src/share/vm/opto/macro.cpp

Wed, 07 Dec 2011 11:35:03 +0100

author
stefank
date
Wed, 07 Dec 2011 11:35:03 +0100
changeset 3391
069ab3f976d3
parent 3311
1bd45abaa507
child 3392
1dc233a8c7fe
permissions
-rw-r--r--

7118863: Move sizeof(klassOopDesc) into the *Klass::*_offset_in_bytes() functions
Summary: Moved sizeof(klassOopDesc), changed the return type to ByteSize and removed the _in_bytes suffix.
Reviewed-by: never, bdelsart, coleenp, jrose

duke@435 1 /*
phh@2423 2 * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "libadt/vectset.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/cfgnode.hpp"
stefank@2314 31 #include "opto/compile.hpp"
stefank@2314 32 #include "opto/connode.hpp"
stefank@2314 33 #include "opto/locknode.hpp"
stefank@2314 34 #include "opto/loopnode.hpp"
stefank@2314 35 #include "opto/macro.hpp"
stefank@2314 36 #include "opto/memnode.hpp"
stefank@2314 37 #include "opto/node.hpp"
stefank@2314 38 #include "opto/phaseX.hpp"
stefank@2314 39 #include "opto/rootnode.hpp"
stefank@2314 40 #include "opto/runtime.hpp"
stefank@2314 41 #include "opto/subnode.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43 #include "runtime/sharedRuntime.hpp"
duke@435 44
duke@435 45
duke@435 46 //
duke@435 47 // Replace any references to "oldref" in inputs to "use" with "newref".
duke@435 48 // Returns the number of replacements made.
duke@435 49 //
duke@435 50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
duke@435 51 int nreplacements = 0;
duke@435 52 uint req = use->req();
duke@435 53 for (uint j = 0; j < use->len(); j++) {
duke@435 54 Node *uin = use->in(j);
duke@435 55 if (uin == oldref) {
duke@435 56 if (j < req)
duke@435 57 use->set_req(j, newref);
duke@435 58 else
duke@435 59 use->set_prec(j, newref);
duke@435 60 nreplacements++;
duke@435 61 } else if (j >= req && uin == NULL) {
duke@435 62 break;
duke@435 63 }
duke@435 64 }
duke@435 65 return nreplacements;
duke@435 66 }
duke@435 67
duke@435 68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
duke@435 69 // Copy debug information and adjust JVMState information
duke@435 70 uint old_dbg_start = oldcall->tf()->domain()->cnt();
duke@435 71 uint new_dbg_start = newcall->tf()->domain()->cnt();
duke@435 72 int jvms_adj = new_dbg_start - old_dbg_start;
duke@435 73 assert (new_dbg_start == newcall->req(), "argument count mismatch");
kvn@498 74
kvn@498 75 Dict* sosn_map = new Dict(cmpkey,hashkey);
duke@435 76 for (uint i = old_dbg_start; i < oldcall->req(); i++) {
kvn@498 77 Node* old_in = oldcall->in(i);
kvn@498 78 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
kvn@895 79 if (old_in != NULL && old_in->is_SafePointScalarObject()) {
kvn@498 80 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
kvn@498 81 uint old_unique = C->unique();
kvn@498 82 Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
kvn@498 83 if (old_unique != C->unique()) {
kvn@3311 84 new_in->set_req(0, C->root()); // reset control edge
kvn@498 85 new_in = transform_later(new_in); // Register new node.
kvn@498 86 }
kvn@498 87 old_in = new_in;
kvn@498 88 }
kvn@498 89 newcall->add_req(old_in);
duke@435 90 }
kvn@498 91
duke@435 92 newcall->set_jvms(oldcall->jvms());
duke@435 93 for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@435 94 jvms->set_map(newcall);
duke@435 95 jvms->set_locoff(jvms->locoff()+jvms_adj);
duke@435 96 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
duke@435 97 jvms->set_monoff(jvms->monoff()+jvms_adj);
kvn@498 98 jvms->set_scloff(jvms->scloff()+jvms_adj);
duke@435 99 jvms->set_endoff(jvms->endoff()+jvms_adj);
duke@435 100 }
duke@435 101 }
duke@435 102
kvn@855 103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
kvn@855 104 Node* cmp;
kvn@855 105 if (mask != 0) {
kvn@855 106 Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
kvn@855 107 cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
kvn@855 108 } else {
kvn@855 109 cmp = word;
kvn@855 110 }
kvn@855 111 Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
kvn@855 112 IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
kvn@855 113 transform_later(iff);
duke@435 114
kvn@855 115 // Fast path taken.
kvn@855 116 Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
duke@435 117
duke@435 118 // Fast path not-taken, i.e. slow path
kvn@855 119 Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
kvn@855 120
kvn@855 121 if (return_fast_path) {
kvn@855 122 region->init_req(edge, slow_taken); // Capture slow-control
kvn@855 123 return fast_taken;
kvn@855 124 } else {
kvn@855 125 region->init_req(edge, fast_taken); // Capture fast-control
kvn@855 126 return slow_taken;
kvn@855 127 }
duke@435 128 }
duke@435 129
duke@435 130 //--------------------copy_predefined_input_for_runtime_call--------------------
duke@435 131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
duke@435 132 // Set fixed predefined input arguments
duke@435 133 call->init_req( TypeFunc::Control, ctrl );
duke@435 134 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) );
duke@435 135 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
duke@435 136 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
duke@435 137 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
duke@435 138 }
duke@435 139
duke@435 140 //------------------------------make_slow_call---------------------------------
duke@435 141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
duke@435 142
duke@435 143 // Slow-path call
duke@435 144 int size = slow_call_type->domain()->cnt();
duke@435 145 CallNode *call = leaf_name
duke@435 146 ? (CallNode*)new (C, size) CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
duke@435 147 : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
duke@435 148
duke@435 149 // Slow path call has no side-effects, uses few values
duke@435 150 copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
duke@435 151 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
duke@435 152 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
duke@435 153 copy_call_debug_info(oldcall, call);
duke@435 154 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
kvn@1976 155 _igvn.replace_node(oldcall, call);
duke@435 156 transform_later(call);
duke@435 157
duke@435 158 return call;
duke@435 159 }
duke@435 160
duke@435 161 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
duke@435 162 _fallthroughproj = NULL;
duke@435 163 _fallthroughcatchproj = NULL;
duke@435 164 _ioproj_fallthrough = NULL;
duke@435 165 _ioproj_catchall = NULL;
duke@435 166 _catchallcatchproj = NULL;
duke@435 167 _memproj_fallthrough = NULL;
duke@435 168 _memproj_catchall = NULL;
duke@435 169 _resproj = NULL;
duke@435 170 for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
duke@435 171 ProjNode *pn = call->fast_out(i)->as_Proj();
duke@435 172 switch (pn->_con) {
duke@435 173 case TypeFunc::Control:
duke@435 174 {
duke@435 175 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
duke@435 176 _fallthroughproj = pn;
duke@435 177 DUIterator_Fast jmax, j = pn->fast_outs(jmax);
duke@435 178 const Node *cn = pn->fast_out(j);
duke@435 179 if (cn->is_Catch()) {
duke@435 180 ProjNode *cpn = NULL;
duke@435 181 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
duke@435 182 cpn = cn->fast_out(k)->as_Proj();
duke@435 183 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
duke@435 184 if (cpn->_con == CatchProjNode::fall_through_index)
duke@435 185 _fallthroughcatchproj = cpn;
duke@435 186 else {
duke@435 187 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
duke@435 188 _catchallcatchproj = cpn;
duke@435 189 }
duke@435 190 }
duke@435 191 }
duke@435 192 break;
duke@435 193 }
duke@435 194 case TypeFunc::I_O:
duke@435 195 if (pn->_is_io_use)
duke@435 196 _ioproj_catchall = pn;
duke@435 197 else
duke@435 198 _ioproj_fallthrough = pn;
duke@435 199 break;
duke@435 200 case TypeFunc::Memory:
duke@435 201 if (pn->_is_io_use)
duke@435 202 _memproj_catchall = pn;
duke@435 203 else
duke@435 204 _memproj_fallthrough = pn;
duke@435 205 break;
duke@435 206 case TypeFunc::Parms:
duke@435 207 _resproj = pn;
duke@435 208 break;
duke@435 209 default:
duke@435 210 assert(false, "unexpected projection from allocation node.");
duke@435 211 }
duke@435 212 }
duke@435 213
duke@435 214 }
duke@435 215
kvn@508 216 // Eliminate a card mark sequence. p2x is a ConvP2XNode
kvn@1286 217 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
kvn@508 218 assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
kvn@1286 219 if (!UseG1GC) {
kvn@1286 220 // vanilla/CMS post barrier
kvn@1286 221 Node *shift = p2x->unique_out();
kvn@1286 222 Node *addp = shift->unique_out();
kvn@1286 223 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
never@2814 224 Node *mem = addp->last_out(j);
never@2814 225 if (UseCondCardMark && mem->is_Load()) {
never@2814 226 assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
never@2814 227 // The load is checking if the card has been written so
never@2814 228 // replace it with zero to fold the test.
never@2814 229 _igvn.replace_node(mem, intcon(0));
never@2814 230 continue;
never@2814 231 }
never@2814 232 assert(mem->is_Store(), "store required");
never@2814 233 _igvn.replace_node(mem, mem->in(MemNode::Memory));
kvn@1286 234 }
kvn@1286 235 } else {
kvn@1286 236 // G1 pre/post barriers
kvn@1286 237 assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
kvn@1286 238 // It could be only one user, URShift node, in Object.clone() instrinsic
kvn@1286 239 // but the new allocation is passed to arraycopy stub and it could not
kvn@1286 240 // be scalar replaced. So we don't check the case.
kvn@1286 241
kvn@1286 242 // Remove G1 post barrier.
kvn@1286 243
kvn@1286 244 // Search for CastP2X->Xor->URShift->Cmp path which
kvn@1286 245 // checks if the store done to a different from the value's region.
kvn@1286 246 // And replace Cmp with #0 (false) to collapse G1 post barrier.
kvn@1286 247 Node* xorx = NULL;
kvn@1286 248 for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
kvn@1286 249 Node* u = p2x->fast_out(i);
kvn@1286 250 if (u->Opcode() == Op_XorX) {
kvn@1286 251 xorx = u;
kvn@1286 252 break;
kvn@1286 253 }
kvn@1286 254 }
kvn@1286 255 assert(xorx != NULL, "missing G1 post barrier");
kvn@1286 256 Node* shift = xorx->unique_out();
kvn@1286 257 Node* cmpx = shift->unique_out();
kvn@1286 258 assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
kvn@1286 259 cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
kvn@1286 260 "missing region check in G1 post barrier");
kvn@1286 261 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 262
kvn@1286 263 // Remove G1 pre barrier.
kvn@1286 264
kvn@1286 265 // Search "if (marking != 0)" check and set it to "false".
kvn@1286 266 Node* this_region = p2x->in(0);
kvn@1286 267 assert(this_region != NULL, "");
kvn@1286 268 // There is no G1 pre barrier if previous stored value is NULL
kvn@1286 269 // (for example, after initialization).
kvn@1286 270 if (this_region->is_Region() && this_region->req() == 3) {
kvn@1286 271 int ind = 1;
kvn@1286 272 if (!this_region->in(ind)->is_IfFalse()) {
kvn@1286 273 ind = 2;
kvn@1286 274 }
kvn@1286 275 if (this_region->in(ind)->is_IfFalse()) {
kvn@1286 276 Node* bol = this_region->in(ind)->in(0)->in(1);
kvn@1286 277 assert(bol->is_Bool(), "");
kvn@1286 278 cmpx = bol->in(1);
kvn@1286 279 if (bol->as_Bool()->_test._test == BoolTest::ne &&
kvn@1286 280 cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
kvn@1286 281 cmpx->in(1)->is_Load()) {
kvn@1286 282 Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
kvn@1286 283 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
kvn@1286 284 PtrQueue::byte_offset_of_active());
kvn@1286 285 if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
kvn@1286 286 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
kvn@1286 287 adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
kvn@1286 288 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 289 }
kvn@1286 290 }
kvn@1286 291 }
kvn@1286 292 }
kvn@1286 293 // Now CastP2X can be removed since it is used only on dead path
kvn@1286 294 // which currently still alive until igvn optimize it.
kvn@1286 295 assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
kvn@1286 296 _igvn.replace_node(p2x, top());
kvn@508 297 }
kvn@508 298 }
kvn@508 299
kvn@508 300 // Search for a memory operation for the specified memory slice.
kvn@688 301 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
kvn@508 302 Node *orig_mem = mem;
kvn@508 303 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@688 304 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
kvn@508 305 while (true) {
kvn@508 306 if (mem == alloc_mem || mem == start_mem ) {
twisti@1040 307 return mem; // hit one of our sentinels
kvn@508 308 } else if (mem->is_MergeMem()) {
kvn@508 309 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@508 310 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
kvn@508 311 Node *in = mem->in(0);
kvn@508 312 // we can safely skip over safepoints, calls, locks and membars because we
kvn@508 313 // already know that the object is safe to eliminate.
