 //WHERE
mcimadamore@59 1462 boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
mcimadamore@59 1463 Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
mcimadamore@59 1464 Type st1 = types.memberType(site, s1);
mcimadamore@59 1465 Type st2 = types.memberType(site, s2);
mcimadamore@59 1466 closure(site, supertypes);
mcimadamore@59 1467 for (Type t : supertypes.values()) {
mcimadamore@59 1468 for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
mcimadamore@59 1469 Symbol s3 = e.sym;
mcimadamore@59 1470 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
mcimadamore@59 1471 Type st3 = types.memberType(site,s3);
mcimadamore@59 1472 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
mcimadamore@59 1473 if (s3.owner == site.tsym) {
mcimadamore@59 1474 return true;
mcimadamore@59 1475 }
mcimadamore@59 1476 List<Type> tvars1 = st1.getTypeArguments();
mcimadamore@59 1477 List<Type> tvars2 = st2.getTypeArguments();
mcimadamore@59 1478 List<Type> tvars3 = st3.getTypeArguments();
mcimadamore@59 1479 Type rt1 = st1.getReturnType();
mcimadamore@59 1480 Type rt2 = st2.getReturnType();
mcimadamore@59 1481 Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
mcimadamore@59 1482 Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
mcimadamore@59 1483 boolean compat =
mcimadamore@59 1484 rt13.tag >= CLASS && rt23.tag >= CLASS &&
mcimadamore@59 1485 (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
mcimadamore@59 1486 types.covariantReturnType(rt23, rt2, Warner.noWarnings));
mcimadamore@59 1487 if (compat)
mcimadamore@59 1488 return true;
mcimadamore@59 1489 }
mcimadamore@59 1490 }
mcimadamore@59 1491 }
mcimadamore@59 1492 return false;
mcimadamore@59 1493 }
duke@1 1494
duke@1 1495 /** Check that a given method conforms with any method it overrides.
duke@1 1496 * @param tree The tree from which positions are extracted
duke@1 1497 * for errors.
duke@1 1498 * @param m The overriding method.
duke@1 1499 */
duke@1 1500 void checkOverride(JCTree tree, MethodSymbol m) {
duke@1 1501 ClassSymbol origin = (ClassSymbol)m.owner;
duke@1 1502 if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
duke@1 1503 if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
duke@1 1504 log.error(tree.pos(), "enum.no.finalize");
duke@1 1505 return;
duke@1 1506 }
duke@1 1507 for (Type t = types.supertype(origin.type); t.tag == CLASS;
duke@1 1508 t = types.supertype(t)) {
duke@1 1509 TypeSymbol c = t.tsym;
duke@1 1510 Scope.Entry e = c.members().lookup(m.name);
duke@1 1511 while (e.scope != null) {
duke@1 1512 if (m.overrides(e.sym, origin, types, false))
duke@1 1513 checkOverride(tree, m, (MethodSymbol)e.sym, origin);
mcimadamore@252 1514 else if (e.sym.kind == MTH &&
mcimadamore@252 1515 e.sym.isInheritedIn(origin, types) &&
mcimadamore@252 1516 (e.sym.flags() & SYNTHETIC) == 0 &&
mcimadamore@252 1517 !m.isConstructor()) {
mcimadamore@24 1518 Type er1 = m.erasure(types);
mcimadamore@24 1519 Type er2 = e.sym.erasure(types);
mcimadamore@252 1520 if (types.isSameTypes(er1.getParameterTypes(),
mcimadamore@252 1521 er2.getParameterTypes())) {
mcimadamore@24 1522 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@24 1523 "name.clash.same.erasure.no.override",
mcimadamore@24 1524 m, m.location(),
mcimadamore@24 1525 e.sym, e.sym.location());
mcimadamore@24 1526 }
mcimadamore@24 1527 }
duke@1 1528 e = e.next();
duke@1 1529 }
duke@1 1530 }
duke@1 1531 }
duke@1 1532
duke@1 1533 /** Check that all abstract members of given class have definitions.
duke@1 1534 * @param pos Position to be used for error reporting.
duke@1 1535 * @param c The class.
duke@1 1536 */
duke@1 1537 void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1538 try {
duke@1 1539 MethodSymbol undef = firstUndef(c, c);
duke@1 1540 if (undef != null) {
duke@1 1541 if ((c.flags() & ENUM) != 0 &&
duke@1 1542 types.supertype(c.type).tsym == syms.enumSym &&
duke@1 1543 (c.flags() & FINAL) == 0) {
duke@1 1544 // add the ABSTRACT flag to an enum
duke@1 1545 c.flags_field |= ABSTRACT;
duke@1 1546 } else {
duke@1 1547 MethodSymbol undef1 =
duke@1 1548 new MethodSymbol(undef.flags(), undef.name,
duke@1 1549 types.memberType(c.type, undef), undef.owner);
duke@1 1550 log.error(pos, "does.not.override.abstract",
duke@1 1551 c, undef1, undef1.location());
duke@1 1552 }
duke@1 1553 }
duke@1 1554 } catch (CompletionFailure ex) {
duke@1 1555 completionError(pos, ex);
duke@1 1556 }
duke@1 1557 }
duke@1 1558 //where
duke@1 1559 /** Return first abstract member of class `c' that is not defined
duke@1 1560 * in `impl', null if there is none.
