src/share/vm/opto/type.cpp

Mon, 16 Sep 2013 09:41:03 +0200

author
tschatzl
date
Mon, 16 Sep 2013 09:41:03 +0200
changeset 5710
884ed7a10f09
parent 5694
7944aba7ba41
parent 5658
edb5ab0f3fe5
child 5791
c9ccd7b85f20
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "ci/ciTypeFlow.hpp"
    28 #include "classfile/symbolTable.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "compiler/compileLog.hpp"
    31 #include "libadt/dict.hpp"
    32 #include "memory/gcLocker.hpp"
    33 #include "memory/oopFactory.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/instanceKlass.hpp"
    36 #include "oops/instanceMirrorKlass.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "oops/typeArrayKlass.hpp"
    39 #include "opto/matcher.hpp"
    40 #include "opto/node.hpp"
    41 #include "opto/opcodes.hpp"
    42 #include "opto/type.hpp"
    44 // Portions of code courtesy of Clifford Click
    46 // Optimization - Graph Style
    48 // Dictionary of types shared among compilations.
    49 Dict* Type::_shared_type_dict = NULL;
    51 // Array which maps compiler types to Basic Types
    52 Type::TypeInfo Type::_type_info[Type::lastype] = {
    53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
    54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
    55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
    56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
    57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
    58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
    59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
    60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
    61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
    62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
    64 #ifndef SPARC
    65   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
    66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
    67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
    68   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
    69 #else
    70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
    72   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    74 #endif // IA32 || AMD64
    75   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
    76   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
    77   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
    78   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
    79   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
    80   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
    81   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
    82   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
    83   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
    84   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
    85   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
    86   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
    87   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
    88   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
    89   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
    90   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
    91   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
    92   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
    93 };
    95 // Map ideal registers (machine types) to ideal types
    96 const Type *Type::mreg2type[_last_machine_leaf];
    98 // Map basic types to canonical Type* pointers.
    99 const Type* Type::     _const_basic_type[T_CONFLICT+1];
   101 // Map basic types to constant-zero Types.
   102 const Type* Type::            _zero_type[T_CONFLICT+1];
   104 // Map basic types to array-body alias types.
   105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
   107 //=============================================================================
   108 // Convenience common pre-built types.
   109 const Type *Type::ABIO;         // State-of-machine only
   110 const Type *Type::BOTTOM;       // All values
   111 const Type *Type::CONTROL;      // Control only
   112 const Type *Type::DOUBLE;       // All doubles
   113 const Type *Type::FLOAT;        // All floats
   114 const Type *Type::HALF;         // Placeholder half of doublewide type
   115 const Type *Type::MEMORY;       // Abstract store only
   116 const Type *Type::RETURN_ADDRESS;
   117 const Type *Type::TOP;          // No values in set
   119 //------------------------------get_const_type---------------------------
   120 const Type* Type::get_const_type(ciType* type) {
   121   if (type == NULL) {
   122     return NULL;
   123   } else if (type->is_primitive_type()) {
   124     return get_const_basic_type(type->basic_type());
   125   } else {
   126     return TypeOopPtr::make_from_klass(type->as_klass());
   127   }
   128 }
   130 //---------------------------array_element_basic_type---------------------------------
   131 // Mapping to the array element's basic type.
   132 BasicType Type::array_element_basic_type() const {
   133   BasicType bt = basic_type();
   134   if (bt == T_INT) {
   135     if (this == TypeInt::INT)   return T_INT;
   136     if (this == TypeInt::CHAR)  return T_CHAR;
   137     if (this == TypeInt::BYTE)  return T_BYTE;
   138     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   139     if (this == TypeInt::SHORT) return T_SHORT;
   140     return T_VOID;
   141   }
   142   return bt;
   143 }
   145 //---------------------------get_typeflow_type---------------------------------
   146 // Import a type produced by ciTypeFlow.
   147 const Type* Type::get_typeflow_type(ciType* type) {
   148   switch (type->basic_type()) {
   150   case ciTypeFlow::StateVector::T_BOTTOM:
   151     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   152     return Type::BOTTOM;
   154   case ciTypeFlow::StateVector::T_TOP:
   155     assert(type == ciTypeFlow::StateVector::top_type(), "");
   156     return Type::TOP;
   158   case ciTypeFlow::StateVector::T_NULL:
   159     assert(type == ciTypeFlow::StateVector::null_type(), "");
   160     return TypePtr::NULL_PTR;
   162   case ciTypeFlow::StateVector::T_LONG2:
   163     // The ciTypeFlow pass pushes a long, then the half.
   164     // We do the same.
   165     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   166     return TypeInt::TOP;
   168   case ciTypeFlow::StateVector::T_DOUBLE2:
   169     // The ciTypeFlow pass pushes double, then the half.
   170     // Our convention is the same.
   171     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   172     return Type::TOP;
   174   case T_ADDRESS:
   175     assert(type->is_return_address(), "");
   176     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   178   default:
   179     // make sure we did not mix up the cases:
   180     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   181     assert(type != ciTypeFlow::StateVector::top_type(), "");
   182     assert(type != ciTypeFlow::StateVector::null_type(), "");
   183     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   184     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   185     assert(!type->is_return_address(), "");
   187     return Type::get_const_type(type);
   188   }
   189 }
   192 //-----------------------make_from_constant------------------------------------
   193 const Type* Type::make_from_constant(ciConstant constant,
   194                                      bool require_constant, bool is_autobox_cache) {
   195   switch (constant.basic_type()) {
   196   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
   197   case T_CHAR:     return TypeInt::make(constant.as_char());
   198   case T_BYTE:     return TypeInt::make(constant.as_byte());
   199   case T_SHORT:    return TypeInt::make(constant.as_short());
   200   case T_INT:      return TypeInt::make(constant.as_int());
   201   case T_LONG:     return TypeLong::make(constant.as_long());
   202   case T_FLOAT:    return TypeF::make(constant.as_float());
   203   case T_DOUBLE:   return TypeD::make(constant.as_double());
   204   case T_ARRAY:
   205   case T_OBJECT:
   206     {
   207       // cases:
   208       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
   209       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
   210       // An oop is not scavengable if it is in the perm gen.
   211       ciObject* oop_constant = constant.as_object();
   212       if (oop_constant->is_null_object()) {
   213         return Type::get_zero_type(T_OBJECT);
   214       } else if (require_constant || oop_constant->should_be_constant()) {
   215         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
   216       }
   217     }
   218   }
   219   // Fall through to failure
   220   return NULL;
   221 }
   224 //------------------------------make-------------------------------------------
   225 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   226 // and look for an existing copy in the type dictionary.
   227 const Type *Type::make( enum TYPES t ) {
   228   return (new Type(t))->hashcons();
   229 }
   231 //------------------------------cmp--------------------------------------------
   232 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   233   if( t1->_base != t2->_base )
   234     return 1;                   // Missed badly
   235   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   236   return !t1->eq(t2);           // Return ZERO if equal
   237 }
   239 //------------------------------hash-------------------------------------------
   240 int Type::uhash( const Type *const t ) {
   241   return t->hash();
   242 }
   244 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
   246 //--------------------------Initialize_shared----------------------------------
   247 void Type::Initialize_shared(Compile* current) {
   248   // This method does not need to be locked because the first system
   249   // compilations (stub compilations) occur serially.  If they are
   250   // changed to proceed in parallel, then this section will need
   251   // locking.
   253   Arena* save = current->type_arena();
   254   Arena* shared_type_arena = new (mtCompiler)Arena();
   256   current->set_type_arena(shared_type_arena);
   257   _shared_type_dict =
   258     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   259                                   shared_type_arena, 128 );
   260   current->set_type_dict(_shared_type_dict);
   262   // Make shared pre-built types.
   263   CONTROL = make(Control);      // Control only
   264   TOP     = make(Top);          // No values in set
   265   MEMORY  = make(Memory);       // Abstract store only
   266   ABIO    = make(Abio);         // State-of-machine only
   267   RETURN_ADDRESS=make(Return_Address);
   268   FLOAT   = make(FloatBot);     // All floats
   269   DOUBLE  = make(DoubleBot);    // All doubles
   270   BOTTOM  = make(Bottom);       // Everything
   271   HALF    = make(Half);         // Placeholder half of doublewide type
   273   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   274   TypeF::ONE  = TypeF::make(1.0); // Float 1
   276   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   277   TypeD::ONE  = TypeD::make(1.0); // Double 1
   279   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   280   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   281   TypeInt::ONE     = TypeInt::make( 1);  //  1
   282   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   283   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   284   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   285   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   286   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   287   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   288   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   289   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   290   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   291   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   292   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   293   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   294   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   295   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   296   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   297   // CmpL is overloaded both as the bytecode computation returning
   298   // a trinary (-1,0,+1) integer result AND as an efficient long
   299   // compare returning optimizer ideal-type flags.
   300   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   301   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   302   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   303   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   304   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
   306   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   307   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   308   TypeLong::ONE     = TypeLong::make( 1);        //  1
   309   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   310   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   311   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   312   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   314   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   315   fboth[0] = Type::CONTROL;
   316   fboth[1] = Type::CONTROL;
   317   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   319   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   320   ffalse[0] = Type::CONTROL;
   321   ffalse[1] = Type::TOP;
   322   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   324   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   325   fneither[0] = Type::TOP;
   326   fneither[1] = Type::TOP;
   327   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   329   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   330   ftrue[0] = Type::TOP;
   331   ftrue[1] = Type::CONTROL;
   332   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   334   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   335   floop[0] = Type::CONTROL;
   336   floop[1] = TypeInt::INT;
   337   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   339   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   340   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   341   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   343   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   344   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   346   const Type **fmembar = TypeTuple::fields(0);
   347   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   349   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   350   fsc[0] = TypeInt::CC;
   351   fsc[1] = Type::MEMORY;
   352   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   354   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   355   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   356   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   357   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   358                                            false, 0, oopDesc::mark_offset_in_bytes());
   359   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   360                                            false, 0, oopDesc::klass_offset_in_bytes());
   361   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
   363   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
   365   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   366   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   368   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
   370   mreg2type[Op_Node] = Type::BOTTOM;
   371   mreg2type[Op_Set ] = 0;
   372   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   373   mreg2type[Op_RegI] = TypeInt::INT;
   374   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   375   mreg2type[Op_RegF] = Type::FLOAT;
   376   mreg2type[Op_RegD] = Type::DOUBLE;
   377   mreg2type[Op_RegL] = TypeLong::LONG;
   378   mreg2type[Op_RegFlags] = TypeInt::CC;
   380   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
   382   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   384 #ifdef _LP64
   385   if (UseCompressedOops) {
   386     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
   387     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   388   } else
   389 #endif
   390   {
   391     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   392     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   393   }
   394   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   395   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   396   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   397   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   398   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   399   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   400   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   402   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   403   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   404   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   405   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   406   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   407   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   408   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   409   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   410   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   411   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   412   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   413   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   415   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   416   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   418   const Type **fi2c = TypeTuple::fields(2);
   419   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
   420   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   421   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   423   const Type **intpair = TypeTuple::fields(2);
   424   intpair[0] = TypeInt::INT;
   425   intpair[1] = TypeInt::INT;
   426   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   428   const Type **longpair = TypeTuple::fields(2);
   429   longpair[0] = TypeLong::LONG;
   430   longpair[1] = TypeLong::LONG;
   431   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   433   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
   434   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
   435   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
   436   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
   437   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
   438   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
   439   _const_basic_type[T_INT]         = TypeInt::INT;
   440   _const_basic_type[T_LONG]        = TypeLong::LONG;
   441   _const_basic_type[T_FLOAT]       = Type::FLOAT;
   442   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
   443   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
   444   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   445   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
   446   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   447   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
   449   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
   450   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
   451   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
   452   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
   453   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
   454   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
   455   _zero_type[T_INT]         = TypeInt::ZERO;
   456   _zero_type[T_LONG]        = TypeLong::ZERO;
   457   _zero_type[T_FLOAT]       = TypeF::ZERO;
   458   _zero_type[T_DOUBLE]      = TypeD::ZERO;
   459   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
   460   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
   461   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
   462   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
   464   // get_zero_type() should not happen for T_CONFLICT
   465   _zero_type[T_CONFLICT]= NULL;
   467   // Vector predefined types, it needs initialized _const_basic_type[].
   468   if (Matcher::vector_size_supported(T_BYTE,4)) {
   469     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
   470   }
   471   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   472     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
   473   }
   474   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   475     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
   476   }
   477   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   478     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
   479   }
   480   mreg2type[Op_VecS] = TypeVect::VECTS;
   481   mreg2type[Op_VecD] = TypeVect::VECTD;
   482   mreg2type[Op_VecX] = TypeVect::VECTX;
   483   mreg2type[Op_VecY] = TypeVect::VECTY;
   485   // Restore working type arena.
   486   current->set_type_arena(save);
   487   current->set_type_dict(NULL);
   488 }
   490 //------------------------------Initialize-------------------------------------
   491 void Type::Initialize(Compile* current) {
   492   assert(current->type_arena() != NULL, "must have created type arena");
   494   if (_shared_type_dict == NULL) {
   495     Initialize_shared(current);
   496   }
   498   Arena* type_arena = current->type_arena();
   500   // Create the hash-cons'ing dictionary with top-level storage allocation
   501   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   502   current->set_type_dict(tdic);
   504   // Transfer the shared types.
   505   DictI i(_shared_type_dict);
   506   for( ; i.test(); ++i ) {
   507     Type* t = (Type*)i._value;
   508     tdic->Insert(t,t);  // New Type, insert into Type table
   509   }
   510 }
   512 //------------------------------hashcons---------------------------------------
   513 // Do the hash-cons trick.  If the Type already exists in the type table,
   514 // delete the current Type and return the existing Type.  Otherwise stick the
   515 // current Type in the Type table.
   516 const Type *Type::hashcons(void) {
   517   debug_only(base());           // Check the assertion in Type::base().
   518   // Look up the Type in the Type dictionary
   519   Dict *tdic = type_dict();
   520   Type* old = (Type*)(tdic->Insert(this, this, false));
   521   if( old ) {                   // Pre-existing Type?
   522     if( old != this )           // Yes, this guy is not the pre-existing?
   523       delete this;              // Yes, Nuke this guy
   524     assert( old->_dual, "" );
   525     return old;                 // Return pre-existing
   526   }
   528   // Every type has a dual (to make my lattice symmetric).
   529   // Since we just discovered a new Type, compute its dual right now.
   530   assert( !_dual, "" );         // No dual yet
   531   _dual = xdual();              // Compute the dual
   532   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   533     _dual = this;
   534     return this;
   535   }
   536   assert( !_dual->_dual, "" );  // No reverse dual yet
   537   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   538   // New Type, insert into Type table
   539   tdic->Insert((void*)_dual,(void*)_dual);
   540   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   541 #ifdef ASSERT
   542   Type *dual_dual = (Type*)_dual->xdual();
   543   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   544   delete dual_dual;
   545 #endif
   546   return this;                  // Return new Type
   547 }
   549 //------------------------------eq---------------------------------------------
   550 // Structural equality check for Type representations
   551 bool Type::eq( const Type * ) const {
   552   return true;                  // Nothing else can go wrong
   553 }
   555 //------------------------------hash-------------------------------------------
   556 // Type-specific hashing function.
   557 int Type::hash(void) const {
   558   return _base;
   559 }
   561 //------------------------------is_finite--------------------------------------
   562 // Has a finite value
   563 bool Type::is_finite() const {
   564   return false;
   565 }
   567 //------------------------------is_nan-----------------------------------------
   568 // Is not a number (NaN)
   569 bool Type::is_nan()    const {
   570   return false;
   571 }
   573 //----------------------interface_vs_oop---------------------------------------
   574 #ifdef ASSERT
   575 bool Type::interface_vs_oop(const Type *t) const {
   576   bool result = false;
   578   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   579   const TypePtr*    t_ptr =    t->make_ptr();
   580   if( this_ptr == NULL || t_ptr == NULL )
   581     return result;
   583   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   584   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   585   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   586     bool this_interface = this_inst->klass()->is_interface();
   587     bool    t_interface =    t_inst->klass()->is_interface();
   588     result = this_interface ^ t_interface;
   589   }
   591   return result;
   592 }
   593 #endif
   595 //------------------------------meet-------------------------------------------
   596 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   597 // commutative and the lattice is symmetric.
   598 const Type *Type::meet( const Type *t ) const {
   599   if (isa_narrowoop() && t->isa_narrowoop()) {
   600     const Type* result = make_ptr()->meet(t->make_ptr());
   601     return result->make_narrowoop();
   602   }
   603   if (isa_narrowklass() && t->isa_narrowklass()) {
   604     const Type* result = make_ptr()->meet(t->make_ptr());
   605     return result->make_narrowklass();
   606   }
   608   const Type *mt = xmeet(t);
   609   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   610   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
   611 #ifdef ASSERT
   612   assert( mt == t->xmeet(this), "meet not commutative" );
   613   const Type* dual_join = mt->_dual;
   614   const Type *t2t    = dual_join->xmeet(t->_dual);
   615   const Type *t2this = dual_join->xmeet(   _dual);
   617   // Interface meet Oop is Not Symmetric:
   618   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   619   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   621   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
   622     tty->print_cr("=== Meet Not Symmetric ===");
   623     tty->print("t   =                   ");         t->dump(); tty->cr();
   624     tty->print("this=                   ");            dump(); tty->cr();
   625     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
   627     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
   628     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
   629     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
   631     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
   632     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
   634     fatal("meet not symmetric" );
   635   }
   636 #endif
   637   return mt;
   638 }
   640 //------------------------------xmeet------------------------------------------
   641 // Compute the MEET of two types.  It returns a new Type object.
   642 const Type *Type::xmeet( const Type *t ) const {
   643   // Perform a fast test for common case; meeting the same types together.
   644   if( this == t ) return this;  // Meeting same type-rep?
   646   // Meeting TOP with anything?
   647   if( _base == Top ) return t;
   649   // Meeting BOTTOM with anything?
   650   if( _base == Bottom ) return BOTTOM;
   652   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   653   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   654   switch (t->base()) {  // Switch on original type
   656   // Cut in half the number of cases I must handle.  Only need cases for when
   657   // the given enum "t->type" is less than or equal to the local enum "type".