kvn@508 314 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
kvn@508 315 return in;
kvn@688 316 } else if (in->is_Call()) {
kvn@688 317 CallNode *call = in->as_Call();
kvn@688 318 if (!call->may_modify(tinst, phase)) {
kvn@688 319 mem = call->in(TypeFunc::Memory);
kvn@688 320 }
kvn@688 321 mem = in->in(TypeFunc::Memory);
kvn@688 322 } else if (in->is_MemBar()) {
kvn@508 323 mem = in->in(TypeFunc::Memory);
kvn@508 324 } else {
kvn@508 325 assert(false, "unexpected projection");
kvn@508 326 }
kvn@508 327 } else if (mem->is_Store()) {
kvn@508 328 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 329 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@508 330 if (adr_idx == alias_idx) {
kvn@508 331 assert(atype->isa_oopptr(), "address type must be oopptr");
kvn@508 332 int adr_offset = atype->offset();
kvn@508 333 uint adr_iid = atype->is_oopptr()->instance_id();
kvn@508 334 // Array elements references have the same alias_idx
kvn@508 335 // but different offset and different instance_id.
kvn@508 336 if (adr_offset == offset && adr_iid == alloc->_idx)
kvn@508 337 return mem;
kvn@508 338 } else {
kvn@508 339 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
kvn@508 340 }
kvn@508 341 mem = mem->in(MemNode::Memory);
kvn@1535 342 } else if (mem->is_ClearArray()) {
kvn@1535 343 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
kvn@1535 344 // Can not bypass initialization of the instance
kvn@1535 345 // we are looking.
kvn@1535 346 debug_only(intptr_t offset;)
kvn@1535 347 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
kvn@1535 348 InitializeNode* init = alloc->as_Allocate()->initialization();
kvn@1535 349 // We are looking for stored value, return Initialize node
kvn@1535 350 // or memory edge from Allocate node.
kvn@1535 351 if (init != NULL)
kvn@1535 352 return init;
kvn@1535 353 else
kvn@1535 354 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
kvn@1535 355 }
kvn@1535 356 // Otherwise skip it (the call updated 'mem' value).
kvn@1019 357 } else if (mem->Opcode() == Op_SCMemProj) {
kvn@1019 358 assert(mem->in(0)->is_LoadStore(), "sanity");
kvn@1019 359 const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
kvn@1019 360 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@1019 361 if (adr_idx == alias_idx) {
kvn@1019 362 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 363 return NULL;
kvn@1019 364 }
kvn@1019 365 mem = mem->in(0)->in(MemNode::Memory);
kvn@508 366 } else {
kvn@508 367 return mem;
kvn@508 368 }
kvn@682 369 assert(mem != orig_mem, "dead memory loop");
kvn@508 370 }
kvn@508 371 }
kvn@508 372
kvn@508 373 //
kvn@508 374 // Given a Memory Phi, compute a value Phi containing the values from stores
kvn@508 375 // on the input paths.
kvn@508 376 // Note: this function is recursive, its depth is limied by the "level" argument
kvn@508 377 // Returns the computed Phi, or NULL if it cannot compute it.
kvn@682 378 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
kvn@682 379 assert(mem->is_Phi(), "sanity");
kvn@682 380 int alias_idx = C->get_alias_index(adr_t);
kvn@682 381 int offset = adr_t->offset();
kvn@682 382 int instance_id = adr_t->instance_id();
kvn@682 383
kvn@682 384 // Check if an appropriate value phi already exists.
kvn@682 385 Node* region = mem->in(0);
kvn@682 386 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
kvn@682 387 Node* phi = region->fast_out(k);
kvn@682 388 if (phi->is_Phi() && phi != mem &&
kvn@682 389 phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
kvn@682 390 return phi;
kvn@682 391 }
kvn@682 392 }
kvn@682 393 // Check if an appropriate new value phi already exists.
kvn@2985 394 Node* new_phi = value_phis->find(mem->_idx);
kvn@2985 395 if (new_phi != NULL)
kvn@2985 396 return new_phi;
kvn@508 397
kvn@508 398 if (level <= 0) {
kvn@688 399 return NULL; // Give up: phi tree too deep
kvn@508 400 }
kvn@508 401 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 402 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@508 403
kvn@508 404 uint length = mem->req();
kvn@508 405 GrowableArray <Node *> values(length, length, NULL);
kvn@508 406
kvn@682 407 // create a new Phi for the value
kvn@682 408 PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
kvn@682 409 transform_later(phi);
kvn@682 410 value_phis->push(phi, mem->_idx);
kvn@682 411
kvn@508 412 for (uint j = 1; j < length; j++) {
kvn@508 413 Node *in = mem->in(j);
kvn@508 414 if (in == NULL || in->is_top()) {
kvn@508 415 values.at_put(j, in);
kvn@508 416 } else {
kvn@688 417 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 418 if (val == start_mem || val == alloc_mem) {
kvn@508 419 // hit a sentinel, return appropriate 0 value
kvn@508 420 values.at_put(j, _igvn.zerocon(ft));
kvn@508 421 continue;
kvn@508 422 }
kvn@508 423 if (val->is_Initialize()) {
kvn@508 424 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 425 }
kvn@508 426 if (val == NULL) {
kvn@508 427 return NULL; // can't find a value on this path
kvn@508 428 }
kvn@508 429 if (val == mem) {
kvn@508 430 values.at_put(j, mem);
kvn@508 431 } else if (val->is_Store()) {
kvn@508 432 values.at_put(j, val->in(MemNode::ValueIn));
kvn@508 433 } else if(val->is_Proj() && val->in(0) == alloc) {
kvn@508 434 values.at_put(j, _igvn.zerocon(ft));
kvn@508 435 } else if (val->is_Phi()) {
kvn@682 436 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
kvn@682 437 if (val == NULL) {
kvn@682 438 return NULL;
kvn@508 439 }
kvn@682 440 values.at_put(j, val);
kvn@1019 441 } else if (val->Opcode() == Op_SCMemProj) {
kvn@1019 442 assert(val->in(0)->is_LoadStore(), "sanity");
kvn@1019 443 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 444 return NULL;
kvn@508 445 } else {
kvn@1019 446 #ifdef ASSERT
kvn@1019 447 val->dump();
kvn@688 448 assert(false, "unknown node on this path");
kvn@1019 449 #endif
kvn@688 450 return NULL; // unknown node on this path
kvn@508 451 }
kvn@508 452 }
kvn@508 453 }
kvn@682 454 // Set Phi's inputs
kvn@508 455 for (uint j = 1; j < length; j++) {
kvn@508 456 if (values.at(j) == mem) {
kvn@508 457 phi->init_req(j, phi);
kvn@508 458 } else {
kvn@508 459 phi->init_req(j, values.at(j));
kvn@508 460 }
kvn@508 461 }
kvn@508 462 return phi;
kvn@508 463 }
kvn@508 464
kvn@508 465 // Search the last value stored into the object's field.
kvn@508 466 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
kvn@658 467 assert(adr_t->is_known_instance_field(), "instance required");
kvn@658 468 int instance_id = adr_t->instance_id();
kvn@658 469 assert((uint)instance_id == alloc->_idx, "wrong allocation");
kvn@508 470
kvn@508 471 int alias_idx = C->get_alias_index(adr_t);
kvn@508 472 int offset = adr_t->offset();
kvn@508 473 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 474 Node *alloc_ctrl = alloc->in(TypeFunc::Control);
kvn@508 475 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@682 476 Arena *a = Thread::current()->resource_area();
kvn@682 477 VectorSet visited(a);
kvn@508 478
kvn@508 479
kvn@508 480 bool done = sfpt_mem == alloc_mem;
kvn@508 481 Node *mem = sfpt_mem;
kvn@508 482 while (!done) {
kvn@508 483 if (visited.test_set(mem->_idx)) {
kvn@508 484 return NULL; // found a loop, give up
kvn@508 485 }
kvn@688 486 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 487 if (mem == start_mem || mem == alloc_mem) {
kvn@508 488 done = true; // hit a sentinel, return appropriate 0 value
kvn@508 489 } else if (mem->is_Initialize()) {
kvn@508 490 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 491 if (mem == NULL) {
kvn@508 492 done = true; // Something go wrong.
kvn@508 493 } else if (mem->is_Store()) {
kvn@508 494 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 495 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
kvn@508 496 done = true;
kvn@508 497 }
kvn@508 498 } else if (mem->is_Store()) {
kvn@508 499 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
kvn@508 500 assert(atype != NULL, "address type must be oopptr");
kvn@508 501 assert(C->get_alias_index(atype) == alias_idx &&
kvn@658 502 atype->is_known_instance_field() && atype->offset() == offset &&
kvn@508 503 atype->instance_id() == instance_id, "store is correct memory slice");
kvn@508 504 done = true;
kvn@508 505 } else if (mem->is_Phi()) {
kvn@508 506 // try to find a phi's unique input
kvn@508 507 Node *unique_input = NULL;
kvn@508 508 Node *top = C->top();
kvn@508 509 for (uint i = 1; i < mem->req(); i++) {
kvn@688 510 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 511 if (n == NULL || n == top || n == mem) {
kvn@508 512 continue;
kvn@508 513 } else if (unique_input == NULL) {
kvn@508 514 unique_input = n;
kvn@508 515 } else if (unique_input != n) {
kvn@508 516 unique_input = top;
kvn@508 517 break;
kvn@508 518 }
kvn@508 519 }
kvn@508 520 if (unique_input != NULL && unique_input != top) {
kvn@508 521 mem = unique_input;
kvn@508 522 } else {
kvn@508 523 done = true;
kvn@508 524 }
kvn@508 525 } else {
kvn@508 526 assert(false, "unexpected node");
kvn@508 527 }
kvn@508 528 }
kvn@508 529 if (mem != NULL) {
kvn@508 530 if (mem == start_mem || mem == alloc_mem) {
kvn@508 531 // hit a sentinel, return appropriate 0 value
kvn@508 532 return _igvn.zerocon(ft);
kvn@508 533 } else if (mem->is_Store()) {
kvn@508 534 return mem->in(MemNode::ValueIn);
kvn@508 535 } else if (mem->is_Phi()) {
kvn@508 536 // attempt to produce a Phi reflecting the values on the input paths of the Phi
kvn@682 537 Node_Stack value_phis(a, 8);
kvn@688 538 Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
kvn@508 539 if (phi != NULL) {
kvn@508 540 return phi;
kvn@682 541 } else {
kvn@682 542 // Kill all new Phis
kvn@682 543 while(value_phis.is_nonempty()) {
kvn@682 544 Node* n = value_phis.node();
kvn@1976 545 _igvn.replace_node(n, C->top());
kvn@682 546 value_phis.pop();
kvn@682 547 }
kvn@508 548 }
kvn@508 549 }
kvn@508 550 }
kvn@508 551 // Something go wrong.
kvn@508 552 return NULL;
kvn@508 553 }
kvn@508 554
kvn@508 555 // Check the possibility of scalar replacement.
kvn@508 556 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 557 // Scan the uses of the allocation to check for anything that would
kvn@508 558 // prevent us from eliminating it.
kvn@508 559 NOT_PRODUCT( const char* fail_eliminate = NULL; )
kvn@508 560 DEBUG_ONLY( Node* disq_node = NULL; )
kvn@508 561 bool can_eliminate = true;
kvn@508 562
kvn@508 563 Node* res = alloc->result_cast();
kvn@508 564 const TypeOopPtr* res_type = NULL;
kvn@508 565 if (res == NULL) {
kvn@508 566 // All users were eliminated.
kvn@508 567 } else if (!res->is_CheckCastPP()) {
kvn@508 568 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
kvn@508 569 can_eliminate = false;
kvn@508 570 } else {
kvn@508 571 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 572 if (res_type == NULL) {
kvn@508 573 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
kvn@508 574 can_eliminate = false;
kvn@508 575 } else if (res_type->isa_aryptr()) {
kvn@508 576 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 577 if (length < 0) {
kvn@508 578 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
kvn@508 579 can_eliminate = false;
kvn@508 580 }
kvn@508 581 }
kvn@508 582 }
kvn@508 583
kvn@508 584 if (can_eliminate && res != NULL) {
kvn@508 585 for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
kvn@508 586 j < jmax && can_eliminate; j++) {
kvn@508 587 Node* use = res->fast_out(j);
kvn@508 588
kvn@508 589 if (use->is_AddP()) {
kvn@508 590 const TypePtr* addp_type = _igvn.type(use)->is_ptr();
kvn@508 591 int offset = addp_type->offset();
kvn@508 592
kvn@508 593 if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
kvn@508 594 NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
kvn@508 595 can_eliminate = false;
kvn@508 596 break;
kvn@508 597 }
kvn@508 598 for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
kvn@508 599 k < kmax && can_eliminate; k++) {
kvn@508 600 Node* n = use->fast_out(k);
kvn@508 601 if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
kvn@508 602 DEBUG_ONLY(disq_node = n;)
kvn@688 603 if (n->is_Load() || n->is_LoadStore()) {
kvn@508 604 NOT_PRODUCT(fail_eliminate = "Field load";)
kvn@508 605 } else {
kvn@508 606 NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
kvn@508 607 }
kvn@508 608 can_eliminate = false;
kvn@508 609 }
kvn@508 610 }
kvn@508 611 } else if (use->is_SafePoint()) {
kvn@508 612 SafePointNode* sfpt = use->as_SafePoint();
kvn@603 613 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
kvn@508 614 // Object is passed as argument.