duke@1 1561 */
duke@1 1562 private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
duke@1 1563 MethodSymbol undef = null;
duke@1 1564 // Do not bother to search in classes that are not abstract,
duke@1 1565 // since they cannot have abstract members.
duke@1 1566 if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1567 Scope s = c.members();
duke@1 1568 for (Scope.Entry e = s.elems;
duke@1 1569 undef == null && e != null;
duke@1 1570 e = e.sibling) {
duke@1 1571 if (e.sym.kind == MTH &&
duke@1 1572 (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
duke@1 1573 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1574 MethodSymbol implmeth = absmeth.implementation(impl, types, true);
duke@1 1575 if (implmeth == null || implmeth == absmeth)
duke@1 1576 undef = absmeth;
duke@1 1577 }
duke@1 1578 }
duke@1 1579 if (undef == null) {
duke@1 1580 Type st = types.supertype(c.type);
duke@1 1581 if (st.tag == CLASS)
duke@1 1582 undef = firstUndef(impl, (ClassSymbol)st.tsym);
duke@1 1583 }
duke@1 1584 for (List<Type> l = types.interfaces(c.type);
duke@1 1585 undef == null && l.nonEmpty();
duke@1 1586 l = l.tail) {
duke@1 1587 undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
duke@1 1588 }
duke@1 1589 }
duke@1 1590 return undef;
duke@1 1591 }
duke@1 1592
duke@1 1593 /** Check for cyclic references. Issue an error if the
duke@1 1594 * symbol of the type referred to has a LOCKED flag set.
duke@1 1595 *
duke@1 1596 * @param pos Position to be used for error reporting.
duke@1 1597 * @param t The type referred to.
duke@1 1598 */
duke@1 1599 void checkNonCyclic(DiagnosticPosition pos, Type t) {
duke@1 1600 checkNonCyclicInternal(pos, t);
duke@1 1601 }
duke@1 1602
duke@1 1603
duke@1 1604 void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
mcimadamore@236 1605 checkNonCyclic1(pos, t, List.<TypeVar>nil());
duke@1 1606 }
duke@1 1607
mcimadamore@236 1608 private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
duke@1 1609 final TypeVar tv;
mcimadamore@42 1610 if (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
mcimadamore@42 1611 return;
duke@1 1612 if (seen.contains(t)) {
duke@1 1613 tv = (TypeVar)t;
jjg@110 1614 tv.bound = types.createErrorType(t);
duke@1 1615 log.error(pos, "cyclic.inheritance", t);
duke@1 1616 } else if (t.tag == TYPEVAR) {
duke@1 1617 tv = (TypeVar)t;
mcimadamore@236 1618 seen = seen.prepend(tv);
duke@1 1619 for (Type b : types.getBounds(tv))
duke@1 1620 checkNonCyclic1(pos, b, seen);
duke@1 1621 }
duke@1 1622 }
duke@1 1623
duke@1 1624 /** Check for cyclic references. Issue an error if the
duke@1 1625 * symbol of the type referred to has a LOCKED flag set.
duke@1 1626 *
duke@1 1627 * @param pos Position to be used for error reporting.
duke@1 1628 * @param t The type referred to.
duke@1 1629 * @returns True if the check completed on all attributed classes
duke@1 1630 */
duke@1 1631 private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
duke@1 1632 boolean complete = true; // was the check complete?
duke@1 1633 //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
duke@1 1634 Symbol c = t.tsym;
duke@1 1635 if ((c.flags_field & ACYCLIC) != 0) return true;
duke@1 1636
duke@1 1637 if ((c.flags_field & LOCKED) != 0) {
duke@1 1638 noteCyclic(pos, (ClassSymbol)c);
duke@1 1639 } else if (!c.type.isErroneous()) {
duke@1 1640 try {
duke@1 1641 c.flags_field |= LOCKED;
duke@1 1642 if (c.type.tag == CLASS) {
duke@1 1643 ClassType clazz = (ClassType)c.type;
duke@1 1644 if (clazz.interfaces_field != null)
duke@1 1645 for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
duke@1 1646 complete &= checkNonCyclicInternal(pos, l.head);
duke@1 1647 if (clazz.supertype_field != null) {
duke@1 1648 Type st = clazz.supertype_field;
duke@1 1649 if (st != null && st.tag == CLASS)
duke@1 1650 complete &= checkNonCyclicInternal(pos, st);
duke@1 1651 }
duke@1 1652 if (c.owner.kind == TYP)
duke@1 1653 complete &= checkNonCyclicInternal(pos, c.owner.type);
duke@1 1654 }
duke@1 1655 } finally {
duke@1 1656 c.flags_field &= ~LOCKED;
duke@1 1657 }
duke@1 1658 }
duke@1 1659 if (complete)
duke@1 1660 complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
duke@1 1661 if (complete) c.flags_field |= ACYCLIC;
duke@1 1662 return complete;
duke@1 1663 }
duke@1 1664
duke@1 1665 /** Note that we found an inheritance cycle. */
duke@1 1666 private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1667 log.error(pos, "cyclic.inheritance", c);
duke@1 1668 for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
jjg@110 1669 l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
duke@1 1670 Type st = types.supertype(c.type);
duke@1 1671 if (st.tag == CLASS)
jjg@110 1672 ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
jjg@110 1673 c.type = types.createErrorType(c, c.type);
duke@1 1674 c.flags_field |= ACYCLIC;
duke@1 1675 }
duke@1 1676
duke@1 1677 /** Check that all methods which implement some
duke@1 1678 * method conform to the method they implement.
