src/share/vm/opto/type.cpp

Mon, 16 Sep 2013 09:41:03 +0200

author
tschatzl
date
Mon, 16 Sep 2013 09:41:03 +0200
changeset 5710
884ed7a10f09
parent 5694
7944aba7ba41
parent 5658
edb5ab0f3fe5
child 5791
c9ccd7b85f20
permissions
-rw-r--r--

Merge

duke@435 1 /*
hseigel@4465 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@4037 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "ci/ciTypeFlow.hpp"
stefank@2314 28 #include "classfile/symbolTable.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "libadt/dict.hpp"
stefank@2314 32 #include "memory/gcLocker.hpp"
stefank@2314 33 #include "memory/oopFactory.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "oops/instanceKlass.hpp"
never@2658 36 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
duke@435 44 // Portions of code courtesy of Clifford Click
duke@435 45
duke@435 46 // Optimization - Graph Style
duke@435 47
duke@435 48 // Dictionary of types shared among compilations.
duke@435 49 Dict* Type::_shared_type_dict = NULL;
duke@435 50
duke@435 51 // Array which maps compiler types to Basic Types
coleenp@4037 52 Type::TypeInfo Type::_type_info[Type::lastype] = {
coleenp@4037 53 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
coleenp@4037 54 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
coleenp@4037 55 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
coleenp@4037 56 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
coleenp@4037 57 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
coleenp@4037 58 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
coleenp@4037 59 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
roland@4159 60 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
coleenp@4037 61 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
coleenp@4037 62 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
coleenp@4037 63
dlong@4201 64 #ifndef SPARC
coleenp@4037 65 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
coleenp@4037 66 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
coleenp@4037 67 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
coleenp@4037 68 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
coleenp@4037 69 #else
coleenp@4037 70 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
coleenp@4037 71 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
coleenp@4037 72 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
coleenp@4037 73 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
coleenp@4037 74 #endif // IA32 || AMD64
coleenp@4037 75 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
coleenp@4037 76 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
coleenp@4037 77 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
coleenp@4037 78 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
coleenp@4037 79 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
coleenp@4037 80 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
coleenp@4037 81 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
coleenp@4037 82 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
coleenp@4037 83 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
coleenp@4037 84 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
coleenp@4037 85 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
coleenp@4037 86 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
coleenp@4037 87 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
coleenp@4037 88 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
coleenp@4037 89 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
coleenp@4037 90 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
coleenp@4037 91 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
coleenp@4037 92 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
duke@435 93 };
duke@435 94
duke@435 95 // Map ideal registers (machine types) to ideal types
duke@435 96 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 97
duke@435 98 // Map basic types to canonical Type* pointers.
duke@435 99 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 100
duke@435 101 // Map basic types to constant-zero Types.
duke@435 102 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 103
duke@435 104 // Map basic types to array-body alias types.
duke@435 105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 106
duke@435 107 //=============================================================================
duke@435 108 // Convenience common pre-built types.
duke@435 109 const Type *Type::ABIO; // State-of-machine only
duke@435 110 const Type *Type::BOTTOM; // All values
duke@435 111 const Type *Type::CONTROL; // Control only
duke@435 112 const Type *Type::DOUBLE; // All doubles
duke@435 113 const Type *Type::FLOAT; // All floats
duke@435 114 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 115 const Type *Type::MEMORY; // Abstract store only
duke@435 116 const Type *Type::RETURN_ADDRESS;
duke@435 117 const Type *Type::TOP; // No values in set
duke@435 118
duke@435 119 //------------------------------get_const_type---------------------------
duke@435 120 const Type* Type::get_const_type(ciType* type) {
duke@435 121 if (type == NULL) {
duke@435 122 return NULL;
duke@435 123 } else if (type->is_primitive_type()) {
duke@435 124 return get_const_basic_type(type->basic_type());
duke@435 125 } else {
duke@435 126 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 127 }
duke@435 128 }
duke@435 129
duke@435 130 //---------------------------array_element_basic_type---------------------------------
duke@435 131 // Mapping to the array element's basic type.
duke@435 132 BasicType Type::array_element_basic_type() const {
duke@435 133 BasicType bt = basic_type();
duke@435 134 if (bt == T_INT) {
duke@435 135 if (this == TypeInt::INT) return T_INT;
duke@435 136 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 137 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 138 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 139 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 140 return T_VOID;
duke@435 141 }
duke@435 142 return bt;
duke@435 143 }
duke@435 144
duke@435 145 //---------------------------get_typeflow_type---------------------------------
duke@435 146 // Import a type produced by ciTypeFlow.
duke@435 147 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 148 switch (type->basic_type()) {
duke@435 149
duke@435 150 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 151 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 152 return Type::BOTTOM;
duke@435 153
duke@435 154 case ciTypeFlow::StateVector::T_TOP:
duke@435 155 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 156 return Type::TOP;
duke@435 157
duke@435 158 case ciTypeFlow::StateVector::T_NULL:
duke@435 159 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 160 return TypePtr::NULL_PTR;
duke@435 161
duke@435 162 case ciTypeFlow::StateVector::T_LONG2:
duke@435 163 // The ciTypeFlow pass pushes a long, then the half.
duke@435 164 // We do the same.
duke@435 165 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 166 return TypeInt::TOP;
duke@435 167
duke@435 168 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 169 // The ciTypeFlow pass pushes double, then the half.
duke@435 170 // Our convention is the same.
duke@435 171 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 172 return Type::TOP;
duke@435 173
duke@435 174 case T_ADDRESS:
duke@435 175 assert(type->is_return_address(), "");
duke@435 176 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 177
duke@435 178 default:
duke@435 179 // make sure we did not mix up the cases:
duke@435 180 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 181 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 182 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 183 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 184 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 185 assert(!type->is_return_address(), "");
duke@435 186
duke@435 187 return Type::get_const_type(type);
duke@435 188 }
duke@435 189 }
duke@435 190
duke@435 191
vlivanov@5658 192 //-----------------------make_from_constant------------------------------------
vlivanov@5658 193 const Type* Type::make_from_constant(ciConstant constant,
vlivanov@5658 194 bool require_constant, bool is_autobox_cache) {
vlivanov@5658 195 switch (constant.basic_type()) {
vlivanov@5658 196 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
vlivanov@5658 197 case T_CHAR: return TypeInt::make(constant.as_char());
vlivanov@5658 198 case T_BYTE: return TypeInt::make(constant.as_byte());
vlivanov@5658 199 case T_SHORT: return TypeInt::make(constant.as_short());
vlivanov@5658 200 case T_INT: return TypeInt::make(constant.as_int());
vlivanov@5658 201 case T_LONG: return TypeLong::make(constant.as_long());
vlivanov@5658 202 case T_FLOAT: return TypeF::make(constant.as_float());
vlivanov@5658 203 case T_DOUBLE: return TypeD::make(constant.as_double());
vlivanov@5658 204 case T_ARRAY:
vlivanov@5658 205 case T_OBJECT:
vlivanov@5658 206 {
vlivanov@5658 207 // cases:
vlivanov@5658 208 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
vlivanov@5658 209 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
vlivanov@5658 210 // An oop is not scavengable if it is in the perm gen.
vlivanov@5658 211 ciObject* oop_constant = constant.as_object();
vlivanov@5658 212 if (oop_constant->is_null_object()) {
vlivanov@5658 213 return Type::get_zero_type(T_OBJECT);
vlivanov@5658 214 } else if (require_constant || oop_constant->should_be_constant()) {
vlivanov@5658 215 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
vlivanov@5658 216 }
vlivanov@5658 217 }
vlivanov@5658 218 }
vlivanov@5658 219 // Fall through to failure
vlivanov@5658 220 return NULL;
vlivanov@5658 221 }
vlivanov@5658 222
vlivanov@5658 223
duke@435 224 //------------------------------make-------------------------------------------
duke@435 225 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 226 // and look for an existing copy in the type dictionary.
duke@435 227 const Type *Type::make( enum TYPES t ) {
duke@435 228 return (new Type(t))->hashcons();
duke@435 229 }
kvn@658 230
duke@435 231 //------------------------------cmp--------------------------------------------
duke@435 232 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 233 if( t1->_base != t2->_base )
duke@435 234 return 1; // Missed badly
duke@435 235 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 236 return !t1->eq(t2); // Return ZERO if equal
duke@435 237 }
duke@435 238
duke@435 239 //------------------------------hash-------------------------------------------
duke@435 240 int Type::uhash( const Type *const t ) {
duke@435 241 return t->hash();
duke@435 242 }
duke@435 243
kvn@1975 244 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 245
duke@435 246 //--------------------------Initialize_shared----------------------------------
duke@435 247 void Type::Initialize_shared(Compile* current) {
duke@435 248 // This method does not need to be locked because the first system
duke@435 249 // compilations (stub compilations) occur serially. If they are
duke@435 250 // changed to proceed in parallel, then this section will need
duke@435 251 // locking.
duke@435 252
duke@435 253 Arena* save = current->type_arena();
zgu@3900 254 Arena* shared_type_arena = new (mtCompiler)Arena();
duke@435 255
duke@435 256 current->set_type_arena(shared_type_arena);
duke@435 257 _shared_type_dict =
duke@435 258 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 259 shared_type_arena, 128 );
duke@435 260 current->set_type_dict(_shared_type_dict);
duke@435 261
duke@435 262 // Make shared pre-built types.
duke@435 263 CONTROL = make(Control); // Control only
duke@435 264 TOP = make(Top); // No values in set
duke@435 265 MEMORY = make(Memory); // Abstract store only
duke@435 266 ABIO = make(Abio); // State-of-machine only
duke@435 267 RETURN_ADDRESS=make(Return_Address);
duke@435 268 FLOAT = make(FloatBot); // All floats
duke@435 269 DOUBLE = make(DoubleBot); // All doubles
duke@435 270 BOTTOM = make(Bottom); // Everything
duke@435 271 HALF = make(Half); // Placeholder half of doublewide type
duke@435 272
duke@435 273 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 274 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 275
duke@435 276 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 277 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 278
duke@435 279 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 280 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 281 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 282 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 283 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 284 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 285 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 286 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 287 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 288 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 289 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 290 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 291 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 292 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 293 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 294 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 295 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 296 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 297 // CmpL is overloaded both as the bytecode computation returning
duke@435 298 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 299 // compare returning optimizer ideal-type flags.
duke@435 300 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 301 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 302 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 303 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 304 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 305
duke@435 306 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 307 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 308 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 309 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 310 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 311 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 312 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 313
duke@435 314 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 315 fboth[0] = Type::CONTROL;
duke@435 316 fboth[1] = Type::CONTROL;
duke@435 317 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 318
duke@435 319 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 320 ffalse[0] = Type::CONTROL;
duke@435 321 ffalse[1] = Type::TOP;
duke@435 322 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 323
duke@435 324 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 325 fneither[0] = Type::TOP;
duke@435 326 fneither[1] = Type::TOP;
duke@435 327 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 328
duke@435 329 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 330 ftrue[0] = Type::TOP;
duke@435 331 ftrue[1] = Type::CONTROL;
duke@435 332 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 333
duke@435 334 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 335 floop[0] = Type::CONTROL;
duke@435 336 floop[1] = TypeInt::INT;
duke@435 337 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 338
duke@435 339 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 340 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 341 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 342
duke@435 343 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 344 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 345
duke@435 346 const Type **fmembar = TypeTuple::fields(0);
duke@435 347 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 348
duke@435 349 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 350 fsc[0] = TypeInt::CC;
duke@435 351 fsc[1] = Type::MEMORY;
duke@435 352 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 353
duke@435 354 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 355 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 356 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 357 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 358 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 359 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 360 false, 0, oopDesc::klass_offset_in_bytes());
kvn@1427 361 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
duke@435 362
coleenp@4037 363 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
coleenp@4037 364
coleenp@548 365 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 366 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 367
roland@4159 368 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
roland@4159 369
coleenp@548 370 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 371 mreg2type[Op_Set ] = 0;
coleenp@548 372 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 373 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 374 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 375 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 376 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 377 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 378 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 379
kvn@2116 380 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 381
kvn@598 382 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 383
kvn@598 384 #ifdef _LP64
kvn@598 385 if (UseCompressedOops) {
coleenp@4037 386 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
kvn@598 387 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 388 } else
kvn@598 389 #endif
kvn@598 390 {
kvn@598 391 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 392 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 393 }
duke@435 394 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 395 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 396 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 397 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 398 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 399 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 400 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 401
kvn@598 402 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 403 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 404 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 405 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 406 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 407 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 408 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 409 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 410 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 411 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 412 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 413 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 414
duke@435 415 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 416 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 417
duke@435 418 const Type **fi2c = TypeTuple::fields(2);
coleenp@4037 419 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
duke@435 420 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 421 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 422
duke@435 423 const Type **intpair = TypeTuple::fields(2);
duke@435 424 intpair[0] = TypeInt::INT;
duke@435 425 intpair[1] = TypeInt::INT;
duke@435 426 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 427
duke@435 428 const Type **longpair = TypeTuple::fields(2);
duke@435 429 longpair[0] = TypeLong::LONG;
duke@435 430 longpair[1] = TypeLong::LONG;
duke@435 431 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 432
roland@4159 433 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
roland@4159 434 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
roland@4159 435 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
roland@4159 436 _const_basic_type[T_CHAR] = TypeInt::CHAR;
roland@4159 437 _const_basic_type[T_BYTE] = TypeInt::BYTE;
roland@4159 438 _const_basic_type[T_SHORT] = TypeInt::SHORT;
roland@4159 439 _const_basic_type[T_INT] = TypeInt::INT;
roland@4159 440 _const_basic_type[T_LONG] = TypeLong::LONG;
roland@4159 441 _const_basic_type[T_FLOAT] = Type::FLOAT;
roland@4159 442 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
roland@4159 443 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
roland@4159 444 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
roland@4159 445 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
roland@4159 446 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
roland@4159 447 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
roland@4159 448
roland@4159 449 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
roland@4159 450 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
roland@4159 451 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
roland@4159 452 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
roland@4159 453 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
roland@4159 454 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
roland@4159 455 _zero_type[T_INT] = TypeInt::ZERO;
roland@4159 456 _zero_type[T_LONG] = TypeLong::ZERO;
roland@4159 457 _zero_type[T_FLOAT] = TypeF::ZERO;
roland@4159 458 _zero_type[T_DOUBLE] = TypeD::ZERO;
roland@4159 459 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
roland@4159 460 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
roland@4159 461 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
roland@4159 462 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 463
duke@435 464 // get_zero_type() should not happen for T_CONFLICT
duke@435 465 _zero_type[T_CONFLICT]= NULL;
duke@435 466
kvn@3882 467 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 468 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 469 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 470 }
kvn@3882 471 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 472 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 473 }
kvn@3882 474 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 475 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 476 }
kvn@3882 477 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 478 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 479 }
kvn@3882 480 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 481 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 482 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 483 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 484
duke@435 485 // Restore working type arena.
duke@435 486 current->set_type_arena(save);
duke@435 487 current->set_type_dict(NULL);
duke@435 488 }
duke@435 489
duke@435 490 //------------------------------Initialize-------------------------------------
duke@435 491 void Type::Initialize(Compile* current) {
duke@435 492 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 493
duke@435 494 if (_shared_type_dict == NULL) {
duke@435 495 Initialize_shared(current);
duke@435 496 }
duke@435 497
duke@435 498 Arena* type_arena = current->type_arena();
duke@435 499
duke@435 500 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 501 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 502 current->set_type_dict(tdic);
duke@435 503
duke@435 504 // Transfer the shared types.
duke@435 505 DictI i(_shared_type_dict);
duke@435 506 for( ; i.test(); ++i ) {
duke@435 507 Type* t = (Type*)i._value;
duke@435 508 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 509 }
duke@435 510 }
duke@435 511
duke@435 512 //------------------------------hashcons---------------------------------------
duke@435 513 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 514 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 515 // current Type in the Type table.
duke@435 516 const Type *Type::hashcons(void) {
duke@435 517 debug_only(base()); // Check the assertion in Type::base().
duke@435 518 // Look up the Type in the Type dictionary
duke@435 519 Dict *tdic = type_dict();
duke@435 520 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 521 if( old ) { // Pre-existing Type?
duke@435 522 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 523 delete this; // Yes, Nuke this guy
duke@435 524 assert( old->_dual, "" );
duke@435 525 return old; // Return pre-existing
duke@435 526 }
duke@435 527
duke@435 528 // Every type has a dual (to make my lattice symmetric).
duke@435 529 // Since we just discovered a new Type, compute its dual right now.
duke@435 530 assert( !_dual, "" ); // No dual yet
duke@435 531 _dual = xdual(); // Compute the dual
duke@435 532 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 533 _dual = this;
duke@435 534 return this;
duke@435 535 }
duke@435 536 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 537 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 538 // New Type, insert into Type table
duke@435 539 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 540 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 541 #ifdef ASSERT
duke@435 542 Type *dual_dual = (Type*)_dual->xdual();
duke@435 543 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 544 delete dual_dual;
duke@435 545 #endif
duke@435 546 return this; // Return new Type
duke@435 547 }
duke@435 548
duke@435 549 //------------------------------eq---------------------------------------------
duke@435 550 // Structural equality check for Type representations
duke@435 551 bool Type::eq( const Type * ) const {
duke@435 552 return true; // Nothing else can go wrong
duke@435 553 }
duke@435 554
duke@435 555 //------------------------------hash-------------------------------------------
duke@435 556 // Type-specific hashing function.
duke@435 557 int Type::hash(void) const {
duke@435 558 return _base;
duke@435 559 }
duke@435 560
duke@435 561 //------------------------------is_finite--------------------------------------
duke@435 562 // Has a finite value
duke@435 563 bool Type::is_finite() const {
duke@435 564 return false;
duke@435 565 }
duke@435 566
duke@435 567 //------------------------------is_nan-----------------------------------------
duke@435 568 // Is not a number (NaN)
duke@435 569 bool Type::is_nan() const {
duke@435 570 return false;
duke@435 571 }
duke@435 572
kvn@1255 573 //----------------------interface_vs_oop---------------------------------------
kvn@1255 574 #ifdef ASSERT
kvn@1255 575 bool Type::interface_vs_oop(const Type *t) const {
kvn@1255 576 bool result = false;
kvn@1255 577
kvn@1427 578 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 579 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 580 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 581 return result;
kvn@1427 582
kvn@1427 583 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 584 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 585 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 586 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 587 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 588 result = this_interface ^ t_interface;
kvn@1255 589 }
kvn@1255 590
kvn@1255 591 return result;
kvn@1255 592 }
kvn@1255 593 #endif
kvn@1255 594
duke@435 595 //------------------------------meet-------------------------------------------
duke@435 596 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 597 // commutative and the lattice is symmetric.
duke@435 598 const Type *Type::meet( const Type *t ) const {
coleenp@548 599 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 600 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 601 return result->make_narrowoop();
coleenp@548 602 }
roland@4159 603 if (isa_narrowklass() && t->isa_narrowklass()) {
roland@4159 604 const Type* result = make_ptr()->meet(t->make_ptr());
roland@4159 605 return result->make_narrowklass();
roland@4159 606 }
coleenp@548 607
duke@435 608 const Type *mt = xmeet(t);
coleenp@548 609 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
roland@4159 610 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
duke@435 611 #ifdef ASSERT
duke@435 612 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 613 const Type* dual_join = mt->_dual;
duke@435 614 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 615 const Type *t2this = dual_join->xmeet( _dual);
duke@435 616
duke@435 617 // Interface meet Oop is Not Symmetric:
duke@435 618 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 619 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 620
kvn@1255 621 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
duke@435 622 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 623 tty->print("t = "); t->dump(); tty->cr();
duke@435 624 tty->print("this= "); dump(); tty->cr();
duke@435 625 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 626
duke@435 627 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 628 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 629 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 630
duke@435 631 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 632 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 633
duke@435 634 fatal("meet not symmetric" );
duke@435 635 }
duke@435 636 #endif
duke@435 637 return mt;
duke@435 638 }
duke@435 639
duke@435 640 //------------------------------xmeet------------------------------------------
duke@435 641 // Compute the MEET of two types. It returns a new Type object.
duke@435 642 const Type *Type::xmeet( const Type *t ) const {
duke@435 643 // Perform a fast test for common case; meeting the same types together.
duke@435 644 if( this == t ) return this; // Meeting same type-rep?
duke@435 645
duke@435 646 // Meeting TOP with anything?
duke@435 647 if( _base == Top ) return t;
duke@435 648
duke@435 649 // Meeting BOTTOM with anything?
duke@435 650 if( _base == Bottom ) return BOTTOM;
duke@435 651
duke@435 652 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 653 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 654 switch (t->base()) { // Switch on original type
duke@435 655
duke@435 656 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 657 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 658 case FloatCon:
duke@435 659 case DoubleCon:
duke@435 660 case Int:
duke@435 661 case Long:
duke@435 662 return t->xmeet(this);
duke@435 663
duke@435 664 case OopPtr:
duke@435 665 return t->xmeet(this);
duke@435 666
duke@435 667 case InstPtr:
duke@435 668 return t->xmeet(this);
duke@435 669
coleenp@4037 670 case MetadataPtr:
duke@435 671 case KlassPtr:
duke@435 672 return t->xmeet(this);
duke@435 673
duke@435 674 case AryPtr:
duke@435 675 return t->xmeet(this);
duke@435 676
coleenp@548 677 case NarrowOop:
coleenp@548 678 return t->xmeet(this);
coleenp@548 679
roland@4159 680 case NarrowKlass:
roland@4159 681 return t->xmeet(this);
roland@4159 682
duke@435 683 case Bad: // Type check
duke@435 684 default: // Bogus type not in lattice
duke@435 685 typerr(t);
duke@435 686 return Type::BOTTOM;
duke@435 687
duke@435 688 case Bottom: // Ye Olde Default
duke@435 689 return t;
duke@435 690
duke@435 691 case FloatTop:
duke@435 692 if( _base == FloatTop ) return this;
duke@435 693 case FloatBot: // Float
duke@435 694 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 695 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 696 typerr(t);
duke@435 697 return Type::BOTTOM;
duke@435 698
duke@435 699 case DoubleTop:
duke@435 700 if( _base == DoubleTop ) return this;
duke@435 701 case DoubleBot: // Double
duke@435 702 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 703 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 704 typerr(t);
duke@435 705 return Type::BOTTOM;
duke@435 706
duke@435 707 // These next few cases must match exactly or it is a compile-time error.
