src/share/classes/com/sun/tools/javac/code/Types.java

Fri, 31 Aug 2012 10:37:46 +0100

author
jfranck
date
Fri, 31 Aug 2012 10:37:46 +0100
changeset 1313
873ddd9f4900
parent 1307
464f52f59f7d
child 1338
ad2ca2a4ab5e
permissions
-rw-r--r--

7151010: Add compiler support for repeating annotations
Reviewed-by: jjg, mcimadamore

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.*;
    31 import com.sun.tools.javac.util.*;
    32 import com.sun.tools.javac.util.List;
    34 import com.sun.tools.javac.jvm.ClassReader;
    35 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    36 import com.sun.tools.javac.code.Lint.LintCategory;
    37 import com.sun.tools.javac.comp.Check;
    39 import static com.sun.tools.javac.code.Scope.*;
    40 import static com.sun.tools.javac.code.Type.*;
    41 import static com.sun.tools.javac.code.TypeTags.*;
    42 import static com.sun.tools.javac.code.Symbol.*;
    43 import static com.sun.tools.javac.code.Flags.*;
    44 import static com.sun.tools.javac.code.BoundKind.*;
    45 import static com.sun.tools.javac.util.ListBuffer.lb;
    47 /**
    48  * Utility class containing various operations on types.
    49  *
    50  * <p>Unless other names are more illustrative, the following naming
    51  * conventions should be observed in this file:
    52  *
    53  * <dl>
    54  * <dt>t</dt>
    55  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    56  * <dt>s</dt>
    57  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    58  * <dt>ts</dt>
    59  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    60  * <dt>ss</dt>
    61  * <dd>A second list of types should be named ss.</dd>
    62  * </dl>
    63  *
    64  * <p><b>This is NOT part of any supported API.
    65  * If you write code that depends on this, you do so at your own risk.
    66  * This code and its internal interfaces are subject to change or
    67  * deletion without notice.</b>
    68  */
    69 public class Types {
    70     protected static final Context.Key<Types> typesKey =
    71         new Context.Key<Types>();
    73     final Symtab syms;
    74     final JavacMessages messages;
    75     final Names names;
    76     final boolean allowBoxing;
    77     final boolean allowCovariantReturns;
    78     final boolean allowObjectToPrimitiveCast;
    79     final ClassReader reader;
    80     final Check chk;
    81     List<Warner> warnStack = List.nil();
    82     final Name capturedName;
    84     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    85     public static Types instance(Context context) {
    86         Types instance = context.get(typesKey);
    87         if (instance == null)
    88             instance = new Types(context);
    89         return instance;
    90     }
    92     protected Types(Context context) {
    93         context.put(typesKey, this);
    94         syms = Symtab.instance(context);
    95         names = Names.instance(context);
    96         Source source = Source.instance(context);
    97         allowBoxing = source.allowBoxing();
    98         allowCovariantReturns = source.allowCovariantReturns();
    99         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   100         reader = ClassReader.instance(context);
   101         chk = Check.instance(context);
   102         capturedName = names.fromString("<captured wildcard>");
   103         messages = JavacMessages.instance(context);
   104     }
   105     // </editor-fold>
   107     // <editor-fold defaultstate="collapsed" desc="upperBound">
   108     /**
   109      * The "rvalue conversion".<br>
   110      * The upper bound of most types is the type
   111      * itself.  Wildcards, on the other hand have upper
   112      * and lower bounds.
   113      * @param t a type
   114      * @return the upper bound of the given type
   115      */
   116     public Type upperBound(Type t) {
   117         return upperBound.visit(t);
   118     }
   119     // where
   120         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   122             @Override
   123             public Type visitWildcardType(WildcardType t, Void ignored) {
   124                 if (t.isSuperBound())
   125                     return t.bound == null ? syms.objectType : t.bound.bound;
   126                 else
   127                     return visit(t.type);
   128             }
   130             @Override
   131             public Type visitCapturedType(CapturedType t, Void ignored) {
   132                 return visit(t.bound);
   133             }
   134         };
   135     // </editor-fold>
   137     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   138     /**
   139      * The "lvalue conversion".<br>
   140      * The lower bound of most types is the type
   141      * itself.  Wildcards, on the other hand have upper
   142      * and lower bounds.
   143      * @param t a type
   144      * @return the lower bound of the given type
   145      */
   146     public Type lowerBound(Type t) {
   147         return lowerBound.visit(t);
   148     }
   149     // where
   150         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   152             @Override
   153             public Type visitWildcardType(WildcardType t, Void ignored) {
   154                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   155             }
   157             @Override
   158             public Type visitCapturedType(CapturedType t, Void ignored) {
   159                 return visit(t.getLowerBound());
   160             }
   161         };
   162     // </editor-fold>
   164     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   165     /**
   166      * Checks that all the arguments to a class are unbounded
   167      * wildcards or something else that doesn't make any restrictions
   168      * on the arguments. If a class isUnbounded, a raw super- or
   169      * subclass can be cast to it without a warning.
   170      * @param t a type
   171      * @return true iff the given type is unbounded or raw
   172      */
   173     public boolean isUnbounded(Type t) {
   174         return isUnbounded.visit(t);
   175     }
   176     // where
   177         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   179             public Boolean visitType(Type t, Void ignored) {
   180                 return true;
   181             }
   183             @Override
   184             public Boolean visitClassType(ClassType t, Void ignored) {
   185                 List<Type> parms = t.tsym.type.allparams();
   186                 List<Type> args = t.allparams();
   187                 while (parms.nonEmpty()) {
   188                     WildcardType unb = new WildcardType(syms.objectType,
   189                                                         BoundKind.UNBOUND,
   190                                                         syms.boundClass,
   191                                                         (TypeVar)parms.head);
   192                     if (!containsType(args.head, unb))
   193                         return false;
   194                     parms = parms.tail;
   195                     args = args.tail;
   196                 }
   197                 return true;
   198             }
   199         };
   200     // </editor-fold>
   202     // <editor-fold defaultstate="collapsed" desc="asSub">
   203     /**
   204      * Return the least specific subtype of t that starts with symbol
   205      * sym.  If none exists, return null.  The least specific subtype
   206      * is determined as follows:
   207      *
   208      * <p>If there is exactly one parameterized instance of sym that is a
   209      * subtype of t, that parameterized instance is returned.<br>
   210      * Otherwise, if the plain type or raw type `sym' is a subtype of
   211      * type t, the type `sym' itself is returned.  Otherwise, null is
   212      * returned.
   213      */
   214     public Type asSub(Type t, Symbol sym) {
   215         return asSub.visit(t, sym);
   216     }
   217     // where
   218         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   220             public Type visitType(Type t, Symbol sym) {
   221                 return null;
   222             }
   224             @Override
   225             public Type visitClassType(ClassType t, Symbol sym) {
   226                 if (t.tsym == sym)
   227                     return t;
   228                 Type base = asSuper(sym.type, t.tsym);
   229                 if (base == null)
   230                     return null;
   231                 ListBuffer<Type> from = new ListBuffer<Type>();
   232                 ListBuffer<Type> to = new ListBuffer<Type>();
   233                 try {
   234                     adapt(base, t, from, to);
   235                 } catch (AdaptFailure ex) {
   236                     return null;
   237                 }
   238                 Type res = subst(sym.type, from.toList(), to.toList());
   239                 if (!isSubtype(res, t))
   240                     return null;
   241                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   242                 for (List<Type> l = sym.type.allparams();
   243                      l.nonEmpty(); l = l.tail)
   244                     if (res.contains(l.head) && !t.contains(l.head))
   245                         openVars.append(l.head);
   246                 if (openVars.nonEmpty()) {
   247                     if (t.isRaw()) {
   248                         // The subtype of a raw type is raw
   249                         res = erasure(res);
   250                     } else {
   251                         // Unbound type arguments default to ?
   252                         List<Type> opens = openVars.toList();
   253                         ListBuffer<Type> qs = new ListBuffer<Type>();
   254                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   255                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   256                         }
   257                         res = subst(res, opens, qs.toList());
   258                     }
   259                 }
   260                 return res;
   261             }
   263             @Override
   264             public Type visitErrorType(ErrorType t, Symbol sym) {
   265                 return t;
   266             }
   267         };
   268     // </editor-fold>
   270     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   271     /**
   272      * Is t a subtype of or convertible via boxing/unboxing
   273      * conversion to s?
   274      */
   275     public boolean isConvertible(Type t, Type s, Warner warn) {
   276         if (t.tag == ERROR)
   277             return true;
   278         boolean tPrimitive = t.isPrimitive();
   279         boolean sPrimitive = s.isPrimitive();
   280         if (tPrimitive == sPrimitive) {
   281             return isSubtypeUnchecked(t, s, warn);
   282         }
   283         if (!allowBoxing) return false;
   284         return tPrimitive
   285             ? isSubtype(boxedClass(t).type, s)
   286             : isSubtype(unboxedType(t), s);
   287     }
   289     /**
   290      * Is t a subtype of or convertiable via boxing/unboxing
   291      * convertions to s?
   292      */
   293     public boolean isConvertible(Type t, Type s) {
   294         return isConvertible(t, s, Warner.noWarnings);
   295     }
   296     // </editor-fold>
   298     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   299     /**
   300      * Is t an unchecked subtype of s?
   301      */
   302     public boolean isSubtypeUnchecked(Type t, Type s) {
   303         return isSubtypeUnchecked(t, s, Warner.noWarnings);
   304     }
   305     /**
   306      * Is t an unchecked subtype of s?
   307      */
   308     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   309         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   310         if (result) {
   311             checkUnsafeVarargsConversion(t, s, warn);
   312         }
   313         return result;
   314     }
   315     //where
   316         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   317             if (t.tag == ARRAY && s.tag == ARRAY) {
   318                 if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
   319                     return isSameType(elemtype(t), elemtype(s));
   320                 } else {
   321                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   322                 }
   323             } else if (isSubtype(t, s)) {
   324                 return true;
   325             }
   326             else if (t.tag == TYPEVAR) {
   327                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   328             }
   329             else if (!s.isRaw()) {
   330                 Type t2 = asSuper(t, s.tsym);
   331                 if (t2 != null && t2.isRaw()) {
   332                     if (isReifiable(s))
   333                         warn.silentWarn(LintCategory.UNCHECKED);
   334                     else
   335                         warn.warn(LintCategory.UNCHECKED);
   336                     return true;
   337                 }
   338             }
   339             return false;
   340         }
   342         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   343             if (t.tag != ARRAY || isReifiable(t)) return;
   344             ArrayType from = (ArrayType)t;
   345             boolean shouldWarn = false;
   346             switch (s.tag) {
   347                 case ARRAY:
   348                     ArrayType to = (ArrayType)s;
   349                     shouldWarn = from.isVarargs() &&
   350                             !to.isVarargs() &&
   351                             !isReifiable(from);
   352                     break;
   353                 case CLASS:
   354                     shouldWarn = from.isVarargs();
   355                     break;
   356             }
   357             if (shouldWarn) {
   358                 warn.warn(LintCategory.VARARGS);
   359             }
   360         }
   362     /**
   363      * Is t a subtype of s?<br>
   364      * (not defined for Method and ForAll types)
   365      */
   366     final public boolean isSubtype(Type t, Type s) {
   367         return isSubtype(t, s, true);
   368     }
   369     final public boolean isSubtypeNoCapture(Type t, Type s) {
   370         return isSubtype(t, s, false);
   371     }
   372     public boolean isSubtype(Type t, Type s, boolean capture) {
   373         if (t == s)
   374             return true;
   376         if (s.tag >= firstPartialTag)
   377             return isSuperType(s, t);
   379         if (s.isCompound()) {
   380             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   381                 if (!isSubtype(t, s2, capture))
   382                     return false;
   383             }
   384             return true;
   385         }
   387         Type lower = lowerBound(s);
   388         if (s != lower)
   389             return isSubtype(capture ? capture(t) : t, lower, false);
   391         return isSubtype.visit(capture ? capture(t) : t, s);
   392     }
   393     // where
   394         private TypeRelation isSubtype = new TypeRelation()
   395         {
   396             public Boolean visitType(Type t, Type s) {
   397                 switch (t.tag) {
   398                 case BYTE: case CHAR:
   399                     return (t.tag == s.tag ||
   400                               t.tag + 2 <= s.tag && s.tag <= DOUBLE);
   401                 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
   402                     return t.tag <= s.tag && s.tag <= DOUBLE;
   403                 case BOOLEAN: case VOID:
   404                     return t.tag == s.tag;
   405                 case TYPEVAR:
   406                     return isSubtypeNoCapture(t.getUpperBound(), s);
   407                 case BOT:
   408                     return
   409                         s.tag == BOT || s.tag == CLASS ||
   410                         s.tag == ARRAY || s.tag == TYPEVAR;
   411                 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   412                 case NONE:
   413                     return false;
   414                 default:
   415                     throw new AssertionError("isSubtype " + t.tag);
   416                 }
   417             }
   419             private Set<TypePair> cache = new HashSet<TypePair>();
   421             private boolean containsTypeRecursive(Type t, Type s) {
   422                 TypePair pair = new TypePair(t, s);
   423                 if (cache.add(pair)) {
   424                     try {
   425                         return containsType(t.getTypeArguments(),
   426                                             s.getTypeArguments());
   427                     } finally {
   428                         cache.remove(pair);
   429                     }
   430                 } else {
   431                     return containsType(t.getTypeArguments(),
   432                                         rewriteSupers(s).getTypeArguments());
   433                 }
   434             }
   436             private Type rewriteSupers(Type t) {
   437                 if (!t.isParameterized())
   438                     return t;
   439                 ListBuffer<Type> from = lb();
   440                 ListBuffer<Type> to = lb();
   441                 adaptSelf(t, from, to);
   442                 if (from.isEmpty())
   443                     return t;
   444                 ListBuffer<Type> rewrite = lb();
   445                 boolean changed = false;
   446                 for (Type orig : to.toList()) {
   447                     Type s = rewriteSupers(orig);
   448                     if (s.isSuperBound() && !s.isExtendsBound()) {
   449                         s = new WildcardType(syms.objectType,
   450                                              BoundKind.UNBOUND,
   451                                              syms.boundClass);
   452                         changed = true;
   453                     } else if (s != orig) {
   454                         s = new WildcardType(upperBound(s),
   455                                              BoundKind.EXTENDS,
   456                                              syms.boundClass);
   457                         changed = true;
   458                     }
   459                     rewrite.append(s);
   460                 }
   461                 if (changed)
   462                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   463                 else
   464                     return t;
   465             }
   467             @Override
   468             public Boolean visitClassType(ClassType t, Type s) {
   469                 Type sup = asSuper(t, s.tsym);
   470                 return sup != null
   471                     && sup.tsym == s.tsym
   472                     // You're not allowed to write
   473                     //     Vector<Object> vec = new Vector<String>();
   474                     // But with wildcards you can write
   475                     //     Vector<? extends Object> vec = new Vector<String>();
   476                     // which means that subtype checking must be done
   477                     // here instead of same-type checking (via containsType).