duke@1 1679 * @param tree The class definition whose members are checked.
duke@1 1680 */
duke@1 1681 void checkImplementations(JCClassDecl tree) {
duke@1 1682 checkImplementations(tree, tree.sym);
duke@1 1683 }
duke@1 1684 //where
duke@1 1685 /** Check that all methods which implement some
duke@1 1686 * method in `ic' conform to the method they implement.
duke@1 1687 */
duke@1 1688 void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
duke@1 1689 ClassSymbol origin = tree.sym;
duke@1 1690 for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
duke@1 1691 ClassSymbol lc = (ClassSymbol)l.head.tsym;
duke@1 1692 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
duke@1 1693 for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
duke@1 1694 if (e.sym.kind == MTH &&
duke@1 1695 (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
duke@1 1696 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1697 MethodSymbol implmeth = absmeth.implementation(origin, types, false);
duke@1 1698 if (implmeth != null && implmeth != absmeth &&
duke@1 1699 (implmeth.owner.flags() & INTERFACE) ==
duke@1 1700 (origin.flags() & INTERFACE)) {
duke@1 1701 // don't check if implmeth is in a class, yet
duke@1 1702 // origin is an interface. This case arises only
duke@1 1703 // if implmeth is declared in Object. The reason is
duke@1 1704 // that interfaces really don't inherit from
duke@1 1705 // Object it's just that the compiler represents
duke@1 1706 // things that way.
duke@1 1707 checkOverride(tree, implmeth, absmeth, origin);
duke@1 1708 }
duke@1 1709 }
duke@1 1710 }
duke@1 1711 }
duke@1 1712 }
duke@1 1713 }
duke@1 1714
duke@1 1715 /** Check that all abstract methods implemented by a class are
duke@1 1716 * mutually compatible.
duke@1 1717 * @param pos Position to be used for error reporting.
duke@1 1718 * @param c The class whose interfaces are checked.
duke@1 1719 */
duke@1 1720 void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
duke@1 1721 List<Type> supertypes = types.interfaces(c);
duke@1 1722 Type supertype = types.supertype(c);
duke@1 1723 if (supertype.tag == CLASS &&
duke@1 1724 (supertype.tsym.flags() & ABSTRACT) != 0)
duke@1 1725 supertypes = supertypes.prepend(supertype);
duke@1 1726 for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
duke@1 1727 if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
duke@1 1728 !checkCompatibleAbstracts(pos, l.head, l.head, c))
duke@1 1729 return;
duke@1 1730 for (List<Type> m = supertypes; m != l; m = m.tail)
duke@1 1731 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
duke@1 1732 return;
duke@1 1733 }
duke@1 1734 checkCompatibleConcretes(pos, c);
duke@1 1735 }
duke@1 1736
mcimadamore@359 1737 void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
mcimadamore@359 1738 for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
mcimadamore@359 1739 for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
mcimadamore@359 1740 // VM allows methods and variables with differing types
mcimadamore@359 1741 if (sym.kind == e.sym.kind &&
mcimadamore@359 1742 types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
mcimadamore@359 1743 sym != e.sym &&
mcimadamore@359 1744 (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
mcimadamore@359 1745 (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
mcimadamore@359 1746 syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
mcimadamore@359 1747 return;
mcimadamore@359 1748 }
mcimadamore@359 1749 }
mcimadamore@359 1750 }
mcimadamore@359 1751 }
mcimadamore@359 1752
mcimadamore@359 1753 /** Report a conflict between a user symbol and a synthetic symbol.
mcimadamore@359 1754 */
mcimadamore@359 1755 private void syntheticError(DiagnosticPosition pos, Symbol sym) {
mcimadamore@359 1756 if (!sym.type.isErroneous()) {
mcimadamore@359 1757 if (warnOnSyntheticConflicts) {
mcimadamore@359 1758 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
mcimadamore@359 1759 }
mcimadamore@359 1760 else {
mcimadamore@359 1761 log.error(pos, "synthetic.name.conflict", sym, sym.location());
mcimadamore@359 1762 }
mcimadamore@359 1763 }
mcimadamore@359 1764 }
mcimadamore@359 1765
duke@1 1766 /** Check that class c does not implement directly or indirectly
duke@1 1767 * the same parameterized interface with two different argument lists.
duke@1 1768 * @param pos Position to be used for error reporting.
duke@1 1769 * @param type The type whose interfaces are checked.
duke@1 1770 */
duke@1 1771 void checkClassBounds(DiagnosticPosition pos, Type type) {
duke@1 1772 checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
duke@1 1773 }
duke@1 1774 //where
duke@1 1775 /** Enter all interfaces of type `type' into the hash table `seensofar'
duke@1 1776 * with their class symbol as key and their type as value. Make
duke@1 1777 * sure no class is entered with two different types.