duke@435 708 case Control: // Control of code
duke@435 709 case Abio: // State of world outside of program
duke@435 710 case Memory:
duke@435 711 if( _base == t->_base ) return this;
duke@435 712 typerr(t);
duke@435 713 return Type::BOTTOM;
duke@435 714
duke@435 715 case Top: // Top of the lattice
duke@435 716 return this;
duke@435 717 }
duke@435 718
duke@435 719 // The type is unchanged
duke@435 720 return this;
duke@435 721 }
duke@435 722
duke@435 723 //-----------------------------filter------------------------------------------
duke@435 724 const Type *Type::filter( const Type *kills ) const {
duke@435 725 const Type* ft = join(kills);
duke@435 726 if (ft->empty())
duke@435 727 return Type::TOP; // Canonical empty value
duke@435 728 return ft;
duke@435 729 }
duke@435 730
duke@435 731 //------------------------------xdual------------------------------------------
duke@435 732 // Compute dual right now.
duke@435 733 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 734 Bad, // Bad
duke@435 735 Control, // Control
duke@435 736 Bottom, // Top
duke@435 737 Bad, // Int - handled in v-call
duke@435 738 Bad, // Long - handled in v-call
duke@435 739 Half, // Half
coleenp@548 740 Bad, // NarrowOop - handled in v-call
roland@4159 741 Bad, // NarrowKlass - handled in v-call
duke@435 742
duke@435 743 Bad, // Tuple - handled in v-call
duke@435 744 Bad, // Array - handled in v-call
kvn@3882 745 Bad, // VectorS - handled in v-call
kvn@3882 746 Bad, // VectorD - handled in v-call
kvn@3882 747 Bad, // VectorX - handled in v-call
kvn@3882 748 Bad, // VectorY - handled in v-call
duke@435 749
duke@435 750 Bad, // AnyPtr - handled in v-call
duke@435 751 Bad, // RawPtr - handled in v-call
duke@435 752 Bad, // OopPtr - handled in v-call
duke@435 753 Bad, // InstPtr - handled in v-call
duke@435 754 Bad, // AryPtr - handled in v-call
coleenp@4037 755
coleenp@4037 756 Bad, // MetadataPtr - handled in v-call
duke@435 757 Bad, // KlassPtr - handled in v-call
duke@435 758
duke@435 759 Bad, // Function - handled in v-call
duke@435 760 Abio, // Abio
duke@435 761 Return_Address,// Return_Address
duke@435 762 Memory, // Memory
duke@435 763 FloatBot, // FloatTop
duke@435 764 FloatCon, // FloatCon
duke@435 765 FloatTop, // FloatBot
duke@435 766 DoubleBot, // DoubleTop
duke@435 767 DoubleCon, // DoubleCon
duke@435 768 DoubleTop, // DoubleBot
duke@435 769 Top // Bottom
duke@435 770 };
duke@435 771
duke@435 772 const Type *Type::xdual() const {
duke@435 773 // Note: the base() accessor asserts the sanity of _base.
coleenp@4037 774 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
coleenp@4037 775 return new Type(_type_info[_base].dual_type);
duke@435 776 }
duke@435 777
duke@435 778 //------------------------------has_memory-------------------------------------
duke@435 779 bool Type::has_memory() const {
duke@435 780 Type::TYPES tx = base();
duke@435 781 if (tx == Memory) return true;
duke@435 782 if (tx == Tuple) {
duke@435 783 const TypeTuple *t = is_tuple();
duke@435 784 for (uint i=0; i < t->cnt(); i++) {
duke@435 785 tx = t->field_at(i)->base();
duke@435 786 if (tx == Memory) return true;
duke@435 787 }
duke@435 788 }
duke@435 789 return false;
duke@435 790 }
duke@435 791
duke@435 792 #ifndef PRODUCT
duke@435 793 //------------------------------dump2------------------------------------------
duke@435 794 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 795 st->print(_type_info[_base].msg);
duke@435 796 }
duke@435 797
duke@435 798 //------------------------------dump-------------------------------------------
duke@435 799 void Type::dump_on(outputStream *st) const {
duke@435 800 ResourceMark rm;
duke@435 801 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 802 dump2(d,1, st);
kvn@598 803 if (is_ptr_to_narrowoop()) {
coleenp@548 804 st->print(" [narrow]");
roland@4159 805 } else if (is_ptr_to_narrowklass()) {
roland@4159 806 st->print(" [narrowklass]");
coleenp@548 807 }
duke@435 808 }
duke@435 809 #endif
duke@435 810
duke@435 811 //------------------------------singleton--------------------------------------
duke@435 812 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 813 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 814 bool Type::singleton(void) const {
duke@435 815 return _base == Top || _base == Half;
duke@435 816 }
duke@435 817
duke@435 818 //------------------------------empty------------------------------------------
duke@435 819 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 820 bool Type::empty(void) const {
duke@435 821 switch (_base) {
duke@435 822 case DoubleTop:
duke@435 823 case FloatTop:
duke@435 824 case Top:
duke@435 825 return true;
duke@435 826
duke@435 827 case Half:
duke@435 828 case Abio:
duke@435 829 case Return_Address:
duke@435 830 case Memory:
duke@435 831 case Bottom:
duke@435 832 case FloatBot:
duke@435 833 case DoubleBot:
duke@435 834 return false; // never a singleton, therefore never empty
duke@435 835 }
duke@435 836
duke@435 837 ShouldNotReachHere();
duke@435 838 return false;
duke@435 839 }
duke@435 840
duke@435 841 //------------------------------dump_stats-------------------------------------
duke@435 842 // Dump collected statistics to stderr
duke@435 843 #ifndef PRODUCT
duke@435 844 void Type::dump_stats() {
duke@435 845 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 846 }
duke@435 847 #endif
duke@435 848
duke@435 849 //------------------------------typerr-----------------------------------------
duke@435 850 void Type::typerr( const Type *t ) const {
duke@435 851 #ifndef PRODUCT
duke@435 852 tty->print("\nError mixing types: ");
duke@435 853 dump();
duke@435 854 tty->print(" and ");
duke@435 855 t->dump();
duke@435 856 tty->print("\n");
duke@435 857 #endif
duke@435 858 ShouldNotReachHere();
duke@435 859 }
duke@435 860
duke@435 861
duke@435 862 //=============================================================================
duke@435 863 // Convenience common pre-built types.
duke@435 864 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 865 const TypeF *TypeF::ONE; // Floating point one
duke@435 866
duke@435 867 //------------------------------make-------------------------------------------
duke@435 868 // Create a float constant
duke@435 869 const TypeF *TypeF::make(float f) {
duke@435 870 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 871 }
duke@435 872
duke@435 873 //------------------------------meet-------------------------------------------
duke@435 874 // Compute the MEET of two types. It returns a new Type object.
duke@435 875 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 876 // Perform a fast test for common case; meeting the same types together.
duke@435 877 if( this == t ) return this; // Meeting same type-rep?
duke@435 878
duke@435 879 // Current "this->_base" is FloatCon
duke@435 880 switch (t->base()) { // Switch on original type
duke@435 881 case AnyPtr: // Mixing with oops happens when javac
duke@435 882 case RawPtr: // reuses local variables
duke@435 883 case OopPtr:
duke@435 884 case InstPtr:
coleenp@4037 885 case AryPtr:
coleenp@4037 886 case MetadataPtr:
duke@435 887 case KlassPtr:
kvn@728 888 case NarrowOop:
roland@4159 889 case NarrowKlass:
duke@435 890 case Int:
duke@435 891 case Long:
duke@435 892 case DoubleTop:
duke@435 893 case DoubleCon:
duke@435 894 case DoubleBot:
duke@435 895 case Bottom: // Ye Olde Default
duke@435 896 return Type::BOTTOM;
duke@435 897
duke@435 898 case FloatBot:
duke@435 899 return t;
duke@435 900
duke@435 901 default: // All else is a mistake
duke@435 902 typerr(t);
duke@435 903
duke@435 904 case FloatCon: // Float-constant vs Float-constant?
duke@435 905 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 906 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 907 // all the same representation in C++
duke@435 908 return FLOAT; // Return generic float
duke@435 909 // Equal constants
duke@435 910 case Top:
duke@435 911 case FloatTop:
duke@435 912 break; // Return the float constant
duke@435 913 }
duke@435 914 return this; // Return the float constant
duke@435 915 }
duke@435 916
duke@435 917 //------------------------------xdual------------------------------------------
duke@435 918 // Dual: symmetric
duke@435 919 const Type *TypeF::xdual() const {
duke@435 920 return this;
duke@435 921 }
duke@435 922
duke@435 923 //------------------------------eq---------------------------------------------
duke@435 924 // Structural equality check for Type representations
duke@435 925 bool TypeF::eq( const Type *t ) const {
duke@435 926 if( g_isnan(_f) ||
duke@435 927 g_isnan(t->getf()) ) {
duke@435 928 // One or both are NANs. If both are NANs return true, else false.
duke@435 929 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 930 }
duke@435 931 if (_f == t->getf()) {
duke@435 932 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 933 if (_f == 0.0) {
duke@435 934 // difference between positive and negative zero
duke@435 935 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 936 }
duke@435 937 return true;
duke@435 938 }
duke@435 939 return false;
duke@435 940 }
duke@435 941
duke@435 942 //------------------------------hash-------------------------------------------
duke@435 943 // Type-specific hashing function.
duke@435 944 int TypeF::hash(void) const {
duke@435 945 return *(int*)(&_f);
duke@435 946 }
duke@435 947
duke@435 948 //------------------------------is_finite--------------------------------------
duke@435 949 // Has a finite value
duke@435 950 bool TypeF::is_finite() const {
duke@435 951 return g_isfinite(getf()) != 0;
duke@435 952 }
duke@435 953
duke@435 954 //------------------------------is_nan-----------------------------------------
duke@435 955 // Is not a number (NaN)
duke@435 956 bool TypeF::is_nan() const {
duke@435 957 return g_isnan(getf()) != 0;
duke@435 958 }
duke@435 959
duke@435 960 //------------------------------dump2------------------------------------------
duke@435 961 // Dump float constant Type
duke@435 962 #ifndef PRODUCT
duke@435 963 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 964 Type::dump2(d,depth, st);
duke@435 965 st->print("%f", _f);
duke@435 966 }
duke@435 967 #endif
duke@435 968
duke@435 969 //------------------------------singleton--------------------------------------
duke@435 970 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 971 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 972 // or a single symbol.
duke@435 973 bool TypeF::singleton(void) const {
duke@435 974 return true; // Always a singleton
duke@435 975 }
duke@435 976
duke@435 977 bool TypeF::empty(void) const {
duke@435 978 return false; // always exactly a singleton
duke@435 979 }
duke@435 980
duke@435 981 //=============================================================================
duke@435 982 // Convenience common pre-built types.
duke@435 983 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 984 const TypeD *TypeD::ONE; // Floating point one
duke@435 985
duke@435 986 //------------------------------make-------------------------------------------
duke@435 987 const TypeD *TypeD::make(double d) {
duke@435 988 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 989 }
duke@435 990
duke@435 991 //------------------------------meet-------------------------------------------
duke@435 992 // Compute the MEET of two types. It returns a new Type object.
duke@435 993 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 994 // Perform a fast test for common case; meeting the same types together.
duke@435 995 if( this == t ) return this; // Meeting same type-rep?
duke@435 996
duke@435 997 // Current "this->_base" is DoubleCon
duke@435 998 switch (t->base()) { // Switch on original type
duke@435 999 case AnyPtr: // Mixing with oops happens when javac
duke@435 1000 case RawPtr: // reuses local variables
duke@435 1001 case OopPtr:
duke@435 1002 case InstPtr:
coleenp@4037 1003 case AryPtr:
coleenp@4037 1004 case MetadataPtr:
duke@435 1005 case KlassPtr:
never@618 1006 case NarrowOop:
roland@4159 1007 case NarrowKlass:
duke@435 1008 case Int:
duke@435 1009 case Long:
duke@435 1010 case FloatTop:
duke@435 1011 case FloatCon:
duke@435 1012 case FloatBot:
duke@435 1013 case Bottom: // Ye Olde Default
duke@435 1014 return Type::BOTTOM;
duke@435 1015
duke@435 1016 case DoubleBot:
duke@435 1017 return t;
duke@435 1018
duke@435 1019 default: // All else is a mistake
duke@435 1020 typerr(t);
duke@435 1021
duke@435 1022 case DoubleCon: // Double-constant vs Double-constant?
duke@435 1023 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 1024 return DOUBLE; // Return generic double
duke@435 1025 case Top:
duke@435 1026 case DoubleTop:
duke@435 1027 break;
duke@435 1028 }
duke@435 1029 return this; // Return the double constant
duke@435 1030 }
duke@435 1031
duke@435 1032 //------------------------------xdual------------------------------------------
duke@435 1033 // Dual: symmetric
duke@435 1034 const Type *TypeD::xdual() const {
duke@435 1035 return this;
duke@435 1036 }
duke@435 1037
duke@435 1038 //------------------------------eq---------------------------------------------
duke@435 1039 // Structural equality check for Type representations
duke@435 1040 bool TypeD::eq( const Type *t ) const {
duke@435 1041 if( g_isnan(_d) ||
duke@435 1042 g_isnan(t->getd()) ) {
duke@435 1043 // One or both are NANs. If both are NANs return true, else false.
duke@435 1044 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 1045 }
duke@435 1046 if (_d == t->getd()) {
duke@435 1047 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 1048 if (_d == 0.0) {
duke@435 1049 // difference between positive and negative zero
duke@435 1050 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1051 }
duke@435 1052 return true;
duke@435 1053 }
duke@435 1054 return false;
duke@435 1055 }
duke@435 1056
duke@435 1057 //------------------------------hash-------------------------------------------
duke@435 1058 // Type-specific hashing function.
duke@435 1059 int TypeD::hash(void) const {
duke@435 1060 return *(int*)(&_d);
duke@435 1061 }
duke@435 1062
duke@435 1063 //------------------------------is_finite--------------------------------------
duke@435 1064 // Has a finite value
duke@435 1065 bool TypeD::is_finite() const {
duke@435 1066 return g_isfinite(getd()) != 0;
duke@435 1067 }
duke@435 1068
duke@435 1069 //------------------------------is_nan-----------------------------------------
duke@435 1070 // Is not a number (NaN)
duke@435 1071 bool TypeD::is_nan() const {
duke@435 1072 return g_isnan(getd()) != 0;
duke@435 1073 }
duke@435 1074
duke@435 1075 //------------------------------dump2------------------------------------------
duke@435 1076 // Dump double constant Type
duke@435 1077 #ifndef PRODUCT
duke@435 1078 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1079 Type::dump2(d,depth,st);
duke@435 1080 st->print("%f", _d);
duke@435 1081 }
duke@435 1082 #endif
duke@435 1083
duke@435 1084 //------------------------------singleton--------------------------------------
duke@435 1085 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1086 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1087 // or a single symbol.
duke@435 1088 bool TypeD::singleton(void) const {
duke@435 1089 return true; // Always a singleton
duke@435 1090 }
duke@435 1091
duke@435 1092 bool TypeD::empty(void) const {
duke@435 1093 return false; // always exactly a singleton
duke@435 1094 }
duke@435 1095
duke@435 1096 //=============================================================================
duke@435 1097 // Convience common pre-built types.
duke@435 1098 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1099 const TypeInt *TypeInt::ZERO; // 0
duke@435 1100 const TypeInt *TypeInt::ONE; // 1
duke@435 1101 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1102 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1103 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1104 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1105 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1106 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1107 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1108 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1109 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1110 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1111 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1112 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1113 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1114 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1115 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1116
duke@435 1117 //------------------------------TypeInt----------------------------------------
duke@435 1118 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1119 }
duke@435 1120
duke@435 1121 //------------------------------make-------------------------------------------
duke@435 1122 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1123 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1124 }
duke@435 1125
kvn@1975 1126 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1127 // Certain normalizations keep us sane when comparing types.
duke@435 1128 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1129 if (lo <= hi) {
kvn@1975 1130 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1131 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1132 } else {
kvn@1975 1133 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1134 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1135 }
kvn@1975 1136 return w;
kvn@1975 1137 }
kvn@1975 1138
kvn@1975 1139 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1140 w = normalize_int_widen(lo, hi, w);
duke@435 1141 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1142 }
duke@435 1143
duke@435 1144 //------------------------------meet-------------------------------------------
duke@435 1145 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1146 // with reference count equal to the number of Types pointing at it.
duke@435 1147 // Caller should wrap a Types around it.
duke@435 1148 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1149 // Perform a fast test for common case; meeting the same types together.
duke@435 1150 if( this == t ) return this; // Meeting same type?
duke@435 1151
duke@435 1152 // Currently "this->_base" is a TypeInt
duke@435 1153 switch (t->base()) { // Switch on original type
duke@435 1154 case AnyPtr: // Mixing with oops happens when javac
duke@435 1155 case RawPtr: // reuses local variables
duke@435 1156 case OopPtr:
duke@435 1157 case InstPtr:
coleenp@4037 1158 case AryPtr:
coleenp@4037 1159 case MetadataPtr:
duke@435 1160 case KlassPtr:
never@618 1161 case NarrowOop:
roland@4159 1162 case NarrowKlass:
duke@435 1163 case Long:
duke@435 1164 case FloatTop:
duke@435 1165 case FloatCon:
duke@435 1166 case FloatBot:
duke@435 1167 case DoubleTop:
duke@435 1168 case DoubleCon:
duke@435 1169 case DoubleBot:
duke@435 1170 case Bottom: // Ye Olde Default
duke@435 1171 return Type::BOTTOM;
duke@435 1172 default: // All else is a mistake
duke@435 1173 typerr(t);
duke@435 1174 case Top: // No change
duke@435 1175 return this;
duke@435 1176 case Int: // Int vs Int?
duke@435 1177 break;
duke@435 1178 }
duke@435 1179
duke@435 1180 // Expand covered set
duke@435 1181 const TypeInt *r = t->is_int();
kvn@1975 1182 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1183 }
duke@435 1184
duke@435 1185 //------------------------------xdual------------------------------------------
duke@435 1186 // Dual: reverse hi & lo; flip widen
duke@435 1187 const Type *TypeInt::xdual() const {
kvn@1975 1188 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1189 return new TypeInt(_hi,_lo,w);
duke@435 1190 }
duke@435 1191
duke@435 1192 //------------------------------widen------------------------------------------
duke@435 1193 // Only happens for optimistic top-down optimizations.
never@1444 1194 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1195 // Coming from TOP or such; no widening
duke@435 1196 if( old->base() != Int ) return this;
duke@435 1197 const TypeInt *ot = old->is_int();
duke@435 1198
duke@435 1199 // If new guy is equal to old guy, no widening
duke@435 1200 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1201 return old;
duke@435 1202
duke@435 1203 // If new guy contains old, then we widened
duke@435 1204 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1205 // New contains old
duke@435 1206 // If new guy is already wider than old, no widening
duke@435 1207 if( _widen > ot->_widen ) return this;
duke@435 1208 // If old guy was a constant, do not bother
duke@435 1209 if (ot->_lo == ot->_hi) return this;
duke@435 1210 // Now widen new guy.
duke@435 1211 // Check for widening too far
duke@435 1212 if (_widen == WidenMax) {
never@1444 1213 int max = max_jint;
never@1444 1214 int min = min_jint;
never@1444 1215 if (limit->isa_int()) {
never@1444 1216 max = limit->is_int()->_hi;
never@1444 1217 min = limit->is_int()->_lo;
never@1444 1218 }
never@1444 1219 if (min < _lo && _hi < max) {
duke@435 1220 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1221 // which is closer to its respective limit.
duke@435 1222 if (_lo >= 0 || // easy common case
never@1444 1223 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1224 // Try to widen to an unsigned range type of 31 bits:
never@1444 1225 return make(_lo, max, WidenMax);
duke@435 1226 } else {
never@1444 1227 return make(min, _hi, WidenMax);
duke@435 1228 }
duke@435 1229 }
duke@435 1230 return TypeInt::INT;
duke@435 1231 }
duke@435 1232 // Returned widened new guy
duke@435 1233 return make(_lo,_hi,_widen+1);
duke@435 1234 }
duke@435 1235
duke@435 1236 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1237 // bottom. Return the wider fellow.
duke@435 1238 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1239 return old;
duke@435 1240
duke@435 1241 //fatal("Integer value range is not subset");
duke@435 1242 //return this;
duke@435 1243 return TypeInt::INT;
duke@435 1244 }
duke@435 1245
duke@435 1246 //------------------------------narrow---------------------------------------
duke@435 1247 // Only happens for pessimistic optimizations.