   478                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   479                     && isSubtypeNoCapture(sup.getEnclosingType(),
   480                                           s.getEnclosingType());
   481             }
   483             @Override
   484             public Boolean visitArrayType(ArrayType t, Type s) {
   485                 if (s.tag == ARRAY) {
   486                     if (t.elemtype.tag <= lastBaseTag)
   487                         return isSameType(t.elemtype, elemtype(s));
   488                     else
   489                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   490                 }
   492                 if (s.tag == CLASS) {
   493                     Name sname = s.tsym.getQualifiedName();
   494                     return sname == names.java_lang_Object
   495                         || sname == names.java_lang_Cloneable
   496                         || sname == names.java_io_Serializable;
   497                 }
   499                 return false;
   500             }
   502             @Override
   503             public Boolean visitUndetVar(UndetVar t, Type s) {
   504                 //todo: test against origin needed? or replace with substitution?
   505                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
   506                     return true;
   507                 } else if (s.tag == BOT) {
   508                     //if 's' is 'null' there's no instantiated type U for which
   509                     //U <: s (but 'null' itself, which is not a valid type)
   510                     return false;
   511                 }
   513                 t.hibounds = t.hibounds.prepend(s);
   514                 return true;
   515             }
   517             @Override
   518             public Boolean visitErrorType(ErrorType t, Type s) {
   519                 return true;
   520             }
   521         };
   523     /**
   524      * Is t a subtype of every type in given list `ts'?<br>
   525      * (not defined for Method and ForAll types)<br>
   526      * Allows unchecked conversions.
   527      */
   528     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   529         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   530             if (!isSubtypeUnchecked(t, l.head, warn))
   531                 return false;
   532         return true;
   533     }
   535     /**
   536      * Are corresponding elements of ts subtypes of ss?  If lists are
   537      * of different length, return false.
   538      */
   539     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   540         while (ts.tail != null && ss.tail != null
   541                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   542                isSubtype(ts.head, ss.head)) {
   543             ts = ts.tail;
   544             ss = ss.tail;
   545         }
   546         return ts.tail == null && ss.tail == null;
   547         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   548     }
   550     /**
   551      * Are corresponding elements of ts subtypes of ss, allowing
   552      * unchecked conversions?  If lists are of different length,
   553      * return false.
   554      **/
   555     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   556         while (ts.tail != null && ss.tail != null
   557                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   558                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   559             ts = ts.tail;
   560             ss = ss.tail;
   561         }
   562         return ts.tail == null && ss.tail == null;
   563         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   564     }
   565     // </editor-fold>
   567     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   568     /**
   569      * Is t a supertype of s?
   570      */
   571     public boolean isSuperType(Type t, Type s) {
   572         switch (t.tag) {
   573         case ERROR:
   574             return true;
   575         case UNDETVAR: {
   576             UndetVar undet = (UndetVar)t;
   577             if (t == s ||
   578                 undet.qtype == s ||
   579                 s.tag == ERROR ||
   580                 s.tag == BOT) return true;
   581             undet.lobounds = undet.lobounds.prepend(s);
   582             return true;
   583         }
   584         default:
   585             return isSubtype(s, t);
   586         }
   587     }
   588     // </editor-fold>
   590     // <editor-fold defaultstate="collapsed" desc="isSameType">
   591     /**
   592      * Are corresponding elements of the lists the same type?  If
   593      * lists are of different length, return false.
   594      */
   595     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   596         while (ts.tail != null && ss.tail != null
   597                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   598                isSameType(ts.head, ss.head)) {
   599             ts = ts.tail;
   600             ss = ss.tail;
   601         }
   602         return ts.tail == null && ss.tail == null;
   603         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   604     }
   606     /**
   607      * Is t the same type as s?
   608      */
   609     public boolean isSameType(Type t, Type s) {
   610         return isSameType.visit(t, s);
   611     }
   612     // where
   613         private TypeRelation isSameType = new TypeRelation() {
   615             public Boolean visitType(Type t, Type s) {
   616                 if (t == s)
   617                     return true;
   619                 if (s.tag >= firstPartialTag)
   620                     return visit(s, t);
   622                 switch (t.tag) {
   623                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   624                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
   625                     return t.tag == s.tag;
   626                 case TYPEVAR: {
   627                     if (s.tag == TYPEVAR) {
   628                         //type-substitution does not preserve type-var types
   629                         //check that type var symbols and bounds are indeed the same
   630                         return t.tsym == s.tsym &&
   631                                 visit(t.getUpperBound(), s.getUpperBound());
   632                     }
   633                     else {
   634                         //special case for s == ? super X, where upper(s) = u
   635                         //check that u == t, where u has been set by Type.withTypeVar
   636                         return s.isSuperBound() &&
   637                                 !s.isExtendsBound() &&
   638                                 visit(t, upperBound(s));
   639                     }
   640                 }
   641                 default:
   642                     throw new AssertionError("isSameType " + t.tag);
   643                 }
   644             }
   646             @Override
   647             public Boolean visitWildcardType(WildcardType t, Type s) {
   648                 if (s.tag >= firstPartialTag)
   649                     return visit(s, t);
   650                 else
   651                     return false;
   652             }
   654             @Override
   655             public Boolean visitClassType(ClassType t, Type s) {
   656                 if (t == s)
   657                     return true;
   659                 if (s.tag >= firstPartialTag)
   660                     return visit(s, t);
   662                 if (s.isSuperBound() && !s.isExtendsBound())
   663                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
   665                 if (t.isCompound() && s.isCompound()) {
   666                     if (!visit(supertype(t), supertype(s)))
   667                         return false;
   669                     HashSet<SingletonType> set = new HashSet<SingletonType>();
   670                     for (Type x : interfaces(t))
   671                         set.add(new SingletonType(x));
   672                     for (Type x : interfaces(s)) {
   673                         if (!set.remove(new SingletonType(x)))
   674                             return false;
   675                     }
   676                     return (set.isEmpty());
   677                 }
   678                 return t.tsym == s.tsym
   679                     && visit(t.getEnclosingType(), s.getEnclosingType())
   680                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
   681             }
   683             @Override
   684             public Boolean visitArrayType(ArrayType t, Type s) {
   685                 if (t == s)
   686                     return true;
   688                 if (s.tag >= firstPartialTag)
   689                     return visit(s, t);
   691                 return s.tag == ARRAY
   692                     && containsTypeEquivalent(t.elemtype, elemtype(s));
   693             }
   695             @Override
   696             public Boolean visitMethodType(MethodType t, Type s) {
   697                 // isSameType for methods does not take thrown
   698                 // exceptions into account!
   699                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
   700             }
   702             @Override
   703             public Boolean visitPackageType(PackageType t, Type s) {
   704                 return t == s;
   705             }
   707             @Override
   708             public Boolean visitForAll(ForAll t, Type s) {
   709                 if (s.tag != FORALL)
   710                     return false;
   712                 ForAll forAll = (ForAll)s;
   713                 return hasSameBounds(t, forAll)
   714                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
   715             }
   717             @Override
   718             public Boolean visitUndetVar(UndetVar t, Type s) {
   719                 if (s.tag == WILDCARD)
   720                     // FIXME, this might be leftovers from before capture conversion
   721                     return false;
   723                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
   724                     return true;
   726                 t.eq = t.eq.prepend(s);
   728                 return true;
   729             }
   731             @Override
   732             public Boolean visitErrorType(ErrorType t, Type s) {
   733                 return true;
   734             }
   735         };
   736     // </editor-fold>
   738     // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
   739     /**
   740      * A mapping that turns all unknown types in this type to fresh
   741      * unknown variables.
   742      */
   743     public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
   744             public Type apply(Type t) {
   745                 if (t.tag == UNKNOWN) return new UndetVar(t);
   746                 else return t.map(this);
   747             }
   748         };
   749     // </editor-fold>
   751     // <editor-fold defaultstate="collapsed" desc="Contains Type">
   752     public boolean containedBy(Type t, Type s) {
   753         switch (t.tag) {
   754         case UNDETVAR:
   755             if (s.tag == WILDCARD) {
   756                 UndetVar undetvar = (UndetVar)t;
   757                 WildcardType wt = (WildcardType)s;
   758                 switch(wt.kind) {
   759                     case UNBOUND: //similar to ? extends Object
   760                     case EXTENDS: {
   761                         Type bound = upperBound(s);
   762                         undetvar.hibounds = undetvar.hibounds.prepend(bound);
   763                         break;
   764                     }
   765                     case SUPER: {
   766                         Type bound = lowerBound(s);
   767                         undetvar.lobounds = undetvar.lobounds.prepend(bound);
   768                         break;
   769                     }
   770                 }
   771                 return true;
   772             } else {
   773                 return isSameType(t, s);
   774             }
   775         case ERROR:
   776             return true;
   777         default:
   778             return containsType(s, t);
   779         }
   780     }
   782     boolean containsType(List<Type> ts, List<Type> ss) {
   783         while (ts.nonEmpty() && ss.nonEmpty()
   784                && containsType(ts.head, ss.head)) {
   785             ts = ts.tail;
   786             ss = ss.tail;
   787         }
   788         return ts.isEmpty() && ss.isEmpty();
   789     }
   791     /**
   792      * Check if t contains s.
   793      *
   794      * <p>T contains S if:
   795      *
   796      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
   797      *
   798      * <p>This relation is only used by ClassType.isSubtype(), that
   799      * is,
   800      *
   801      * <p>{@code C<S> <: C<T> if T contains S.}
   802      *
   803      * <p>Because of F-bounds, this relation can lead to infinite
   804      * recursion.  Thus we must somehow break that recursion.  Notice
   805      * that containsType() is only called from ClassType.isSubtype().
   806      * Since the arguments have already been checked against their
   807      * bounds, we know:
   808      *
   809      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
   810      *
   811      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
   812      *
   813      * @param t a type
   814      * @param s a type
   815      */
   816     public boolean containsType(Type t, Type s) {
   817         return containsType.visit(t, s);
   818     }
   819     // where
   820         private TypeRelation containsType = new TypeRelation() {
   822             private Type U(Type t) {
   823                 while (t.tag == WILDCARD) {
   824                     WildcardType w = (WildcardType)t;
   825                     if (w.isSuperBound())
   826                         return w.bound == null ? syms.objectType : w.bound.bound;
   827                     else
   828                         t = w.type;
   829                 }
   830                 return t;
   831             }
   833             private Type L(Type t) {
   834                 while (t.tag == WILDCARD) {
   835                     WildcardType w = (WildcardType)t;
   836                     if (w.isExtendsBound())
   837                         return syms.botType;
   838                     else
   839                         t = w.type;
   840                 }
   841                 return t;
   842             }
   844             public Boolean visitType(Type t, Type s) {
   845                 if (s.tag >= firstPartialTag)
   846                     return containedBy(s, t);
   847                 else
   848                     return isSameType(t, s);
   849             }
   851 //            void debugContainsType(WildcardType t, Type s) {
   852 //                System.err.println();
   853 //                System.err.format(" does %s contain %s?%n", t, s);
   854 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
   855 //                                  upperBound(s), s, t, U(t),
   856 //                                  t.isSuperBound()
   857 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
   858 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
   859 //                                  L(t), t, s, lowerBound(s),
   860 //                                  t.isExtendsBound()
   861 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
   862 //                System.err.println();
   863 //            }
   865             @Override
   866             public Boolean visitWildcardType(WildcardType t, Type s) {
   867                 if (s.tag >= firstPartialTag)
   868                     return containedBy(s, t);
   869                 else {
   870 //                    debugContainsType(t, s);
   871                     return isSameWildcard(t, s)
   872                         || isCaptureOf(s, t)
   873                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
   874                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
   875                 }
   876             }
   878             @Override
   879             public Boolean visitUndetVar(UndetVar t, Type s) {
   880                 if (s.tag != WILDCARD)
   881                     return isSameType(t, s);
   882                 else
   883                     return false;
   884             }
   886             @Override
   887             public Boolean visitErrorType(ErrorType t, Type s) {
   888                 return true;
   889             }
   890         };
   892     public boolean isCaptureOf(Type s, WildcardType t) {
   893         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
   894             return false;
   895         return isSameWildcard(t, ((CapturedType)s).wildcard);
   896     }
   898     public boolean isSameWildcard(WildcardType t, Type s) {
   899         if (s.tag != WILDCARD)
   900             return false;
   901         WildcardType w = (WildcardType)s;
   902         return w.kind == t.kind && w.type == t.type;
   903     }
   905     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
   906         while (ts.nonEmpty() && ss.nonEmpty()
   907                && containsTypeEquivalent(ts.head, ss.head)) {
   908             ts = ts.tail;
   909             ss = ss.tail;
   910         }
   911         return ts.isEmpty() && ss.isEmpty();
   912     }
   913     // </editor-fold>
   915     // <editor-fold defaultstate="collapsed" desc="isCastable">
   916     public boolean isCastable(Type t, Type s) {
   917         return isCastable(t, s, Warner.noWarnings);
   918     }
   920     /**
   921      * Is t is castable to s?<br>
   922      * s is assumed to be an erased type.<br>
   923      * (not defined for Method and ForAll types).