duke@1 1778 */
duke@1 1779 void checkClassBounds(DiagnosticPosition pos,
duke@1 1780 Map<TypeSymbol,Type> seensofar,
duke@1 1781 Type type) {
duke@1 1782 if (type.isErroneous()) return;
duke@1 1783 for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
duke@1 1784 Type it = l.head;
duke@1 1785 Type oldit = seensofar.put(it.tsym, it);
duke@1 1786 if (oldit != null) {
duke@1 1787 List<Type> oldparams = oldit.allparams();
duke@1 1788 List<Type> newparams = it.allparams();
duke@1 1789 if (!types.containsTypeEquivalent(oldparams, newparams))
duke@1 1790 log.error(pos, "cant.inherit.diff.arg",
duke@1 1791 it.tsym, Type.toString(oldparams),
duke@1 1792 Type.toString(newparams));
duke@1 1793 }
duke@1 1794 checkClassBounds(pos, seensofar, it);
duke@1 1795 }
duke@1 1796 Type st = types.supertype(type);
duke@1 1797 if (st != null) checkClassBounds(pos, seensofar, st);
duke@1 1798 }
duke@1 1799
duke@1 1800 /** Enter interface into into set.
duke@1 1801 * If it existed already, issue a "repeated interface" error.
duke@1 1802 */
duke@1 1803 void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
duke@1 1804 if (its.contains(it))
duke@1 1805 log.error(pos, "repeated.interface");
duke@1 1806 else {
duke@1 1807 its.add(it);
duke@1 1808 }
duke@1 1809 }
duke@1 1810
duke@1 1811 /* *************************************************************************
duke@1 1812 * Check annotations
duke@1 1813 **************************************************************************/
duke@1 1814
duke@1 1815 /** Annotation types are restricted to primitives, String, an
duke@1 1816 * enum, an annotation, Class, Class<?>, Class<? extends
duke@1 1817 * Anything>, arrays of the preceding.
duke@1 1818 */
duke@1 1819 void validateAnnotationType(JCTree restype) {
duke@1 1820 // restype may be null if an error occurred, so don't bother validating it
duke@1 1821 if (restype != null) {
duke@1 1822 validateAnnotationType(restype.pos(), restype.type);
duke@1 1823 }
duke@1 1824 }
duke@1 1825
duke@1 1826 void validateAnnotationType(DiagnosticPosition pos, Type type) {
duke@1 1827 if (type.isPrimitive()) return;
duke@1 1828 if (types.isSameType(type, syms.stringType)) return;
duke@1 1829 if ((type.tsym.flags() & Flags.ENUM) != 0) return;
duke@1 1830 if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
duke@1 1831 if (types.lowerBound(type).tsym == syms.classType.tsym) return;
duke@1 1832 if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
duke@1 1833 validateAnnotationType(pos, types.elemtype(type));
duke@1 1834 return;
duke@1 1835 }
duke@1 1836 log.error(pos, "invalid.annotation.member.type");
duke@1 1837 }
duke@1 1838
duke@1 1839 /**
duke@1 1840 * "It is also a compile-time error if any method declared in an
duke@1 1841 * annotation type has a signature that is override-equivalent to
duke@1 1842 * that of any public or protected method declared in class Object
duke@1 1843 * or in the interface annotation.Annotation."
duke@1 1844 *
duke@1 1845 * @jls3 9.6 Annotation Types
duke@1 1846 */
duke@1 1847 void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
duke@1 1848 for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
duke@1 1849 Scope s = sup.tsym.members();
duke@1 1850 for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1851 if (e.sym.kind == MTH &&
duke@1 1852 (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
duke@1 1853 types.overrideEquivalent(m.type, e.sym.type))
duke@1 1854 log.error(pos, "intf.annotation.member.clash", e.sym, sup);
duke@1 1855 }
duke@1 1856 }
duke@1 1857 }
duke@1 1858
duke@1 1859 /** Check the annotations of a symbol.
duke@1 1860 */
duke@1 1861 public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
duke@1 1862 if (skipAnnotations) return;
duke@1 1863 for (JCAnnotation a : annotations)
duke@1 1864 validateAnnotation(a, s);
duke@1 1865 }
duke@1 1866
jjg@308 1867 /** Check the type annotations
jjg@308 1868 */
jjg@308 1869 public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
jjg@308 1870 if (skipAnnotations) return;
jjg@308 1871 for (JCTypeAnnotation a : annotations)
jjg@308 1872 validateTypeAnnotation(a, isTypeParameter);
jjg@308 1873 }
jjg@308 1874
duke@1 1875 /** Check an annotation of a symbol.