   658   case FloatCon:
   659   case DoubleCon:
   660   case Int:
   661   case Long:
   662     return t->xmeet(this);
   664   case OopPtr:
   665     return t->xmeet(this);
   667   case InstPtr:
   668     return t->xmeet(this);
   670   case MetadataPtr:
   671   case KlassPtr:
   672     return t->xmeet(this);
   674   case AryPtr:
   675     return t->xmeet(this);
   677   case NarrowOop:
   678     return t->xmeet(this);
   680   case NarrowKlass:
   681     return t->xmeet(this);
   683   case Bad:                     // Type check
   684   default:                      // Bogus type not in lattice
   685     typerr(t);
   686     return Type::BOTTOM;
   688   case Bottom:                  // Ye Olde Default
   689     return t;
   691   case FloatTop:
   692     if( _base == FloatTop ) return this;
   693   case FloatBot:                // Float
   694     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   695     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   696     typerr(t);
   697     return Type::BOTTOM;
   699   case DoubleTop:
   700     if( _base == DoubleTop ) return this;
   701   case DoubleBot:               // Double
   702     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   703     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   704     typerr(t);
   705     return Type::BOTTOM;
   707   // These next few cases must match exactly or it is a compile-time error.
   708   case Control:                 // Control of code
   709   case Abio:                    // State of world outside of program
   710   case Memory:
   711     if( _base == t->_base )  return this;
   712     typerr(t);
   713     return Type::BOTTOM;
   715   case Top:                     // Top of the lattice
   716     return this;
   717   }
   719   // The type is unchanged
   720   return this;
   721 }
   723 //-----------------------------filter------------------------------------------
   724 const Type *Type::filter( const Type *kills ) const {
   725   const Type* ft = join(kills);
   726   if (ft->empty())
   727     return Type::TOP;           // Canonical empty value
   728   return ft;
   729 }
   731 //------------------------------xdual------------------------------------------
   732 // Compute dual right now.
   733 const Type::TYPES Type::dual_type[Type::lastype] = {
   734   Bad,          // Bad
   735   Control,      // Control
   736   Bottom,       // Top
   737   Bad,          // Int - handled in v-call
   738   Bad,          // Long - handled in v-call
   739   Half,         // Half
   740   Bad,          // NarrowOop - handled in v-call
   741   Bad,          // NarrowKlass - handled in v-call
   743   Bad,          // Tuple - handled in v-call
   744   Bad,          // Array - handled in v-call
   745   Bad,          // VectorS - handled in v-call
   746   Bad,          // VectorD - handled in v-call
   747   Bad,          // VectorX - handled in v-call
   748   Bad,          // VectorY - handled in v-call
   750   Bad,          // AnyPtr - handled in v-call
   751   Bad,          // RawPtr - handled in v-call
   752   Bad,          // OopPtr - handled in v-call
   753   Bad,          // InstPtr - handled in v-call
   754   Bad,          // AryPtr - handled in v-call
   756   Bad,          //  MetadataPtr - handled in v-call
   757   Bad,          // KlassPtr - handled in v-call
   759   Bad,          // Function - handled in v-call
   760   Abio,         // Abio
   761   Return_Address,// Return_Address
   762   Memory,       // Memory
   763   FloatBot,     // FloatTop
   764   FloatCon,     // FloatCon
   765   FloatTop,     // FloatBot
   766   DoubleBot,    // DoubleTop
   767   DoubleCon,    // DoubleCon
   768   DoubleTop,    // DoubleBot
   769   Top           // Bottom
   770 };
   772 const Type *Type::xdual() const {
   773   // Note: the base() accessor asserts the sanity of _base.
   774   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
   775   return new Type(_type_info[_base].dual_type);
   776 }
   778 //------------------------------has_memory-------------------------------------
   779 bool Type::has_memory() const {
   780   Type::TYPES tx = base();
   781   if (tx == Memory) return true;
   782   if (tx == Tuple) {
   783     const TypeTuple *t = is_tuple();
   784     for (uint i=0; i < t->cnt(); i++) {
   785       tx = t->field_at(i)->base();
   786       if (tx == Memory)  return true;
   787     }
   788   }
   789   return false;
   790 }
   792 #ifndef PRODUCT
   793 //------------------------------dump2------------------------------------------
   794 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   795   st->print(_type_info[_base].msg);
   796 }
   798 //------------------------------dump-------------------------------------------
   799 void Type::dump_on(outputStream *st) const {
   800   ResourceMark rm;
   801   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   802   dump2(d,1, st);
   803   if (is_ptr_to_narrowoop()) {
   804     st->print(" [narrow]");
   805   } else if (is_ptr_to_narrowklass()) {
   806     st->print(" [narrowklass]");
   807   }
   808 }
   809 #endif
   811 //------------------------------singleton--------------------------------------
   812 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   813 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   814 bool Type::singleton(void) const {
   815   return _base == Top || _base == Half;
   816 }
   818 //------------------------------empty------------------------------------------
   819 // TRUE if Type is a type with no values, FALSE otherwise.
   820 bool Type::empty(void) const {
   821   switch (_base) {
   822   case DoubleTop:
   823   case FloatTop:
   824   case Top:
   825     return true;
   827   case Half:
   828   case Abio:
   829   case Return_Address:
   830   case Memory:
   831   case Bottom:
   832   case FloatBot:
   833   case DoubleBot:
   834     return false;  // never a singleton, therefore never empty
   835   }
   837   ShouldNotReachHere();
   838   return false;
   839 }
   841 //------------------------------dump_stats-------------------------------------
   842 // Dump collected statistics to stderr
   843 #ifndef PRODUCT
   844 void Type::dump_stats() {
   845   tty->print("Types made: %d\n", type_dict()->Size());
   846 }
   847 #endif
   849 //------------------------------typerr-----------------------------------------
   850 void Type::typerr( const Type *t ) const {
   851 #ifndef PRODUCT
   852   tty->print("\nError mixing types: ");
   853   dump();
   854   tty->print(" and ");
   855   t->dump();
   856   tty->print("\n");
   857 #endif
   858   ShouldNotReachHere();
   859 }
   862 //=============================================================================
   863 // Convenience common pre-built types.
   864 const TypeF *TypeF::ZERO;       // Floating point zero
   865 const TypeF *TypeF::ONE;        // Floating point one
   867 //------------------------------make-------------------------------------------
   868 // Create a float constant
   869 const TypeF *TypeF::make(float f) {
   870   return (TypeF*)(new TypeF(f))->hashcons();
   871 }
   873 //------------------------------meet-------------------------------------------
   874 // Compute the MEET of two types.  It returns a new Type object.
   875 const Type *TypeF::xmeet( const Type *t ) const {
   876   // Perform a fast test for common case; meeting the same types together.
   877   if( this == t ) return this;  // Meeting same type-rep?
   879   // Current "this->_base" is FloatCon
   880   switch (t->base()) {          // Switch on original type
   881   case AnyPtr:                  // Mixing with oops happens when javac
   882   case RawPtr:                  // reuses local variables
   883   case OopPtr:
   884   case InstPtr:
   885   case AryPtr:
   886   case MetadataPtr:
   887   case KlassPtr:
   888   case NarrowOop:
   889   case NarrowKlass:
   890   case Int:
   891   case Long:
   892   case DoubleTop:
   893   case DoubleCon:
   894   case DoubleBot:
   895   case Bottom:                  // Ye Olde Default
   896     return Type::BOTTOM;
   898   case FloatBot:
   899     return t;
   901   default:                      // All else is a mistake
   902     typerr(t);
   904   case FloatCon:                // Float-constant vs Float-constant?
   905     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   906                                 // must compare bitwise as positive zero, negative zero and NaN have
   907                                 // all the same representation in C++
   908       return FLOAT;             // Return generic float
   909                                 // Equal constants
   910   case Top:
   911   case FloatTop:
   912     break;                      // Return the float constant
   913   }
   914   return this;                  // Return the float constant
   915 }
   917 //------------------------------xdual------------------------------------------
   918 // Dual: symmetric
   919 const Type *TypeF::xdual() const {
   920   return this;
   921 }
   923 //------------------------------eq---------------------------------------------
   924 // Structural equality check for Type representations
   925 bool TypeF::eq( const Type *t ) const {
   926   if( g_isnan(_f) ||
   927       g_isnan(t->getf()) ) {
   928     // One or both are NANs.  If both are NANs return true, else false.
   929     return (g_isnan(_f) && g_isnan(t->getf()));
   930   }
   931   if (_f == t->getf()) {
   932     // (NaN is impossible at this point, since it is not equal even to itself)
   933     if (_f == 0.0) {
   934       // difference between positive and negative zero
   935       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
   936     }
   937     return true;
   938   }
   939   return false;
   940 }
   942 //------------------------------hash-------------------------------------------
   943 // Type-specific hashing function.
   944 int TypeF::hash(void) const {
   945   return *(int*)(&_f);
   946 }
   948 //------------------------------is_finite--------------------------------------
   949 // Has a finite value
   950 bool TypeF::is_finite() const {
   951   return g_isfinite(getf()) != 0;
   952 }
   954 //------------------------------is_nan-----------------------------------------
   955 // Is not a number (NaN)
   956 bool TypeF::is_nan()    const {
   957   return g_isnan(getf()) != 0;
   958 }
   960 //------------------------------dump2------------------------------------------
   961 // Dump float constant Type
   962 #ifndef PRODUCT
   963 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
   964   Type::dump2(d,depth, st);
   965   st->print("%f", _f);
   966 }
   967 #endif
   969 //------------------------------singleton--------------------------------------
   970 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   971 // constants (Ldi nodes).  Singletons are integer, float or double constants
   972 // or a single symbol.
   973 bool TypeF::singleton(void) const {
   974   return true;                  // Always a singleton
   975 }
   977 bool TypeF::empty(void) const {
   978   return false;                 // always exactly a singleton
   979 }
   981 //=============================================================================
   982 // Convenience common pre-built types.
   983 const TypeD *TypeD::ZERO;       // Floating point zero
   984 const TypeD *TypeD::ONE;        // Floating point one
   986 //------------------------------make-------------------------------------------
   987 const TypeD *TypeD::make(double d) {
   988   return (TypeD*)(new TypeD(d))->hashcons();
   989 }
   991 //------------------------------meet-------------------------------------------
   992 // Compute the MEET of two types.  It returns a new Type object.
   993 const Type *TypeD::xmeet( const Type *t ) const {
   994   // Perform a fast test for common case; meeting the same types together.
   995   if( this == t ) return this;  // Meeting same type-rep?
   997   // Current "this->_base" is DoubleCon
   998   switch (t->base()) {          // Switch on original type
   999   case AnyPtr:                  // Mixing with oops happens when javac
  1000   case RawPtr:                  // reuses local variables
  1001   case OopPtr:
  1002   case InstPtr:
  1003   case AryPtr:
  1004   case MetadataPtr:
  1005   case KlassPtr:
  1006   case NarrowOop:
  1007   case NarrowKlass:
  1008   case Int:
  1009   case Long:
  1010   case FloatTop:
  1011   case FloatCon:
  1012   case FloatBot:
  1013   case Bottom:                  // Ye Olde Default
  1014     return Type::BOTTOM;
  1016   case DoubleBot:
  1017     return t;
  1019   default:                      // All else is a mistake
  1020     typerr(t);
  1022   case DoubleCon:               // Double-constant vs Double-constant?
  1023     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
  1024       return DOUBLE;            // Return generic double
  1025   case Top:
  1026   case DoubleTop:
  1027     break;
  1029   return this;                  // Return the double constant
  1032 //------------------------------xdual------------------------------------------
  1033 // Dual: symmetric
  1034 const Type *TypeD::xdual() const {
  1035   return this;
  1038 //------------------------------eq---------------------------------------------
  1039 // Structural equality check for Type representations
  1040 bool TypeD::eq( const Type *t ) const {
  1041   if( g_isnan(_d) ||
  1042       g_isnan(t->getd()) ) {
  1043     // One or both are NANs.  If both are NANs return true, else false.
  1044     return (g_isnan(_d) && g_isnan(t->getd()));
  1046   if (_d == t->getd()) {
  1047     // (NaN is impossible at this point, since it is not equal even to itself)
  1048     if (_d == 0.0) {
  1049       // difference between positive and negative zero
  1050       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
  1052     return true;
  1054   return false;
  1057 //------------------------------hash-------------------------------------------
  1058 // Type-specific hashing function.
  1059 int TypeD::hash(void) const {
  1060   return *(int*)(&_d);
  1063 //------------------------------is_finite--------------------------------------
  1064 // Has a finite value
  1065 bool TypeD::is_finite() const {
  1066   return g_isfinite(getd()) != 0;
  1069 //------------------------------is_nan-----------------------------------------
  1070 // Is not a number (NaN)
  1071 bool TypeD::is_nan()    const {
  1072   return g_isnan(getd()) != 0;
  1075 //------------------------------dump2------------------------------------------
  1076 // Dump double constant Type
  1077 #ifndef PRODUCT
  1078 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1079   Type::dump2(d,depth,st);
  1080   st->print("%f", _d);
  1082 #endif
  1084 //------------------------------singleton--------------------------------------
  1085 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1086 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1087 // or a single symbol.
  1088 bool TypeD::singleton(void) const {
  1089   return true;                  // Always a singleton
  1092 bool TypeD::empty(void) const {
  1093   return false;                 // always exactly a singleton
  1096 //=============================================================================
  1097 // Convience common pre-built types.
  1098 const TypeInt *TypeInt::MINUS_1;// -1
  1099 const TypeInt *TypeInt::ZERO;   // 0
  1100 const TypeInt *TypeInt::ONE;    // 1
  1101 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1102 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1103 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1104 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1105 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1106 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1107 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1108 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1109 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1110 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1111 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1112 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1113 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1114 const TypeInt *TypeInt::INT;    // 32-bit integers
  1115 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1117 //------------------------------TypeInt----------------------------------------
  1118 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1121 //------------------------------make-------------------------------------------
  1122 const TypeInt *TypeInt::make( jint lo ) {
  1123   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1126 static int normalize_int_widen( jint lo, jint hi, int w ) {
  1127   // Certain normalizations keep us sane when comparing types.
  1128   // The 'SMALLINT' covers constants and also CC and its relatives.
  1129   if (lo <= hi) {
  1130     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
  1131     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  1132   } else {
  1133     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
  1134     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  1136   return w;
  1139 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1140   w = normalize_int_widen(lo, hi, w);
  1141   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1144 //------------------------------meet-------------------------------------------
  1145 // Compute the MEET of two types.  It returns a new Type representation object
  1146 // with reference count equal to the number of Types pointing at it.
  1147 // Caller should wrap a Types around it.
  1148 const Type *TypeInt::xmeet( const Type *t ) const {
  1149   // Perform a fast test for common case; meeting the same types together.
  1150   if( this == t ) return this;  // Meeting same type?
  1152   // Currently "this->_base" is a TypeInt
  1153   switch (t->base()) {          // Switch on original type
  1154   case AnyPtr:                  // Mixing with oops happens when javac
  1155   case RawPtr:                  // reuses local variables
  1156   case OopPtr:
  1157   case InstPtr:
  1158   case AryPtr:
  1159   case MetadataPtr:
  1160   case KlassPtr:
  1161   case NarrowOop:
  1162   case NarrowKlass:
  1163   case Long:
  1164   case FloatTop:
  1165   case FloatCon:
  1166   case FloatBot:
  1167   case DoubleTop:
  1168   case DoubleCon:
  1169   case DoubleBot:
  1170   case Bottom:                  // Ye Olde Default
  1171     return Type::BOTTOM;
  1172   default:                      // All else is a mistake
  1173     typerr(t);
  1174   case Top:                     // No change
  1175     return this;
  1176   case Int:                     // Int vs Int?
  1177     break;
  1180   // Expand covered set
  1181   const TypeInt *r = t->is_int();
  1182   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1185 //------------------------------xdual------------------------------------------
  1186 // Dual: reverse hi & lo; flip widen
  1187 const Type *TypeInt::xdual() const {
  1188   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  1189   return new TypeInt(_hi,_lo,w);
  1192 //------------------------------widen------------------------------------------
  1193 // Only happens for optimistic top-down optimizations.
  1194 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1195   // Coming from TOP or such; no widening
  1196   if( old->base() != Int ) return this;
  1197   const TypeInt *ot = old->is_int();
  1199   // If new guy is equal to old guy, no widening
  1200   if( _lo == ot->_lo && _hi == ot->_hi )
  1201     return old;
  1203   // If new guy contains old, then we widened
  1204   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1205     // New contains old
  1206     // If new guy is already wider than old, no widening
  1207     if( _widen > ot->_widen ) return this;
  1208     // If old guy was a constant, do not bother
  1209     if (ot->_lo == ot->_hi)  return this;
  1210     // Now widen new guy.
  1211     // Check for widening too far
  1212     if (_widen == WidenMax) {
  1213       int max = max_jint;
  1214       int min = min_jint;
  1215       if (limit->isa_int()) {
  1216         max = limit->is_int()->_hi;
  1217         min = limit->is_int()->_lo;
  1219       if (min < _lo && _hi < max) {
  1220         // If neither endpoint is extremal yet, push out the endpoint
  1221         // which is closer to its respective limit.
  1222         if (_lo >= 0 ||                 // easy common case
  1223             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1224           // Try to widen to an unsigned range type of 31 bits:
  1225           return make(_lo, max, WidenMax);
  1226         } else {
  1227           return make(min, _hi, WidenMax);
  1230       return TypeInt::INT;
  1232     // Returned widened new guy
  1233     return make(_lo,_hi,_widen+1);
  1236   // If old guy contains new, then we probably widened too far & dropped to
  1237   // bottom.  Return the wider fellow.
  1238   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1239     return old;
  1241   //fatal("Integer value range is not subset");
  1242   //return this;
  1243   return TypeInt::INT;
  1246 //------------------------------narrow---------------------------------------
  1247 // Only happens for pessimistic optimizations.
  1248 const Type *TypeInt::narrow( const Type *old ) const {
  1249   if (_lo >= _hi)  return this;   // already narrow enough
  1250   if (old == NULL)  return this;
  1251   const TypeInt* ot = old->isa_int();
  1252   if (ot == NULL)  return this;
  1253   jint olo = ot->_lo;
  1254   jint ohi = ot->_hi;
  1256   // If new guy is equal to old guy, no narrowing
  1257   if (_lo == olo && _hi == ohi)  return old;
  1259   // If old guy was maximum range, allow the narrowing
  1260   if (olo == min_jint && ohi == max_jint)  return this;
  1262   if (_lo < olo || _hi > ohi)
  1263     return this;                // doesn't narrow; pretty wierd
  1265   // The new type narrows the old type, so look for a "death march".