   924      */
   925     public boolean isCastable(Type t, Type s, Warner warn) {
   926         if (t == s)
   927             return true;
   929         if (t.isPrimitive() != s.isPrimitive())
   930             return allowBoxing && (
   931                     isConvertible(t, s, warn)
   932                     || (allowObjectToPrimitiveCast &&
   933                         s.isPrimitive() &&
   934                         isSubtype(boxedClass(s).type, t)));
   935         if (warn != warnStack.head) {
   936             try {
   937                 warnStack = warnStack.prepend(warn);
   938                 checkUnsafeVarargsConversion(t, s, warn);
   939                 return isCastable.visit(t,s);
   940             } finally {
   941                 warnStack = warnStack.tail;
   942             }
   943         } else {
   944             return isCastable.visit(t,s);
   945         }
   946     }
   947     // where
   948         private TypeRelation isCastable = new TypeRelation() {
   950             public Boolean visitType(Type t, Type s) {
   951                 if (s.tag == ERROR)
   952                     return true;
   954                 switch (t.tag) {
   955                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   956                 case DOUBLE:
   957                     return s.tag <= DOUBLE;
   958                 case BOOLEAN:
   959                     return s.tag == BOOLEAN;
   960                 case VOID:
   961                     return false;
   962                 case BOT:
   963                     return isSubtype(t, s);
   964                 default:
   965                     throw new AssertionError();
   966                 }
   967             }
   969             @Override
   970             public Boolean visitWildcardType(WildcardType t, Type s) {
   971                 return isCastable(upperBound(t), s, warnStack.head);
   972             }
   974             @Override
   975             public Boolean visitClassType(ClassType t, Type s) {
   976                 if (s.tag == ERROR || s.tag == BOT)
   977                     return true;
   979                 if (s.tag == TYPEVAR) {
   980                     if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
   981                         warnStack.head.warn(LintCategory.UNCHECKED);
   982                         return true;
   983                     } else {
   984                         return false;
   985                     }
   986                 }
   988                 if (t.isCompound()) {
   989                     Warner oldWarner = warnStack.head;
   990                     warnStack.head = Warner.noWarnings;
   991                     if (!visit(supertype(t), s))
   992                         return false;
   993                     for (Type intf : interfaces(t)) {
   994                         if (!visit(intf, s))
   995                             return false;
   996                     }
   997                     if (warnStack.head.hasLint(LintCategory.UNCHECKED))
   998                         oldWarner.warn(LintCategory.UNCHECKED);
   999                     return true;
  1002                 if (s.isCompound()) {
  1003                     // call recursively to reuse the above code
  1004                     return visitClassType((ClassType)s, t);
  1007                 if (s.tag == CLASS || s.tag == ARRAY) {
  1008                     boolean upcast;
  1009                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1010                         || isSubtype(erasure(s), erasure(t))) {
  1011                         if (!upcast && s.tag == ARRAY) {
  1012                             if (!isReifiable(s))
  1013                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1014                             return true;
  1015                         } else if (s.isRaw()) {
  1016                             return true;
  1017                         } else if (t.isRaw()) {
  1018                             if (!isUnbounded(s))
  1019                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1020                             return true;
  1022                         // Assume |a| <: |b|
  1023                         final Type a = upcast ? t : s;
  1024                         final Type b = upcast ? s : t;
  1025                         final boolean HIGH = true;
  1026                         final boolean LOW = false;
  1027                         final boolean DONT_REWRITE_TYPEVARS = false;
  1028                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1029                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1030                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1031                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1032                         Type lowSub = asSub(bLow, aLow.tsym);
  1033                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1034                         if (highSub == null) {
  1035                             final boolean REWRITE_TYPEVARS = true;
  1036                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1037                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1038                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1039                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1040                             lowSub = asSub(bLow, aLow.tsym);
  1041                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1043                         if (highSub != null) {
  1044                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1045                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1047                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1048                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1049                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1050                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1051                                 if (upcast ? giveWarning(a, b) :
  1052                                     giveWarning(b, a))
  1053                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1054                                 return true;
  1057                         if (isReifiable(s))
  1058                             return isSubtypeUnchecked(a, b);
  1059                         else
  1060                             return isSubtypeUnchecked(a, b, warnStack.head);
  1063                     // Sidecast
  1064                     if (s.tag == CLASS) {
  1065                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1066                             return ((t.tsym.flags() & FINAL) == 0)
  1067                                 ? sideCast(t, s, warnStack.head)
  1068                                 : sideCastFinal(t, s, warnStack.head);
  1069                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1070                             return ((s.tsym.flags() & FINAL) == 0)
  1071                                 ? sideCast(t, s, warnStack.head)
  1072                                 : sideCastFinal(t, s, warnStack.head);
  1073                         } else {
  1074                             // unrelated class types
  1075                             return false;
  1079                 return false;
  1082             @Override
  1083             public Boolean visitArrayType(ArrayType t, Type s) {
  1084                 switch (s.tag) {
  1085                 case ERROR:
  1086                 case BOT:
  1087                     return true;
  1088                 case TYPEVAR:
  1089                     if (isCastable(s, t, Warner.noWarnings)) {
  1090                         warnStack.head.warn(LintCategory.UNCHECKED);
  1091                         return true;
  1092                     } else {
  1093                         return false;
  1095                 case CLASS:
  1096                     return isSubtype(t, s);
  1097                 case ARRAY:
  1098                     if (elemtype(t).tag <= lastBaseTag ||
  1099                             elemtype(s).tag <= lastBaseTag) {
  1100                         return elemtype(t).tag == elemtype(s).tag;
  1101                     } else {
  1102                         return visit(elemtype(t), elemtype(s));
  1104                 default:
  1105                     return false;
  1109             @Override
  1110             public Boolean visitTypeVar(TypeVar t, Type s) {
  1111                 switch (s.tag) {
  1112                 case ERROR:
  1113                 case BOT:
  1114                     return true;
  1115                 case TYPEVAR:
  1116                     if (isSubtype(t, s)) {
  1117                         return true;
  1118                     } else if (isCastable(t.bound, s, Warner.noWarnings)) {
  1119                         warnStack.head.warn(LintCategory.UNCHECKED);
  1120                         return true;
  1121                     } else {
  1122                         return false;
  1124                 default:
  1125                     return isCastable(t.bound, s, warnStack.head);
  1129             @Override
  1130             public Boolean visitErrorType(ErrorType t, Type s) {
  1131                 return true;
  1133         };
  1134     // </editor-fold>
  1136     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1137     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1138         while (ts.tail != null && ss.tail != null) {
  1139             if (disjointType(ts.head, ss.head)) return true;
  1140             ts = ts.tail;
  1141             ss = ss.tail;
  1143         return false;
  1146     /**
  1147      * Two types or wildcards are considered disjoint if it can be
  1148      * proven that no type can be contained in both. It is
  1149      * conservative in that it is allowed to say that two types are
  1150      * not disjoint, even though they actually are.
  1152      * The type C<X> is castable to C<Y> exactly if X and Y are not
  1153      * disjoint.
  1154      */
  1155     public boolean disjointType(Type t, Type s) {
  1156         return disjointType.visit(t, s);
  1158     // where
  1159         private TypeRelation disjointType = new TypeRelation() {
  1161             private Set<TypePair> cache = new HashSet<TypePair>();
  1163             public Boolean visitType(Type t, Type s) {
  1164                 if (s.tag == WILDCARD)
  1165                     return visit(s, t);
  1166                 else
  1167                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1170             private boolean isCastableRecursive(Type t, Type s) {
  1171                 TypePair pair = new TypePair(t, s);
  1172                 if (cache.add(pair)) {
  1173                     try {
  1174                         return Types.this.isCastable(t, s);
  1175                     } finally {
  1176                         cache.remove(pair);
  1178                 } else {
  1179                     return true;
  1183             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1184                 TypePair pair = new TypePair(t, s);
  1185                 if (cache.add(pair)) {
  1186                     try {
  1187                         return Types.this.notSoftSubtype(t, s);
  1188                     } finally {
  1189                         cache.remove(pair);
  1191                 } else {
  1192                     return false;
  1196             @Override
  1197             public Boolean visitWildcardType(WildcardType t, Type s) {
  1198                 if (t.isUnbound())
  1199                     return false;
  1201                 if (s.tag != WILDCARD) {
  1202                     if (t.isExtendsBound())
  1203                         return notSoftSubtypeRecursive(s, t.type);
  1204                     else // isSuperBound()
  1205                         return notSoftSubtypeRecursive(t.type, s);
  1208                 if (s.isUnbound())
  1209                     return false;
  1211                 if (t.isExtendsBound()) {
  1212                     if (s.isExtendsBound())
  1213                         return !isCastableRecursive(t.type, upperBound(s));
  1214                     else if (s.isSuperBound())
  1215                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1216                 } else if (t.isSuperBound()) {
  1217                     if (s.isExtendsBound())
  1218                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1220                 return false;
  1222         };
  1223     // </editor-fold>
  1225     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1226     /**
  1227      * Returns the lower bounds of the formals of a method.
  1228      */
  1229     public List<Type> lowerBoundArgtypes(Type t) {
  1230         return map(t.getParameterTypes(), lowerBoundMapping);
  1232     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1233             public Type apply(Type t) {
  1234                 return lowerBound(t);
  1236         };
  1237     // </editor-fold>
  1239     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1240     /**
  1241      * This relation answers the question: is impossible that
  1242      * something of type `t' can be a subtype of `s'? This is
  1243      * different from the question "is `t' not a subtype of `s'?"
  1244      * when type variables are involved: Integer is not a subtype of T
  1245      * where <T extends Number> but it is not true that Integer cannot
  1246      * possibly be a subtype of T.
  1247      */
  1248     public boolean notSoftSubtype(Type t, Type s) {
  1249         if (t == s) return false;
  1250         if (t.tag == TYPEVAR) {
  1251             TypeVar tv = (TypeVar) t;
  1252             return !isCastable(tv.bound,
  1253                                relaxBound(s),
  1254                                Warner.noWarnings);
  1256         if (s.tag != WILDCARD)
  1257             s = upperBound(s);
  1259         return !isSubtype(t, relaxBound(s));
  1262     private Type relaxBound(Type t) {
  1263         if (t.tag == TYPEVAR) {
  1264             while (t.tag == TYPEVAR)
  1265                 t = t.getUpperBound();
  1266             t = rewriteQuantifiers(t, true, true);
  1268         return t;
  1270     // </editor-fold>
  1272     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1273     public boolean isReifiable(Type t) {
  1274         return isReifiable.visit(t);
  1276     // where
  1277         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1279             public Boolean visitType(Type t, Void ignored) {
  1280                 return true;
  1283             @Override
  1284             public Boolean visitClassType(ClassType t, Void ignored) {
  1285                 if (t.isCompound())
  1286                     return false;
  1287                 else {
  1288                     if (!t.isParameterized())
  1289                         return true;
  1291                     for (Type param : t.allparams()) {
  1292                         if (!param.isUnbound())
  1293                             return false;
  1295                     return true;
  1299             @Override
  1300             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1301                 return visit(t.elemtype);
  1304             @Override
  1305             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1306                 return false;
  1308         };
  1309     // </editor-fold>
  1311     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1312     public boolean isArray(Type t) {
  1313         while (t.tag == WILDCARD)
  1314             t = upperBound(t);
  1315         return t.tag == ARRAY;
  1318     /**
  1319      * The element type of an array.
  1320      */
  1321     public Type elemtype(Type t) {
  1322         switch (t.tag) {
  1323         case WILDCARD:
  1324             return elemtype(upperBound(t));
  1325         case ARRAY:
  1326             return ((ArrayType)t).elemtype;
  1327         case FORALL:
  1328             return elemtype(((ForAll)t).qtype);
  1329         case ERROR:
  1330             return t;
  1331         default:
  1332             return null;
  1336     public Type elemtypeOrType(Type t) {
  1337         Type elemtype = elemtype(t);
  1338         return elemtype != null ?
  1339             elemtype :
  1340             t;
  1343     /**
  1344      * Mapping to take element type of an arraytype
  1345      */
  1346     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1347         public Type apply(Type t) { return elemtype(t); }
  1348     };
  1350     /**
  1351      * The number of dimensions of an array type.
  1352      */
  1353     public int dimensions(Type t) {
  1354         int result = 0;
  1355         while (t.tag == ARRAY) {
  1356             result++;
  1357             t = elemtype(t);
  1359         return result;
  1362     /**
  1363      * Returns an ArrayType with the component type t
  1365      * @param t The component type of the ArrayType
  1366      * @return the ArrayType for the given component
  1367      */
  1368     public ArrayType makeArrayType(Type t) {
  1369         if (t.tag == VOID ||
  1370             t.tag >= PACKAGE) {
  1371             Assert.error("Type t must not be a a VOID or PACKAGE type, " + t.toString());
  1373         return new ArrayType(t, syms.arrayClass);
  1375     // </editor-fold>
  1377     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1378     /**
  1379      * Return the (most specific) base type of t that starts with the
  1380      * given symbol.  If none exists, return null.
  1382      * @param t a type
  1383      * @param sym a symbol
  1384      */
  1385     public Type asSuper(Type t, Symbol sym) {
  1386         return asSuper.visit(t, sym);
  1388     // where
  1389         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1391             public Type visitType(Type t, Symbol sym) {
  1392                 return null;
  1395             @Override
  1396             public Type visitClassType(ClassType t, Symbol sym) {
  1397                 if (t.tsym == sym)
  1398                     return t;
  1400                 Type st = supertype(t);
  1401                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1402                     Type x = asSuper(st, sym);
  1403                     if (x != null)
  1404                         return x;
  1406                 if ((sym.flags() & INTERFACE) != 0) {
  1407                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1408                         Type x = asSuper(l.head, sym);
  1409                         if (x != null)
  1410                             return x;
  1413                 return null;
  1416             @Override
  1417             public Type visitArrayType(ArrayType t, Symbol sym) {
  1418                 return isSubtype(t, sym.type) ? sym.type : null;
  1421             @Override
  1422             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1423                 if (t.tsym == sym)
  1424                     return t;
  1425                 else
  1426                     return asSuper(t.bound, sym);
  1429             @Override
  1430             public Type visitErrorType(ErrorType t, Symbol sym) {
  1431                 return t;
  1433         };
  1435     /**
  1436      * Return the base type of t or any of its outer types that starts
  1437      * with the given symbol.  If none exists, return null.
  1439      * @param t a type
  1440      * @param sym a symbol
  1441      */
  1442     public Type asOuterSuper(Type t, Symbol sym) {
  1443         switch (t.tag) {
  1444         case CLASS:
  1445             do {
  1446                 Type s = asSuper(t, sym);
  1447                 if (s != null) return s;
  1448                 t = t.getEnclosingType();
  1449             } while (t.tag == CLASS);
  1450             return null;
  1451         case ARRAY:
  1452             return isSubtype(t, sym.type) ? sym.type : null;
  1453         case TYPEVAR:
  1454             return asSuper(t, sym);
  1455         case ERROR:
  1456             return t;
  1457         default:
  1458             return null;
  1462     /**
  1463      * Return the base type of t or any of its enclosing types that
  1464      * starts with the given symbol.  If none exists, return null.
