src/share/vm/opto/macro.cpp

Mon, 10 Nov 2014 17:14:59 +0100

author
zmajo
date
Mon, 10 Nov 2014 17:14:59 +0100
changeset 7341
e7b3d177adda
parent 7166
f8afcfbdbf1c
child 7419
d3f3f7677537
permissions
-rw-r--r--

8057622: java/util/stream/test/org/openjdk/tests/java/util/stream/InfiniteStreamWithLimitOpTest: SEGV inside compiled code (sparc)
Summary: In Parse::array_store_check(), add control edge FROM IfTrue branch of runtime type check of the destination array TO loading _element_klass from destination array.
Reviewed-by: kvn, roland, anoll
Contributed-by: Zoltan Majo <zoltan.majo@oracle.com>

duke@435 1 /*
mikael@6198 2 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "libadt/vectset.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/cfgnode.hpp"
stefank@2314 31 #include "opto/compile.hpp"
stefank@2314 32 #include "opto/connode.hpp"
stefank@2314 33 #include "opto/locknode.hpp"
stefank@2314 34 #include "opto/loopnode.hpp"
stefank@2314 35 #include "opto/macro.hpp"
stefank@2314 36 #include "opto/memnode.hpp"
stefank@2314 37 #include "opto/node.hpp"
stefank@2314 38 #include "opto/phaseX.hpp"
stefank@2314 39 #include "opto/rootnode.hpp"
stefank@2314 40 #include "opto/runtime.hpp"
stefank@2314 41 #include "opto/subnode.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43 #include "runtime/sharedRuntime.hpp"
duke@435 44
duke@435 45
duke@435 46 //
duke@435 47 // Replace any references to "oldref" in inputs to "use" with "newref".
duke@435 48 // Returns the number of replacements made.
duke@435 49 //
duke@435 50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
duke@435 51 int nreplacements = 0;
duke@435 52 uint req = use->req();
duke@435 53 for (uint j = 0; j < use->len(); j++) {
duke@435 54 Node *uin = use->in(j);
duke@435 55 if (uin == oldref) {
duke@435 56 if (j < req)
duke@435 57 use->set_req(j, newref);
duke@435 58 else
duke@435 59 use->set_prec(j, newref);
duke@435 60 nreplacements++;
duke@435 61 } else if (j >= req && uin == NULL) {
duke@435 62 break;
duke@435 63 }
duke@435 64 }
duke@435 65 return nreplacements;
duke@435 66 }
duke@435 67
duke@435 68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
duke@435 69 // Copy debug information and adjust JVMState information
duke@435 70 uint old_dbg_start = oldcall->tf()->domain()->cnt();
duke@435 71 uint new_dbg_start = newcall->tf()->domain()->cnt();
duke@435 72 int jvms_adj = new_dbg_start - old_dbg_start;
duke@435 73 assert (new_dbg_start == newcall->req(), "argument count mismatch");
kvn@498 74
kvn@5626 75 // SafePointScalarObject node could be referenced several times in debug info.
kvn@5626 76 // Use Dict to record cloned nodes.
kvn@498 77 Dict* sosn_map = new Dict(cmpkey,hashkey);
duke@435 78 for (uint i = old_dbg_start; i < oldcall->req(); i++) {
kvn@498 79 Node* old_in = oldcall->in(i);
kvn@498 80 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
kvn@895 81 if (old_in != NULL && old_in->is_SafePointScalarObject()) {
kvn@498 82 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
kvn@498 83 uint old_unique = C->unique();
kvn@5626 84 Node* new_in = old_sosn->clone(sosn_map);
kvn@5626 85 if (old_unique != C->unique()) { // New node?
kvn@3311 86 new_in->set_req(0, C->root()); // reset control edge
kvn@498 87 new_in = transform_later(new_in); // Register new node.
kvn@498 88 }
kvn@498 89 old_in = new_in;
kvn@498 90 }
kvn@498 91 newcall->add_req(old_in);
duke@435 92 }
kvn@498 93
duke@435 94 newcall->set_jvms(oldcall->jvms());
duke@435 95 for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@435 96 jvms->set_map(newcall);
duke@435 97 jvms->set_locoff(jvms->locoff()+jvms_adj);
duke@435 98 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
duke@435 99 jvms->set_monoff(jvms->monoff()+jvms_adj);
kvn@498 100 jvms->set_scloff(jvms->scloff()+jvms_adj);
duke@435 101 jvms->set_endoff(jvms->endoff()+jvms_adj);
duke@435 102 }
duke@435 103 }
duke@435 104
kvn@855 105 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
kvn@855 106 Node* cmp;
kvn@855 107 if (mask != 0) {
kvn@4115 108 Node* and_node = transform_later(new (C) AndXNode(word, MakeConX(mask)));
kvn@4115 109 cmp = transform_later(new (C) CmpXNode(and_node, MakeConX(bits)));
kvn@855 110 } else {
kvn@855 111 cmp = word;
kvn@855 112 }
kvn@4115 113 Node* bol = transform_later(new (C) BoolNode(cmp, BoolTest::ne));
kvn@4115 114 IfNode* iff = new (C) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
kvn@855 115 transform_later(iff);
duke@435 116
kvn@855 117 // Fast path taken.
kvn@4115 118 Node *fast_taken = transform_later( new (C) IfFalseNode(iff) );
duke@435 119
duke@435 120 // Fast path not-taken, i.e. slow path
kvn@4115 121 Node *slow_taken = transform_later( new (C) IfTrueNode(iff) );
kvn@855 122
kvn@855 123 if (return_fast_path) {
kvn@855 124 region->init_req(edge, slow_taken); // Capture slow-control
kvn@855 125 return fast_taken;
kvn@855 126 } else {
kvn@855 127 region->init_req(edge, fast_taken); // Capture fast-control
kvn@855 128 return slow_taken;
kvn@855 129 }
duke@435 130 }
duke@435 131
duke@435 132 //--------------------copy_predefined_input_for_runtime_call--------------------
duke@435 133 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
duke@435 134 // Set fixed predefined input arguments
duke@435 135 call->init_req( TypeFunc::Control, ctrl );
duke@435 136 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) );
duke@435 137 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
duke@435 138 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
duke@435 139 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
duke@435 140 }
duke@435 141
duke@435 142 //------------------------------make_slow_call---------------------------------
duke@435 143 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
duke@435 144
duke@435 145 // Slow-path call
duke@435 146 CallNode *call = leaf_name
kvn@4115 147 ? (CallNode*)new (C) CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
kvn@4115 148 : (CallNode*)new (C) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
duke@435 149
duke@435 150 // Slow path call has no side-effects, uses few values
duke@435 151 copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
duke@435 152 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
duke@435 153 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
duke@435 154 copy_call_debug_info(oldcall, call);
duke@435 155 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
kvn@1976 156 _igvn.replace_node(oldcall, call);
duke@435 157 transform_later(call);
duke@435 158
duke@435 159 return call;
duke@435 160 }
duke@435 161
duke@435 162 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
duke@435 163 _fallthroughproj = NULL;
duke@435 164 _fallthroughcatchproj = NULL;
duke@435 165 _ioproj_fallthrough = NULL;
duke@435 166 _ioproj_catchall = NULL;
duke@435 167 _catchallcatchproj = NULL;
duke@435 168 _memproj_fallthrough = NULL;
duke@435 169 _memproj_catchall = NULL;
duke@435 170 _resproj = NULL;
duke@435 171 for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
duke@435 172 ProjNode *pn = call->fast_out(i)->as_Proj();
duke@435 173 switch (pn->_con) {
duke@435 174 case TypeFunc::Control:
duke@435 175 {
duke@435 176 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
duke@435 177 _fallthroughproj = pn;
duke@435 178 DUIterator_Fast jmax, j = pn->fast_outs(jmax);
duke@435 179 const Node *cn = pn->fast_out(j);
duke@435 180 if (cn->is_Catch()) {
duke@435 181 ProjNode *cpn = NULL;
duke@435 182 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
duke@435 183 cpn = cn->fast_out(k)->as_Proj();
duke@435 184 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
duke@435 185 if (cpn->_con == CatchProjNode::fall_through_index)
duke@435 186 _fallthroughcatchproj = cpn;
duke@435 187 else {
duke@435 188 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
duke@435 189 _catchallcatchproj = cpn;
duke@435 190 }
duke@435 191 }
duke@435 192 }
duke@435 193 break;
duke@435 194 }
duke@435 195 case TypeFunc::I_O:
duke@435 196 if (pn->_is_io_use)
duke@435 197 _ioproj_catchall = pn;
duke@435 198 else
duke@435 199 _ioproj_fallthrough = pn;
duke@435 200 break;
duke@435 201 case TypeFunc::Memory:
duke@435 202 if (pn->_is_io_use)
duke@435 203 _memproj_catchall = pn;
duke@435 204 else
duke@435 205 _memproj_fallthrough = pn;
duke@435 206 break;
duke@435 207 case TypeFunc::Parms:
duke@435 208 _resproj = pn;
duke@435 209 break;
duke@435 210 default:
duke@435 211 assert(false, "unexpected projection from allocation node.");
duke@435 212 }
duke@435 213 }
duke@435 214
duke@435 215 }
duke@435 216
kvn@508 217 // Eliminate a card mark sequence. p2x is a ConvP2XNode
kvn@1286 218 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
kvn@508 219 assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
kvn@1286 220 if (!UseG1GC) {
kvn@1286 221 // vanilla/CMS post barrier
kvn@1286 222 Node *shift = p2x->unique_out();
kvn@1286 223 Node *addp = shift->unique_out();
kvn@1286 224 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
never@2814 225 Node *mem = addp->last_out(j);
never@2814 226 if (UseCondCardMark && mem->is_Load()) {
never@2814 227 assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
never@2814 228 // The load is checking if the card has been written so
never@2814 229 // replace it with zero to fold the test.
never@2814 230 _igvn.replace_node(mem, intcon(0));
never@2814 231 continue;
never@2814 232 }
never@2814 233 assert(mem->is_Store(), "store required");
never@2814 234 _igvn.replace_node(mem, mem->in(MemNode::Memory));
kvn@1286 235 }
kvn@1286 236 } else {
kvn@1286 237 // G1 pre/post barriers
kvn@3521 238 assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
kvn@1286 239 // It could be only one user, URShift node, in Object.clone() instrinsic
kvn@1286 240 // but the new allocation is passed to arraycopy stub and it could not
kvn@1286 241 // be scalar replaced. So we don't check the case.
kvn@1286 242
kvn@3521 243 // An other case of only one user (Xor) is when the value check for NULL
kvn@3521 244 // in G1 post barrier is folded after CCP so the code which used URShift
kvn@3521 245 // is removed.
kvn@3521 246
kvn@3521 247 // Take Region node before eliminating post barrier since it also
kvn@3521 248 // eliminates CastP2X node when it has only one user.
kvn@3521 249 Node* this_region = p2x->in(0);
kvn@3521 250 assert(this_region != NULL, "");
kvn@3521 251
kvn@1286 252 // Remove G1 post barrier.
kvn@1286 253
kvn@1286 254 // Search for CastP2X->Xor->URShift->Cmp path which
kvn@1286 255 // checks if the store done to a different from the value's region.
kvn@1286 256 // And replace Cmp with #0 (false) to collapse G1 post barrier.
kvn@1286 257 Node* xorx = NULL;
kvn@1286 258 for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
kvn@1286 259 Node* u = p2x->fast_out(i);
kvn@1286 260 if (u->Opcode() == Op_XorX) {
kvn@1286 261 xorx = u;
kvn@1286 262 break;
kvn@1286 263 }
kvn@1286 264 }
kvn@1286 265 assert(xorx != NULL, "missing G1 post barrier");
kvn@1286 266 Node* shift = xorx->unique_out();
kvn@1286 267 Node* cmpx = shift->unique_out();
kvn@1286 268 assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
kvn@1286 269 cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
kvn@1286 270 "missing region check in G1 post barrier");
kvn@1286 271 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 272
kvn@1286 273 // Remove G1 pre barrier.
kvn@1286 274
kvn@1286 275 // Search "if (marking != 0)" check and set it to "false".
kvn@1286 276 // There is no G1 pre barrier if previous stored value is NULL
kvn@1286 277 // (for example, after initialization).
kvn@1286 278 if (this_region->is_Region() && this_region->req() == 3) {
kvn@1286 279 int ind = 1;
kvn@1286 280 if (!this_region->in(ind)->is_IfFalse()) {
kvn@1286 281 ind = 2;
kvn@1286 282 }
kvn@1286 283 if (this_region->in(ind)->is_IfFalse()) {
kvn@1286 284 Node* bol = this_region->in(ind)->in(0)->in(1);
kvn@1286 285 assert(bol->is_Bool(), "");
kvn@1286 286 cmpx = bol->in(1);
kvn@1286 287 if (bol->as_Bool()->_test._test == BoolTest::ne &&
kvn@1286 288 cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
kvn@1286 289 cmpx->in(1)->is_Load()) {
kvn@1286 290 Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
kvn@1286 291 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
kvn@1286 292 PtrQueue::byte_offset_of_active());
kvn@1286 293 if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
kvn@1286 294 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
kvn@1286 295 adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
kvn@1286 296 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 297 }
kvn@1286 298 }
kvn@1286 299 }
kvn@1286 300 }
kvn@1286 301 // Now CastP2X can be removed since it is used only on dead path
kvn@1286 302 // which currently still alive until igvn optimize it.
kvn@3521 303 assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
kvn@1286 304 _igvn.replace_node(p2x, top());
kvn@508 305 }
kvn@508 306 }
kvn@508 307
kvn@508 308 // Search for a memory operation for the specified memory slice.
kvn@688 309 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
kvn@508 310 Node *orig_mem = mem;
kvn@508 311 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@688 312 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
kvn@508 313 while (true) {
kvn@508 314 if (mem == alloc_mem || mem == start_mem ) {
twisti@1040 315 return mem; // hit one of our sentinels
kvn@508 316 } else if (mem->is_MergeMem()) {
kvn@508 317 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@508 318 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
kvn@508 319 Node *in = mem->in(0);
kvn@508 320 // we can safely skip over safepoints, calls, locks and membars because we
kvn@508 321 // already know that the object is safe to eliminate.
kvn@508 322 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
kvn@508 323 return in;
kvn@688 324 } else if (in->is_Call()) {
kvn@688 325 CallNode *call = in->as_Call();
kvn@688 326 if (!call->may_modify(tinst, phase)) {
kvn@688 327 mem = call->in(TypeFunc::Memory);
kvn@688 328 }
kvn@688 329 mem = in->in(TypeFunc::Memory);
kvn@688 330 } else if (in->is_MemBar()) {
kvn@508 331 mem = in->in(TypeFunc::Memory);
kvn@508 332 } else {
kvn@508 333 assert(false, "unexpected projection");
kvn@508 334 }
kvn@508 335 } else if (mem->is_Store()) {
kvn@508 336 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 337 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@508 338 if (adr_idx == alias_idx) {
kvn@508 339 assert(atype->isa_oopptr(), "address type must be oopptr");
kvn@508 340 int adr_offset = atype->offset();
kvn@508 341 uint adr_iid = atype->is_oopptr()->instance_id();
kvn@508 342 // Array elements references have the same alias_idx
kvn@508 343 // but different offset and different instance_id.
kvn@508 344 if (adr_offset == offset && adr_iid == alloc->_idx)
kvn@508 345 return mem;
kvn@508 346 } else {
kvn@508 347 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
kvn@508 348 }
kvn@508 349 mem = mem->in(MemNode::Memory);
kvn@1535 350 } else if (mem->is_ClearArray()) {
kvn@1535 351 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
kvn@1535 352 // Can not bypass initialization of the instance
kvn@1535 353 // we are looking.
kvn@1535 354 debug_only(intptr_t offset;)
kvn@1535 355 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
kvn@1535 356 InitializeNode* init = alloc->as_Allocate()->initialization();
kvn@1535 357 // We are looking for stored value, return Initialize node
kvn@1535 358 // or memory edge from Allocate node.
kvn@1535 359 if (init != NULL)
kvn@1535 360 return init;
kvn@1535 361 else
kvn@1535 362 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
kvn@1535 363 }
kvn@1535 364 // Otherwise skip it (the call updated 'mem' value).
kvn@1019 365 } else if (mem->Opcode() == Op_SCMemProj) {
kvn@4479 366 mem = mem->in(0);
kvn@4479 367 Node* adr = NULL;
kvn@4479 368 if (mem->is_LoadStore()) {
kvn@4479 369 adr = mem->in(MemNode::Address);
kvn@4479 370 } else {
kvn@4479 371 assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
kvn@4479 372 adr = mem->in(3); // Destination array
kvn@4479 373 }
kvn@4479 374 const TypePtr* atype = adr->bottom_type()->is_ptr();
kvn@1019 375 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@1019 376 if (adr_idx == alias_idx) {
kvn@1019 377 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 378 return NULL;
kvn@1019 379 }
kvn@4479 380 mem = mem->in(MemNode::Memory);
kvn@508 381 } else {
kvn@508 382 return mem;
kvn@508 383 }
kvn@682 384 assert(mem != orig_mem, "dead memory loop");
kvn@508 385 }
kvn@508 386 }
kvn@508 387
kvn@508 388 //
kvn@508 389 // Given a Memory Phi, compute a value Phi containing the values from stores
kvn@508 390 // on the input paths.
kvn@508 391 // Note: this function is recursive, its depth is limied by the "level" argument
kvn@508 392 // Returns the computed Phi, or NULL if it cannot compute it.
kvn@682 393 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
kvn@682 394 assert(mem->is_Phi(), "sanity");
kvn@682 395 int alias_idx = C->get_alias_index(adr_t);
kvn@682 396 int offset = adr_t->offset();
kvn@682 397 int instance_id = adr_t->instance_id();
kvn@682 398
kvn@682 399 // Check if an appropriate value phi already exists.
kvn@682 400 Node* region = mem->in(0);
kvn@682 401 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
kvn@682 402 Node* phi = region->fast_out(k);
kvn@682 403 if (phi->is_Phi() && phi != mem &&
kvn@682 404 phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
kvn@682 405 return phi;
kvn@682 406 }
kvn@682 407 }
kvn@682 408 // Check if an appropriate new value phi already exists.
kvn@2985 409 Node* new_phi = value_phis->find(mem->_idx);
kvn@2985 410 if (new_phi != NULL)
kvn@2985 411 return new_phi;
kvn@508 412
kvn@508 413 if (level <= 0) {
kvn@688 414 return NULL; // Give up: phi tree too deep
kvn@508 415 }
kvn@508 416 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 417 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@508 418
kvn@508 419 uint length = mem->req();
zgu@3900 420 GrowableArray <Node *> values(length, length, NULL, false);
kvn@508 421
kvn@682 422 // create a new Phi for the value
kvn@4115 423 PhiNode *phi = new (C) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
kvn@682 424 transform_later(phi);
kvn@682 425 value_phis->push(phi, mem->_idx);
kvn@682 426
kvn@508 427 for (uint j = 1; j < length; j++) {
kvn@508 428 Node *in = mem->in(j);
kvn@508 429 if (in == NULL || in->is_top()) {
kvn@508 430 values.at_put(j, in);
kvn@508 431 } else {
kvn@688 432 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 433 if (val == start_mem || val == alloc_mem) {
kvn@508 434 // hit a sentinel, return appropriate 0 value
kvn@508 435 values.at_put(j, _igvn.zerocon(ft));
kvn@508 436 continue;
kvn@508 437 }
kvn@508 438 if (val->is_Initialize()) {
kvn@508 439 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 440 }
kvn@508 441 if (val == NULL) {
kvn@508 442 return NULL; // can't find a value on this path
kvn@508 443 }
kvn@508 444 if (val == mem) {
kvn@508 445 values.at_put(j, mem);
kvn@508 446 } else if (val->is_Store()) {
kvn@508 447 values.at_put(j, val->in(MemNode::ValueIn));
kvn@508 448 } else if(val->is_Proj() && val->in(0) == alloc) {
kvn@508 449 values.at_put(j, _igvn.zerocon(ft));
kvn@508 450 } else if (val->is_Phi()) {
kvn@682 451 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
kvn@682 452 if (val == NULL) {
kvn@682 453 return NULL;
kvn@508 454 }
kvn@682 455 values.at_put(j, val);
kvn@1019 456 } else if (val->Opcode() == Op_SCMemProj) {
kvn@4479 457 assert(val->in(0)->is_LoadStore() || val->in(0)->Opcode() == Op_EncodeISOArray, "sanity");
kvn@1019 458 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 459 return NULL;
kvn@508 460 } else {
kvn@1019 461 #ifdef ASSERT
kvn@1019 462 val->dump();
kvn@688 463 assert(false, "unknown node on this path");
kvn@1019 464 #endif
kvn@688 465 return NULL; // unknown node on this path
kvn@508 466 }
kvn@508 467 }
kvn@508 468 }
kvn@682 469 // Set Phi's inputs
kvn@508 470 for (uint j = 1; j < length; j++) {
kvn@508 471 if (values.at(j) == mem) {
kvn@508 472 phi->init_req(j, phi);
kvn@508 473 } else {
kvn@508 474 phi->init_req(j, values.at(j));
kvn@508 475 }
kvn@508 476 }
kvn@508 477 return phi;
kvn@508 478 }
kvn@508 479
kvn@508 480 // Search the last value stored into the object's field.
kvn@508 481 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
kvn@658 482 assert(adr_t->is_known_instance_field(), "instance required");
kvn@658 483 int instance_id = adr_t->instance_id();
kvn@658 484 assert((uint)instance_id == alloc->_idx, "wrong allocation");
kvn@508 485
kvn@508 486 int alias_idx = C->get_alias_index(adr_t);
kvn@508 487 int offset = adr_t->offset();
kvn@508 488 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 489 Node *alloc_ctrl = alloc->in(TypeFunc::Control);
kvn@508 490 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@682 491 Arena *a = Thread::current()->resource_area();
kvn@682 492 VectorSet visited(a);
kvn@508 493
kvn@508 494
kvn@508 495 bool done = sfpt_mem == alloc_mem;
kvn@508 496 Node *mem = sfpt_mem;
kvn@508 497 while (!done) {
kvn@508 498 if (visited.test_set(mem->_idx)) {
kvn@508 499 return NULL; // found a loop, give up
kvn@508 500 }
kvn@688 501 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 502 if (mem == start_mem || mem == alloc_mem) {
kvn@508 503 done = true; // hit a sentinel, return appropriate 0 value
kvn@508 504 } else if (mem->is_Initialize()) {
kvn@508 505 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 506 if (mem == NULL) {
kvn@508 507 done = true; // Something go wrong.
kvn@508 508 } else if (mem->is_Store()) {
kvn@508 509 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 510 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
kvn@508 511 done = true;
kvn@508 512 }
kvn@508 513 } else if (mem->is_Store()) {
kvn@508 514 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
kvn@508 515 assert(atype != NULL, "address type must be oopptr");
kvn@508 516 assert(C->get_alias_index(atype) == alias_idx &&
kvn@658 517 atype->is_known_instance_field() && atype->offset() == offset &&
kvn@508 518 atype->instance_id() == instance_id, "store is correct memory slice");
kvn@508 519 done = true;
kvn@508 520 } else if (mem->is_Phi()) {
kvn@508 521 // try to find a phi's unique input
kvn@508 522 Node *unique_input = NULL;
kvn@508 523 Node *top = C->top();
kvn@508 524 for (uint i = 1; i < mem->req(); i++) {
kvn@688 525 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 526 if (n == NULL || n == top || n == mem) {
kvn@508 527 continue;
kvn@508 528 } else if (unique_input == NULL) {
kvn@508 529 unique_input = n;
kvn@508 530 } else if (unique_input != n) {
kvn@508 531 unique_input = top;
kvn@508 532 break;
kvn@508 533 }
kvn@508 534 }
kvn@508 535 if (unique_input != NULL && unique_input != top) {
kvn@508 536 mem = unique_input;
kvn@508 537 } else {
kvn@508 538 done = true;
kvn@508 539 }
kvn@508 540 } else {
kvn@508 541 assert(false, "unexpected node");
kvn@508 542 }
kvn@508 543 }
kvn@508 544 if (mem != NULL) {
kvn@508 545 if (mem == start_mem || mem == alloc_mem) {
kvn@508 546 // hit a sentinel, return appropriate 0 value
kvn@508 547 return _igvn.zerocon(ft);
kvn@508 548 } else if (mem->is_Store()) {
kvn@508 549 return mem->in(MemNode::ValueIn);
kvn@508 550 } else if (mem->is_Phi()) {
kvn@508 551 // attempt to produce a Phi reflecting the values on the input paths of the Phi
kvn@682 552 Node_Stack value_phis(a, 8);
kvn@688 553 Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
kvn@508 554 if (phi != NULL) {
kvn@508 555 return phi;
kvn@682 556 } else {
kvn@682 557 // Kill all new Phis
kvn@682 558 while(value_phis.is_nonempty()) {
kvn@682 559 Node* n = value_phis.node();
kvn@1976 560 _igvn.replace_node(n, C->top());
kvn@682 561 value_phis.pop();
kvn@682 562 }
kvn@508 563 }
kvn@508 564 }
kvn@508 565 }
kvn@508 566 // Something go wrong.
kvn@508 567 return NULL;
kvn@508 568 }
kvn@508 569
kvn@508 570 // Check the possibility of scalar replacement.
kvn@508 571 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 572 // Scan the uses of the allocation to check for anything that would
kvn@508 573 // prevent us from eliminating it.
kvn@508 574 NOT_PRODUCT( const char* fail_eliminate = NULL; )
kvn@508 575 DEBUG_ONLY( Node* disq_node = NULL; )
kvn@508 576 bool can_eliminate = true;
kvn@508 577
kvn@508 578 Node* res = alloc->result_cast();
kvn@508 579 const TypeOopPtr* res_type = NULL;
kvn@508 580 if (res == NULL) {
kvn@508 581 // All users were eliminated.
kvn@508 582 } else if (!res->is_CheckCastPP()) {
kvn@508 583 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
kvn@508 584 can_eliminate = false;
kvn@508 585 } else {
kvn@508 586 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 587 if (res_type == NULL) {
kvn@508 588 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
kvn@508 589 can_eliminate = false;
kvn@508 590 } else if (res_type->isa_aryptr()) {
kvn@508 591 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 592 if (length < 0) {
kvn@508 593 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
kvn@508 594 can_eliminate = false;
kvn@508 595 }
kvn@508 596 }
kvn@508 597 }
kvn@508 598
kvn@508 599 if (can_eliminate && res != NULL) {
kvn@508 600 for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
kvn@508 601 j < jmax && can_eliminate; j++) {
kvn@508 602 Node* use = res->fast_out(j);
kvn@508 603
kvn@508 604 if (use->is_AddP()) {
kvn@508 605 const TypePtr* addp_type = _igvn.type(use)->is_ptr();
kvn@508 606 int offset = addp_type->offset();
kvn@508 607
kvn@508 608 if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
kvn@508 609 NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
kvn@508 610 can_eliminate = false;
kvn@508 611 break;
kvn@508 612 }
kvn@508 613 for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
kvn@508 614 k < kmax && can_eliminate; k++) {
kvn@508 615 Node* n = use->fast_out(k);
kvn@508 616 if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
kvn@508 617 DEBUG_ONLY(disq_node = n;)
kvn@688 618 if (n->is_Load() || n->is_LoadStore()) {
kvn@508 619 NOT_PRODUCT(fail_eliminate = "Field load";)
kvn@508 620 } else {
kvn@508 621 NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
kvn@508 622 }
kvn@508 623 can_eliminate = false;
kvn@508 624 }
kvn@508 625 }
kvn@508 626 } else if (use->is_SafePoint()) {
kvn@508 627 SafePointNode* sfpt = use->as_SafePoint();
kvn@603 628 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
kvn@508 629 // Object is passed as argument.
kvn@508 630 DEBUG_ONLY(disq_node = use;)
kvn@508 631 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
kvn@508 632 can_eliminate = false;
kvn@508 633 }
kvn@508 634 Node* sfptMem = sfpt->memory();
kvn@508 635 if (sfptMem == NULL || sfptMem->is_top()) {
kvn@508 636 DEBUG_ONLY(disq_node = use;)
kvn@508 637 NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
kvn@508 638 can_eliminate = false;
kvn@508 639 } else {
kvn@508 640 safepoints.append_if_missing(sfpt);
kvn@508 641 }
kvn@508 642 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
kvn@508 643 if (use->is_Phi()) {
kvn@508 644 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
kvn@508 645 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 646 } else {
kvn@508 647 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
kvn@508 648 }
kvn@508 649 DEBUG_ONLY(disq_node = use;)
kvn@508 650 } else {
kvn@508 651 if (use->Opcode() == Op_Return) {
kvn@508 652 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 653 }else {
kvn@508 654 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
kvn@508 655 }
kvn@508 656 DEBUG_ONLY(disq_node = use;)
kvn@508 657 }
kvn@508 658 can_eliminate = false;
kvn@508 659 }
kvn@508 660 }
kvn@508 661 }
kvn@508 662
kvn@508 663 #ifndef PRODUCT
kvn@508 664 if (PrintEliminateAllocations) {
kvn@508 665 if (can_eliminate) {
kvn@508 666 tty->print("Scalar ");
kvn@508 667 if (res == NULL)
kvn@508 668 alloc->dump();
kvn@508 669 else
kvn@508 670 res->dump();
kvn@5110 671 } else if (alloc->_is_scalar_replaceable) {
kvn@508 672 tty->print("NotScalar (%s)", fail_eliminate);
kvn@508 673 if (res == NULL)
kvn@508 674 alloc->dump();
kvn@508 675 else
kvn@508 676 res->dump();
kvn@508 677 #ifdef ASSERT
kvn@508 678 if (disq_node != NULL) {
kvn@508 679 tty->print(" >>>> ");
kvn@508 680 disq_node->dump();
kvn@508 681 }
kvn@508 682 #endif /*ASSERT*/
kvn@508 683 }
kvn@508 684 }
kvn@508 685 #endif
kvn@508 686 return can_eliminate;
kvn@508 687 }
kvn@508 688
kvn@508 689 // Do scalar replacement.
kvn@508 690 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 691 GrowableArray <SafePointNode *> safepoints_done;
kvn@508 692
kvn@508 693 ciKlass* klass = NULL;
kvn@508 694 ciInstanceKlass* iklass = NULL;
kvn@508 695 int nfields = 0;
kvn@508 696 int array_base;
kvn@508 697 int element_size;
kvn@508 698 BasicType basic_elem_type;
kvn@508 699 ciType* elem_type;
kvn@508 700
kvn@508 701 Node* res = alloc->result_cast();
roland@7166 702 assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result");
kvn@508 703 const TypeOopPtr* res_type = NULL;
kvn@508 704 if (res != NULL) { // Could be NULL when there are no users
kvn@508 705 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 706 }
kvn@508 707
kvn@508 708 if (res != NULL) {
kvn@508 709 klass = res_type->klass();
kvn@508 710 if (res_type->isa_instptr()) {
kvn@508 711 // find the fields of the class which will be needed for safepoint debug information
kvn@508 712 assert(klass->is_instance_klass(), "must be an instance klass.");
kvn@508 713 iklass = klass->as_instance_klass();
kvn@508 714 nfields = iklass->nof_nonstatic_fields();
kvn@508 715 } else {
kvn@508 716 // find the array's elements which will be needed for safepoint debug information
kvn@508 717 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 718 assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
kvn@508 719 elem_type = klass->as_array_klass()->element_type();
kvn@508 720 basic_elem_type = elem_type->basic_type();
kvn@508 721 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@508 722 element_size = type2aelembytes(basic_elem_type);
kvn@508 723 }
kvn@508 724 }
kvn@508 725 //
kvn@508 726 // Process the safepoint uses
kvn@508 727 //
kvn@508 728 while (safepoints.length() > 0) {
kvn@508 729 SafePointNode* sfpt = safepoints.pop();
kvn@508 730 Node* mem = sfpt->memory();
kvn@5626 731 assert(sfpt->jvms() != NULL, "missed JVMS");
kvn@5626 732 // Fields of scalar objs are referenced only at the end
kvn@5626 733 // of regular debuginfo at the last (youngest) JVMS.
kvn@5626 734 // Record relative start index.
kvn@5626 735 uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
kvn@4115 736 SafePointScalarObjectNode* sobj = new (C) SafePointScalarObjectNode(res_type,
kvn@508 737 #ifdef ASSERT
kvn@508 738 alloc,
kvn@508 739 #endif
kvn@508 740 first_ind, nfields);
kvn@3311 741 sobj->init_req(0, C->root());
kvn@508 742 transform_later(sobj);
kvn@508 743
kvn@508 744 // Scan object's fields adding an input to the safepoint for each field.
kvn@508 745 for (int j = 0; j < nfields; j++) {
kvn@741 746 intptr_t offset;
kvn@508 747 ciField* field = NULL;
kvn@508 748 if (iklass != NULL) {
kvn@508 749 field = iklass->nonstatic_field_at(j);
kvn@508 750 offset = field->offset();
kvn@508 751 elem_type = field->type();
kvn@508 752 basic_elem_type = field->layout_type();
kvn@508 753 } else {
kvn@741 754 offset = array_base + j * (intptr_t)element_size;
kvn@508 755 }
kvn@508 756
kvn@508 757 const Type *field_type;
kvn@508 758 // The next code is taken from Parse::do_get_xxx().
kvn@559 759 if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
kvn@508 760 if (!elem_type->is_loaded()) {
kvn@508 761 field_type = TypeInstPtr::BOTTOM;
kvn@2037 762 } else if (field != NULL && field->is_constant() && field->is_static()) {
kvn@508 763 // This can happen if the constant oop is non-perm.
kvn@508 764 ciObject* con = field->constant_value().as_object();
kvn@508 765 // Do not "join" in the previous type; it doesn't add value,
kvn@508 766 // and may yield a vacuous result if the field is of interface type.
kvn@508 767 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
kvn@508 768 assert(field_type != NULL, "field singleton type must be consistent");
kvn@508 769 } else {
kvn@508 770 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
kvn@508 771 }
kvn@559 772 if (UseCompressedOops) {
kvn@656 773 field_type = field_type->make_narrowoop();
kvn@559 774 basic_elem_type = T_NARROWOOP;
kvn@559 775 }
kvn@508 776 } else {
kvn@508 777 field_type = Type::get_const_basic_type(basic_elem_type);
kvn@508 778 }
kvn@508 779
kvn@508 780 const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
kvn@508 781
kvn@508 782 Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
kvn@508 783 if (field_val == NULL) {
kvn@3311 784 // We weren't able to find a value for this field,
kvn@3311 785 // give up on eliminating this allocation.
kvn@3311 786
kvn@3311 787 // Remove any extra entries we added to the safepoint.
kvn@508 788 uint last = sfpt->req() - 1;
kvn@508 789 for (int k = 0; k < j; k++) {
kvn@508 790 sfpt->del_req(last--);
kvn@508 791 }
kvn@508 792 // rollback processed safepoints
kvn@508 793 while (safepoints_done.length() > 0) {
kvn@508 794 SafePointNode* sfpt_done = safepoints_done.pop();
kvn@508 795 // remove any extra entries we added to the safepoint
kvn@508 796 last = sfpt_done->req() - 1;
kvn@508 797 for (int k = 0; k < nfields; k++) {
kvn@508 798 sfpt_done->del_req(last--);
kvn@508 799 }
kvn@508 800 JVMState *jvms = sfpt_done->jvms();
kvn@508 801 jvms->set_endoff(sfpt_done->req());
kvn@508 802 // Now make a pass over the debug information replacing any references
kvn@508 803 // to SafePointScalarObjectNode with the allocated object.
kvn@508 804 int start = jvms->debug_start();
kvn@508 805 int end = jvms->debug_end();
kvn@508 806 for (int i = start; i < end; i++) {
kvn@508 807 if (sfpt_done->in(i)->is_SafePointScalarObject()) {
kvn@508 808 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
kvn@5626 809 if (scobj->first_index(jvms) == sfpt_done->req() &&
kvn@508 810 scobj->n_fields() == (uint)nfields) {
kvn@508 811 assert(scobj->alloc() == alloc, "sanity");
kvn@508 812 sfpt_done->set_req(i, res);
kvn@508 813 }
kvn@508 814 }
kvn@508 815 }
kvn@508 816 }
kvn@508 817 #ifndef PRODUCT
kvn@508 818 if (PrintEliminateAllocations) {
kvn@508 819 if (field != NULL) {
kvn@508 820 tty->print("=== At SafePoint node %d can't find value of Field: ",
kvn@508 821 sfpt->_idx);
kvn@508 822 field->print();
kvn@508 823 int field_idx = C->get_alias_index(field_addr_type);
kvn@508 824 tty->print(" (alias_idx=%d)", field_idx);
kvn@508 825 } else { // Array's element
kvn@508 826 tty->print("=== At SafePoint node %d can't find value of array element [%d]",
kvn@508 827 sfpt->_idx, j);
kvn@508 828 }
kvn@508 829 tty->print(", which prevents elimination of: ");
kvn@508 830 if (res == NULL)
kvn@508 831 alloc->dump();
kvn@508 832 else
kvn@508 833 res->dump();
kvn@508 834 }
kvn@508 835 #endif
kvn@508 836 return false;
kvn@508 837 }
kvn@559 838 if (UseCompressedOops && field_type->isa_narrowoop()) {
kvn@559 839 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
kvn@559 840 // to be able scalar replace the allocation.
kvn@656 841 if (field_val->is_EncodeP()) {
kvn@656 842 field_val = field_val->in(1);
kvn@656 843 } else {
kvn@5111 844 field_val = transform_later(new (C) DecodeNNode(field_val, field_val->get_ptr_type()));
kvn@656 845 }
kvn@559 846 }
kvn@508 847 sfpt->add_req(field_val);
kvn@508 848 }
kvn@508 849 JVMState *jvms = sfpt->jvms();
kvn@508 850 jvms->set_endoff(sfpt->req());
kvn@508 851 // Now make a pass over the debug information replacing any references
kvn@508 852 // to the allocated object with "sobj"
kvn@508 853 int start = jvms->debug_start();
kvn@508 854 int end = jvms->debug_end();
kvn@5110 855 sfpt->replace_edges_in_range(res, sobj, start, end);
kvn@508 856 safepoints_done.append_if_missing(sfpt); // keep it for rollback
kvn@508 857 }
kvn@508 858 return true;
kvn@508 859 }
kvn@508 860
kvn@508 861 // Process users of eliminated allocation.
kvn@5110 862 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
kvn@508 863 Node* res = alloc->result_cast();
kvn@508 864 if (res != NULL) {
kvn@508 865 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
kvn@508 866 Node *use = res->last_out(j);
kvn@508 867 uint oc1 = res->outcnt();
kvn@508 868
kvn@508 869 if (use->is_AddP()) {
kvn@508 870 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
kvn@508 871 Node *n = use->last_out(k);
kvn@508 872 uint oc2 = use->outcnt();
kvn@508 873 if (n->is_Store()) {
kvn@1535 874 #ifdef ASSERT
kvn@1535 875 // Verify that there is no dependent MemBarVolatile nodes,
kvn@1535 876 // they should be removed during IGVN, see MemBarNode::Ideal().
kvn@1535 877 for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
kvn@1535 878 p < pmax; p++) {
kvn@1535 879 Node* mb = n->fast_out(p);
kvn@1535 880 assert(mb->is_Initialize() || !mb->is_MemBar() ||
kvn@1535 881 mb->req() <= MemBarNode::Precedent ||
kvn@1535 882 mb->in(MemBarNode::Precedent) != n,
kvn@1535 883 "MemBarVolatile should be eliminated for non-escaping object");
kvn@1535 884 }
kvn@1535 885 #endif
kvn@508 886 _igvn.replace_node(n, n->in(MemNode::Memory));
kvn@508 887 } else {
kvn@508 888 eliminate_card_mark(n);
kvn@508 889 }
kvn@508 890 k -= (oc2 - use->outcnt());
kvn@508 891 }
kvn@508 892 } else {
kvn@508 893 eliminate_card_mark(use);
kvn@508 894 }
kvn@508 895 j -= (oc1 - res->outcnt());
kvn@508 896 }
kvn@508 897 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
kvn@508 898 _igvn.remove_dead_node(res);
kvn@508 899 }
kvn@508 900
kvn@508 901 //
kvn@508 902 // Process other users of allocation's projections
kvn@508 903 //
kvn@508 904 if (_resproj != NULL && _resproj->outcnt() != 0) {
kvn@5110 905 // First disconnect stores captured by Initialize node.
kvn@5110 906 // If Initialize node is eliminated first in the following code,
kvn@5110 907 // it will kill such stores and DUIterator_Last will assert.
kvn@5110 908 for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax); j < jmax; j++) {
kvn@5110 909 Node *use = _resproj->fast_out(j);
kvn@5110 910 if (use->is_AddP()) {
kvn@5110 911 // raw memory addresses used only by the initialization
kvn@5110 912 _igvn.replace_node(use, C->top());
kvn@5110 913 --j; --jmax;
kvn@5110 914 }
kvn@5110 915 }
kvn@508 916 for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
kvn@508 917 Node *use = _resproj->last_out(j);
kvn@508 918 uint oc1 = _resproj->outcnt();
kvn@508 919 if (use->is_Initialize()) {
kvn@508 920 // Eliminate Initialize node.
kvn@508 921 InitializeNode *init = use->as_Initialize();
kvn@508 922 assert(init->outcnt() <= 2, "only a control and memory projection expected");
kvn@508 923 Node *ctrl_proj = init->proj_out(TypeFunc::Control);
kvn@508 924 if (ctrl_proj != NULL) {
kvn@508 925 assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
kvn@508 926 _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
kvn@508 927 }
kvn@508 928 Node *mem_proj = init->proj_out(TypeFunc::Memory);
kvn@508 929 if (mem_proj != NULL) {
kvn@508 930 Node *mem = init->in(TypeFunc::Memory);
kvn@508 931 #ifdef ASSERT
kvn@508 932 if (mem->is_MergeMem()) {
kvn@508 933 assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
kvn@508 934 } else {
kvn@508 935 assert(mem == _memproj_fallthrough, "allocation memory projection");
kvn@508 936 }
kvn@508 937 #endif
kvn@508 938 _igvn.replace_node(mem_proj, mem);
kvn@508 939 }
kvn@508 940 } else {
kvn@508 941 assert(false, "only Initialize or AddP expected");
kvn@508 942 }
kvn@508 943 j -= (oc1 - _resproj->outcnt());
kvn@508 944 }
kvn@508 945 }
kvn@508 946 if (_fallthroughcatchproj != NULL) {
kvn@508 947 _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
kvn@508 948 }
kvn@508 949 if (_memproj_fallthrough != NULL) {
kvn@508 950 _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
kvn@508 951 }
kvn@508 952 if (_memproj_catchall != NULL) {
kvn@508 953 _igvn.replace_node(_memproj_catchall, C->top());
kvn@508 954 }
kvn@508 955 if (_ioproj_fallthrough != NULL) {
kvn@508 956 _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
kvn@508 957 }
kvn@508 958 if (_ioproj_catchall != NULL) {
kvn@508 959 _igvn.replace_node(_ioproj_catchall, C->top());
kvn@508 960 }
kvn@508 961 if (_catchallcatchproj != NULL) {
kvn@508 962 _igvn.replace_node(_catchallcatchproj, C->top());
kvn@508 963 }
kvn@508 964 }
kvn@508 965
kvn@508 966 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
kvn@5110 967 if (!EliminateAllocations || !alloc->_is_non_escaping) {
kvn@5110 968 return false;
kvn@5110 969 }
kvn@5110 970 Node* klass = alloc->in(AllocateNode::KlassNode);
kvn@5110 971 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
kvn@5110 972 Node* res = alloc->result_cast();
kvn@5110 973 // Eliminate boxing allocations which are not used
kvn@5110 974 // regardless scalar replacable status.
kvn@5110 975 bool boxing_alloc = C->eliminate_boxing() &&
kvn@5110 976 tklass->klass()->is_instance_klass() &&
kvn@5110 977 tklass->klass()->as_instance_klass()->is_box_klass();
kvn@5110 978 if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
kvn@508 979 return false;
kvn@508 980 }
kvn@508 981
kvn@508 982 extract_call_projections(alloc);
kvn@508 983
kvn@508 984 GrowableArray <SafePointNode *> safepoints;
kvn@508 985 if (!can_eliminate_allocation(alloc, safepoints)) {
kvn@508 986 return false;
kvn@508 987 }
kvn@508 988
kvn@5110 989 if (!alloc->_is_scalar_replaceable) {
kvn@5110 990 assert(res == NULL, "sanity");
kvn@5110 991 // We can only eliminate allocation if all debug info references
kvn@5110 992 // are already replaced with SafePointScalarObject because
kvn@5110 993 // we can't search for a fields value without instance_id.
kvn@5110 994 if (safepoints.length() > 0) {
kvn@5110 995 return false;
kvn@5110 996 }
kvn@5110 997 }
kvn@5110 998
kvn@508 999 if (!scalar_replacement(alloc, safepoints)) {
kvn@508 1000 return false;
kvn@508 1001 }
kvn@508 1002
never@1515 1003 CompileLog* log = C->log();
never@1515 1004 if (log != NULL) {
never@1515 1005 log->head("eliminate_allocation type='%d'",
never@1515 1006 log->identify(tklass->klass()));
never@1515 1007 JVMState* p = alloc->jvms();
never@1515 1008 while (p != NULL) {
never@1515 1009 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 1010 p = p->caller();
never@1515 1011 }
never@1515 1012 log->tail("eliminate_allocation");
never@1515 1013 }
never@1515 1014
kvn@508 1015 process_users_of_allocation(alloc);
kvn@508 1016
kvn@508 1017 #ifndef PRODUCT
never@1515 1018 if (PrintEliminateAllocations) {
never@1515 1019 if (alloc->is_AllocateArray())
never@1515 1020 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
never@1515 1021 else
never@1515 1022 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
never@1515 1023 }
kvn@508 1024 #endif
kvn@508 1025
kvn@508 1026 return true;
kvn@508 1027 }
kvn@508 1028
kvn@5110 1029 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
kvn@5110 1030 // EA should remove all uses of non-escaping boxing node.
kvn@5110 1031 if (!C->eliminate_boxing() || boxing->proj_out(TypeFunc::Parms) != NULL) {
kvn@5110 1032 return false;
kvn@5110 1033 }
kvn@5110 1034
roland@7166 1035 assert(boxing->result_cast() == NULL, "unexpected boxing node result");
roland@7166 1036
kvn@5110 1037 extract_call_projections(boxing);
kvn@5110 1038
kvn@5110 1039 const TypeTuple* r = boxing->tf()->range();
kvn@5110 1040 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@5110 1041 const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
kvn@5110 1042 assert(t != NULL, "sanity");
kvn@5110 1043
kvn@5110 1044 CompileLog* log = C->log();
kvn@5110 1045 if (log != NULL) {
kvn@5110 1046 log->head("eliminate_boxing type='%d'",
kvn@5110 1047 log->identify(t->klass()));
kvn@5110 1048 JVMState* p = boxing->jvms();
kvn@5110 1049 while (p != NULL) {
kvn@5110 1050 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
kvn@5110 1051 p = p->caller();
kvn@5110 1052 }
kvn@5110 1053 log->tail("eliminate_boxing");
kvn@5110 1054 }
kvn@5110 1055
kvn@5110 1056 process_users_of_allocation(boxing);
kvn@5110 1057
kvn@5110 1058 #ifndef PRODUCT
kvn@5110 1059 if (PrintEliminateAllocations) {
kvn@5110 1060 tty->print("++++ Eliminated: %d ", boxing->_idx);
kvn@5110 1061 boxing->method()->print_short_name(tty);
kvn@5110 1062 tty->cr();
kvn@5110 1063 }
kvn@5110 1064 #endif
kvn@5110 1065
kvn@5110 1066 return true;
kvn@5110 1067 }
duke@435 1068
duke@435 1069 //---------------------------set_eden_pointers-------------------------
duke@435 1070 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
duke@435 1071 if (UseTLAB) { // Private allocation: load from TLS
kvn@4115 1072 Node* thread = transform_later(new (C) ThreadLocalNode());
duke@435 1073 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
duke@435 1074 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
duke@435 1075 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
duke@435 1076 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
duke@435 1077 } else { // Shared allocation: load from globals
duke@435 1078 CollectedHeap* ch = Universe::heap();
duke@435 1079 address top_adr = (address)ch->top_addr();
duke@435 1080 address end_adr = (address)ch->end_addr();
duke@435 1081 eden_top_adr = makecon(TypeRawPtr::make(top_adr));
duke@435 1082 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
duke@435 1083 }
duke@435 1084 }
duke@435 1085
duke@435 1086
duke@435 1087 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
duke@435 1088 Node* adr = basic_plus_adr(base, offset);
kvn@855 1089 const TypePtr* adr_type = adr->bottom_type()->is_ptr();
goetz@6479 1090 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
duke@435 1091 transform_later(value);
duke@435 1092 return value;
duke@435 1093 }
duke@435 1094
duke@435 1095
duke@435 1096 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
duke@435 1097 Node* adr = basic_plus_adr(base, offset);
goetz@6479 1098 mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
duke@435 1099 transform_later(mem);
duke@435 1100 return mem;
duke@435 1101 }
duke@435 1102
duke@435 1103 //=============================================================================
duke@435 1104 //
duke@435 1105 // A L L O C A T I O N
duke@435 1106 //
duke@435 1107 // Allocation attempts to be fast in the case of frequent small objects.
duke@435 1108 // It breaks down like this:
duke@435 1109 //
duke@435 1110 // 1) Size in doublewords is computed. This is a constant for objects and
duke@435 1111 // variable for most arrays. Doubleword units are used to avoid size
duke@435 1112 // overflow of huge doubleword arrays. We need doublewords in the end for
duke@435 1113 // rounding.
duke@435 1114 //
duke@435 1115 // 2) Size is checked for being 'too large'. Too-large allocations will go
duke@435 1116 // the slow path into the VM. The slow path can throw any required
duke@435 1117 // exceptions, and does all the special checks for very large arrays. The
duke@435 1118 // size test can constant-fold away for objects. For objects with
duke@435 1119 // finalizers it constant-folds the otherway: you always go slow with
duke@435 1120 // finalizers.
duke@435 1121 //
duke@435 1122 // 3) If NOT using TLABs, this is the contended loop-back point.
duke@435 1123 // Load-Locked the heap top. If using TLABs normal-load the heap top.
duke@435 1124 //
duke@435 1125 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route.
duke@435 1126 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish
duke@435 1127 // "size*8" we always enter the VM, where "largish" is a constant picked small
duke@435 1128 // enough that there's always space between the eden max and 4Gig (old space is
duke@435 1129 // there so it's quite large) and large enough that the cost of entering the VM
duke@435 1130 // is dwarfed by the cost to initialize the space.
duke@435 1131 //
duke@435 1132 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
duke@435 1133 // down. If contended, repeat at step 3. If using TLABs normal-store
duke@435 1134 // adjusted heap top back down; there is no contention.
duke@435 1135 //
duke@435 1136 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark
duke@435 1137 // fields.
duke@435 1138 //
duke@435 1139 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
duke@435 1140 // oop flavor.
duke@435 1141 //
duke@435 1142 //=============================================================================
duke@435 1143 // FastAllocateSizeLimit value is in DOUBLEWORDS.
duke@435 1144 // Allocations bigger than this always go the slow route.
duke@435 1145 // This value must be small enough that allocation attempts that need to
duke@435 1146 // trigger exceptions go the slow route. Also, it must be small enough so
duke@435 1147 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
duke@435 1148 //=============================================================================j//
duke@435 1149 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
duke@435 1150 // The allocator will coalesce int->oop copies away. See comment in
duke@435 1151 // coalesce.cpp about how this works. It depends critically on the exact
duke@435 1152 // code shape produced here, so if you are changing this code shape
duke@435 1153 // make sure the GC info for the heap-top is correct in and around the
duke@435 1154 // slow-path call.
duke@435 1155 //
duke@435 1156
duke@435 1157 void PhaseMacroExpand::expand_allocate_common(
duke@435 1158 AllocateNode* alloc, // allocation node to be expanded
duke@435 1159 Node* length, // array length for an array allocation
duke@435 1160 const TypeFunc* slow_call_type, // Type of slow call
duke@435 1161 address slow_call_address // Address of slow call
duke@435 1162 )
duke@435 1163 {
duke@435 1164
duke@435 1165 Node* ctrl = alloc->in(TypeFunc::Control);
duke@435 1166 Node* mem = alloc->in(TypeFunc::Memory);
duke@435 1167 Node* i_o = alloc->in(TypeFunc::I_O);
duke@435 1168 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize);
duke@435 1169 Node* klass_node = alloc->in(AllocateNode::KlassNode);
duke@435 1170 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
duke@435 1171
duke@435 1172 assert(ctrl != NULL, "must have control");
duke@435 1173 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
duke@435 1174 // they will not be used if "always_slow" is set
duke@435 1175 enum { slow_result_path = 1, fast_result_path = 2 };
duke@435 1176 Node *result_region;
duke@435 1177 Node *result_phi_rawmem;
duke@435 1178 Node *result_phi_rawoop;
duke@435 1179 Node *result_phi_i_o;
duke@435 1180
duke@435 1181 // The initial slow comparison is a size check, the comparison
duke@435 1182 // we want to do is a BoolTest::gt
duke@435 1183 bool always_slow = false;
duke@435 1184 int tv = _igvn.find_int_con(initial_slow_test, -1);
duke@435 1185 if (tv >= 0) {
duke@435 1186 always_slow = (tv == 1);
duke@435 1187 initial_slow_test = NULL;
duke@435 1188 } else {
duke@435 1189 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
duke@435 1190 }
duke@435 1191
kvn@1215 1192 if (C->env()->dtrace_alloc_probes() ||
ysr@777 1193 !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
ysr@777 1194 (UseConcMarkSweepGC && CMSIncrementalMode))) {
duke@435 1195 // Force slow-path allocation
duke@435 1196 always_slow = true;
duke@435 1197 initial_slow_test = NULL;
duke@435 1198 }
duke@435 1199
ysr@777 1200
duke@435 1201 enum { too_big_or_final_path = 1, need_gc_path = 2 };
duke@435 1202 Node *slow_region = NULL;
duke@435 1203 Node *toobig_false = ctrl;
duke@435 1204
duke@435 1205 assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
duke@435 1206 // generate the initial test if necessary
duke@435 1207 if (initial_slow_test != NULL ) {
kvn@4115 1208 slow_region = new (C) RegionNode(3);
duke@435 1209
duke@435 1210 // Now make the initial failure test. Usually a too-big test but
duke@435 1211 // might be a TRUE for finalizers or a fancy class check for
duke@435 1212 // newInstance0.
kvn@4115 1213 IfNode *toobig_iff = new (C) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
duke@435 1214 transform_later(toobig_iff);
duke@435 1215 // Plug the failing-too-big test into the slow-path region
kvn@4115 1216 Node *toobig_true = new (C) IfTrueNode( toobig_iff );
duke@435 1217 transform_later(toobig_true);
duke@435 1218 slow_region ->init_req( too_big_or_final_path, toobig_true );
kvn@4115 1219 toobig_false = new (C) IfFalseNode( toobig_iff );
duke@435 1220 transform_later(toobig_false);
duke@435 1221 } else { // No initial test, just fall into next case
duke@435 1222 toobig_false = ctrl;
duke@435 1223 debug_only(slow_region = NodeSentinel);
duke@435 1224 }
duke@435 1225
duke@435 1226 Node *slow_mem = mem; // save the current memory state for slow path
duke@435 1227 // generate the fast allocation code unless we know that the initial test will always go slow
duke@435 1228 if (!always_slow) {
kvn@1000 1229 // Fast path modifies only raw memory.
kvn@1000 1230 if (mem->is_MergeMem()) {
kvn@1000 1231 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
kvn@1000 1232 }
kvn@1000 1233
ysr@777 1234 Node* eden_top_adr;
ysr@777 1235 Node* eden_end_adr;
ysr@777 1236
ysr@777 1237 set_eden_pointers(eden_top_adr, eden_end_adr);
ysr@777 1238
ysr@777 1239 // Load Eden::end. Loop invariant and hoisted.
ysr@777 1240 //
ysr@777 1241 // Note: We set the control input on "eden_end" and "old_eden_top" when using
ysr@777 1242 // a TLAB to work around a bug where these values were being moved across
ysr@777 1243 // a safepoint. These are not oops, so they cannot be include in the oop
phh@2423 1244 // map, but they can be changed by a GC. The proper way to fix this would
ysr@777 1245 // be to set the raw memory state when generating a SafepointNode. However
ysr@777 1246 // this will require extensive changes to the loop optimization in order to
ysr@777 1247 // prevent a degradation of the optimization.
ysr@777 1248 // See comment in memnode.hpp, around line 227 in class LoadPNode.
ysr@777 1249 Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
ysr@777 1250
duke@435 1251 // allocate the Region and Phi nodes for the result
kvn@4115 1252 result_region = new (C) RegionNode(3);
kvn@4115 1253 result_phi_rawmem = new (C) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@4115 1254 result_phi_rawoop = new (C) PhiNode(result_region, TypeRawPtr::BOTTOM);
kvn@4115 1255 result_phi_i_o = new (C) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
duke@435 1256
duke@435 1257 // We need a Region for the loop-back contended case.
duke@435 1258 enum { fall_in_path = 1, contended_loopback_path = 2 };
duke@435 1259 Node *contended_region;
duke@435 1260 Node *contended_phi_rawmem;
phh@2423 1261 if (UseTLAB) {
duke@435 1262 contended_region = toobig_false;
duke@435 1263 contended_phi_rawmem = mem;
duke@435 1264 } else {
kvn@4115 1265 contended_region = new (C) RegionNode(3);
kvn@4115 1266 contended_phi_rawmem = new (C) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 1267 // Now handle the passing-too-big test. We fall into the contended
duke@435 1268 // loop-back merge point.
phh@2423 1269 contended_region ->init_req(fall_in_path, toobig_false);
phh@2423 1270 contended_phi_rawmem->init_req(fall_in_path, mem);
duke@435 1271 transform_later(contended_region);
duke@435 1272 transform_later(contended_phi_rawmem);
duke@435 1273 }
duke@435 1274
duke@435 1275 // Load(-locked) the heap top.
duke@435 1276 // See note above concerning the control input when using a TLAB
duke@435 1277 Node *old_eden_top = UseTLAB
goetz@6479 1278 ? new (C) LoadPNode (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered)
goetz@6479 1279 : new (C) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire);
duke@435 1280
duke@435 1281 transform_later(old_eden_top);
duke@435 1282 // Add to heap top to get a new heap top
kvn@4115 1283 Node *new_eden_top = new (C) AddPNode(top(), old_eden_top, size_in_bytes);
duke@435 1284 transform_later(new_eden_top);
duke@435 1285 // Check for needing a GC; compare against heap end
kvn@4115 1286 Node *needgc_cmp = new (C) CmpPNode(new_eden_top, eden_end);
duke@435 1287 transform_later(needgc_cmp);
kvn@4115 1288 Node *needgc_bol = new (C) BoolNode(needgc_cmp, BoolTest::ge);
duke@435 1289 transform_later(needgc_bol);
kvn@4115 1290 IfNode *needgc_iff = new (C) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
duke@435 1291 transform_later(needgc_iff);
duke@435 1292
duke@435 1293 // Plug the failing-heap-space-need-gc test into the slow-path region
kvn@4115 1294 Node *needgc_true = new (C) IfTrueNode(needgc_iff);
duke@435 1295 transform_later(needgc_true);
phh@2423 1296 if (initial_slow_test) {
phh@2423 1297 slow_region->init_req(need_gc_path, needgc_true);
duke@435 1298 // This completes all paths into the slow merge point
duke@435 1299 transform_later(slow_region);
duke@435 1300 } else { // No initial slow path needed!
duke@435 1301 // Just fall from the need-GC path straight into the VM call.
phh@2423 1302 slow_region = needgc_true;
duke@435 1303 }
duke@435 1304 // No need for a GC. Setup for the Store-Conditional
kvn@4115 1305 Node *needgc_false = new (C) IfFalseNode(needgc_iff);
duke@435 1306 transform_later(needgc_false);
duke@435 1307
duke@435 1308 // Grab regular I/O before optional prefetch may change it.
duke@435 1309 // Slow-path does no I/O so just set it to the original I/O.
phh@2423 1310 result_phi_i_o->init_req(slow_result_path, i_o);
duke@435 1311
duke@435 1312 i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
duke@435 1313 old_eden_top, new_eden_top, length);
duke@435 1314
phh@2423 1315 // Name successful fast-path variables
phh@2423 1316 Node* fast_oop = old_eden_top;
phh@2423 1317 Node* fast_oop_ctrl;
phh@2423 1318 Node* fast_oop_rawmem;
phh@2423 1319
duke@435 1320 // Store (-conditional) the modified eden top back down.
duke@435 1321 // StorePConditional produces flags for a test PLUS a modified raw
duke@435 1322 // memory state.
phh@2423 1323 if (UseTLAB) {
phh@2423 1324 Node* store_eden_top =
kvn@4115 1325 new (C) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
goetz@6479 1326 TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered);
duke@435 1327 transform_later(store_eden_top);
duke@435 1328 fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
phh@2423 1329 fast_oop_rawmem = store_eden_top;
duke@435 1330 } else {
phh@2423 1331 Node* store_eden_top =
kvn@4115 1332 new (C) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
phh@2423 1333 new_eden_top, fast_oop/*old_eden_top*/);
duke@435 1334 transform_later(store_eden_top);
kvn@4115 1335 Node *contention_check = new (C) BoolNode(store_eden_top, BoolTest::ne);
duke@435 1336 transform_later(contention_check);
kvn@4115 1337 store_eden_top = new (C) SCMemProjNode(store_eden_top);
duke@435 1338 transform_later(store_eden_top);
duke@435 1339
duke@435 1340 // If not using TLABs, check to see if there was contention.
kvn@4115 1341 IfNode *contention_iff = new (C) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
duke@435 1342 transform_later(contention_iff);
kvn@4115 1343 Node *contention_true = new (C) IfTrueNode(contention_iff);
duke@435 1344 transform_later(contention_true);
duke@435 1345 // If contention, loopback and try again.
phh@2423 1346 contended_region->init_req(contended_loopback_path, contention_true);
phh@2423 1347 contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
duke@435 1348
duke@435 1349 // Fast-path succeeded with no contention!
kvn@4115 1350 Node *contention_false = new (C) IfFalseNode(contention_iff);
duke@435 1351 transform_later(contention_false);
duke@435 1352 fast_oop_ctrl = contention_false;
phh@2423 1353
phh@2423 1354 // Bump total allocated bytes for this thread
kvn@4115 1355 Node* thread = new (C) ThreadLocalNode();
phh@2423 1356 transform_later(thread);
phh@2423 1357 Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
phh@2423 1358 in_bytes(JavaThread::allocated_bytes_offset()));
phh@2423 1359 Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
phh@2423 1360 0, TypeLong::LONG, T_LONG);
phh@2423 1361 #ifdef _LP64
phh@2423 1362 Node* alloc_size = size_in_bytes;
phh@2423 1363 #else
kvn@4115 1364 Node* alloc_size = new (C) ConvI2LNode(size_in_bytes);
phh@2423 1365 transform_later(alloc_size);
phh@2423 1366 #endif
kvn@4115 1367 Node* new_alloc_bytes = new (C) AddLNode(alloc_bytes, alloc_size);
phh@2423 1368 transform_later(new_alloc_bytes);
phh@2423 1369 fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
phh@2423 1370 0, new_alloc_bytes, T_LONG);
duke@435 1371 }
duke@435 1372
roland@3392 1373 InitializeNode* init = alloc->initialization();
duke@435 1374 fast_oop_rawmem = initialize_object(alloc,
duke@435 1375 fast_oop_ctrl, fast_oop_rawmem, fast_oop,
duke@435 1376 klass_node, length, size_in_bytes);
duke@435 1377
roland@3392 1378 // If initialization is performed by an array copy, any required
roland@3392 1379 // MemBarStoreStore was already added. If the object does not
roland@3392 1380 // escape no need for a MemBarStoreStore. Otherwise we need a
roland@3392 1381 // MemBarStoreStore so that stores that initialize this object
roland@3392 1382 // can't be reordered with a subsequent store that makes this
roland@3392 1383 // object accessible by other threads.
roland@3392 1384 if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
roland@3392 1385 if (init == NULL || init->req() < InitializeNode::RawStores) {
roland@3392 1386 // No InitializeNode or no stores captured by zeroing
roland@3392 1387 // elimination. Simply add the MemBarStoreStore after object
roland@3392 1388 // initialization.
roland@4694 1389 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
roland@3392 1390 transform_later(mb);
roland@3392 1391
roland@3392 1392 mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
roland@3392 1393 mb->init_req(TypeFunc::Control, fast_oop_ctrl);
kvn@4115 1394 fast_oop_ctrl = new (C) ProjNode(mb,TypeFunc::Control);
roland@3392 1395 transform_later(fast_oop_ctrl);
kvn@4115 1396 fast_oop_rawmem = new (C) ProjNode(mb,TypeFunc::Memory);
roland@3392 1397 transform_later(fast_oop_rawmem);
roland@3392 1398 } else {
roland@3392 1399 // Add the MemBarStoreStore after the InitializeNode so that
roland@3392 1400 // all stores performing the initialization that were moved
roland@3392 1401 // before the InitializeNode happen before the storestore
roland@3392 1402 // barrier.
roland@3392 1403
roland@3392 1404 Node* init_ctrl = init->proj_out(TypeFunc::Control);
roland@3392 1405 Node* init_mem = init->proj_out(TypeFunc::Memory);
roland@3392 1406
roland@3392 1407 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
roland@3392 1408 transform_later(mb);
roland@3392 1409
kvn@4115 1410 Node* ctrl = new (C) ProjNode(init,TypeFunc::Control);
roland@3392 1411 transform_later(ctrl);
kvn@4115 1412 Node* mem = new (C) ProjNode(init,TypeFunc::Memory);
roland@3392 1413 transform_later(mem);
roland@3392 1414
roland@3392 1415 // The MemBarStoreStore depends on control and memory coming
roland@3392 1416 // from the InitializeNode
roland@3392 1417 mb->init_req(TypeFunc::Memory, mem);
roland@3392 1418 mb->init_req(TypeFunc::Control, ctrl);
roland@3392 1419
kvn@4115 1420 ctrl = new (C) ProjNode(mb,TypeFunc::Control);
roland@3392 1421 transform_later(ctrl);
kvn@4115 1422 mem = new (C) ProjNode(mb,TypeFunc::Memory);
roland@3392 1423 transform_later(mem);
roland@3392 1424
roland@3392 1425 // All nodes that depended on the InitializeNode for control
roland@3392 1426 // and memory must now depend on the MemBarNode that itself
roland@3392 1427 // depends on the InitializeNode
roland@3392 1428 _igvn.replace_node(init_ctrl, ctrl);
roland@3392 1429 _igvn.replace_node(init_mem, mem);
roland@3392 1430 }
roland@3392 1431 }
roland@3392 1432
kvn@1215 1433 if (C->env()->dtrace_extended_probes()) {
duke@435 1434 // Slow-path call
duke@435 1435 int size = TypeFunc::Parms + 2;
kvn@4115 1436 CallLeafNode *call = new (C) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
kvn@4115 1437 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
kvn@4115 1438 "dtrace_object_alloc",
kvn@4115 1439 TypeRawPtr::BOTTOM);
duke@435 1440
duke@435 1441 // Get base of thread-local storage area
kvn@4115 1442 Node* thread = new (C) ThreadLocalNode();
duke@435 1443 transform_later(thread);
duke@435 1444
duke@435 1445 call->init_req(TypeFunc::Parms+0, thread);
duke@435 1446 call->init_req(TypeFunc::Parms+1, fast_oop);
phh@2423 1447 call->init_req(TypeFunc::Control, fast_oop_ctrl);
phh@2423 1448 call->init_req(TypeFunc::I_O , top()); // does no i/o
phh@2423 1449 call->init_req(TypeFunc::Memory , fast_oop_rawmem);
phh@2423 1450 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
phh@2423 1451 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
duke@435 1452 transform_later(call);
kvn@4115 1453 fast_oop_ctrl = new (C) ProjNode(call,TypeFunc::Control);
duke@435 1454 transform_later(fast_oop_ctrl);
kvn@4115 1455 fast_oop_rawmem = new (C) ProjNode(call,TypeFunc::Memory);
duke@435 1456 transform_later(fast_oop_rawmem);
duke@435 1457 }
duke@435 1458
duke@435 1459 // Plug in the successful fast-path into the result merge point
phh@2423 1460 result_region ->init_req(fast_result_path, fast_oop_ctrl);
phh@2423 1461 result_phi_rawoop->init_req(fast_result_path, fast_oop);
phh@2423 1462 result_phi_i_o ->init_req(fast_result_path, i_o);
phh@2423 1463 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
duke@435 1464 } else {
duke@435 1465 slow_region = ctrl;
kvn@3396 1466 result_phi_i_o = i_o; // Rename it to use in the following code.
duke@435 1467 }
duke@435 1468
duke@435 1469 // Generate slow-path call
kvn@4115 1470 CallNode *call = new (C) CallStaticJavaNode(slow_call_type, slow_call_address,
kvn@4115 1471 OptoRuntime::stub_name(slow_call_address),
kvn@4115 1472 alloc->jvms()->bci(),
kvn@4115 1473 TypePtr::BOTTOM);
duke@435 1474 call->init_req( TypeFunc::Control, slow_region );
duke@435 1475 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1476 call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
duke@435 1477 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1478 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1479
duke@435 1480 call->init_req(TypeFunc::Parms+0, klass_node);
duke@435 1481 if (length != NULL) {
duke@435 1482 call->init_req(TypeFunc::Parms+1, length);
duke@435 1483 }
duke@435 1484
duke@435 1485 // Copy debug information and adjust JVMState information, then replace
duke@435 1486 // allocate node with the call
duke@435 1487 copy_call_debug_info((CallNode *) alloc, call);
duke@435 1488 if (!always_slow) {
duke@435 1489 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
kvn@3396 1490 } else {
kvn@3396 1491 // Hook i_o projection to avoid its elimination during allocation
kvn@3396 1492 // replacement (when only a slow call is generated).
kvn@3396 1493 call->set_req(TypeFunc::I_O, result_phi_i_o);
duke@435 1494 }
kvn@1976 1495 _igvn.replace_node(alloc, call);
duke@435 1496 transform_later(call);
duke@435 1497
duke@435 1498 // Identify the output projections from the allocate node and
duke@435 1499 // adjust any references to them.
duke@435 1500 // The control and io projections look like:
duke@435 1501 //
duke@435 1502 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl)
duke@435 1503 // Allocate Catch
duke@435 1504 // ^---Proj(io) <-------+ ^---CatchProj(io)
duke@435 1505 //
duke@435 1506 // We are interested in the CatchProj nodes.
duke@435 1507 //
duke@435 1508 extract_call_projections(call);
duke@435 1509
kvn@3396 1510 // An allocate node has separate memory projections for the uses on
kvn@3396 1511 // the control and i_o paths. Replace the control memory projection with
kvn@3396 1512 // result_phi_rawmem (unless we are only generating a slow call when
kvn@3396 1513 // both memory projections are combined)
duke@435 1514 if (!always_slow && _memproj_fallthrough != NULL) {
duke@435 1515 for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1516 Node *use = _memproj_fallthrough->fast_out(i);
kvn@3847 1517 _igvn.rehash_node_delayed(use);
duke@435 1518 imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
duke@435 1519 // back up iterator
duke@435 1520 --i;
duke@435 1521 }
duke@435 1522 }
kvn@3396 1523 // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
kvn@3396 1524 // _memproj_catchall so we end up with a call that has only 1 memory projection.
duke@435 1525 if (_memproj_catchall != NULL ) {
duke@435 1526 if (_memproj_fallthrough == NULL) {
kvn@4115 1527 _memproj_fallthrough = new (C) ProjNode(call, TypeFunc::Memory);
duke@435 1528 transform_later(_memproj_fallthrough);
duke@435 1529 }
duke@435 1530 for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1531 Node *use = _memproj_catchall->fast_out(i);
kvn@3847 1532 _igvn.rehash_node_delayed(use);
duke@435 1533 imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
duke@435 1534 // back up iterator
duke@435 1535 --i;
duke@435 1536 }
kvn@3396 1537 assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
kvn@3396 1538 _igvn.remove_dead_node(_memproj_catchall);
duke@435 1539 }
duke@435 1540
kvn@3396 1541 // An allocate node has separate i_o projections for the uses on the control
kvn@3396 1542 // and i_o paths. Always replace the control i_o projection with result i_o
kvn@3396 1543 // otherwise incoming i_o become dead when only a slow call is generated
kvn@3396 1544 // (it is different from memory projections where both projections are
kvn@3396 1545 // combined in such case).
kvn@3396 1546 if (_ioproj_fallthrough != NULL) {
duke@435 1547 for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1548 Node *use = _ioproj_fallthrough->fast_out(i);
kvn@3847 1549 _igvn.rehash_node_delayed(use);
duke@435 1550 imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
duke@435 1551 // back up iterator
duke@435 1552 --i;
duke@435 1553 }
duke@435 1554 }
kvn@3396 1555 // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
kvn@3396 1556 // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
duke@435 1557 if (_ioproj_catchall != NULL ) {
kvn@3396 1558 if (_ioproj_fallthrough == NULL) {
kvn@4115 1559 _ioproj_fallthrough = new (C) ProjNode(call, TypeFunc::I_O);
kvn@3396 1560 transform_later(_ioproj_fallthrough);
kvn@3396 1561 }
duke@435 1562 for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1563 Node *use = _ioproj_catchall->fast_out(i);
kvn@3847 1564 _igvn.rehash_node_delayed(use);
duke@435 1565 imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
duke@435 1566 // back up iterator
duke@435 1567 --i;
duke@435 1568 }
kvn@3396 1569 assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
kvn@3396 1570 _igvn.remove_dead_node(_ioproj_catchall);
duke@435 1571 }
duke@435 1572
duke@435 1573 // if we generated only a slow call, we are done
kvn@3396 1574 if (always_slow) {
kvn@3396 1575 // Now we can unhook i_o.
kvn@3398 1576 if (result_phi_i_o->outcnt() > 1) {
kvn@3398 1577 call->set_req(TypeFunc::I_O, top());
kvn@3398 1578 } else {
kvn@3398 1579 assert(result_phi_i_o->unique_ctrl_out() == call, "");
kvn@3398 1580 // Case of new array with negative size known during compilation.
kvn@3398 1581 // AllocateArrayNode::Ideal() optimization disconnect unreachable
kvn@3398 1582 // following code since call to runtime will throw exception.
kvn@3398 1583 // As result there will be no users of i_o after the call.
kvn@3398 1584 // Leave i_o attached to this call to avoid problems in preceding graph.
kvn@3398 1585 }
duke@435 1586 return;
kvn@3396 1587 }
duke@435 1588
duke@435 1589
duke@435 1590 if (_fallthroughcatchproj != NULL) {
duke@435 1591 ctrl = _fallthroughcatchproj->clone();
duke@435 1592 transform_later(ctrl);
kvn@1143 1593 _igvn.replace_node(_fallthroughcatchproj, result_region);
duke@435 1594 } else {
duke@435 1595 ctrl = top();
duke@435 1596 }
duke@435 1597 Node *slow_result;
duke@435 1598 if (_resproj == NULL) {
duke@435 1599 // no uses of the allocation result
duke@435 1600 slow_result = top();
duke@435 1601 } else {
duke@435 1602 slow_result = _resproj->clone();
duke@435 1603 transform_later(slow_result);
kvn@1143 1604 _igvn.replace_node(_resproj, result_phi_rawoop);
duke@435 1605 }
duke@435 1606
duke@435 1607 // Plug slow-path into result merge point
duke@435 1608 result_region ->init_req( slow_result_path, ctrl );
duke@435 1609 result_phi_rawoop->init_req( slow_result_path, slow_result);
duke@435 1610 result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
duke@435 1611 transform_later(result_region);
duke@435 1612 transform_later(result_phi_rawoop);
duke@435 1613 transform_later(result_phi_rawmem);
duke@435 1614 transform_later(result_phi_i_o);
duke@435 1615 // This completes all paths into the result merge point
duke@435 1616 }
duke@435 1617
duke@435 1618
duke@435 1619 // Helper for PhaseMacroExpand::expand_allocate_common.
duke@435 1620 // Initializes the newly-allocated storage.
duke@435 1621 Node*
duke@435 1622 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
duke@435 1623 Node* control, Node* rawmem, Node* object,
duke@435 1624 Node* klass_node, Node* length,
duke@435 1625 Node* size_in_bytes) {
duke@435 1626 InitializeNode* init = alloc->initialization();
duke@435 1627 // Store the klass & mark bits
duke@435 1628 Node* mark_node = NULL;
duke@435 1629 // For now only enable fast locking for non-array types
duke@435 1630 if (UseBiasedLocking && (length == NULL)) {
stefank@3391 1631 mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 1632 } else {
duke@435 1633 mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
duke@435 1634 }
duke@435 1635 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
coleenp@548 1636
coleenp@4037 1637 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
duke@435 1638 int header_size = alloc->minimum_header_size(); // conservatively small
duke@435 1639
duke@435 1640 // Array length
duke@435 1641 if (length != NULL) { // Arrays need length field
duke@435 1642 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
duke@435 1643 // conservatively small header size:
coleenp@548 1644 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1645 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
duke@435 1646 if (k->is_array_klass()) // we know the exact header size in most cases:
duke@435 1647 header_size = Klass::layout_helper_header_size(k->layout_helper());
duke@435 1648 }
duke@435 1649
duke@435 1650 // Clear the object body, if necessary.
duke@435 1651 if (init == NULL) {
duke@435 1652 // The init has somehow disappeared; be cautious and clear everything.
duke@435 1653 //
duke@435 1654 // This can happen if a node is allocated but an uncommon trap occurs
duke@435 1655 // immediately. In this case, the Initialize gets associated with the
duke@435 1656 // trap, and may be placed in a different (outer) loop, if the Allocate
duke@435 1657 // is in a loop. If (this is rare) the inner loop gets unrolled, then
duke@435 1658 // there can be two Allocates to one Initialize. The answer in all these
duke@435 1659 // edge cases is safety first. It is always safe to clear immediately
duke@435 1660 // within an Allocate, and then (maybe or maybe not) clear some more later.
duke@435 1661 if (!ZeroTLAB)
duke@435 1662 rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
duke@435 1663 header_size, size_in_bytes,
duke@435 1664 &_igvn);
duke@435 1665 } else {
duke@435 1666 if (!init->is_complete()) {
duke@435 1667 // Try to win by zeroing only what the init does not store.
duke@435 1668 // We can also try to do some peephole optimizations,
duke@435 1669 // such as combining some adjacent subword stores.
duke@435 1670 rawmem = init->complete_stores(control, rawmem, object,
duke@435 1671 header_size, size_in_bytes, &_igvn);
duke@435 1672 }
duke@435 1673 // We have no more use for this link, since the AllocateNode goes away:
duke@435 1674 init->set_req(InitializeNode::RawAddress, top());
duke@435 1675 // (If we keep the link, it just confuses the register allocator,
duke@435 1676 // who thinks he sees a real use of the address by the membar.)
duke@435 1677 }
duke@435 1678
duke@435 1679 return rawmem;
duke@435 1680 }
duke@435 1681
duke@435 1682 // Generate prefetch instructions for next allocations.
duke@435 1683 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
duke@435 1684 Node*& contended_phi_rawmem,
duke@435 1685 Node* old_eden_top, Node* new_eden_top,
duke@435 1686 Node* length) {
kvn@1802 1687 enum { fall_in_path = 1, pf_path = 2 };
duke@435 1688 if( UseTLAB && AllocatePrefetchStyle == 2 ) {
duke@435 1689 // Generate prefetch allocation with watermark check.
duke@435 1690 // As an allocation hits the watermark, we will prefetch starting
duke@435 1691 // at a "distance" away from watermark.
duke@435 1692
kvn@4115 1693 Node *pf_region = new (C) RegionNode(3);
kvn@4115 1694 Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
duke@435 1695 TypeRawPtr::BOTTOM );
duke@435 1696 // I/O is used for Prefetch
kvn@4115 1697 Node *pf_phi_abio = new (C) PhiNode( pf_region, Type::ABIO );
duke@435 1698
kvn@4115 1699 Node *thread = new (C) ThreadLocalNode();
duke@435 1700 transform_later(thread);
duke@435 1701
kvn@4115 1702 Node *eden_pf_adr = new (C) AddPNode( top()/*not oop*/, thread,
duke@435 1703 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
duke@435 1704 transform_later(eden_pf_adr);
duke@435 1705
goetz@6479 1706 Node *old_pf_wm = new (C) LoadPNode(needgc_false,
duke@435 1707 contended_phi_rawmem, eden_pf_adr,
goetz@6479 1708 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
goetz@6479 1709 MemNode::unordered);
duke@435 1710 transform_later(old_pf_wm);
duke@435 1711
duke@435 1712 // check against new_eden_top
kvn@4115 1713 Node *need_pf_cmp = new (C) CmpPNode( new_eden_top, old_pf_wm );
duke@435 1714 transform_later(need_pf_cmp);
kvn@4115 1715 Node *need_pf_bol = new (C) BoolNode( need_pf_cmp, BoolTest::ge );
duke@435 1716 transform_later(need_pf_bol);
kvn@4115 1717 IfNode *need_pf_iff = new (C) IfNode( needgc_false, need_pf_bol,
duke@435 1718 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1719 transform_later(need_pf_iff);
duke@435 1720
duke@435 1721 // true node, add prefetchdistance
kvn@4115 1722 Node *need_pf_true = new (C) IfTrueNode( need_pf_iff );
duke@435 1723 transform_later(need_pf_true);
duke@435 1724
kvn@4115 1725 Node *need_pf_false = new (C) IfFalseNode( need_pf_iff );
duke@435 1726 transform_later(need_pf_false);
duke@435 1727
kvn@4115 1728 Node *new_pf_wmt = new (C) AddPNode( top(), old_pf_wm,
duke@435 1729 _igvn.MakeConX(AllocatePrefetchDistance) );
duke@435 1730 transform_later(new_pf_wmt );
duke@435 1731 new_pf_wmt->set_req(0, need_pf_true);
duke@435 1732
goetz@6479 1733 Node *store_new_wmt = new (C) StorePNode(need_pf_true,
duke@435 1734 contended_phi_rawmem, eden_pf_adr,
goetz@6479 1735 TypeRawPtr::BOTTOM, new_pf_wmt,
goetz@6479 1736 MemNode::unordered);
duke@435 1737 transform_later(store_new_wmt);
duke@435 1738
duke@435 1739 // adding prefetches
duke@435 1740 pf_phi_abio->init_req( fall_in_path, i_o );
duke@435 1741
duke@435 1742 Node *prefetch_adr;
duke@435 1743 Node *prefetch;
duke@435 1744 uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
duke@435 1745 uint step_size = AllocatePrefetchStepSize;
duke@435 1746 uint distance = 0;
duke@435 1747
duke@435 1748 for ( uint i = 0; i < lines; i++ ) {
kvn@4115 1749 prefetch_adr = new (C) AddPNode( old_pf_wm, new_pf_wmt,
duke@435 1750 _igvn.MakeConX(distance) );
duke@435 1751 transform_later(prefetch_adr);
kvn@4115 1752 prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
duke@435 1753 transform_later(prefetch);
duke@435 1754 distance += step_size;
duke@435 1755 i_o = prefetch;
duke@435 1756 }
duke@435 1757 pf_phi_abio->set_req( pf_path, i_o );
duke@435 1758
duke@435 1759 pf_region->init_req( fall_in_path, need_pf_false );
duke@435 1760 pf_region->init_req( pf_path, need_pf_true );
duke@435 1761
duke@435 1762 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
duke@435 1763 pf_phi_rawmem->init_req( pf_path, store_new_wmt );
duke@435 1764
duke@435 1765 transform_later(pf_region);
duke@435 1766 transform_later(pf_phi_rawmem);
duke@435 1767 transform_later(pf_phi_abio);
duke@435 1768
duke@435 1769 needgc_false = pf_region;
duke@435 1770 contended_phi_rawmem = pf_phi_rawmem;
duke@435 1771 i_o = pf_phi_abio;
kvn@1802 1772 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
kvn@3052 1773 // Insert a prefetch for each allocation.
kvn@3052 1774 // This code is used for Sparc with BIS.
kvn@4115 1775 Node *pf_region = new (C) RegionNode(3);
kvn@4115 1776 Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
kvn@4115 1777 TypeRawPtr::BOTTOM );
kvn@1802 1778
kvn@3052 1779 // Generate several prefetch instructions.
kvn@3052 1780 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
kvn@1802 1781 uint step_size = AllocatePrefetchStepSize;
kvn@1802 1782 uint distance = AllocatePrefetchDistance;
kvn@1802 1783
kvn@1802 1784 // Next cache address.
kvn@4115 1785 Node *cache_adr = new (C) AddPNode(old_eden_top, old_eden_top,
kvn@1802 1786 _igvn.MakeConX(distance));
kvn@1802 1787 transform_later(cache_adr);
kvn@4115 1788 cache_adr = new (C) CastP2XNode(needgc_false, cache_adr);
kvn@1802 1789 transform_later(cache_adr);
kvn@1802 1790 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
kvn@4115 1791 cache_adr = new (C) AndXNode(cache_adr, mask);
kvn@1802 1792 transform_later(cache_adr);
kvn@4115 1793 cache_adr = new (C) CastX2PNode(cache_adr);
kvn@1802 1794 transform_later(cache_adr);
kvn@1802 1795
kvn@1802 1796 // Prefetch
kvn@4115 1797 Node *prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
kvn@1802 1798 prefetch->set_req(0, needgc_false);
kvn@1802 1799 transform_later(prefetch);
kvn@1802 1800 contended_phi_rawmem = prefetch;
kvn@1802 1801 Node *prefetch_adr;
kvn@1802 1802 distance = step_size;
kvn@1802 1803 for ( uint i = 1; i < lines; i++ ) {
kvn@4115 1804 prefetch_adr = new (C) AddPNode( cache_adr, cache_adr,
kvn@1802 1805 _igvn.MakeConX(distance) );
kvn@1802 1806 transform_later(prefetch_adr);
kvn@4115 1807 prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
kvn@1802 1808 transform_later(prefetch);
kvn@1802 1809 distance += step_size;
kvn@1802 1810 contended_phi_rawmem = prefetch;
kvn@1802 1811 }
duke@435 1812 } else if( AllocatePrefetchStyle > 0 ) {
duke@435 1813 // Insert a prefetch for each allocation only on the fast-path
duke@435 1814 Node *prefetch_adr;
duke@435 1815 Node *prefetch;
kvn@3052 1816 // Generate several prefetch instructions.
kvn@3052 1817 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
duke@435 1818 uint step_size = AllocatePrefetchStepSize;
duke@435 1819 uint distance = AllocatePrefetchDistance;
duke@435 1820 for ( uint i = 0; i < lines; i++ ) {
kvn@4115 1821 prefetch_adr = new (C) AddPNode( old_eden_top, new_eden_top,
duke@435 1822 _igvn.MakeConX(distance) );
duke@435 1823 transform_later(prefetch_adr);
kvn@4115 1824 prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
duke@435 1825 // Do not let it float too high, since if eden_top == eden_end,
duke@435 1826 // both might be null.
duke@435 1827 if( i == 0 ) { // Set control for first prefetch, next follows it
duke@435 1828 prefetch->init_req(0, needgc_false);
duke@435 1829 }
duke@435 1830 transform_later(prefetch);
duke@435 1831 distance += step_size;
duke@435 1832 i_o = prefetch;
duke@435 1833 }
duke@435 1834 }
duke@435 1835 return i_o;
duke@435 1836 }
duke@435 1837
duke@435 1838
duke@435 1839 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
duke@435 1840 expand_allocate_common(alloc, NULL,
duke@435 1841 OptoRuntime::new_instance_Type(),
duke@435 1842 OptoRuntime::new_instance_Java());
duke@435 1843 }
duke@435 1844
duke@435 1845 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
duke@435 1846 Node* length = alloc->in(AllocateNode::ALength);
kvn@3157 1847 InitializeNode* init = alloc->initialization();
kvn@3157 1848 Node* klass_node = alloc->in(AllocateNode::KlassNode);
kvn@3157 1849 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
kvn@3157 1850 address slow_call_address; // Address of slow call
kvn@3157 1851 if (init != NULL && init->is_complete_with_arraycopy() &&
kvn@3157 1852 k->is_type_array_klass()) {
kvn@3157 1853 // Don't zero type array during slow allocation in VM since
kvn@3157 1854 // it will be initialized later by arraycopy in compiled code.
kvn@3157 1855 slow_call_address = OptoRuntime::new_array_nozero_Java();
kvn@3157 1856 } else {
kvn@3157 1857 slow_call_address = OptoRuntime::new_array_Java();
kvn@3157 1858 }
duke@435 1859 expand_allocate_common(alloc, length,
duke@435 1860 OptoRuntime::new_array_Type(),
kvn@3157 1861 slow_call_address);
duke@435 1862 }
duke@435 1863
kvn@3406 1864 //-------------------mark_eliminated_box----------------------------------
kvn@3406 1865 //
kvn@2951 1866 // During EA obj may point to several objects but after few ideal graph
kvn@2951 1867 // transformations (CCP) it may point to only one non escaping object
kvn@2951 1868 // (but still using phi), corresponding locks and unlocks will be marked
kvn@2951 1869 // for elimination. Later obj could be replaced with a new node (new phi)
kvn@2951 1870 // and which does not have escape information. And later after some graph
kvn@2951 1871 // reshape other locks and unlocks (which were not marked for elimination
kvn@2951 1872 // before) are connected to this new obj (phi) but they still will not be
kvn@2951 1873 // marked for elimination since new obj has no escape information.
kvn@2951 1874 // Mark all associated (same box and obj) lock and unlock nodes for
kvn@2951 1875 // elimination if some of them marked already.
kvn@3406 1876 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
kvn@3421 1877 if (oldbox->as_BoxLock()->is_eliminated())
kvn@3421 1878 return; // This BoxLock node was processed already.
kvn@3406 1879
kvn@3421 1880 // New implementation (EliminateNestedLocks) has separate BoxLock
kvn@3421 1881 // node for each locked region so mark all associated locks/unlocks as
kvn@3421 1882 // eliminated even if different objects are referenced in one locked region
kvn@3421 1883 // (for example, OSR compilation of nested loop inside locked scope).
kvn@3421 1884 if (EliminateNestedLocks ||
kvn@3406 1885 oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
kvn@3406 1886 // Box is used only in one lock region. Mark this box as eliminated.
kvn@3406 1887 _igvn.hash_delete(oldbox);
kvn@3406 1888 oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
kvn@3406 1889 _igvn.hash_insert(oldbox);
kvn@3406 1890
kvn@3406 1891 for (uint i = 0; i < oldbox->outcnt(); i++) {
kvn@3406 1892 Node* u = oldbox->raw_out(i);
kvn@3406 1893 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
kvn@3406 1894 AbstractLockNode* alock = u->as_AbstractLock();
kvn@3406 1895 // Check lock's box since box could be referenced by Lock's debug info.
kvn@3406 1896 if (alock->box_node() == oldbox) {
kvn@3406 1897 // Mark eliminated all related locks and unlocks.
kvn@3406 1898 alock->set_non_esc_obj();
kvn@3406 1899 }
kvn@3406 1900 }
kvn@3406 1901 }
kvn@2951 1902 return;
kvn@501 1903 }
kvn@3406 1904
kvn@3406 1905 // Create new "eliminated" BoxLock node and use it in monitor debug info
kvn@3406 1906 // instead of oldbox for the same object.
kvn@3419 1907 BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
kvn@3406 1908
kvn@3406 1909 // Note: BoxLock node is marked eliminated only here and it is used
kvn@3406 1910 // to indicate that all associated lock and unlock nodes are marked
kvn@3406 1911 // for elimination.
kvn@3406 1912 newbox->set_eliminated();
kvn@3406 1913 transform_later(newbox);
kvn@3406 1914
kvn@3406 1915 // Replace old box node with new box for all users of the same object.
kvn@3406 1916 for (uint i = 0; i < oldbox->outcnt();) {
kvn@3406 1917 bool next_edge = true;
kvn@3406 1918
kvn@3406 1919 Node* u = oldbox->raw_out(i);
kvn@3406 1920 if (u->is_AbstractLock()) {
kvn@3406 1921 AbstractLockNode* alock = u->as_AbstractLock();
kvn@3407 1922 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
kvn@3406 1923 // Replace Box and mark eliminated all related locks and unlocks.
kvn@3406 1924 alock->set_non_esc_obj();
kvn@3847 1925 _igvn.rehash_node_delayed(alock);
kvn@3406 1926 alock->set_box_node(newbox);
kvn@3406 1927 next_edge = false;
kvn@3406 1928 }
kvn@3406 1929 }
kvn@3407 1930 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
kvn@3406 1931 FastLockNode* flock = u->as_FastLock();
kvn@3406 1932 assert(flock->box_node() == oldbox, "sanity");
kvn@3847 1933 _igvn.rehash_node_delayed(flock);
kvn@3406 1934 flock->set_box_node(newbox);
kvn@3406 1935 next_edge = false;
kvn@3406 1936 }
kvn@3406 1937
kvn@3406 1938 // Replace old box in monitor debug info.
kvn@3406 1939 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
kvn@3406 1940 SafePointNode* sfn = u->as_SafePoint();
kvn@3406 1941 JVMState* youngest_jvms = sfn->jvms();
kvn@3406 1942 int max_depth = youngest_jvms->depth();
kvn@3406 1943 for (int depth = 1; depth <= max_depth; depth++) {
kvn@3406 1944 JVMState* jvms = youngest_jvms->of_depth(depth);
kvn@3406 1945 int num_mon = jvms->nof_monitors();
kvn@3406 1946 // Loop over monitors
kvn@3406 1947 for (int idx = 0; idx < num_mon; idx++) {
kvn@3406 1948 Node* obj_node = sfn->monitor_obj(jvms, idx);
kvn@3406 1949 Node* box_node = sfn->monitor_box(jvms, idx);
kvn@3407 1950 if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
kvn@3406 1951 int j = jvms->monitor_box_offset(idx);
kvn@3847 1952 _igvn.replace_input_of(u, j, newbox);
kvn@3406 1953 next_edge = false;
kvn@3406 1954 }
kvn@3406 1955 }
kvn@3406 1956 }
kvn@3406 1957 }
kvn@3406 1958 if (next_edge) i++;
kvn@3406 1959 }
kvn@3406 1960 }
kvn@3406 1961
kvn@3406 1962 //-----------------------mark_eliminated_locking_nodes-----------------------
kvn@3406 1963 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
kvn@3406 1964 if (EliminateNestedLocks) {
kvn@3406 1965 if (alock->is_nested()) {
kvn@3406 1966 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
kvn@3406 1967 return;
kvn@3406 1968 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
kvn@3406 1969 // Only Lock node has JVMState needed here.
kvn@3406 1970 if (alock->jvms() != NULL && alock->as_Lock()->is_nested_lock_region()) {
kvn@3406 1971 // Mark eliminated related nested locks and unlocks.
kvn@3406 1972 Node* obj = alock->obj_node();
kvn@3406 1973 BoxLockNode* box_node = alock->box_node()->as_BoxLock();
kvn@3406 1974 assert(!box_node->is_eliminated(), "should not be marked yet");
kvn@2951 1975 // Note: BoxLock node is marked eliminated only here
kvn@2951 1976 // and it is used to indicate that all associated lock
kvn@2951 1977 // and unlock nodes are marked for elimination.
kvn@3406 1978 box_node->set_eliminated(); // Box's hash is always NO_HASH here
kvn@3406 1979 for (uint i = 0; i < box_node->outcnt(); i++) {
kvn@3406 1980 Node* u = box_node->raw_out(i);
kvn@3406 1981 if (u->is_AbstractLock()) {
kvn@3406 1982 alock = u->as_AbstractLock();
kvn@3406 1983 if (alock->box_node() == box_node) {
kvn@3406 1984 // Verify that this Box is referenced only by related locks.
kvn@3407 1985 assert(alock->obj_node()->eqv_uncast(obj), "");
kvn@3406 1986 // Mark all related locks and unlocks.
kvn@3406 1987 alock->set_nested();
kvn@3406 1988 }
kvn@3406 1989 }
kvn@3406 1990 }
kvn@3406 1991 }
kvn@3406 1992 return;
kvn@3406 1993 }
kvn@3406 1994 // Process locks for non escaping object
kvn@3406 1995 assert(alock->is_non_esc_obj(), "");
kvn@3406 1996 } // EliminateNestedLocks
kvn@895 1997
kvn@3406 1998 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
kvn@3406 1999 // Look for all locks of this object and mark them and
kvn@3406 2000 // corresponding BoxLock nodes as eliminated.
kvn@3406 2001 Node* obj = alock->obj_node();
kvn@3406 2002 for (uint j = 0; j < obj->outcnt(); j++) {
kvn@3406 2003 Node* o = obj->raw_out(j);
kvn@3407 2004 if (o->is_AbstractLock() &&
kvn@3407 2005 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
kvn@3406 2006 alock = o->as_AbstractLock();
kvn@3406 2007 Node* box = alock->box_node();
kvn@3406 2008 // Replace old box node with new eliminated box for all users
kvn@3406 2009 // of the same object and mark related locks as eliminated.
kvn@3406 2010 mark_eliminated_box(box, obj);
kvn@3406 2011 }
kvn@3406 2012 }
kvn@3406 2013 }
kvn@2951 2014 }
kvn@501 2015
kvn@2951 2016 // we have determined that this lock/unlock can be eliminated, we simply
kvn@2951 2017 // eliminate the node without expanding it.
kvn@2951 2018 //
kvn@2951 2019 // Note: The membar's associated with the lock/unlock are currently not
kvn@2951 2020 // eliminated. This should be investigated as a future enhancement.
kvn@2951 2021 //
kvn@2951 2022 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
kvn@2951 2023
kvn@2951 2024 if (!alock->is_eliminated()) {
kvn@2951 2025 return false;
kvn@2951 2026 }
kvn@2951 2027 #ifdef ASSERT
kvn@3406 2028 if (!alock->is_coarsened()) {
kvn@2951 2029 // Check that new "eliminated" BoxLock node is created.
kvn@2951 2030 BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
kvn@2951 2031 assert(oldbox->is_eliminated(), "should be done already");
kvn@2951 2032 }
kvn@2951 2033 #endif
never@1515 2034 CompileLog* log = C->log();
never@1515 2035 if (log != NULL) {
never@1515 2036 log->head("eliminate_lock lock='%d'",
never@1515 2037 alock->is_Lock());
never@1515 2038 JVMState* p = alock->jvms();
never@1515 2039 while (p != NULL) {
never@1515 2040 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 2041 p = p->caller();
never@1515 2042 }
never@1515 2043 log->tail("eliminate_lock");
never@1515 2044 }
never@1515 2045
kvn@501 2046 #ifndef PRODUCT
kvn@501 2047 if (PrintEliminateLocks) {
kvn@501 2048 if (alock->is_Lock()) {
kvn@3311 2049 tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
kvn@501 2050 } else {
kvn@3311 2051 tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
kvn@501 2052 }
kvn@501 2053 }
kvn@501 2054 #endif
kvn@501 2055
kvn@501 2056 Node* mem = alock->in(TypeFunc::Memory);
kvn@501 2057 Node* ctrl = alock->in(TypeFunc::Control);
kvn@501 2058
kvn@501 2059 extract_call_projections(alock);
kvn@501 2060 // There are 2 projections from the lock. The lock node will
kvn@501 2061 // be deleted when its last use is subsumed below.
kvn@501 2062 assert(alock->outcnt() == 2 &&
kvn@501 2063 _fallthroughproj != NULL &&
kvn@501 2064 _memproj_fallthrough != NULL,
kvn@501 2065 "Unexpected projections from Lock/Unlock");
kvn@501 2066
kvn@501 2067 Node* fallthroughproj = _fallthroughproj;
kvn@501 2068 Node* memproj_fallthrough = _memproj_fallthrough;
duke@435 2069
duke@435 2070 // The memory projection from a lock/unlock is RawMem
duke@435 2071 // The input to a Lock is merged memory, so extract its RawMem input
duke@435 2072 // (unless the MergeMem has been optimized away.)
duke@435 2073 if (alock->is_Lock()) {
roland@3047 2074 // Seach for MemBarAcquireLock node and delete it also.
kvn@501 2075 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
roland@3047 2076 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
kvn@501 2077 Node* ctrlproj = membar->proj_out(TypeFunc::Control);
kvn@501 2078 Node* memproj = membar->proj_out(TypeFunc::Memory);
kvn@1143 2079 _igvn.replace_node(ctrlproj, fallthroughproj);
kvn@1143 2080 _igvn.replace_node(memproj, memproj_fallthrough);
kvn@895 2081
kvn@895 2082 // Delete FastLock node also if this Lock node is unique user
kvn@895 2083 // (a loop peeling may clone a Lock node).
kvn@895 2084 Node* flock = alock->as_Lock()->fastlock_node();
kvn@895 2085 if (flock->outcnt() == 1) {
kvn@895 2086 assert(flock->unique_out() == alock, "sanity");
kvn@1143 2087 _igvn.replace_node(flock, top());
kvn@895 2088 }
duke@435 2089 }
duke@435 2090
roland@3047 2091 // Seach for MemBarReleaseLock node and delete it also.
kvn@501 2092 if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
kvn@501 2093 ctrl->in(0)->is_MemBar()) {
kvn@501 2094 MemBarNode* membar = ctrl->in(0)->as_MemBar();
roland@3047 2095 assert(membar->Opcode() == Op_MemBarReleaseLock &&
kvn@501 2096 mem->is_Proj() && membar == mem->in(0), "");
kvn@1143 2097 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 2098 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 2099 fallthroughproj = ctrl;
kvn@501 2100 memproj_fallthrough = mem;
kvn@501 2101 ctrl = membar->in(TypeFunc::Control);
kvn@501 2102 mem = membar->in(TypeFunc::Memory);
kvn@501 2103 }
kvn@501 2104
kvn@1143 2105 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 2106 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 2107 return true;
duke@435 2108 }
duke@435 2109
duke@435 2110
duke@435 2111 //------------------------------expand_lock_node----------------------
duke@435 2112 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
duke@435 2113
duke@435 2114 Node* ctrl = lock->in(TypeFunc::Control);
duke@435 2115 Node* mem = lock->in(TypeFunc::Memory);
duke@435 2116 Node* obj = lock->obj_node();
duke@435 2117 Node* box = lock->box_node();
kvn@501 2118 Node* flock = lock->fastlock_node();
duke@435 2119
kvn@3419 2120 assert(!box->as_BoxLock()->is_eliminated(), "sanity");
kvn@3406 2121
duke@435 2122 // Make the merge point
kvn@855 2123 Node *region;
kvn@855 2124 Node *mem_phi;
kvn@855 2125 Node *slow_path;
duke@435 2126
kvn@855 2127 if (UseOptoBiasInlining) {
kvn@855 2128 /*
twisti@1040 2129 * See the full description in MacroAssembler::biased_locking_enter().
kvn@855 2130 *
kvn@855 2131 * if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
kvn@855 2132 * // The object is biased.
kvn@855 2133 * proto_node = klass->prototype_header;
kvn@855 2134 * o_node = thread | proto_node;
kvn@855 2135 * x_node = o_node ^ mark_word;
kvn@855 2136 * if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
kvn@855 2137 * // Done.
kvn@855 2138 * } else {
kvn@855 2139 * if( (x_node & biased_lock_mask) != 0 ) {
kvn@855 2140 * // The klass's prototype header is no longer biased.
kvn@855 2141 * cas(&mark_word, mark_word, proto_node)
kvn@855 2142 * goto cas_lock;
kvn@855 2143 * } else {
kvn@855 2144 * // The klass's prototype header is still biased.
kvn@855 2145 * if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
kvn@855 2146 * old = mark_word;
kvn@855 2147 * new = o_node;
kvn@855 2148 * } else {
kvn@855 2149 * // Different thread or anonymous biased.
kvn@855 2150 * old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
kvn@855 2151 * new = thread | old;
kvn@855 2152 * }
kvn@855 2153 * // Try to rebias.
kvn@855 2154 * if( cas(&mark_word, old, new) == 0 ) {
kvn@855 2155 * // Done.
kvn@855 2156 * } else {
kvn@855 2157 * goto slow_path; // Failed.
kvn@855 2158 * }
kvn@855 2159 * }
kvn@855 2160 * }
kvn@855 2161 * } else {
kvn@855 2162 * // The object is not biased.
kvn@855 2163 * cas_lock:
kvn@855 2164 * if( FastLock(obj) == 0 ) {
kvn@855 2165 * // Done.
kvn@855 2166 * } else {
kvn@855 2167 * slow_path:
kvn@855 2168 * OptoRuntime::complete_monitor_locking_Java(obj);
kvn@855 2169 * }
kvn@855 2170 * }
kvn@855 2171 */
kvn@855 2172
kvn@4115 2173 region = new (C) RegionNode(5);
kvn@855 2174 // create a Phi for the memory state
kvn@4115 2175 mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2176
kvn@4115 2177 Node* fast_lock_region = new (C) RegionNode(3);
kvn@4115 2178 Node* fast_lock_mem_phi = new (C) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2179
kvn@855 2180 // First, check mark word for the biased lock pattern.
kvn@855 2181 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 2182
kvn@855 2183 // Get fast path - mark word has the biased lock pattern.
kvn@855 2184 ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
kvn@855 2185 markOopDesc::biased_lock_mask_in_place,
kvn@855 2186 markOopDesc::biased_lock_pattern, true);
kvn@855 2187 // fast_lock_region->in(1) is set to slow path.
kvn@855 2188 fast_lock_mem_phi->init_req(1, mem);
kvn@855 2189
kvn@855 2190 // Now check that the lock is biased to the current thread and has
kvn@855 2191 // the same epoch and bias as Klass::_prototype_header.
kvn@855 2192
kvn@855 2193 // Special-case a fresh allocation to avoid building nodes:
kvn@855 2194 Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
kvn@855 2195 if (klass_node == NULL) {
kvn@855 2196 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
zmajo@7341 2197 klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr()));
kvn@925 2198 #ifdef _LP64
ehelin@5694 2199 if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
kvn@925 2200 assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
kvn@925 2201 klass_node->in(1)->init_req(0, ctrl);
kvn@925 2202 } else
kvn@925 2203 #endif
kvn@925 2204 klass_node->init_req(0, ctrl);
kvn@855 2205 }
stefank@3391 2206 Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
kvn@855 2207
kvn@4115 2208 Node* thread = transform_later(new (C) ThreadLocalNode());
kvn@4115 2209 Node* cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
kvn@4115 2210 Node* o_node = transform_later(new (C) OrXNode(cast_thread, proto_node));
kvn@4115 2211 Node* x_node = transform_later(new (C) XorXNode(o_node, mark_node));
kvn@855 2212
kvn@855 2213 // Get slow path - mark word does NOT match the value.
kvn@855 2214 Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node,
kvn@855 2215 (~markOopDesc::age_mask_in_place), 0);
kvn@855 2216 // region->in(3) is set to fast path - the object is biased to the current thread.
kvn@855 2217 mem_phi->init_req(3, mem);
kvn@855 2218
kvn@855 2219
kvn@855 2220 // Mark word does NOT match the value (thread | Klass::_prototype_header).
kvn@855 2221
kvn@855 2222
kvn@855 2223 // First, check biased pattern.
kvn@855 2224 // Get fast path - _prototype_header has the same biased lock pattern.
kvn@855 2225 ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
kvn@855 2226 markOopDesc::biased_lock_mask_in_place, 0, true);
kvn@855 2227
kvn@855 2228 not_biased_ctrl = fast_lock_region->in(2); // Slow path
kvn@855 2229 // fast_lock_region->in(2) - the prototype header is no longer biased
kvn@855 2230 // and we have to revoke the bias on this object.
kvn@855 2231 // We are going to try to reset the mark of this object to the prototype
kvn@855 2232 // value and fall through to the CAS-based locking scheme.
kvn@855 2233 Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@4115 2234 Node* cas = new (C) StoreXConditionalNode(not_biased_ctrl, mem, adr,
kvn@4115 2235 proto_node, mark_node);
kvn@855 2236 transform_later(cas);
kvn@4115 2237 Node* proj = transform_later( new (C) SCMemProjNode(cas));
kvn@855 2238 fast_lock_mem_phi->init_req(2, proj);
kvn@855 2239
kvn@855 2240
kvn@855 2241 // Second, check epoch bits.
kvn@4115 2242 Node* rebiased_region = new (C) RegionNode(3);
kvn@4115 2243 Node* old_phi = new (C) PhiNode( rebiased_region, TypeX_X);
kvn@4115 2244 Node* new_phi = new (C) PhiNode( rebiased_region, TypeX_X);
kvn@855 2245
kvn@855 2246 // Get slow path - mark word does NOT match epoch bits.
kvn@855 2247 Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node,
kvn@855 2248 markOopDesc::epoch_mask_in_place, 0);
kvn@855 2249 // The epoch of the current bias is not valid, attempt to rebias the object
kvn@855 2250 // toward the current thread.
kvn@855 2251 rebiased_region->init_req(2, epoch_ctrl);
kvn@855 2252 old_phi->init_req(2, mark_node);
kvn@855 2253 new_phi->init_req(2, o_node);
kvn@855 2254
kvn@855 2255 // rebiased_region->in(1) is set to fast path.
kvn@855 2256 // The epoch of the current bias is still valid but we know
kvn@855 2257 // nothing about the owner; it might be set or it might be clear.
kvn@855 2258 Node* cmask = MakeConX(markOopDesc::biased_lock_mask_in_place |
kvn@855 2259 markOopDesc::age_mask_in_place |
kvn@855 2260 markOopDesc::epoch_mask_in_place);
kvn@4115 2261 Node* old = transform_later(new (C) AndXNode(mark_node, cmask));
kvn@4115 2262 cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
kvn@4115 2263 Node* new_mark = transform_later(new (C) OrXNode(cast_thread, old));
kvn@855 2264 old_phi->init_req(1, old);
kvn@855 2265 new_phi->init_req(1, new_mark);
kvn@855 2266
kvn@855 2267 transform_later(rebiased_region);
kvn@855 2268 transform_later(old_phi);
kvn@855 2269 transform_later(new_phi);
kvn@855 2270
kvn@855 2271 // Try to acquire the bias of the object using an atomic operation.
kvn@855 2272 // If this fails we will go in to the runtime to revoke the object's bias.
kvn@4115 2273 cas = new (C) StoreXConditionalNode(rebiased_region, mem, adr,
kvn@855 2274 new_phi, old_phi);
kvn@855 2275 transform_later(cas);
kvn@4115 2276 proj = transform_later( new (C) SCMemProjNode(cas));
kvn@855 2277
kvn@855 2278 // Get slow path - Failed to CAS.
kvn@855 2279 not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
kvn@855 2280 mem_phi->init_req(4, proj);
kvn@855 2281 // region->in(4) is set to fast path - the object is rebiased to the current thread.
kvn@855 2282
kvn@855 2283 // Failed to CAS.
kvn@4115 2284 slow_path = new (C) RegionNode(3);
kvn@4115 2285 Node *slow_mem = new (C) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2286
kvn@855 2287 slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
kvn@855 2288 slow_mem->init_req(1, proj);
kvn@855 2289
kvn@855 2290 // Call CAS-based locking scheme (FastLock node).
kvn@855 2291
kvn@855 2292 transform_later(fast_lock_region);
kvn@855 2293 transform_later(fast_lock_mem_phi);
kvn@855 2294
kvn@855 2295 // Get slow path - FastLock failed to lock the object.
kvn@855 2296 ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
kvn@855 2297 mem_phi->init_req(2, fast_lock_mem_phi);
kvn@855 2298 // region->in(2) is set to fast path - the object is locked to the current thread.
kvn@855 2299
kvn@855 2300 slow_path->init_req(2, ctrl); // Capture slow-control
kvn@855 2301 slow_mem->init_req(2, fast_lock_mem_phi);
kvn@855 2302
kvn@855 2303 transform_later(slow_path);
kvn@855 2304 transform_later(slow_mem);
kvn@855 2305 // Reset lock's memory edge.
kvn@855 2306 lock->set_req(TypeFunc::Memory, slow_mem);
kvn@855 2307
kvn@855 2308 } else {
kvn@4115 2309 region = new (C) RegionNode(3);
kvn@855 2310 // create a Phi for the memory state
kvn@4115 2311 mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2312
kvn@855 2313 // Optimize test; set region slot 2
kvn@855 2314 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
kvn@855 2315 mem_phi->init_req(2, mem);
kvn@855 2316 }
duke@435 2317
duke@435 2318 // Make slow path call
duke@435 2319 CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
duke@435 2320
duke@435 2321 extract_call_projections(call);
duke@435 2322
duke@435 2323 // Slow path can only throw asynchronous exceptions, which are always
duke@435 2324 // de-opted. So the compiler thinks the slow-call can never throw an
duke@435 2325 // exception. If it DOES throw an exception we would need the debug
duke@435 2326 // info removed first (since if it throws there is no monitor).
duke@435 2327 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2328 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2329
duke@435 2330 // Capture slow path
duke@435 2331 // disconnect fall-through projection from call and create a new one
duke@435 2332 // hook up users of fall-through projection to region
duke@435 2333 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2334 transform_later(slow_ctrl);
duke@435 2335 _igvn.hash_delete(_fallthroughproj);
bharadwaj@4315 2336 _fallthroughproj->disconnect_inputs(NULL, C);
duke@435 2337 region->init_req(1, slow_ctrl);
duke@435 2338 // region inputs are now complete
duke@435 2339 transform_later(region);
kvn@1143 2340 _igvn.replace_node(_fallthroughproj, region);
duke@435 2341
kvn@4115 2342 Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
duke@435 2343 mem_phi->init_req(1, memproj );
duke@435 2344 transform_later(mem_phi);
kvn@1143 2345 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2346 }
duke@435 2347
duke@435 2348 //------------------------------expand_unlock_node----------------------
duke@435 2349 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
duke@435 2350
kvn@501 2351 Node* ctrl = unlock->in(TypeFunc::Control);
duke@435 2352 Node* mem = unlock->in(TypeFunc::Memory);
duke@435 2353 Node* obj = unlock->obj_node();
duke@435 2354 Node* box = unlock->box_node();
duke@435 2355
kvn@3419 2356 assert(!box->as_BoxLock()->is_eliminated(), "sanity");
kvn@3406 2357
duke@435 2358 // No need for a null check on unlock
duke@435 2359
duke@435 2360 // Make the merge point
kvn@855 2361 Node *region;
kvn@855 2362 Node *mem_phi;
kvn@855 2363
kvn@855 2364 if (UseOptoBiasInlining) {
kvn@855 2365 // Check for biased locking unlock case, which is a no-op.
twisti@1040 2366 // See the full description in MacroAssembler::biased_locking_exit().
kvn@4115 2367 region = new (C) RegionNode(4);
kvn@855 2368 // create a Phi for the memory state
kvn@4115 2369 mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2370 mem_phi->init_req(3, mem);
kvn@855 2371
kvn@855 2372 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 2373 ctrl = opt_bits_test(ctrl, region, 3, mark_node,
kvn@855 2374 markOopDesc::biased_lock_mask_in_place,
kvn@855 2375 markOopDesc::biased_lock_pattern);
kvn@855 2376 } else {
kvn@4115 2377 region = new (C) RegionNode(3);
kvn@855 2378 // create a Phi for the memory state
kvn@4115 2379 mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2380 }
duke@435 2381
kvn@4115 2382 FastUnlockNode *funlock = new (C) FastUnlockNode( ctrl, obj, box );
duke@435 2383 funlock = transform_later( funlock )->as_FastUnlock();
duke@435 2384 // Optimize test; set region slot 2
kvn@855 2385 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
duke@435 2386
duke@435 2387 CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
duke@435 2388
duke@435 2389 extract_call_projections(call);
duke@435 2390
duke@435 2391 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2392 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2393
duke@435 2394 // No exceptions for unlocking
duke@435 2395 // Capture slow path
duke@435 2396 // disconnect fall-through projection from call and create a new one
duke@435 2397 // hook up users of fall-through projection to region
duke@435 2398 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2399 transform_later(slow_ctrl);
duke@435 2400 _igvn.hash_delete(_fallthroughproj);
bharadwaj@4315 2401 _fallthroughproj->disconnect_inputs(NULL, C);
duke@435 2402 region->init_req(1, slow_ctrl);
duke@435 2403 // region inputs are now complete
duke@435 2404 transform_later(region);
kvn@1143 2405 _igvn.replace_node(_fallthroughproj, region);
duke@435 2406
kvn@4115 2407 Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
duke@435 2408 mem_phi->init_req(1, memproj );
duke@435 2409 mem_phi->init_req(2, mem);
duke@435 2410 transform_later(mem_phi);
kvn@1143 2411 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2412 }
duke@435 2413
kvn@3311 2414 //---------------------------eliminate_macro_nodes----------------------
kvn@3311 2415 // Eliminate scalar replaced allocations and associated locks.
kvn@3311 2416 void PhaseMacroExpand::eliminate_macro_nodes() {
duke@435 2417 if (C->macro_count() == 0)
kvn@3311 2418 return;
kvn@3311 2419
kvn@895 2420 // First, attempt to eliminate locks
kvn@2951 2421 int cnt = C->macro_count();
kvn@2951 2422 for (int i=0; i < cnt; i++) {
kvn@2951 2423 Node *n = C->macro_node(i);
kvn@2951 2424 if (n->is_AbstractLock()) { // Lock and Unlock nodes
kvn@2951 2425 // Before elimination mark all associated (same box and obj)
kvn@2951 2426 // lock and unlock nodes.
kvn@2951 2427 mark_eliminated_locking_nodes(n->as_AbstractLock());
kvn@2951 2428 }
kvn@2951 2429 }
kvn@508 2430 bool progress = true;
kvn@508 2431 while (progress) {
kvn@508 2432 progress = false;
kvn@508 2433 for (int i = C->macro_count(); i > 0; i--) {
kvn@508 2434 Node * n = C->macro_node(i-1);
kvn@508 2435 bool success = false;
kvn@508 2436 debug_only(int old_macro_count = C->macro_count(););
kvn@895 2437 if (n->is_AbstractLock()) {
kvn@895 2438 success = eliminate_locking_node(n->as_AbstractLock());
kvn@895 2439 }
kvn@895 2440 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@895 2441 progress = progress || success;
kvn@895 2442 }
kvn@895 2443 }
kvn@895 2444 // Next, attempt to eliminate allocations
kvn@6429 2445 _has_locks = false;
kvn@895 2446 progress = true;
kvn@895 2447 while (progress) {
kvn@895 2448 progress = false;
kvn@895 2449 for (int i = C->macro_count(); i > 0; i--) {
kvn@895 2450 Node * n = C->macro_node(i-1);
kvn@895 2451 bool success = false;
kvn@895 2452 debug_only(int old_macro_count = C->macro_count(););
kvn@508 2453 switch (n->class_id()) {
kvn@508 2454 case Node::Class_Allocate:
kvn@508 2455 case Node::Class_AllocateArray:
kvn@508 2456 success = eliminate_allocate_node(n->as_Allocate());
kvn@508 2457 break;
kvn@5110 2458 case Node::Class_CallStaticJava:
kvn@5110 2459 success = eliminate_boxing_node(n->as_CallStaticJava());
kvn@5110 2460 break;
kvn@508 2461 case Node::Class_Lock:
kvn@508 2462 case Node::Class_Unlock:
kvn@895 2463 assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
kvn@6429 2464 _has_locks = true;
kvn@508 2465 break;
kvn@508 2466 default:
kvn@3311 2467 assert(n->Opcode() == Op_LoopLimit ||
kvn@3311 2468 n->Opcode() == Op_Opaque1 ||
kvn@6429 2469 n->Opcode() == Op_Opaque2 ||
kvn@6429 2470 n->Opcode() == Op_Opaque3, "unknown node type in macro list");
kvn@508 2471 }
kvn@508 2472 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@508 2473 progress = progress || success;
kvn@508 2474 }
kvn@508 2475 }
kvn@3311 2476 }
kvn@3311 2477
kvn@3311 2478 //------------------------------expand_macro_nodes----------------------
kvn@3311 2479 // Returns true if a failure occurred.
kvn@3311 2480 bool PhaseMacroExpand::expand_macro_nodes() {
kvn@3311 2481 // Last attempt to eliminate macro nodes.
kvn@3311 2482 eliminate_macro_nodes();
kvn@3311 2483
kvn@508 2484 // Make sure expansion will not cause node limit to be exceeded.
kvn@508 2485 // Worst case is a macro node gets expanded into about 50 nodes.
kvn@508 2486 // Allow 50% more for optimization.
duke@435 2487 if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
duke@435 2488 return true;
kvn@508 2489
kvn@3311 2490 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
kvn@3311 2491 bool progress = true;
kvn@3311 2492 while (progress) {
kvn@3311 2493 progress = false;
kvn@3311 2494 for (int i = C->macro_count(); i > 0; i--) {
kvn@3311 2495 Node * n = C->macro_node(i-1);
kvn@3311 2496 bool success = false;
kvn@3311 2497 debug_only(int old_macro_count = C->macro_count(););
kvn@3311 2498 if (n->Opcode() == Op_LoopLimit) {
kvn@3311 2499 // Remove it from macro list and put on IGVN worklist to optimize.
kvn@3311 2500 C->remove_macro_node(n);
kvn@3311 2501 _igvn._worklist.push(n);
kvn@3311 2502 success = true;
kvn@5110 2503 } else if (n->Opcode() == Op_CallStaticJava) {
kvn@5110 2504 // Remove it from macro list and put on IGVN worklist to optimize.
kvn@5110 2505 C->remove_macro_node(n);
kvn@5110 2506 _igvn._worklist.push(n);
kvn@5110 2507 success = true;
kvn@3311 2508 } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
kvn@3311 2509 _igvn.replace_node(n, n->in(1));
kvn@3311 2510 success = true;
kvn@6429 2511 #if INCLUDE_RTM_OPT
kvn@6429 2512 } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
kvn@6429 2513 assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
kvn@6429 2514 assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
kvn@6429 2515 Node* cmp = n->unique_out();
kvn@6429 2516 #ifdef ASSERT
kvn@6429 2517 // Validate graph.
kvn@6429 2518 assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
kvn@6429 2519 BoolNode* bol = cmp->unique_out()->as_Bool();
kvn@6429 2520 assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
kvn@6429 2521 (bol->_test._test == BoolTest::ne), "");
kvn@6429 2522 IfNode* ifn = bol->unique_out()->as_If();
kvn@6429 2523 assert((ifn->outcnt() == 2) &&
kvn@6429 2524 ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change), "");
kvn@6429 2525 #endif
kvn@6429 2526 Node* repl = n->in(1);
kvn@6429 2527 if (!_has_locks) {
kvn@6429 2528 // Remove RTM state check if there are no locks in the code.
kvn@6429 2529 // Replace input to compare the same value.
kvn@6429 2530 repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
kvn@6429 2531 }
kvn@6429 2532 _igvn.replace_node(n, repl);
kvn@6429 2533 success = true;
kvn@6429 2534 #endif
kvn@3311 2535 }
kvn@3311 2536 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@3311 2537 progress = progress || success;
kvn@3311 2538 }
kvn@3311 2539 }
kvn@3311 2540
duke@435 2541 // expand "macro" nodes
duke@435 2542 // nodes are removed from the macro list as they are processed
duke@435 2543 while (C->macro_count() > 0) {
kvn@508 2544 int macro_count = C->macro_count();
kvn@508 2545 Node * n = C->macro_node(macro_count-1);
duke@435 2546 assert(n->is_macro(), "only macro nodes expected here");
duke@435 2547 if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
duke@435 2548 // node is unreachable, so don't try to expand it
duke@435 2549 C->remove_macro_node(n);
duke@435 2550 continue;
duke@435 2551 }
duke@435 2552 switch (n->class_id()) {
duke@435 2553 case Node::Class_Allocate:
duke@435 2554 expand_allocate(n->as_Allocate());
duke@435 2555 break;
duke@435 2556 case Node::Class_AllocateArray:
duke@435 2557 expand_allocate_array(n->as_AllocateArray());
duke@435 2558 break;
duke@435 2559 case Node::Class_Lock:
duke@435 2560 expand_lock_node(n->as_Lock());
duke@435 2561 break;
duke@435 2562 case Node::Class_Unlock:
duke@435 2563 expand_unlock_node(n->as_Unlock());
duke@435 2564 break;
duke@435 2565 default:
duke@435 2566 assert(false, "unknown node type in macro list");
duke@435 2567 }
kvn@508 2568 assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
duke@435 2569 if (C->failing()) return true;
duke@435 2570 }
coleenp@548 2571
coleenp@548 2572 _igvn.set_delay_transform(false);
duke@435 2573 _igvn.optimize();
kvn@3311 2574 if (C->failing()) return true;
duke@435 2575 return false;
duke@435 2576 }

mercurial