  1266   // See comments on PhaseTransform::saturate.
  1267   juint nrange = _hi - _lo;
  1268   juint orange = ohi - olo;
  1269   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1270     // Use the new type only if the range shrinks a lot.
  1271     // We do not want the optimizer computing 2^31 point by point.
  1272     return old;
  1275   return this;
  1278 //-----------------------------filter------------------------------------------
  1279 const Type *TypeInt::filter( const Type *kills ) const {
  1280   const TypeInt* ft = join(kills)->isa_int();
  1281   if (ft == NULL || ft->empty())
  1282     return Type::TOP;           // Canonical empty value
  1283   if (ft->_widen < this->_widen) {
  1284     // Do not allow the value of kill->_widen to affect the outcome.
  1285     // The widen bits must be allowed to run freely through the graph.
  1286     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1288   return ft;
  1291 //------------------------------eq---------------------------------------------
  1292 // Structural equality check for Type representations
  1293 bool TypeInt::eq( const Type *t ) const {
  1294   const TypeInt *r = t->is_int(); // Handy access
  1295   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1298 //------------------------------hash-------------------------------------------
  1299 // Type-specific hashing function.
  1300 int TypeInt::hash(void) const {
  1301   return _lo+_hi+_widen+(int)Type::Int;
  1304 //------------------------------is_finite--------------------------------------
  1305 // Has a finite value
  1306 bool TypeInt::is_finite() const {
  1307   return true;
  1310 //------------------------------dump2------------------------------------------
  1311 // Dump TypeInt
  1312 #ifndef PRODUCT
  1313 static const char* intname(char* buf, jint n) {
  1314   if (n == min_jint)
  1315     return "min";
  1316   else if (n < min_jint + 10000)
  1317     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1318   else if (n == max_jint)
  1319     return "max";
  1320   else if (n > max_jint - 10000)
  1321     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1322   else
  1323     sprintf(buf, INT32_FORMAT, n);
  1324   return buf;
  1327 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1328   char buf[40], buf2[40];
  1329   if (_lo == min_jint && _hi == max_jint)
  1330     st->print("int");
  1331   else if (is_con())
  1332     st->print("int:%s", intname(buf, get_con()));
  1333   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1334     st->print("bool");
  1335   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1336     st->print("byte");
  1337   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1338     st->print("char");
  1339   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1340     st->print("short");
  1341   else if (_hi == max_jint)
  1342     st->print("int:>=%s", intname(buf, _lo));
  1343   else if (_lo == min_jint)
  1344     st->print("int:<=%s", intname(buf, _hi));
  1345   else
  1346     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1348   if (_widen != 0 && this != TypeInt::INT)
  1349     st->print(":%.*s", _widen, "wwww");
  1351 #endif
  1353 //------------------------------singleton--------------------------------------
  1354 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1355 // constants.
  1356 bool TypeInt::singleton(void) const {
  1357   return _lo >= _hi;
  1360 bool TypeInt::empty(void) const {
  1361   return _lo > _hi;
  1364 //=============================================================================
  1365 // Convenience common pre-built types.
  1366 const TypeLong *TypeLong::MINUS_1;// -1
  1367 const TypeLong *TypeLong::ZERO; // 0
  1368 const TypeLong *TypeLong::ONE;  // 1
  1369 const TypeLong *TypeLong::POS;  // >=0
  1370 const TypeLong *TypeLong::LONG; // 64-bit integers
  1371 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1372 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1374 //------------------------------TypeLong---------------------------------------
  1375 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1378 //------------------------------make-------------------------------------------
  1379 const TypeLong *TypeLong::make( jlong lo ) {
  1380   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1383 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  1384   // Certain normalizations keep us sane when comparing types.
  1385   // The 'SMALLINT' covers constants.
  1386   if (lo <= hi) {
  1387     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1388     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  1389   } else {
  1390     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
  1391     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  1393   return w;
  1396 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1397   w = normalize_long_widen(lo, hi, w);
  1398   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1402 //------------------------------meet-------------------------------------------
  1403 // Compute the MEET of two types.  It returns a new Type representation object
  1404 // with reference count equal to the number of Types pointing at it.
  1405 // Caller should wrap a Types around it.
  1406 const Type *TypeLong::xmeet( const Type *t ) const {
  1407   // Perform a fast test for common case; meeting the same types together.
  1408   if( this == t ) return this;  // Meeting same type?
  1410   // Currently "this->_base" is a TypeLong
  1411   switch (t->base()) {          // Switch on original type
  1412   case AnyPtr:                  // Mixing with oops happens when javac
  1413   case RawPtr:                  // reuses local variables
  1414   case OopPtr:
  1415   case InstPtr:
  1416   case AryPtr:
  1417   case MetadataPtr:
  1418   case KlassPtr:
  1419   case NarrowOop:
  1420   case NarrowKlass:
  1421   case Int:
  1422   case FloatTop:
  1423   case FloatCon:
  1424   case FloatBot:
  1425   case DoubleTop:
  1426   case DoubleCon:
  1427   case DoubleBot:
  1428   case Bottom:                  // Ye Olde Default
  1429     return Type::BOTTOM;
  1430   default:                      // All else is a mistake
  1431     typerr(t);
  1432   case Top:                     // No change
  1433     return this;
  1434   case Long:                    // Long vs Long?
  1435     break;
  1438   // Expand covered set
  1439   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1440   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1443 //------------------------------xdual------------------------------------------
  1444 // Dual: reverse hi & lo; flip widen
  1445 const Type *TypeLong::xdual() const {
  1446   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  1447   return new TypeLong(_hi,_lo,w);
  1450 //------------------------------widen------------------------------------------
  1451 // Only happens for optimistic top-down optimizations.
  1452 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1453   // Coming from TOP or such; no widening
  1454   if( old->base() != Long ) return this;
  1455   const TypeLong *ot = old->is_long();
  1457   // If new guy is equal to old guy, no widening
  1458   if( _lo == ot->_lo && _hi == ot->_hi )
  1459     return old;
  1461   // If new guy contains old, then we widened
  1462   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1463     // New contains old
  1464     // If new guy is already wider than old, no widening
  1465     if( _widen > ot->_widen ) return this;
  1466     // If old guy was a constant, do not bother
  1467     if (ot->_lo == ot->_hi)  return this;
  1468     // Now widen new guy.
  1469     // Check for widening too far
  1470     if (_widen == WidenMax) {
  1471       jlong max = max_jlong;
  1472       jlong min = min_jlong;
  1473       if (limit->isa_long()) {
  1474         max = limit->is_long()->_hi;
  1475         min = limit->is_long()->_lo;
  1477       if (min < _lo && _hi < max) {
  1478         // If neither endpoint is extremal yet, push out the endpoint
  1479         // which is closer to its respective limit.
  1480         if (_lo >= 0 ||                 // easy common case
  1481             (julong)(_lo - min) >= (julong)(max - _hi)) {
  1482           // Try to widen to an unsigned range type of 32/63 bits:
  1483           if (max >= max_juint && _hi < max_juint)
  1484             return make(_lo, max_juint, WidenMax);
  1485           else
  1486             return make(_lo, max, WidenMax);
  1487         } else {
  1488           return make(min, _hi, WidenMax);
  1491       return TypeLong::LONG;
  1493     // Returned widened new guy
  1494     return make(_lo,_hi,_widen+1);
  1497   // If old guy contains new, then we probably widened too far & dropped to
  1498   // bottom.  Return the wider fellow.
  1499   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1500     return old;
  1502   //  fatal("Long value range is not subset");
  1503   // return this;
  1504   return TypeLong::LONG;
  1507 //------------------------------narrow----------------------------------------
  1508 // Only happens for pessimistic optimizations.
  1509 const Type *TypeLong::narrow( const Type *old ) const {
  1510   if (_lo >= _hi)  return this;   // already narrow enough
  1511   if (old == NULL)  return this;
  1512   const TypeLong* ot = old->isa_long();
  1513   if (ot == NULL)  return this;
  1514   jlong olo = ot->_lo;
  1515   jlong ohi = ot->_hi;
  1517   // If new guy is equal to old guy, no narrowing
  1518   if (_lo == olo && _hi == ohi)  return old;
  1520   // If old guy was maximum range, allow the narrowing
  1521   if (olo == min_jlong && ohi == max_jlong)  return this;
  1523   if (_lo < olo || _hi > ohi)
  1524     return this;                // doesn't narrow; pretty wierd
  1526   // The new type narrows the old type, so look for a "death march".
  1527   // See comments on PhaseTransform::saturate.
  1528   julong nrange = _hi - _lo;
  1529   julong orange = ohi - olo;
  1530   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1531     // Use the new type only if the range shrinks a lot.
  1532     // We do not want the optimizer computing 2^31 point by point.
  1533     return old;
  1536   return this;
  1539 //-----------------------------filter------------------------------------------
  1540 const Type *TypeLong::filter( const Type *kills ) const {
  1541   const TypeLong* ft = join(kills)->isa_long();
  1542   if (ft == NULL || ft->empty())
  1543     return Type::TOP;           // Canonical empty value
  1544   if (ft->_widen < this->_widen) {
  1545     // Do not allow the value of kill->_widen to affect the outcome.
  1546     // The widen bits must be allowed to run freely through the graph.
  1547     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1549   return ft;
  1552 //------------------------------eq---------------------------------------------
  1553 // Structural equality check for Type representations
  1554 bool TypeLong::eq( const Type *t ) const {
  1555   const TypeLong *r = t->is_long(); // Handy access
  1556   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1559 //------------------------------hash-------------------------------------------
  1560 // Type-specific hashing function.
  1561 int TypeLong::hash(void) const {
  1562   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1565 //------------------------------is_finite--------------------------------------
  1566 // Has a finite value
  1567 bool TypeLong::is_finite() const {
  1568   return true;
  1571 //------------------------------dump2------------------------------------------
  1572 // Dump TypeLong
  1573 #ifndef PRODUCT
  1574 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1575   if (n > x) {
  1576     if (n >= x + 10000)  return NULL;
  1577     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
  1578   } else if (n < x) {
  1579     if (n <= x - 10000)  return NULL;
  1580     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
  1581   } else {
  1582     return xname;
  1584   return buf;
  1587 static const char* longname(char* buf, jlong n) {
  1588   const char* str;
  1589   if (n == min_jlong)
  1590     return "min";
  1591   else if (n < min_jlong + 10000)
  1592     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
  1593   else if (n == max_jlong)
  1594     return "max";
  1595   else if (n > max_jlong - 10000)
  1596     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
  1597   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1598     return str;
  1599   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1600     return str;
  1601   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1602     return str;
  1603   else
  1604     sprintf(buf, JLONG_FORMAT, n);
  1605   return buf;
  1608 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1609   char buf[80], buf2[80];
  1610   if (_lo == min_jlong && _hi == max_jlong)
  1611     st->print("long");
  1612   else if (is_con())
  1613     st->print("long:%s", longname(buf, get_con()));
  1614   else if (_hi == max_jlong)
  1615     st->print("long:>=%s", longname(buf, _lo));
  1616   else if (_lo == min_jlong)
  1617     st->print("long:<=%s", longname(buf, _hi));
  1618   else
  1619     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1621   if (_widen != 0 && this != TypeLong::LONG)
  1622     st->print(":%.*s", _widen, "wwww");
  1624 #endif
  1626 //------------------------------singleton--------------------------------------
  1627 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1628 // constants
  1629 bool TypeLong::singleton(void) const {
  1630   return _lo >= _hi;
  1633 bool TypeLong::empty(void) const {
  1634   return _lo > _hi;
  1637 //=============================================================================
  1638 // Convenience common pre-built types.
  1639 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1640 const TypeTuple *TypeTuple::IFFALSE;
  1641 const TypeTuple *TypeTuple::IFTRUE;
  1642 const TypeTuple *TypeTuple::IFNEITHER;
  1643 const TypeTuple *TypeTuple::LOOPBODY;
  1644 const TypeTuple *TypeTuple::MEMBAR;
  1645 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1646 const TypeTuple *TypeTuple::START_I2C;
  1647 const TypeTuple *TypeTuple::INT_PAIR;
  1648 const TypeTuple *TypeTuple::LONG_PAIR;
  1651 //------------------------------make-------------------------------------------
  1652 // Make a TypeTuple from the range of a method signature
  1653 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1654   ciType* return_type = sig->return_type();
  1655   uint total_fields = TypeFunc::Parms + return_type->size();
  1656   const Type **field_array = fields(total_fields);
  1657   switch (return_type->basic_type()) {
  1658   case T_LONG:
  1659     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1660     field_array[TypeFunc::Parms+1] = Type::HALF;
  1661     break;
  1662   case T_DOUBLE:
  1663     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1664     field_array[TypeFunc::Parms+1] = Type::HALF;
  1665     break;
  1666   case T_OBJECT:
  1667   case T_ARRAY:
  1668   case T_BOOLEAN:
  1669   case T_CHAR:
  1670   case T_FLOAT:
  1671   case T_BYTE:
  1672   case T_SHORT:
  1673   case T_INT:
  1674     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1675     break;
  1676   case T_VOID:
  1677     break;
  1678   default:
  1679     ShouldNotReachHere();
  1681   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1684 // Make a TypeTuple from the domain of a method signature
  1685 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1686   uint total_fields = TypeFunc::Parms + sig->size();
  1688   uint pos = TypeFunc::Parms;
  1689   const Type **field_array;
  1690   if (recv != NULL) {
  1691     total_fields++;
  1692     field_array = fields(total_fields);
  1693     // Use get_const_type here because it respects UseUniqueSubclasses:
  1694     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
  1695   } else {
  1696     field_array = fields(total_fields);
  1699   int i = 0;
  1700   while (pos < total_fields) {
  1701     ciType* type = sig->type_at(i);
  1703     switch (type->basic_type()) {
  1704     case T_LONG:
  1705       field_array[pos++] = TypeLong::LONG;
  1706       field_array[pos++] = Type::HALF;
  1707       break;
  1708     case T_DOUBLE:
  1709       field_array[pos++] = Type::DOUBLE;
  1710       field_array[pos++] = Type::HALF;
  1711       break;
  1712     case T_OBJECT:
  1713     case T_ARRAY:
  1714     case T_BOOLEAN:
  1715     case T_CHAR:
  1716     case T_FLOAT:
  1717     case T_BYTE:
  1718     case T_SHORT:
  1719     case T_INT:
  1720       field_array[pos++] = get_const_type(type);
  1721       break;
  1722     default:
  1723       ShouldNotReachHere();
  1725     i++;
  1727   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1730 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1731   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1734 //------------------------------fields-----------------------------------------
  1735 // Subroutine call type with space allocated for argument types
  1736 const Type **TypeTuple::fields( uint arg_cnt ) {
  1737   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1738   flds[TypeFunc::Control  ] = Type::CONTROL;
  1739   flds[TypeFunc::I_O      ] = Type::ABIO;
  1740   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1741   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1742   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1744   return flds;
  1747 //------------------------------meet-------------------------------------------
  1748 // Compute the MEET of two types.  It returns a new Type object.
  1749 const Type *TypeTuple::xmeet( const Type *t ) const {
  1750   // Perform a fast test for common case; meeting the same types together.
  1751   if( this == t ) return this;  // Meeting same type-rep?
  1753   // Current "this->_base" is Tuple
  1754   switch (t->base()) {          // switch on original type
  1756   case Bottom:                  // Ye Olde Default
  1757     return t;
  1759   default:                      // All else is a mistake
  1760     typerr(t);
  1762   case Tuple: {                 // Meeting 2 signatures?
  1763     const TypeTuple *x = t->is_tuple();
  1764     assert( _cnt == x->_cnt, "" );
  1765     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1766     for( uint i=0; i<_cnt; i++ )
  1767       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1768     return TypeTuple::make(_cnt,fields);
  1770   case Top:
  1771     break;
  1773   return this;                  // Return the double constant
  1776 //------------------------------xdual------------------------------------------
  1777 // Dual: compute field-by-field dual
  1778 const Type *TypeTuple::xdual() const {
  1779   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1780   for( uint i=0; i<_cnt; i++ )
  1781     fields[i] = _fields[i]->dual();
  1782   return new TypeTuple(_cnt,fields);
  1785 //------------------------------eq---------------------------------------------
  1786 // Structural equality check for Type representations
  1787 bool TypeTuple::eq( const Type *t ) const {
  1788   const TypeTuple *s = (const TypeTuple *)t;
  1789   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1790   for (uint i = 0; i < _cnt; i++)
  1791     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1792       return false;             // Missed
  1793   return true;
  1796 //------------------------------hash-------------------------------------------
  1797 // Type-specific hashing function.
  1798 int TypeTuple::hash(void) const {
  1799   intptr_t sum = _cnt;
  1800   for( uint i=0; i<_cnt; i++ )
  1801     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1802   return sum;
  1805 //------------------------------dump2------------------------------------------
  1806 // Dump signature Type
  1807 #ifndef PRODUCT
  1808 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1809   st->print("{");
  1810   if( !depth || d[this] ) {     // Check for recursive print
  1811     st->print("...}");
  1812     return;
  1814   d.Insert((void*)this, (void*)this);   // Stop recursion
  1815   if( _cnt ) {
  1816     uint i;
  1817     for( i=0; i<_cnt-1; i++ ) {
  1818       st->print("%d:", i);
  1819       _fields[i]->dump2(d, depth-1, st);
  1820       st->print(", ");
  1822     st->print("%d:", i);
  1823     _fields[i]->dump2(d, depth-1, st);
  1825   st->print("}");
  1827 #endif
  1829 //------------------------------singleton--------------------------------------
  1830 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1831 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1832 // or a single symbol.
  1833 bool TypeTuple::singleton(void) const {
  1834   return false;                 // Never a singleton
  1837 bool TypeTuple::empty(void) const {
  1838   for( uint i=0; i<_cnt; i++ ) {
  1839     if (_fields[i]->empty())  return true;
  1841   return false;
  1844 //=============================================================================
  1845 // Convenience common pre-built types.