duke@1 1876 */
duke@1 1877 public void validateAnnotation(JCAnnotation a, Symbol s) {
duke@1 1878 validateAnnotation(a);
duke@1 1879
duke@1 1880 if (!annotationApplicable(a, s))
duke@1 1881 log.error(a.pos(), "annotation.type.not.applicable");
duke@1 1882
duke@1 1883 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
duke@1 1884 if (!isOverrider(s))
duke@1 1885 log.error(a.pos(), "method.does.not.override.superclass");
duke@1 1886 }
duke@1 1887 }
duke@1 1888
jjg@308 1889 public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
jjg@308 1890 if (a.type == null)
jjg@308 1891 throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
jjg@308 1892 validateAnnotation(a);
jjg@308 1893
jjg@308 1894 if (!isTypeAnnotation(a, isTypeParameter))
jjg@308 1895 log.error(a.pos(), "annotation.type.not.applicable");
jjg@308 1896 }
jjg@308 1897
duke@1 1898 /** Is s a method symbol that overrides a method in a superclass? */
duke@1 1899 boolean isOverrider(Symbol s) {
duke@1 1900 if (s.kind != MTH || s.isStatic())
duke@1 1901 return false;
duke@1 1902 MethodSymbol m = (MethodSymbol)s;
duke@1 1903 TypeSymbol owner = (TypeSymbol)m.owner;
duke@1 1904 for (Type sup : types.closure(owner.type)) {
duke@1 1905 if (sup == owner.type)
duke@1 1906 continue; // skip "this"
duke@1 1907 Scope scope = sup.tsym.members();
duke@1 1908 for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1909 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
duke@1 1910 return true;
duke@1 1911 }
duke@1 1912 }
duke@1 1913 return false;
duke@1 1914 }
duke@1 1915
jjg@308 1916 /** Is the annotation applicable to type annotations */
jjg@308 1917 boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
jjg@308 1918 Attribute.Compound atTarget =
jjg@308 1919 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
jjg@308 1920 if (atTarget == null) return true;
jjg@308 1921 Attribute atValue = atTarget.member(names.value);
jjg@308 1922 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
jjg@308 1923 Attribute.Array arr = (Attribute.Array) atValue;
jjg@308 1924 for (Attribute app : arr.values) {
jjg@308 1925 if (!(app instanceof Attribute.Enum)) return true; // recovery
jjg@308 1926 Attribute.Enum e = (Attribute.Enum) app;
jjg@308 1927 if (!isTypeParameter && e.value.name == names.TYPE_USE)
jjg@308 1928 return true;
jjg@308 1929 else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
jjg@308 1930 return true;
jjg@308 1931 }
jjg@308 1932 return false;
jjg@308 1933 }
jjg@308 1934
duke@1 1935 /** Is the annotation applicable to the symbol? */
duke@1 1936 boolean annotationApplicable(JCAnnotation a, Symbol s) {
duke@1 1937 Attribute.Compound atTarget =
duke@1 1938 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
duke@1 1939 if (atTarget == null) return true;
duke@1 1940 Attribute atValue = atTarget.member(names.value);
duke@1 1941 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
duke@1 1942 Attribute.Array arr = (Attribute.Array) atValue;
duke@1 1943 for (Attribute app : arr.values) {
duke@1 1944 if (!(app instanceof Attribute.Enum)) return true; // recovery
duke@1 1945 Attribute.Enum e = (Attribute.Enum) app;
duke@1 1946 if (e.value.name == names.TYPE)
duke@1 1947 { if (s.kind == TYP) return true; }
duke@1 1948 else if (e.value.name == names.FIELD)
duke@1 1949 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
duke@1 1950 else if (e.value.name == names.METHOD)
duke@1 1951 { if (s.kind == MTH && !s.isConstructor()) return true; }
duke@1 1952 else if (e.value.name == names.PARAMETER)
duke@1 1953 { if (s.kind == VAR &&
duke@1 1954 s.owner.kind == MTH &&
duke@1 1955 (s.flags() & PARAMETER) != 0)
duke@1 1956 return true;
duke@1 1957 }
duke@1 1958 else if (e.value.name == names.CONSTRUCTOR)
duke@1 1959 { if (s.kind == MTH && s.isConstructor()) return true; }
duke@1 1960 else if (e.value.name == names.LOCAL_VARIABLE)
duke@1 1961 { if (s.kind == VAR && s.owner.kind == MTH &&
duke@1 1962 (s.flags() & PARAMETER) == 0)
duke@1 1963 return true;
duke@1 1964 }
duke@1 1965 else if (e.value.name == names.ANNOTATION_TYPE)
duke@1 1966 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
duke@1 1967 return true;
duke@1 1968 }
duke@1 1969 else if (e.value.name == names.PACKAGE)
duke@1 1970 { if (s.kind == PCK) return true; }
jjg@308 1971 else if (e.value.name == names.TYPE_USE)
jjg@308 1972 { if (s.kind == TYP ||
jjg@308 1973 s.kind == VAR ||
jjg@308 1974 (s.kind == MTH && !s.isConstructor() &&
jjg@308 1975 s.type.getReturnType().tag != VOID))
jjg@308 1976 return true;
jjg@308 1977 }
duke@1 1978 else
duke@1 1979 return true; // recovery
duke@1 1980 }
duke@1 1981 return false;
duke@1 1982 }
duke@1 1983
duke@1 1984 /** Check an annotation value.