kvn@508 615 DEBUG_ONLY(disq_node = use;)
kvn@508 616 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
kvn@508 617 can_eliminate = false;
kvn@508 618 }
kvn@508 619 Node* sfptMem = sfpt->memory();
kvn@508 620 if (sfptMem == NULL || sfptMem->is_top()) {
kvn@508 621 DEBUG_ONLY(disq_node = use;)
kvn@508 622 NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
kvn@508 623 can_eliminate = false;
kvn@508 624 } else {
kvn@508 625 safepoints.append_if_missing(sfpt);
kvn@508 626 }
kvn@508 627 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
kvn@508 628 if (use->is_Phi()) {
kvn@508 629 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
kvn@508 630 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 631 } else {
kvn@508 632 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
kvn@508 633 }
kvn@508 634 DEBUG_ONLY(disq_node = use;)
kvn@508 635 } else {
kvn@508 636 if (use->Opcode() == Op_Return) {
kvn@508 637 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 638 }else {
kvn@508 639 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
kvn@508 640 }
kvn@508 641 DEBUG_ONLY(disq_node = use;)
kvn@508 642 }
kvn@508 643 can_eliminate = false;
kvn@508 644 }
kvn@508 645 }
kvn@508 646 }
kvn@508 647
kvn@508 648 #ifndef PRODUCT
kvn@508 649 if (PrintEliminateAllocations) {
kvn@508 650 if (can_eliminate) {
kvn@508 651 tty->print("Scalar ");
kvn@508 652 if (res == NULL)
kvn@508 653 alloc->dump();
kvn@508 654 else
kvn@508 655 res->dump();
kvn@508 656 } else {
kvn@508 657 tty->print("NotScalar (%s)", fail_eliminate);
kvn@508 658 if (res == NULL)
kvn@508 659 alloc->dump();
kvn@508 660 else
kvn@508 661 res->dump();
kvn@508 662 #ifdef ASSERT
kvn@508 663 if (disq_node != NULL) {
kvn@508 664 tty->print(" >>>> ");
kvn@508 665 disq_node->dump();
kvn@508 666 }
kvn@508 667 #endif /*ASSERT*/
kvn@508 668 }
kvn@508 669 }
kvn@508 670 #endif
kvn@508 671 return can_eliminate;
kvn@508 672 }
kvn@508 673
kvn@508 674 // Do scalar replacement.
kvn@508 675 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 676 GrowableArray <SafePointNode *> safepoints_done;
kvn@508 677
kvn@508 678 ciKlass* klass = NULL;
kvn@508 679 ciInstanceKlass* iklass = NULL;
kvn@508 680 int nfields = 0;
kvn@508 681 int array_base;
kvn@508 682 int element_size;
kvn@508 683 BasicType basic_elem_type;
kvn@508 684 ciType* elem_type;
kvn@508 685
kvn@508 686 Node* res = alloc->result_cast();
kvn@508 687 const TypeOopPtr* res_type = NULL;
kvn@508 688 if (res != NULL) { // Could be NULL when there are no users
kvn@508 689 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 690 }
kvn@508 691
kvn@508 692 if (res != NULL) {
kvn@508 693 klass = res_type->klass();
kvn@508 694 if (res_type->isa_instptr()) {
kvn@508 695 // find the fields of the class which will be needed for safepoint debug information
kvn@508 696 assert(klass->is_instance_klass(), "must be an instance klass.");
kvn@508 697 iklass = klass->as_instance_klass();
kvn@508 698 nfields = iklass->nof_nonstatic_fields();
kvn@508 699 } else {
kvn@508 700 // find the array's elements which will be needed for safepoint debug information
kvn@508 701 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 702 assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
kvn@508 703 elem_type = klass->as_array_klass()->element_type();
kvn@508 704 basic_elem_type = elem_type->basic_type();
kvn@508 705 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@508 706 element_size = type2aelembytes(basic_elem_type);
kvn@508 707 }
kvn@508 708 }
kvn@508 709 //
kvn@508 710 // Process the safepoint uses
kvn@508 711 //
kvn@508 712 while (safepoints.length() > 0) {
kvn@508 713 SafePointNode* sfpt = safepoints.pop();
kvn@508 714 Node* mem = sfpt->memory();
kvn@508 715 uint first_ind = sfpt->req();
kvn@508 716 SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
kvn@508 717 #ifdef ASSERT
kvn@508 718 alloc,
kvn@508 719 #endif
kvn@508 720 first_ind, nfields);
kvn@3311 721 sobj->init_req(0, C->root());
kvn@508 722 transform_later(sobj);
kvn@508 723
kvn@508 724 // Scan object's fields adding an input to the safepoint for each field.
kvn@508 725 for (int j = 0; j < nfields; j++) {
kvn@741 726 intptr_t offset;
kvn@508 727 ciField* field = NULL;
kvn@508 728 if (iklass != NULL) {
kvn@508 729 field = iklass->nonstatic_field_at(j);
kvn@508 730 offset = field->offset();
kvn@508 731 elem_type = field->type();
kvn@508 732 basic_elem_type = field->layout_type();
kvn@508 733 } else {
kvn@741 734 offset = array_base + j * (intptr_t)element_size;
kvn@508 735 }
kvn@508 736
kvn@508 737 const Type *field_type;
kvn@508 738 // The next code is taken from Parse::do_get_xxx().
kvn@559 739 if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
kvn@508 740 if (!elem_type->is_loaded()) {
kvn@508 741 field_type = TypeInstPtr::BOTTOM;
kvn@2037 742 } else if (field != NULL && field->is_constant() && field->is_static()) {
kvn@508 743 // This can happen if the constant oop is non-perm.
kvn@508 744 ciObject* con = field->constant_value().as_object();
kvn@508 745 // Do not "join" in the previous type; it doesn't add value,
kvn@508 746 // and may yield a vacuous result if the field is of interface type.
kvn@508 747 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
kvn@508 748 assert(field_type != NULL, "field singleton type must be consistent");
kvn@508 749 } else {
kvn@508 750 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
kvn@508 751 }
kvn@559 752 if (UseCompressedOops) {
kvn@656 753 field_type = field_type->make_narrowoop();
kvn@559 754 basic_elem_type = T_NARROWOOP;
kvn@559 755 }
kvn@508 756 } else {
kvn@508 757 field_type = Type::get_const_basic_type(basic_elem_type);
kvn@508 758 }
kvn@508 759
kvn@508 760 const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
kvn@508 761
kvn@508 762 Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
kvn@508 763 if (field_val == NULL) {
kvn@3311 764 // We weren't able to find a value for this field,
kvn@3311 765 // give up on eliminating this allocation.
kvn@3311 766
kvn@3311 767 // Remove any extra entries we added to the safepoint.
kvn@508 768 uint last = sfpt->req() - 1;
kvn@508 769 for (int k = 0; k < j; k++) {
kvn@508 770 sfpt->del_req(last--);
kvn@508 771 }
kvn@508 772 // rollback processed safepoints
kvn@508 773 while (safepoints_done.length() > 0) {
kvn@508 774 SafePointNode* sfpt_done = safepoints_done.pop();
kvn@508 775 // remove any extra entries we added to the safepoint
kvn@508 776 last = sfpt_done->req() - 1;
kvn@508 777 for (int k = 0; k < nfields; k++) {
kvn@508 778 sfpt_done->del_req(last--);
kvn@508 779 }
kvn@508 780 JVMState *jvms = sfpt_done->jvms();
kvn@508 781 jvms->set_endoff(sfpt_done->req());
kvn@508 782 // Now make a pass over the debug information replacing any references
kvn@508 783 // to SafePointScalarObjectNode with the allocated object.
kvn@508 784 int start = jvms->debug_start();
kvn@508 785 int end = jvms->debug_end();
kvn@508 786 for (int i = start; i < end; i++) {
kvn@508 787 if (sfpt_done->in(i)->is_SafePointScalarObject()) {
kvn@508 788 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
kvn@508 789 if (scobj->first_index() == sfpt_done->req() &&
kvn@508 790 scobj->n_fields() == (uint)nfields) {
kvn@508 791 assert(scobj->alloc() == alloc, "sanity");
kvn@508 792 sfpt_done->set_req(i, res);
kvn@508 793 }
kvn@508 794 }
kvn@508 795 }
kvn@508 796 }
kvn@508 797 #ifndef PRODUCT
kvn@508 798 if (PrintEliminateAllocations) {
kvn@508 799 if (field != NULL) {
kvn@508 800 tty->print("=== At SafePoint node %d can't find value of Field: ",
kvn@508 801 sfpt->_idx);
kvn@508 802 field->print();
kvn@508 803 int field_idx = C->get_alias_index(field_addr_type);
kvn@508 804 tty->print(" (alias_idx=%d)", field_idx);
kvn@508 805 } else { // Array's element
kvn@508 806 tty->print("=== At SafePoint node %d can't find value of array element [%d]",
kvn@508 807 sfpt->_idx, j);
kvn@508 808 }
kvn@508 809 tty->print(", which prevents elimination of: ");
kvn@508 810 if (res == NULL)
kvn@508 811 alloc->dump();
kvn@508 812 else
kvn@508 813 res->dump();
kvn@508 814 }
kvn@508 815 #endif
kvn@508 816 return false;
kvn@508 817 }
kvn@559 818 if (UseCompressedOops && field_type->isa_narrowoop()) {
kvn@559 819 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
kvn@559 820 // to be able scalar replace the allocation.
kvn@656 821 if (field_val->is_EncodeP()) {
kvn@656 822 field_val = field_val->in(1);
kvn@656 823 } else {
kvn@656 824 field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
kvn@656 825 }
kvn@559 826 }
kvn@508 827 sfpt->add_req(field_val);
kvn@508 828 }
kvn@508 829 JVMState *jvms = sfpt->jvms();
kvn@508 830 jvms->set_endoff(sfpt->req());
kvn@508 831 // Now make a pass over the debug information replacing any references
kvn@508 832 // to the allocated object with "sobj"
kvn@508 833 int start = jvms->debug_start();
kvn@508 834 int end = jvms->debug_end();
kvn@508 835 for (int i = start; i < end; i++) {
kvn@508 836 if (sfpt->in(i) == res) {
kvn@508 837 sfpt->set_req(i, sobj);
kvn@508 838 }
kvn@508 839 }
kvn@508 840 safepoints_done.append_if_missing(sfpt); // keep it for rollback
kvn@508 841 }
kvn@508 842 return true;
kvn@508 843 }
kvn@508 844
kvn@508 845 // Process users of eliminated allocation.
kvn@508 846 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
kvn@508 847 Node* res = alloc->result_cast();
kvn@508 848 if (res != NULL) {
kvn@508 849 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
kvn@508 850 Node *use = res->last_out(j);
kvn@508 851 uint oc1 = res->outcnt();
kvn@508 852
kvn@508 853 if (use->is_AddP()) {
kvn@508 854 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
kvn@508 855 Node *n = use->last_out(k);
kvn@508 856 uint oc2 = use->outcnt();
kvn@508 857 if (n->is_Store()) {
kvn@1535 858 #ifdef ASSERT
kvn@1535 859 // Verify that there is no dependent MemBarVolatile nodes,
kvn@1535 860 // they should be removed during IGVN, see MemBarNode::Ideal().
kvn@1535 861 for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
kvn@1535 862 p < pmax; p++) {
kvn@1535 863 Node* mb = n->fast_out(p);
kvn@1535 864 assert(mb->is_Initialize() || !mb->is_MemBar() ||
kvn@1535 865 mb->req() <= MemBarNode::Precedent ||
kvn@1535 866 mb->in(MemBarNode::Precedent) != n,
kvn@1535 867 "MemBarVolatile should be eliminated for non-escaping object");
kvn@1535 868 }
kvn@1535 869 #endif
kvn@508 870 _igvn.replace_node(n, n->in(MemNode::Memory));
kvn@508 871 } else {
kvn@508 872 eliminate_card_mark(n);
kvn@508 873 }
kvn@508 874 k -= (oc2 - use->outcnt());
kvn@508 875 }
kvn@508 876 } else {
kvn@508 877 eliminate_card_mark(use);
kvn@508 878 }
kvn@508 879 j -= (oc1 - res->outcnt());
kvn@508 880 }
kvn@508 881 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
kvn@508 882 _igvn.remove_dead_node(res);
kvn@508 883 }
kvn@508 884
kvn@508 885 //
kvn@508 886 // Process other users of allocation's projections
kvn@508 887 //
kvn@508 888 if (_resproj != NULL && _resproj->outcnt() != 0) {
kvn@508 889 for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
kvn@508 890 Node *use = _resproj->last_out(j);
kvn@508 891 uint oc1 = _resproj->outcnt();
kvn@508 892 if (use->is_Initialize()) {
kvn@508 893 // Eliminate Initialize node.