  1847 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1848   // Certain normalizations keep us sane when comparing types.
  1849   // We do not want arrayOop variables to differ only by the wideness
  1850   // of their index types.  Pick minimum wideness, since that is the
  1851   // forced wideness of small ranges anyway.
  1852   if (size->_widen != Type::WidenMin)
  1853     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1854   else
  1855     return size;
  1858 //------------------------------make-------------------------------------------
  1859 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
  1860   if (UseCompressedOops && elem->isa_oopptr()) {
  1861     elem = elem->make_narrowoop();
  1863   size = normalize_array_size(size);
  1864   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
  1867 //------------------------------meet-------------------------------------------
  1868 // Compute the MEET of two types.  It returns a new Type object.
  1869 const Type *TypeAry::xmeet( const Type *t ) const {
  1870   // Perform a fast test for common case; meeting the same types together.
  1871   if( this == t ) return this;  // Meeting same type-rep?
  1873   // Current "this->_base" is Ary
  1874   switch (t->base()) {          // switch on original type
  1876   case Bottom:                  // Ye Olde Default
  1877     return t;
  1879   default:                      // All else is a mistake
  1880     typerr(t);
  1882   case Array: {                 // Meeting 2 arrays?
  1883     const TypeAry *a = t->is_ary();
  1884     return TypeAry::make(_elem->meet(a->_elem),
  1885                          _size->xmeet(a->_size)->is_int(),
  1886                          _stable & a->_stable);
  1888   case Top:
  1889     break;
  1891   return this;                  // Return the double constant
  1894 //------------------------------xdual------------------------------------------
  1895 // Dual: compute field-by-field dual
  1896 const Type *TypeAry::xdual() const {
  1897   const TypeInt* size_dual = _size->dual()->is_int();
  1898   size_dual = normalize_array_size(size_dual);
  1899   return new TypeAry(_elem->dual(), size_dual, !_stable);
  1902 //------------------------------eq---------------------------------------------
  1903 // Structural equality check for Type representations
  1904 bool TypeAry::eq( const Type *t ) const {
  1905   const TypeAry *a = (const TypeAry*)t;
  1906   return _elem == a->_elem &&
  1907     _stable == a->_stable &&
  1908     _size == a->_size;
  1911 //------------------------------hash-------------------------------------------
  1912 // Type-specific hashing function.
  1913 int TypeAry::hash(void) const {
  1914   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
  1917 //----------------------interface_vs_oop---------------------------------------
  1918 #ifdef ASSERT
  1919 bool TypeAry::interface_vs_oop(const Type *t) const {
  1920   const TypeAry* t_ary = t->is_ary();
  1921   if (t_ary) {
  1922     return _elem->interface_vs_oop(t_ary->_elem);
  1924   return false;
  1926 #endif
  1928 //------------------------------dump2------------------------------------------
  1929 #ifndef PRODUCT
  1930 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  1931   if (_stable)  st->print("stable:");
  1932   _elem->dump2(d, depth, st);
  1933   st->print("[");
  1934   _size->dump2(d, depth, st);
  1935   st->print("]");
  1937 #endif
  1939 //------------------------------singleton--------------------------------------
  1940 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1941 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1942 // or a single symbol.
  1943 bool TypeAry::singleton(void) const {
  1944   return false;                 // Never a singleton
  1947 bool TypeAry::empty(void) const {
  1948   return _elem->empty() || _size->empty();
  1951 //--------------------------ary_must_be_exact----------------------------------
  1952 bool TypeAry::ary_must_be_exact() const {
  1953   if (!UseExactTypes)       return false;
  1954   // This logic looks at the element type of an array, and returns true
  1955   // if the element type is either a primitive or a final instance class.
  1956   // In such cases, an array built on this ary must have no subclasses.
  1957   if (_elem == BOTTOM)      return false;  // general array not exact
  1958   if (_elem == TOP   )      return false;  // inverted general array not exact
  1959   const TypeOopPtr*  toop = NULL;
  1960   if (UseCompressedOops && _elem->isa_narrowoop()) {
  1961     toop = _elem->make_ptr()->isa_oopptr();
  1962   } else {
  1963     toop = _elem->isa_oopptr();
  1965   if (!toop)                return true;   // a primitive type, like int
  1966   ciKlass* tklass = toop->klass();
  1967   if (tklass == NULL)       return false;  // unloaded class
  1968   if (!tklass->is_loaded()) return false;  // unloaded class
  1969   const TypeInstPtr* tinst;
  1970   if (_elem->isa_narrowoop())
  1971     tinst = _elem->make_ptr()->isa_instptr();
  1972   else
  1973     tinst = _elem->isa_instptr();
  1974   if (tinst)
  1975     return tklass->as_instance_klass()->is_final();
  1976   const TypeAryPtr*  tap;
  1977   if (_elem->isa_narrowoop())
  1978     tap = _elem->make_ptr()->isa_aryptr();
  1979   else
  1980     tap = _elem->isa_aryptr();
  1981   if (tap)
  1982     return tap->ary()->ary_must_be_exact();
  1983   return false;
  1986 //==============================TypeVect=======================================
  1987 // Convenience common pre-built types.
  1988 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
  1989 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
  1990 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
  1991 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
  1993 //------------------------------make-------------------------------------------
  1994 const TypeVect* TypeVect::make(const Type *elem, uint length) {
  1995   BasicType elem_bt = elem->array_element_basic_type();
  1996   assert(is_java_primitive(elem_bt), "only primitive types in vector");
  1997   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
  1998   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
  1999   int size = length * type2aelembytes(elem_bt);
  2000   switch (Matcher::vector_ideal_reg(size)) {
  2001   case Op_VecS:
  2002     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
  2003   case Op_VecD:
  2004   case Op_RegD:
  2005     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
  2006   case Op_VecX:
  2007     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
  2008   case Op_VecY:
  2009     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
  2011  ShouldNotReachHere();
  2012   return NULL;
  2015 //------------------------------meet-------------------------------------------
  2016 // Compute the MEET of two types.  It returns a new Type object.
  2017 const Type *TypeVect::xmeet( const Type *t ) const {
  2018   // Perform a fast test for common case; meeting the same types together.
  2019   if( this == t ) return this;  // Meeting same type-rep?
  2021   // Current "this->_base" is Vector
  2022   switch (t->base()) {          // switch on original type
  2024   case Bottom:                  // Ye Olde Default
  2025     return t;
  2027   default:                      // All else is a mistake
  2028     typerr(t);
  2030   case VectorS:
  2031   case VectorD:
  2032   case VectorX:
  2033   case VectorY: {                // Meeting 2 vectors?
  2034     const TypeVect* v = t->is_vect();
  2035     assert(  base() == v->base(), "");
  2036     assert(length() == v->length(), "");
  2037     assert(element_basic_type() == v->element_basic_type(), "");
  2038     return TypeVect::make(_elem->xmeet(v->_elem), _length);
  2040   case Top:
  2041     break;
  2043   return this;
  2046 //------------------------------xdual------------------------------------------
  2047 // Dual: compute field-by-field dual
  2048 const Type *TypeVect::xdual() const {
  2049   return new TypeVect(base(), _elem->dual(), _length);
  2052 //------------------------------eq---------------------------------------------
  2053 // Structural equality check for Type representations
  2054 bool TypeVect::eq(const Type *t) const {
  2055   const TypeVect *v = t->is_vect();
  2056   return (_elem == v->_elem) && (_length == v->_length);
  2059 //------------------------------hash-------------------------------------------
  2060 // Type-specific hashing function.
  2061 int TypeVect::hash(void) const {
  2062   return (intptr_t)_elem + (intptr_t)_length;
  2065 //------------------------------singleton--------------------------------------
  2066 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2067 // constants (Ldi nodes).  Vector is singleton if all elements are the same
  2068 // constant value (when vector is created with Replicate code).
  2069 bool TypeVect::singleton(void) const {
  2070 // There is no Con node for vectors yet.
  2071 //  return _elem->singleton();
  2072   return false;
  2075 bool TypeVect::empty(void) const {
  2076   return _elem->empty();
  2079 //------------------------------dump2------------------------------------------
  2080 #ifndef PRODUCT
  2081 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
  2082   switch (base()) {
  2083   case VectorS:
  2084     st->print("vectors["); break;
  2085   case VectorD:
  2086     st->print("vectord["); break;
  2087   case VectorX:
  2088     st->print("vectorx["); break;
  2089   case VectorY:
  2090     st->print("vectory["); break;
  2091   default:
  2092     ShouldNotReachHere();
  2094   st->print("%d]:{", _length);
  2095   _elem->dump2(d, depth, st);
  2096   st->print("}");
  2098 #endif
  2101 //=============================================================================
  2102 // Convenience common pre-built types.
  2103 const TypePtr *TypePtr::NULL_PTR;
  2104 const TypePtr *TypePtr::NOTNULL;
  2105 const TypePtr *TypePtr::BOTTOM;
  2107 //------------------------------meet-------------------------------------------
  2108 // Meet over the PTR enum
  2109 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  2110   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  2111   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  2112   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  2113   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  2114   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  2115   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  2116   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  2117 };
  2119 //------------------------------make-------------------------------------------
  2120 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  2121   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  2124 //------------------------------cast_to_ptr_type-------------------------------
  2125 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  2126   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  2127   if( ptr == _ptr ) return this;
  2128   return make(_base, ptr, _offset);
  2131 //------------------------------get_con----------------------------------------
  2132 intptr_t TypePtr::get_con() const {
  2133   assert( _ptr == Null, "" );
  2134   return _offset;
  2137 //------------------------------meet-------------------------------------------
  2138 // Compute the MEET of two types.  It returns a new Type object.
  2139 const Type *TypePtr::xmeet( const Type *t ) const {
  2140   // Perform a fast test for common case; meeting the same types together.
  2141   if( this == t ) return this;  // Meeting same type-rep?
  2143   // Current "this->_base" is AnyPtr
  2144   switch (t->base()) {          // switch on original type
  2145   case Int:                     // Mixing ints & oops happens when javac
  2146   case Long:                    // reuses local variables
  2147   case FloatTop:
  2148   case FloatCon:
  2149   case FloatBot:
  2150   case DoubleTop:
  2151   case DoubleCon:
  2152   case DoubleBot:
  2153   case NarrowOop:
  2154   case NarrowKlass:
  2155   case Bottom:                  // Ye Olde Default
  2156     return Type::BOTTOM;
  2157   case Top:
  2158     return this;
  2160   case AnyPtr: {                // Meeting to AnyPtrs
  2161     const TypePtr *tp = t->is_ptr();
  2162     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2164   case RawPtr:                  // For these, flip the call around to cut down
  2165   case OopPtr:
  2166   case InstPtr:                 // on the cases I have to handle.
  2167   case AryPtr:
  2168   case MetadataPtr:
  2169   case KlassPtr:
  2170     return t->xmeet(this);      // Call in reverse direction
  2171   default:                      // All else is a mistake
  2172     typerr(t);
  2175   return this;
  2178 //------------------------------meet_offset------------------------------------
  2179 int TypePtr::meet_offset( int offset ) const {
  2180   // Either is 'TOP' offset?  Return the other offset!
  2181   if( _offset == OffsetTop ) return offset;
  2182   if( offset == OffsetTop ) return _offset;
  2183   // If either is different, return 'BOTTOM' offset
  2184   if( _offset != offset ) return OffsetBot;
  2185   return _offset;
  2188 //------------------------------dual_offset------------------------------------
  2189 int TypePtr::dual_offset( ) const {
  2190   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  2191   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  2192   return _offset;               // Map everything else into self
  2195 //------------------------------xdual------------------------------------------
  2196 // Dual: compute field-by-field dual
  2197 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  2198   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  2199 };
  2200 const Type *TypePtr::xdual() const {
  2201   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  2204 //------------------------------xadd_offset------------------------------------
  2205 int TypePtr::xadd_offset( intptr_t offset ) const {
  2206   // Adding to 'TOP' offset?  Return 'TOP'!
  2207   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2208   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2209   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2210   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2211   offset += (intptr_t)_offset;
  2212   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2214   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2215   // It is possible to construct a negative offset during PhaseCCP
  2217   return (int)offset;        // Sum valid offsets
  2220 //------------------------------add_offset-------------------------------------
  2221 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2222   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2225 //------------------------------eq---------------------------------------------
  2226 // Structural equality check for Type representations
  2227 bool TypePtr::eq( const Type *t ) const {
  2228   const TypePtr *a = (const TypePtr*)t;
  2229   return _ptr == a->ptr() && _offset == a->offset();
  2232 //------------------------------hash-------------------------------------------
  2233 // Type-specific hashing function.
  2234 int TypePtr::hash(void) const {
  2235   return _ptr + _offset;
  2238 //------------------------------dump2------------------------------------------
  2239 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2240   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2241 };
  2243 #ifndef PRODUCT
  2244 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2245   if( _ptr == Null ) st->print("NULL");
  2246   else st->print("%s *", ptr_msg[_ptr]);
  2247   if( _offset == OffsetTop ) st->print("+top");
  2248   else if( _offset == OffsetBot ) st->print("+bot");
  2249   else if( _offset ) st->print("+%d", _offset);
  2251 #endif
  2253 //------------------------------singleton--------------------------------------
  2254 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2255 // constants
  2256 bool TypePtr::singleton(void) const {
  2257   // TopPTR, Null, AnyNull, Constant are all singletons
  2258   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2261 bool TypePtr::empty(void) const {
  2262   return (_offset == OffsetTop) || above_centerline(_ptr);
  2265 //=============================================================================
  2266 // Convenience common pre-built types.
  2267 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2268 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2270 //------------------------------make-------------------------------------------
  2271 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2272   assert( ptr != Constant, "what is the constant?" );
  2273   assert( ptr != Null, "Use TypePtr for NULL" );
  2274   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2277 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2278   assert( bits, "Use TypePtr for NULL" );
  2279   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2282 //------------------------------cast_to_ptr_type-------------------------------
  2283 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2284   assert( ptr != Constant, "what is the constant?" );
  2285   assert( ptr != Null, "Use TypePtr for NULL" );
  2286   assert( _bits==0, "Why cast a constant address?");
  2287   if( ptr == _ptr ) return this;
  2288   return make(ptr);
  2291 //------------------------------get_con----------------------------------------
  2292 intptr_t TypeRawPtr::get_con() const {
  2293   assert( _ptr == Null || _ptr == Constant, "" );
  2294   return (intptr_t)_bits;
  2297 //------------------------------meet-------------------------------------------
  2298 // Compute the MEET of two types.  It returns a new Type object.
  2299 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2300   // Perform a fast test for common case; meeting the same types together.
  2301   if( this == t ) return this;  // Meeting same type-rep?
  2303   // Current "this->_base" is RawPtr
  2304   switch( t->base() ) {         // switch on original type
  2305   case Bottom:                  // Ye Olde Default
  2306     return t;
  2307   case Top:
  2308     return this;
  2309   case AnyPtr:                  // Meeting to AnyPtrs
  2310     break;
  2311   case RawPtr: {                // might be top, bot, any/not or constant
  2312     enum PTR tptr = t->is_ptr()->ptr();
  2313     enum PTR ptr = meet_ptr( tptr );
  2314     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2315       if( tptr == Constant && _ptr != Constant)  return t;
  2316       if( _ptr == Constant && tptr != Constant)  return this;
  2317       ptr = NotNull;            // Fall down in lattice
  2319     return make( ptr );
  2322   case OopPtr:
  2323   case InstPtr:
  2324   case AryPtr:
  2325   case MetadataPtr:
  2326   case KlassPtr:
  2327     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2328   default:                      // All else is a mistake
  2329     typerr(t);
  2332   // Found an AnyPtr type vs self-RawPtr type
  2333   const TypePtr *tp = t->is_ptr();
  2334   switch (tp->ptr()) {
  2335   case TypePtr::TopPTR:  return this;
  2336   case TypePtr::BotPTR:  return t;
  2337   case TypePtr::Null:
  2338     if( _ptr == TypePtr::TopPTR ) return t;
  2339     return TypeRawPtr::BOTTOM;
  2340   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2341   case TypePtr::AnyNull:
  2342     if( _ptr == TypePtr::Constant) return this;
  2343     return make( meet_ptr(TypePtr::AnyNull) );
  2344   default: ShouldNotReachHere();
  2346   return this;
  2349 //------------------------------xdual------------------------------------------
  2350 // Dual: compute field-by-field dual
  2351 const Type *TypeRawPtr::xdual() const {
  2352   return new TypeRawPtr( dual_ptr(), _bits );
  2355 //------------------------------add_offset-------------------------------------
  2356 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2357   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2358   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2359   if( offset == 0 ) return this; // No change
  2360   switch (_ptr) {
  2361   case TypePtr::TopPTR:
  2362   case TypePtr::BotPTR:
  2363   case TypePtr::NotNull:
  2364     return this;
  2365   case TypePtr::Null:
  2366   case TypePtr::Constant: {
  2367     address bits = _bits+offset;
  2368     if ( bits == 0 ) return TypePtr::NULL_PTR;
  2369     return make( bits );
  2371   default:  ShouldNotReachHere();
  2373   return NULL;                  // Lint noise
  2376 //------------------------------eq---------------------------------------------
  2377 // Structural equality check for Type representations
  2378 bool TypeRawPtr::eq( const Type *t ) const {
  2379   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2380   return _bits == a->_bits && TypePtr::eq(t);
  2383 //------------------------------hash-------------------------------------------
  2384 // Type-specific hashing function.
  2385 int TypeRawPtr::hash(void) const {
  2386   return (intptr_t)_bits + TypePtr::hash();
  2389 //------------------------------dump2------------------------------------------
  2390 #ifndef PRODUCT
  2391 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2392   if( _ptr == Constant )
  2393     st->print(INTPTR_FORMAT, _bits);
  2394   else
  2395     st->print("rawptr:%s", ptr_msg[_ptr]);
  2397 #endif
  2399 //=============================================================================
  2400 // Convenience common pre-built type.