duke@1 1985 */
duke@1 1986 public void validateAnnotation(JCAnnotation a) {
duke@1 1987 if (a.type.isErroneous()) return;
duke@1 1988
duke@1 1989 // collect an inventory of the members
duke@1 1990 Set<MethodSymbol> members = new HashSet<MethodSymbol>();
duke@1 1991 for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
duke@1 1992 e != null;
duke@1 1993 e = e.sibling)
duke@1 1994 if (e.sym.kind == MTH)
duke@1 1995 members.add((MethodSymbol) e.sym);
duke@1 1996
duke@1 1997 // count them off as they're annotated
duke@1 1998 for (JCTree arg : a.args) {
duke@1 1999 if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
duke@1 2000 JCAssign assign = (JCAssign) arg;
duke@1 2001 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 2002 if (m == null || m.type.isErroneous()) continue;
duke@1 2003 if (!members.remove(m))
duke@1 2004 log.error(arg.pos(), "duplicate.annotation.member.value",
duke@1 2005 m.name, a.type);
duke@1 2006 if (assign.rhs.getTag() == ANNOTATION)
duke@1 2007 validateAnnotation((JCAnnotation)assign.rhs);
duke@1 2008 }
duke@1 2009
duke@1 2010 // all the remaining ones better have default values
duke@1 2011 for (MethodSymbol m : members)
duke@1 2012 if (m.defaultValue == null && !m.type.isErroneous())
duke@1 2013 log.error(a.pos(), "annotation.missing.default.value",
duke@1 2014 a.type, m.name);
duke@1 2015
duke@1 2016 // special case: java.lang.annotation.Target must not have
duke@1 2017 // repeated values in its value member
duke@1 2018 if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
duke@1 2019 a.args.tail == null)
duke@1 2020 return;
duke@1 2021
duke@1 2022 if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
duke@1 2023 JCAssign assign = (JCAssign) a.args.head;
duke@1 2024 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 2025 if (m.name != names.value) return;
duke@1 2026 JCTree rhs = assign.rhs;
duke@1 2027 if (rhs.getTag() != JCTree.NEWARRAY) return;
duke@1 2028 JCNewArray na = (JCNewArray) rhs;
duke@1 2029 Set<Symbol> targets = new HashSet<Symbol>();
duke@1 2030 for (JCTree elem : na.elems) {
duke@1 2031 if (!targets.add(TreeInfo.symbol(elem))) {
duke@1 2032 log.error(elem.pos(), "repeated.annotation.target");
duke@1 2033 }
duke@1 2034 }
duke@1 2035 }
duke@1 2036
duke@1 2037 void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
duke@1 2038 if (allowAnnotations &&
duke@1 2039 lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
duke@1 2040 (s.flags() & DEPRECATED) != 0 &&
duke@1 2041 !syms.deprecatedType.isErroneous() &&
duke@1 2042 s.attribute(syms.deprecatedType.tsym) == null) {
duke@1 2043 log.warning(pos, "missing.deprecated.annotation");
duke@1 2044 }
duke@1 2045 }
duke@1 2046
duke@1 2047 /* *************************************************************************
duke@1 2048 * Check for recursive annotation elements.
duke@1 2049 **************************************************************************/
duke@1 2050
duke@1 2051 /** Check for cycles in the graph of annotation elements.
duke@1 2052 */
duke@1 2053 void checkNonCyclicElements(JCClassDecl tree) {
duke@1 2054 if ((tree.sym.flags_field & ANNOTATION) == 0) return;
duke@1 2055 assert (tree.sym.flags_field & LOCKED) == 0;
duke@1 2056 try {
duke@1 2057 tree.sym.flags_field |= LOCKED;
duke@1 2058 for (JCTree def : tree.defs) {
duke@1 2059 if (def.getTag() != JCTree.METHODDEF) continue;
duke@1 2060 JCMethodDecl meth = (JCMethodDecl)def;
duke@1 2061 checkAnnotationResType(meth.pos(), meth.restype.type);
duke@1 2062 }
duke@1 2063 } finally {
duke@1 2064 tree.sym.flags_field &= ~LOCKED;
duke@1 2065 tree.sym.flags_field |= ACYCLIC_ANN;
duke@1 2066 }
duke@1 2067 }
duke@1 2068
duke@1 2069 void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
duke@1 2070 if ((tsym.flags_field & ACYCLIC_ANN) != 0)
duke@1 2071 return;
duke@1 2072 if ((tsym.flags_field & LOCKED) != 0) {
duke@1 2073 log.error(pos, "cyclic.annotation.element");
duke@1 2074 return;
duke@1 2075 }
duke@1 2076 try {
duke@1 2077 tsym.flags_field |= LOCKED;
duke@1 2078 for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
duke@1 2079 Symbol s = e.sym;
duke@1 2080 if (s.kind != Kinds.MTH)
duke@1 2081 continue;
duke@1 2082 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
duke@1 2083 }
duke@1 2084 } finally {
duke@1 2085 tsym.flags_field &= ~LOCKED;
duke@1 2086 tsym.flags_field |= ACYCLIC_ANN;
duke@1 2087 }
duke@1 2088 }
duke@1 2089
duke@1 2090 void checkAnnotationResType(DiagnosticPosition pos, Type type) {
duke@1 2091 switch (type.tag) {
duke@1 2092 case TypeTags.CLASS:
duke@1 2093 if ((type.tsym.flags() & ANNOTATION) != 0)
duke@1 2094 checkNonCyclicElementsInternal(pos, type.tsym);
duke@1 2095 break;
duke@1 2096 case TypeTags.ARRAY:
duke@1 2097 checkAnnotationResType(pos, types.elemtype(type));
duke@1 2098 break;
duke@1 2099 default:
duke@1 2100 break; // int etc
duke@1 2101 }
duke@1 2102 }
duke@1 2103
duke@1 2104 /* *************************************************************************
duke@1 2105 * Check for cycles in the constructor call graph.