  1466      * @param t a type
  1467      * @param sym a symbol
  1468      */
  1469     public Type asEnclosingSuper(Type t, Symbol sym) {
  1470         switch (t.tag) {
  1471         case CLASS:
  1472             do {
  1473                 Type s = asSuper(t, sym);
  1474                 if (s != null) return s;
  1475                 Type outer = t.getEnclosingType();
  1476                 t = (outer.tag == CLASS) ? outer :
  1477                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1478                     Type.noType;
  1479             } while (t.tag == CLASS);
  1480             return null;
  1481         case ARRAY:
  1482             return isSubtype(t, sym.type) ? sym.type : null;
  1483         case TYPEVAR:
  1484             return asSuper(t, sym);
  1485         case ERROR:
  1486             return t;
  1487         default:
  1488             return null;
  1491     // </editor-fold>
  1493     // <editor-fold defaultstate="collapsed" desc="memberType">
  1494     /**
  1495      * The type of given symbol, seen as a member of t.
  1497      * @param t a type
  1498      * @param sym a symbol
  1499      */
  1500     public Type memberType(Type t, Symbol sym) {
  1501         return (sym.flags() & STATIC) != 0
  1502             ? sym.type
  1503             : memberType.visit(t, sym);
  1505     // where
  1506         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1508             public Type visitType(Type t, Symbol sym) {
  1509                 return sym.type;
  1512             @Override
  1513             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1514                 return memberType(upperBound(t), sym);
  1517             @Override
  1518             public Type visitClassType(ClassType t, Symbol sym) {
  1519                 Symbol owner = sym.owner;
  1520                 long flags = sym.flags();
  1521                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1522                     Type base = asOuterSuper(t, owner);
  1523                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1524                     //its supertypes CT, I1, ... In might contain wildcards
  1525                     //so we need to go through capture conversion
  1526                     base = t.isCompound() ? capture(base) : base;
  1527                     if (base != null) {
  1528                         List<Type> ownerParams = owner.type.allparams();
  1529                         List<Type> baseParams = base.allparams();
  1530                         if (ownerParams.nonEmpty()) {
  1531                             if (baseParams.isEmpty()) {
  1532                                 // then base is a raw type
  1533                                 return erasure(sym.type);
  1534                             } else {
  1535                                 return subst(sym.type, ownerParams, baseParams);
  1540                 return sym.type;
  1543             @Override
  1544             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1545                 return memberType(t.bound, sym);
  1548             @Override
  1549             public Type visitErrorType(ErrorType t, Symbol sym) {
  1550                 return t;
  1552         };
  1553     // </editor-fold>
  1555     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1556     public boolean isAssignable(Type t, Type s) {
  1557         return isAssignable(t, s, Warner.noWarnings);
  1560     /**
  1561      * Is t assignable to s?<br>
  1562      * Equivalent to subtype except for constant values and raw
  1563      * types.<br>
  1564      * (not defined for Method and ForAll types)
  1565      */
  1566     public boolean isAssignable(Type t, Type s, Warner warn) {
  1567         if (t.tag == ERROR)
  1568             return true;
  1569         if (t.tag <= INT && t.constValue() != null) {
  1570             int value = ((Number)t.constValue()).intValue();
  1571             switch (s.tag) {
  1572             case BYTE:
  1573                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1574                     return true;
  1575                 break;
  1576             case CHAR:
  1577                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  1578                     return true;
  1579                 break;
  1580             case SHORT:
  1581                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  1582                     return true;
  1583                 break;
  1584             case INT:
  1585                 return true;
  1586             case CLASS:
  1587                 switch (unboxedType(s).tag) {
  1588                 case BYTE:
  1589                 case CHAR:
  1590                 case SHORT:
  1591                     return isAssignable(t, unboxedType(s), warn);
  1593                 break;
  1596         return isConvertible(t, s, warn);
  1598     // </editor-fold>
  1600     // <editor-fold defaultstate="collapsed" desc="erasure">
  1601     /**
  1602      * The erasure of t {@code |t|} -- the type that results when all
  1603      * type parameters in t are deleted.
  1604      */
  1605     public Type erasure(Type t) {
  1606         return eraseNotNeeded(t)? t : erasure(t, false);
  1608     //where
  1609     private boolean eraseNotNeeded(Type t) {
  1610         // We don't want to erase primitive types and String type as that
  1611         // operation is idempotent. Also, erasing these could result in loss
  1612         // of information such as constant values attached to such types.
  1613         return (t.tag <= lastBaseTag) || (syms.stringType.tsym == t.tsym);
  1616     private Type erasure(Type t, boolean recurse) {
  1617         if (t.tag <= lastBaseTag)
  1618             return t; /* fast special case */
  1619         else
  1620             return erasure.visit(t, recurse);
  1622     // where
  1623         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  1624             public Type visitType(Type t, Boolean recurse) {
  1625                 if (t.tag <= lastBaseTag)
  1626                     return t; /*fast special case*/
  1627                 else
  1628                     return t.map(recurse ? erasureRecFun : erasureFun);
  1631             @Override
  1632             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  1633                 return erasure(upperBound(t), recurse);
  1636             @Override
  1637             public Type visitClassType(ClassType t, Boolean recurse) {
  1638                 Type erased = t.tsym.erasure(Types.this);
  1639                 if (recurse) {
  1640                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  1642                 return erased;
  1645             @Override
  1646             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  1647                 return erasure(t.bound, recurse);
  1650             @Override
  1651             public Type visitErrorType(ErrorType t, Boolean recurse) {
  1652                 return t;
  1654         };
  1656     private Mapping erasureFun = new Mapping ("erasure") {
  1657             public Type apply(Type t) { return erasure(t); }
  1658         };
  1660     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  1661         public Type apply(Type t) { return erasureRecursive(t); }
  1662     };
  1664     public List<Type> erasure(List<Type> ts) {
  1665         return Type.map(ts, erasureFun);
  1668     public Type erasureRecursive(Type t) {
  1669         return erasure(t, true);
  1672     public List<Type> erasureRecursive(List<Type> ts) {
  1673         return Type.map(ts, erasureRecFun);
  1675     // </editor-fold>
  1677     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  1678     /**
  1679      * Make a compound type from non-empty list of types
  1681      * @param bounds            the types from which the compound type is formed
  1682      * @param supertype         is objectType if all bounds are interfaces,
  1683      *                          null otherwise.
  1684      */
  1685     public Type makeCompoundType(List<Type> bounds,
  1686                                  Type supertype) {
  1687         ClassSymbol bc =
  1688             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  1689                             Type.moreInfo
  1690                                 ? names.fromString(bounds.toString())
  1691                                 : names.empty,
  1692                             syms.noSymbol);
  1693         if (bounds.head.tag == TYPEVAR)
  1694             // error condition, recover
  1695                 bc.erasure_field = syms.objectType;
  1696             else
  1697                 bc.erasure_field = erasure(bounds.head);
  1698             bc.members_field = new Scope(bc);
  1699         ClassType bt = (ClassType)bc.type;
  1700         bt.allparams_field = List.nil();
  1701         if (supertype != null) {
  1702             bt.supertype_field = supertype;
  1703             bt.interfaces_field = bounds;
  1704         } else {
  1705             bt.supertype_field = bounds.head;
  1706             bt.interfaces_field = bounds.tail;
  1708         Assert.check(bt.supertype_field.tsym.completer != null
  1709                 || !bt.supertype_field.isInterface(),
  1710             bt.supertype_field);
  1711         return bt;
  1714     /**
  1715      * Same as {@link #makeCompoundType(List,Type)}, except that the
  1716      * second parameter is computed directly. Note that this might
  1717      * cause a symbol completion.  Hence, this version of
  1718      * makeCompoundType may not be called during a classfile read.
  1719      */
  1720     public Type makeCompoundType(List<Type> bounds) {
  1721         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1722             supertype(bounds.head) : null;
  1723         return makeCompoundType(bounds, supertype);
  1726     /**
  1727      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  1728      * arguments are converted to a list and passed to the other
  1729      * method.  Note that this might cause a symbol completion.
  1730      * Hence, this version of makeCompoundType may not be called
  1731      * during a classfile read.
  1732      */
  1733     public Type makeCompoundType(Type bound1, Type bound2) {
  1734         return makeCompoundType(List.of(bound1, bound2));
  1736     // </editor-fold>
  1738     // <editor-fold defaultstate="collapsed" desc="supertype">
  1739     public Type supertype(Type t) {
  1740         return supertype.visit(t);
  1742     // where
  1743         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  1745             public Type visitType(Type t, Void ignored) {
  1746                 // A note on wildcards: there is no good way to
  1747                 // determine a supertype for a super bounded wildcard.
  1748                 return null;
  1751             @Override
  1752             public Type visitClassType(ClassType t, Void ignored) {
  1753                 if (t.supertype_field == null) {
  1754                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  1755                     // An interface has no superclass; its supertype is Object.
  1756                     if (t.isInterface())
  1757                         supertype = ((ClassType)t.tsym.type).supertype_field;
  1758                     if (t.supertype_field == null) {
  1759                         List<Type> actuals = classBound(t).allparams();
  1760                         List<Type> formals = t.tsym.type.allparams();
  1761                         if (t.hasErasedSupertypes()) {
  1762                             t.supertype_field = erasureRecursive(supertype);
  1763                         } else if (formals.nonEmpty()) {
  1764                             t.supertype_field = subst(supertype, formals, actuals);
  1766                         else {
  1767                             t.supertype_field = supertype;
  1771                 return t.supertype_field;
  1774             /**
  1775              * The supertype is always a class type. If the type
  1776              * variable's bounds start with a class type, this is also
  1777              * the supertype.  Otherwise, the supertype is
  1778              * java.lang.Object.
  1779              */
  1780             @Override
  1781             public Type visitTypeVar(TypeVar t, Void ignored) {
  1782                 if (t.bound.tag == TYPEVAR ||
  1783                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  1784                     return t.bound;
  1785                 } else {
  1786                     return supertype(t.bound);
  1790             @Override
  1791             public Type visitArrayType(ArrayType t, Void ignored) {
  1792                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  1793                     return arraySuperType();
  1794                 else
  1795                     return new ArrayType(supertype(t.elemtype), t.tsym);
  1798             @Override
  1799             public Type visitErrorType(ErrorType t, Void ignored) {
  1800                 return t;
  1802         };
  1803     // </editor-fold>
  1805     // <editor-fold defaultstate="collapsed" desc="interfaces">
  1806     /**
  1807      * Return the interfaces implemented by this class.
  1808      */
  1809     public List<Type> interfaces(Type t) {
  1810         return interfaces.visit(t);
  1812     // where
  1813         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  1815             public List<Type> visitType(Type t, Void ignored) {
  1816                 return List.nil();
  1819             @Override
  1820             public List<Type> visitClassType(ClassType t, Void ignored) {
  1821                 if (t.interfaces_field == null) {
  1822                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  1823                     if (t.interfaces_field == null) {
  1824                         // If t.interfaces_field is null, then t must
  1825                         // be a parameterized type (not to be confused
  1826                         // with a generic type declaration).
  1827                         // Terminology:
  1828                         //    Parameterized type: List<String>
  1829                         //    Generic type declaration: class List<E> { ... }
  1830                         // So t corresponds to List<String> and
  1831                         // t.tsym.type corresponds to List<E>.
  1832                         // The reason t must be parameterized type is
  1833                         // that completion will happen as a side
  1834                         // effect of calling
  1835                         // ClassSymbol.getInterfaces.  Since
  1836                         // t.interfaces_field is null after
  1837                         // completion, we can assume that t is not the
  1838                         // type of a class/interface declaration.
  1839                         Assert.check(t != t.tsym.type, t);
  1840                         List<Type> actuals = t.allparams();
  1841                         List<Type> formals = t.tsym.type.allparams();
  1842                         if (t.hasErasedSupertypes()) {
  1843                             t.interfaces_field = erasureRecursive(interfaces);
  1844                         } else if (formals.nonEmpty()) {
  1845                             t.interfaces_field =
  1846                                 upperBounds(subst(interfaces, formals, actuals));
  1848                         else {
  1849                             t.interfaces_field = interfaces;
  1853                 return t.interfaces_field;
  1856             @Override
  1857             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  1858                 if (t.bound.isCompound())
  1859                     return interfaces(t.bound);
  1861                 if (t.bound.isInterface())
  1862                     return List.of(t.bound);
  1864                 return List.nil();
  1866         };
  1867     // </editor-fold>
  1869     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  1870     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  1872     public boolean isDerivedRaw(Type t) {
  1873         Boolean result = isDerivedRawCache.get(t);
  1874         if (result == null) {
  1875             result = isDerivedRawInternal(t);
  1876             isDerivedRawCache.put(t, result);
  1878         return result;
  1881     public boolean isDerivedRawInternal(Type t) {
  1882         if (t.isErroneous())
  1883             return false;
  1884         return
  1885             t.isRaw() ||
  1886             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  1887             isDerivedRaw(interfaces(t));
  1890     public boolean isDerivedRaw(List<Type> ts) {
  1891         List<Type> l = ts;
  1892         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  1893         return l.nonEmpty();
  1895     // </editor-fold>
  1897     // <editor-fold defaultstate="collapsed" desc="setBounds">
  1898     /**
  1899      * Set the bounds field of the given type variable to reflect a
  1900      * (possibly multiple) list of bounds.
  1901      * @param t                 a type variable
  1902      * @param bounds            the bounds, must be nonempty
  1903      * @param supertype         is objectType if all bounds are interfaces,
  1904      *                          null otherwise.
  1905      */
  1906     public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
  1907         if (bounds.tail.isEmpty())
  1908             t.bound = bounds.head;
  1909         else
  1910             t.bound = makeCompoundType(bounds, supertype);
  1911         t.rank_field = -1;
  1914     /**
  1915      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  1916      * third parameter is computed directly, as follows: if all
  1917      * all bounds are interface types, the computed supertype is Object,
  1918      * otherwise the supertype is simply left null (in this case, the supertype
  1919      * is assumed to be the head of the bound list passed as second argument).
  1920      * Note that this check might cause a symbol completion. Hence, this version of
  1921      * setBounds may not be called during a classfile read.
  1922      */
  1923     public void setBounds(TypeVar t, List<Type> bounds) {
  1924         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1925             syms.objectType : null;
  1926         setBounds(t, bounds, supertype);
  1927         t.rank_field = -1;
  1929     // </editor-fold>
  1931     // <editor-fold defaultstate="collapsed" desc="getBounds">
  1932     /**
  1933      * Return list of bounds of the given type variable.
  1934      */
  1935     public List<Type> getBounds(TypeVar t) {
  1936         if (t.bound.isErroneous() || !t.bound.isCompound())
  1937             return List.of(t.bound);
  1938         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  1939             return interfaces(t).prepend(supertype(t));
  1940         else
  1941             // No superclass was given in bounds.
  1942             // In this case, supertype is Object, erasure is first interface.
  1943             return interfaces(t);
  1945     // </editor-fold>
  1947     // <editor-fold defaultstate="collapsed" desc="classBound">
  1948     /**
  1949      * If the given type is a (possibly selected) type variable,
  1950      * return the bounding class of this type, otherwise return the
  1951      * type itself.
  1952      */
  1953     public Type classBound(Type t) {
  1954         return classBound.visit(t);
  1956     // where
  1957         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  1959             public Type visitType(Type t, Void ignored) {
  1960                 return t;
  1963             @Override
  1964             public Type visitClassType(ClassType t, Void ignored) {
  1965                 Type outer1 = classBound(t.getEnclosingType());
  1966                 if (outer1 != t.getEnclosingType())
  1967                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  1968                 else
  1969                     return t;
  1972             @Override
  1973             public Type visitTypeVar(TypeVar t, Void ignored) {
  1974                 return classBound(supertype(t));
  1977             @Override
  1978             public Type visitErrorType(ErrorType t, Void ignored) {
  1979                 return t;
  1981         };
  1982     // </editor-fold>
  1984     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  1985     /**
  1986      * Returns true iff the first signature is a <em>sub
  1987      * signature</em> of the other.  This is <b>not</b> an equivalence
  1988      * relation.
  1990      * @jls section 8.4.2.
  1991      * @see #overrideEquivalent(Type t, Type s)
  1992      * @param t first signature (possibly raw).
  1993      * @param s second signature (could be subjected to erasure).
  1994      * @return true if t is a sub signature of s.
  1995      */
  1996     public boolean isSubSignature(Type t, Type s) {
  1997         return isSubSignature(t, s, true);
  2000     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2001         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2004     /**
  2005      * Returns true iff these signatures are related by <em>override
  2006      * equivalence</em>.  This is the natural extension of
  2007      * isSubSignature to an equivalence relation.
  2009      * @jls section 8.4.2.
  2010      * @see #isSubSignature(Type t, Type s)
  2011      * @param t a signature (possible raw, could be subjected to
  2012      * erasure).
  2013      * @param s a signature (possible raw, could be subjected to
  2014      * erasure).
  2015      * @return true if either argument is a sub signature of the other.
  2016      */
  2017     public boolean overrideEquivalent(Type t, Type s) {
  2018         return hasSameArgs(t, s) ||
  2019             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2022     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2023     class ImplementationCache {
  2025         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2026                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2028         class Entry {
  2029             final MethodSymbol cachedImpl;
  2030             final Filter<Symbol> implFilter;
  2031             final boolean checkResult;
  2032             final int prevMark;
  2034             public Entry(MethodSymbol cachedImpl,
  2035                     Filter<Symbol> scopeFilter,
  2036                     boolean checkResult,
  2037                     int prevMark) {
  2038                 this.cachedImpl = cachedImpl;
  2039                 this.implFilter = scopeFilter;
  2040                 this.checkResult = checkResult;
  2041                 this.prevMark = prevMark;
  2044             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2045                 return this.implFilter == scopeFilter &&
  2046                         this.checkResult == checkResult &&
  2047                         this.prevMark == mark;
  2051         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2052             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2053             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2054             if (cache == null) {
  2055                 cache = new HashMap<TypeSymbol, Entry>();
  2056                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2058             Entry e = cache.get(origin);
  2059             CompoundScope members = membersClosure(origin.type, true);
  2060             if (e == null ||
  2061                     !e.matches(implFilter, checkResult, members.getMark())) {
  2062                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2063                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2064                 return impl;
  2066             else {
  2067                 return e.cachedImpl;
  2071         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2072             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
  2073                 while (t.tag == TYPEVAR)
  2074                     t = t.getUpperBound();
  2075                 TypeSymbol c = t.tsym;
  2076                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2077                      e.scope != null;
  2078                      e = e.next(implFilter)) {
  2079                     if (e.sym != null &&
  2080                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2081                         return (MethodSymbol)e.sym;
  2084             return null;
  2088     private ImplementationCache implCache = new ImplementationCache();
  2090     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2091         return implCache.get(ms, origin, checkResult, implFilter);
  2093     // </editor-fold>
  2095     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2096     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2098         private WeakHashMap<TypeSymbol, Entry> _map =
  2099                 new WeakHashMap<TypeSymbol, Entry>();
  2101         class Entry {
  2102             final boolean skipInterfaces;
  2103             final CompoundScope compoundScope;
  2105             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2106                 this.skipInterfaces = skipInterfaces;
  2107                 this.compoundScope = compoundScope;
  2110             boolean matches(boolean skipInterfaces) {
  2111                 return this.skipInterfaces == skipInterfaces;
  2115         List<TypeSymbol> seenTypes = List.nil();
  2117         /** members closure visitor methods **/
  2119         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2120             return null;
  2123         @Override
  2124         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2125             if (seenTypes.contains(t.tsym)) {
  2126                 //this is possible when an interface is implemented in multiple
  2127                 //superclasses, or when a classs hierarchy is circular - in such
  2128                 //cases we don't need to recurse (empty scope is returned)
  2129                 return new CompoundScope(t.tsym);
  2131             try {
  2132                 seenTypes = seenTypes.prepend(t.tsym);
  2133                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2134                 Entry e = _map.get(csym);
  2135                 if (e == null || !e.matches(skipInterface)) {
  2136                     CompoundScope membersClosure = new CompoundScope(csym);
  2137                     if (!skipInterface) {
  2138                         for (Type i : interfaces(t)) {
  2139                             membersClosure.addSubScope(visit(i, skipInterface));
  2142                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2143                     membersClosure.addSubScope(csym.members());
  2144                     e = new Entry(skipInterface, membersClosure);
  2145                     _map.put(csym, e);
  2147                 return e.compoundScope;
  2149             finally {
  2150                 seenTypes = seenTypes.tail;
  2154         @Override
  2155         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2156             return visit(t.getUpperBound(), skipInterface);
  2160     private MembersClosureCache membersCache = new MembersClosureCache();
  2162     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2163         return membersCache.visit(site, skipInterface);
  2165     // </editor-fold>
  2167     /**
  2168      * Does t have the same arguments as s?  It is assumed that both
  2169      * types are (possibly polymorphic) method types.  Monomorphic
  2170      * method types "have the same arguments", if their argument lists
  2171      * are equal.  Polymorphic method types "have the same arguments",
  2172      * if they have the same arguments after renaming all type
  2173      * variables of one to corresponding type variables in the other,
  2174      * where correspondence is by position in the type parameter list.
  2175      */
  2176     public boolean hasSameArgs(Type t, Type s) {
  2177         return hasSameArgs(t, s, true);
  2180     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2181         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2184     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2185         return hasSameArgs.visit(t, s);
  2187     // where
  2188         private class HasSameArgs extends TypeRelation {
  2190             boolean strict;
  2192             public HasSameArgs(boolean strict) {
  2193                 this.strict = strict;
  2196             public Boolean visitType(Type t, Type s) {
  2197                 throw new AssertionError();
  2200             @Override
  2201             public Boolean visitMethodType(MethodType t, Type s) {
  2202                 return s.tag == METHOD
  2203                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2206             @Override
  2207             public Boolean visitForAll(ForAll t, Type s) {
  2208                 if (s.tag != FORALL)
  2209                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2211                 ForAll forAll = (ForAll)s;
  2212                 return hasSameBounds(t, forAll)
  2213                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2216             @Override
  2217             public Boolean visitErrorType(ErrorType t, Type s) {
  2218                 return false;
  2220         };
  2222         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2223         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2225     // </editor-fold>
  2227     // <editor-fold defaultstate="collapsed" desc="subst">
  2228     public List<Type> subst(List<Type> ts,
  2229                             List<Type> from,
  2230                             List<Type> to) {
  2231         return new Subst(from, to).subst(ts);
  2234     /**
  2235      * Substitute all occurrences of a type in `from' with the
  2236      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2237      * from the right: If lists have different length, discard leading
  2238      * elements of the longer list.
  2239      */
  2240     public Type subst(Type t, List<Type> from, List<Type> to) {
  2241         return new Subst(from, to).subst(t);
  2244     private class Subst extends UnaryVisitor<Type> {
  2245         List<Type> from;
  2246         List<Type> to;
  2248         public Subst(List<Type> from, List<Type> to) {
  2249             int fromLength = from.length();
  2250             int toLength = to.length();
  2251             while (fromLength > toLength) {
  2252                 fromLength--;
  2253                 from = from.tail;
  2255             while (fromLength < toLength) {
  2256                 toLength--;
  2257                 to = to.tail;
  2259             this.from = from;
  2260             this.to = to;
  2263         Type subst(Type t) {
  2264             if (from.tail == null)
  2265                 return t;
  2266             else
  2267                 return visit(t);
  2270         List<Type> subst(List<Type> ts) {
  2271             if (from.tail == null)
  2272                 return ts;
  2273             boolean wild = false;
  2274             if (ts.nonEmpty() && from.nonEmpty()) {
  2275                 Type head1 = subst(ts.head);
  2276                 List<Type> tail1 = subst(ts.tail);
  2277                 if (head1 != ts.head || tail1 != ts.tail)
  2278                     return tail1.prepend(head1);
  2280             return ts;
  2283         public Type visitType(Type t, Void ignored) {
  2284             return t;
  2287         @Override
  2288         public Type visitMethodType(MethodType t, Void ignored) {
  2289             List<Type> argtypes = subst(t.argtypes);
  2290             Type restype = subst(t.restype);
  2291             List<Type> thrown = subst(t.thrown);
  2292             if (argtypes == t.argtypes &&
  2293                 restype == t.restype &&
  2294                 thrown == t.thrown)
  2295                 return t;
  2296             else
  2297                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2300         @Override
  2301         public Type visitTypeVar(TypeVar t, Void ignored) {
  2302             for (List<Type> from = this.from, to = this.to;
  2303                  from.nonEmpty();
  2304                  from = from.tail, to = to.tail) {
  2305                 if (t == from.head) {
  2306                     return to.head.withTypeVar(t);
  2309             return t;
  2312         @Override
  2313         public Type visitClassType(ClassType t, Void ignored) {
  2314             if (!t.isCompound()) {
  2315                 List<Type> typarams = t.getTypeArguments();
  2316                 List<Type> typarams1 = subst(typarams);
  2317                 Type outer = t.getEnclosingType();
  2318                 Type outer1 = subst(outer);
  2319                 if (typarams1 == typarams && outer1 == outer)
  2320                     return t;
  2321                 else
  2322                     return new ClassType(outer1, typarams1, t.tsym);
  2323             } else {
  2324                 Type st = subst(supertype(t));
  2325                 List<Type> is = upperBounds(subst(interfaces(t)));
  2326                 if (st == supertype(t) && is == interfaces(t))
  2327                     return t;
  2328                 else
  2329                     return makeCompoundType(is.prepend(st));
  2333         @Override
  2334         public Type visitWildcardType(WildcardType t, Void ignored) {
  2335             Type bound = t.type;
  2336             if (t.kind != BoundKind.UNBOUND)
  2337                 bound = subst(bound);
  2338             if (bound == t.type) {
  2339                 return t;
  2340             } else {
  2341                 if (t.isExtendsBound() && bound.isExtendsBound())
  2342                     bound = upperBound(bound);
  2343                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2347         @Override
  2348         public Type visitArrayType(ArrayType t, Void ignored) {
  2349             Type elemtype = subst(t.elemtype);
  2350             if (elemtype == t.elemtype)
  2351                 return t;
  2352             else
  2353                 return new ArrayType(upperBound(elemtype), t.tsym);
  2356         @Override
  2357         public Type visitForAll(ForAll t, Void ignored) {
  2358             if (Type.containsAny(to, t.tvars)) {
  2359                 //perform alpha-renaming of free-variables in 't'
  2360                 //if 'to' types contain variables that are free in 't'
  2361                 List<Type> freevars = newInstances(t.tvars);
  2362                 t = new ForAll(freevars,
  2363                         Types.this.subst(t.qtype, t.tvars, freevars));
  2365             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2366             Type qtype1 = subst(t.qtype);
  2367             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2368                 return t;
  2369             } else if (tvars1 == t.tvars) {
  2370                 return new ForAll(tvars1, qtype1);
  2371             } else {
  2372                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2376         @Override
  2377         public Type visitErrorType(ErrorType t, Void ignored) {
  2378             return t;
  2382     public List<Type> substBounds(List<Type> tvars,
  2383                                   List<Type> from,
  2384                                   List<Type> to) {
  2385         if (tvars.isEmpty())
  2386             return tvars;
  2387         ListBuffer<Type> newBoundsBuf = lb();
  2388         boolean changed = false;
  2389         // calculate new bounds
  2390         for (Type t : tvars) {
  2391             TypeVar tv = (TypeVar) t;
  2392             Type bound = subst(tv.bound, from, to);
  2393             if (bound != tv.bound)
  2394                 changed = true;
  2395             newBoundsBuf.append(bound);
  2397         if (!changed)
  2398             return tvars;
  2399         ListBuffer<Type> newTvars = lb();
  2400         // create new type variables without bounds
  2401         for (Type t : tvars) {
  2402             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2404         // the new bounds should use the new type variables in place
  2405         // of the old
  2406         List<Type> newBounds = newBoundsBuf.toList();
  2407         from = tvars;
  2408         to = newTvars.toList();
  2409         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2410             newBounds.head = subst(newBounds.head, from, to);
  2412         newBounds = newBoundsBuf.toList();
  2413         // set the bounds of new type variables to the new bounds
  2414         for (Type t : newTvars.toList()) {
  2415             TypeVar tv = (TypeVar) t;
  2416             tv.bound = newBounds.head;
  2417             newBounds = newBounds.tail;
  2419         return newTvars.toList();
  2422     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2423         Type bound1 = subst(t.bound, from, to);
  2424         if (bound1 == t.bound)
  2425             return t;
  2426         else {
  2427             // create new type variable without bounds
  2428             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2429             // the new bound should use the new type variable in place
  2430             // of the old
  2431             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2432             return tv;
  2435     // </editor-fold>
  2437     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2438     /**
  2439      * Does t have the same bounds for quantified variables as s?
  2440      */
  2441     boolean hasSameBounds(ForAll t, ForAll s) {
  2442         List<Type> l1 = t.tvars;
  2443         List<Type> l2 = s.tvars;
  2444         while (l1.nonEmpty() && l2.nonEmpty() &&
  2445                isSameType(l1.head.getUpperBound(),
  2446                           subst(l2.head.getUpperBound(),
  2447                                 s.tvars,
  2448                                 t.tvars))) {
  2449             l1 = l1.tail;
  2450             l2 = l2.tail;
  2452         return l1.isEmpty() && l2.isEmpty();
  2454     // </editor-fold>
  2456     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2457     /** Create new vector of type variables from list of variables
  2458      *  changing all recursive bounds from old to new list.
  2459      */
  2460     public List<Type> newInstances(List<Type> tvars) {
  2461         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2462         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2463             TypeVar tv = (TypeVar) l.head;
  2464             tv.bound = subst(tv.bound, tvars, tvars1);
  2466         return tvars1;
  2468     static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2469             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2470         };
  2471     // </editor-fold>
  2473     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2474         return original.accept(methodWithParameters, newParams);
  2476     // where
  2477         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2478             public Type visitType(Type t, List<Type> newParams) {
  2479                 throw new IllegalArgumentException("Not a method type: " + t);
  2481             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2482                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2484             public Type visitForAll(ForAll t, List<Type> newParams) {
  2485                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  2487         };
  2489     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  2490         return original.accept(methodWithThrown, newThrown);
  2492     // where
  2493         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  2494             public Type visitType(Type t, List<Type> newThrown) {
  2495                 throw new IllegalArgumentException("Not a method type: " + t);
  2497             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  2498                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  2500             public Type visitForAll(ForAll t, List<Type> newThrown) {
  2501                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  2503         };
  2505     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  2506         return original.accept(methodWithReturn, newReturn);
  2508     // where
  2509         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  2510             public Type visitType(Type t, Type newReturn) {
  2511                 throw new IllegalArgumentException("Not a method type: " + t);
  2513             public Type visitMethodType(MethodType t, Type newReturn) {
  2514                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  2516             public Type visitForAll(ForAll t, Type newReturn) {
  2517                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  2519         };
  2521     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  2522     public Type createErrorType(Type originalType) {
  2523         return new ErrorType(originalType, syms.errSymbol);
  2526     public Type createErrorType(ClassSymbol c, Type originalType) {
  2527         return new ErrorType(c, originalType);
  2530     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  2531         return new ErrorType(name, container, originalType);
  2533     // </editor-fold>
  2535     // <editor-fold defaultstate="collapsed" desc="rank">
  2536     /**
  2537      * The rank of a class is the length of the longest path between
  2538      * the class and java.lang.Object in the class inheritance
  2539      * graph. Undefined for all but reference types.
  2540      */
  2541     public int rank(Type t) {
  2542         switch(t.tag) {
  2543         case CLASS: {
  2544             ClassType cls = (ClassType)t;
  2545             if (cls.rank_field < 0) {
  2546                 Name fullname = cls.tsym.getQualifiedName();
  2547                 if (fullname == names.java_lang_Object)
  2548                     cls.rank_field = 0;
  2549                 else {
  2550                     int r = rank(supertype(cls));
  2551                     for (List<Type> l = interfaces(cls);
  2552                          l.nonEmpty();
  2553                          l = l.tail) {
  2554                         if (rank(l.head) > r)
  2555                             r = rank(l.head);
  2557                     cls.rank_field = r + 1;
  2560             return cls.rank_field;
  2562         case TYPEVAR: {
  2563             TypeVar tvar = (TypeVar)t;
  2564             if (tvar.rank_field < 0) {
  2565                 int r = rank(supertype(tvar));
  2566                 for (List<Type> l = interfaces(tvar);
  2567                      l.nonEmpty();
  2568                      l = l.tail) {
  2569                     if (rank(l.head) > r) r = rank(l.head);
  2571                 tvar.rank_field = r + 1;
  2573             return tvar.rank_field;
  2575         case ERROR:
  2576             return 0;
  2577         default:
  2578             throw new AssertionError();
  2581     // </editor-fold>
  2583     /**
  2584      * Helper method for generating a string representation of a given type
  2585      * accordingly to a given locale
  2586      */
  2587     public String toString(Type t, Locale locale) {
  2588         return Printer.createStandardPrinter(messages).visit(t, locale);
  2591     /**
  2592      * Helper method for generating a string representation of a given type
  2593      * accordingly to a given locale
  2594      */
  2595     public String toString(Symbol t, Locale locale) {
  2596         return Printer.createStandardPrinter(messages).visit(t, locale);
  2599     // <editor-fold defaultstate="collapsed" desc="toString">
  2600     /**
  2601      * This toString is slightly more descriptive than the one on Type.
  2603      * @deprecated Types.toString(Type t, Locale l) provides better support
  2604      * for localization
  2605      */
  2606     @Deprecated
  2607     public String toString(Type t) {
  2608         if (t.tag == FORALL) {
  2609             ForAll forAll = (ForAll)t;
  2610             return typaramsString(forAll.tvars) + forAll.qtype;
  2612         return "" + t;
  2614     // where
  2615         private String typaramsString(List<Type> tvars) {
  2616             StringBuilder s = new StringBuilder();
  2617             s.append('<');
  2618             boolean first = true;
  2619             for (Type t : tvars) {
  2620                 if (!first) s.append(", ");
  2621                 first = false;
  2622                 appendTyparamString(((TypeVar)t), s);
  2624             s.append('>');
  2625             return s.toString();
  2627         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  2628             buf.append(t);
  2629             if (t.bound == null ||
  2630                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  2631                 return;
  2632             buf.append(" extends "); // Java syntax; no need for i18n
  2633             Type bound = t.bound;
  2634             if (!bound.isCompound()) {
  2635                 buf.append(bound);
  2636             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  2637                 buf.append(supertype(t));
  2638                 for (Type intf : interfaces(t)) {
  2639                     buf.append('&');
  2640                     buf.append(intf);
  2642             } else {
  2643                 // No superclass was given in bounds.
  2644                 // In this case, supertype is Object, erasure is first interface.
  2645                 boolean first = true;
  2646                 for (Type intf : interfaces(t)) {
  2647                     if (!first) buf.append('&');
  2648                     first = false;
  2649                     buf.append(intf);
  2653     // </editor-fold>
  2655     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  2656     /**
  2657      * A cache for closures.
  2659      * <p>A closure is a list of all the supertypes and interfaces of
  2660      * a class or interface type, ordered by ClassSymbol.precedes
  2661      * (that is, subclasses come first, arbitrary but fixed
  2662      * otherwise).
  2663      */
  2664     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  2666     /**
  2667      * Returns the closure of a class or interface type.
  2668      */
  2669     public List<Type> closure(Type t) {
  2670         List<Type> cl = closureCache.get(t);
  2671         if (cl == null) {
  2672             Type st = supertype(t);
  2673             if (!t.isCompound()) {
  2674                 if (st.tag == CLASS) {
  2675                     cl = insert(closure(st), t);
  2676                 } else if (st.tag == TYPEVAR) {
  2677                     cl = closure(st).prepend(t);
  2678                 } else {
  2679                     cl = List.of(t);
  2681             } else {
  2682                 cl = closure(supertype(t));
  2684             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  2685                 cl = union(cl, closure(l.head));
  2686             closureCache.put(t, cl);
  2688         return cl;
  2691     /**
  2692      * Insert a type in a closure
  2693      */
  2694     public List<Type> insert(List<Type> cl, Type t) {
  2695         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  2696             return cl.prepend(t);
  2697         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  2698             return insert(cl.tail, t).prepend(cl.head);
  2699         } else {
  2700             return cl;
  2704     /**
  2705      * Form the union of two closures
  2706      */
  2707     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  2708         if (cl1.isEmpty()) {
  2709             return cl2;
  2710         } else if (cl2.isEmpty()) {
  2711             return cl1;
  2712         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  2713             return union(cl1.tail, cl2).prepend(cl1.head);
  2714         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  2715             return union(cl1, cl2.tail).prepend(cl2.head);
  2716         } else {
  2717             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  2721     /**
  2722      * Intersect two closures
  2723      */
  2724     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  2725         if (cl1 == cl2)
  2726             return cl1;
  2727         if (cl1.isEmpty() || cl2.isEmpty())
  2728             return List.nil();
  2729         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  2730             return intersect(cl1.tail, cl2);
  2731         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  2732             return intersect(cl1, cl2.tail);
  2733         if (isSameType(cl1.head, cl2.head))
  2734             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  2735         if (cl1.head.tsym == cl2.head.tsym &&
  2736             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  2737             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  2738                 Type merge = merge(cl1.head,cl2.head);
  2739                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  2741             if (cl1.head.isRaw() || cl2.head.isRaw())
  2742                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  2744         return intersect(cl1.tail, cl2.tail);
  2746     // where
  2747         class TypePair {
  2748             final Type t1;
  2749             final Type t2;
  2750             TypePair(Type t1, Type t2) {
  2751                 this.t1 = t1;
  2752                 this.t2 = t2;
  2754             @Override
  2755             public int hashCode() {
  2756                 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
  2758             @Override
  2759             public boolean equals(Object obj) {
  2760                 if (!(obj instanceof TypePair))
  2761                     return false;
  2762                 TypePair typePair = (TypePair)obj;
  2763                 return isSameType(t1, typePair.t1)
  2764                     && isSameType(t2, typePair.t2);
  2767         Set<TypePair> mergeCache = new HashSet<TypePair>();
  2768         private Type merge(Type c1, Type c2) {
  2769             ClassType class1 = (ClassType) c1;
  2770             List<Type> act1 = class1.getTypeArguments();
  2771             ClassType class2 = (ClassType) c2;
  2772             List<Type> act2 = class2.getTypeArguments();
  2773             ListBuffer<Type> merged = new ListBuffer<Type>();
  2774             List<Type> typarams = class1.tsym.type.getTypeArguments();
  2776             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  2777                 if (containsType(act1.head, act2.head)) {
  2778                     merged.append(act1.head);
  2779                 } else if (containsType(act2.head, act1.head)) {
  2780                     merged.append(act2.head);
  2781                 } else {
  2782                     TypePair pair = new TypePair(c1, c2);
  2783                     Type m;
  2784                     if (mergeCache.add(pair)) {
  2785                         m = new WildcardType(lub(upperBound(act1.head),
  2786                                                  upperBound(act2.head)),
  2787                                              BoundKind.EXTENDS,
  2788                                              syms.boundClass);
  2789                         mergeCache.remove(pair);
  2790                     } else {
  2791                         m = new WildcardType(syms.objectType,
  2792                                              BoundKind.UNBOUND,
  2793                                              syms.boundClass);
  2795                     merged.append(m.withTypeVar(typarams.head));
  2797                 act1 = act1.tail;
  2798                 act2 = act2.tail;
  2799                 typarams = typarams.tail;
  2801             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  2802             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  2805     /**
  2806      * Return the minimum type of a closure, a compound type if no
  2807      * unique minimum exists.
  2808      */
  2809     private Type compoundMin(List<Type> cl) {
  2810         if (cl.isEmpty()) return syms.objectType;
  2811         List<Type> compound = closureMin(cl);
  2812         if (compound.isEmpty())
  2813             return null;
  2814         else if (compound.tail.isEmpty())
  2815             return compound.head;
  2816         else
  2817             return makeCompoundType(compound);
  2820     /**
  2821      * Return the minimum types of a closure, suitable for computing
  2822      * compoundMin or glb.
  2823      */
  2824     private List<Type> closureMin(List<Type> cl) {
  2825         ListBuffer<Type> classes = lb();
  2826         ListBuffer<Type> interfaces = lb();
  2827         while (!cl.isEmpty()) {
  2828             Type current = cl.head;
  2829             if (current.isInterface())
  2830                 interfaces.append(current);
  2831             else
  2832                 classes.append(current);
  2833             ListBuffer<Type> candidates = lb();
  2834             for (Type t : cl.tail) {
  2835                 if (!isSubtypeNoCapture(current, t))
  2836                     candidates.append(t);
  2838             cl = candidates.toList();
  2840         return classes.appendList(interfaces).toList();
  2843     /**
  2844      * Return the least upper bound of pair of types.  if the lub does
  2845      * not exist return null.
  2846      */
  2847     public Type lub(Type t1, Type t2) {
  2848         return lub(List.of(t1, t2));
  2851     /**
  2852      * Return the least upper bound (lub) of set of types.  If the lub
  2853      * does not exist return the type of null (bottom).
  2854      */
  2855     public Type lub(List<Type> ts) {
  2856         final int ARRAY_BOUND = 1;
  2857         final int CLASS_BOUND = 2;
  2858         int boundkind = 0;
  2859         for (Type t : ts) {
  2860             switch (t.tag) {
  2861             case CLASS:
  2862                 boundkind |= CLASS_BOUND;
  2863                 break;
  2864             case ARRAY:
  2865                 boundkind |= ARRAY_BOUND;
  2866                 break;
  2867             case  TYPEVAR:
  2868                 do {
  2869                     t = t.getUpperBound();
  2870                 } while (t.tag == TYPEVAR);
  2871                 if (t.tag == ARRAY) {
  2872                     boundkind |= ARRAY_BOUND;
  2873                 } else {
  2874                     boundkind |= CLASS_BOUND;
  2876                 break;
  2877             default:
  2878                 if (t.isPrimitive())
  2879                     return syms.errType;
  2882         switch (boundkind) {
  2883         case 0:
  2884             return syms.botType;
  2886         case ARRAY_BOUND:
  2887             // calculate lub(A[], B[])
  2888             List<Type> elements = Type.map(ts, elemTypeFun);
  2889             for (Type t : elements) {
  2890                 if (t.isPrimitive()) {
  2891                     // if a primitive type is found, then return
  2892                     // arraySuperType unless all the types are the
  2893                     // same
  2894                     Type first = ts.head;
  2895                     for (Type s : ts.tail) {
  2896                         if (!isSameType(first, s)) {
  2897                              // lub(int[], B[]) is Cloneable & Serializable
  2898                             return arraySuperType();
  2901                     // all the array types are the same, return one
  2902                     // lub(int[], int[]) is int[]
  2903                     return first;
  2906             // lub(A[], B[]) is lub(A, B)[]
  2907             return new ArrayType(lub(elements), syms.arrayClass);
  2909         case CLASS_BOUND:
  2910             // calculate lub(A, B)
  2911             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  2912                 ts = ts.tail;
  2913             Assert.check(!ts.isEmpty());
  2914             //step 1 - compute erased candidate set (EC)
  2915             List<Type> cl = erasedSupertypes(ts.head);
  2916             for (Type t : ts.tail) {
  2917                 if (t.tag == CLASS || t.tag == TYPEVAR)
  2918                     cl = intersect(cl, erasedSupertypes(t));
  2920             //step 2 - compute minimal erased candidate set (MEC)
  2921             List<Type> mec = closureMin(cl);
  2922             //step 3 - for each element G in MEC, compute lci(Inv(G))
  2923             List<Type> candidates = List.nil();
  2924             for (Type erasedSupertype : mec) {
  2925                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  2926                 for (Type t : ts) {
  2927                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  2929                 candidates = candidates.appendList(lci);
  2931             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  2932             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  2933             return compoundMin(candidates);
  2935         default:
  2936             // calculate lub(A, B[])
  2937             List<Type> classes = List.of(arraySuperType());
  2938             for (Type t : ts) {
  2939                 if (t.tag != ARRAY) // Filter out any arrays
  2940                     classes = classes.prepend(t);
  2942             // lub(A, B[]) is lub(A, arraySuperType)
  2943             return lub(classes);
  2946     // where
  2947         List<Type> erasedSupertypes(Type t) {
  2948             ListBuffer<Type> buf = lb();
  2949             for (Type sup : closure(t)) {
  2950                 if (sup.tag == TYPEVAR) {
  2951                     buf.append(sup);
  2952                 } else {
  2953                     buf.append(erasure(sup));
  2956             return buf.toList();
  2959         private Type arraySuperType = null;
  2960         private Type arraySuperType() {
  2961             // initialized lazily to avoid problems during compiler startup
  2962             if (arraySuperType == null) {
  2963                 synchronized (this) {
  2964                     if (arraySuperType == null) {
  2965                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  2966                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  2967                                                                   syms.cloneableType),
  2968                                                           syms.objectType);
  2972             return arraySuperType;
  2974     // </editor-fold>
  2976     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  2977     public Type glb(List<Type> ts) {
  2978         Type t1 = ts.head;
  2979         for (Type t2 : ts.tail) {
  2980             if (t1.isErroneous())
  2981                 return t1;
  2982             t1 = glb(t1, t2);
  2984         return t1;
  2986     //where
  2987     public Type glb(Type t, Type s) {
  2988         if (s == null)
  2989             return t;
  2990         else if (t.isPrimitive() || s.isPrimitive())
  2991             return syms.errType;
  2992         else if (isSubtypeNoCapture(t, s))
  2993             return t;
  2994         else if (isSubtypeNoCapture(s, t))
  2995             return s;
  2997         List<Type> closure = union(closure(t), closure(s));
  2998         List<Type> bounds = closureMin(closure);
  3000         if (bounds.isEmpty()) {             // length == 0
  3001             return syms.objectType;
  3002         } else if (bounds.tail.isEmpty()) { // length == 1
  3003             return bounds.head;
  3004         } else {                            // length > 1
  3005             int classCount = 0;
  3006             for (Type bound : bounds)
  3007                 if (!bound.isInterface())
  3008                     classCount++;
  3009             if (classCount > 1)
  3010                 return createErrorType(t);
  3012         return makeCompoundType(bounds);
  3014     // </editor-fold>
  3016     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3017     /**
  3018      * Compute a hash code on a type.
  3019      */
  3020     public static int hashCode(Type t) {
  3021         return hashCode.visit(t);
  3023     // where
  3024         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3026             public Integer visitType(Type t, Void ignored) {
  3027                 return t.tag;
  3030             @Override
  3031             public Integer visitClassType(ClassType t, Void ignored) {
  3032                 int result = visit(t.getEnclosingType());
  3033                 result *= 127;
  3034                 result += t.tsym.flatName().hashCode();
  3035                 for (Type s : t.getTypeArguments()) {
  3036                     result *= 127;
  3037                     result += visit(s);
  3039                 return result;
  3042             @Override
  3043             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3044                 int result = t.kind.hashCode();
  3045                 if (t.type != null) {
  3046                     result *= 127;
  3047                     result += visit(t.type);
  3049                 return result;
  3052             @Override
  3053             public Integer visitArrayType(ArrayType t, Void ignored) {
  3054                 return visit(t.elemtype) + 12;
  3057             @Override
  3058             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3059                 return System.identityHashCode(t.tsym);
  3062             @Override
  3063             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3064                 return System.identityHashCode(t);
  3067             @Override
  3068             public Integer visitErrorType(ErrorType t, Void ignored) {
  3069                 return 0;
  3071         };
  3072     // </editor-fold>
  3074     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3075     /**
  3076      * Does t have a result that is a subtype of the result type of s,
  3077      * suitable for covariant returns?  It is assumed that both types
  3078      * are (possibly polymorphic) method types.  Monomorphic method
  3079      * types are handled in the obvious way.  Polymorphic method types
  3080      * require renaming all type variables of one to corresponding
  3081      * type variables in the other, where correspondence is by
  3082      * position in the type parameter list. */
  3083     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3084         List<Type> tvars = t.getTypeArguments();
  3085         List<Type> svars = s.getTypeArguments();
  3086         Type tres = t.getReturnType();
  3087         Type sres = subst(s.getReturnType(), svars, tvars);
  3088         return covariantReturnType(tres, sres, warner);
  3091     /**
  3092      * Return-Type-Substitutable.
  3093      * @jls section 8.4.5
  3094      */
  3095     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3096         if (hasSameArgs(r1, r2))
  3097             return resultSubtype(r1, r2, Warner.noWarnings);
  3098         else
  3099             return covariantReturnType(r1.getReturnType(),
  3100                                        erasure(r2.getReturnType()),
  3101                                        Warner.noWarnings);
  3104     public boolean returnTypeSubstitutable(Type r1,
  3105                                            Type r2, Type r2res,
  3106                                            Warner warner) {
  3107         if (isSameType(r1.getReturnType(), r2res))
  3108             return true;
  3109         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3110             return false;
  3112         if (hasSameArgs(r1, r2))
  3113             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3114         if (!allowCovariantReturns)
  3115             return false;
  3116         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3117             return true;
  3118         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3119             return false;
  3120         warner.warn(LintCategory.UNCHECKED);
  3121         return true;
  3124     /**
  3125      * Is t an appropriate return type in an overrider for a
  3126      * method that returns s?
  3127      */
  3128     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3129         return
  3130             isSameType(t, s) ||
  3131             allowCovariantReturns &&
  3132             !t.isPrimitive() &&
  3133             !s.isPrimitive() &&
  3134             isAssignable(t, s, warner);
  3136     // </editor-fold>
  3138     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3139     /**
  3140      * Return the class that boxes the given primitive.
  3141      */
  3142     public ClassSymbol boxedClass(Type t) {
  3143         return reader.enterClass(syms.boxedName[t.tag]);
  3146     /**
  3147      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3148      */
  3149     public Type boxedTypeOrType(Type t) {
  3150         return t.isPrimitive() ?
  3151             boxedClass(t).type :
  3152             t;
  3155     /**
  3156      * Return the primitive type corresponding to a boxed type.
  3157      */
  3158     public Type unboxedType(Type t) {
  3159         if (allowBoxing) {
  3160             for (int i=0; i<syms.boxedName.length; i++) {
  3161                 Name box = syms.boxedName[i];
  3162                 if (box != null &&
  3163                     asSuper(t, reader.enterClass(box)) != null)
  3164                     return syms.typeOfTag[i];
  3167         return Type.noType;
  3169     // </editor-fold>
  3171     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3172     /*
  3173      * JLS 5.1.10 Capture Conversion:
  3175      * Let G name a generic type declaration with n formal type
  3176      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3177      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3178      * where, for 1 <= i <= n:
  3180      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3181      *   Si is a fresh type variable whose upper bound is
  3182      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3183      *   type.
  3185      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3186      *   then Si is a fresh type variable whose upper bound is
  3187      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3188      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3189      *   a compile-time error if for any two classes (not interfaces)
  3190      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3192      * + If Ti is a wildcard type argument of the form ? super Bi,
  3193      *   then Si is a fresh type variable whose upper bound is
  3194      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3196      * + Otherwise, Si = Ti.
  3198      * Capture conversion on any type other than a parameterized type
  3199      * (4.5) acts as an identity conversion (5.1.1). Capture
  3200      * conversions never require a special action at run time and
  3201      * therefore never throw an exception at run time.
  3203      * Capture conversion is not applied recursively.
  3204      */
  3205     /**
  3206      * Capture conversion as specified by the JLS.
  3207      */
  3209     public List<Type> capture(List<Type> ts) {
  3210         List<Type> buf = List.nil();
  3211         for (Type t : ts) {
  3212             buf = buf.prepend(capture(t));
  3214         return buf.reverse();
  3216     public Type capture(Type t) {
  3217         if (t.tag != CLASS)
  3218             return t;
  3219         if (t.getEnclosingType() != Type.noType) {
  3220             Type capturedEncl = capture(t.getEnclosingType());
  3221             if (capturedEncl != t.getEnclosingType()) {
  3222                 Type type1 = memberType(capturedEncl, t.tsym);
  3223                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3226         ClassType cls = (ClassType)t;
  3227         if (cls.isRaw() || !cls.isParameterized())
  3228             return cls;
  3230         ClassType G = (ClassType)cls.asElement().asType();
  3231         List<Type> A = G.getTypeArguments();
  3232         List<Type> T = cls.getTypeArguments();
  3233         List<Type> S = freshTypeVariables(T);
  3235         List<Type> currentA = A;
  3236         List<Type> currentT = T;
  3237         List<Type> currentS = S;
  3238         boolean captured = false;
  3239         while (!currentA.isEmpty() &&
  3240                !currentT.isEmpty() &&
  3241                !currentS.isEmpty()) {
  3242             if (currentS.head != currentT.head) {
  3243                 captured = true;
  3244                 WildcardType Ti = (WildcardType)currentT.head;
  3245                 Type Ui = currentA.head.getUpperBound();
  3246                 CapturedType Si = (CapturedType)currentS.head;
  3247                 if (Ui == null)
  3248                     Ui = syms.objectType;
  3249                 switch (Ti.kind) {
  3250                 case UNBOUND:
  3251                     Si.bound = subst(Ui, A, S);
  3252                     Si.lower = syms.botType;
  3253                     break;
  3254                 case EXTENDS:
  3255                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3256                     Si.lower = syms.botType;
  3257                     break;
  3258                 case SUPER:
  3259                     Si.bound = subst(Ui, A, S);
  3260                     Si.lower = Ti.getSuperBound();
  3261                     break;
  3263                 if (Si.bound == Si.lower)
  3264                     currentS.head = Si.bound;
  3266             currentA = currentA.tail;
  3267             currentT = currentT.tail;
  3268             currentS = currentS.tail;
  3270         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3271             return erasure(t); // some "rare" type involved
  3273         if (captured)
  3274             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3275         else
  3276             return t;
  3278     // where
  3279         public List<Type> freshTypeVariables(List<Type> types) {
  3280             ListBuffer<Type> result = lb();
  3281             for (Type t : types) {
  3282                 if (t.tag == WILDCARD) {
  3283                     Type bound = ((WildcardType)t).getExtendsBound();
  3284                     if (bound == null)
  3285                         bound = syms.objectType;
  3286                     result.append(new CapturedType(capturedName,
  3287                                                    syms.noSymbol,
  3288                                                    bound,
  3289                                                    syms.botType,
  3290                                                    (WildcardType)t));
  3291                 } else {
  3292                     result.append(t);
  3295             return result.toList();
  3297     // </editor-fold>
  3299     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3300     private List<Type> upperBounds(List<Type> ss) {
  3301         if (ss.isEmpty()) return ss;
  3302         Type head = upperBound(ss.head);
  3303         List<Type> tail = upperBounds(ss.tail);
  3304         if (head != ss.head || tail != ss.tail)
  3305             return tail.prepend(head);
  3306         else
  3307             return ss;
  3310     private boolean sideCast(Type from, Type to, Warner warn) {
  3311         // We are casting from type $from$ to type $to$, which are
  3312         // non-final unrelated types.  This method
  3313         // tries to reject a cast by transferring type parameters
  3314         // from $to$ to $from$ by common superinterfaces.
  3315         boolean reverse = false;
  3316         Type target = to;
  3317         if ((to.tsym.flags() & INTERFACE) == 0) {
  3318             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3319             reverse = true;
  3320             to = from;
  3321             from = target;
  3323         List<Type> commonSupers = superClosure(to, erasure(from));
  3324         boolean giveWarning = commonSupers.isEmpty();
  3325         // The arguments to the supers could be unified here to
  3326         // get a more accurate analysis
  3327         while (commonSupers.nonEmpty()) {
  3328             Type t1 = asSuper(from, commonSupers.head.tsym);
  3329             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3330             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3331                 return false;
  3332             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3333             commonSupers = commonSupers.tail;
  3335         if (giveWarning && !isReifiable(reverse ? from : to))
  3336             warn.warn(LintCategory.UNCHECKED);
  3337         if (!allowCovariantReturns)
  3338             // reject if there is a common method signature with
  3339             // incompatible return types.
  3340             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3341         return true;
  3344     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3345         // We are casting from type $from$ to type $to$, which are
  3346         // unrelated types one of which is final and the other of
  3347         // which is an interface.  This method
  3348         // tries to reject a cast by transferring type parameters
  3349         // from the final class to the interface.
  3350         boolean reverse = false;
  3351         Type target = to;
  3352         if ((to.tsym.flags() & INTERFACE) == 0) {
  3353             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3354             reverse = true;
  3355             to = from;
  3356             from = target;
  3358         Assert.check((from.tsym.flags() & FINAL) != 0);
  3359         Type t1 = asSuper(from, to.tsym);
  3360         if (t1 == null) return false;
  3361         Type t2 = to;
  3362         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3363             return false;
  3364         if (!allowCovariantReturns)
  3365             // reject if there is a common method signature with
  3366             // incompatible return types.
  3367             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3368         if (!isReifiable(target) &&
  3369             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3370             warn.warn(LintCategory.UNCHECKED);
  3371         return true;
  3374     private boolean giveWarning(Type from, Type to) {
  3375         Type subFrom = asSub(from, to.tsym);
  3376         return to.isParameterized() &&
  3377                 (!(isUnbounded(to) ||
  3378                 isSubtype(from, to) ||
  3379                 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
  3382     private List<Type> superClosure(Type t, Type s) {
  3383         List<Type> cl = List.nil();
  3384         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3385             if (isSubtype(s, erasure(l.head))) {
  3386                 cl = insert(cl, l.head);
  3387             } else {
  3388                 cl = union(cl, superClosure(l.head, s));
  3391         return cl;
  3394     private boolean containsTypeEquivalent(Type t, Type s) {
  3395         return
  3396             isSameType(t, s) || // shortcut
  3397             containsType(t, s) && containsType(s, t);
  3400     // <editor-fold defaultstate="collapsed" desc="adapt">
  3401     /**
  3402      * Adapt a type by computing a substitution which maps a source
  3403      * type to a target type.
  3405      * @param source    the source type
  3406      * @param target    the target type
  3407      * @param from      the type variables of the computed substitution
  3408      * @param to        the types of the computed substitution.
  3409      */
  3410     public void adapt(Type source,
  3411                        Type target,
  3412                        ListBuffer<Type> from,
  3413                        ListBuffer<Type> to) throws AdaptFailure {
  3414         new Adapter(from, to).adapt(source, target);
  3417     class Adapter extends SimpleVisitor<Void, Type> {
  3419         ListBuffer<Type> from;
  3420         ListBuffer<Type> to;
  3421         Map<Symbol,Type> mapping;
  3423         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3424             this.from = from;
  3425             this.to = to;
  3426             mapping = new HashMap<Symbol,Type>();
  3429         public void adapt(Type source, Type target) throws AdaptFailure {
  3430             visit(source, target);
  3431             List<Type> fromList = from.toList();
  3432             List<Type> toList = to.toList();
  3433             while (!fromList.isEmpty()) {
  3434                 Type val = mapping.get(fromList.head.tsym);
  3435                 if (toList.head != val)
  3436                     toList.head = val;
  3437                 fromList = fromList.tail;
  3438                 toList = toList.tail;
  3442         @Override
  3443         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3444             if (target.tag == CLASS)
  3445                 adaptRecursive(source.allparams(), target.allparams());
  3446             return null;
  3449         @Override
  3450         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3451             if (target.tag == ARRAY)
  3452                 adaptRecursive(elemtype(source), elemtype(target));
  3453             return null;
  3456         @Override
  3457         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3458             if (source.isExtendsBound())
  3459                 adaptRecursive(upperBound(source), upperBound(target));
  3460             else if (source.isSuperBound())
  3461                 adaptRecursive(lowerBound(source), lowerBound(target));
  3462             return null;
  3465         @Override
  3466         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3467             // Check to see if there is
  3468             // already a mapping for $source$, in which case
  3469             // the old mapping will be merged with the new
  3470             Type val = mapping.get(source.tsym);
  3471             if (val != null) {
  3472                 if (val.isSuperBound() && target.isSuperBound()) {
  3473                     val = isSubtype(lowerBound(val), lowerBound(target))
  3474                         ? target : val;
  3475                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3476                     val = isSubtype(upperBound(val), upperBound(target))
  3477                         ? val : target;
  3478                 } else if (!isSameType(val, target)) {
  3479                     throw new AdaptFailure();
  3481             } else {
  3482                 val = target;
  3483                 from.append(source);
  3484                 to.append(target);
  3486             mapping.put(source.tsym, val);
  3487             return null;
  3490         @Override
  3491         public Void visitType(Type source, Type target) {
  3492             return null;
  3495         private Set<TypePair> cache = new HashSet<TypePair>();
  3497         private void adaptRecursive(Type source, Type target) {
  3498             TypePair pair = new TypePair(source, target);
  3499             if (cache.add(pair)) {
  3500                 try {
  3501                     visit(source, target);
  3502                 } finally {
  3503                     cache.remove(pair);
  3508         private void adaptRecursive(List<Type> source, List<Type> target) {
  3509             if (source.length() == target.length()) {
  3510                 while (source.nonEmpty()) {
  3511                     adaptRecursive(source.head, target.head);
  3512                     source = source.tail;
  3513                     target = target.tail;
  3519     public static class AdaptFailure extends RuntimeException {
  3520         static final long serialVersionUID = -7490231548272701566L;
  3523     private void adaptSelf(Type t,
  3524                            ListBuffer<Type> from,
  3525                            ListBuffer<Type> to) {
  3526         try {
  3527             //if (t.tsym.type != t)
  3528                 adapt(t.tsym.type, t, from, to);
  3529         } catch (AdaptFailure ex) {
  3530             // Adapt should never fail calculating a mapping from
  3531             // t.tsym.type to t as there can be no merge problem.
  3532             throw new AssertionError(ex);
  3535     // </editor-fold>
  3537     /**
  3538      * Rewrite all type variables (universal quantifiers) in the given
  3539      * type to wildcards (existential quantifiers).  This is used to
  3540      * determine if a cast is allowed.  For example, if high is true
  3541      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  3542      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  3543      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  3544      * List<Integer>} with a warning.
  3545      * @param t a type
  3546      * @param high if true return an upper bound; otherwise a lower
  3547      * bound
  3548      * @param rewriteTypeVars only rewrite captured wildcards if false;
  3549      * otherwise rewrite all type variables
  3550      * @return the type rewritten with wildcards (existential
  3551      * quantifiers) only
  3552      */
  3553     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  3554         return new Rewriter(high, rewriteTypeVars).visit(t);
  3557     class Rewriter extends UnaryVisitor<Type> {
  3559         boolean high;
  3560         boolean rewriteTypeVars;
  3562         Rewriter(boolean high, boolean rewriteTypeVars) {
  3563             this.high = high;
  3564             this.rewriteTypeVars = rewriteTypeVars;
  3567         @Override
  3568         public Type visitClassType(ClassType t, Void s) {
  3569             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  3570             boolean changed = false;
  3571             for (Type arg : t.allparams()) {
  3572                 Type bound = visit(arg);
  3573                 if (arg != bound) {
  3574                     changed = true;
  3576                 rewritten.append(bound);
  3578             if (changed)
  3579                 return subst(t.tsym.type,
  3580                         t.tsym.type.allparams(),
  3581                         rewritten.toList());
  3582             else
  3583                 return t;
  3586         public Type visitType(Type t, Void s) {
  3587             return high ? upperBound(t) : lowerBound(t);
  3590         @Override
  3591         public Type visitCapturedType(CapturedType t, Void s) {
  3592             Type w_bound = t.wildcard.type;
  3593             Type bound = w_bound.contains(t) ?
  3594                         erasure(w_bound) :
  3595                         visit(w_bound);
  3596             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  3599         @Override
  3600         public Type visitTypeVar(TypeVar t, Void s) {
  3601             if (rewriteTypeVars) {
  3602                 Type bound = t.bound.contains(t) ?
  3603                         erasure(t.bound) :
  3604                         visit(t.bound);
  3605                 return rewriteAsWildcardType(bound, t, EXTENDS);
  3606             } else {
  3607                 return t;
  3611         @Override
  3612         public Type visitWildcardType(WildcardType t, Void s) {
  3613             Type bound2 = visit(t.type);
  3614             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  3617         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  3618             switch (bk) {
  3619                case EXTENDS: return high ?
  3620                        makeExtendsWildcard(B(bound), formal) :
  3621                        makeExtendsWildcard(syms.objectType, formal);
  3622                case SUPER: return high ?
  3623                        makeSuperWildcard(syms.botType, formal) :
  3624                        makeSuperWildcard(B(bound), formal);
  3625                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  3626                default:
  3627                    Assert.error("Invalid bound kind " + bk);
  3628                    return null;
  3632         Type B(Type t) {
  3633             while (t.tag == WILDCARD) {
  3634                 WildcardType w = (WildcardType)t;
  3635                 t = high ?
  3636                     w.getExtendsBound() :
  3637                     w.getSuperBound();
  3638                 if (t == null) {
  3639                     t = high ? syms.objectType : syms.botType;
  3642             return t;
  3647     /**
  3648      * Create a wildcard with the given upper (extends) bound; create
  3649      * an unbounded wildcard if bound is Object.
  3651      * @param bound the upper bound
  3652      * @param formal the formal type parameter that will be
  3653      * substituted by the wildcard
  3654      */
  3655     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  3656         if (bound == syms.objectType) {
  3657             return new WildcardType(syms.objectType,
  3658                                     BoundKind.UNBOUND,
  3659                                     syms.boundClass,
  3660                                     formal);
  3661         } else {
  3662             return new WildcardType(bound,
  3663                                     BoundKind.EXTENDS,
  3664                                     syms.boundClass,
  3665                                     formal);
  3669     /**
  3670      * Create a wildcard with the given lower (super) bound; create an
  3671      * unbounded wildcard if bound is bottom (type of {@code null}).
  3673      * @param bound the lower bound
  3674      * @param formal the formal type parameter that will be
  3675      * substituted by the wildcard
  3676      */
  3677     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  3678         if (bound.tag == BOT) {
  3679             return new WildcardType(syms.objectType,
  3680                                     BoundKind.UNBOUND,
  3681                                     syms.boundClass,
  3682                                     formal);
  3683         } else {
  3684             return new WildcardType(bound,
  3685                                     BoundKind.SUPER,
  3686                                     syms.boundClass,
  3687                                     formal);
  3691     /**
  3692      * A wrapper for a type that allows use in sets.
  3693      */
  3694     class SingletonType {
  3695         final Type t;
  3696         SingletonType(Type t) {
  3697             this.t = t;
  3699         public int hashCode() {
  3700             return Types.hashCode(t);
  3702         public boolean equals(Object obj) {
  3703             return (obj instanceof SingletonType) &&
  3704                 isSameType(t, ((SingletonType)obj).t);
  3706         public String toString() {
  3707             return t.toString();
  3710     // </editor-fold>
  3712     // <editor-fold defaultstate="collapsed" desc="Visitors">
  3713     /**
  3714      * A default visitor for types.  All visitor methods except
  3715      * visitType are implemented by delegating to visitType.  Concrete
  3716      * subclasses must provide an implementation of visitType and can
  3717      * override other methods as needed.
  3719      * @param <R> the return type of the operation implemented by this
  3720      * visitor; use Void if no return type is needed.
  3721      * @param <S> the type of the second argument (the first being the
  3722      * type itself) of the operation implemented by this visitor; use
  3723      * Void if a second argument is not needed.
  3724      */
  3725     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  3726         final public R visit(Type t, S s)               { return t.accept(this, s); }
  3727         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  3728         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  3729         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  3730         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  3731         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  3732         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  3733         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  3734         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  3735         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  3736         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  3739     /**
  3740      * A default visitor for symbols.  All visitor methods except
  3741      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  3742      * subclasses must provide an implementation of visitSymbol and can
  3743      * override other methods as needed.
  3745      * @param <R> the return type of the operation implemented by this
  3746      * visitor; use Void if no return type is needed.
  3747      * @param <S> the type of the second argument (the first being the
  3748      * symbol itself) of the operation implemented by this visitor; use
  3749      * Void if a second argument is not needed.
  3750      */
  3751     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  3752         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  3753         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  3754         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  3755         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  3756         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  3757         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  3758         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  3761     /**
  3762      * A <em>simple</em> visitor for types.  This visitor is simple as
  3763      * captured wildcards, for-all types (generic methods), and
  3764      * undetermined type variables (part of inference) are hidden.
  3765      * Captured wildcards are hidden by treating them as type
  3766      * variables and the rest are hidden by visiting their qtypes.
  3768      * @param <R> the return type of the operation implemented by this
  3769      * visitor; use Void if no return type is needed.
  3770      * @param <S> the type of the second argument (the first being the
  3771      * type itself) of the operation implemented by this visitor; use
  3772      * Void if a second argument is not needed.
  3773      */
  3774     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  3775         @Override
  3776         public R visitCapturedType(CapturedType t, S s) {
  3777             return visitTypeVar(t, s);
  3779         @Override
  3780         public R visitForAll(ForAll t, S s) {
  3781             return visit(t.qtype, s);
  3783         @Override
  3784         public R visitUndetVar(UndetVar t, S s) {
  3785             return visit(t.qtype, s);
  3789     /**
  3790      * A plain relation on types.  That is a 2-ary function on the
  3791      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  3792      * <!-- In plain text: Type x Type -> Boolean -->
  3793      */
  3794     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  3796     /**
  3797      * A convenience visitor for implementing operations that only
  3798      * require one argument (the type itself), that is, unary
  3799      * operations.
  3801      * @param <R> the return type of the operation implemented by this
  3802      * visitor; use Void if no return type is needed.
  3803      */
  3804     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  3805         final public R visit(Type t) { return t.accept(this, null); }
  3808     /**
  3809      * A visitor for implementing a mapping from types to types.  The
  3810      * default behavior of this class is to implement the identity
  3811      * mapping (mapping a type to itself).  This can be overridden in
  3812      * subclasses.
  3814      * @param <S> the type of the second argument (the first being the
  3815      * type itself) of this mapping; use Void if a second argument is
  3816      * not needed.
  3817      */
  3818     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  3819         final public Type visit(Type t) { return t.accept(this, null); }
  3820         public Type visitType(Type t, S s) { return t; }
  3822     // </editor-fold>
  3825     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  3827     public RetentionPolicy getRetention(Attribute.Compound a) {
  3828         return getRetention(a.type.tsym);
  3831     public RetentionPolicy getRetention(Symbol sym) {
  3832         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  3833         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  3834         if (c != null) {
  3835             Attribute value = c.member(names.value);
  3836             if (value != null && value instanceof Attribute.Enum) {
  3837                 Name levelName = ((Attribute.Enum)value).value.name;
  3838                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  3839                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  3840                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  3841                 else ;// /* fail soft */ throw new AssertionError(levelName);
  3844         return vis;
  3846     // </editor-fold>

mercurial