  2401 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2403 //------------------------------TypeOopPtr-------------------------------------
  2404 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
  2405   : TypePtr(t, ptr, offset),
  2406     _const_oop(o), _klass(k),
  2407     _klass_is_exact(xk),
  2408     _is_ptr_to_narrowoop(false),
  2409     _is_ptr_to_narrowklass(false),
  2410     _is_ptr_to_boxed_value(false),
  2411     _instance_id(instance_id) {
  2412   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
  2413       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
  2414     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
  2416 #ifdef _LP64
  2417   if (_offset != 0) {
  2418     if (_offset == oopDesc::klass_offset_in_bytes()) {
  2419       _is_ptr_to_narrowklass = UseCompressedClassPointers;
  2420     } else if (klass() == NULL) {
  2421       // Array with unknown body type
  2422       assert(this->isa_aryptr(), "only arrays without klass");
  2423       _is_ptr_to_narrowoop = UseCompressedOops;
  2424     } else if (this->isa_aryptr()) {
  2425       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
  2426                              _offset != arrayOopDesc::length_offset_in_bytes());
  2427     } else if (klass()->is_instance_klass()) {
  2428       ciInstanceKlass* ik = klass()->as_instance_klass();
  2429       ciField* field = NULL;
  2430       if (this->isa_klassptr()) {
  2431         // Perm objects don't use compressed references
  2432       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2433         // unsafe access
  2434         _is_ptr_to_narrowoop = UseCompressedOops;
  2435       } else { // exclude unsafe ops
  2436         assert(this->isa_instptr(), "must be an instance ptr.");
  2438         if (klass() == ciEnv::current()->Class_klass() &&
  2439             (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2440              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2441           // Special hidden fields from the Class.
  2442           assert(this->isa_instptr(), "must be an instance ptr.");
  2443           _is_ptr_to_narrowoop = false;
  2444         } else if (klass() == ciEnv::current()->Class_klass() &&
  2445                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
  2446           // Static fields
  2447           assert(o != NULL, "must be constant");
  2448           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
  2449           ciField* field = k->get_field_by_offset(_offset, true);
  2450           assert(field != NULL, "missing field");
  2451           BasicType basic_elem_type = field->layout_type();
  2452           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2453                                                        basic_elem_type == T_ARRAY);
  2454         } else {
  2455           // Instance fields which contains a compressed oop references.
  2456           field = ik->get_field_by_offset(_offset, false);
  2457           if (field != NULL) {
  2458             BasicType basic_elem_type = field->layout_type();
  2459             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2460                                                          basic_elem_type == T_ARRAY);
  2461           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2462             // Compile::find_alias_type() cast exactness on all types to verify
  2463             // that it does not affect alias type.
  2464             _is_ptr_to_narrowoop = UseCompressedOops;
  2465           } else {
  2466             // Type for the copy start in LibraryCallKit::inline_native_clone().
  2467             _is_ptr_to_narrowoop = UseCompressedOops;
  2473 #endif
  2476 //------------------------------make-------------------------------------------
  2477 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2478                                    int offset, int instance_id) {
  2479   assert(ptr != Constant, "no constant generic pointers");
  2480   ciKlass*  k = Compile::current()->env()->Object_klass();
  2481   bool      xk = false;
  2482   ciObject* o = NULL;
  2483   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
  2487 //------------------------------cast_to_ptr_type-------------------------------
  2488 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2489   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2490   if( ptr == _ptr ) return this;
  2491   return make(ptr, _offset, _instance_id);
  2494 //-----------------------------cast_to_instance_id----------------------------
  2495 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2496   // There are no instances of a general oop.
  2497   // Return self unchanged.
  2498   return this;
  2501 //-----------------------------cast_to_exactness-------------------------------
  2502 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2503   // There is no such thing as an exact general oop.
  2504   // Return self unchanged.
  2505   return this;
  2509 //------------------------------as_klass_type----------------------------------
  2510 // Return the klass type corresponding to this instance or array type.
  2511 // It is the type that is loaded from an object of this type.
  2512 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2513   ciKlass* k = klass();
  2514   bool    xk = klass_is_exact();
  2515   if (k == NULL)
  2516     return TypeKlassPtr::OBJECT;
  2517   else
  2518     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2522 //------------------------------meet-------------------------------------------
  2523 // Compute the MEET of two types.  It returns a new Type object.
  2524 const Type *TypeOopPtr::xmeet( const Type *t ) const {
  2525   // Perform a fast test for common case; meeting the same types together.
  2526   if( this == t ) return this;  // Meeting same type-rep?
  2528   // Current "this->_base" is OopPtr
  2529   switch (t->base()) {          // switch on original type
  2531   case Int:                     // Mixing ints & oops happens when javac
  2532   case Long:                    // reuses local variables
  2533   case FloatTop:
  2534   case FloatCon:
  2535   case FloatBot:
  2536   case DoubleTop:
  2537   case DoubleCon:
  2538   case DoubleBot:
  2539   case NarrowOop:
  2540   case NarrowKlass:
  2541   case Bottom:                  // Ye Olde Default
  2542     return Type::BOTTOM;
  2543   case Top:
  2544     return this;
  2546   default:                      // All else is a mistake
  2547     typerr(t);
  2549   case RawPtr:
  2550   case MetadataPtr:
  2551   case KlassPtr:
  2552     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2554   case AnyPtr: {
  2555     // Found an AnyPtr type vs self-OopPtr type
  2556     const TypePtr *tp = t->is_ptr();
  2557     int offset = meet_offset(tp->offset());
  2558     PTR ptr = meet_ptr(tp->ptr());
  2559     switch (tp->ptr()) {
  2560     case Null:
  2561       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2562       // else fall through:
  2563     case TopPTR:
  2564     case AnyNull: {
  2565       int instance_id = meet_instance_id(InstanceTop);
  2566       return make(ptr, offset, instance_id);
  2568     case BotPTR:
  2569     case NotNull:
  2570       return TypePtr::make(AnyPtr, ptr, offset);
  2571     default: typerr(t);
  2575   case OopPtr: {                 // Meeting to other OopPtrs
  2576     const TypeOopPtr *tp = t->is_oopptr();
  2577     int instance_id = meet_instance_id(tp->instance_id());
  2578     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
  2581   case InstPtr:                  // For these, flip the call around to cut down
  2582   case AryPtr:
  2583     return t->xmeet(this);      // Call in reverse direction
  2585   } // End of switch
  2586   return this;                  // Return the double constant
  2590 //------------------------------xdual------------------------------------------
  2591 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2592 const Type *TypeOopPtr::xdual() const {
  2593   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
  2594   assert(const_oop() == NULL,             "no constants here");
  2595   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  2598 //--------------------------make_from_klass_common-----------------------------
  2599 // Computes the element-type given a klass.
  2600 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2601   if (klass->is_instance_klass()) {
  2602     Compile* C = Compile::current();
  2603     Dependencies* deps = C->dependencies();
  2604     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2605     // Element is an instance
  2606     bool klass_is_exact = false;
  2607     if (klass->is_loaded()) {
  2608       // Try to set klass_is_exact.
  2609       ciInstanceKlass* ik = klass->as_instance_klass();
  2610       klass_is_exact = ik->is_final();
  2611       if (!klass_is_exact && klass_change
  2612           && deps != NULL && UseUniqueSubclasses) {
  2613         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2614         if (sub != NULL) {
  2615           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2616           klass = ik = sub;
  2617           klass_is_exact = sub->is_final();
  2620       if (!klass_is_exact && try_for_exact
  2621           && deps != NULL && UseExactTypes) {
  2622         if (!ik->is_interface() && !ik->has_subklass()) {
  2623           // Add a dependence; if concrete subclass added we need to recompile
  2624           deps->assert_leaf_type(ik);
  2625           klass_is_exact = true;
  2629     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2630   } else if (klass->is_obj_array_klass()) {
  2631     // Element is an object array. Recursively call ourself.
  2632     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2633     bool xk = etype->klass_is_exact();
  2634     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2635     // We used to pass NotNull in here, asserting that the sub-arrays
  2636     // are all not-null.  This is not true in generally, as code can
  2637     // slam NULLs down in the subarrays.
  2638     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2639     return arr;
  2640   } else if (klass->is_type_array_klass()) {
  2641     // Element is an typeArray
  2642     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2643     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2644     // We used to pass NotNull in here, asserting that the array pointer
  2645     // is not-null. That was not true in general.
  2646     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2647     return arr;
  2648   } else {
  2649     ShouldNotReachHere();
  2650     return NULL;
  2654 //------------------------------make_from_constant-----------------------------
  2655 // Make a java pointer from an oop constant
  2656 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
  2657                                                  bool require_constant,
  2658                                                  bool is_autobox_cache) {
  2659   assert(!o->is_null_object(), "null object not yet handled here.");
  2660   ciKlass* klass = o->klass();
  2661   if (klass->is_instance_klass()) {
  2662     // Element is an instance
  2663     if (require_constant) {
  2664       if (!o->can_be_constant())  return NULL;
  2665     } else if (!o->should_be_constant()) {
  2666       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2668     return TypeInstPtr::make(o);
  2669   } else if (klass->is_obj_array_klass()) {
  2670     // Element is an object array. Recursively call ourself.
  2671     const TypeOopPtr *etype =
  2672       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2673     if (is_autobox_cache) {
  2674       // The pointers in the autobox arrays are always non-null.
  2675       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  2677     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2678     // We used to pass NotNull in here, asserting that the sub-arrays
  2679     // are all not-null.  This is not true in generally, as code can
  2680     // slam NULLs down in the subarrays.
  2681     if (require_constant) {
  2682       if (!o->can_be_constant())  return NULL;
  2683     } else if (!o->should_be_constant()) {
  2684       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2686     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, is_autobox_cache);
  2687     return arr;
  2688   } else if (klass->is_type_array_klass()) {
  2689     // Element is an typeArray
  2690     const Type* etype =
  2691       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2692     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2693     // We used to pass NotNull in here, asserting that the array pointer
  2694     // is not-null. That was not true in general.
  2695     if (require_constant) {
  2696       if (!o->can_be_constant())  return NULL;
  2697     } else if (!o->should_be_constant()) {
  2698       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2700     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2701     return arr;
  2704   fatal("unhandled object type");
  2705   return NULL;
  2708 //------------------------------get_con----------------------------------------
  2709 intptr_t TypeOopPtr::get_con() const {
  2710   assert( _ptr == Null || _ptr == Constant, "" );
  2711   assert( _offset >= 0, "" );
  2713   if (_offset != 0) {
  2714     // After being ported to the compiler interface, the compiler no longer
  2715     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2716     // to a handle at compile time.  This handle is embedded in the generated
  2717     // code and dereferenced at the time the nmethod is made.  Until that time,
  2718     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2719     // have access to the addresses!).  This does not seem to currently happen,
  2720     // but this assertion here is to help prevent its occurence.
  2721     tty->print_cr("Found oop constant with non-zero offset");
  2722     ShouldNotReachHere();
  2725   return (intptr_t)const_oop()->constant_encoding();
  2729 //-----------------------------filter------------------------------------------
  2730 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2731 const Type *TypeOopPtr::filter( const Type *kills ) const {
  2733   const Type* ft = join(kills);
  2734   const TypeInstPtr* ftip = ft->isa_instptr();
  2735   const TypeInstPtr* ktip = kills->isa_instptr();
  2736   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  2737   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  2739   if (ft->empty()) {
  2740     // Check for evil case of 'this' being a class and 'kills' expecting an
  2741     // interface.  This can happen because the bytecodes do not contain
  2742     // enough type info to distinguish a Java-level interface variable
  2743     // from a Java-level object variable.  If we meet 2 classes which
  2744     // both implement interface I, but their meet is at 'j/l/O' which
  2745     // doesn't implement I, we have no way to tell if the result should
  2746     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2747     // into a Phi which "knows" it's an Interface type we'll have to
  2748     // uplift the type.
  2749     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
  2750       return kills;             // Uplift to interface
  2751     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  2752       return kills;             // Uplift to interface
  2754     return Type::TOP;           // Canonical empty value
  2757   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2758   // the join should report back the class.  However, if we have a J/L/Object
  2759   // class-typed Phi and an interface flows in, it's possible that the meet &
  2760   // join report an interface back out.  This isn't possible but happens
  2761   // because the type system doesn't interact well with interfaces.
  2762   if (ftip != NULL && ktip != NULL &&
  2763       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2764       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2765     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2766     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2767     return ktip->cast_to_ptr_type(ftip->ptr());
  2769   // Interface klass type could be exact in opposite to interface type,
  2770   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  2771   if (ftkp != NULL && ktkp != NULL &&
  2772       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  2773       !ftkp->klass_is_exact() && // Keep exact interface klass
  2774       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  2775     return ktkp->cast_to_ptr_type(ftkp->ptr());
  2778   return ft;
  2781 //------------------------------eq---------------------------------------------
  2782 // Structural equality check for Type representations
  2783 bool TypeOopPtr::eq( const Type *t ) const {
  2784   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2785   if (_klass_is_exact != a->_klass_is_exact ||
  2786       _instance_id != a->_instance_id)  return false;
  2787   ciObject* one = const_oop();
  2788   ciObject* two = a->const_oop();
  2789   if (one == NULL || two == NULL) {
  2790     return (one == two) && TypePtr::eq(t);
  2791   } else {
  2792     return one->equals(two) && TypePtr::eq(t);
  2796 //------------------------------hash-------------------------------------------
  2797 // Type-specific hashing function.
  2798 int TypeOopPtr::hash(void) const {
  2799   return
  2800     (const_oop() ? const_oop()->hash() : 0) +
  2801     _klass_is_exact +
  2802     _instance_id +
  2803     TypePtr::hash();
  2806 //------------------------------dump2------------------------------------------
  2807 #ifndef PRODUCT
  2808 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2809   st->print("oopptr:%s", ptr_msg[_ptr]);
  2810   if( _klass_is_exact ) st->print(":exact");
  2811   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2812   switch( _offset ) {
  2813   case OffsetTop: st->print("+top"); break;
  2814   case OffsetBot: st->print("+any"); break;
  2815   case         0: break;
  2816   default:        st->print("+%d",_offset); break;
  2818   if (_instance_id == InstanceTop)
  2819     st->print(",iid=top");
  2820   else if (_instance_id != InstanceBot)
  2821     st->print(",iid=%d",_instance_id);
  2823 #endif
  2825 //------------------------------singleton--------------------------------------
  2826 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2827 // constants
  2828 bool TypeOopPtr::singleton(void) const {
  2829   // detune optimizer to not generate constant oop + constant offset as a constant!
  2830   // TopPTR, Null, AnyNull, Constant are all singletons
  2831   return (_offset == 0) && !below_centerline(_ptr);
  2834 //------------------------------add_offset-------------------------------------
  2835 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
  2836   return make( _ptr, xadd_offset(offset), _instance_id);
  2839 //------------------------------meet_instance_id--------------------------------
  2840 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  2841   // Either is 'TOP' instance?  Return the other instance!
  2842   if( _instance_id == InstanceTop ) return  instance_id;
  2843   if(  instance_id == InstanceTop ) return _instance_id;
  2844   // If either is different, return 'BOTTOM' instance
  2845   if( _instance_id != instance_id ) return InstanceBot;
  2846   return _instance_id;
  2849 //------------------------------dual_instance_id--------------------------------
  2850 int TypeOopPtr::dual_instance_id( ) const {
  2851   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  2852   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  2853   return _instance_id;              // Map everything else into self
  2857 //=============================================================================
  2858 // Convenience common pre-built types.
  2859 const TypeInstPtr *TypeInstPtr::NOTNULL;
  2860 const TypeInstPtr *TypeInstPtr::BOTTOM;
  2861 const TypeInstPtr *TypeInstPtr::MIRROR;
  2862 const TypeInstPtr *TypeInstPtr::MARK;
  2863 const TypeInstPtr *TypeInstPtr::KLASS;
  2865 //------------------------------TypeInstPtr-------------------------------------
  2866 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
  2867  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
  2868    assert(k != NULL &&
  2869           (k->is_loaded() || o == NULL),
  2870           "cannot have constants with non-loaded klass");
  2871 };
  2873 //------------------------------make-------------------------------------------
  2874 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  2875                                      ciKlass* k,
  2876                                      bool xk,
  2877                                      ciObject* o,
  2878                                      int offset,
  2879                                      int instance_id) {
  2880   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
  2881   // Either const_oop() is NULL or else ptr is Constant
  2882   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  2883           "constant pointers must have a value supplied" );
  2884   // Ptr is never Null
  2885   assert( ptr != Null, "NULL pointers are not typed" );
  2887   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  2888   if (!UseExactTypes)  xk = false;
  2889   if (ptr == Constant) {
  2890     // Note:  This case includes meta-object constants, such as methods.
  2891     xk = true;
  2892   } else if (k->is_loaded()) {
  2893     ciInstanceKlass* ik = k->as_instance_klass();
  2894     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  2895     if (xk && ik->is_interface())  xk = false;  // no exact interface
  2898   // Now hash this baby
  2899   TypeInstPtr *result =
  2900     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
  2902   return result;
  2905 /**
  2906  *  Create constant type for a constant boxed value
  2907  */
  2908 const Type* TypeInstPtr::get_const_boxed_value() const {
  2909   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
  2910   assert((const_oop() != NULL), "should be called only for constant object");
  2911   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
  2912   BasicType bt = constant.basic_type();
  2913   switch (bt) {
  2914     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
  2915     case T_INT:      return TypeInt::make(constant.as_int());
  2916     case T_CHAR:     return TypeInt::make(constant.as_char());
  2917     case T_BYTE:     return TypeInt::make(constant.as_byte());
  2918     case T_SHORT:    return TypeInt::make(constant.as_short());
  2919     case T_FLOAT:    return TypeF::make(constant.as_float());
  2920     case T_DOUBLE:   return TypeD::make(constant.as_double());
  2921     case T_LONG:     return TypeLong::make(constant.as_long());
  2922     default:         break;
  2924   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
  2925   return NULL;
  2928 //------------------------------cast_to_ptr_type-------------------------------
  2929 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  2930   if( ptr == _ptr ) return this;
  2931   // Reconstruct _sig info here since not a problem with later lazy
  2932   // construction, _sig will show up on demand.