duke@1 2106 **************************************************************************/
duke@1 2107
duke@1 2108 /** Check for cycles in the graph of constructors calling other
duke@1 2109 * constructors.
duke@1 2110 */
duke@1 2111 void checkCyclicConstructors(JCClassDecl tree) {
duke@1 2112 Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
duke@1 2113
duke@1 2114 // enter each constructor this-call into the map
duke@1 2115 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 2116 JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
duke@1 2117 if (app == null) continue;
duke@1 2118 JCMethodDecl meth = (JCMethodDecl) l.head;
duke@1 2119 if (TreeInfo.name(app.meth) == names._this) {
duke@1 2120 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
duke@1 2121 } else {
duke@1 2122 meth.sym.flags_field |= ACYCLIC;
duke@1 2123 }
duke@1 2124 }
duke@1 2125
duke@1 2126 // Check for cycles in the map
duke@1 2127 Symbol[] ctors = new Symbol[0];
duke@1 2128 ctors = callMap.keySet().toArray(ctors);
duke@1 2129 for (Symbol caller : ctors) {
duke@1 2130 checkCyclicConstructor(tree, caller, callMap);
duke@1 2131 }
duke@1 2132 }
duke@1 2133
duke@1 2134 /** Look in the map to see if the given constructor is part of a
duke@1 2135 * call cycle.
duke@1 2136 */
duke@1 2137 private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
duke@1 2138 Map<Symbol,Symbol> callMap) {
duke@1 2139 if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
duke@1 2140 if ((ctor.flags_field & LOCKED) != 0) {
duke@1 2141 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
duke@1 2142 "recursive.ctor.invocation");
duke@1 2143 } else {
duke@1 2144 ctor.flags_field |= LOCKED;
duke@1 2145 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
duke@1 2146 ctor.flags_field &= ~LOCKED;
duke@1 2147 }
duke@1 2148 ctor.flags_field |= ACYCLIC;
duke@1 2149 }
duke@1 2150 }
duke@1 2151
duke@1 2152 /* *************************************************************************
duke@1 2153 * Miscellaneous
duke@1 2154 **************************************************************************/
duke@1 2155
duke@1 2156 /**
duke@1 2157 * Return the opcode of the operator but emit an error if it is an
duke@1 2158 * error.
duke@1 2159 * @param pos position for error reporting.
duke@1 2160 * @param operator an operator
duke@1 2161 * @param tag a tree tag
duke@1 2162 * @param left type of left hand side
duke@1 2163 * @param right type of right hand side
duke@1 2164 */
duke@1 2165 int checkOperator(DiagnosticPosition pos,
duke@1 2166 OperatorSymbol operator,
duke@1 2167 int tag,
duke@1 2168 Type left,
duke@1 2169 Type right) {
duke@1 2170 if (operator.opcode == ByteCodes.error) {
duke@1 2171 log.error(pos,
duke@1 2172 "operator.cant.be.applied",
duke@1 2173 treeinfo.operatorName(tag),
mcimadamore@80 2174 List.of(left, right));
duke@1 2175 }
duke@1 2176 return operator.opcode;
duke@1 2177 }
duke@1 2178
duke@1 2179
duke@1 2180 /**
duke@1 2181 * Check for division by integer constant zero
duke@1 2182 * @param pos Position for error reporting.
duke@1 2183 * @param operator The operator for the expression
duke@1 2184 * @param operand The right hand operand for the expression
duke@1 2185 */
duke@1 2186 void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
duke@1 2187 if (operand.constValue() != null
duke@1 2188 && lint.isEnabled(Lint.LintCategory.DIVZERO)
duke@1 2189 && operand.tag <= LONG
duke@1 2190 && ((Number) (operand.constValue())).longValue() == 0) {
duke@1 2191 int opc = ((OperatorSymbol)operator).opcode;
duke@1 2192 if (opc == ByteCodes.idiv || opc == ByteCodes.imod
duke@1 2193 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
duke@1 2194 log.warning(pos, "div.zero");
duke@1 2195 }
duke@1 2196 }
duke@1 2197 }
duke@1 2198
duke@1 2199 /**
duke@1 2200 * Check for empty statements after if
duke@1 2201 */
duke@1 2202 void checkEmptyIf(JCIf tree) {
duke@1 2203 if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
duke@1 2204 log.warning(tree.thenpart.pos(), "empty.if");
duke@1 2205 }
duke@1 2206
duke@1 2207 /** Check that symbol is unique in given scope.
duke@1 2208 * @param pos Position for error reporting.
duke@1 2209 * @param sym The symbol.
duke@1 2210 * @param s The scope.