kvn@508 894 InitializeNode *init = use->as_Initialize();
kvn@508 895 assert(init->outcnt() <= 2, "only a control and memory projection expected");
kvn@508 896 Node *ctrl_proj = init->proj_out(TypeFunc::Control);
kvn@508 897 if (ctrl_proj != NULL) {
kvn@508 898 assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
kvn@508 899 _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
kvn@508 900 }
kvn@508 901 Node *mem_proj = init->proj_out(TypeFunc::Memory);
kvn@508 902 if (mem_proj != NULL) {
kvn@508 903 Node *mem = init->in(TypeFunc::Memory);
kvn@508 904 #ifdef ASSERT
kvn@508 905 if (mem->is_MergeMem()) {
kvn@508 906 assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
kvn@508 907 } else {
kvn@508 908 assert(mem == _memproj_fallthrough, "allocation memory projection");
kvn@508 909 }
kvn@508 910 #endif
kvn@508 911 _igvn.replace_node(mem_proj, mem);
kvn@508 912 }
kvn@508 913 } else if (use->is_AddP()) {
kvn@508 914 // raw memory addresses used only by the initialization
kvn@1143 915 _igvn.replace_node(use, C->top());
kvn@508 916 } else {
kvn@508 917 assert(false, "only Initialize or AddP expected");
kvn@508 918 }
kvn@508 919 j -= (oc1 - _resproj->outcnt());
kvn@508 920 }
kvn@508 921 }
kvn@508 922 if (_fallthroughcatchproj != NULL) {
kvn@508 923 _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
kvn@508 924 }
kvn@508 925 if (_memproj_fallthrough != NULL) {
kvn@508 926 _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
kvn@508 927 }
kvn@508 928 if (_memproj_catchall != NULL) {
kvn@508 929 _igvn.replace_node(_memproj_catchall, C->top());
kvn@508 930 }
kvn@508 931 if (_ioproj_fallthrough != NULL) {
kvn@508 932 _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
kvn@508 933 }
kvn@508 934 if (_ioproj_catchall != NULL) {
kvn@508 935 _igvn.replace_node(_ioproj_catchall, C->top());
kvn@508 936 }
kvn@508 937 if (_catchallcatchproj != NULL) {
kvn@508 938 _igvn.replace_node(_catchallcatchproj, C->top());
kvn@508 939 }
kvn@508 940 }
kvn@508 941
kvn@508 942 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
kvn@508 943
kvn@508 944 if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
kvn@508 945 return false;
kvn@508 946 }
kvn@508 947
kvn@508 948 extract_call_projections(alloc);
kvn@508 949
kvn@508 950 GrowableArray <SafePointNode *> safepoints;
kvn@508 951 if (!can_eliminate_allocation(alloc, safepoints)) {
kvn@508 952 return false;
kvn@508 953 }
kvn@508 954
kvn@508 955 if (!scalar_replacement(alloc, safepoints)) {
kvn@508 956 return false;
kvn@508 957 }
kvn@508 958
never@1515 959 CompileLog* log = C->log();
never@1515 960 if (log != NULL) {
never@1515 961 Node* klass = alloc->in(AllocateNode::KlassNode);
never@1515 962 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
never@1515 963 log->head("eliminate_allocation type='%d'",
never@1515 964 log->identify(tklass->klass()));
never@1515 965 JVMState* p = alloc->jvms();
never@1515 966 while (p != NULL) {
never@1515 967 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 968 p = p->caller();
never@1515 969 }
never@1515 970 log->tail("eliminate_allocation");
never@1515 971 }
never@1515 972
kvn@508 973 process_users_of_allocation(alloc);
kvn@508 974
kvn@508 975 #ifndef PRODUCT
never@1515 976 if (PrintEliminateAllocations) {
never@1515 977 if (alloc->is_AllocateArray())
never@1515 978 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
never@1515 979 else
never@1515 980 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
never@1515 981 }
kvn@508 982 #endif
kvn@508 983
kvn@508 984 return true;
kvn@508 985 }
kvn@508 986
duke@435 987
duke@435 988 //---------------------------set_eden_pointers-------------------------
duke@435 989 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
duke@435 990 if (UseTLAB) { // Private allocation: load from TLS
duke@435 991 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
duke@435 992 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
duke@435 993 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
duke@435 994 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
duke@435 995 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
duke@435 996 } else { // Shared allocation: load from globals
duke@435 997 CollectedHeap* ch = Universe::heap();
duke@435 998 address top_adr = (address)ch->top_addr();
duke@435 999 address end_adr = (address)ch->end_addr();
duke@435 1000 eden_top_adr = makecon(TypeRawPtr::make(top_adr));
duke@435 1001 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
duke@435 1002 }
duke@435 1003 }
duke@435 1004
duke@435 1005
duke@435 1006 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
duke@435 1007 Node* adr = basic_plus_adr(base, offset);
kvn@855 1008 const TypePtr* adr_type = adr->bottom_type()->is_ptr();
coleenp@548 1009 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
duke@435 1010 transform_later(value);
duke@435 1011 return value;
duke@435 1012 }
duke@435 1013
duke@435 1014
duke@435 1015 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
duke@435 1016 Node* adr = basic_plus_adr(base, offset);
coleenp@548 1017 mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
duke@435 1018 transform_later(mem);
duke@435 1019 return mem;
duke@435 1020 }
duke@435 1021
duke@435 1022 //=============================================================================
duke@435 1023 //
duke@435 1024 // A L L O C A T I O N
duke@435 1025 //
duke@435 1026 // Allocation attempts to be fast in the case of frequent small objects.
duke@435 1027 // It breaks down like this:
duke@435 1028 //
duke@435 1029 // 1) Size in doublewords is computed. This is a constant for objects and
duke@435 1030 // variable for most arrays. Doubleword units are used to avoid size
duke@435 1031 // overflow of huge doubleword arrays. We need doublewords in the end for
duke@435 1032 // rounding.
duke@435 1033 //
duke@435 1034 // 2) Size is checked for being 'too large'. Too-large allocations will go
duke@435 1035 // the slow path into the VM. The slow path can throw any required
duke@435 1036 // exceptions, and does all the special checks for very large arrays. The
duke@435 1037 // size test can constant-fold away for objects. For objects with
duke@435 1038 // finalizers it constant-folds the otherway: you always go slow with
duke@435 1039 // finalizers.
duke@435 1040 //
duke@435 1041 // 3) If NOT using TLABs, this is the contended loop-back point.
duke@435 1042 // Load-Locked the heap top. If using TLABs normal-load the heap top.
duke@435 1043 //
duke@435 1044 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route.
duke@435 1045 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish
duke@435 1046 // "size*8" we always enter the VM, where "largish" is a constant picked small
duke@435 1047 // enough that there's always space between the eden max and 4Gig (old space is
duke@435 1048 // there so it's quite large) and large enough that the cost of entering the VM
duke@435 1049 // is dwarfed by the cost to initialize the space.
duke@435 1050 //
duke@435 1051 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
duke@435 1052 // down. If contended, repeat at step 3. If using TLABs normal-store
duke@435 1053 // adjusted heap top back down; there is no contention.
duke@435 1054 //
duke@435 1055 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark
duke@435 1056 // fields.
duke@435 1057 //
duke@435 1058 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
duke@435 1059 // oop flavor.
duke@435 1060 //
duke@435 1061 //=============================================================================
duke@435 1062 // FastAllocateSizeLimit value is in DOUBLEWORDS.
duke@435 1063 // Allocations bigger than this always go the slow route.
duke@435 1064 // This value must be small enough that allocation attempts that need to
duke@435 1065 // trigger exceptions go the slow route. Also, it must be small enough so
duke@435 1066 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
duke@435 1067 //=============================================================================j//
duke@435 1068 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
duke@435 1069 // The allocator will coalesce int->oop copies away. See comment in
duke@435 1070 // coalesce.cpp about how this works. It depends critically on the exact
duke@435 1071 // code shape produced here, so if you are changing this code shape
duke@435 1072 // make sure the GC info for the heap-top is correct in and around the
duke@435 1073 // slow-path call.
duke@435 1074 //
duke@435 1075
duke@435 1076 void PhaseMacroExpand::expand_allocate_common(
duke@435 1077 AllocateNode* alloc, // allocation node to be expanded
duke@435 1078 Node* length, // array length for an array allocation
duke@435 1079 const TypeFunc* slow_call_type, // Type of slow call
duke@435 1080 address slow_call_address // Address of slow call
duke@435 1081 )
duke@435 1082 {
duke@435 1083
duke@435 1084 Node* ctrl = alloc->in(TypeFunc::Control);
duke@435 1085 Node* mem = alloc->in(TypeFunc::Memory);
duke@435 1086 Node* i_o = alloc->in(TypeFunc::I_O);
duke@435 1087 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize);
duke@435 1088 Node* klass_node = alloc->in(AllocateNode::KlassNode);
duke@435 1089 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
duke@435 1090
duke@435 1091 assert(ctrl != NULL, "must have control");
duke@435 1092 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
duke@435 1093 // they will not be used if "always_slow" is set
duke@435 1094 enum { slow_result_path = 1, fast_result_path = 2 };
duke@435 1095 Node *result_region;
duke@435 1096 Node *result_phi_rawmem;
duke@435 1097 Node *result_phi_rawoop;
duke@435 1098 Node *result_phi_i_o;
duke@435 1099
duke@435 1100 // The initial slow comparison is a size check, the comparison
duke@435 1101 // we want to do is a BoolTest::gt
duke@435 1102 bool always_slow = false;
duke@435 1103 int tv = _igvn.find_int_con(initial_slow_test, -1);
duke@435 1104 if (tv >= 0) {
duke@435 1105 always_slow = (tv == 1);
duke@435 1106 initial_slow_test = NULL;
duke@435 1107 } else {
duke@435 1108 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
duke@435 1109 }
duke@435 1110
kvn@1215 1111 if (C->env()->dtrace_alloc_probes() ||
ysr@777 1112 !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
ysr@777 1113 (UseConcMarkSweepGC && CMSIncrementalMode))) {
duke@435 1114 // Force slow-path allocation
duke@435 1115 always_slow = true;
duke@435 1116 initial_slow_test = NULL;
duke@435 1117 }
duke@435 1118
ysr@777 1119
duke@435 1120 enum { too_big_or_final_path = 1, need_gc_path = 2 };
duke@435 1121 Node *slow_region = NULL;
duke@435 1122 Node *toobig_false = ctrl;
duke@435 1123
duke@435 1124 assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
duke@435 1125 // generate the initial test if necessary
duke@435 1126 if (initial_slow_test != NULL ) {
duke@435 1127 slow_region = new (C, 3) RegionNode(3);
duke@435 1128
duke@435 1129 // Now make the initial failure test. Usually a too-big test but
duke@435 1130 // might be a TRUE for finalizers or a fancy class check for
duke@435 1131 // newInstance0.
duke@435 1132 IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
duke@435 1133 transform_later(toobig_iff);
duke@435 1134 // Plug the failing-too-big test into the slow-path region
duke@435 1135 Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
duke@435 1136 transform_later(toobig_true);
duke@435 1137 slow_region ->init_req( too_big_or_final_path, toobig_true );
duke@435 1138 toobig_false = new (C, 1) IfFalseNode( toobig_iff );
duke@435 1139 transform_later(toobig_false);
duke@435 1140 } else { // No initial test, just fall into next case
duke@435 1141 toobig_false = ctrl;
duke@435 1142 debug_only(slow_region = NodeSentinel);
duke@435 1143 }
duke@435 1144
duke@435 1145 Node *slow_mem = mem; // save the current memory state for slow path
duke@435 1146 // generate the fast allocation code unless we know that the initial test will always go slow
duke@435 1147 if (!always_slow) {
kvn@1000 1148 // Fast path modifies only raw memory.
kvn@1000 1149 if (mem->is_MergeMem()) {
kvn@1000 1150 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
kvn@1000 1151 }
kvn@1000 1152
ysr@777 1153 Node* eden_top_adr;
ysr@777 1154 Node* eden_end_adr;
ysr@777 1155
ysr@777 1156 set_eden_pointers(eden_top_adr, eden_end_adr);
ysr@777 1157
ysr@777 1158 // Load Eden::end. Loop invariant and hoisted.
ysr@777 1159 //
ysr@777 1160 // Note: We set the control input on "eden_end" and "old_eden_top" when using
ysr@777 1161 // a TLAB to work around a bug where these values were being moved across
ysr@777 1162 // a safepoint. These are not oops, so they cannot be include in the oop
phh@2423 1163 // map, but they can be changed by a GC. The proper way to fix this would
ysr@777 1164 // be to set the raw memory state when generating a SafepointNode. However
ysr@777 1165 // this will require extensive changes to the loop optimization in order to
ysr@777 1166 // prevent a degradation of the optimization.
ysr@777 1167 // See comment in memnode.hpp, around line 227 in class LoadPNode.
ysr@777 1168 Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
ysr@777 1169
duke@435 1170 // allocate the Region and Phi nodes for the result
duke@435 1171 result_region = new (C, 3) RegionNode(3);
phh@2423 1172 result_phi_rawmem = new (C, 3) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
phh@2423 1173 result_phi_rawoop = new (C, 3) PhiNode(result_region, TypeRawPtr::BOTTOM);
phh@2423 1174 result_phi_i_o = new (C, 3) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
duke@435 1175
duke@435 1176 // We need a Region for the loop-back contended case.
duke@435 1177 enum { fall_in_path = 1, contended_loopback_path = 2 };
duke@435 1178 Node *contended_region;
duke@435 1179 Node *contended_phi_rawmem;
phh@2423 1180 if (UseTLAB) {
duke@435 1181 contended_region = toobig_false;
duke@435 1182 contended_phi_rawmem = mem;
duke@435 1183 } else {
duke@435 1184 contended_region = new (C, 3) RegionNode(3);
phh@2423 1185 contended_phi_rawmem = new (C, 3) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 1186 // Now handle the passing-too-big test. We fall into the contended
duke@435 1187 // loop-back merge point.
phh@2423 1188 contended_region ->init_req(fall_in_path, toobig_false);
phh@2423 1189 contended_phi_rawmem->init_req(fall_in_path, mem);
duke@435 1190 transform_later(contended_region);
duke@435 1191 transform_later(contended_phi_rawmem);
duke@435 1192 }
duke@435 1193
duke@435 1194 // Load(-locked) the heap top.