  2933   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
  2937 //-----------------------------cast_to_exactness-------------------------------
  2938 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  2939   if( klass_is_exact == _klass_is_exact ) return this;
  2940   if (!UseExactTypes)  return this;
  2941   if (!_klass->is_loaded())  return this;
  2942   ciInstanceKlass* ik = _klass->as_instance_klass();
  2943   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  2944   if( ik->is_interface() )              return this;  // cannot set xk
  2945   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
  2948 //-----------------------------cast_to_instance_id----------------------------
  2949 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  2950   if( instance_id == _instance_id ) return this;
  2951   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
  2954 //------------------------------xmeet_unloaded---------------------------------
  2955 // Compute the MEET of two InstPtrs when at least one is unloaded.
  2956 // Assume classes are different since called after check for same name/class-loader
  2957 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  2958     int off = meet_offset(tinst->offset());
  2959     PTR ptr = meet_ptr(tinst->ptr());
  2960     int instance_id = meet_instance_id(tinst->instance_id());
  2962     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  2963     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  2964     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  2965       //
  2966       // Meet unloaded class with java/lang/Object
  2967       //
  2968       // Meet
  2969       //          |                     Unloaded Class
  2970       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  2971       //  ===================================================================
  2972       //   TOP    | ..........................Unloaded......................|
  2973       //  AnyNull |  U-AN    |................Unloaded......................|
  2974       // Constant | ... O-NN .................................. |   O-BOT   |
  2975       //  NotNull | ... O-NN .................................. |   O-BOT   |
  2976       //  BOTTOM  | ........................Object-BOTTOM ..................|
  2977       //
  2978       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  2979       //
  2980       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  2981       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
  2982       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  2983       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  2984         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  2985         else                                      { return TypeInstPtr::NOTNULL; }
  2987       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  2989       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  2992     // Both are unloaded, not the same class, not Object
  2993     // Or meet unloaded with a different loaded class, not java/lang/Object
  2994     if( ptr != TypePtr::BotPTR ) {
  2995       return TypeInstPtr::NOTNULL;
  2997     return TypeInstPtr::BOTTOM;
  3001 //------------------------------meet-------------------------------------------
  3002 // Compute the MEET of two types.  It returns a new Type object.
  3003 const Type *TypeInstPtr::xmeet( const Type *t ) const {
  3004   // Perform a fast test for common case; meeting the same types together.
  3005   if( this == t ) return this;  // Meeting same type-rep?
  3007   // Current "this->_base" is Pointer
  3008   switch (t->base()) {          // switch on original type
  3010   case Int:                     // Mixing ints & oops happens when javac
  3011   case Long:                    // reuses local variables
  3012   case FloatTop:
  3013   case FloatCon:
  3014   case FloatBot:
  3015   case DoubleTop:
  3016   case DoubleCon:
  3017   case DoubleBot:
  3018   case NarrowOop:
  3019   case NarrowKlass:
  3020   case Bottom:                  // Ye Olde Default
  3021     return Type::BOTTOM;
  3022   case Top:
  3023     return this;
  3025   default:                      // All else is a mistake
  3026     typerr(t);
  3028   case MetadataPtr:
  3029   case KlassPtr:
  3030   case RawPtr: return TypePtr::BOTTOM;
  3032   case AryPtr: {                // All arrays inherit from Object class
  3033     const TypeAryPtr *tp = t->is_aryptr();
  3034     int offset = meet_offset(tp->offset());
  3035     PTR ptr = meet_ptr(tp->ptr());
  3036     int instance_id = meet_instance_id(tp->instance_id());
  3037     switch (ptr) {
  3038     case TopPTR:
  3039     case AnyNull:                // Fall 'down' to dual of object klass
  3040       if (klass()->equals(ciEnv::current()->Object_klass())) {
  3041         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  3042       } else {
  3043         // cannot subclass, so the meet has to fall badly below the centerline
  3044         ptr = NotNull;
  3045         instance_id = InstanceBot;
  3046         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
  3048     case Constant:
  3049     case NotNull:
  3050     case BotPTR:                // Fall down to object klass
  3051       // LCA is object_klass, but if we subclass from the top we can do better
  3052       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  3053         // If 'this' (InstPtr) is above the centerline and it is Object class
  3054         // then we can subclass in the Java class hierarchy.
  3055         if (klass()->equals(ciEnv::current()->Object_klass())) {
  3056           // that is, tp's array type is a subtype of my klass
  3057           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
  3058                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  3061       // The other case cannot happen, since I cannot be a subtype of an array.
  3062       // The meet falls down to Object class below centerline.
  3063       if( ptr == Constant )
  3064          ptr = NotNull;
  3065       instance_id = InstanceBot;
  3066       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
  3067     default: typerr(t);
  3071   case OopPtr: {                // Meeting to OopPtrs
  3072     // Found a OopPtr type vs self-InstPtr type
  3073     const TypeOopPtr *tp = t->is_oopptr();
  3074     int offset = meet_offset(tp->offset());
  3075     PTR ptr = meet_ptr(tp->ptr());
  3076     switch (tp->ptr()) {
  3077     case TopPTR:
  3078     case AnyNull: {
  3079       int instance_id = meet_instance_id(InstanceTop);
  3080       return make(ptr, klass(), klass_is_exact(),
  3081                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  3083     case NotNull:
  3084     case BotPTR: {
  3085       int instance_id = meet_instance_id(tp->instance_id());
  3086       return TypeOopPtr::make(ptr, offset, instance_id);
  3088     default: typerr(t);
  3092   case AnyPtr: {                // Meeting to AnyPtrs
  3093     // Found an AnyPtr type vs self-InstPtr type
  3094     const TypePtr *tp = t->is_ptr();
  3095     int offset = meet_offset(tp->offset());
  3096     PTR ptr = meet_ptr(tp->ptr());
  3097     switch (tp->ptr()) {
  3098     case Null:
  3099       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  3100       // else fall through to AnyNull
  3101     case TopPTR:
  3102     case AnyNull: {
  3103       int instance_id = meet_instance_id(InstanceTop);
  3104       return make( ptr, klass(), klass_is_exact(),
  3105                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  3107     case NotNull:
  3108     case BotPTR:
  3109       return TypePtr::make( AnyPtr, ptr, offset );
  3110     default: typerr(t);
  3114   /*
  3115                  A-top         }
  3116                /   |   \       }  Tops
  3117            B-top A-any C-top   }
  3118               | /  |  \ |      }  Any-nulls
  3119            B-any   |   C-any   }
  3120               |    |    |
  3121            B-con A-con C-con   } constants; not comparable across classes
  3122               |    |    |
  3123            B-not   |   C-not   }
  3124               | \  |  / |      }  not-nulls
  3125            B-bot A-not C-bot   }
  3126                \   |   /       }  Bottoms
  3127                  A-bot         }
  3128   */
  3130   case InstPtr: {                // Meeting 2 Oops?
  3131     // Found an InstPtr sub-type vs self-InstPtr type
  3132     const TypeInstPtr *tinst = t->is_instptr();
  3133     int off = meet_offset( tinst->offset() );
  3134     PTR ptr = meet_ptr( tinst->ptr() );
  3135     int instance_id = meet_instance_id(tinst->instance_id());
  3137     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3138     // If we have constants, then we created oops so classes are loaded
  3139     // and we can handle the constants further down.  This case handles
  3140     // both-not-loaded or both-loaded classes
  3141     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  3142       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
  3145     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3146     ciKlass* tinst_klass = tinst->klass();
  3147     ciKlass* this_klass  = this->klass();
  3148     bool tinst_xk = tinst->klass_is_exact();
  3149     bool this_xk  = this->klass_is_exact();
  3150     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  3151       // One of these classes has not been loaded
  3152       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  3153 #ifndef PRODUCT
  3154       if( PrintOpto && Verbose ) {
  3155         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  3156         tty->print("  this == "); this->dump(); tty->cr();
  3157         tty->print(" tinst == "); tinst->dump(); tty->cr();
  3159 #endif
  3160       return unloaded_meet;
  3163     // Handle mixing oops and interfaces first.
  3164     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
  3165       ciKlass *tmp = tinst_klass; // Swap interface around
  3166       tinst_klass = this_klass;
  3167       this_klass = tmp;
  3168       bool tmp2 = tinst_xk;
  3169       tinst_xk = this_xk;
  3170       this_xk = tmp2;
  3172     if (tinst_klass->is_interface() &&
  3173         !(this_klass->is_interface() ||
  3174           // Treat java/lang/Object as an honorary interface,
  3175           // because we need a bottom for the interface hierarchy.
  3176           this_klass == ciEnv::current()->Object_klass())) {
  3177       // Oop meets interface!
  3179       // See if the oop subtypes (implements) interface.
  3180       ciKlass *k;
  3181       bool xk;
  3182       if( this_klass->is_subtype_of( tinst_klass ) ) {
  3183         // Oop indeed subtypes.  Now keep oop or interface depending
  3184         // on whether we are both above the centerline or either is
  3185         // below the centerline.  If we are on the centerline
  3186         // (e.g., Constant vs. AnyNull interface), use the constant.
  3187         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  3188         // If we are keeping this_klass, keep its exactness too.
  3189         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  3190       } else {                  // Does not implement, fall to Object
  3191         // Oop does not implement interface, so mixing falls to Object
  3192         // just like the verifier does (if both are above the
  3193         // centerline fall to interface)
  3194         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  3195         xk = above_centerline(ptr) ? tinst_xk : false;
  3196         // Watch out for Constant vs. AnyNull interface.
  3197         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  3198         instance_id = InstanceBot;
  3200       ciObject* o = NULL;  // the Constant value, if any
  3201       if (ptr == Constant) {
  3202         // Find out which constant.
  3203         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  3205       return make( ptr, k, xk, o, off, instance_id );
  3208     // Either oop vs oop or interface vs interface or interface vs Object
  3210     // !!! Here's how the symmetry requirement breaks down into invariants:
  3211     // If we split one up & one down AND they subtype, take the down man.
  3212     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3213     // If both are up and they subtype, take the subtype class.
  3214     // If both are up and they do NOT subtype, "fall hard".
  3215     // If both are down and they subtype, take the supertype class.
  3216     // If both are down and they do NOT subtype, "fall hard".
  3217     // Constants treated as down.
  3219     // Now, reorder the above list; observe that both-down+subtype is also
  3220     // "fall hard"; "fall hard" becomes the default case:
  3221     // If we split one up & one down AND they subtype, take the down man.
  3222     // If both are up and they subtype, take the subtype class.
  3224     // If both are down and they subtype, "fall hard".
  3225     // If both are down and they do NOT subtype, "fall hard".
  3226     // If both are up and they do NOT subtype, "fall hard".
  3227     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3229     // If a proper subtype is exact, and we return it, we return it exactly.
  3230     // If a proper supertype is exact, there can be no subtyping relationship!
  3231     // If both types are equal to the subtype, exactness is and-ed below the
  3232     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  3234     // Check for subtyping:
  3235     ciKlass *subtype = NULL;
  3236     bool subtype_exact = false;
  3237     if( tinst_klass->equals(this_klass) ) {
  3238       subtype = this_klass;
  3239       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  3240     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  3241       subtype = this_klass;     // Pick subtyping class
  3242       subtype_exact = this_xk;
  3243     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3244       subtype = tinst_klass;    // Pick subtyping class
  3245       subtype_exact = tinst_xk;
  3248     if( subtype ) {
  3249       if( above_centerline(ptr) ) { // both are up?
  3250         this_klass = tinst_klass = subtype;
  3251         this_xk = tinst_xk = subtype_exact;
  3252       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3253         this_klass = tinst_klass; // tinst is down; keep down man
  3254         this_xk = tinst_xk;
  3255       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3256         tinst_klass = this_klass; // this is down; keep down man
  3257         tinst_xk = this_xk;
  3258       } else {
  3259         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3263     // Check for classes now being equal
  3264     if (tinst_klass->equals(this_klass)) {
  3265       // If the klasses are equal, the constants may still differ.  Fall to
  3266       // NotNull if they do (neither constant is NULL; that is a special case
  3267       // handled elsewhere).
  3268       ciObject* o = NULL;             // Assume not constant when done
  3269       ciObject* this_oop  = const_oop();
  3270       ciObject* tinst_oop = tinst->const_oop();
  3271       if( ptr == Constant ) {
  3272         if (this_oop != NULL && tinst_oop != NULL &&
  3273             this_oop->equals(tinst_oop) )
  3274           o = this_oop;
  3275         else if (above_centerline(this ->_ptr))
  3276           o = tinst_oop;
  3277         else if (above_centerline(tinst ->_ptr))
  3278           o = this_oop;
  3279         else
  3280           ptr = NotNull;
  3282       return make( ptr, this_klass, this_xk, o, off, instance_id );
  3283     } // Else classes are not equal
  3285     // Since klasses are different, we require a LCA in the Java
  3286     // class hierarchy - which means we have to fall to at least NotNull.
  3287     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3288       ptr = NotNull;
  3289     instance_id = InstanceBot;
  3291     // Now we find the LCA of Java classes
  3292     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3293     return make( ptr, k, false, NULL, off, instance_id );
  3294   } // End of case InstPtr
  3296   } // End of switch
  3297   return this;                  // Return the double constant
  3301 //------------------------java_mirror_type--------------------------------------
  3302 ciType* TypeInstPtr::java_mirror_type() const {
  3303   // must be a singleton type
  3304   if( const_oop() == NULL )  return NULL;
  3306   // must be of type java.lang.Class
  3307   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3309   return const_oop()->as_instance()->java_mirror_type();
  3313 //------------------------------xdual------------------------------------------
  3314 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3315 // inheritance mechanism.
  3316 const Type *TypeInstPtr::xdual() const {
  3317   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  3320 //------------------------------eq---------------------------------------------
  3321 // Structural equality check for Type representations
  3322 bool TypeInstPtr::eq( const Type *t ) const {
  3323   const TypeInstPtr *p = t->is_instptr();
  3324   return
  3325     klass()->equals(p->klass()) &&
  3326     TypeOopPtr::eq(p);          // Check sub-type stuff
  3329 //------------------------------hash-------------------------------------------
  3330 // Type-specific hashing function.
  3331 int TypeInstPtr::hash(void) const {
  3332   int hash = klass()->hash() + TypeOopPtr::hash();
  3333   return hash;
  3336 //------------------------------dump2------------------------------------------
  3337 // Dump oop Type
  3338 #ifndef PRODUCT
  3339 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3340   // Print the name of the klass.
  3341   klass()->print_name_on(st);
  3343   switch( _ptr ) {
  3344   case Constant:
  3345     // TO DO: Make CI print the hex address of the underlying oop.
  3346     if (WizardMode || Verbose) {
  3347       const_oop()->print_oop(st);
  3349   case BotPTR:
  3350     if (!WizardMode && !Verbose) {
  3351       if( _klass_is_exact ) st->print(":exact");
  3352       break;
  3354   case TopPTR:
  3355   case AnyNull:
  3356   case NotNull:
  3357     st->print(":%s", ptr_msg[_ptr]);
  3358     if( _klass_is_exact ) st->print(":exact");
  3359     break;
  3362   if( _offset ) {               // Dump offset, if any
  3363     if( _offset == OffsetBot )      st->print("+any");
  3364     else if( _offset == OffsetTop ) st->print("+unknown");
  3365     else st->print("+%d", _offset);
  3368   st->print(" *");
  3369   if (_instance_id == InstanceTop)
  3370     st->print(",iid=top");
  3371   else if (_instance_id != InstanceBot)
  3372     st->print(",iid=%d",_instance_id);
  3374 #endif
  3376 //------------------------------add_offset-------------------------------------
  3377 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
  3378   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
  3381 //=============================================================================
  3382 // Convenience common pre-built types.
  3383 const TypeAryPtr *TypeAryPtr::RANGE;
  3384 const TypeAryPtr *TypeAryPtr::OOPS;
  3385 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3386 const TypeAryPtr *TypeAryPtr::BYTES;
  3387 const TypeAryPtr *TypeAryPtr::SHORTS;
  3388 const TypeAryPtr *TypeAryPtr::CHARS;
  3389 const TypeAryPtr *TypeAryPtr::INTS;
  3390 const TypeAryPtr *TypeAryPtr::LONGS;
  3391 const TypeAryPtr *TypeAryPtr::FLOATS;
  3392 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3394 //------------------------------make-------------------------------------------
  3395 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3396   assert(!(k == NULL && ary->_elem->isa_int()),
  3397          "integral arrays must be pre-equipped with a class");
  3398   if (!xk)  xk = ary->ary_must_be_exact();
  3399   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3400   if (!UseExactTypes)  xk = (ptr == Constant);
  3401   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false))->hashcons();
  3404 //------------------------------make-------------------------------------------
  3405 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, bool is_autobox_cache) {
  3406   assert(!(k == NULL && ary->_elem->isa_int()),
  3407          "integral arrays must be pre-equipped with a class");
  3408   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3409   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3410   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3411   if (!UseExactTypes)  xk = (ptr == Constant);
  3412   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache))->hashcons();
  3415 //------------------------------cast_to_ptr_type-------------------------------
  3416 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3417   if( ptr == _ptr ) return this;
  3418   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
  3422 //-----------------------------cast_to_exactness-------------------------------
  3423 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3424   if( klass_is_exact == _klass_is_exact ) return this;
  3425   if (!UseExactTypes)  return this;
  3426   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3427   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
  3430 //-----------------------------cast_to_instance_id----------------------------
  3431 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3432   if( instance_id == _instance_id ) return this;
  3433   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
  3436 //-----------------------------narrow_size_type-------------------------------
  3437 // Local cache for arrayOopDesc::max_array_length(etype),
  3438 // which is kind of slow (and cached elsewhere by other users).
  3439 static jint max_array_length_cache[T_CONFLICT+1];
  3440 static jint max_array_length(BasicType etype) {
  3441   jint& cache = max_array_length_cache[etype];
  3442   jint res = cache;
  3443   if (res == 0) {
  3444     switch (etype) {
  3445     case T_NARROWOOP:
  3446       etype = T_OBJECT;
  3447       break;
  3448     case T_NARROWKLASS:
  3449     case T_CONFLICT:
  3450     case T_ILLEGAL:
  3451     case T_VOID:
  3452       etype = T_BYTE;           // will produce conservatively high value
  3454     cache = res = arrayOopDesc::max_array_length(etype);
  3456   return res;
  3459 // Narrow the given size type to the index range for the given array base type.
  3460 // Return NULL if the resulting int type becomes empty.