duke@435 1248 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1249 if (_lo >= _hi) return this; // already narrow enough
duke@435 1250 if (old == NULL) return this;
duke@435 1251 const TypeInt* ot = old->isa_int();
duke@435 1252 if (ot == NULL) return this;
duke@435 1253 jint olo = ot->_lo;
duke@435 1254 jint ohi = ot->_hi;
duke@435 1255
duke@435 1256 // If new guy is equal to old guy, no narrowing
duke@435 1257 if (_lo == olo && _hi == ohi) return old;
duke@435 1258
duke@435 1259 // If old guy was maximum range, allow the narrowing
duke@435 1260 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1261
duke@435 1262 if (_lo < olo || _hi > ohi)
duke@435 1263 return this; // doesn't narrow; pretty wierd
duke@435 1264
duke@435 1265 // The new type narrows the old type, so look for a "death march".
duke@435 1266 // See comments on PhaseTransform::saturate.
duke@435 1267 juint nrange = _hi - _lo;
duke@435 1268 juint orange = ohi - olo;
duke@435 1269 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1270 // Use the new type only if the range shrinks a lot.
duke@435 1271 // We do not want the optimizer computing 2^31 point by point.
duke@435 1272 return old;
duke@435 1273 }
duke@435 1274
duke@435 1275 return this;
duke@435 1276 }
duke@435 1277
duke@435 1278 //-----------------------------filter------------------------------------------
duke@435 1279 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1280 const TypeInt* ft = join(kills)->isa_int();
kvn@1975 1281 if (ft == NULL || ft->empty())
duke@435 1282 return Type::TOP; // Canonical empty value
duke@435 1283 if (ft->_widen < this->_widen) {
duke@435 1284 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1285 // The widen bits must be allowed to run freely through the graph.
duke@435 1286 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1287 }
duke@435 1288 return ft;
duke@435 1289 }
duke@435 1290
duke@435 1291 //------------------------------eq---------------------------------------------
duke@435 1292 // Structural equality check for Type representations
duke@435 1293 bool TypeInt::eq( const Type *t ) const {
duke@435 1294 const TypeInt *r = t->is_int(); // Handy access
duke@435 1295 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1296 }
duke@435 1297
duke@435 1298 //------------------------------hash-------------------------------------------
duke@435 1299 // Type-specific hashing function.
duke@435 1300 int TypeInt::hash(void) const {
duke@435 1301 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1302 }
duke@435 1303
duke@435 1304 //------------------------------is_finite--------------------------------------
duke@435 1305 // Has a finite value
duke@435 1306 bool TypeInt::is_finite() const {
duke@435 1307 return true;
duke@435 1308 }
duke@435 1309
duke@435 1310 //------------------------------dump2------------------------------------------
duke@435 1311 // Dump TypeInt
duke@435 1312 #ifndef PRODUCT
duke@435 1313 static const char* intname(char* buf, jint n) {
duke@435 1314 if (n == min_jint)
duke@435 1315 return "min";
duke@435 1316 else if (n < min_jint + 10000)
duke@435 1317 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1318 else if (n == max_jint)
duke@435 1319 return "max";
duke@435 1320 else if (n > max_jint - 10000)
duke@435 1321 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1322 else
duke@435 1323 sprintf(buf, INT32_FORMAT, n);
duke@435 1324 return buf;
duke@435 1325 }
duke@435 1326
duke@435 1327 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1328 char buf[40], buf2[40];
duke@435 1329 if (_lo == min_jint && _hi == max_jint)
duke@435 1330 st->print("int");
duke@435 1331 else if (is_con())
duke@435 1332 st->print("int:%s", intname(buf, get_con()));
duke@435 1333 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1334 st->print("bool");
duke@435 1335 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1336 st->print("byte");
duke@435 1337 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1338 st->print("char");
duke@435 1339 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1340 st->print("short");
duke@435 1341 else if (_hi == max_jint)
duke@435 1342 st->print("int:>=%s", intname(buf, _lo));
duke@435 1343 else if (_lo == min_jint)
duke@435 1344 st->print("int:<=%s", intname(buf, _hi));
duke@435 1345 else
duke@435 1346 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1347
duke@435 1348 if (_widen != 0 && this != TypeInt::INT)
duke@435 1349 st->print(":%.*s", _widen, "wwww");
duke@435 1350 }
duke@435 1351 #endif
duke@435 1352
duke@435 1353 //------------------------------singleton--------------------------------------
duke@435 1354 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1355 // constants.
duke@435 1356 bool TypeInt::singleton(void) const {
duke@435 1357 return _lo >= _hi;
duke@435 1358 }
duke@435 1359
duke@435 1360 bool TypeInt::empty(void) const {
duke@435 1361 return _lo > _hi;
duke@435 1362 }
duke@435 1363
duke@435 1364 //=============================================================================
duke@435 1365 // Convenience common pre-built types.
duke@435 1366 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1367 const TypeLong *TypeLong::ZERO; // 0
duke@435 1368 const TypeLong *TypeLong::ONE; // 1
duke@435 1369 const TypeLong *TypeLong::POS; // >=0
duke@435 1370 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1371 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1372 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1373
duke@435 1374 //------------------------------TypeLong---------------------------------------
duke@435 1375 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1376 }
duke@435 1377
duke@435 1378 //------------------------------make-------------------------------------------
duke@435 1379 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1380 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1381 }
duke@435 1382
kvn@1975 1383 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1384 // Certain normalizations keep us sane when comparing types.
kvn@1975 1385 // The 'SMALLINT' covers constants.
kvn@1975 1386 if (lo <= hi) {
kvn@1975 1387 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1388 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1389 } else {
kvn@1975 1390 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1391 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1392 }
kvn@1975 1393 return w;
kvn@1975 1394 }
kvn@1975 1395
duke@435 1396 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1397 w = normalize_long_widen(lo, hi, w);
duke@435 1398 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1399 }
duke@435 1400
duke@435 1401
duke@435 1402 //------------------------------meet-------------------------------------------
duke@435 1403 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1404 // with reference count equal to the number of Types pointing at it.
duke@435 1405 // Caller should wrap a Types around it.
duke@435 1406 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1407 // Perform a fast test for common case; meeting the same types together.
duke@435 1408 if( this == t ) return this; // Meeting same type?
duke@435 1409
duke@435 1410 // Currently "this->_base" is a TypeLong
duke@435 1411 switch (t->base()) { // Switch on original type
duke@435 1412 case AnyPtr: // Mixing with oops happens when javac
duke@435 1413 case RawPtr: // reuses local variables
duke@435 1414 case OopPtr:
duke@435 1415 case InstPtr:
coleenp@4037 1416 case AryPtr:
coleenp@4037 1417 case MetadataPtr:
duke@435 1418 case KlassPtr:
never@618 1419 case NarrowOop:
roland@4159 1420 case NarrowKlass:
duke@435 1421 case Int:
duke@435 1422 case FloatTop:
duke@435 1423 case FloatCon:
duke@435 1424 case FloatBot:
duke@435 1425 case DoubleTop:
duke@435 1426 case DoubleCon:
duke@435 1427 case DoubleBot:
duke@435 1428 case Bottom: // Ye Olde Default
duke@435 1429 return Type::BOTTOM;
duke@435 1430 default: // All else is a mistake
duke@435 1431 typerr(t);
duke@435 1432 case Top: // No change
duke@435 1433 return this;
duke@435 1434 case Long: // Long vs Long?
duke@435 1435 break;
duke@435 1436 }
duke@435 1437
duke@435 1438 // Expand covered set
duke@435 1439 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1440 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1441 }
duke@435 1442
duke@435 1443 //------------------------------xdual------------------------------------------
duke@435 1444 // Dual: reverse hi & lo; flip widen
duke@435 1445 const Type *TypeLong::xdual() const {
kvn@1975 1446 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1447 return new TypeLong(_hi,_lo,w);
duke@435 1448 }
duke@435 1449
duke@435 1450 //------------------------------widen------------------------------------------
duke@435 1451 // Only happens for optimistic top-down optimizations.
never@1444 1452 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1453 // Coming from TOP or such; no widening
duke@435 1454 if( old->base() != Long ) return this;
duke@435 1455 const TypeLong *ot = old->is_long();
duke@435 1456
duke@435 1457 // If new guy is equal to old guy, no widening
duke@435 1458 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1459 return old;
duke@435 1460
duke@435 1461 // If new guy contains old, then we widened
duke@435 1462 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1463 // New contains old
duke@435 1464 // If new guy is already wider than old, no widening
duke@435 1465 if( _widen > ot->_widen ) return this;
duke@435 1466 // If old guy was a constant, do not bother
duke@435 1467 if (ot->_lo == ot->_hi) return this;
duke@435 1468 // Now widen new guy.
duke@435 1469 // Check for widening too far
duke@435 1470 if (_widen == WidenMax) {
never@1444 1471 jlong max = max_jlong;
never@1444 1472 jlong min = min_jlong;
never@1444 1473 if (limit->isa_long()) {
never@1444 1474 max = limit->is_long()->_hi;
never@1444 1475 min = limit->is_long()->_lo;
never@1444 1476 }
never@1444 1477 if (min < _lo && _hi < max) {
duke@435 1478 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1479 // which is closer to its respective limit.
duke@435 1480 if (_lo >= 0 || // easy common case
never@1444 1481 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1482 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1483 if (max >= max_juint && _hi < max_juint)
duke@435 1484 return make(_lo, max_juint, WidenMax);
duke@435 1485 else
never@1444 1486 return make(_lo, max, WidenMax);
duke@435 1487 } else {
never@1444 1488 return make(min, _hi, WidenMax);
duke@435 1489 }
duke@435 1490 }
duke@435 1491 return TypeLong::LONG;
duke@435 1492 }
duke@435 1493 // Returned widened new guy
duke@435 1494 return make(_lo,_hi,_widen+1);
duke@435 1495 }
duke@435 1496
duke@435 1497 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1498 // bottom. Return the wider fellow.
duke@435 1499 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1500 return old;
duke@435 1501
duke@435 1502 // fatal("Long value range is not subset");
duke@435 1503 // return this;
duke@435 1504 return TypeLong::LONG;
duke@435 1505 }
duke@435 1506
duke@435 1507 //------------------------------narrow----------------------------------------
duke@435 1508 // Only happens for pessimistic optimizations.
duke@435 1509 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1510 if (_lo >= _hi) return this; // already narrow enough
duke@435 1511 if (old == NULL) return this;
duke@435 1512 const TypeLong* ot = old->isa_long();
duke@435 1513 if (ot == NULL) return this;
duke@435 1514 jlong olo = ot->_lo;
duke@435 1515 jlong ohi = ot->_hi;
duke@435 1516
duke@435 1517 // If new guy is equal to old guy, no narrowing
duke@435 1518 if (_lo == olo && _hi == ohi) return old;
duke@435 1519
duke@435 1520 // If old guy was maximum range, allow the narrowing
duke@435 1521 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1522
duke@435 1523 if (_lo < olo || _hi > ohi)
duke@435 1524 return this; // doesn't narrow; pretty wierd
duke@435 1525
duke@435 1526 // The new type narrows the old type, so look for a "death march".
duke@435 1527 // See comments on PhaseTransform::saturate.
duke@435 1528 julong nrange = _hi - _lo;
duke@435 1529 julong orange = ohi - olo;
duke@435 1530 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1531 // Use the new type only if the range shrinks a lot.
duke@435 1532 // We do not want the optimizer computing 2^31 point by point.
duke@435 1533 return old;
duke@435 1534 }
duke@435 1535
duke@435 1536 return this;
duke@435 1537 }
duke@435 1538
duke@435 1539 //-----------------------------filter------------------------------------------
duke@435 1540 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1541 const TypeLong* ft = join(kills)->isa_long();
kvn@1975 1542 if (ft == NULL || ft->empty())
duke@435 1543 return Type::TOP; // Canonical empty value
duke@435 1544 if (ft->_widen < this->_widen) {
duke@435 1545 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1546 // The widen bits must be allowed to run freely through the graph.
duke@435 1547 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1548 }
duke@435 1549 return ft;
duke@435 1550 }
duke@435 1551
duke@435 1552 //------------------------------eq---------------------------------------------
duke@435 1553 // Structural equality check for Type representations
duke@435 1554 bool TypeLong::eq( const Type *t ) const {
duke@435 1555 const TypeLong *r = t->is_long(); // Handy access
duke@435 1556 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1557 }
duke@435 1558
duke@435 1559 //------------------------------hash-------------------------------------------
duke@435 1560 // Type-specific hashing function.
duke@435 1561 int TypeLong::hash(void) const {
duke@435 1562 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1563 }
duke@435 1564
duke@435 1565 //------------------------------is_finite--------------------------------------
duke@435 1566 // Has a finite value
duke@435 1567 bool TypeLong::is_finite() const {
duke@435 1568 return true;
duke@435 1569 }
duke@435 1570
duke@435 1571 //------------------------------dump2------------------------------------------
duke@435 1572 // Dump TypeLong
duke@435 1573 #ifndef PRODUCT
duke@435 1574 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1575 if (n > x) {
duke@435 1576 if (n >= x + 10000) return NULL;
hseigel@4465 1577 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
duke@435 1578 } else if (n < x) {
duke@435 1579 if (n <= x - 10000) return NULL;
hseigel@4465 1580 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
duke@435 1581 } else {
duke@435 1582 return xname;
duke@435 1583 }
duke@435 1584 return buf;
duke@435 1585 }
duke@435 1586
duke@435 1587 static const char* longname(char* buf, jlong n) {
duke@435 1588 const char* str;
duke@435 1589 if (n == min_jlong)
duke@435 1590 return "min";
duke@435 1591 else if (n < min_jlong + 10000)
hseigel@4465 1592 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
duke@435 1593 else if (n == max_jlong)
duke@435 1594 return "max";
duke@435 1595 else if (n > max_jlong - 10000)
hseigel@4465 1596 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
duke@435 1597 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1598 return str;
duke@435 1599 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1600 return str;
duke@435 1601 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1602 return str;
duke@435 1603 else
hseigel@4465 1604 sprintf(buf, JLONG_FORMAT, n);
duke@435 1605 return buf;
duke@435 1606 }
duke@435 1607
duke@435 1608 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1609 char buf[80], buf2[80];
duke@435 1610 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1611 st->print("long");
duke@435 1612 else if (is_con())
duke@435 1613 st->print("long:%s", longname(buf, get_con()));
duke@435 1614 else if (_hi == max_jlong)
duke@435 1615 st->print("long:>=%s", longname(buf, _lo));
duke@435 1616 else if (_lo == min_jlong)
duke@435 1617 st->print("long:<=%s", longname(buf, _hi));
duke@435 1618 else
duke@435 1619 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1620
duke@435 1621 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1622 st->print(":%.*s", _widen, "wwww");
duke@435 1623 }
duke@435 1624 #endif
duke@435 1625
duke@435 1626 //------------------------------singleton--------------------------------------
duke@435 1627 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1628 // constants
duke@435 1629 bool TypeLong::singleton(void) const {
duke@435 1630 return _lo >= _hi;
duke@435 1631 }
duke@435 1632
duke@435 1633 bool TypeLong::empty(void) const {
duke@435 1634 return _lo > _hi;
duke@435 1635 }
duke@435 1636
duke@435 1637 //=============================================================================
duke@435 1638 // Convenience common pre-built types.
duke@435 1639 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1640 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1641 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1642 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1643 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1644 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1645 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1646 const TypeTuple *TypeTuple::START_I2C;
duke@435 1647 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1648 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1649
duke@435 1650
duke@435 1651 //------------------------------make-------------------------------------------
duke@435 1652 // Make a TypeTuple from the range of a method signature
duke@435 1653 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1654 ciType* return_type = sig->return_type();
duke@435 1655 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1656 const Type **field_array = fields(total_fields);
duke@435 1657 switch (return_type->basic_type()) {
duke@435 1658 case T_LONG:
duke@435 1659 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1660 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1661 break;
duke@435 1662 case T_DOUBLE:
duke@435 1663 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1664 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1665 break;
duke@435 1666 case T_OBJECT:
duke@435 1667 case T_ARRAY:
duke@435 1668 case T_BOOLEAN:
duke@435 1669 case T_CHAR:
duke@435 1670 case T_FLOAT:
duke@435 1671 case T_BYTE:
duke@435 1672 case T_SHORT:
duke@435 1673 case T_INT:
duke@435 1674 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1675 break;
duke@435 1676 case T_VOID:
duke@435 1677 break;
duke@435 1678 default:
duke@435 1679 ShouldNotReachHere();
duke@435 1680 }
duke@435 1681 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1682 }
duke@435 1683
duke@435 1684 // Make a TypeTuple from the domain of a method signature
duke@435 1685 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1686 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1687
duke@435 1688 uint pos = TypeFunc::Parms;
duke@435 1689 const Type **field_array;
duke@435 1690 if (recv != NULL) {
duke@435 1691 total_fields++;
duke@435 1692 field_array = fields(total_fields);
duke@435 1693 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1694 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1695 } else {
duke@435 1696 field_array = fields(total_fields);
duke@435 1697 }
duke@435 1698
duke@435 1699 int i = 0;
duke@435 1700 while (pos < total_fields) {
duke@435 1701 ciType* type = sig->type_at(i);
duke@435 1702
duke@435 1703 switch (type->basic_type()) {
duke@435 1704 case T_LONG:
duke@435 1705 field_array[pos++] = TypeLong::LONG;
duke@435 1706 field_array[pos++] = Type::HALF;
duke@435 1707 break;
duke@435 1708 case T_DOUBLE:
duke@435 1709 field_array[pos++] = Type::DOUBLE;
duke@435 1710 field_array[pos++] = Type::HALF;
duke@435 1711 break;
duke@435 1712 case T_OBJECT:
duke@435 1713 case T_ARRAY:
duke@435 1714 case T_BOOLEAN:
duke@435 1715 case T_CHAR:
duke@435 1716 case T_FLOAT:
duke@435 1717 case T_BYTE:
duke@435 1718 case T_SHORT:
duke@435 1719 case T_INT:
duke@435 1720 field_array[pos++] = get_const_type(type);
duke@435 1721 break;
duke@435 1722 default:
duke@435 1723 ShouldNotReachHere();
duke@435 1724 }
duke@435 1725 i++;
duke@435 1726 }
duke@435 1727 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1728 }
duke@435 1729
duke@435 1730 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1731 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1732 }
duke@435 1733
duke@435 1734 //------------------------------fields-----------------------------------------
duke@435 1735 // Subroutine call type with space allocated for argument types
duke@435 1736 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1737 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1738 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1739 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1740 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1741 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1742 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1743
duke@435 1744 return flds;
duke@435 1745 }
duke@435 1746
duke@435 1747 //------------------------------meet-------------------------------------------
duke@435 1748 // Compute the MEET of two types. It returns a new Type object.
duke@435 1749 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1750 // Perform a fast test for common case; meeting the same types together.
duke@435 1751 if( this == t ) return this; // Meeting same type-rep?
duke@435 1752
duke@435 1753 // Current "this->_base" is Tuple
duke@435 1754 switch (t->base()) { // switch on original type
duke@435 1755
duke@435 1756 case Bottom: // Ye Olde Default
duke@435 1757 return t;
duke@435 1758
duke@435 1759 default: // All else is a mistake
duke@435 1760 typerr(t);
duke@435 1761
duke@435 1762 case Tuple: { // Meeting 2 signatures?
duke@435 1763 const TypeTuple *x = t->is_tuple();
duke@435 1764 assert( _cnt == x->_cnt, "" );
duke@435 1765 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1766 for( uint i=0; i<_cnt; i++ )
duke@435 1767 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1768 return TypeTuple::make(_cnt,fields);
duke@435 1769 }
duke@435 1770 case Top:
duke@435 1771 break;
duke@435 1772 }
duke@435 1773 return this; // Return the double constant
duke@435 1774 }
duke@435 1775
duke@435 1776 //------------------------------xdual------------------------------------------
duke@435 1777 // Dual: compute field-by-field dual
duke@435 1778 const Type *TypeTuple::xdual() const {
duke@435 1779 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1780 for( uint i=0; i<_cnt; i++ )
duke@435 1781 fields[i] = _fields[i]->dual();
duke@435 1782 return new TypeTuple(_cnt,fields);
duke@435 1783 }
duke@435 1784
duke@435 1785 //------------------------------eq---------------------------------------------
duke@435 1786 // Structural equality check for Type representations
duke@435 1787 bool TypeTuple::eq( const Type *t ) const {
duke@435 1788 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1789 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1790 for (uint i = 0; i < _cnt; i++)
duke@435 1791 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1792 return false; // Missed
duke@435 1793 return true;
duke@435 1794 }
duke@435 1795
duke@435 1796 //------------------------------hash-------------------------------------------
duke@435 1797 // Type-specific hashing function.
duke@435 1798 int TypeTuple::hash(void) const {
duke@435 1799 intptr_t sum = _cnt;
duke@435 1800 for( uint i=0; i<_cnt; i++ )
duke@435 1801 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1802 return sum;
duke@435 1803 }
duke@435 1804
duke@435 1805 //------------------------------dump2------------------------------------------
duke@435 1806 // Dump signature Type
duke@435 1807 #ifndef PRODUCT
duke@435 1808 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1809 st->print("{");
duke@435 1810 if( !depth || d[this] ) { // Check for recursive print
duke@435 1811 st->print("...}");
duke@435 1812 return;
duke@435 1813 }
duke@435 1814 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1815 if( _cnt ) {
duke@435 1816 uint i;
duke@435 1817 for( i=0; i<_cnt-1; i++ ) {
duke@435 1818 st->print("%d:", i);
duke@435 1819 _fields[i]->dump2(d, depth-1, st);
duke@435 1820 st->print(", ");
duke@435 1821 }
duke@435 1822 st->print("%d:", i);
duke@435 1823 _fields[i]->dump2(d, depth-1, st);
duke@435 1824 }
duke@435 1825 st->print("}");
duke@435 1826 }
duke@435 1827 #endif
duke@435 1828
duke@435 1829 //------------------------------singleton--------------------------------------
duke@435 1830 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1831 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1832 // or a single symbol.
duke@435 1833 bool TypeTuple::singleton(void) const {
duke@435 1834 return false; // Never a singleton
duke@435 1835 }
duke@435 1836
duke@435 1837 bool TypeTuple::empty(void) const {
duke@435 1838 for( uint i=0; i<_cnt; i++ ) {
duke@435 1839 if (_fields[i]->empty()) return true;
duke@435 1840 }
duke@435 1841 return false;
duke@435 1842 }
duke@435 1843
duke@435 1844 //=============================================================================
duke@435 1845 // Convenience common pre-built types.
duke@435 1846
duke@435 1847 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1848 // Certain normalizations keep us sane when comparing types.
duke@435 1849 // We do not want arrayOop variables to differ only by the wideness
duke@435 1850 // of their index types. Pick minimum wideness, since that is the
duke@435 1851 // forced wideness of small ranges anyway.
duke@435 1852 if (size->_widen != Type::WidenMin)
duke@435 1853 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1854 else
duke@435 1855 return size;
duke@435 1856 }
duke@435 1857
duke@435 1858 //------------------------------make-------------------------------------------
vlivanov@5658 1859 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
coleenp@548 1860 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1861 elem = elem->make_narrowoop();
coleenp@548 1862 }
duke@435 1863 size = normalize_array_size(size);
vlivanov@5658 1864 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
duke@435 1865 }
duke@435 1866
duke@435 1867 //------------------------------meet-------------------------------------------
duke@435 1868 // Compute the MEET of two types. It returns a new Type object.
duke@435 1869 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1870 // Perform a fast test for common case; meeting the same types together.
duke@435 1871 if( this == t ) return this; // Meeting same type-rep?
duke@435 1872
duke@435 1873 // Current "this->_base" is Ary
duke@435 1874 switch (t->base()) { // switch on original type
duke@435 1875
duke@435 1876 case Bottom: // Ye Olde Default
duke@435 1877 return t;
duke@435 1878
duke@435 1879 default: // All else is a mistake
duke@435 1880 typerr(t);
duke@435 1881
duke@435 1882 case Array: { // Meeting 2 arrays?
duke@435 1883 const TypeAry *a = t->is_ary();
duke@435 1884 return TypeAry::make(_elem->meet(a->_elem),
vlivanov@5658 1885 _size->xmeet(a->_size)->is_int(),
vlivanov@5658 1886 _stable & a->_stable);
duke@435 1887 }
duke@435 1888 case Top:
duke@435 1889 break;
duke@435 1890 }
duke@435 1891 return this; // Return the double constant
duke@435 1892 }
duke@435 1893
duke@435 1894 //------------------------------xdual------------------------------------------
duke@435 1895 // Dual: compute field-by-field dual
duke@435 1896 const Type *TypeAry::xdual() const {
duke@435 1897 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1898 size_dual = normalize_array_size(size_dual);
vlivanov@5658 1899 return new TypeAry(_elem->dual(), size_dual, !_stable);
duke@435 1900 }
duke@435 1901
duke@435 1902 //------------------------------eq---------------------------------------------
duke@435 1903 // Structural equality check for Type representations
duke@435 1904 bool TypeAry::eq( const Type *t ) const {
duke@435 1905 const TypeAry *a = (const TypeAry*)t;
duke@435 1906 return _elem == a->_elem &&
vlivanov@5658 1907 _stable == a->_stable &&
duke@435 1908 _size == a->_size;
duke@435 1909 }
duke@435 1910
duke@435 1911 //------------------------------hash-------------------------------------------
duke@435 1912 // Type-specific hashing function.
duke@435 1913 int TypeAry::hash(void) const {
vlivanov@5658 1914 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
duke@435 1915 }
duke@435 1916
kvn@1255 1917 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1918 #ifdef ASSERT
kvn@1255 1919 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1920 const TypeAry* t_ary = t->is_ary();
kvn@1255 1921 if (t_ary) {
kvn@1255 1922 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1923 }
kvn@1255 1924 return false;
kvn@1255 1925 }
kvn@1255 1926 #endif
kvn@1255 1927
duke@435 1928 //------------------------------dump2------------------------------------------
duke@435 1929 #ifndef PRODUCT
duke@435 1930 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
vlivanov@5658 1931 if (_stable) st->print("stable:");
duke@435 1932 _elem->dump2(d, depth, st);
duke@435 1933 st->print("[");
duke@435 1934 _size->dump2(d, depth, st);
duke@435 1935 st->print("]");
duke@435 1936 }
duke@435 1937 #endif
duke@435 1938
duke@435 1939 //------------------------------singleton--------------------------------------
duke@435 1940 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1941 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1942 // or a single symbol.
duke@435 1943 bool TypeAry::singleton(void) const {
duke@435 1944 return false; // Never a singleton
duke@435 1945 }
duke@435 1946
duke@435 1947 bool TypeAry::empty(void) const {
duke@435 1948 return _elem->empty() || _size->empty();
duke@435 1949 }
duke@435 1950
duke@435 1951 //--------------------------ary_must_be_exact----------------------------------
duke@435 1952 bool TypeAry::ary_must_be_exact() const {
duke@435 1953 if (!UseExactTypes) return false;
duke@435 1954 // This logic looks at the element type of an array, and returns true
duke@435 1955 // if the element type is either a primitive or a final instance class.
duke@435 1956 // In such cases, an array built on this ary must have no subclasses.
duke@435 1957 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1958 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1959 const TypeOopPtr* toop = NULL;
kvn@656 1960 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1961 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1962 } else {
coleenp@548 1963 toop = _elem->isa_oopptr();
coleenp@548 1964 }
duke@435 1965 if (!toop) return true; // a primitive type, like int
duke@435 1966 ciKlass* tklass = toop->klass();
duke@435 1967 if (tklass == NULL) return false; // unloaded class
duke@435 1968 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1969 const TypeInstPtr* tinst;
coleenp@548 1970 if (_elem->isa_narrowoop())
kvn@656 1971 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1972 else
coleenp@548 1973 tinst = _elem->isa_instptr();
kvn@656 1974 if (tinst)
kvn@656 1975 return tklass->as_instance_klass()->is_final();
coleenp@548 1976 const TypeAryPtr* tap;
coleenp@548 1977 if (_elem->isa_narrowoop())
kvn@656 1978 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1979 else
coleenp@548 1980 tap = _elem->isa_aryptr();
kvn@656 1981 if (tap)
kvn@656 1982 return tap->ary()->ary_must_be_exact();
duke@435 1983 return false;
duke@435 1984 }
duke@435 1985
kvn@3882 1986 //==============================TypeVect=======================================
kvn@3882 1987 // Convenience common pre-built types.
kvn@3882 1988 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 1989 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 1990 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 1991 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 1992
kvn@3882 1993 //------------------------------make-------------------------------------------
kvn@3882 1994 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 1995 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 1996 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 1997 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 1998 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 1999 int size = length * type2aelembytes(elem_bt);
kvn@3882 2000 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 2001 case Op_VecS:
kvn@3882 2002 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
kvn@3882 2003 case Op_VecD:
kvn@3882 2004 case Op_RegD:
kvn@3882 2005 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 2006 case Op_VecX:
kvn@3882 2007 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 2008 case Op_VecY:
kvn@3882 2009 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 2010 }
kvn@3882 2011 ShouldNotReachHere();
kvn@3882 2012 return NULL;
kvn@3882 2013 }
kvn@3882 2014
kvn@3882 2015 //------------------------------meet-------------------------------------------
kvn@3882 2016 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 2017 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 2018 // Perform a fast test for common case; meeting the same types together.
kvn@3882 2019 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 2020
kvn@3882 2021 // Current "this->_base" is Vector
kvn@3882 2022 switch (t->base()) { // switch on original type
kvn@3882 2023
kvn@3882 2024 case Bottom: // Ye Olde Default
kvn@3882 2025 return t;
kvn@3882 2026
kvn@3882 2027 default: // All else is a mistake
kvn@3882 2028 typerr(t);
kvn@3882 2029
kvn@3882 2030 case VectorS:
kvn@3882 2031 case VectorD:
kvn@3882 2032 case VectorX:
kvn@3882 2033 case VectorY: { // Meeting 2 vectors?
kvn@3882 2034 const TypeVect* v = t->is_vect();
kvn@3882 2035 assert( base() == v->base(), "");
kvn@3882 2036 assert(length() == v->length(), "");
kvn@3882 2037 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 2038 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 2039 }
kvn@3882 2040 case Top:
kvn@3882 2041 break;
kvn@3882 2042 }
kvn@3882 2043 return this;
kvn@3882 2044 }
kvn@3882 2045
kvn@3882 2046 //------------------------------xdual------------------------------------------
kvn@3882 2047 // Dual: compute field-by-field dual
kvn@3882 2048 const Type *TypeVect::xdual() const {
kvn@3882 2049 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 2050 }
kvn@3882 2051
kvn@3882 2052 //------------------------------eq---------------------------------------------
kvn@3882 2053 // Structural equality check for Type representations
kvn@3882 2054 bool TypeVect::eq(const Type *t) const {
kvn@3882 2055 const TypeVect *v = t->is_vect();
kvn@3882 2056 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2057 }
kvn@3882 2058
kvn@3882 2059 //------------------------------hash-------------------------------------------
kvn@3882 2060 // Type-specific hashing function.
kvn@3882 2061 int TypeVect::hash(void) const {
kvn@3882 2062 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2063 }
kvn@3882 2064
kvn@3882 2065 //------------------------------singleton--------------------------------------
kvn@3882 2066 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2067 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2068 // constant value (when vector is created with Replicate code).
kvn@3882 2069 bool TypeVect::singleton(void) const {
kvn@3882 2070 // There is no Con node for vectors yet.
kvn@3882 2071 // return _elem->singleton();
kvn@3882 2072 return false;
kvn@3882 2073 }
kvn@3882 2074
kvn@3882 2075 bool TypeVect::empty(void) const {
kvn@3882 2076 return _elem->empty();
kvn@3882 2077 }
kvn@3882 2078
kvn@3882 2079 //------------------------------dump2------------------------------------------
kvn@3882 2080 #ifndef PRODUCT
kvn@3882 2081 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2082 switch (base()) {
kvn@3882 2083 case VectorS:
kvn@3882 2084 st->print("vectors["); break;
kvn@3882 2085 case VectorD:
kvn@3882 2086 st->print("vectord["); break;
kvn@3882 2087 case VectorX:
kvn@3882 2088 st->print("vectorx["); break;
kvn@3882 2089 case VectorY:
kvn@3882 2090 st->print("vectory["); break;
kvn@3882 2091 default:
kvn@3882 2092 ShouldNotReachHere();
kvn@3882 2093 }
kvn@3882 2094 st->print("%d]:{", _length);
kvn@3882 2095 _elem->dump2(d, depth, st);
kvn@3882 2096 st->print("}");
kvn@3882 2097 }
kvn@3882 2098 #endif
kvn@3882 2099
kvn@3882 2100
duke@435 2101 //=============================================================================
duke@435 2102 // Convenience common pre-built types.
duke@435 2103 const TypePtr *TypePtr::NULL_PTR;
duke@435 2104 const TypePtr *TypePtr::NOTNULL;
duke@435 2105 const TypePtr *TypePtr::BOTTOM;
duke@435 2106
duke@435 2107 //------------------------------meet-------------------------------------------
duke@435 2108 // Meet over the PTR enum
duke@435 2109 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2110 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2111 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2112 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2113 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2114 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2115 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2116 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2117 };
duke@435 2118
duke@435 2119 //------------------------------make-------------------------------------------
duke@435 2120 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2121 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2122 }
duke@435 2123
duke@435 2124 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2125 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2126 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2127 if( ptr == _ptr ) return this;
duke@435 2128 return make(_base, ptr, _offset);
duke@435 2129 }
duke@435 2130
duke@435 2131 //------------------------------get_con----------------------------------------
duke@435 2132 intptr_t TypePtr::get_con() const {
duke@435 2133 assert( _ptr == Null, "" );
duke@435 2134 return _offset;
duke@435 2135 }
duke@435 2136
duke@435 2137 //------------------------------meet-------------------------------------------
duke@435 2138 // Compute the MEET of two types. It returns a new Type object.
duke@435 2139 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2140 // Perform a fast test for common case; meeting the same types together.
duke@435 2141 if( this == t ) return this; // Meeting same type-rep?
duke@435 2142
duke@435 2143 // Current "this->_base" is AnyPtr
duke@435 2144 switch (t->base()) { // switch on original type
duke@435 2145 case Int: // Mixing ints & oops happens when javac
duke@435 2146 case Long: // reuses local variables
duke@435 2147 case FloatTop:
duke@435 2148 case FloatCon:
duke@435 2149 case FloatBot:
duke@435 2150 case DoubleTop:
duke@435 2151 case DoubleCon:
duke@435 2152 case DoubleBot:
coleenp@548 2153 case NarrowOop:
roland@4159 2154 case NarrowKlass:
duke@435 2155 case Bottom: // Ye Olde Default
duke@435 2156 return Type::BOTTOM;
duke@435 2157 case Top:
duke@435 2158 return this;
duke@435 2159
duke@435 2160 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2161 const TypePtr *tp = t->is_ptr();
duke@435 2162 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2163 }
duke@435 2164 case RawPtr: // For these, flip the call around to cut down
duke@435 2165 case OopPtr:
duke@435 2166 case InstPtr: // on the cases I have to handle.
coleenp@4037 2167 case AryPtr:
coleenp@4037 2168 case MetadataPtr:
duke@435 2169 case KlassPtr:
duke@435 2170 return t->xmeet(this); // Call in reverse direction
duke@435 2171 default: // All else is a mistake
duke@435 2172 typerr(t);
duke@435 2173
duke@435 2174 }
duke@435 2175 return this;
duke@435 2176 }
duke@435 2177
duke@435 2178 //------------------------------meet_offset------------------------------------
duke@435 2179 int TypePtr::meet_offset( int offset ) const {
duke@435 2180 // Either is 'TOP' offset? Return the other offset!
duke@435 2181 if( _offset == OffsetTop ) return offset;
duke@435 2182 if( offset == OffsetTop ) return _offset;
duke@435 2183 // If either is different, return 'BOTTOM' offset
duke@435 2184 if( _offset != offset ) return OffsetBot;
duke@435 2185 return _offset;
duke@435 2186 }
duke@435 2187
duke@435 2188 //------------------------------dual_offset------------------------------------
duke@435 2189 int TypePtr::dual_offset( ) const {
duke@435 2190 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2191 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2192 return _offset; // Map everything else into self
duke@435 2193 }
duke@435 2194
duke@435 2195 //------------------------------xdual------------------------------------------
duke@435 2196 // Dual: compute field-by-field dual
duke@435 2197 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2198 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2199 };
duke@435 2200 const Type *TypePtr::xdual() const {
duke@435 2201 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2202 }
duke@435 2203
kvn@741 2204 //------------------------------xadd_offset------------------------------------
kvn@741 2205 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2206 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2207 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2208 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2209 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2210 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2211 offset += (intptr_t)_offset;
kvn@741 2212 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2213
kvn@741 2214 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2215 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2216
kvn@741 2217 return (int)offset; // Sum valid offsets
kvn@741 2218 }
kvn@741 2219
duke@435 2220 //------------------------------add_offset-------------------------------------
kvn@741 2221 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2222 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2223 }
duke@435 2224
duke@435 2225 //------------------------------eq---------------------------------------------
duke@435 2226 // Structural equality check for Type representations
duke@435 2227 bool TypePtr::eq( const Type *t ) const {
duke@435 2228 const TypePtr *a = (const TypePtr*)t;
duke@435 2229 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2230 }
duke@435 2231
duke@435 2232 //------------------------------hash-------------------------------------------
duke@435 2233 // Type-specific hashing function.
duke@435 2234 int TypePtr::hash(void) const {
duke@435 2235 return _ptr + _offset;
duke@435 2236 }
duke@435 2237
duke@435 2238 //------------------------------dump2------------------------------------------
duke@435 2239 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2240 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2241 };
duke@435 2242
duke@435 2243 #ifndef PRODUCT
duke@435 2244 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2245 if( _ptr == Null ) st->print("NULL");
duke@435 2246 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2247 if( _offset == OffsetTop ) st->print("+top");
duke@435 2248 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2249 else if( _offset ) st->print("+%d", _offset);
duke@435 2250 }
duke@435 2251 #endif
duke@435 2252
duke@435 2253 //------------------------------singleton--------------------------------------
duke@435 2254 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2255 // constants
duke@435 2256 bool TypePtr::singleton(void) const {
duke@435 2257 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2258 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2259 }
duke@435 2260
duke@435 2261 bool TypePtr::empty(void) const {
duke@435 2262 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2263 }
duke@435 2264
duke@435 2265 //=============================================================================
duke@435 2266 // Convenience common pre-built types.
duke@435 2267 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2268 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2269
duke@435 2270 //------------------------------make-------------------------------------------
duke@435 2271 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2272 assert( ptr != Constant, "what is the constant?" );
duke@435 2273 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2274 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2275 }
duke@435 2276
duke@435 2277 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2278 assert( bits, "Use TypePtr for NULL" );
duke@435 2279 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2280 }
duke@435 2281
duke@435 2282 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2283 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2284 assert( ptr != Constant, "what is the constant?" );
duke@435 2285 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2286 assert( _bits==0, "Why cast a constant address?");
duke@435 2287 if( ptr == _ptr ) return this;
duke@435 2288 return make(ptr);
duke@435 2289 }
duke@435 2290
duke@435 2291 //------------------------------get_con----------------------------------------
duke@435 2292 intptr_t TypeRawPtr::get_con() const {
duke@435 2293 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2294 return (intptr_t)_bits;
duke@435 2295 }
duke@435 2296
duke@435 2297 //------------------------------meet-------------------------------------------
duke@435 2298 // Compute the MEET of two types. It returns a new Type object.
duke@435 2299 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2300 // Perform a fast test for common case; meeting the same types together.
duke@435 2301 if( this == t ) return this; // Meeting same type-rep?
duke@435 2302
duke@435 2303 // Current "this->_base" is RawPtr
duke@435 2304 switch( t->base() ) { // switch on original type
duke@435 2305 case Bottom: // Ye Olde Default
duke@435 2306 return t;
duke@435 2307 case Top:
duke@435 2308 return this;
duke@435 2309 case AnyPtr: // Meeting to AnyPtrs
duke@435 2310 break;
duke@435 2311 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2312 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2313 enum PTR ptr = meet_ptr( tptr );
duke@435 2314 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2315 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2316 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2317 ptr = NotNull; // Fall down in lattice
duke@435 2318 }
duke@435 2319 return make( ptr );
duke@435 2320 }
duke@435 2321
duke@435 2322 case OopPtr:
duke@435 2323 case InstPtr:
coleenp@4037 2324 case AryPtr:
coleenp@4037 2325 case MetadataPtr:
duke@435 2326 case KlassPtr:
duke@435 2327 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2328 default: // All else is a mistake
duke@435 2329 typerr(t);
duke@435 2330 }
duke@435 2331
duke@435 2332 // Found an AnyPtr type vs self-RawPtr type
duke@435 2333 const TypePtr *tp = t->is_ptr();
duke@435 2334 switch (tp->ptr()) {
duke@435 2335 case TypePtr::TopPTR: return this;
duke@435 2336 case TypePtr::BotPTR: return t;
duke@435 2337 case TypePtr::Null:
duke@435 2338 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2339 return TypeRawPtr::BOTTOM;
duke@435 2340 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2341 case TypePtr::AnyNull:
duke@435 2342 if( _ptr == TypePtr::Constant) return this;
duke@435 2343 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2344 default: ShouldNotReachHere();
duke@435 2345 }
duke@435 2346 return this;
duke@435 2347 }
duke@435 2348
duke@435 2349 //------------------------------xdual------------------------------------------
duke@435 2350 // Dual: compute field-by-field dual
duke@435 2351 const Type *TypeRawPtr::xdual() const {
duke@435 2352 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2353 }
duke@435 2354
duke@435 2355 //------------------------------add_offset-------------------------------------
kvn@741 2356 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2357 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2358 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2359 if( offset == 0 ) return this; // No change
duke@435 2360 switch (_ptr) {
duke@435 2361 case TypePtr::TopPTR:
duke@435 2362 case TypePtr::BotPTR:
duke@435 2363 case TypePtr::NotNull:
duke@435 2364 return this;
duke@435 2365 case TypePtr::Null:
kvn@2435 2366 case TypePtr::Constant: {
kvn@2435 2367 address bits = _bits+offset;
kvn@2435 2368 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2369 return make( bits );
kvn@2435 2370 }
duke@435 2371 default: ShouldNotReachHere();
duke@435 2372 }
duke@435 2373 return NULL; // Lint noise
duke@435 2374 }
duke@435 2375
duke@435 2376 //------------------------------eq---------------------------------------------
duke@435 2377 // Structural equality check for Type representations
duke@435 2378 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2379 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2380 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2381 }
duke@435 2382
duke@435 2383 //------------------------------hash-------------------------------------------
duke@435 2384 // Type-specific hashing function.