duke@435 1195 // See note above concerning the control input when using a TLAB
duke@435 1196 Node *old_eden_top = UseTLAB
phh@2423 1197 ? new (C, 3) LoadPNode (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
phh@2423 1198 : new (C, 3) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
duke@435 1199
duke@435 1200 transform_later(old_eden_top);
duke@435 1201 // Add to heap top to get a new heap top
phh@2423 1202 Node *new_eden_top = new (C, 4) AddPNode(top(), old_eden_top, size_in_bytes);
duke@435 1203 transform_later(new_eden_top);
duke@435 1204 // Check for needing a GC; compare against heap end
phh@2423 1205 Node *needgc_cmp = new (C, 3) CmpPNode(new_eden_top, eden_end);
duke@435 1206 transform_later(needgc_cmp);
phh@2423 1207 Node *needgc_bol = new (C, 2) BoolNode(needgc_cmp, BoolTest::ge);
duke@435 1208 transform_later(needgc_bol);
phh@2423 1209 IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
duke@435 1210 transform_later(needgc_iff);
duke@435 1211
duke@435 1212 // Plug the failing-heap-space-need-gc test into the slow-path region
phh@2423 1213 Node *needgc_true = new (C, 1) IfTrueNode(needgc_iff);
duke@435 1214 transform_later(needgc_true);
phh@2423 1215 if (initial_slow_test) {
phh@2423 1216 slow_region->init_req(need_gc_path, needgc_true);
duke@435 1217 // This completes all paths into the slow merge point
duke@435 1218 transform_later(slow_region);
duke@435 1219 } else { // No initial slow path needed!
duke@435 1220 // Just fall from the need-GC path straight into the VM call.
phh@2423 1221 slow_region = needgc_true;
duke@435 1222 }
duke@435 1223 // No need for a GC. Setup for the Store-Conditional
phh@2423 1224 Node *needgc_false = new (C, 1) IfFalseNode(needgc_iff);
duke@435 1225 transform_later(needgc_false);
duke@435 1226
duke@435 1227 // Grab regular I/O before optional prefetch may change it.
duke@435 1228 // Slow-path does no I/O so just set it to the original I/O.
phh@2423 1229 result_phi_i_o->init_req(slow_result_path, i_o);
duke@435 1230
duke@435 1231 i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
duke@435 1232 old_eden_top, new_eden_top, length);
duke@435 1233
phh@2423 1234 // Name successful fast-path variables
phh@2423 1235 Node* fast_oop = old_eden_top;
phh@2423 1236 Node* fast_oop_ctrl;
phh@2423 1237 Node* fast_oop_rawmem;
phh@2423 1238
duke@435 1239 // Store (-conditional) the modified eden top back down.
duke@435 1240 // StorePConditional produces flags for a test PLUS a modified raw
duke@435 1241 // memory state.
phh@2423 1242 if (UseTLAB) {
phh@2423 1243 Node* store_eden_top =
phh@2423 1244 new (C, 4) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
phh@2423 1245 TypeRawPtr::BOTTOM, new_eden_top);
duke@435 1246 transform_later(store_eden_top);
duke@435 1247 fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
phh@2423 1248 fast_oop_rawmem = store_eden_top;
duke@435 1249 } else {
phh@2423 1250 Node* store_eden_top =
phh@2423 1251 new (C, 5) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
phh@2423 1252 new_eden_top, fast_oop/*old_eden_top*/);
duke@435 1253 transform_later(store_eden_top);
phh@2423 1254 Node *contention_check = new (C, 2) BoolNode(store_eden_top, BoolTest::ne);
duke@435 1255 transform_later(contention_check);
duke@435 1256 store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
duke@435 1257 transform_later(store_eden_top);
duke@435 1258
duke@435 1259 // If not using TLABs, check to see if there was contention.
phh@2423 1260 IfNode *contention_iff = new (C, 2) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
duke@435 1261 transform_later(contention_iff);
phh@2423 1262 Node *contention_true = new (C, 1) IfTrueNode(contention_iff);
duke@435 1263 transform_later(contention_true);
duke@435 1264 // If contention, loopback and try again.
phh@2423 1265 contended_region->init_req(contended_loopback_path, contention_true);
phh@2423 1266 contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
duke@435 1267
duke@435 1268 // Fast-path succeeded with no contention!
phh@2423 1269 Node *contention_false = new (C, 1) IfFalseNode(contention_iff);
duke@435 1270 transform_later(contention_false);
duke@435 1271 fast_oop_ctrl = contention_false;
phh@2423 1272
phh@2423 1273 // Bump total allocated bytes for this thread
phh@2423 1274 Node* thread = new (C, 1) ThreadLocalNode();
phh@2423 1275 transform_later(thread);
phh@2423 1276 Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
phh@2423 1277 in_bytes(JavaThread::allocated_bytes_offset()));
phh@2423 1278 Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
phh@2423 1279 0, TypeLong::LONG, T_LONG);
phh@2423 1280 #ifdef _LP64
phh@2423 1281 Node* alloc_size = size_in_bytes;
phh@2423 1282 #else
phh@2423 1283 Node* alloc_size = new (C, 2) ConvI2LNode(size_in_bytes);
phh@2423 1284 transform_later(alloc_size);
phh@2423 1285 #endif
phh@2423 1286 Node* new_alloc_bytes = new (C, 3) AddLNode(alloc_bytes, alloc_size);
phh@2423 1287 transform_later(new_alloc_bytes);
phh@2423 1288 fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
phh@2423 1289 0, new_alloc_bytes, T_LONG);
duke@435 1290 }
duke@435 1291
duke@435 1292 fast_oop_rawmem = initialize_object(alloc,
duke@435 1293 fast_oop_ctrl, fast_oop_rawmem, fast_oop,
duke@435 1294 klass_node, length, size_in_bytes);
duke@435 1295
kvn@1215 1296 if (C->env()->dtrace_extended_probes()) {
duke@435 1297 // Slow-path call
duke@435 1298 int size = TypeFunc::Parms + 2;
duke@435 1299 CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
duke@435 1300 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
duke@435 1301 "dtrace_object_alloc",
duke@435 1302 TypeRawPtr::BOTTOM);
duke@435 1303
duke@435 1304 // Get base of thread-local storage area
duke@435 1305 Node* thread = new (C, 1) ThreadLocalNode();
duke@435 1306 transform_later(thread);
duke@435 1307
duke@435 1308 call->init_req(TypeFunc::Parms+0, thread);
duke@435 1309 call->init_req(TypeFunc::Parms+1, fast_oop);
phh@2423 1310 call->init_req(TypeFunc::Control, fast_oop_ctrl);
phh@2423 1311 call->init_req(TypeFunc::I_O , top()); // does no i/o
phh@2423 1312 call->init_req(TypeFunc::Memory , fast_oop_rawmem);
phh@2423 1313 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
phh@2423 1314 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
duke@435 1315 transform_later(call);
duke@435 1316 fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
duke@435 1317 transform_later(fast_oop_ctrl);
duke@435 1318 fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
duke@435 1319 transform_later(fast_oop_rawmem);
duke@435 1320 }
duke@435 1321
duke@435 1322 // Plug in the successful fast-path into the result merge point
phh@2423 1323 result_region ->init_req(fast_result_path, fast_oop_ctrl);
phh@2423 1324 result_phi_rawoop->init_req(fast_result_path, fast_oop);
phh@2423 1325 result_phi_i_o ->init_req(fast_result_path, i_o);
phh@2423 1326 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
duke@435 1327 } else {
duke@435 1328 slow_region = ctrl;
duke@435 1329 }
duke@435 1330
duke@435 1331 // Generate slow-path call
duke@435 1332 CallNode *call = new (C, slow_call_type->domain()->cnt())
duke@435 1333 CallStaticJavaNode(slow_call_type, slow_call_address,
duke@435 1334 OptoRuntime::stub_name(slow_call_address),
duke@435 1335 alloc->jvms()->bci(),
duke@435 1336 TypePtr::BOTTOM);
duke@435 1337 call->init_req( TypeFunc::Control, slow_region );
duke@435 1338 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1339 call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
duke@435 1340 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1341 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1342
duke@435 1343 call->init_req(TypeFunc::Parms+0, klass_node);
duke@435 1344 if (length != NULL) {
duke@435 1345 call->init_req(TypeFunc::Parms+1, length);
duke@435 1346 }
duke@435 1347
duke@435 1348 // Copy debug information and adjust JVMState information, then replace
duke@435 1349 // allocate node with the call
duke@435 1350 copy_call_debug_info((CallNode *) alloc, call);
duke@435 1351 if (!always_slow) {
duke@435 1352 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
duke@435 1353 }
kvn@1976 1354 _igvn.replace_node(alloc, call);
duke@435 1355 transform_later(call);
duke@435 1356
duke@435 1357 // Identify the output projections from the allocate node and
duke@435 1358 // adjust any references to them.
duke@435 1359 // The control and io projections look like:
duke@435 1360 //
duke@435 1361 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl)
duke@435 1362 // Allocate Catch
duke@435 1363 // ^---Proj(io) <-------+ ^---CatchProj(io)
duke@435 1364 //
duke@435 1365 // We are interested in the CatchProj nodes.
duke@435 1366 //
duke@435 1367 extract_call_projections(call);
duke@435 1368
duke@435 1369 // An allocate node has separate memory projections for the uses on the control and i_o paths
duke@435 1370 // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
duke@435 1371 if (!always_slow && _memproj_fallthrough != NULL) {
duke@435 1372 for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1373 Node *use = _memproj_fallthrough->fast_out(i);
duke@435 1374 _igvn.hash_delete(use);
duke@435 1375 imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
duke@435 1376 _igvn._worklist.push(use);
duke@435 1377 // back up iterator
duke@435 1378 --i;
duke@435 1379 }
duke@435 1380 }
duke@435 1381 // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
duke@435 1382 // we end up with a call that has only 1 memory projection
duke@435 1383 if (_memproj_catchall != NULL ) {
duke@435 1384 if (_memproj_fallthrough == NULL) {
duke@435 1385 _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
duke@435 1386 transform_later(_memproj_fallthrough);
duke@435 1387 }
duke@435 1388 for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1389 Node *use = _memproj_catchall->fast_out(i);
duke@435 1390 _igvn.hash_delete(use);
duke@435 1391 imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
duke@435 1392 _igvn._worklist.push(use);
duke@435 1393 // back up iterator
duke@435 1394 --i;
duke@435 1395 }
duke@435 1396 }
duke@435 1397
duke@435 1398 // An allocate node has separate i_o projections for the uses on the control and i_o paths
duke@435 1399 // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
duke@435 1400 if (_ioproj_fallthrough == NULL) {
duke@435 1401 _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
duke@435 1402 transform_later(_ioproj_fallthrough);
duke@435 1403 } else if (!always_slow) {
duke@435 1404 for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1405 Node *use = _ioproj_fallthrough->fast_out(i);
duke@435 1406
duke@435 1407 _igvn.hash_delete(use);
duke@435 1408 imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
duke@435 1409 _igvn._worklist.push(use);
duke@435 1410 // back up iterator
duke@435 1411 --i;
duke@435 1412 }
duke@435 1413 }
duke@435 1414 // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
duke@435 1415 // we end up with a call that has only 1 control projection
duke@435 1416 if (_ioproj_catchall != NULL ) {
duke@435 1417 for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1418 Node *use = _ioproj_catchall->fast_out(i);
duke@435 1419 _igvn.hash_delete(use);
duke@435 1420 imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
duke@435 1421 _igvn._worklist.push(use);
duke@435 1422 // back up iterator
duke@435 1423 --i;
duke@435 1424 }
duke@435 1425 }
duke@435 1426
duke@435 1427 // if we generated only a slow call, we are done
duke@435 1428 if (always_slow)
duke@435 1429 return;
duke@435 1430
duke@435 1431
duke@435 1432 if (_fallthroughcatchproj != NULL) {
duke@435 1433 ctrl = _fallthroughcatchproj->clone();
duke@435 1434 transform_later(ctrl);
kvn@1143 1435 _igvn.replace_node(_fallthroughcatchproj, result_region);
duke@435 1436 } else {
duke@435 1437 ctrl = top();
duke@435 1438 }
duke@435 1439 Node *slow_result;
duke@435 1440 if (_resproj == NULL) {
duke@435 1441 // no uses of the allocation result
duke@435 1442 slow_result = top();
duke@435 1443 } else {
duke@435 1444 slow_result = _resproj->clone();
duke@435 1445 transform_later(slow_result);
kvn@1143 1446 _igvn.replace_node(_resproj, result_phi_rawoop);
duke@435 1447 }
duke@435 1448
duke@435 1449 // Plug slow-path into result merge point
duke@435 1450 result_region ->init_req( slow_result_path, ctrl );
duke@435 1451 result_phi_rawoop->init_req( slow_result_path, slow_result);
duke@435 1452 result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
duke@435 1453 transform_later(result_region);
duke@435 1454 transform_later(result_phi_rawoop);
duke@435 1455 transform_later(result_phi_rawmem);
duke@435 1456 transform_later(result_phi_i_o);
duke@435 1457 // This completes all paths into the result merge point
duke@435 1458 }
duke@435 1459
duke@435 1460
duke@435 1461 // Helper for PhaseMacroExpand::expand_allocate_common.
duke@435 1462 // Initializes the newly-allocated storage.