duke@1 2211 */
duke@1 2212 boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2213 if (sym.type.isErroneous())
duke@1 2214 return true;
duke@1 2215 if (sym.owner.name == names.any) return false;
duke@1 2216 for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
duke@1 2217 if (sym != e.sym &&
duke@1 2218 sym.kind == e.sym.kind &&
duke@1 2219 sym.name != names.error &&
mcimadamore@252 2220 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
duke@1 2221 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
duke@1 2222 varargsDuplicateError(pos, sym, e.sym);
mcimadamore@252 2223 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
mcimadamore@252 2224 duplicateErasureError(pos, sym, e.sym);
duke@1 2225 else
duke@1 2226 duplicateError(pos, e.sym);
duke@1 2227 return false;
duke@1 2228 }
duke@1 2229 }
duke@1 2230 return true;
duke@1 2231 }
mcimadamore@252 2232 //where
mcimadamore@252 2233 /** Report duplicate declaration error.
mcimadamore@252 2234 */
mcimadamore@252 2235 void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
mcimadamore@252 2236 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
mcimadamore@252 2237 log.error(pos, "name.clash.same.erasure", sym1, sym2);
mcimadamore@252 2238 }
mcimadamore@252 2239 }
duke@1 2240
duke@1 2241 /** Check that single-type import is not already imported or top-level defined,
duke@1 2242 * but make an exception for two single-type imports which denote the same type.
duke@1 2243 * @param pos Position for error reporting.
duke@1 2244 * @param sym The symbol.
duke@1 2245 * @param s The scope
duke@1 2246 */
duke@1 2247 boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2248 return checkUniqueImport(pos, sym, s, false);
duke@1 2249 }
duke@1 2250
duke@1 2251 /** Check that static single-type import is not already imported or top-level defined,
duke@1 2252 * but make an exception for two single-type imports which denote the same type.
duke@1 2253 * @param pos Position for error reporting.
duke@1 2254 * @param sym The symbol.
duke@1 2255 * @param s The scope
duke@1 2256 * @param staticImport Whether or not this was a static import
duke@1 2257 */
duke@1 2258 boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2259 return checkUniqueImport(pos, sym, s, true);
duke@1 2260 }
duke@1 2261
duke@1 2262 /** Check that single-type import is not already imported or top-level defined,
duke@1 2263 * but make an exception for two single-type imports which denote the same type.
duke@1 2264 * @param pos Position for error reporting.
duke@1 2265 * @param sym The symbol.
duke@1 2266 * @param s The scope.
duke@1 2267 * @param staticImport Whether or not this was a static import
duke@1 2268 */
duke@1 2269 private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
duke@1 2270 for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
duke@1 2271 // is encountered class entered via a class declaration?
duke@1 2272 boolean isClassDecl = e.scope == s;
duke@1 2273 if ((isClassDecl || sym != e.sym) &&
duke@1 2274 sym.kind == e.sym.kind &&
duke@1 2275 sym.name != names.error) {
duke@1 2276 if (!e.sym.type.isErroneous()) {
duke@1 2277 String what = e.sym.toString();
duke@1 2278 if (!isClassDecl) {
duke@1 2279 if (staticImport)
duke@1 2280 log.error(pos, "already.defined.static.single.import", what);
duke@1 2281 else
duke@1 2282 log.error(pos, "already.defined.single.import", what);
duke@1 2283 }
duke@1 2284 else if (sym != e.sym)
duke@1 2285 log.error(pos, "already.defined.this.unit", what);
duke@1 2286 }
duke@1 2287 return false;
duke@1 2288 }
duke@1 2289 }
duke@1 2290 return true;
duke@1 2291 }
duke@1 2292
duke@1 2293 /** Check that a qualified name is in canonical form (for import decls).
duke@1 2294 */
duke@1 2295 public void checkCanonical(JCTree tree) {
duke@1 2296 if (!isCanonical(tree))
duke@1 2297 log.error(tree.pos(), "import.requires.canonical",
duke@1 2298 TreeInfo.symbol(tree));
duke@1 2299 }
duke@1 2300 // where
duke@1 2301 private boolean isCanonical(JCTree tree) {
duke@1 2302 while (tree.getTag() == JCTree.SELECT) {
duke@1 2303 JCFieldAccess s = (JCFieldAccess) tree;
duke@1 2304 if (s.sym.owner != TreeInfo.symbol(s.selected))
duke@1 2305 return false;
duke@1 2306 tree = s.selected;
duke@1 2307 }
duke@1 2308 return true;
duke@1 2309 }
duke@1 2310
duke@1 2311 private class ConversionWarner extends Warner {
duke@1 2312 final String key;
duke@1 2313 final Type found;
duke@1 2314 final Type expected;
duke@1 2315 public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
duke@1 2316 super(pos);
duke@1 2317 this.key = key;
duke@1 2318 this.found = found;
duke@1 2319 this.expected = expected;
duke@1 2320 }
duke@1 2321
duke@1 2322 public void warnUnchecked() {
duke@1 2323 boolean warned = this.warned;
duke@1 2324 super.warnUnchecked();
duke@1 2325 if (warned) return; // suppress redundant diagnostics
mcimadamore@89 2326 Object problem = diags.fragment(key);
duke@1 2327 Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
duke@1 2328 }
duke@1 2329 }
duke@1 2330
duke@1 2331 public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2332 return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
duke@1 2333 }
duke@1 2334
duke@1 2335 public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2336 return new ConversionWarner(pos, "unchecked.assign", found, expected);
duke@1 2337 }
duke@1 2338 }

mercurial