  3461 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3462   jint hi = size->_hi;
  3463   jint lo = size->_lo;
  3464   jint min_lo = 0;
  3465   jint max_hi = max_array_length(elem()->basic_type());
  3466   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3467   bool chg = false;
  3468   if (lo < min_lo) {
  3469     lo = min_lo;
  3470     if (size->is_con()) {
  3471       hi = lo;
  3473     chg = true;
  3475   if (hi > max_hi) {
  3476     hi = max_hi;
  3477     if (size->is_con()) {
  3478       lo = hi;
  3480     chg = true;
  3482   // Negative length arrays will produce weird intermediate dead fast-path code
  3483   if (lo > hi)
  3484     return TypeInt::ZERO;
  3485   if (!chg)
  3486     return size;
  3487   return TypeInt::make(lo, hi, Type::WidenMin);
  3490 //-------------------------------cast_to_size----------------------------------
  3491 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3492   assert(new_size != NULL, "");
  3493   new_size = narrow_size_type(new_size);
  3494   if (new_size == size())  return this;
  3495   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
  3496   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3500 //------------------------------cast_to_stable---------------------------------
  3501 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
  3502   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
  3503     return this;
  3505   const Type* elem = this->elem();
  3506   const TypePtr* elem_ptr = elem->make_ptr();
  3508   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
  3509     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
  3510     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
  3513   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
  3515   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3518 //-----------------------------stable_dimension--------------------------------
  3519 int TypeAryPtr::stable_dimension() const {
  3520   if (!is_stable())  return 0;
  3521   int dim = 1;
  3522   const TypePtr* elem_ptr = elem()->make_ptr();
  3523   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
  3524     dim += elem_ptr->is_aryptr()->stable_dimension();
  3525   return dim;
  3528 //------------------------------eq---------------------------------------------
  3529 // Structural equality check for Type representations
  3530 bool TypeAryPtr::eq( const Type *t ) const {
  3531   const TypeAryPtr *p = t->is_aryptr();
  3532   return
  3533     _ary == p->_ary &&  // Check array
  3534     TypeOopPtr::eq(p);  // Check sub-parts
  3537 //------------------------------hash-------------------------------------------
  3538 // Type-specific hashing function.
  3539 int TypeAryPtr::hash(void) const {
  3540   return (intptr_t)_ary + TypeOopPtr::hash();
  3543 //------------------------------meet-------------------------------------------
  3544 // Compute the MEET of two types.  It returns a new Type object.
  3545 const Type *TypeAryPtr::xmeet( const Type *t ) const {
  3546   // Perform a fast test for common case; meeting the same types together.
  3547   if( this == t ) return this;  // Meeting same type-rep?
  3548   // Current "this->_base" is Pointer
  3549   switch (t->base()) {          // switch on original type
  3551   // Mixing ints & oops happens when javac reuses local variables
  3552   case Int:
  3553   case Long:
  3554   case FloatTop:
  3555   case FloatCon:
  3556   case FloatBot:
  3557   case DoubleTop:
  3558   case DoubleCon:
  3559   case DoubleBot:
  3560   case NarrowOop:
  3561   case NarrowKlass:
  3562   case Bottom:                  // Ye Olde Default
  3563     return Type::BOTTOM;
  3564   case Top:
  3565     return this;
  3567   default:                      // All else is a mistake
  3568     typerr(t);
  3570   case OopPtr: {                // Meeting to OopPtrs
  3571     // Found a OopPtr type vs self-AryPtr type
  3572     const TypeOopPtr *tp = t->is_oopptr();
  3573     int offset = meet_offset(tp->offset());
  3574     PTR ptr = meet_ptr(tp->ptr());
  3575     switch (tp->ptr()) {
  3576     case TopPTR:
  3577     case AnyNull: {
  3578       int instance_id = meet_instance_id(InstanceTop);
  3579       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3580                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3582     case BotPTR:
  3583     case NotNull: {
  3584       int instance_id = meet_instance_id(tp->instance_id());
  3585       return TypeOopPtr::make(ptr, offset, instance_id);
  3587     default: ShouldNotReachHere();
  3591   case AnyPtr: {                // Meeting two AnyPtrs
  3592     // Found an AnyPtr type vs self-AryPtr type
  3593     const TypePtr *tp = t->is_ptr();
  3594     int offset = meet_offset(tp->offset());
  3595     PTR ptr = meet_ptr(tp->ptr());
  3596     switch (tp->ptr()) {
  3597     case TopPTR:
  3598       return this;
  3599     case BotPTR:
  3600     case NotNull:
  3601       return TypePtr::make(AnyPtr, ptr, offset);
  3602     case Null:
  3603       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3604       // else fall through to AnyNull
  3605     case AnyNull: {
  3606       int instance_id = meet_instance_id(InstanceTop);
  3607       return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3608                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3610     default: ShouldNotReachHere();
  3614   case MetadataPtr:
  3615   case KlassPtr:
  3616   case RawPtr: return TypePtr::BOTTOM;
  3618   case AryPtr: {                // Meeting 2 references?
  3619     const TypeAryPtr *tap = t->is_aryptr();
  3620     int off = meet_offset(tap->offset());
  3621     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
  3622     PTR ptr = meet_ptr(tap->ptr());
  3623     int instance_id = meet_instance_id(tap->instance_id());
  3624     ciKlass* lazy_klass = NULL;
  3625     if (tary->_elem->isa_int()) {
  3626       // Integral array element types have irrelevant lattice relations.
  3627       // It is the klass that determines array layout, not the element type.
  3628       if (_klass == NULL)
  3629         lazy_klass = tap->_klass;
  3630       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3631         lazy_klass = _klass;
  3632       } else {
  3633         // Something like byte[int+] meets char[int+].
  3634         // This must fall to bottom, not (int[-128..65535])[int+].
  3635         instance_id = InstanceBot;
  3636         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3638     } else // Non integral arrays.
  3639     // Must fall to bottom if exact klasses in upper lattice
  3640     // are not equal or super klass is exact.
  3641     if ( above_centerline(ptr) && klass() != tap->klass() &&
  3642          // meet with top[] and bottom[] are processed further down:
  3643          tap ->_klass != NULL  && this->_klass != NULL   &&
  3644          // both are exact and not equal:
  3645         ((tap ->_klass_is_exact && this->_klass_is_exact) ||
  3646          // 'tap'  is exact and super or unrelated:
  3647          (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
  3648          // 'this' is exact and super or unrelated:
  3649          (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
  3650       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3651       return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
  3654     bool xk = false;
  3655     switch (tap->ptr()) {
  3656     case AnyNull:
  3657     case TopPTR:
  3658       // Compute new klass on demand, do not use tap->_klass
  3659       xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3660       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
  3661     case Constant: {
  3662       ciObject* o = const_oop();
  3663       if( _ptr == Constant ) {
  3664         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3665           xk = (klass() == tap->klass());
  3666           ptr = NotNull;
  3667           o = NULL;
  3668           instance_id = InstanceBot;
  3669         } else {
  3670           xk = true;
  3672       } else if( above_centerline(_ptr) ) {
  3673         o = tap->const_oop();
  3674         xk = true;
  3675       } else {
  3676         // Only precise for identical arrays
  3677         xk = this->_klass_is_exact && (klass() == tap->klass());
  3679       return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
  3681     case NotNull:
  3682     case BotPTR:
  3683       // Compute new klass on demand, do not use tap->_klass
  3684       if (above_centerline(this->_ptr))
  3685             xk = tap->_klass_is_exact;
  3686       else if (above_centerline(tap->_ptr))
  3687             xk = this->_klass_is_exact;
  3688       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  3689               (klass() == tap->klass()); // Only precise for identical arrays
  3690       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
  3691     default: ShouldNotReachHere();
  3695   // All arrays inherit from Object class
  3696   case InstPtr: {
  3697     const TypeInstPtr *tp = t->is_instptr();
  3698     int offset = meet_offset(tp->offset());
  3699     PTR ptr = meet_ptr(tp->ptr());
  3700     int instance_id = meet_instance_id(tp->instance_id());
  3701     switch (ptr) {
  3702     case TopPTR:
  3703     case AnyNull:                // Fall 'down' to dual of object klass
  3704       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3705         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
  3706       } else {
  3707         // cannot subclass, so the meet has to fall badly below the centerline
  3708         ptr = NotNull;
  3709         instance_id = InstanceBot;
  3710         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3712     case Constant:
  3713     case NotNull:
  3714     case BotPTR:                // Fall down to object klass
  3715       // LCA is object_klass, but if we subclass from the top we can do better
  3716       if (above_centerline(tp->ptr())) {
  3717         // If 'tp'  is above the centerline and it is Object class
  3718         // then we can subclass in the Java class hierarchy.
  3719         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3720           // that is, my array type is a subtype of 'tp' klass
  3721           return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3722                        _ary, _klass, _klass_is_exact, offset, instance_id );
  3725       // The other case cannot happen, since t cannot be a subtype of an array.
  3726       // The meet falls down to Object class below centerline.
  3727       if( ptr == Constant )
  3728          ptr = NotNull;
  3729       instance_id = InstanceBot;
  3730       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3731     default: typerr(t);
  3735   return this;                  // Lint noise
  3738 //------------------------------xdual------------------------------------------
  3739 // Dual: compute field-by-field dual
  3740 const Type *TypeAryPtr::xdual() const {
  3741   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache() );
  3744 //----------------------interface_vs_oop---------------------------------------
  3745 #ifdef ASSERT
  3746 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  3747   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  3748   if (t_aryptr) {
  3749     return _ary->interface_vs_oop(t_aryptr->_ary);
  3751   return false;
  3753 #endif
  3755 //------------------------------dump2------------------------------------------
  3756 #ifndef PRODUCT
  3757 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3758   _ary->dump2(d,depth,st);
  3759   switch( _ptr ) {
  3760   case Constant:
  3761     const_oop()->print(st);
  3762     break;
  3763   case BotPTR:
  3764     if (!WizardMode && !Verbose) {
  3765       if( _klass_is_exact ) st->print(":exact");
  3766       break;
  3768   case TopPTR:
  3769   case AnyNull:
  3770   case NotNull:
  3771     st->print(":%s", ptr_msg[_ptr]);
  3772     if( _klass_is_exact ) st->print(":exact");
  3773     break;
  3776   if( _offset != 0 ) {
  3777     int header_size = objArrayOopDesc::header_size() * wordSize;
  3778     if( _offset == OffsetTop )       st->print("+undefined");
  3779     else if( _offset == OffsetBot )  st->print("+any");
  3780     else if( _offset < header_size ) st->print("+%d", _offset);
  3781     else {
  3782       BasicType basic_elem_type = elem()->basic_type();
  3783       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  3784       int elem_size = type2aelembytes(basic_elem_type);
  3785       st->print("[%d]", (_offset - array_base)/elem_size);
  3788   st->print(" *");
  3789   if (_instance_id == InstanceTop)
  3790     st->print(",iid=top");
  3791   else if (_instance_id != InstanceBot)
  3792     st->print(",iid=%d",_instance_id);
  3794 #endif
  3796 bool TypeAryPtr::empty(void) const {
  3797   if (_ary->empty())       return true;
  3798   return TypeOopPtr::empty();
  3801 //------------------------------add_offset-------------------------------------
  3802 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
  3803   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
  3807 //=============================================================================
  3809 //------------------------------hash-------------------------------------------
  3810 // Type-specific hashing function.
  3811 int TypeNarrowPtr::hash(void) const {
  3812   return _ptrtype->hash() + 7;
  3815 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
  3816   return _ptrtype->singleton();
  3819 bool TypeNarrowPtr::empty(void) const {
  3820   return _ptrtype->empty();
  3823 intptr_t TypeNarrowPtr::get_con() const {
  3824   return _ptrtype->get_con();
  3827 bool TypeNarrowPtr::eq( const Type *t ) const {
  3828   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
  3829   if (tc != NULL) {
  3830     if (_ptrtype->base() != tc->_ptrtype->base()) {
  3831       return false;
  3833     return tc->_ptrtype->eq(_ptrtype);
  3835   return false;
  3838 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
  3839   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  3840   return make_same_narrowptr(odual);
  3844 const Type *TypeNarrowPtr::filter( const Type *kills ) const {
  3845   if (isa_same_narrowptr(kills)) {
  3846     const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype);
  3847     if (ft->empty())
  3848       return Type::TOP;           // Canonical empty value
  3849     if (ft->isa_ptr()) {
  3850       return make_hash_same_narrowptr(ft->isa_ptr());
  3852     return ft;
  3853   } else if (kills->isa_ptr()) {
  3854     const Type* ft = _ptrtype->join(kills);
  3855     if (ft->empty())
  3856       return Type::TOP;           // Canonical empty value
  3857     return ft;
  3858   } else {
  3859     return Type::TOP;
  3863 //------------------------------xmeet------------------------------------------
  3864 // Compute the MEET of two types.  It returns a new Type object.
  3865 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
  3866   // Perform a fast test for common case; meeting the same types together.
  3867   if( this == t ) return this;  // Meeting same type-rep?
  3869   if (t->base() == base()) {
  3870     const Type* result = _ptrtype->xmeet(t->make_ptr());
  3871     if (result->isa_ptr()) {
  3872       return make_hash_same_narrowptr(result->is_ptr());
  3874     return result;
  3877   // Current "this->_base" is NarrowKlass or NarrowOop
  3878   switch (t->base()) {          // switch on original type
  3880   case Int:                     // Mixing ints & oops happens when javac
  3881   case Long:                    // reuses local variables
  3882   case FloatTop:
  3883   case FloatCon:
  3884   case FloatBot:
  3885   case DoubleTop:
  3886   case DoubleCon:
  3887   case DoubleBot:
  3888   case AnyPtr:
  3889   case RawPtr:
  3890   case OopPtr:
  3891   case InstPtr:
  3892   case AryPtr:
  3893   case MetadataPtr:
  3894   case KlassPtr:
  3895   case NarrowOop:
  3896   case NarrowKlass:
  3898   case Bottom:                  // Ye Olde Default
  3899     return Type::BOTTOM;
  3900   case Top:
  3901     return this;
  3903   default:                      // All else is a mistake
  3904     typerr(t);
  3906   } // End of switch
  3908   return this;
  3911 #ifndef PRODUCT
  3912 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  3913   _ptrtype->dump2(d, depth, st);
  3915 #endif
  3917 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  3918 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  3921 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  3922   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  3926 #ifndef PRODUCT
  3927 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  3928   st->print("narrowoop: ");
  3929   TypeNarrowPtr::dump2(d, depth, st);
  3931 #endif
  3933 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
  3935 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
  3936   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
  3939 #ifndef PRODUCT
  3940 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
  3941   st->print("narrowklass: ");
  3942   TypeNarrowPtr::dump2(d, depth, st);
  3944 #endif
  3947 //------------------------------eq---------------------------------------------
  3948 // Structural equality check for Type representations
  3949 bool TypeMetadataPtr::eq( const Type *t ) const {
  3950   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
  3951   ciMetadata* one = metadata();
  3952   ciMetadata* two = a->metadata();
  3953   if (one == NULL || two == NULL) {
  3954     return (one == two) && TypePtr::eq(t);
  3955   } else {
  3956     return one->equals(two) && TypePtr::eq(t);
  3960 //------------------------------hash-------------------------------------------
  3961 // Type-specific hashing function.
  3962 int TypeMetadataPtr::hash(void) const {
  3963   return
  3964     (metadata() ? metadata()->hash() : 0) +
  3965     TypePtr::hash();
  3968 //------------------------------singleton--------------------------------------
  3969 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  3970 // constants
  3971 bool TypeMetadataPtr::singleton(void) const {
  3972   // detune optimizer to not generate constant metadta + constant offset as a constant!
  3973   // TopPTR, Null, AnyNull, Constant are all singletons
  3974   return (_offset == 0) && !below_centerline(_ptr);
  3977 //------------------------------add_offset-------------------------------------
  3978 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
  3979   return make( _ptr, _metadata, xadd_offset(offset));
  3982 //-----------------------------filter------------------------------------------
  3983 // Do not allow interface-vs.-noninterface joins to collapse to top.
  3984 const Type *TypeMetadataPtr::filter( const Type *kills ) const {
  3985   const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
  3986   if (ft == NULL || ft->empty())
  3987     return Type::TOP;           // Canonical empty value
  3988   return ft;
  3991  //------------------------------get_con----------------------------------------
  3992 intptr_t TypeMetadataPtr::get_con() const {
  3993   assert( _ptr == Null || _ptr == Constant, "" );
  3994   assert( _offset >= 0, "" );
  3996   if (_offset != 0) {
  3997     // After being ported to the compiler interface, the compiler no longer
  3998     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  3999     // to a handle at compile time.  This handle is embedded in the generated
  4000     // code and dereferenced at the time the nmethod is made.  Until that time,
  4001     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4002     // have access to the addresses!).  This does not seem to currently happen,
  4003     // but this assertion here is to help prevent its occurence.
  4004     tty->print_cr("Found oop constant with non-zero offset");
  4005     ShouldNotReachHere();
  4008   return (intptr_t)metadata()->constant_encoding();
  4011 //------------------------------cast_to_ptr_type-------------------------------
  4012 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
  4013   if( ptr == _ptr ) return this;
  4014   return make(ptr, metadata(), _offset);
  4017 //------------------------------meet-------------------------------------------
  4018 // Compute the MEET of two types.  It returns a new Type object.
  4019 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
  4020   // Perform a fast test for common case; meeting the same types together.
  4021   if( this == t ) return this;  // Meeting same type-rep?