duke@435 1463 Node*
duke@435 1464 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
duke@435 1465 Node* control, Node* rawmem, Node* object,
duke@435 1466 Node* klass_node, Node* length,
duke@435 1467 Node* size_in_bytes) {
duke@435 1468 InitializeNode* init = alloc->initialization();
duke@435 1469 // Store the klass & mark bits
duke@435 1470 Node* mark_node = NULL;
duke@435 1471 // For now only enable fast locking for non-array types
duke@435 1472 if (UseBiasedLocking && (length == NULL)) {
stefank@3391 1473 mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 1474 } else {
duke@435 1475 mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
duke@435 1476 }
duke@435 1477 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
coleenp@548 1478
duke@435 1479 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
duke@435 1480 int header_size = alloc->minimum_header_size(); // conservatively small
duke@435 1481
duke@435 1482 // Array length
duke@435 1483 if (length != NULL) { // Arrays need length field
duke@435 1484 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
duke@435 1485 // conservatively small header size:
coleenp@548 1486 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1487 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
duke@435 1488 if (k->is_array_klass()) // we know the exact header size in most cases:
duke@435 1489 header_size = Klass::layout_helper_header_size(k->layout_helper());
duke@435 1490 }
duke@435 1491
duke@435 1492 // Clear the object body, if necessary.
duke@435 1493 if (init == NULL) {
duke@435 1494 // The init has somehow disappeared; be cautious and clear everything.
duke@435 1495 //
duke@435 1496 // This can happen if a node is allocated but an uncommon trap occurs
duke@435 1497 // immediately. In this case, the Initialize gets associated with the
duke@435 1498 // trap, and may be placed in a different (outer) loop, if the Allocate
duke@435 1499 // is in a loop. If (this is rare) the inner loop gets unrolled, then
duke@435 1500 // there can be two Allocates to one Initialize. The answer in all these
duke@435 1501 // edge cases is safety first. It is always safe to clear immediately
duke@435 1502 // within an Allocate, and then (maybe or maybe not) clear some more later.
duke@435 1503 if (!ZeroTLAB)
duke@435 1504 rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
duke@435 1505 header_size, size_in_bytes,
duke@435 1506 &_igvn);
duke@435 1507 } else {
duke@435 1508 if (!init->is_complete()) {
duke@435 1509 // Try to win by zeroing only what the init does not store.
duke@435 1510 // We can also try to do some peephole optimizations,
duke@435 1511 // such as combining some adjacent subword stores.
duke@435 1512 rawmem = init->complete_stores(control, rawmem, object,
duke@435 1513 header_size, size_in_bytes, &_igvn);
duke@435 1514 }
duke@435 1515 // We have no more use for this link, since the AllocateNode goes away:
duke@435 1516 init->set_req(InitializeNode::RawAddress, top());
duke@435 1517 // (If we keep the link, it just confuses the register allocator,
duke@435 1518 // who thinks he sees a real use of the address by the membar.)
duke@435 1519 }
duke@435 1520
duke@435 1521 return rawmem;
duke@435 1522 }
duke@435 1523
duke@435 1524 // Generate prefetch instructions for next allocations.
duke@435 1525 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
duke@435 1526 Node*& contended_phi_rawmem,
duke@435 1527 Node* old_eden_top, Node* new_eden_top,
duke@435 1528 Node* length) {
kvn@1802 1529 enum { fall_in_path = 1, pf_path = 2 };
duke@435 1530 if( UseTLAB && AllocatePrefetchStyle == 2 ) {
duke@435 1531 // Generate prefetch allocation with watermark check.
duke@435 1532 // As an allocation hits the watermark, we will prefetch starting
duke@435 1533 // at a "distance" away from watermark.
duke@435 1534
duke@435 1535 Node *pf_region = new (C, 3) RegionNode(3);
duke@435 1536 Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
duke@435 1537 TypeRawPtr::BOTTOM );
duke@435 1538 // I/O is used for Prefetch
duke@435 1539 Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
duke@435 1540
duke@435 1541 Node *thread = new (C, 1) ThreadLocalNode();
duke@435 1542 transform_later(thread);
duke@435 1543
duke@435 1544 Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
duke@435 1545 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
duke@435 1546 transform_later(eden_pf_adr);
duke@435 1547
duke@435 1548 Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
duke@435 1549 contended_phi_rawmem, eden_pf_adr,
duke@435 1550 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
duke@435 1551 transform_later(old_pf_wm);
duke@435 1552
duke@435 1553 // check against new_eden_top
duke@435 1554 Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
duke@435 1555 transform_later(need_pf_cmp);
duke@435 1556 Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
duke@435 1557 transform_later(need_pf_bol);
duke@435 1558 IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
duke@435 1559 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1560 transform_later(need_pf_iff);
duke@435 1561
duke@435 1562 // true node, add prefetchdistance
duke@435 1563 Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
duke@435 1564 transform_later(need_pf_true);
duke@435 1565
duke@435 1566 Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
duke@435 1567 transform_later(need_pf_false);
duke@435 1568
duke@435 1569 Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
duke@435 1570 _igvn.MakeConX(AllocatePrefetchDistance) );
duke@435 1571 transform_later(new_pf_wmt );
duke@435 1572 new_pf_wmt->set_req(0, need_pf_true);
duke@435 1573
duke@435 1574 Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
duke@435 1575 contended_phi_rawmem, eden_pf_adr,
duke@435 1576 TypeRawPtr::BOTTOM, new_pf_wmt );
duke@435 1577 transform_later(store_new_wmt);
duke@435 1578
duke@435 1579 // adding prefetches
duke@435 1580 pf_phi_abio->init_req( fall_in_path, i_o );
duke@435 1581
duke@435 1582 Node *prefetch_adr;
duke@435 1583 Node *prefetch;
duke@435 1584 uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
duke@435 1585 uint step_size = AllocatePrefetchStepSize;
duke@435 1586 uint distance = 0;
duke@435 1587
duke@435 1588 for ( uint i = 0; i < lines; i++ ) {
duke@435 1589 prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
duke@435 1590 _igvn.MakeConX(distance) );
duke@435 1591 transform_later(prefetch_adr);
kvn@3052 1592 prefetch = new (C, 3) PrefetchAllocationNode( i_o, prefetch_adr );
duke@435 1593 transform_later(prefetch);
duke@435 1594 distance += step_size;
duke@435 1595 i_o = prefetch;
duke@435 1596 }
duke@435 1597 pf_phi_abio->set_req( pf_path, i_o );
duke@435 1598
duke@435 1599 pf_region->init_req( fall_in_path, need_pf_false );
duke@435 1600 pf_region->init_req( pf_path, need_pf_true );
duke@435 1601
duke@435 1602 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
duke@435 1603 pf_phi_rawmem->init_req( pf_path, store_new_wmt );
duke@435 1604
duke@435 1605 transform_later(pf_region);
duke@435 1606 transform_later(pf_phi_rawmem);
duke@435 1607 transform_later(pf_phi_abio);
duke@435 1608
duke@435 1609 needgc_false = pf_region;
duke@435 1610 contended_phi_rawmem = pf_phi_rawmem;
duke@435 1611 i_o = pf_phi_abio;
kvn@1802 1612 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
kvn@3052 1613 // Insert a prefetch for each allocation.
kvn@3052 1614 // This code is used for Sparc with BIS.
kvn@1802 1615 Node *pf_region = new (C, 3) RegionNode(3);
kvn@1802 1616 Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
kvn@1802 1617 TypeRawPtr::BOTTOM );
kvn@1802 1618
kvn@3052 1619 // Generate several prefetch instructions.
kvn@3052 1620 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
kvn@1802 1621 uint step_size = AllocatePrefetchStepSize;
kvn@1802 1622 uint distance = AllocatePrefetchDistance;
kvn@1802 1623
kvn@1802 1624 // Next cache address.
kvn@1802 1625 Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
kvn@1802 1626 _igvn.MakeConX(distance));
kvn@1802 1627 transform_later(cache_adr);
kvn@1802 1628 cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
kvn@1802 1629 transform_later(cache_adr);
kvn@1802 1630 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
kvn@1802 1631 cache_adr = new (C, 3) AndXNode(cache_adr, mask);
kvn@1802 1632 transform_later(cache_adr);
kvn@1802 1633 cache_adr = new (C, 2) CastX2PNode(cache_adr);
kvn@1802 1634 transform_later(cache_adr);
kvn@1802 1635
kvn@1802 1636 // Prefetch
kvn@3052 1637 Node *prefetch = new (C, 3) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
kvn@1802 1638 prefetch->set_req(0, needgc_false);
kvn@1802 1639 transform_later(prefetch);
kvn@1802 1640 contended_phi_rawmem = prefetch;
kvn@1802 1641 Node *prefetch_adr;
kvn@1802 1642 distance = step_size;
kvn@1802 1643 for ( uint i = 1; i < lines; i++ ) {
kvn@1802 1644 prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
kvn@1802 1645 _igvn.MakeConX(distance) );
kvn@1802 1646 transform_later(prefetch_adr);
kvn@3052 1647 prefetch = new (C, 3) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
kvn@1802 1648 transform_later(prefetch);
kvn@1802 1649 distance += step_size;
kvn@1802 1650 contended_phi_rawmem = prefetch;
kvn@1802 1651 }
duke@435 1652 } else if( AllocatePrefetchStyle > 0 ) {
duke@435 1653 // Insert a prefetch for each allocation only on the fast-path
duke@435 1654 Node *prefetch_adr;
duke@435 1655 Node *prefetch;
kvn@3052 1656 // Generate several prefetch instructions.
kvn@3052 1657 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
duke@435 1658 uint step_size = AllocatePrefetchStepSize;
duke@435 1659 uint distance = AllocatePrefetchDistance;
duke@435 1660 for ( uint i = 0; i < lines; i++ ) {
duke@435 1661 prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
duke@435 1662 _igvn.MakeConX(distance) );
duke@435 1663 transform_later(prefetch_adr);
kvn@3052 1664 prefetch = new (C, 3) PrefetchAllocationNode( i_o, prefetch_adr );
duke@435 1665 // Do not let it float too high, since if eden_top == eden_end,
duke@435 1666 // both might be null.
duke@435 1667 if( i == 0 ) { // Set control for first prefetch, next follows it
duke@435 1668 prefetch->init_req(0, needgc_false);
duke@435 1669 }
duke@435 1670 transform_later(prefetch);
duke@435 1671 distance += step_size;
duke@435 1672 i_o = prefetch;
duke@435 1673 }
duke@435 1674 }
duke@435 1675 return i_o;
duke@435 1676 }
duke@435 1677
duke@435 1678
duke@435 1679 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
duke@435 1680 expand_allocate_common(alloc, NULL,
duke@435 1681 OptoRuntime::new_instance_Type(),
duke@435 1682 OptoRuntime::new_instance_Java());
duke@435 1683 }
duke@435 1684
duke@435 1685 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
duke@435 1686 Node* length = alloc->in(AllocateNode::ALength);
kvn@3157 1687 InitializeNode* init = alloc->initialization();
kvn@3157 1688 Node* klass_node = alloc->in(AllocateNode::KlassNode);
kvn@3157 1689 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
kvn@3157 1690 address slow_call_address; // Address of slow call
kvn@3157 1691 if (init != NULL && init->is_complete_with_arraycopy() &&
kvn@3157 1692 k->is_type_array_klass()) {
kvn@3157 1693 // Don't zero type array during slow allocation in VM since
kvn@3157 1694 // it will be initialized later by arraycopy in compiled code.
kvn@3157 1695 slow_call_address = OptoRuntime::new_array_nozero_Java();
kvn@3157 1696 } else {
kvn@3157 1697 slow_call_address = OptoRuntime::new_array_Java();
kvn@3157 1698 }
duke@435 1699 expand_allocate_common(alloc, length,
duke@435 1700 OptoRuntime::new_array_Type(),
kvn@3157 1701 slow_call_address);
duke@435 1702 }
duke@435 1703
kvn@2951 1704 //-----------------------mark_eliminated_locking_nodes-----------------------
kvn@2951 1705 // During EA obj may point to several objects but after few ideal graph
kvn@2951 1706 // transformations (CCP) it may point to only one non escaping object
kvn@2951 1707 // (but still using phi), corresponding locks and unlocks will be marked
kvn@2951 1708 // for elimination. Later obj could be replaced with a new node (new phi)
kvn@2951 1709 // and which does not have escape information. And later after some graph
kvn@2951 1710 // reshape other locks and unlocks (which were not marked for elimination
kvn@2951 1711 // before) are connected to this new obj (phi) but they still will not be
kvn@2951 1712 // marked for elimination since new obj has no escape information.
kvn@2951 1713 // Mark all associated (same box and obj) lock and unlock nodes for
kvn@2951 1714 // elimination if some of them marked already.
kvn@2951 1715 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
kvn@501 1716 if (!alock->is_eliminated()) {
kvn@2951 1717 return;
kvn@501 1718 }
kvn@2951 1719 if (!alock->is_coarsened()) { // Eliminated by EA
kvn@895 1720 // Create new "eliminated" BoxLock node and use it
kvn@895 1721 // in monitor debug info for the same object.
kvn@895 1722 BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
kvn@895 1723 Node* obj = alock->obj_node();
kvn@895 1724 if (!oldbox->is_eliminated()) {
kvn@895 1725 BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
kvn@2951 1726 // Note: BoxLock node is marked eliminated only here
kvn@2951 1727 // and it is used to indicate that all associated lock
kvn@2951 1728 // and unlock nodes are marked for elimination.
kvn@895 1729 newbox->set_eliminated();
kvn@895 1730 transform_later(newbox);
kvn@895 1731 // Replace old box node with new box for all users
kvn@895 1732 // of the same object.
kvn@895 1733 for (uint i = 0; i < oldbox->outcnt();) {
kvn@895 1734
kvn@895 1735 bool next_edge = true;
kvn@895 1736 Node* u = oldbox->raw_out(i);
kvn@2951 1737 if (u->is_AbstractLock() &&
kvn@2951 1738 u->as_AbstractLock()->obj_node() == obj &&
kvn@2951 1739 u->as_AbstractLock()->box_node() == oldbox) {
kvn@2951 1740 // Mark all associated locks and unlocks.
kvn@2951 1741 u->as_AbstractLock()->set_eliminated();
kvn@895 1742 _igvn.hash_delete(u);
kvn@895 1743 u->set_req(TypeFunc::Parms + 1, newbox);
kvn@895 1744 next_edge = false;
kvn@895 1745 }
kvn@895 1746 // Replace old box in monitor debug info.
kvn@895 1747 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
kvn@895 1748 SafePointNode* sfn = u->as_SafePoint();
kvn@895 1749 JVMState* youngest_jvms = sfn->jvms();
kvn@895 1750 int max_depth = youngest_jvms->depth();
kvn@895 1751 for (int depth = 1; depth <= max_depth; depth++) {
kvn@895 1752 JVMState* jvms = youngest_jvms->of_depth(depth);
kvn@895 1753 int num_mon = jvms->nof_monitors();
kvn@895 1754 // Loop over monitors
kvn@895 1755 for (int idx = 0; idx < num_mon; idx++) {
kvn@895 1756 Node* obj_node = sfn->monitor_obj(jvms, idx);
kvn@895 1757 Node* box_node = sfn->monitor_box(jvms, idx);
kvn@895 1758 if (box_node == oldbox && obj_node == obj) {
kvn@895 1759 int j = jvms->monitor_box_offset(idx);
kvn@895 1760 _igvn.hash_delete(u);
kvn@895 1761 u->set_req(j, newbox);
kvn@895 1762 next_edge = false;
kvn@895 1763 }
kvn@895 1764 } // for (int idx = 0;
kvn@895 1765 } // for (int depth = 1;
kvn@895 1766 } // if (u->is_SafePoint()
kvn@895 1767 if (next_edge) i++;
kvn@895 1768 } // for (uint i = 0; i < oldbox->outcnt();)
kvn@895 1769 } // if (!oldbox->is_eliminated())
kvn@2951 1770 } // if (!alock->is_coarsened())
kvn@2951 1771 }
kvn@501 1772
kvn@2951 1773 // we have determined that this lock/unlock can be eliminated, we simply
kvn@2951 1774 // eliminate the node without expanding it.
kvn@2951 1775 //
kvn@2951 1776 // Note: The membar's associated with the lock/unlock are currently not
kvn@2951 1777 // eliminated. This should be investigated as a future enhancement.
kvn@2951 1778 //
kvn@2951 1779 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
kvn@2951 1780
kvn@2951 1781 if (!alock->is_eliminated()) {
kvn@2951 1782 return false;
kvn@2951 1783 }
kvn@2951 1784 #ifdef ASSERT
kvn@2951 1785 if (alock->is_Lock() && !alock->is_coarsened()) {
kvn@2951 1786 // Check that new "eliminated" BoxLock node is created.
kvn@2951 1787 BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
kvn@2951 1788 assert(oldbox->is_eliminated(), "should be done already");
kvn@2951 1789 }
kvn@2951 1790 #endif
never@1515 1791 CompileLog* log = C->log();
never@1515 1792 if (log != NULL) {
never@1515 1793 log->head("eliminate_lock lock='%d'",
never@1515 1794 alock->is_Lock());
never@1515 1795 JVMState* p = alock->jvms();
never@1515 1796 while (p != NULL) {
never@1515 1797 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 1798 p = p->caller();
never@1515 1799 }
never@1515 1800 log->tail("eliminate_lock");
never@1515 1801 }
never@1515 1802
kvn@501 1803 #ifndef PRODUCT
kvn@501 1804 if (PrintEliminateLocks) {
kvn@501 1805 if (alock->is_Lock()) {
kvn@3311 1806 tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
kvn@501 1807 } else {
kvn@3311 1808 tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
kvn@501 1809 }
kvn@501 1810 }
kvn@501 1811 #endif
kvn@501 1812
kvn@501 1813 Node* mem = alock->in(TypeFunc::Memory);
kvn@501 1814 Node* ctrl = alock->in(TypeFunc::Control);
kvn@501 1815
kvn@501 1816 extract_call_projections(alock);
kvn@501 1817 // There are 2 projections from the lock. The lock node will
kvn@501 1818 // be deleted when its last use is subsumed below.
kvn@501 1819 assert(alock->outcnt() == 2 &&
kvn@501 1820 _fallthroughproj != NULL &&
kvn@501 1821 _memproj_fallthrough != NULL,
kvn@501 1822 "Unexpected projections from Lock/Unlock");
kvn@501 1823
kvn@501 1824 Node* fallthroughproj = _fallthroughproj;
kvn@501 1825 Node* memproj_fallthrough = _memproj_fallthrough;
duke@435 1826
duke@435 1827 // The memory projection from a lock/unlock is RawMem
duke@435 1828 // The input to a Lock is merged memory, so extract its RawMem input
duke@435 1829 // (unless the MergeMem has been optimized away.)
duke@435 1830 if (alock->is_Lock()) {
roland@3047 1831 // Seach for MemBarAcquireLock node and delete it also.
kvn@501 1832 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
roland@3047 1833 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
kvn@501 1834 Node* ctrlproj = membar->proj_out(TypeFunc::Control);
kvn@501 1835 Node* memproj = membar->proj_out(TypeFunc::Memory);
kvn@1143 1836 _igvn.replace_node(ctrlproj, fallthroughproj);
kvn@1143 1837 _igvn.replace_node(memproj, memproj_fallthrough);
kvn@895 1838
kvn@895 1839 // Delete FastLock node also if this Lock node is unique user
kvn@895 1840 // (a loop peeling may clone a Lock node).
kvn@895 1841 Node* flock = alock->as_Lock()->fastlock_node();
kvn@895 1842 if (flock->outcnt() == 1) {
kvn@895 1843 assert(flock->unique_out() == alock, "sanity");
kvn@1143 1844 _igvn.replace_node(flock, top());
kvn@895 1845 }
duke@435 1846 }
duke@435 1847
roland@3047 1848 // Seach for MemBarReleaseLock node and delete it also.
kvn@501 1849 if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
kvn@501 1850 ctrl->in(0)->is_MemBar()) {
kvn@501 1851 MemBarNode* membar = ctrl->in(0)->as_MemBar();
roland@3047 1852 assert(membar->Opcode() == Op_MemBarReleaseLock &&
kvn@501 1853 mem->is_Proj() && membar == mem->in(0), "");
kvn@1143 1854 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 1855 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 1856 fallthroughproj = ctrl;
kvn@501 1857 memproj_fallthrough = mem;
kvn@501 1858 ctrl = membar->in(TypeFunc::Control);
kvn@501 1859 mem = membar->in(TypeFunc::Memory);
kvn@501 1860 }
kvn@501 1861
kvn@1143 1862 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 1863 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 1864 return true;
duke@435 1865 }
duke@435 1866
duke@435 1867
duke@435 1868 //------------------------------expand_lock_node----------------------
duke@435 1869 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
duke@435 1870
duke@435 1871 Node* ctrl = lock->in(TypeFunc::Control);
duke@435 1872 Node* mem = lock->in(TypeFunc::Memory);
duke@435 1873 Node* obj = lock->obj_node();
duke@435 1874 Node* box = lock->box_node();
kvn@501 1875 Node* flock = lock->fastlock_node();
duke@435 1876
duke@435 1877 // Make the merge point
kvn@855 1878 Node *region;
kvn@855 1879 Node *mem_phi;
kvn@855 1880 Node *slow_path;
duke@435 1881
kvn@855 1882 if (UseOptoBiasInlining) {
kvn@855 1883 /*
twisti@1040 1884 * See the full description in MacroAssembler::biased_locking_enter().
kvn@855 1885 *
kvn@855 1886 * if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
kvn@855 1887 * // The object is biased.
kvn@855 1888 * proto_node = klass->prototype_header;
kvn@855 1889 * o_node = thread | proto_node;
kvn@855 1890 * x_node = o_node ^ mark_word;
kvn@855 1891 * if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
kvn@855 1892 * // Done.
kvn@855 1893 * } else {
kvn@855 1894 * if( (x_node & biased_lock_mask) != 0 ) {
kvn@855 1895 * // The klass's prototype header is no longer biased.
kvn@855 1896 * cas(&mark_word, mark_word, proto_node)
kvn@855 1897 * goto cas_lock;
kvn@855 1898 * } else {
kvn@855 1899 * // The klass's prototype header is still biased.
kvn@855 1900 * if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
kvn@855 1901 * old = mark_word;
kvn@855 1902 * new = o_node;
kvn@855 1903 * } else {
kvn@855 1904 * // Different thread or anonymous biased.
kvn@855 1905 * old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
kvn@855 1906 * new = thread | old;
kvn@855 1907 * }
kvn@855 1908 * // Try to rebias.
kvn@855 1909 * if( cas(&mark_word, old, new) == 0 ) {
kvn@855 1910 * // Done.
kvn@855 1911 * } else {
kvn@855 1912 * goto slow_path; // Failed.
kvn@855 1913 * }
kvn@855 1914 * }
kvn@855 1915 * }
kvn@855 1916 * } else {
kvn@855 1917 * // The object is not biased.
kvn@855 1918 * cas_lock:
kvn@855 1919 * if( FastLock(obj) == 0 ) {
kvn@855 1920 * // Done.
kvn@855 1921 * } else {
kvn@855 1922 * slow_path:
kvn@855 1923 * OptoRuntime::complete_monitor_locking_Java(obj);
kvn@855 1924 * }
kvn@855 1925 * }
kvn@855 1926 */
kvn@855 1927
kvn@855 1928 region = new (C, 5) RegionNode(5);
kvn@855 1929 // create a Phi for the memory state
kvn@855 1930 mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1931
kvn@855 1932 Node* fast_lock_region = new (C, 3) RegionNode(3);
kvn@855 1933 Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1934
kvn@855 1935 // First, check mark word for the biased lock pattern.
kvn@855 1936 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 1937
kvn@855 1938 // Get fast path - mark word has the biased lock pattern.
kvn@855 1939 ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
kvn@855 1940 markOopDesc::biased_lock_mask_in_place,
kvn@855 1941 markOopDesc::biased_lock_pattern, true);
kvn@855 1942 // fast_lock_region->in(1) is set to slow path.
kvn@855 1943 fast_lock_mem_phi->init_req(1, mem);
kvn@855 1944
kvn@855 1945 // Now check that the lock is biased to the current thread and has
kvn@855 1946 // the same epoch and bias as Klass::_prototype_header.
kvn@855 1947
kvn@855 1948 // Special-case a fresh allocation to avoid building nodes:
kvn@855 1949 Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
kvn@855 1950 if (klass_node == NULL) {
kvn@855 1951 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
kvn@855 1952 klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
kvn@925 1953 #ifdef _LP64
kvn@925 1954 if (UseCompressedOops && klass_node->is_DecodeN()) {
kvn@925 1955 assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
kvn@925 1956 klass_node->in(1)->init_req(0, ctrl);
kvn@925 1957 } else
kvn@925 1958 #endif
kvn@925 1959 klass_node->init_req(0, ctrl);
kvn@855 1960 }
stefank@3391 1961 Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
kvn@855 1962
kvn@855 1963 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
kvn@855 1964 Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
kvn@855 1965 Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
kvn@855 1966 Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
kvn@855 1967
kvn@855 1968 // Get slow path - mark word does NOT match the value.
kvn@855 1969 Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node,
kvn@855 1970 (~markOopDesc::age_mask_in_place), 0);
kvn@855 1971 // region->in(3) is set to fast path - the object is biased to the current thread.
kvn@855 1972 mem_phi->init_req(3, mem);
kvn@855 1973
kvn@855 1974
kvn@855 1975 // Mark word does NOT match the value (thread | Klass::_prototype_header).
kvn@855 1976
kvn@855 1977
kvn@855 1978 // First, check biased pattern.
kvn@855 1979 // Get fast path - _prototype_header has the same biased lock pattern.
kvn@855 1980 ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
kvn@855 1981 markOopDesc::biased_lock_mask_in_place, 0, true);
kvn@855 1982
kvn@855 1983 not_biased_ctrl = fast_lock_region->in(2); // Slow path
kvn@855 1984 // fast_lock_region->in(2) - the prototype header is no longer biased
kvn@855 1985 // and we have to revoke the bias on this object.
kvn@855 1986 // We are going to try to reset the mark of this object to the prototype
kvn@855 1987 // value and fall through to the CAS-based locking scheme.
kvn@855 1988 Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@855 1989 Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
kvn@855 1990 proto_node, mark_node);
kvn@855 1991 transform_later(cas);
kvn@855 1992 Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
kvn@855 1993 fast_lock_mem_phi->init_req(2, proj);
kvn@855 1994
kvn@855 1995
kvn@855 1996 // Second, check epoch bits.
kvn@855 1997 Node* rebiased_region = new (C, 3) RegionNode(3);
kvn@855 1998 Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
kvn@855 1999 Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
kvn@855 2000
kvn@855 2001 // Get slow path - mark word does NOT match epoch bits.
kvn@855 2002 Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node,
kvn@855 2003 markOopDesc::epoch_mask_in_place, 0);
kvn@855 2004 // The epoch of the current bias is not valid, attempt to rebias the object
kvn@855 2005 // toward the current thread.
kvn@855 2006 rebiased_region->init_req(2, epoch_ctrl);
kvn@855 2007 old_phi->init_req(2, mark_node);
kvn@855 2008 new_phi->init_req(2, o_node);
kvn@855 2009
kvn@855 2010 // rebiased_region->in(1) is set to fast path.
kvn@855 2011 // The epoch of the current bias is still valid but we know
kvn@855 2012 // nothing about the owner; it might be set or it might be clear.
kvn@855 2013 Node* cmask = MakeConX(markOopDesc::biased_lock_mask_in_place |
kvn@855 2014 markOopDesc::age_mask_in_place |
kvn@855 2015 markOopDesc::epoch_mask_in_place);
kvn@855 2016 Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
kvn@855 2017 cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
kvn@855 2018 Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
kvn@855 2019 old_phi->init_req(1, old);
kvn@855 2020 new_phi->init_req(1, new_mark);
kvn@855 2021
kvn@855 2022 transform_later(rebiased_region);
kvn@855 2023 transform_later(old_phi);
kvn@855 2024 transform_later(new_phi);
kvn@855 2025
kvn@855 2026 // Try to acquire the bias of the object using an atomic operation.
kvn@855 2027 // If this fails we will go in to the runtime to revoke the object's bias.
kvn@855 2028 cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
kvn@855 2029 new_phi, old_phi);
kvn@855 2030 transform_later(cas);
kvn@855 2031 proj = transform_later( new (C, 1) SCMemProjNode(cas));
kvn@855 2032
kvn@855 2033 // Get slow path - Failed to CAS.
kvn@855 2034 not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
kvn@855 2035 mem_phi->init_req(4, proj);
kvn@855 2036 // region->in(4) is set to fast path - the object is rebiased to the current thread.
kvn@855 2037
kvn@855 2038 // Failed to CAS.
kvn@855 2039 slow_path = new (C, 3) RegionNode(3);
kvn@855 2040 Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2041
kvn@855 2042 slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
kvn@855 2043 slow_mem->init_req(1, proj);
kvn@855 2044
kvn@855 2045 // Call CAS-based locking scheme (FastLock node).
kvn@855 2046
kvn@855 2047 transform_later(fast_lock_region);
kvn@855 2048 transform_later(fast_lock_mem_phi);
kvn@855 2049
kvn@855 2050 // Get slow path - FastLock failed to lock the object.
kvn@855 2051 ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
kvn@855 2052 mem_phi->init_req(2, fast_lock_mem_phi);
kvn@855 2053 // region->in(2) is set to fast path - the object is locked to the current thread.
kvn@855 2054
kvn@855 2055 slow_path->init_req(2, ctrl); // Capture slow-control
kvn@855 2056 slow_mem->init_req(2, fast_lock_mem_phi);
kvn@855 2057
kvn@855 2058 transform_later(slow_path);
kvn@855 2059 transform_later(slow_mem);
kvn@855 2060 // Reset lock's memory edge.
kvn@855 2061 lock->set_req(TypeFunc::Memory, slow_mem);
kvn@855 2062
kvn@855 2063 } else {
kvn@855 2064 region = new (C, 3) RegionNode(3);
kvn@855 2065 // create a Phi for the memory state
kvn@855 2066 mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2067
kvn@855 2068 // Optimize test; set region slot 2
kvn@855 2069 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
kvn@855 2070 mem_phi->init_req(2, mem);
kvn@855 2071 }
duke@435 2072
duke@435 2073 // Make slow path call
duke@435 2074 CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
duke@435 2075
duke@435 2076 extract_call_projections(call);
duke@435 2077
duke@435 2078 // Slow path can only throw asynchronous exceptions, which are always
duke@435 2079 // de-opted. So the compiler thinks the slow-call can never throw an
duke@435 2080 // exception. If it DOES throw an exception we would need the debug
duke@435 2081 // info removed first (since if it throws there is no monitor).
duke@435 2082 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2083 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2084
duke@435 2085 // Capture slow path
duke@435 2086 // disconnect fall-through projection from call and create a new one
duke@435 2087 // hook up users of fall-through projection to region
duke@435 2088 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2089 transform_later(slow_ctrl);
duke@435 2090 _igvn.hash_delete(_fallthroughproj);
duke@435 2091 _fallthroughproj->disconnect_inputs(NULL);
duke@435 2092 region->init_req(1, slow_ctrl);
duke@435 2093 // region inputs are now complete
duke@435 2094 transform_later(region);
kvn@1143 2095 _igvn.replace_node(_fallthroughproj, region);
duke@435 2096
kvn@855 2097 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 2098 mem_phi->init_req(1, memproj );
duke@435 2099 transform_later(mem_phi);
kvn@1143 2100 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2101 }
duke@435 2102
duke@435 2103 //------------------------------expand_unlock_node----------------------
duke@435 2104 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
duke@435 2105
kvn@501 2106 Node* ctrl = unlock->in(TypeFunc::Control);
duke@435 2107 Node* mem = unlock->in(TypeFunc::Memory);
duke@435 2108 Node* obj = unlock->obj_node();
duke@435 2109 Node* box = unlock->box_node();
duke@435 2110
duke@435 2111 // No need for a null check on unlock
duke@435 2112
duke@435 2113 // Make the merge point
kvn@855 2114 Node *region;
kvn@855 2115 Node *mem_phi;
kvn@855 2116
kvn@855 2117 if (UseOptoBiasInlining) {
kvn@855 2118 // Check for biased locking unlock case, which is a no-op.
twisti@1040 2119 // See the full description in MacroAssembler::biased_locking_exit().
kvn@855 2120 region = new (C, 4) RegionNode(4);
kvn@855 2121 // create a Phi for the memory state
kvn@855 2122 mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2123 mem_phi->init_req(3, mem);
kvn@855 2124
kvn@855 2125 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 2126 ctrl = opt_bits_test(ctrl, region, 3, mark_node,
kvn@855 2127 markOopDesc::biased_lock_mask_in_place,
kvn@855 2128 markOopDesc::biased_lock_pattern);
kvn@855 2129 } else {
kvn@855 2130 region = new (C, 3) RegionNode(3);
kvn@855 2131 // create a Phi for the memory state
kvn@855 2132 mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2133 }
duke@435 2134
duke@435 2135 FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
duke@435 2136 funlock = transform_later( funlock )->as_FastUnlock();
duke@435 2137 // Optimize test; set region slot 2
kvn@855 2138 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
duke@435 2139
duke@435 2140 CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
duke@435 2141
duke@435 2142 extract_call_projections(call);
duke@435 2143
duke@435 2144 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2145 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2146
duke@435 2147 // No exceptions for unlocking
duke@435 2148 // Capture slow path
duke@435 2149 // disconnect fall-through projection from call and create a new one
duke@435 2150 // hook up users of fall-through projection to region
duke@435 2151 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2152 transform_later(slow_ctrl);
duke@435 2153 _igvn.hash_delete(_fallthroughproj);
duke@435 2154 _fallthroughproj->disconnect_inputs(NULL);
duke@435 2155 region->init_req(1, slow_ctrl);
duke@435 2156 // region inputs are now complete
duke@435 2157 transform_later(region);
kvn@1143 2158 _igvn.replace_node(_fallthroughproj, region);
duke@435 2159
duke@435 2160 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 2161 mem_phi->init_req(1, memproj );
duke@435 2162 mem_phi->init_req(2, mem);
duke@435 2163 transform_later(mem_phi);
kvn@1143 2164 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2165 }
duke@435 2166
kvn@3311 2167 //---------------------------eliminate_macro_nodes----------------------
kvn@3311 2168 // Eliminate scalar replaced allocations and associated locks.
kvn@3311 2169 void PhaseMacroExpand::eliminate_macro_nodes() {
duke@435 2170 if (C->macro_count() == 0)
kvn@3311 2171 return;
kvn@3311 2172
kvn@895 2173 // First, attempt to eliminate locks
kvn@2951 2174 int cnt = C->macro_count();
kvn@2951 2175 for (int i=0; i < cnt; i++) {
kvn@2951 2176 Node *n = C->macro_node(i);
kvn@2951 2177 if (n->is_AbstractLock()) { // Lock and Unlock nodes
kvn@2951 2178 // Before elimination mark all associated (same box and obj)
kvn@2951 2179 // lock and unlock nodes.
kvn@2951 2180 mark_eliminated_locking_nodes(n->as_AbstractLock());
kvn@2951 2181 }
kvn@2951 2182 }
kvn@508 2183 bool progress = true;
kvn@508 2184 while (progress) {
kvn@508 2185 progress = false;
kvn@508 2186 for (int i = C->macro_count(); i > 0; i--) {
kvn@508 2187 Node * n = C->macro_node(i-1);
kvn@508 2188 bool success = false;
kvn@508 2189 debug_only(int old_macro_count = C->macro_count(););
kvn@895 2190 if (n->is_AbstractLock()) {
kvn@895 2191 success = eliminate_locking_node(n->as_AbstractLock());
kvn@895 2192 }
kvn@895 2193 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@895 2194 progress = progress || success;
kvn@895 2195 }
kvn@895 2196 }
kvn@895 2197 // Next, attempt to eliminate allocations
kvn@895 2198 progress = true;
kvn@895 2199 while (progress) {
kvn@895 2200 progress = false;
kvn@895 2201 for (int i = C->macro_count(); i > 0; i--) {
kvn@895 2202 Node * n = C->macro_node(i-1);
kvn@895 2203 bool success = false;
kvn@895 2204 debug_only(int old_macro_count = C->macro_count(););
kvn@508 2205 switch (n->class_id()) {
kvn@508 2206 case Node::Class_Allocate:
kvn@508 2207 case Node::Class_AllocateArray:
kvn@508 2208 success = eliminate_allocate_node(n->as_Allocate());
kvn@508 2209 break;
kvn@508 2210 case Node::Class_Lock:
kvn@508 2211 case Node::Class_Unlock:
kvn@895 2212 assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
kvn@508 2213 break;
kvn@508 2214 default:
kvn@3311 2215 assert(n->Opcode() == Op_LoopLimit ||
kvn@3311 2216 n->Opcode() == Op_Opaque1 ||
kvn@3311 2217 n->Opcode() == Op_Opaque2, "unknown node type in macro list");
kvn@508 2218 }
kvn@508 2219 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@508 2220 progress = progress || success;
kvn@508 2221 }
kvn@508 2222 }
kvn@3311 2223 }
kvn@3311 2224
kvn@3311 2225 //------------------------------expand_macro_nodes----------------------
kvn@3311 2226 // Returns true if a failure occurred.
kvn@3311 2227 bool PhaseMacroExpand::expand_macro_nodes() {
kvn@3311 2228 // Last attempt to eliminate macro nodes.
kvn@3311 2229 eliminate_macro_nodes();
kvn@3311 2230
kvn@508 2231 // Make sure expansion will not cause node limit to be exceeded.
kvn@508 2232 // Worst case is a macro node gets expanded into about 50 nodes.
kvn@508 2233 // Allow 50% more for optimization.
duke@435 2234 if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
duke@435 2235 return true;
kvn@508 2236
kvn@3311 2237 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
kvn@3311 2238 bool progress = true;
kvn@3311 2239 while (progress) {
kvn@3311 2240 progress = false;
kvn@3311 2241 for (int i = C->macro_count(); i > 0; i--) {
kvn@3311 2242 Node * n = C->macro_node(i-1);
kvn@3311 2243 bool success = false;
kvn@3311 2244 debug_only(int old_macro_count = C->macro_count(););
kvn@3311 2245 if (n->Opcode() == Op_LoopLimit) {
kvn@3311 2246 // Remove it from macro list and put on IGVN worklist to optimize.
kvn@3311 2247 C->remove_macro_node(n);
kvn@3311 2248 _igvn._worklist.push(n);
kvn@3311 2249 success = true;
kvn@3311 2250 } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
kvn@3311 2251 _igvn.replace_node(n, n->in(1));
kvn@3311 2252 success = true;
kvn@3311 2253 }
kvn@3311 2254 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@3311 2255 progress = progress || success;
kvn@3311 2256 }
kvn@3311 2257 }
kvn@3311 2258
duke@435 2259 // expand "macro" nodes
duke@435 2260 // nodes are removed from the macro list as they are processed
duke@435 2261 while (C->macro_count() > 0) {
kvn@508 2262 int macro_count = C->macro_count();
kvn@508 2263 Node * n = C->macro_node(macro_count-1);
duke@435 2264 assert(n->is_macro(), "only macro nodes expected here");
duke@435 2265 if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
duke@435 2266 // node is unreachable, so don't try to expand it
duke@435 2267 C->remove_macro_node(n);
duke@435 2268 continue;
duke@435 2269 }
duke@435 2270 switch (n->class_id()) {
duke@435 2271 case Node::Class_Allocate:
duke@435 2272 expand_allocate(n->as_Allocate());
duke@435 2273 break;
duke@435 2274 case Node::Class_AllocateArray:
duke@435 2275 expand_allocate_array(n->as_AllocateArray());
duke@435 2276 break;
duke@435 2277 case Node::Class_Lock:
duke@435 2278 expand_lock_node(n->as_Lock());
duke@435 2279 break;
duke@435 2280 case Node::Class_Unlock:
duke@435 2281 expand_unlock_node(n->as_Unlock());
duke@435 2282 break;
duke@435 2283 default:
duke@435 2284 assert(false, "unknown node type in macro list");
duke@435 2285 }
kvn@508 2286 assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
duke@435 2287 if (C->failing()) return true;
duke@435 2288 }
coleenp@548 2289
coleenp@548 2290 _igvn.set_delay_transform(false);
duke@435 2291 _igvn.optimize();
kvn@3311 2292 if (C->failing()) return true;
duke@435 2293 return false;
duke@435 2294 }

mercurial