duke@435 2385 int TypeRawPtr::hash(void) const {
duke@435 2386 return (intptr_t)_bits + TypePtr::hash();
duke@435 2387 }
duke@435 2388
duke@435 2389 //------------------------------dump2------------------------------------------
duke@435 2390 #ifndef PRODUCT
duke@435 2391 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2392 if( _ptr == Constant )
duke@435 2393 st->print(INTPTR_FORMAT, _bits);
duke@435 2394 else
duke@435 2395 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2396 }
duke@435 2397 #endif
duke@435 2398
duke@435 2399 //=============================================================================
duke@435 2400 // Convenience common pre-built type.
duke@435 2401 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2402
kvn@598 2403 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2404 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2405 : TypePtr(t, ptr, offset),
kvn@598 2406 _const_oop(o), _klass(k),
kvn@598 2407 _klass_is_exact(xk),
kvn@598 2408 _is_ptr_to_narrowoop(false),
roland@4159 2409 _is_ptr_to_narrowklass(false),
kvn@5110 2410 _is_ptr_to_boxed_value(false),
kvn@598 2411 _instance_id(instance_id) {
kvn@5110 2412 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
kvn@5110 2413 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
kvn@5110 2414 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
kvn@5110 2415 }
kvn@598 2416 #ifdef _LP64
roland@4159 2417 if (_offset != 0) {
coleenp@4037 2418 if (_offset == oopDesc::klass_offset_in_bytes()) {
ehelin@5694 2419 _is_ptr_to_narrowklass = UseCompressedClassPointers;
coleenp@4037 2420 } else if (klass() == NULL) {
coleenp@4037 2421 // Array with unknown body type
kvn@598 2422 assert(this->isa_aryptr(), "only arrays without klass");
roland@4159 2423 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2424 } else if (this->isa_aryptr()) {
roland@4159 2425 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
kvn@598 2426 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2427 } else if (klass()->is_instance_klass()) {
kvn@598 2428 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2429 ciField* field = NULL;
kvn@598 2430 if (this->isa_klassptr()) {
never@2658 2431 // Perm objects don't use compressed references
kvn@598 2432 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2433 // unsafe access
roland@4159 2434 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2435 } else { // exclude unsafe ops
kvn@598 2436 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2437
never@2658 2438 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2439 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2440 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2441 // Special hidden fields from the Class.
never@2658 2442 assert(this->isa_instptr(), "must be an instance ptr.");
coleenp@4037 2443 _is_ptr_to_narrowoop = false;
never@2658 2444 } else if (klass() == ciEnv::current()->Class_klass() &&
coleenp@4047 2445 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
never@2658 2446 // Static fields
never@2658 2447 assert(o != NULL, "must be constant");
never@2658 2448 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2449 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2450 assert(field != NULL, "missing field");
kvn@598 2451 BasicType basic_elem_type = field->layout_type();
roland@4159 2452 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2453 basic_elem_type == T_ARRAY);
kvn@598 2454 } else {
never@2658 2455 // Instance fields which contains a compressed oop references.
never@2658 2456 field = ik->get_field_by_offset(_offset, false);
never@2658 2457 if (field != NULL) {
never@2658 2458 BasicType basic_elem_type = field->layout_type();
roland@4159 2459 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2460 basic_elem_type == T_ARRAY);
never@2658 2461 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2462 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2463 // that it does not affect alias type.
roland@4159 2464 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2465 } else {
never@2658 2466 // Type for the copy start in LibraryCallKit::inline_native_clone().
roland@4159 2467 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2468 }
kvn@598 2469 }
kvn@598 2470 }
kvn@598 2471 }
kvn@598 2472 }
kvn@598 2473 #endif
kvn@598 2474 }
kvn@598 2475
duke@435 2476 //------------------------------make-------------------------------------------
duke@435 2477 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
kvn@1393 2478 int offset, int instance_id) {
duke@435 2479 assert(ptr != Constant, "no constant generic pointers");
coleenp@4037 2480 ciKlass* k = Compile::current()->env()->Object_klass();
duke@435 2481 bool xk = false;
duke@435 2482 ciObject* o = NULL;
kvn@1393 2483 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
duke@435 2484 }
duke@435 2485
duke@435 2486
duke@435 2487 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2488 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2489 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2490 if( ptr == _ptr ) return this;
kvn@1427 2491 return make(ptr, _offset, _instance_id);
duke@435 2492 }
duke@435 2493
kvn@682 2494 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2495 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2496 // There are no instances of a general oop.
duke@435 2497 // Return self unchanged.
duke@435 2498 return this;
duke@435 2499 }
duke@435 2500
duke@435 2501 //-----------------------------cast_to_exactness-------------------------------
duke@435 2502 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2503 // There is no such thing as an exact general oop.
duke@435 2504 // Return self unchanged.
duke@435 2505 return this;
duke@435 2506 }
duke@435 2507
duke@435 2508
duke@435 2509 //------------------------------as_klass_type----------------------------------
duke@435 2510 // Return the klass type corresponding to this instance or array type.
duke@435 2511 // It is the type that is loaded from an object of this type.
duke@435 2512 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2513 ciKlass* k = klass();
duke@435 2514 bool xk = klass_is_exact();
coleenp@4037 2515 if (k == NULL)
duke@435 2516 return TypeKlassPtr::OBJECT;
duke@435 2517 else
duke@435 2518 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2519 }
duke@435 2520
duke@435 2521
duke@435 2522 //------------------------------meet-------------------------------------------
duke@435 2523 // Compute the MEET of two types. It returns a new Type object.
duke@435 2524 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2525 // Perform a fast test for common case; meeting the same types together.
duke@435 2526 if( this == t ) return this; // Meeting same type-rep?
duke@435 2527
duke@435 2528 // Current "this->_base" is OopPtr
duke@435 2529 switch (t->base()) { // switch on original type
duke@435 2530
duke@435 2531 case Int: // Mixing ints & oops happens when javac
duke@435 2532 case Long: // reuses local variables
duke@435 2533 case FloatTop:
duke@435 2534 case FloatCon:
duke@435 2535 case FloatBot:
duke@435 2536 case DoubleTop:
duke@435 2537 case DoubleCon:
duke@435 2538 case DoubleBot:
kvn@728 2539 case NarrowOop:
roland@4159 2540 case NarrowKlass:
duke@435 2541 case Bottom: // Ye Olde Default
duke@435 2542 return Type::BOTTOM;
duke@435 2543 case Top:
duke@435 2544 return this;
duke@435 2545
duke@435 2546 default: // All else is a mistake
duke@435 2547 typerr(t);
duke@435 2548
duke@435 2549 case RawPtr:
coleenp@4037 2550 case MetadataPtr:
coleenp@4037 2551 case KlassPtr:
duke@435 2552 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2553
duke@435 2554 case AnyPtr: {
duke@435 2555 // Found an AnyPtr type vs self-OopPtr type
duke@435 2556 const TypePtr *tp = t->is_ptr();
duke@435 2557 int offset = meet_offset(tp->offset());
duke@435 2558 PTR ptr = meet_ptr(tp->ptr());
duke@435 2559 switch (tp->ptr()) {
duke@435 2560 case Null:
duke@435 2561 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2562 // else fall through:
duke@435 2563 case TopPTR:
kvn@1427 2564 case AnyNull: {
kvn@1427 2565 int instance_id = meet_instance_id(InstanceTop);
kvn@1427 2566 return make(ptr, offset, instance_id);
kvn@1427 2567 }
duke@435 2568 case BotPTR:
duke@435 2569 case NotNull:
duke@435 2570 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2571 default: typerr(t);
duke@435 2572 }
duke@435 2573 }
duke@435 2574
duke@435 2575 case OopPtr: { // Meeting to other OopPtrs
duke@435 2576 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2577 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2578 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
duke@435 2579 }
duke@435 2580
duke@435 2581 case InstPtr: // For these, flip the call around to cut down
duke@435 2582 case AryPtr:
duke@435 2583 return t->xmeet(this); // Call in reverse direction
duke@435 2584
duke@435 2585 } // End of switch
duke@435 2586 return this; // Return the double constant
duke@435 2587 }
duke@435 2588
duke@435 2589
duke@435 2590 //------------------------------xdual------------------------------------------
duke@435 2591 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2592 const Type *TypeOopPtr::xdual() const {
coleenp@4037 2593 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
duke@435 2594 assert(const_oop() == NULL, "no constants here");
kvn@658 2595 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2596 }
duke@435 2597
duke@435 2598 //--------------------------make_from_klass_common-----------------------------
duke@435 2599 // Computes the element-type given a klass.
duke@435 2600 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2601 if (klass->is_instance_klass()) {
duke@435 2602 Compile* C = Compile::current();
duke@435 2603 Dependencies* deps = C->dependencies();
duke@435 2604 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2605 // Element is an instance
duke@435 2606 bool klass_is_exact = false;
duke@435 2607 if (klass->is_loaded()) {
duke@435 2608 // Try to set klass_is_exact.
duke@435 2609 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2610 klass_is_exact = ik->is_final();
duke@435 2611 if (!klass_is_exact && klass_change
duke@435 2612 && deps != NULL && UseUniqueSubclasses) {
duke@435 2613 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2614 if (sub != NULL) {
duke@435 2615 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2616 klass = ik = sub;
duke@435 2617 klass_is_exact = sub->is_final();
duke@435 2618 }
duke@435 2619 }
duke@435 2620 if (!klass_is_exact && try_for_exact
duke@435 2621 && deps != NULL && UseExactTypes) {
duke@435 2622 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2623 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2624 deps->assert_leaf_type(ik);
duke@435 2625 klass_is_exact = true;
duke@435 2626 }
duke@435 2627 }
duke@435 2628 }
duke@435 2629 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2630 } else if (klass->is_obj_array_klass()) {
duke@435 2631 // Element is an object array. Recursively call ourself.
duke@435 2632 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2633 bool xk = etype->klass_is_exact();
duke@435 2634 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2635 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2636 // are all not-null. This is not true in generally, as code can
duke@435 2637 // slam NULLs down in the subarrays.
duke@435 2638 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2639 return arr;
duke@435 2640 } else if (klass->is_type_array_klass()) {
duke@435 2641 // Element is an typeArray
duke@435 2642 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2643 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2644 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2645 // is not-null. That was not true in general.
duke@435 2646 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2647 return arr;
duke@435 2648 } else {
duke@435 2649 ShouldNotReachHere();
duke@435 2650 return NULL;
duke@435 2651 }
duke@435 2652 }
duke@435 2653
duke@435 2654 //------------------------------make_from_constant-----------------------------
duke@435 2655 // Make a java pointer from an oop constant
kvn@5110 2656 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
kvn@5110 2657 bool require_constant,
kvn@5110 2658 bool is_autobox_cache) {
kvn@5110 2659 assert(!o->is_null_object(), "null object not yet handled here.");
kvn@5110 2660 ciKlass* klass = o->klass();
kvn@5110 2661 if (klass->is_instance_klass()) {
kvn@5110 2662 // Element is an instance
kvn@5110 2663 if (require_constant) {
kvn@5110 2664 if (!o->can_be_constant()) return NULL;
kvn@5110 2665 } else if (!o->should_be_constant()) {
kvn@5110 2666 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
kvn@5110 2667 }
kvn@5110 2668 return TypeInstPtr::make(o);
kvn@5110 2669 } else if (klass->is_obj_array_klass()) {
kvn@5110 2670 // Element is an object array. Recursively call ourself.
kvn@5110 2671 const TypeOopPtr *etype =
coleenp@4037 2672 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
kvn@5110 2673 if (is_autobox_cache) {
kvn@5110 2674 // The pointers in the autobox arrays are always non-null.
kvn@5110 2675 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
kvn@5110 2676 }
kvn@5110 2677 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2678 // We used to pass NotNull in here, asserting that the sub-arrays
kvn@5110 2679 // are all not-null. This is not true in generally, as code can
kvn@5110 2680 // slam NULLs down in the subarrays.
kvn@5110 2681 if (require_constant) {
kvn@5110 2682 if (!o->can_be_constant()) return NULL;
kvn@5110 2683 } else if (!o->should_be_constant()) {
kvn@5110 2684 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2685 }
kvn@5110 2686 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, is_autobox_cache);
coleenp@4037 2687 return arr;
kvn@5110 2688 } else if (klass->is_type_array_klass()) {
kvn@5110 2689 // Element is an typeArray
coleenp@4037 2690 const Type* etype =
coleenp@4037 2691 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
kvn@5110 2692 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2693 // We used to pass NotNull in here, asserting that the array pointer
kvn@5110 2694 // is not-null. That was not true in general.
kvn@5110 2695 if (require_constant) {
kvn@5110 2696 if (!o->can_be_constant()) return NULL;
kvn@5110 2697 } else if (!o->should_be_constant()) {
kvn@5110 2698 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2699 }
coleenp@4037 2700 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2701 return arr;
duke@435 2702 }
duke@435 2703
twisti@3885 2704 fatal("unhandled object type");
duke@435 2705 return NULL;
duke@435 2706 }
duke@435 2707
duke@435 2708 //------------------------------get_con----------------------------------------
duke@435 2709 intptr_t TypeOopPtr::get_con() const {
duke@435 2710 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2711 assert( _offset >= 0, "" );
duke@435 2712
duke@435 2713 if (_offset != 0) {
duke@435 2714 // After being ported to the compiler interface, the compiler no longer
duke@435 2715 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2716 // to a handle at compile time. This handle is embedded in the generated
duke@435 2717 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2718 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2719 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2720 // but this assertion here is to help prevent its occurence.
duke@435 2721 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2722 ShouldNotReachHere();
duke@435 2723 }
duke@435 2724
jrose@1424 2725 return (intptr_t)const_oop()->constant_encoding();
duke@435 2726 }
duke@435 2727
duke@435 2728
duke@435 2729 //-----------------------------filter------------------------------------------
duke@435 2730 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2731 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2732
duke@435 2733 const Type* ft = join(kills);
duke@435 2734 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2735 const TypeInstPtr* ktip = kills->isa_instptr();
never@990 2736 const TypeKlassPtr* ftkp = ft->isa_klassptr();
never@990 2737 const TypeKlassPtr* ktkp = kills->isa_klassptr();
duke@435 2738
duke@435 2739 if (ft->empty()) {
duke@435 2740 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2741 // interface. This can happen because the bytecodes do not contain
duke@435 2742 // enough type info to distinguish a Java-level interface variable
duke@435 2743 // from a Java-level object variable. If we meet 2 classes which
duke@435 2744 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2745 // doesn't implement I, we have no way to tell if the result should
duke@435 2746 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2747 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2748 // uplift the type.
duke@435 2749 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2750 return kills; // Uplift to interface
never@990 2751 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
never@990 2752 return kills; // Uplift to interface
duke@435 2753
duke@435 2754 return Type::TOP; // Canonical empty value
duke@435 2755 }
duke@435 2756
duke@435 2757 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2758 // the join should report back the class. However, if we have a J/L/Object
duke@435 2759 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2760 // join report an interface back out. This isn't possible but happens
duke@435 2761 // because the type system doesn't interact well with interfaces.
duke@435 2762 if (ftip != NULL && ktip != NULL &&
duke@435 2763 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2764 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2765 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2766 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2767 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2768 }
kvn@1770 2769 // Interface klass type could be exact in opposite to interface type,
kvn@1770 2770 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
never@990 2771 if (ftkp != NULL && ktkp != NULL &&
never@990 2772 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
kvn@1770 2773 !ftkp->klass_is_exact() && // Keep exact interface klass
never@990 2774 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
never@990 2775 return ktkp->cast_to_ptr_type(ftkp->ptr());
never@990 2776 }
duke@435 2777
duke@435 2778 return ft;
duke@435 2779 }
duke@435 2780
duke@435 2781 //------------------------------eq---------------------------------------------
duke@435 2782 // Structural equality check for Type representations
duke@435 2783 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2784 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2785 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2786 _instance_id != a->_instance_id) return false;
duke@435 2787 ciObject* one = const_oop();
duke@435 2788 ciObject* two = a->const_oop();
duke@435 2789 if (one == NULL || two == NULL) {
duke@435 2790 return (one == two) && TypePtr::eq(t);
duke@435 2791 } else {
duke@435 2792 return one->equals(two) && TypePtr::eq(t);
duke@435 2793 }
duke@435 2794 }
duke@435 2795
duke@435 2796 //------------------------------hash-------------------------------------------
duke@435 2797 // Type-specific hashing function.
duke@435 2798 int TypeOopPtr::hash(void) const {
duke@435 2799 return
duke@435 2800 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2801 _klass_is_exact +
duke@435 2802 _instance_id +
duke@435 2803 TypePtr::hash();
duke@435 2804 }
duke@435 2805
duke@435 2806 //------------------------------dump2------------------------------------------
duke@435 2807 #ifndef PRODUCT
duke@435 2808 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2809 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2810 if( _klass_is_exact ) st->print(":exact");
duke@435 2811 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2812 switch( _offset ) {
duke@435 2813 case OffsetTop: st->print("+top"); break;
duke@435 2814 case OffsetBot: st->print("+any"); break;
duke@435 2815 case 0: break;
duke@435 2816 default: st->print("+%d",_offset); break;
duke@435 2817 }
kvn@658 2818 if (_instance_id == InstanceTop)
kvn@658 2819 st->print(",iid=top");
kvn@658 2820 else if (_instance_id != InstanceBot)
duke@435 2821 st->print(",iid=%d",_instance_id);
duke@435 2822 }
duke@435 2823 #endif
duke@435 2824
duke@435 2825 //------------------------------singleton--------------------------------------
duke@435 2826 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2827 // constants
duke@435 2828 bool TypeOopPtr::singleton(void) const {
duke@435 2829 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2830 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2831 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2832 }
duke@435 2833
duke@435 2834 //------------------------------add_offset-------------------------------------
kvn@741 2835 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
kvn@1427 2836 return make( _ptr, xadd_offset(offset), _instance_id);
duke@435 2837 }
duke@435 2838
kvn@658 2839 //------------------------------meet_instance_id--------------------------------
kvn@658 2840 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2841 // Either is 'TOP' instance? Return the other instance!
kvn@658 2842 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2843 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2844 // If either is different, return 'BOTTOM' instance
kvn@658 2845 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2846 return _instance_id;
duke@435 2847 }
duke@435 2848
kvn@658 2849 //------------------------------dual_instance_id--------------------------------
kvn@658 2850 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2851 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2852 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2853 return _instance_id; // Map everything else into self
kvn@658 2854 }
kvn@658 2855
kvn@658 2856
duke@435 2857 //=============================================================================
duke@435 2858 // Convenience common pre-built types.
duke@435 2859 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2860 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2861 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2862 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2863 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2864
duke@435 2865 //------------------------------TypeInstPtr-------------------------------------
duke@435 2866 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2867 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2868 assert(k != NULL &&
duke@435 2869 (k->is_loaded() || o == NULL),
duke@435 2870 "cannot have constants with non-loaded klass");
duke@435 2871 };
duke@435 2872
duke@435 2873 //------------------------------make-------------------------------------------
duke@435 2874 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2875 ciKlass* k,
duke@435 2876 bool xk,
duke@435 2877 ciObject* o,
duke@435 2878 int offset,
duke@435 2879 int instance_id) {
coleenp@4037 2880 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
duke@435 2881 // Either const_oop() is NULL or else ptr is Constant
duke@435 2882 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2883 "constant pointers must have a value supplied" );
duke@435 2884 // Ptr is never Null
duke@435 2885 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2886
kvn@682 2887 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2888 if (!UseExactTypes) xk = false;
duke@435 2889 if (ptr == Constant) {
duke@435 2890 // Note: This case includes meta-object constants, such as methods.
duke@435 2891 xk = true;
duke@435 2892 } else if (k->is_loaded()) {
duke@435 2893 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2894 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2895 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2896 }
duke@435 2897
duke@435 2898 // Now hash this baby
duke@435 2899 TypeInstPtr *result =
duke@435 2900 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2901
duke@435 2902 return result;
duke@435 2903 }
duke@435 2904
kvn@5110 2905 /**
kvn@5110 2906 * Create constant type for a constant boxed value
kvn@5110 2907 */
kvn@5110 2908 const Type* TypeInstPtr::get_const_boxed_value() const {
kvn@5110 2909 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
kvn@5110 2910 assert((const_oop() != NULL), "should be called only for constant object");
kvn@5110 2911 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
kvn@5110 2912 BasicType bt = constant.basic_type();
kvn@5110 2913 switch (bt) {
kvn@5110 2914 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
kvn@5110 2915 case T_INT: return TypeInt::make(constant.as_int());
kvn@5110 2916 case T_CHAR: return TypeInt::make(constant.as_char());
kvn@5110 2917 case T_BYTE: return TypeInt::make(constant.as_byte());
kvn@5110 2918 case T_SHORT: return TypeInt::make(constant.as_short());
kvn@5110 2919 case T_FLOAT: return TypeF::make(constant.as_float());
kvn@5110 2920 case T_DOUBLE: return TypeD::make(constant.as_double());
kvn@5110 2921 case T_LONG: return TypeLong::make(constant.as_long());
kvn@5110 2922 default: break;
kvn@5110 2923 }
kvn@5110 2924 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
kvn@5110 2925 return NULL;
kvn@5110 2926 }
duke@435 2927
duke@435 2928 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2929 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2930 if( ptr == _ptr ) return this;
duke@435 2931 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2932 // construction, _sig will show up on demand.
kvn@658 2933 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2934 }
duke@435 2935
duke@435 2936
duke@435 2937 //-----------------------------cast_to_exactness-------------------------------
duke@435 2938 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2939 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2940 if (!UseExactTypes) return this;
duke@435 2941 if (!_klass->is_loaded()) return this;
duke@435 2942 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2943 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2944 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2945 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2946 }
duke@435 2947
kvn@682 2948 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2949 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2950 if( instance_id == _instance_id ) return this;
kvn@682 2951 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2952 }
duke@435 2953
duke@435 2954 //------------------------------xmeet_unloaded---------------------------------
duke@435 2955 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2956 // Assume classes are different since called after check for same name/class-loader
duke@435 2957 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2958 int off = meet_offset(tinst->offset());
duke@435 2959 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 2960 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2961
duke@435 2962 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2963 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2964 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2965 //
duke@435 2966 // Meet unloaded class with java/lang/Object
duke@435 2967 //
duke@435 2968 // Meet
duke@435 2969 // | Unloaded Class
duke@435 2970 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2971 // ===================================================================
duke@435 2972 // TOP | ..........................Unloaded......................|
duke@435 2973 // AnyNull | U-AN |................Unloaded......................|
duke@435 2974 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2975 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2976 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2977 //
duke@435 2978 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2979 //
duke@435 2980 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
kvn@1427 2981 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
duke@435 2982 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2983 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2984 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2985 else { return TypeInstPtr::NOTNULL; }
duke@435 2986 }
duke@435 2987 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2988
duke@435 2989 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2990 }
duke@435 2991
duke@435 2992 // Both are unloaded, not the same class, not Object
duke@435 2993 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2994 if( ptr != TypePtr::BotPTR ) {
duke@435 2995 return TypeInstPtr::NOTNULL;
duke@435 2996 }
duke@435 2997 return TypeInstPtr::BOTTOM;
duke@435 2998 }
duke@435 2999
duke@435 3000
duke@435 3001 //------------------------------meet-------------------------------------------
duke@435 3002 // Compute the MEET of two types. It returns a new Type object.
duke@435 3003 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 3004 // Perform a fast test for common case; meeting the same types together.
duke@435 3005 if( this == t ) return this; // Meeting same type-rep?
duke@435 3006
duke@435 3007 // Current "this->_base" is Pointer
duke@435 3008 switch (t->base()) { // switch on original type
duke@435 3009
duke@435 3010 case Int: // Mixing ints & oops happens when javac
duke@435 3011 case Long: // reuses local variables
duke@435 3012 case FloatTop:
duke@435 3013 case FloatCon:
duke@435 3014 case FloatBot:
duke@435 3015 case DoubleTop:
duke@435 3016 case DoubleCon:
duke@435 3017 case DoubleBot:
coleenp@548 3018 case NarrowOop:
roland@4159 3019 case NarrowKlass:
duke@435 3020 case Bottom: // Ye Olde Default
duke@435 3021 return Type::BOTTOM;
duke@435 3022 case Top:
duke@435 3023 return this;
duke@435 3024
duke@435 3025 default: // All else is a mistake
duke@435 3026 typerr(t);
duke@435 3027
coleenp@4037 3028 case MetadataPtr:
coleenp@4037 3029 case KlassPtr:
duke@435 3030 case RawPtr: return TypePtr::BOTTOM;
duke@435 3031
duke@435 3032 case AryPtr: { // All arrays inherit from Object class
duke@435 3033 const TypeAryPtr *tp = t->is_aryptr();
duke@435 3034 int offset = meet_offset(tp->offset());
duke@435 3035 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3036 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3037 switch (ptr) {
duke@435 3038 case TopPTR:
duke@435 3039 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3040 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 3041 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 3042 } else {
duke@435 3043 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3044 ptr = NotNull;
kvn@658 3045 instance_id = InstanceBot;
kvn@658 3046 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 3047 }
duke@435 3048 case Constant:
duke@435 3049 case NotNull:
duke@435 3050 case BotPTR: // Fall down to object klass
duke@435 3051 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3052 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 3053 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 3054 // then we can subclass in the Java class hierarchy.
duke@435 3055 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 3056 // that is, tp's array type is a subtype of my klass
kvn@1714 3057 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
kvn@1714 3058 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 3059 }
duke@435 3060 }
duke@435 3061 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 3062 // The meet falls down to Object class below centerline.
duke@435 3063 if( ptr == Constant )
duke@435 3064 ptr = NotNull;
kvn@658 3065 instance_id = InstanceBot;
kvn@658 3066 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 3067 default: typerr(t);
duke@435 3068 }
duke@435 3069 }
duke@435 3070
duke@435 3071 case OopPtr: { // Meeting to OopPtrs
duke@435 3072 // Found a OopPtr type vs self-InstPtr type
kvn@1393 3073 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3074 int offset = meet_offset(tp->offset());
duke@435 3075 PTR ptr = meet_ptr(tp->ptr());
duke@435 3076 switch (tp->ptr()) {
duke@435 3077 case TopPTR:
kvn@658 3078 case AnyNull: {
kvn@658 3079 int instance_id = meet_instance_id(InstanceTop);
duke@435 3080 return make(ptr, klass(), klass_is_exact(),
kvn@658 3081 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 3082 }
duke@435 3083 case NotNull:
kvn@1393 3084 case BotPTR: {
kvn@1393 3085 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3086 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3087 }
duke@435 3088 default: typerr(t);
duke@435 3089 }
duke@435 3090 }
duke@435 3091
duke@435 3092 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3093 // Found an AnyPtr type vs self-InstPtr type
duke@435 3094 const TypePtr *tp = t->is_ptr();
duke@435 3095 int offset = meet_offset(tp->offset());
duke@435 3096 PTR ptr = meet_ptr(tp->ptr());
duke@435 3097 switch (tp->ptr()) {
duke@435 3098 case Null:
duke@435 3099 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 3100 // else fall through to AnyNull
duke@435 3101 case TopPTR:
kvn@658 3102 case AnyNull: {
kvn@658 3103 int instance_id = meet_instance_id(InstanceTop);
duke@435 3104 return make( ptr, klass(), klass_is_exact(),
kvn@658 3105 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 3106 }
duke@435 3107 case NotNull:
duke@435 3108 case BotPTR:
duke@435 3109 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3110 default: typerr(t);
duke@435 3111 }
duke@435 3112 }
duke@435 3113
duke@435 3114 /*
duke@435 3115 A-top }
duke@435 3116 / | \ } Tops
duke@435 3117 B-top A-any C-top }
duke@435 3118 | / | \ | } Any-nulls
duke@435 3119 B-any | C-any }
duke@435 3120 | | |
duke@435 3121 B-con A-con C-con } constants; not comparable across classes
duke@435 3122 | | |
duke@435 3123 B-not | C-not }
duke@435 3124 | \ | / | } not-nulls
duke@435 3125 B-bot A-not C-bot }
duke@435 3126 \ | / } Bottoms
duke@435 3127 A-bot }
duke@435 3128 */
duke@435 3129
duke@435 3130 case InstPtr: { // Meeting 2 Oops?
duke@435 3131 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3132 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3133 int off = meet_offset( tinst->offset() );
duke@435 3134 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3135 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 3136
duke@435 3137 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3138 // If we have constants, then we created oops so classes are loaded
duke@435 3139 // and we can handle the constants further down. This case handles
duke@435 3140 // both-not-loaded or both-loaded classes
duke@435 3141 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 3142 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 3143 }
duke@435 3144
duke@435 3145 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3146 ciKlass* tinst_klass = tinst->klass();
duke@435 3147 ciKlass* this_klass = this->klass();
duke@435 3148 bool tinst_xk = tinst->klass_is_exact();
duke@435 3149 bool this_xk = this->klass_is_exact();
duke@435 3150 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3151 // One of these classes has not been loaded
duke@435 3152 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3153 #ifndef PRODUCT
duke@435 3154 if( PrintOpto && Verbose ) {
duke@435 3155 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3156 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3157 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3158 }
duke@435 3159 #endif
duke@435 3160 return unloaded_meet;
duke@435 3161 }
duke@435 3162
duke@435 3163 // Handle mixing oops and interfaces first.
duke@435 3164 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 3165 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3166 tinst_klass = this_klass;
duke@435 3167 this_klass = tmp;
duke@435 3168 bool tmp2 = tinst_xk;
duke@435 3169 tinst_xk = this_xk;
duke@435 3170 this_xk = tmp2;
duke@435 3171 }
duke@435 3172 if (tinst_klass->is_interface() &&
duke@435 3173 !(this_klass->is_interface() ||
duke@435 3174 // Treat java/lang/Object as an honorary interface,
duke@435 3175 // because we need a bottom for the interface hierarchy.
duke@435 3176 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3177 // Oop meets interface!
duke@435 3178
duke@435 3179 // See if the oop subtypes (implements) interface.
duke@435 3180 ciKlass *k;
duke@435 3181 bool xk;
duke@435 3182 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3183 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3184 // on whether we are both above the centerline or either is
duke@435 3185 // below the centerline. If we are on the centerline
duke@435 3186 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3187 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3188 // If we are keeping this_klass, keep its exactness too.
duke@435 3189 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3190 } else { // Does not implement, fall to Object
duke@435 3191 // Oop does not implement interface, so mixing falls to Object
duke@435 3192 // just like the verifier does (if both are above the
duke@435 3193 // centerline fall to interface)
duke@435 3194 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3195 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3196 // Watch out for Constant vs. AnyNull interface.
duke@435 3197 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3198 instance_id = InstanceBot;
duke@435 3199 }
duke@435 3200 ciObject* o = NULL; // the Constant value, if any
duke@435 3201 if (ptr == Constant) {
duke@435 3202 // Find out which constant.
duke@435 3203 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3204 }
kvn@658 3205 return make( ptr, k, xk, o, off, instance_id );
duke@435 3206 }
duke@435 3207
duke@435 3208 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3209
duke@435 3210 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3211 // If we split one up & one down AND they subtype, take the down man.
duke@435 3212 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3213 // If both are up and they subtype, take the subtype class.
duke@435 3214 // If both are up and they do NOT subtype, "fall hard".
duke@435 3215 // If both are down and they subtype, take the supertype class.
duke@435 3216 // If both are down and they do NOT subtype, "fall hard".
duke@435 3217 // Constants treated as down.
duke@435 3218
duke@435 3219 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3220 // "fall hard"; "fall hard" becomes the default case:
duke@435 3221 // If we split one up & one down AND they subtype, take the down man.
duke@435 3222 // If both are up and they subtype, take the subtype class.
duke@435 3223
duke@435 3224 // If both are down and they subtype, "fall hard".
duke@435 3225 // If both are down and they do NOT subtype, "fall hard".
duke@435 3226 // If both are up and they do NOT subtype, "fall hard".
duke@435 3227 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3228
duke@435 3229 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3230 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3231 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3232 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3233
duke@435 3234 // Check for subtyping:
duke@435 3235 ciKlass *subtype = NULL;
duke@435 3236 bool subtype_exact = false;
duke@435 3237 if( tinst_klass->equals(this_klass) ) {
duke@435 3238 subtype = this_klass;
duke@435 3239 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3240 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3241 subtype = this_klass; // Pick subtyping class
duke@435 3242 subtype_exact = this_xk;
duke@435 3243 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3244 subtype = tinst_klass; // Pick subtyping class
duke@435 3245 subtype_exact = tinst_xk;
duke@435 3246 }
duke@435 3247
duke@435 3248 if( subtype ) {
duke@435 3249 if( above_centerline(ptr) ) { // both are up?
duke@435 3250 this_klass = tinst_klass = subtype;
duke@435 3251 this_xk = tinst_xk = subtype_exact;
duke@435 3252 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3253 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3254 this_xk = tinst_xk;
duke@435 3255 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3256 tinst_klass = this_klass; // this is down; keep down man
duke@435 3257 tinst_xk = this_xk;
duke@435 3258 } else {
duke@435 3259 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3260 }
duke@435 3261 }
duke@435 3262
duke@435 3263 // Check for classes now being equal
duke@435 3264 if (tinst_klass->equals(this_klass)) {
duke@435 3265 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3266 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3267 // handled elsewhere).
duke@435 3268 ciObject* o = NULL; // Assume not constant when done
duke@435 3269 ciObject* this_oop = const_oop();
duke@435 3270 ciObject* tinst_oop = tinst->const_oop();
duke@435 3271 if( ptr == Constant ) {
duke@435 3272 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3273 this_oop->equals(tinst_oop) )
duke@435 3274 o = this_oop;
duke@435 3275 else if (above_centerline(this ->_ptr))
duke@435 3276 o = tinst_oop;
duke@435 3277 else if (above_centerline(tinst ->_ptr))
duke@435 3278 o = this_oop;
duke@435 3279 else
duke@435 3280 ptr = NotNull;
duke@435 3281 }
duke@435 3282 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 3283 } // Else classes are not equal
duke@435 3284
duke@435 3285 // Since klasses are different, we require a LCA in the Java
duke@435 3286 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3287 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3288 ptr = NotNull;
kvn@682 3289 instance_id = InstanceBot;
duke@435 3290
duke@435 3291 // Now we find the LCA of Java classes
duke@435 3292 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 3293 return make( ptr, k, false, NULL, off, instance_id );
duke@435 3294 } // End of case InstPtr
duke@435 3295
duke@435 3296 } // End of switch
duke@435 3297 return this; // Return the double constant
duke@435 3298 }
duke@435 3299
duke@435 3300
duke@435 3301 //------------------------java_mirror_type--------------------------------------
duke@435 3302 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3303 // must be a singleton type
duke@435 3304 if( const_oop() == NULL ) return NULL;
duke@435 3305
duke@435 3306 // must be of type java.lang.Class
duke@435 3307 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3308
duke@435 3309 return const_oop()->as_instance()->java_mirror_type();
duke@435 3310 }
duke@435 3311
duke@435 3312
duke@435 3313 //------------------------------xdual------------------------------------------
duke@435 3314 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3315 // inheritance mechanism.
duke@435 3316 const Type *TypeInstPtr::xdual() const {
kvn@658 3317 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3318 }
duke@435 3319
duke@435 3320 //------------------------------eq---------------------------------------------
duke@435 3321 // Structural equality check for Type representations
duke@435 3322 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3323 const TypeInstPtr *p = t->is_instptr();
duke@435 3324 return
duke@435 3325 klass()->equals(p->klass()) &&
duke@435 3326 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3327 }
duke@435 3328
duke@435 3329 //------------------------------hash-------------------------------------------
duke@435 3330 // Type-specific hashing function.
duke@435 3331 int TypeInstPtr::hash(void) const {
duke@435 3332 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3333 return hash;
duke@435 3334 }
duke@435 3335
duke@435 3336 //------------------------------dump2------------------------------------------
duke@435 3337 // Dump oop Type
duke@435 3338 #ifndef PRODUCT
duke@435 3339 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3340 // Print the name of the klass.
duke@435 3341 klass()->print_name_on(st);
duke@435 3342
duke@435 3343 switch( _ptr ) {
duke@435 3344 case Constant:
duke@435 3345 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3346 if (WizardMode || Verbose) {
duke@435 3347 const_oop()->print_oop(st);
duke@435 3348 }
duke@435 3349 case BotPTR:
duke@435 3350 if (!WizardMode && !Verbose) {
duke@435 3351 if( _klass_is_exact ) st->print(":exact");
duke@435 3352 break;
duke@435 3353 }
duke@435 3354 case TopPTR:
duke@435 3355 case AnyNull:
duke@435 3356 case NotNull:
duke@435 3357 st->print(":%s", ptr_msg[_ptr]);
duke@435 3358 if( _klass_is_exact ) st->print(":exact");
duke@435 3359 break;
duke@435 3360 }
duke@435 3361
duke@435 3362 if( _offset ) { // Dump offset, if any
duke@435 3363 if( _offset == OffsetBot ) st->print("+any");
duke@435 3364 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3365 else st->print("+%d", _offset);
duke@435 3366 }
duke@435 3367
duke@435 3368 st->print(" *");
kvn@658 3369 if (_instance_id == InstanceTop)
kvn@658 3370 st->print(",iid=top");
kvn@658 3371 else if (_instance_id != InstanceBot)
duke@435 3372 st->print(",iid=%d",_instance_id);
duke@435 3373 }
duke@435 3374 #endif
duke@435 3375
duke@435 3376 //------------------------------add_offset-------------------------------------
kvn@741 3377 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
duke@435 3378 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3379 }
duke@435 3380
duke@435 3381 //=============================================================================
duke@435 3382 // Convenience common pre-built types.
duke@435 3383 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3384 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3385 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3386 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3387 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3388 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3389 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3390 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3391 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3392 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3393
duke@435 3394 //------------------------------make-------------------------------------------
duke@435 3395 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3396 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3397 "integral arrays must be pre-equipped with a class");
duke@435 3398 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3399 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3400 if (!UseExactTypes) xk = (ptr == Constant);
kvn@5110 3401 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false))->hashcons();
duke@435 3402 }
duke@435 3403
duke@435 3404 //------------------------------make-------------------------------------------
kvn@5110 3405 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, bool is_autobox_cache) {
duke@435 3406 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3407 "integral arrays must be pre-equipped with a class");
duke@435 3408 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3409 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3410 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3411 if (!UseExactTypes) xk = (ptr == Constant);
kvn@5110 3412 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache))->hashcons();
duke@435 3413 }
duke@435 3414
duke@435 3415 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3416 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3417 if( ptr == _ptr ) return this;
kvn@658 3418 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3419 }
duke@435 3420
duke@435 3421
duke@435 3422 //-----------------------------cast_to_exactness-------------------------------
duke@435 3423 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3424 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3425 if (!UseExactTypes) return this;
duke@435 3426 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3427 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3428 }
duke@435 3429
kvn@682 3430 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3431 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3432 if( instance_id == _instance_id ) return this;
kvn@682 3433 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3434 }
duke@435 3435
duke@435 3436 //-----------------------------narrow_size_type-------------------------------
duke@435 3437 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3438 // which is kind of slow (and cached elsewhere by other users).
duke@435 3439 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3440 static jint max_array_length(BasicType etype) {
duke@435 3441 jint& cache = max_array_length_cache[etype];
duke@435 3442 jint res = cache;
duke@435 3443 if (res == 0) {
duke@435 3444 switch (etype) {
coleenp@548 3445 case T_NARROWOOP:
coleenp@548 3446 etype = T_OBJECT;
coleenp@548 3447 break;
roland@4159 3448 case T_NARROWKLASS:
duke@435 3449 case T_CONFLICT:
duke@435 3450 case T_ILLEGAL:
duke@435 3451 case T_VOID:
duke@435 3452 etype = T_BYTE; // will produce conservatively high value
duke@435 3453 }
duke@435 3454 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3455 }
duke@435 3456 return res;
duke@435 3457 }
duke@435 3458
duke@435 3459 // Narrow the given size type to the index range for the given array base type.
duke@435 3460 // Return NULL if the resulting int type becomes empty.
rasbold@801 3461 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3462 jint hi = size->_hi;
duke@435 3463 jint lo = size->_lo;
duke@435 3464 jint min_lo = 0;
rasbold@801 3465 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3466 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3467 bool chg = false;
kvn@5110 3468 if (lo < min_lo) {
kvn@5110 3469 lo = min_lo;
kvn@5110 3470 if (size->is_con()) {
kvn@5110 3471 hi = lo;
kvn@5110 3472 }
kvn@5110 3473 chg = true;
kvn@5110 3474 }
kvn@5110 3475 if (hi > max_hi) {
kvn@5110 3476 hi = max_hi;
kvn@5110 3477 if (size->is_con()) {
kvn@5110 3478 lo = hi;
kvn@5110 3479 }
kvn@5110 3480 chg = true;
kvn@5110 3481 }
twisti@1040 3482 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3483 if (lo > hi)
rasbold@801 3484 return TypeInt::ZERO;
duke@435 3485 if (!chg)
duke@435 3486 return size;
duke@435 3487 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3488 }
duke@435 3489
duke@435 3490 //-------------------------------cast_to_size----------------------------------
duke@435 3491 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3492 assert(new_size != NULL, "");
rasbold@801 3493 new_size = narrow_size_type(new_size);
duke@435 3494 if (new_size == size()) return this;
vlivanov@5658 3495 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
kvn@658 3496 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3497 }
duke@435 3498
duke@435 3499
vlivanov@5658 3500 //------------------------------cast_to_stable---------------------------------
vlivanov@5658 3501 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
vlivanov@5658 3502 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
vlivanov@5658 3503 return this;
vlivanov@5658 3504
vlivanov@5658 3505 const Type* elem = this->elem();
vlivanov@5658 3506 const TypePtr* elem_ptr = elem->make_ptr();
vlivanov@5658 3507
vlivanov@5658 3508 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
vlivanov@5658 3509 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
vlivanov@5658 3510 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
vlivanov@5658 3511 }
vlivanov@5658 3512
vlivanov@5658 3513 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
vlivanov@5658 3514
vlivanov@5658 3515 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
vlivanov@5658 3516 }
vlivanov@5658 3517
vlivanov@5658 3518 //-----------------------------stable_dimension--------------------------------
vlivanov@5658 3519 int TypeAryPtr::stable_dimension() const {
vlivanov@5658 3520 if (!is_stable()) return 0;
vlivanov@5658 3521 int dim = 1;
vlivanov@5658 3522 const TypePtr* elem_ptr = elem()->make_ptr();
vlivanov@5658 3523 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
vlivanov@5658 3524 dim += elem_ptr->is_aryptr()->stable_dimension();
vlivanov@5658 3525 return dim;
vlivanov@5658 3526 }
vlivanov@5658 3527
duke@435 3528 //------------------------------eq---------------------------------------------
duke@435 3529 // Structural equality check for Type representations
duke@435 3530 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3531 const TypeAryPtr *p = t->is_aryptr();
duke@435 3532 return
duke@435 3533 _ary == p->_ary && // Check array
duke@435 3534 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3535 }
duke@435 3536
duke@435 3537 //------------------------------hash-------------------------------------------
duke@435 3538 // Type-specific hashing function.
duke@435 3539 int TypeAryPtr::hash(void) const {
duke@435 3540 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3541 }
duke@435 3542
duke@435 3543 //------------------------------meet-------------------------------------------
duke@435 3544 // Compute the MEET of two types. It returns a new Type object.
duke@435 3545 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3546 // Perform a fast test for common case; meeting the same types together.
duke@435 3547 if( this == t ) return this; // Meeting same type-rep?
duke@435 3548 // Current "this->_base" is Pointer
duke@435 3549 switch (t->base()) { // switch on original type
duke@435 3550
duke@435 3551 // Mixing ints & oops happens when javac reuses local variables
duke@435 3552 case Int:
duke@435 3553 case Long:
duke@435 3554 case FloatTop:
duke@435 3555 case FloatCon:
duke@435 3556 case FloatBot:
duke@435 3557 case DoubleTop:
duke@435 3558 case DoubleCon:
duke@435 3559 case DoubleBot:
coleenp@548 3560 case NarrowOop:
roland@4159 3561 case NarrowKlass:
duke@435 3562 case Bottom: // Ye Olde Default
duke@435 3563 return Type::BOTTOM;
duke@435 3564 case Top:
duke@435 3565 return this;
duke@435 3566
duke@435 3567 default: // All else is a mistake
duke@435 3568 typerr(t);
duke@435 3569
duke@435 3570 case OopPtr: { // Meeting to OopPtrs
duke@435 3571 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3572 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3573 int offset = meet_offset(tp->offset());
duke@435 3574 PTR ptr = meet_ptr(tp->ptr());
duke@435 3575 switch (tp->ptr()) {
duke@435 3576 case TopPTR:
kvn@658 3577 case AnyNull: {
kvn@658 3578 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3579 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3580 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3581 }
duke@435 3582 case BotPTR:
kvn@1393 3583 case NotNull: {
kvn@1393 3584 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3585 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3586 }
duke@435 3587 default: ShouldNotReachHere();
duke@435 3588 }
duke@435 3589 }
duke@435 3590
duke@435 3591 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3592 // Found an AnyPtr type vs self-AryPtr type
duke@435 3593 const TypePtr *tp = t->is_ptr();
duke@435 3594 int offset = meet_offset(tp->offset());
duke@435 3595 PTR ptr = meet_ptr(tp->ptr());
duke@435 3596 switch (tp->ptr()) {
duke@435 3597 case TopPTR:
duke@435 3598 return this;
duke@435 3599 case BotPTR:
duke@435 3600 case NotNull:
duke@435 3601 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3602 case Null:
duke@435 3603 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3604 // else fall through to AnyNull
kvn@658 3605 case AnyNull: {
kvn@658 3606 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3607 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3608 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3609 }
duke@435 3610 default: ShouldNotReachHere();
duke@435 3611 }
duke@435 3612 }
duke@435 3613
coleenp@4037 3614 case MetadataPtr:
coleenp@4037 3615 case KlassPtr:
duke@435 3616 case RawPtr: return TypePtr::BOTTOM;
duke@435 3617
duke@435 3618 case AryPtr: { // Meeting 2 references?
duke@435 3619 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3620 int off = meet_offset(tap->offset());
duke@435 3621 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3622 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3623 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3624 ciKlass* lazy_klass = NULL;
duke@435 3625 if (tary->_elem->isa_int()) {
duke@435 3626 // Integral array element types have irrelevant lattice relations.
duke@435 3627 // It is the klass that determines array layout, not the element type.
duke@435 3628 if (_klass == NULL)
duke@435 3629 lazy_klass = tap->_klass;
duke@435 3630 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3631 lazy_klass = _klass;
duke@435 3632 } else {
duke@435 3633 // Something like byte[int+] meets char[int+].
duke@435 3634 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3635 instance_id = InstanceBot;
vlivanov@5658 3636 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
duke@435 3637 }
kvn@2633 3638 } else // Non integral arrays.
kvn@2633 3639 // Must fall to bottom if exact klasses in upper lattice
kvn@2633 3640 // are not equal or super klass is exact.
kvn@2633 3641 if ( above_centerline(ptr) && klass() != tap->klass() &&
kvn@2633 3642 // meet with top[] and bottom[] are processed further down:
kvn@2633 3643 tap ->_klass != NULL && this->_klass != NULL &&
kvn@2633 3644 // both are exact and not equal:
kvn@2633 3645 ((tap ->_klass_is_exact && this->_klass_is_exact) ||
kvn@2633 3646 // 'tap' is exact and super or unrelated:
kvn@2633 3647 (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
kvn@2633 3648 // 'this' is exact and super or unrelated:
kvn@2633 3649 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
vlivanov@5658 3650 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
kvn@2633 3651 return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
duke@435 3652 }
kvn@2633 3653
kvn@2120 3654 bool xk = false;
duke@435 3655 switch (tap->ptr()) {
duke@435 3656 case AnyNull:
duke@435 3657 case TopPTR:
duke@435 3658 // Compute new klass on demand, do not use tap->_klass
duke@435 3659 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3660 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3661 case Constant: {
duke@435 3662 ciObject* o = const_oop();
duke@435 3663 if( _ptr == Constant ) {
duke@435 3664 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3665 xk = (klass() == tap->klass());
duke@435 3666 ptr = NotNull;
duke@435 3667 o = NULL;
kvn@682 3668 instance_id = InstanceBot;
jrose@1424 3669 } else {
jrose@1424 3670 xk = true;
duke@435 3671 }
duke@435 3672 } else if( above_centerline(_ptr) ) {
duke@435 3673 o = tap->const_oop();
jrose@1424 3674 xk = true;
jrose@1424 3675 } else {
kvn@2120 3676 // Only precise for identical arrays
kvn@2120 3677 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 3678 }
kvn@2120 3679 return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
duke@435 3680 }
duke@435 3681 case NotNull:
duke@435 3682 case BotPTR:
duke@435 3683 // Compute new klass on demand, do not use tap->_klass
duke@435 3684 if (above_centerline(this->_ptr))
duke@435 3685 xk = tap->_klass_is_exact;
duke@435 3686 else if (above_centerline(tap->_ptr))
duke@435 3687 xk = this->_klass_is_exact;
duke@435 3688 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3689 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3690 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3691 default: ShouldNotReachHere();
duke@435 3692 }
duke@435 3693 }
duke@435 3694
duke@435 3695 // All arrays inherit from Object class
duke@435 3696 case InstPtr: {
duke@435 3697 const TypeInstPtr *tp = t->is_instptr();
duke@435 3698 int offset = meet_offset(tp->offset());
duke@435 3699 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3700 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3701 switch (ptr) {
duke@435 3702 case TopPTR:
duke@435 3703 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3704 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3705 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3706 } else {
duke@435 3707 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3708 ptr = NotNull;
kvn@658 3709 instance_id = InstanceBot;
kvn@658 3710 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3711 }
duke@435 3712 case Constant:
duke@435 3713 case NotNull:
duke@435 3714 case BotPTR: // Fall down to object klass
duke@435 3715 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3716 if (above_centerline(tp->ptr())) {
duke@435 3717 // If 'tp' is above the centerline and it is Object class
twisti@1040 3718 // then we can subclass in the Java class hierarchy.
duke@435 3719 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3720 // that is, my array type is a subtype of 'tp' klass
kvn@1714 3721 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@1714 3722 _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3723 }
duke@435 3724 }
duke@435 3725 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3726 // The meet falls down to Object class below centerline.
duke@435 3727 if( ptr == Constant )
duke@435 3728 ptr = NotNull;
kvn@658 3729 instance_id = InstanceBot;
kvn@658 3730 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3731 default: typerr(t);
duke@435 3732 }
duke@435 3733 }
duke@435 3734 }
duke@435 3735 return this; // Lint noise
duke@435 3736 }
duke@435 3737
duke@435 3738 //------------------------------xdual------------------------------------------
duke@435 3739 // Dual: compute field-by-field dual
duke@435 3740 const Type *TypeAryPtr::xdual() const {
kvn@5110 3741 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache() );
duke@435 3742 }
duke@435 3743
kvn@1255 3744 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3745 #ifdef ASSERT
kvn@1255 3746 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3747 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3748 if (t_aryptr) {
kvn@1255 3749 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3750 }
kvn@1255 3751 return false;
kvn@1255 3752 }
kvn@1255 3753 #endif
kvn@1255 3754
duke@435 3755 //------------------------------dump2------------------------------------------
duke@435 3756 #ifndef PRODUCT
duke@435 3757 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3758 _ary->dump2(d,depth,st);
duke@435 3759 switch( _ptr ) {
duke@435 3760 case Constant:
duke@435 3761 const_oop()->print(st);
duke@435 3762 break;
duke@435 3763 case BotPTR:
duke@435 3764 if (!WizardMode && !Verbose) {
duke@435 3765 if( _klass_is_exact ) st->print(":exact");
duke@435 3766 break;
duke@435 3767 }
duke@435 3768 case TopPTR:
duke@435 3769 case AnyNull:
duke@435 3770 case NotNull:
duke@435 3771 st->print(":%s", ptr_msg[_ptr]);
duke@435 3772 if( _klass_is_exact ) st->print(":exact");
duke@435 3773 break;
duke@435 3774 }
duke@435 3775
kvn@499 3776 if( _offset != 0 ) {
kvn@499 3777 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3778 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3779 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3780 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3781 else {
kvn@499 3782 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3783 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3784 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3785 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3786 }
kvn@499 3787 }
kvn@499 3788 st->print(" *");
kvn@658 3789 if (_instance_id == InstanceTop)
kvn@658 3790 st->print(",iid=top");
kvn@658 3791 else if (_instance_id != InstanceBot)
duke@435 3792 st->print(",iid=%d",_instance_id);
duke@435 3793 }
duke@435 3794 #endif
duke@435 3795
duke@435 3796 bool TypeAryPtr::empty(void) const {
duke@435 3797 if (_ary->empty()) return true;
duke@435 3798 return TypeOopPtr::empty();
duke@435 3799 }
duke@435 3800
duke@435 3801 //------------------------------add_offset-------------------------------------
kvn@741 3802 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
duke@435 3803 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3804 }
duke@435 3805
duke@435 3806
duke@435 3807 //=============================================================================
coleenp@548 3808
coleenp@548 3809 //------------------------------hash-------------------------------------------
coleenp@548 3810 // Type-specific hashing function.
roland@4159 3811 int TypeNarrowPtr::hash(void) const {
never@1262 3812 return _ptrtype->hash() + 7;
coleenp@548 3813 }
coleenp@548 3814
roland@4159 3815 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
roland@4159 3816 return _ptrtype->singleton();
roland@4159 3817 }
roland@4159 3818
roland@4159 3819 bool TypeNarrowPtr::empty(void) const {
roland@4159 3820 return _ptrtype->empty();
roland@4159 3821 }
roland@4159 3822
roland@4159 3823 intptr_t TypeNarrowPtr::get_con() const {
roland@4159 3824 return _ptrtype->get_con();
roland@4159 3825 }
roland@4159 3826
roland@4159 3827 bool TypeNarrowPtr::eq( const Type *t ) const {
roland@4159 3828 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
coleenp@548 3829 if (tc != NULL) {
never@1262 3830 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 3831 return false;
coleenp@548 3832 }
never@1262 3833 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 3834 }
coleenp@548 3835 return false;
coleenp@548 3836 }
coleenp@548 3837
roland@4159 3838 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
roland@4159 3839 const TypePtr* odual = _ptrtype->dual()->is_ptr();
roland@4159 3840 return make_same_narrowptr(odual);
roland@4159 3841 }
roland@4159 3842
roland@4159 3843
roland@4159 3844 const Type *TypeNarrowPtr::filter( const Type *kills ) const {
roland@4159 3845 if (isa_same_narrowptr(kills)) {
roland@4159 3846 const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype);
roland@4159 3847 if (ft->empty())
roland@4159 3848 return Type::TOP; // Canonical empty value
roland@4159 3849 if (ft->isa_ptr()) {
roland@4159 3850 return make_hash_same_narrowptr(ft->isa_ptr());
roland@4159 3851 }
roland@4159 3852 return ft;
roland@4159 3853 } else if (kills->isa_ptr()) {
roland@4159 3854 const Type* ft = _ptrtype->join(kills);
roland@4159 3855 if (ft->empty())
roland@4159 3856 return Type::TOP; // Canonical empty value
roland@4159 3857 return ft;
roland@4159 3858 } else {
roland@4159 3859 return Type::TOP;
roland@4159 3860 }
coleenp@548 3861 }
coleenp@548 3862
kvn@728 3863 //------------------------------xmeet------------------------------------------
coleenp@548 3864 // Compute the MEET of two types. It returns a new Type object.
roland@4159 3865 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
coleenp@548 3866 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3867 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3868
roland@4159 3869 if (t->base() == base()) {
roland@4159 3870 const Type* result = _ptrtype->xmeet(t->make_ptr());
roland@4159 3871 if (result->isa_ptr()) {
roland@4159 3872 return make_hash_same_narrowptr(result->is_ptr());
roland@4159 3873 }
roland@4159 3874 return result;
roland@4159 3875 }
roland@4159 3876
roland@4159 3877 // Current "this->_base" is NarrowKlass or NarrowOop
coleenp@548 3878 switch (t->base()) { // switch on original type
coleenp@548 3879
coleenp@548 3880 case Int: // Mixing ints & oops happens when javac
coleenp@548 3881 case Long: // reuses local variables
coleenp@548 3882 case FloatTop:
coleenp@548 3883 case FloatCon:
coleenp@548 3884 case FloatBot:
coleenp@548 3885 case DoubleTop:
coleenp@548 3886 case DoubleCon:
coleenp@548 3887 case DoubleBot:
kvn@728 3888 case AnyPtr:
kvn@728 3889 case RawPtr:
kvn@728 3890 case OopPtr:
kvn@728 3891 case InstPtr:
coleenp@4037 3892 case AryPtr:
coleenp@4037 3893 case MetadataPtr:
kvn@728 3894 case KlassPtr:
roland@4159 3895 case NarrowOop:
roland@4159 3896 case NarrowKlass:
kvn@728 3897
coleenp@548 3898 case Bottom: // Ye Olde Default
coleenp@548 3899 return Type::BOTTOM;
coleenp@548 3900 case Top:
coleenp@548 3901 return this;
coleenp@548 3902
coleenp@548 3903 default: // All else is a mistake
coleenp@548 3904 typerr(t);
coleenp@548 3905
coleenp@548 3906 } // End of switch
kvn@728 3907
kvn@728 3908 return this;
coleenp@548 3909 }
coleenp@548 3910
roland@4159 3911 #ifndef PRODUCT
roland@4159 3912 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 3913 _ptrtype->dump2(d, depth, st);
roland@4159 3914 }
roland@4159 3915 #endif
roland@4159 3916
roland@4159 3917 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
roland@4159 3918 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
roland@4159 3919
roland@4159 3920
roland@4159 3921 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
roland@4159 3922 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
roland@4159 3923 }
roland@4159 3924
coleenp@548 3925
coleenp@548 3926 #ifndef PRODUCT
coleenp@548 3927 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 3928 st->print("narrowoop: ");
roland@4159 3929 TypeNarrowPtr::dump2(d, depth, st);
coleenp@548 3930 }
coleenp@548 3931 #endif
coleenp@548 3932
roland@4159 3933 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
roland@4159 3934
roland@4159 3935 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
roland@4159 3936 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
roland@4159 3937 }
roland@4159 3938
roland@4159 3939 #ifndef PRODUCT
roland@4159 3940 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 3941 st->print("narrowklass: ");
roland@4159 3942 TypeNarrowPtr::dump2(d, depth, st);
roland@4159 3943 }
roland@4159 3944 #endif
coleenp@548 3945
coleenp@4037 3946
coleenp@4037 3947 //------------------------------eq---------------------------------------------
coleenp@4037 3948 // Structural equality check for Type representations
coleenp@4037 3949 bool TypeMetadataPtr::eq( const Type *t ) const {
coleenp@4037 3950 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
coleenp@4037 3951 ciMetadata* one = metadata();
coleenp@4037 3952 ciMetadata* two = a->metadata();
coleenp@4037 3953 if (one == NULL || two == NULL) {
coleenp@4037 3954 return (one == two) && TypePtr::eq(t);
coleenp@4037 3955 } else {
coleenp@4037 3956 return one->equals(two) && TypePtr::eq(t);
coleenp@4037 3957 }
coleenp@4037 3958 }
coleenp@4037 3959
coleenp@4037 3960 //------------------------------hash-------------------------------------------
coleenp@4037 3961 // Type-specific hashing function.
coleenp@4037 3962 int TypeMetadataPtr::hash(void) const {
coleenp@4037 3963 return
coleenp@4037 3964 (metadata() ? metadata()->hash() : 0) +
coleenp@4037 3965 TypePtr::hash();
coleenp@4037 3966 }
coleenp@4037 3967
coleenp@4037 3968 //------------------------------singleton--------------------------------------
coleenp@4037 3969 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 3970 // constants
coleenp@4037 3971 bool TypeMetadataPtr::singleton(void) const {
coleenp@4037 3972 // detune optimizer to not generate constant metadta + constant offset as a constant!
coleenp@4037 3973 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 3974 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 3975 }
coleenp@4037 3976
coleenp@4037 3977 //------------------------------add_offset-------------------------------------
coleenp@4037 3978 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
coleenp@4037 3979 return make( _ptr, _metadata, xadd_offset(offset));
coleenp@4037 3980 }
coleenp@4037 3981
coleenp@4037 3982 //-----------------------------filter------------------------------------------
coleenp@4037 3983 // Do not allow interface-vs.-noninterface joins to collapse to top.
coleenp@4037 3984 const Type *TypeMetadataPtr::filter( const Type *kills ) const {
coleenp@4037 3985 const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
coleenp@4037 3986 if (ft == NULL || ft->empty())
coleenp@4037 3987 return Type::TOP; // Canonical empty value
coleenp@4037 3988 return ft;
coleenp@4037 3989 }
coleenp@4037 3990
coleenp@4037 3991 //------------------------------get_con----------------------------------------
coleenp@4037 3992 intptr_t TypeMetadataPtr::get_con() const {
coleenp@4037 3993 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 3994 assert( _offset >= 0, "" );
coleenp@4037 3995
coleenp@4037 3996 if (_offset != 0) {
coleenp@4037 3997 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 3998 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 3999 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4000 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4001 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4002 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4003 // but this assertion here is to help prevent its occurence.
coleenp@4037 4004 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4005 ShouldNotReachHere();
coleenp@4037 4006 }
coleenp@4037 4007
coleenp@4037 4008 return (intptr_t)metadata()->constant_encoding();
coleenp@4037 4009 }
coleenp@4037 4010
coleenp@4037 4011 //------------------------------cast_to_ptr_type-------------------------------
coleenp@4037 4012 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
coleenp@4037 4013 if( ptr == _ptr ) return this;
coleenp@4037 4014 return make(ptr, metadata(), _offset);
coleenp@4037 4015 }
coleenp@4037 4016
coleenp@4037 4017 //------------------------------meet-------------------------------------------
coleenp@4037 4018 // Compute the MEET of two types. It returns a new Type object.
coleenp@4037 4019 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
coleenp@4037 4020 // Perform a fast test for common case; meeting the same types together.
coleenp@4037 4021 if( this == t ) return this; // Meeting same type-rep?
coleenp@4037 4022
coleenp@4037 4023 // Current "this->_base" is OopPtr
coleenp@4037 4024 switch (t->base()) { // switch on original type
coleenp@4037 4025
coleenp@4037 4026 case Int: // Mixing ints & oops happens when javac
coleenp@4037 4027 case Long: // reuses local variables
coleenp@4037 4028 case FloatTop:
coleenp@4037 4029 case FloatCon:
coleenp@4037 4030 case FloatBot:
coleenp@4037 4031 case DoubleTop:
coleenp@4037 4032 case DoubleCon:
coleenp@4037 4033 case DoubleBot:
coleenp@4037 4034 case NarrowOop:
roland@4159 4035 case NarrowKlass:
coleenp@4037 4036 case Bottom: // Ye Olde Default
coleenp@4037 4037 return Type::BOTTOM;
coleenp@4037 4038 case Top:
coleenp@4037 4039 return this;
coleenp@4037 4040
coleenp@4037 4041 default: // All else is a mistake
coleenp@4037 4042 typerr(t);
coleenp@4037 4043
coleenp@4037 4044 case AnyPtr: {
coleenp@4037 4045 // Found an AnyPtr type vs self-OopPtr type
coleenp@4037 4046 const TypePtr *tp = t->is_ptr();
coleenp@4037 4047 int offset = meet_offset(tp->offset());
coleenp@4037 4048 PTR ptr = meet_ptr(tp->ptr());
coleenp@4037 4049 switch (tp->ptr()) {
coleenp@4037 4050 case Null:
coleenp@4037 4051 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4052 // else fall through:
coleenp@4037 4053 case TopPTR:
coleenp@4037 4054 case AnyNull: {
coleenp@4037 4055 return make(ptr, NULL, offset);
coleenp@4037 4056 }
coleenp@4037 4057 case BotPTR:
coleenp@4037 4058 case NotNull:
coleenp@4037 4059 return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4060 default: typerr(t);
coleenp@4037 4061 }
coleenp@4037 4062 }
coleenp@4037 4063
coleenp@4037 4064 case RawPtr:
coleenp@4037 4065 case KlassPtr:
coleenp@4037 4066 case OopPtr:
coleenp@4037 4067 case InstPtr:
coleenp@4037 4068 case AryPtr:
coleenp@4037 4069 return TypePtr::BOTTOM; // Oop meet raw is not well defined
coleenp@4037 4070
roland@4040 4071 case MetadataPtr: {
roland@4040 4072 const TypeMetadataPtr *tp = t->is_metadataptr();
roland@4040 4073 int offset = meet_offset(tp->offset());
roland@4040 4074 PTR tptr = tp->ptr();
roland@4040 4075 PTR ptr = meet_ptr(tptr);
roland@4040 4076 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
roland@4040 4077 if (tptr == TopPTR || _ptr == TopPTR ||
roland@4040 4078 metadata()->equals(tp->metadata())) {
roland@4040 4079 return make(ptr, md, offset);
roland@4040 4080 }
roland@4040 4081 // metadata is different
roland@4040 4082 if( ptr == Constant ) { // Cannot be equal constants, so...
roland@4040 4083 if( tptr == Constant && _ptr != Constant) return t;
roland@4040 4084 if( _ptr == Constant && tptr != Constant) return this;
roland@4040 4085 ptr = NotNull; // Fall down in lattice
roland@4040 4086 }
roland@4040 4087 return make(ptr, NULL, offset);
coleenp@4037 4088 break;
roland@4040 4089 }
coleenp@4037 4090 } // End of switch
coleenp@4037 4091 return this; // Return the double constant
coleenp@4037 4092 }
coleenp@4037 4093
coleenp@4037 4094
coleenp@4037 4095 //------------------------------xdual------------------------------------------
coleenp@4037 4096 // Dual of a pure metadata pointer.
coleenp@4037 4097 const Type *TypeMetadataPtr::xdual() const {
coleenp@4037 4098 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
coleenp@4037 4099 }
coleenp@4037 4100
coleenp@4037 4101 //------------------------------dump2------------------------------------------
coleenp@4037 4102 #ifndef PRODUCT
coleenp@4037 4103 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 4104 st->print("metadataptr:%s", ptr_msg[_ptr]);
coleenp@4037 4105 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
coleenp@4037 4106 switch( _offset ) {
coleenp@4037 4107 case OffsetTop: st->print("+top"); break;
coleenp@4037 4108 case OffsetBot: st->print("+any"); break;
coleenp@4037 4109 case 0: break;
coleenp@4037 4110 default: st->print("+%d",_offset); break;
coleenp@4037 4111 }
coleenp@4037 4112 }
coleenp@4037 4113 #endif
coleenp@4037 4114
coleenp@4037 4115
coleenp@4037 4116 //=============================================================================
coleenp@4037 4117 // Convenience common pre-built type.
coleenp@4037 4118 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
coleenp@4037 4119
coleenp@4037 4120 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
coleenp@4037 4121 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
coleenp@4037 4122 }
coleenp@4037 4123
coleenp@4037 4124 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
coleenp@4037 4125 return make(Constant, m, 0);
coleenp@4037 4126 }
coleenp@4037 4127 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
coleenp@4037 4128 return make(Constant, m, 0);
coleenp@4037 4129 }
coleenp@4037 4130
coleenp@4037 4131 //------------------------------make-------------------------------------------
coleenp@4037 4132 // Create a meta data constant
coleenp@4037 4133 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
coleenp@4037 4134 assert(m == NULL || !m->is_klass(), "wrong type");
coleenp@4037 4135 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
coleenp@4037 4136 }
coleenp@4037 4137
coleenp@4037 4138
coleenp@548 4139 //=============================================================================
duke@435 4140 // Convenience common pre-built types.
duke@435 4141
duke@435 4142 // Not-null object klass or below
duke@435 4143 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 4144 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 4145
coleenp@4037 4146 //------------------------------TypeKlassPtr-----------------------------------
duke@435 4147 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
coleenp@4037 4148 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
duke@435 4149 }
duke@435 4150
duke@435 4151 //------------------------------make-------------------------------------------
duke@435 4152 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 4153 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 4154 assert( k != NULL, "Expect a non-NULL klass");
coleenp@4037 4155 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
duke@435 4156 TypeKlassPtr *r =
duke@435 4157 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 4158
duke@435 4159 return r;
duke@435 4160 }
duke@435 4161
duke@435 4162 //------------------------------eq---------------------------------------------
duke@435 4163 // Structural equality check for Type representations
duke@435 4164 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 4165 const TypeKlassPtr *p = t->is_klassptr();
duke@435 4166 return
duke@435 4167 klass()->equals(p->klass()) &&
coleenp@4037 4168 TypePtr::eq(p);
duke@435 4169 }
duke@435 4170
duke@435 4171 //------------------------------hash-------------------------------------------
duke@435 4172 // Type-specific hashing function.
duke@435 4173 int TypeKlassPtr::hash(void) const {
coleenp@4037 4174 return klass()->hash() + TypePtr::hash();
coleenp@4037 4175 }
coleenp@4037 4176
coleenp@4037 4177 //------------------------------singleton--------------------------------------
coleenp@4037 4178 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4179 // constants
coleenp@4037 4180 bool TypeKlassPtr::singleton(void) const {
coleenp@4037 4181 // detune optimizer to not generate constant klass + constant offset as a constant!
coleenp@4037 4182 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4183 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4184 }
duke@435 4185
kvn@2116 4186 //----------------------compute_klass------------------------------------------
kvn@2116 4187 // Compute the defining klass for this class
kvn@2116 4188 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 4189 // Compute _klass based on element type.
duke@435 4190 ciKlass* k_ary = NULL;
duke@435 4191 const TypeInstPtr *tinst;
duke@435 4192 const TypeAryPtr *tary;
coleenp@548 4193 const Type* el = elem();
coleenp@548 4194 if (el->isa_narrowoop()) {
kvn@656 4195 el = el->make_ptr();
coleenp@548 4196 }
coleenp@548 4197
duke@435 4198 // Get element klass
coleenp@548 4199 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 4200 // Compute array klass from element klass
duke@435 4201 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 4202 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 4203 // Compute array klass from element klass
duke@435 4204 ciKlass* k_elem = tary->klass();
duke@435 4205 // If element type is something like bottom[], k_elem will be null.
duke@435 4206 if (k_elem != NULL)
duke@435 4207 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 4208 } else if ((el->base() == Type::Top) ||
coleenp@548 4209 (el->base() == Type::Bottom)) {
duke@435 4210 // element type of Bottom occurs from meet of basic type
duke@435 4211 // and object; Top occurs when doing join on Bottom.
duke@435 4212 // Leave k_ary at NULL.
duke@435 4213 } else {
duke@435 4214 // Cannot compute array klass directly from basic type,
duke@435 4215 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 4216 #ifdef ASSERT
kvn@2116 4217 if (verify && el->isa_int()) {
kvn@2116 4218 // Check simple cases when verifying klass.
kvn@2116 4219 BasicType bt = T_ILLEGAL;
kvn@2116 4220 if (el == TypeInt::BYTE) {
kvn@2116 4221 bt = T_BYTE;
kvn@2116 4222 } else if (el == TypeInt::SHORT) {
kvn@2116 4223 bt = T_SHORT;
kvn@2116 4224 } else if (el == TypeInt::CHAR) {
kvn@2116 4225 bt = T_CHAR;
kvn@2116 4226 } else if (el == TypeInt::INT) {
kvn@2116 4227 bt = T_INT;
kvn@2116 4228 } else {
kvn@2116 4229 return _klass; // just return specified klass
kvn@2116 4230 }
kvn@2116 4231 return ciTypeArrayKlass::make(bt);
kvn@2116 4232 }
kvn@2116 4233 #endif
coleenp@548 4234 assert(!el->isa_int(),
duke@435 4235 "integral arrays must be pre-equipped with a class");
duke@435 4236 // Compute array klass directly from basic type
coleenp@548 4237 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 4238 }
kvn@2116 4239 return k_ary;
kvn@2116 4240 }
kvn@2116 4241
kvn@2116 4242 //------------------------------klass------------------------------------------
kvn@2116 4243 // Return the defining klass for this class
kvn@2116 4244 ciKlass* TypeAryPtr::klass() const {
kvn@2116 4245 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 4246
kvn@2116 4247 // Oops, need to compute _klass and cache it
kvn@2116 4248 ciKlass* k_ary = compute_klass();
duke@435 4249
kvn@2636 4250 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 4251 // The _klass field acts as a cache of the underlying
duke@435 4252 // ciKlass for this array type. In order to set the field,
duke@435 4253 // we need to cast away const-ness.
duke@435 4254 //
duke@435 4255 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 4256 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 4257 // active compilations. However, the ciKlass which represents
duke@435 4258 // this Type is *not* shared between compilations, so caching
duke@435 4259 // this value would result in fetching a dangling pointer.
duke@435 4260 //
duke@435 4261 // Recomputing the underlying ciKlass for each request is
duke@435 4262 // a bit less efficient than caching, but calls to
duke@435 4263 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 4264 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 4265 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 4266 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 4267 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 4268 }
kvn@598 4269 }
duke@435 4270 return k_ary;
duke@435 4271 }
duke@435 4272
duke@435 4273
duke@435 4274 //------------------------------add_offset-------------------------------------
duke@435 4275 // Access internals of klass object
kvn@741 4276 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 4277 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 4278 }
duke@435 4279
duke@435 4280 //------------------------------cast_to_ptr_type-------------------------------
duke@435 4281 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 4282 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 4283 if( ptr == _ptr ) return this;
duke@435 4284 return make(ptr, _klass, _offset);
duke@435 4285 }
duke@435 4286
duke@435 4287
duke@435 4288 //-----------------------------cast_to_exactness-------------------------------
duke@435 4289 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 4290 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 4291 if (!UseExactTypes) return this;
duke@435 4292 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 4293 }
duke@435 4294
duke@435 4295
duke@435 4296 //-----------------------------as_instance_type--------------------------------
duke@435 4297 // Corresponding type for an instance of the given class.
duke@435 4298 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 4299 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 4300 ciKlass* k = klass();
duke@435 4301 bool xk = klass_is_exact();
duke@435 4302 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 4303 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
morris@4760 4304 guarantee(toop != NULL, "need type for given klass");
duke@435 4305 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 4306 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 4307 }
duke@435 4308
duke@435 4309
duke@435 4310 //------------------------------xmeet------------------------------------------
duke@435 4311 // Compute the MEET of two types, return a new Type object.
duke@435 4312 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 4313 // Perform a fast test for common case; meeting the same types together.
duke@435 4314 if( this == t ) return this; // Meeting same type-rep?
duke@435 4315
duke@435 4316 // Current "this->_base" is Pointer
duke@435 4317 switch (t->base()) { // switch on original type
duke@435 4318
duke@435 4319 case Int: // Mixing ints & oops happens when javac
duke@435 4320 case Long: // reuses local variables
duke@435 4321 case FloatTop:
duke@435 4322 case FloatCon:
duke@435 4323 case FloatBot:
duke@435 4324 case DoubleTop:
duke@435 4325 case DoubleCon:
duke@435 4326 case DoubleBot:
kvn@728 4327 case NarrowOop:
roland@4159 4328 case NarrowKlass:
duke@435 4329 case Bottom: // Ye Olde Default
duke@435 4330 return Type::BOTTOM;
duke@435 4331 case Top:
duke@435 4332 return this;
duke@435 4333
duke@435 4334 default: // All else is a mistake
duke@435 4335 typerr(t);
duke@435 4336
duke@435 4337 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4338 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4339 const TypePtr *tp = t->is_ptr();
duke@435 4340 int offset = meet_offset(tp->offset());
duke@435 4341 PTR ptr = meet_ptr(tp->ptr());
duke@435 4342 switch (tp->ptr()) {
duke@435 4343 case TopPTR:
duke@435 4344 return this;
duke@435 4345 case Null:
duke@435 4346 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4347 case AnyNull:
duke@435 4348 return make( ptr, klass(), offset );
duke@435 4349 case BotPTR:
duke@435 4350 case NotNull:
duke@435 4351 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4352 default: typerr(t);
duke@435 4353 }
duke@435 4354 }
duke@435 4355
coleenp@4037 4356 case RawPtr:
coleenp@4037 4357 case MetadataPtr:
coleenp@4037 4358 case OopPtr:
duke@435 4359 case AryPtr: // Meet with AryPtr
duke@435 4360 case InstPtr: // Meet with InstPtr
coleenp@4037 4361 return TypePtr::BOTTOM;
duke@435 4362
duke@435 4363 //
duke@435 4364 // A-top }
duke@435 4365 // / | \ } Tops
duke@435 4366 // B-top A-any C-top }
duke@435 4367 // | / | \ | } Any-nulls
duke@435 4368 // B-any | C-any }
duke@435 4369 // | | |
duke@435 4370 // B-con A-con C-con } constants; not comparable across classes
duke@435 4371 // | | |
duke@435 4372 // B-not | C-not }
duke@435 4373 // | \ | / | } not-nulls
duke@435 4374 // B-bot A-not C-bot }
duke@435 4375 // \ | / } Bottoms
duke@435 4376 // A-bot }
duke@435 4377 //
duke@435 4378
duke@435 4379 case KlassPtr: { // Meet two KlassPtr types
duke@435 4380 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4381 int off = meet_offset(tkls->offset());
duke@435 4382 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4383
duke@435 4384 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4385 // If we have constants, then we created oops so classes are loaded
duke@435 4386 // and we can handle the constants further down. This case handles
duke@435 4387 // not-loaded classes
duke@435 4388 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4389 return make( ptr, klass(), off );
duke@435 4390 }
duke@435 4391
duke@435 4392 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4393 ciKlass* tkls_klass = tkls->klass();
duke@435 4394 ciKlass* this_klass = this->klass();
duke@435 4395 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4396 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4397
duke@435 4398 // If 'this' type is above the centerline and is a superclass of the
duke@435 4399 // other, we can treat 'this' as having the same type as the other.
duke@435 4400 if ((above_centerline(this->ptr())) &&
duke@435 4401 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4402 this_klass = tkls_klass;
duke@435 4403 }
duke@435 4404 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4405 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4406 if ((above_centerline(tkls->ptr())) &&
duke@435 4407 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4408 tkls_klass = this_klass;
duke@435 4409 }
duke@435 4410
duke@435 4411 // Check for classes now being equal
duke@435 4412 if (tkls_klass->equals(this_klass)) {
duke@435 4413 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4414 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4415 // handled elsewhere).
duke@435 4416 if( ptr == Constant ) {
coleenp@4037 4417 if (this->_ptr == Constant && tkls->_ptr == Constant &&
coleenp@4037 4418 this->klass()->equals(tkls->klass()));
coleenp@4037 4419 else if (above_centerline(this->ptr()));
coleenp@4037 4420 else if (above_centerline(tkls->ptr()));
duke@435 4421 else
duke@435 4422 ptr = NotNull;
duke@435 4423 }
duke@435 4424 return make( ptr, this_klass, off );
duke@435 4425 } // Else classes are not equal
duke@435 4426
duke@435 4427 // Since klasses are different, we require the LCA in the Java
duke@435 4428 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4429 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4430 ptr = NotNull;
duke@435 4431 // Now we find the LCA of Java classes
duke@435 4432 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4433 return make( ptr, k, off );
duke@435 4434 } // End of case KlassPtr
duke@435 4435
duke@435 4436 } // End of switch
duke@435 4437 return this; // Return the double constant
duke@435 4438 }
duke@435 4439
duke@435 4440 //------------------------------xdual------------------------------------------
duke@435 4441 // Dual: compute field-by-field dual
duke@435 4442 const Type *TypeKlassPtr::xdual() const {
duke@435 4443 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4444 }
duke@435 4445
coleenp@4037 4446 //------------------------------get_con----------------------------------------
coleenp@4037 4447 intptr_t TypeKlassPtr::get_con() const {
coleenp@4037 4448 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4449 assert( _offset >= 0, "" );
coleenp@4037 4450
coleenp@4037 4451 if (_offset != 0) {
coleenp@4037 4452 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4453 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4454 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4455 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4456 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4457 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4458 // but this assertion here is to help prevent its occurence.
coleenp@4037 4459 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4460 ShouldNotReachHere();
coleenp@4037 4461 }
coleenp@4037 4462
coleenp@4037 4463 return (intptr_t)klass()->constant_encoding();
coleenp@4037 4464 }
duke@435 4465 //------------------------------dump2------------------------------------------
duke@435 4466 // Dump Klass Type
duke@435 4467 #ifndef PRODUCT
duke@435 4468 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4469 switch( _ptr ) {
duke@435 4470 case Constant:
duke@435 4471 st->print("precise ");
duke@435 4472 case NotNull:
duke@435 4473 {
duke@435 4474 const char *name = klass()->name()->as_utf8();
duke@435 4475 if( name ) {
duke@435 4476 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4477 } else {
duke@435 4478 ShouldNotReachHere();
duke@435 4479 }
duke@435 4480 }
duke@435 4481 case BotPTR:
duke@435 4482 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4483 case TopPTR:
duke@435 4484 case AnyNull:
duke@435 4485 st->print(":%s", ptr_msg[_ptr]);
duke@435 4486 if( _klass_is_exact ) st->print(":exact");
duke@435 4487 break;
duke@435 4488 }
duke@435 4489
duke@435 4490 if( _offset ) { // Dump offset, if any
duke@435 4491 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4492 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4493 else { st->print("+%d", _offset); }
duke@435 4494 }
duke@435 4495
duke@435 4496 st->print(" *");
duke@435 4497 }
duke@435 4498 #endif
duke@435 4499
duke@435 4500
duke@435 4501
duke@435 4502 //=============================================================================
duke@435 4503 // Convenience common pre-built types.
duke@435 4504
duke@435 4505 //------------------------------make-------------------------------------------
duke@435 4506 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4507 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4508 }
duke@435 4509
duke@435 4510 //------------------------------make-------------------------------------------
duke@435 4511 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4512 Compile* C = Compile::current();
duke@435 4513 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4514 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4515 const TypeTuple *domain;
twisti@1572 4516 if (method->is_static()) {
duke@435 4517 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4518 } else {
duke@435 4519 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4520 }
duke@435 4521 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4522 tf = TypeFunc::make(domain, range);
duke@435 4523 C->set_last_tf(method, tf); // fill cache
duke@435 4524 return tf;
duke@435 4525 }
duke@435 4526
duke@435 4527 //------------------------------meet-------------------------------------------
duke@435 4528 // Compute the MEET of two types. It returns a new Type object.
duke@435 4529 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4530 // Perform a fast test for common case; meeting the same types together.
duke@435 4531 if( this == t ) return this; // Meeting same type-rep?
duke@435 4532
duke@435 4533 // Current "this->_base" is Func
duke@435 4534 switch (t->base()) { // switch on original type
duke@435 4535
duke@435 4536 case Bottom: // Ye Olde Default
duke@435 4537 return t;
duke@435 4538
duke@435 4539 default: // All else is a mistake
duke@435 4540 typerr(t);
duke@435 4541
duke@435 4542 case Top:
duke@435 4543 break;
duke@435 4544 }
duke@435 4545 return this; // Return the double constant
duke@435 4546 }
duke@435 4547
duke@435 4548 //------------------------------xdual------------------------------------------
duke@435 4549 // Dual: compute field-by-field dual
duke@435 4550 const Type *TypeFunc::xdual() const {
duke@435 4551 return this;
duke@435 4552 }
duke@435 4553
duke@435 4554 //------------------------------eq---------------------------------------------
duke@435 4555 // Structural equality check for Type representations
duke@435 4556 bool TypeFunc::eq( const Type *t ) const {
duke@435 4557 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4558 return _domain == a->_domain &&
duke@435 4559 _range == a->_range;
duke@435 4560 }
duke@435 4561
duke@435 4562 //------------------------------hash-------------------------------------------
duke@435 4563 // Type-specific hashing function.
duke@435 4564 int TypeFunc::hash(void) const {
duke@435 4565 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4566 }
duke@435 4567
duke@435 4568 //------------------------------dump2------------------------------------------
duke@435 4569 // Dump Function Type
duke@435 4570 #ifndef PRODUCT
duke@435 4571 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4572 if( _range->_cnt <= Parms )
duke@435 4573 st->print("void");
duke@435 4574 else {
duke@435 4575 uint i;
duke@435 4576 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4577 _range->field_at(i)->dump2(d,depth,st);
duke@435 4578 st->print("/");
duke@435 4579 }
duke@435 4580 _range->field_at(i)->dump2(d,depth,st);
duke@435 4581 }
duke@435 4582 st->print(" ");
duke@435 4583 st->print("( ");
duke@435 4584 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4585 st->print("...)");
duke@435 4586 return;
duke@435 4587 }
duke@435 4588 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4589 if (Parms < _domain->_cnt)
duke@435 4590 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4591 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4592 st->print(", ");
duke@435 4593 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4594 }
duke@435 4595 st->print(" )");
duke@435 4596 }
duke@435 4597 #endif
duke@435 4598
duke@435 4599 //------------------------------singleton--------------------------------------
duke@435 4600 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4601 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4602 // or a single symbol.
duke@435 4603 bool TypeFunc::singleton(void) const {
duke@435 4604 return false; // Never a singleton
duke@435 4605 }
duke@435 4606
duke@435 4607 bool TypeFunc::empty(void) const {
duke@435 4608 return false; // Never empty
duke@435 4609 }
duke@435 4610
duke@435 4611
duke@435 4612 BasicType TypeFunc::return_type() const{
duke@435 4613 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4614 return T_VOID;
duke@435 4615 }
duke@435 4616 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4617 }

mercurial