  4023   // Current "this->_base" is OopPtr
  4024   switch (t->base()) {          // switch on original type
  4026   case Int:                     // Mixing ints & oops happens when javac
  4027   case Long:                    // reuses local variables
  4028   case FloatTop:
  4029   case FloatCon:
  4030   case FloatBot:
  4031   case DoubleTop:
  4032   case DoubleCon:
  4033   case DoubleBot:
  4034   case NarrowOop:
  4035   case NarrowKlass:
  4036   case Bottom:                  // Ye Olde Default
  4037     return Type::BOTTOM;
  4038   case Top:
  4039     return this;
  4041   default:                      // All else is a mistake
  4042     typerr(t);
  4044   case AnyPtr: {
  4045     // Found an AnyPtr type vs self-OopPtr type
  4046     const TypePtr *tp = t->is_ptr();
  4047     int offset = meet_offset(tp->offset());
  4048     PTR ptr = meet_ptr(tp->ptr());
  4049     switch (tp->ptr()) {
  4050     case Null:
  4051       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  4052       // else fall through:
  4053     case TopPTR:
  4054     case AnyNull: {
  4055       return make(ptr, NULL, offset);
  4057     case BotPTR:
  4058     case NotNull:
  4059       return TypePtr::make(AnyPtr, ptr, offset);
  4060     default: typerr(t);
  4064   case RawPtr:
  4065   case KlassPtr:
  4066   case OopPtr:
  4067   case InstPtr:
  4068   case AryPtr:
  4069     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  4071   case MetadataPtr: {
  4072     const TypeMetadataPtr *tp = t->is_metadataptr();
  4073     int offset = meet_offset(tp->offset());
  4074     PTR tptr = tp->ptr();
  4075     PTR ptr = meet_ptr(tptr);
  4076     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
  4077     if (tptr == TopPTR || _ptr == TopPTR ||
  4078         metadata()->equals(tp->metadata())) {
  4079       return make(ptr, md, offset);
  4081     // metadata is different
  4082     if( ptr == Constant ) {  // Cannot be equal constants, so...
  4083       if( tptr == Constant && _ptr != Constant)  return t;
  4084       if( _ptr == Constant && tptr != Constant)  return this;
  4085       ptr = NotNull;            // Fall down in lattice
  4087     return make(ptr, NULL, offset);
  4088     break;
  4090   } // End of switch
  4091   return this;                  // Return the double constant
  4095 //------------------------------xdual------------------------------------------
  4096 // Dual of a pure metadata pointer.
  4097 const Type *TypeMetadataPtr::xdual() const {
  4098   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
  4101 //------------------------------dump2------------------------------------------
  4102 #ifndef PRODUCT
  4103 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4104   st->print("metadataptr:%s", ptr_msg[_ptr]);
  4105   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
  4106   switch( _offset ) {
  4107   case OffsetTop: st->print("+top"); break;
  4108   case OffsetBot: st->print("+any"); break;
  4109   case         0: break;
  4110   default:        st->print("+%d",_offset); break;
  4113 #endif
  4116 //=============================================================================
  4117 // Convenience common pre-built type.
  4118 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
  4120 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
  4121   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
  4124 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
  4125   return make(Constant, m, 0);
  4127 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
  4128   return make(Constant, m, 0);
  4131 //------------------------------make-------------------------------------------
  4132 // Create a meta data constant
  4133 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
  4134   assert(m == NULL || !m->is_klass(), "wrong type");
  4135   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
  4139 //=============================================================================
  4140 // Convenience common pre-built types.
  4142 // Not-null object klass or below
  4143 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  4144 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  4146 //------------------------------TypeKlassPtr-----------------------------------
  4147 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  4148   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
  4151 //------------------------------make-------------------------------------------
  4152 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  4153 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  4154   assert( k != NULL, "Expect a non-NULL klass");
  4155   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
  4156   TypeKlassPtr *r =
  4157     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  4159   return r;
  4162 //------------------------------eq---------------------------------------------
  4163 // Structural equality check for Type representations
  4164 bool TypeKlassPtr::eq( const Type *t ) const {
  4165   const TypeKlassPtr *p = t->is_klassptr();
  4166   return
  4167     klass()->equals(p->klass()) &&
  4168     TypePtr::eq(p);
  4171 //------------------------------hash-------------------------------------------
  4172 // Type-specific hashing function.
  4173 int TypeKlassPtr::hash(void) const {
  4174   return klass()->hash() + TypePtr::hash();
  4177 //------------------------------singleton--------------------------------------
  4178 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4179 // constants
  4180 bool TypeKlassPtr::singleton(void) const {
  4181   // detune optimizer to not generate constant klass + constant offset as a constant!
  4182   // TopPTR, Null, AnyNull, Constant are all singletons
  4183   return (_offset == 0) && !below_centerline(_ptr);
  4186 //----------------------compute_klass------------------------------------------
  4187 // Compute the defining klass for this class
  4188 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  4189   // Compute _klass based on element type.
  4190   ciKlass* k_ary = NULL;
  4191   const TypeInstPtr *tinst;
  4192   const TypeAryPtr *tary;
  4193   const Type* el = elem();
  4194   if (el->isa_narrowoop()) {
  4195     el = el->make_ptr();
  4198   // Get element klass
  4199   if ((tinst = el->isa_instptr()) != NULL) {
  4200     // Compute array klass from element klass
  4201     k_ary = ciObjArrayKlass::make(tinst->klass());
  4202   } else if ((tary = el->isa_aryptr()) != NULL) {
  4203     // Compute array klass from element klass
  4204     ciKlass* k_elem = tary->klass();
  4205     // If element type is something like bottom[], k_elem will be null.
  4206     if (k_elem != NULL)
  4207       k_ary = ciObjArrayKlass::make(k_elem);
  4208   } else if ((el->base() == Type::Top) ||
  4209              (el->base() == Type::Bottom)) {
  4210     // element type of Bottom occurs from meet of basic type
  4211     // and object; Top occurs when doing join on Bottom.
  4212     // Leave k_ary at NULL.
  4213   } else {
  4214     // Cannot compute array klass directly from basic type,
  4215     // since subtypes of TypeInt all have basic type T_INT.
  4216 #ifdef ASSERT
  4217     if (verify && el->isa_int()) {
  4218       // Check simple cases when verifying klass.
  4219       BasicType bt = T_ILLEGAL;
  4220       if (el == TypeInt::BYTE) {
  4221         bt = T_BYTE;
  4222       } else if (el == TypeInt::SHORT) {
  4223         bt = T_SHORT;
  4224       } else if (el == TypeInt::CHAR) {
  4225         bt = T_CHAR;
  4226       } else if (el == TypeInt::INT) {
  4227         bt = T_INT;
  4228       } else {
  4229         return _klass; // just return specified klass
  4231       return ciTypeArrayKlass::make(bt);
  4233 #endif
  4234     assert(!el->isa_int(),
  4235            "integral arrays must be pre-equipped with a class");
  4236     // Compute array klass directly from basic type
  4237     k_ary = ciTypeArrayKlass::make(el->basic_type());
  4239   return k_ary;
  4242 //------------------------------klass------------------------------------------
  4243 // Return the defining klass for this class
  4244 ciKlass* TypeAryPtr::klass() const {
  4245   if( _klass ) return _klass;   // Return cached value, if possible
  4247   // Oops, need to compute _klass and cache it
  4248   ciKlass* k_ary = compute_klass();
  4250   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
  4251     // The _klass field acts as a cache of the underlying
  4252     // ciKlass for this array type.  In order to set the field,
  4253     // we need to cast away const-ness.
  4254     //
  4255     // IMPORTANT NOTE: we *never* set the _klass field for the
  4256     // type TypeAryPtr::OOPS.  This Type is shared between all
  4257     // active compilations.  However, the ciKlass which represents
  4258     // this Type is *not* shared between compilations, so caching
  4259     // this value would result in fetching a dangling pointer.
  4260     //
  4261     // Recomputing the underlying ciKlass for each request is
  4262     // a bit less efficient than caching, but calls to
  4263     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  4264     ((TypeAryPtr*)this)->_klass = k_ary;
  4265     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  4266         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  4267       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  4270   return k_ary;
  4274 //------------------------------add_offset-------------------------------------
  4275 // Access internals of klass object
  4276 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  4277   return make( _ptr, klass(), xadd_offset(offset) );
  4280 //------------------------------cast_to_ptr_type-------------------------------
  4281 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  4282   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  4283   if( ptr == _ptr ) return this;
  4284   return make(ptr, _klass, _offset);
  4288 //-----------------------------cast_to_exactness-------------------------------
  4289 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  4290   if( klass_is_exact == _klass_is_exact ) return this;
  4291   if (!UseExactTypes)  return this;
  4292   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  4296 //-----------------------------as_instance_type--------------------------------
  4297 // Corresponding type for an instance of the given class.
  4298 // It will be NotNull, and exact if and only if the klass type is exact.
  4299 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  4300   ciKlass* k = klass();
  4301   bool    xk = klass_is_exact();
  4302   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  4303   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  4304   guarantee(toop != NULL, "need type for given klass");
  4305   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  4306   return toop->cast_to_exactness(xk)->is_oopptr();
  4310 //------------------------------xmeet------------------------------------------
  4311 // Compute the MEET of two types, return a new Type object.
  4312 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  4313   // Perform a fast test for common case; meeting the same types together.
  4314   if( this == t ) return this;  // Meeting same type-rep?
  4316   // Current "this->_base" is Pointer
  4317   switch (t->base()) {          // switch on original type
  4319   case Int:                     // Mixing ints & oops happens when javac
  4320   case Long:                    // reuses local variables
  4321   case FloatTop:
  4322   case FloatCon:
  4323   case FloatBot:
  4324   case DoubleTop:
  4325   case DoubleCon:
  4326   case DoubleBot:
  4327   case NarrowOop:
  4328   case NarrowKlass:
  4329   case Bottom:                  // Ye Olde Default
  4330     return Type::BOTTOM;
  4331   case Top:
  4332     return this;
  4334   default:                      // All else is a mistake
  4335     typerr(t);
  4337   case AnyPtr: {                // Meeting to AnyPtrs
  4338     // Found an AnyPtr type vs self-KlassPtr type
  4339     const TypePtr *tp = t->is_ptr();
  4340     int offset = meet_offset(tp->offset());
  4341     PTR ptr = meet_ptr(tp->ptr());
  4342     switch (tp->ptr()) {
  4343     case TopPTR:
  4344       return this;
  4345     case Null:
  4346       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  4347     case AnyNull:
  4348       return make( ptr, klass(), offset );
  4349     case BotPTR:
  4350     case NotNull:
  4351       return TypePtr::make(AnyPtr, ptr, offset);
  4352     default: typerr(t);
  4356   case RawPtr:
  4357   case MetadataPtr:
  4358   case OopPtr:
  4359   case AryPtr:                  // Meet with AryPtr
  4360   case InstPtr:                 // Meet with InstPtr
  4361     return TypePtr::BOTTOM;
  4363   //
  4364   //             A-top         }
  4365   //           /   |   \       }  Tops
  4366   //       B-top A-any C-top   }
  4367   //          | /  |  \ |      }  Any-nulls
  4368   //       B-any   |   C-any   }
  4369   //          |    |    |
  4370   //       B-con A-con C-con   } constants; not comparable across classes
  4371   //          |    |    |
  4372   //       B-not   |   C-not   }
  4373   //          | \  |  / |      }  not-nulls
  4374   //       B-bot A-not C-bot   }
  4375   //           \   |   /       }  Bottoms
  4376   //             A-bot         }
  4377   //
  4379   case KlassPtr: {  // Meet two KlassPtr types
  4380     const TypeKlassPtr *tkls = t->is_klassptr();
  4381     int  off     = meet_offset(tkls->offset());
  4382     PTR  ptr     = meet_ptr(tkls->ptr());
  4384     // Check for easy case; klasses are equal (and perhaps not loaded!)
  4385     // If we have constants, then we created oops so classes are loaded
  4386     // and we can handle the constants further down.  This case handles
  4387     // not-loaded classes
  4388     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  4389       return make( ptr, klass(), off );
  4392     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  4393     ciKlass* tkls_klass = tkls->klass();
  4394     ciKlass* this_klass = this->klass();
  4395     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  4396     assert( this_klass->is_loaded(), "This class should have been loaded.");
  4398     // If 'this' type is above the centerline and is a superclass of the
  4399     // other, we can treat 'this' as having the same type as the other.
  4400     if ((above_centerline(this->ptr())) &&
  4401         tkls_klass->is_subtype_of(this_klass)) {
  4402       this_klass = tkls_klass;
  4404     // If 'tinst' type is above the centerline and is a superclass of the
  4405     // other, we can treat 'tinst' as having the same type as the other.
  4406     if ((above_centerline(tkls->ptr())) &&
  4407         this_klass->is_subtype_of(tkls_klass)) {
  4408       tkls_klass = this_klass;
  4411     // Check for classes now being equal
  4412     if (tkls_klass->equals(this_klass)) {
  4413       // If the klasses are equal, the constants may still differ.  Fall to
  4414       // NotNull if they do (neither constant is NULL; that is a special case
  4415       // handled elsewhere).
  4416       if( ptr == Constant ) {
  4417         if (this->_ptr == Constant && tkls->_ptr == Constant &&
  4418             this->klass()->equals(tkls->klass()));
  4419         else if (above_centerline(this->ptr()));
  4420         else if (above_centerline(tkls->ptr()));
  4421         else
  4422           ptr = NotNull;
  4424       return make( ptr, this_klass, off );
  4425     } // Else classes are not equal
  4427     // Since klasses are different, we require the LCA in the Java
  4428     // class hierarchy - which means we have to fall to at least NotNull.
  4429     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  4430       ptr = NotNull;
  4431     // Now we find the LCA of Java classes
  4432     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  4433     return   make( ptr, k, off );
  4434   } // End of case KlassPtr
  4436   } // End of switch
  4437   return this;                  // Return the double constant
  4440 //------------------------------xdual------------------------------------------
  4441 // Dual: compute field-by-field dual
  4442 const Type    *TypeKlassPtr::xdual() const {
  4443   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  4446 //------------------------------get_con----------------------------------------
  4447 intptr_t TypeKlassPtr::get_con() const {
  4448   assert( _ptr == Null || _ptr == Constant, "" );
  4449   assert( _offset >= 0, "" );
  4451   if (_offset != 0) {
  4452     // After being ported to the compiler interface, the compiler no longer
  4453     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4454     // to a handle at compile time.  This handle is embedded in the generated
  4455     // code and dereferenced at the time the nmethod is made.  Until that time,
  4456     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4457     // have access to the addresses!).  This does not seem to currently happen,
  4458     // but this assertion here is to help prevent its occurence.
  4459     tty->print_cr("Found oop constant with non-zero offset");
  4460     ShouldNotReachHere();
  4463   return (intptr_t)klass()->constant_encoding();
  4465 //------------------------------dump2------------------------------------------
  4466 // Dump Klass Type
  4467 #ifndef PRODUCT
  4468 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4469   switch( _ptr ) {
  4470   case Constant:
  4471     st->print("precise ");
  4472   case NotNull:
  4474       const char *name = klass()->name()->as_utf8();
  4475       if( name ) {
  4476         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  4477       } else {
  4478         ShouldNotReachHere();
  4481   case BotPTR:
  4482     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  4483   case TopPTR:
  4484   case AnyNull:
  4485     st->print(":%s", ptr_msg[_ptr]);
  4486     if( _klass_is_exact ) st->print(":exact");
  4487     break;
  4490   if( _offset ) {               // Dump offset, if any
  4491     if( _offset == OffsetBot )      { st->print("+any"); }
  4492     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  4493     else                            { st->print("+%d", _offset); }
  4496   st->print(" *");
  4498 #endif
  4502 //=============================================================================
  4503 // Convenience common pre-built types.
  4505 //------------------------------make-------------------------------------------
  4506 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  4507   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  4510 //------------------------------make-------------------------------------------
  4511 const TypeFunc *TypeFunc::make(ciMethod* method) {
  4512   Compile* C = Compile::current();
  4513   const TypeFunc* tf = C->last_tf(method); // check cache
  4514   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  4515   const TypeTuple *domain;
  4516   if (method->is_static()) {
  4517     domain = TypeTuple::make_domain(NULL, method->signature());
  4518   } else {
  4519     domain = TypeTuple::make_domain(method->holder(), method->signature());
  4521   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  4522   tf = TypeFunc::make(domain, range);
  4523   C->set_last_tf(method, tf);  // fill cache
  4524   return tf;
  4527 //------------------------------meet-------------------------------------------
  4528 // Compute the MEET of two types.  It returns a new Type object.
  4529 const Type *TypeFunc::xmeet( const Type *t ) const {
  4530   // Perform a fast test for common case; meeting the same types together.
  4531   if( this == t ) return this;  // Meeting same type-rep?
  4533   // Current "this->_base" is Func
  4534   switch (t->base()) {          // switch on original type
  4536   case Bottom:                  // Ye Olde Default
  4537     return t;
  4539   default:                      // All else is a mistake
  4540     typerr(t);
  4542   case Top:
  4543     break;
  4545   return this;                  // Return the double constant
  4548 //------------------------------xdual------------------------------------------
  4549 // Dual: compute field-by-field dual
  4550 const Type *TypeFunc::xdual() const {
  4551   return this;
  4554 //------------------------------eq---------------------------------------------
  4555 // Structural equality check for Type representations
  4556 bool TypeFunc::eq( const Type *t ) const {
  4557   const TypeFunc *a = (const TypeFunc*)t;
  4558   return _domain == a->_domain &&
  4559     _range == a->_range;
  4562 //------------------------------hash-------------------------------------------
  4563 // Type-specific hashing function.
  4564 int TypeFunc::hash(void) const {
  4565   return (intptr_t)_domain + (intptr_t)_range;
  4568 //------------------------------dump2------------------------------------------
  4569 // Dump Function Type
  4570 #ifndef PRODUCT
  4571 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4572   if( _range->_cnt <= Parms )
  4573     st->print("void");
  4574   else {
  4575     uint i;
  4576     for (i = Parms; i < _range->_cnt-1; i++) {
  4577       _range->field_at(i)->dump2(d,depth,st);
  4578       st->print("/");
  4580     _range->field_at(i)->dump2(d,depth,st);
  4582   st->print(" ");
  4583   st->print("( ");
  4584   if( !depth || d[this] ) {     // Check for recursive dump
  4585     st->print("...)");
  4586     return;
  4588   d.Insert((void*)this,(void*)this);    // Stop recursion
  4589   if (Parms < _domain->_cnt)
  4590     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4591   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4592     st->print(", ");
  4593     _domain->field_at(i)->dump2(d,depth-1,st);
  4595   st->print(" )");
  4597 #endif
  4599 //------------------------------singleton--------------------------------------
  4600 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4601 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4602 // or a single symbol.
  4603 bool TypeFunc::singleton(void) const {
  4604   return false;                 // Never a singleton
  4607 bool TypeFunc::empty(void) const {
  4608   return false;                 // Never empty
  4612 BasicType TypeFunc::return_type() const{
  4613   if (range()->cnt() == TypeFunc::Parms) {
  4614     return T_VOID;
  4616   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial