src/share/vm/opto/macro.cpp

Fri, 08 May 2009 10:44:20 -0700

author
kvn
date
Fri, 08 May 2009 10:44:20 -0700
changeset 1215
c96bf21b756f
parent 1143
f2049ae95c3d
child 1286
fc4be448891f
permissions
-rw-r--r--

6788527: Server vm intermittently fails with assertion "live value must not be garbage" with fastdebug bits
Summary: Cache Jvmti and DTrace flags used by Compiler.
Reviewed-by: never

duke@435 1 /*
xdono@1014 2 * Copyright 2005-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_macro.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 //
duke@435 30 // Replace any references to "oldref" in inputs to "use" with "newref".
duke@435 31 // Returns the number of replacements made.
duke@435 32 //
duke@435 33 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
duke@435 34 int nreplacements = 0;
duke@435 35 uint req = use->req();
duke@435 36 for (uint j = 0; j < use->len(); j++) {
duke@435 37 Node *uin = use->in(j);
duke@435 38 if (uin == oldref) {
duke@435 39 if (j < req)
duke@435 40 use->set_req(j, newref);
duke@435 41 else
duke@435 42 use->set_prec(j, newref);
duke@435 43 nreplacements++;
duke@435 44 } else if (j >= req && uin == NULL) {
duke@435 45 break;
duke@435 46 }
duke@435 47 }
duke@435 48 return nreplacements;
duke@435 49 }
duke@435 50
duke@435 51 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
duke@435 52 // Copy debug information and adjust JVMState information
duke@435 53 uint old_dbg_start = oldcall->tf()->domain()->cnt();
duke@435 54 uint new_dbg_start = newcall->tf()->domain()->cnt();
duke@435 55 int jvms_adj = new_dbg_start - old_dbg_start;
duke@435 56 assert (new_dbg_start == newcall->req(), "argument count mismatch");
kvn@498 57
kvn@498 58 Dict* sosn_map = new Dict(cmpkey,hashkey);
duke@435 59 for (uint i = old_dbg_start; i < oldcall->req(); i++) {
kvn@498 60 Node* old_in = oldcall->in(i);
kvn@498 61 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
kvn@895 62 if (old_in != NULL && old_in->is_SafePointScalarObject()) {
kvn@498 63 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
kvn@498 64 uint old_unique = C->unique();
kvn@498 65 Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
kvn@498 66 if (old_unique != C->unique()) {
kvn@1036 67 new_in->set_req(0, newcall->in(0)); // reset control edge
kvn@498 68 new_in = transform_later(new_in); // Register new node.
kvn@498 69 }
kvn@498 70 old_in = new_in;
kvn@498 71 }
kvn@498 72 newcall->add_req(old_in);
duke@435 73 }
kvn@498 74
duke@435 75 newcall->set_jvms(oldcall->jvms());
duke@435 76 for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@435 77 jvms->set_map(newcall);
duke@435 78 jvms->set_locoff(jvms->locoff()+jvms_adj);
duke@435 79 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
duke@435 80 jvms->set_monoff(jvms->monoff()+jvms_adj);
kvn@498 81 jvms->set_scloff(jvms->scloff()+jvms_adj);
duke@435 82 jvms->set_endoff(jvms->endoff()+jvms_adj);
duke@435 83 }
duke@435 84 }
duke@435 85
kvn@855 86 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
kvn@855 87 Node* cmp;
kvn@855 88 if (mask != 0) {
kvn@855 89 Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
kvn@855 90 cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
kvn@855 91 } else {
kvn@855 92 cmp = word;
kvn@855 93 }
kvn@855 94 Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
kvn@855 95 IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
kvn@855 96 transform_later(iff);
duke@435 97
kvn@855 98 // Fast path taken.
kvn@855 99 Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
duke@435 100
duke@435 101 // Fast path not-taken, i.e. slow path
kvn@855 102 Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
kvn@855 103
kvn@855 104 if (return_fast_path) {
kvn@855 105 region->init_req(edge, slow_taken); // Capture slow-control
kvn@855 106 return fast_taken;
kvn@855 107 } else {
kvn@855 108 region->init_req(edge, fast_taken); // Capture fast-control
kvn@855 109 return slow_taken;
kvn@855 110 }
duke@435 111 }
duke@435 112
duke@435 113 //--------------------copy_predefined_input_for_runtime_call--------------------
duke@435 114 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
duke@435 115 // Set fixed predefined input arguments
duke@435 116 call->init_req( TypeFunc::Control, ctrl );
duke@435 117 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) );
duke@435 118 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
duke@435 119 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
duke@435 120 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
duke@435 121 }
duke@435 122
duke@435 123 //------------------------------make_slow_call---------------------------------
duke@435 124 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
duke@435 125
duke@435 126 // Slow-path call
duke@435 127 int size = slow_call_type->domain()->cnt();
duke@435 128 CallNode *call = leaf_name
duke@435 129 ? (CallNode*)new (C, size) CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
duke@435 130 : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
duke@435 131
duke@435 132 // Slow path call has no side-effects, uses few values
duke@435 133 copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
duke@435 134 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
duke@435 135 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
duke@435 136 copy_call_debug_info(oldcall, call);
duke@435 137 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
duke@435 138 _igvn.hash_delete(oldcall);
duke@435 139 _igvn.subsume_node(oldcall, call);
duke@435 140 transform_later(call);
duke@435 141
duke@435 142 return call;
duke@435 143 }
duke@435 144
duke@435 145 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
duke@435 146 _fallthroughproj = NULL;
duke@435 147 _fallthroughcatchproj = NULL;
duke@435 148 _ioproj_fallthrough = NULL;
duke@435 149 _ioproj_catchall = NULL;
duke@435 150 _catchallcatchproj = NULL;
duke@435 151 _memproj_fallthrough = NULL;
duke@435 152 _memproj_catchall = NULL;
duke@435 153 _resproj = NULL;
duke@435 154 for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
duke@435 155 ProjNode *pn = call->fast_out(i)->as_Proj();
duke@435 156 switch (pn->_con) {
duke@435 157 case TypeFunc::Control:
duke@435 158 {
duke@435 159 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
duke@435 160 _fallthroughproj = pn;
duke@435 161 DUIterator_Fast jmax, j = pn->fast_outs(jmax);
duke@435 162 const Node *cn = pn->fast_out(j);
duke@435 163 if (cn->is_Catch()) {
duke@435 164 ProjNode *cpn = NULL;
duke@435 165 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
duke@435 166 cpn = cn->fast_out(k)->as_Proj();
duke@435 167 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
duke@435 168 if (cpn->_con == CatchProjNode::fall_through_index)
duke@435 169 _fallthroughcatchproj = cpn;
duke@435 170 else {
duke@435 171 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
duke@435 172 _catchallcatchproj = cpn;
duke@435 173 }
duke@435 174 }
duke@435 175 }
duke@435 176 break;
duke@435 177 }
duke@435 178 case TypeFunc::I_O:
duke@435 179 if (pn->_is_io_use)
duke@435 180 _ioproj_catchall = pn;
duke@435 181 else
duke@435 182 _ioproj_fallthrough = pn;
duke@435 183 break;
duke@435 184 case TypeFunc::Memory:
duke@435 185 if (pn->_is_io_use)
duke@435 186 _memproj_catchall = pn;
duke@435 187 else
duke@435 188 _memproj_fallthrough = pn;
duke@435 189 break;
duke@435 190 case TypeFunc::Parms:
duke@435 191 _resproj = pn;
duke@435 192 break;
duke@435 193 default:
duke@435 194 assert(false, "unexpected projection from allocation node.");
duke@435 195 }
duke@435 196 }
duke@435 197
duke@435 198 }
duke@435 199
kvn@508 200 // Eliminate a card mark sequence. p2x is a ConvP2XNode
kvn@508 201 void PhaseMacroExpand::eliminate_card_mark(Node *p2x) {
kvn@508 202 assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
kvn@508 203 Node *shift = p2x->unique_out();
kvn@508 204 Node *addp = shift->unique_out();
kvn@508 205 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
kvn@508 206 Node *st = addp->last_out(j);
kvn@508 207 assert(st->is_Store(), "store required");
kvn@508 208 _igvn.replace_node(st, st->in(MemNode::Memory));
kvn@508 209 }
kvn@508 210 }
kvn@508 211
kvn@508 212 // Search for a memory operation for the specified memory slice.
kvn@688 213 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
kvn@508 214 Node *orig_mem = mem;
kvn@508 215 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@688 216 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
kvn@508 217 while (true) {
kvn@508 218 if (mem == alloc_mem || mem == start_mem ) {
twisti@1040 219 return mem; // hit one of our sentinels
kvn@508 220 } else if (mem->is_MergeMem()) {
kvn@508 221 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@508 222 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
kvn@508 223 Node *in = mem->in(0);
kvn@508 224 // we can safely skip over safepoints, calls, locks and membars because we
kvn@508 225 // already know that the object is safe to eliminate.
kvn@508 226 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
kvn@508 227 return in;
kvn@688 228 } else if (in->is_Call()) {
kvn@688 229 CallNode *call = in->as_Call();
kvn@688 230 if (!call->may_modify(tinst, phase)) {
kvn@688 231 mem = call->in(TypeFunc::Memory);
kvn@688 232 }
kvn@688 233 mem = in->in(TypeFunc::Memory);
kvn@688 234 } else if (in->is_MemBar()) {
kvn@508 235 mem = in->in(TypeFunc::Memory);
kvn@508 236 } else {
kvn@508 237 assert(false, "unexpected projection");
kvn@508 238 }
kvn@508 239 } else if (mem->is_Store()) {
kvn@508 240 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 241 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@508 242 if (adr_idx == alias_idx) {
kvn@508 243 assert(atype->isa_oopptr(), "address type must be oopptr");
kvn@508 244 int adr_offset = atype->offset();
kvn@508 245 uint adr_iid = atype->is_oopptr()->instance_id();
kvn@508 246 // Array elements references have the same alias_idx
kvn@508 247 // but different offset and different instance_id.
kvn@508 248 if (adr_offset == offset && adr_iid == alloc->_idx)
kvn@508 249 return mem;
kvn@508 250 } else {
kvn@508 251 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
kvn@508 252 }
kvn@508 253 mem = mem->in(MemNode::Memory);
kvn@1019 254 } else if (mem->Opcode() == Op_SCMemProj) {
kvn@1019 255 assert(mem->in(0)->is_LoadStore(), "sanity");
kvn@1019 256 const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
kvn@1019 257 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@1019 258 if (adr_idx == alias_idx) {
kvn@1019 259 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 260 return NULL;
kvn@1019 261 }
kvn@1019 262 mem = mem->in(0)->in(MemNode::Memory);
kvn@508 263 } else {
kvn@508 264 return mem;
kvn@508 265 }
kvn@682 266 assert(mem != orig_mem, "dead memory loop");
kvn@508 267 }
kvn@508 268 }
kvn@508 269
kvn@508 270 //
kvn@508 271 // Given a Memory Phi, compute a value Phi containing the values from stores
kvn@508 272 // on the input paths.
kvn@508 273 // Note: this function is recursive, its depth is limied by the "level" argument
kvn@508 274 // Returns the computed Phi, or NULL if it cannot compute it.
kvn@682 275 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
kvn@682 276 assert(mem->is_Phi(), "sanity");
kvn@682 277 int alias_idx = C->get_alias_index(adr_t);
kvn@682 278 int offset = adr_t->offset();
kvn@682 279 int instance_id = adr_t->instance_id();
kvn@682 280
kvn@682 281 // Check if an appropriate value phi already exists.
kvn@682 282 Node* region = mem->in(0);
kvn@682 283 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
kvn@682 284 Node* phi = region->fast_out(k);
kvn@682 285 if (phi->is_Phi() && phi != mem &&
kvn@682 286 phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
kvn@682 287 return phi;
kvn@682 288 }
kvn@682 289 }
kvn@682 290 // Check if an appropriate new value phi already exists.
kvn@682 291 Node* new_phi = NULL;
kvn@682 292 uint size = value_phis->size();
kvn@682 293 for (uint i=0; i < size; i++) {
kvn@682 294 if ( mem->_idx == value_phis->index_at(i) ) {
kvn@682 295 return value_phis->node_at(i);
kvn@682 296 }
kvn@682 297 }
kvn@508 298
kvn@508 299 if (level <= 0) {
kvn@688 300 return NULL; // Give up: phi tree too deep
kvn@508 301 }
kvn@508 302 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 303 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@508 304
kvn@508 305 uint length = mem->req();
kvn@508 306 GrowableArray <Node *> values(length, length, NULL);
kvn@508 307
kvn@682 308 // create a new Phi for the value
kvn@682 309 PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
kvn@682 310 transform_later(phi);
kvn@682 311 value_phis->push(phi, mem->_idx);
kvn@682 312
kvn@508 313 for (uint j = 1; j < length; j++) {
kvn@508 314 Node *in = mem->in(j);
kvn@508 315 if (in == NULL || in->is_top()) {
kvn@508 316 values.at_put(j, in);
kvn@508 317 } else {
kvn@688 318 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 319 if (val == start_mem || val == alloc_mem) {
kvn@508 320 // hit a sentinel, return appropriate 0 value
kvn@508 321 values.at_put(j, _igvn.zerocon(ft));
kvn@508 322 continue;
kvn@508 323 }
kvn@508 324 if (val->is_Initialize()) {
kvn@508 325 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 326 }
kvn@508 327 if (val == NULL) {
kvn@508 328 return NULL; // can't find a value on this path
kvn@508 329 }
kvn@508 330 if (val == mem) {
kvn@508 331 values.at_put(j, mem);
kvn@508 332 } else if (val->is_Store()) {
kvn@508 333 values.at_put(j, val->in(MemNode::ValueIn));
kvn@508 334 } else if(val->is_Proj() && val->in(0) == alloc) {
kvn@508 335 values.at_put(j, _igvn.zerocon(ft));
kvn@508 336 } else if (val->is_Phi()) {
kvn@682 337 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
kvn@682 338 if (val == NULL) {
kvn@682 339 return NULL;
kvn@508 340 }
kvn@682 341 values.at_put(j, val);
kvn@1019 342 } else if (val->Opcode() == Op_SCMemProj) {
kvn@1019 343 assert(val->in(0)->is_LoadStore(), "sanity");
kvn@1019 344 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 345 return NULL;
kvn@508 346 } else {
kvn@1019 347 #ifdef ASSERT
kvn@1019 348 val->dump();
kvn@688 349 assert(false, "unknown node on this path");
kvn@1019 350 #endif
kvn@688 351 return NULL; // unknown node on this path
kvn@508 352 }
kvn@508 353 }
kvn@508 354 }
kvn@682 355 // Set Phi's inputs
kvn@508 356 for (uint j = 1; j < length; j++) {
kvn@508 357 if (values.at(j) == mem) {
kvn@508 358 phi->init_req(j, phi);
kvn@508 359 } else {
kvn@508 360 phi->init_req(j, values.at(j));
kvn@508 361 }
kvn@508 362 }
kvn@508 363 return phi;
kvn@508 364 }
kvn@508 365
kvn@508 366 // Search the last value stored into the object's field.
kvn@508 367 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
kvn@658 368 assert(adr_t->is_known_instance_field(), "instance required");
kvn@658 369 int instance_id = adr_t->instance_id();
kvn@658 370 assert((uint)instance_id == alloc->_idx, "wrong allocation");
kvn@508 371
kvn@508 372 int alias_idx = C->get_alias_index(adr_t);
kvn@508 373 int offset = adr_t->offset();
kvn@508 374 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 375 Node *alloc_ctrl = alloc->in(TypeFunc::Control);
kvn@508 376 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@682 377 Arena *a = Thread::current()->resource_area();
kvn@682 378 VectorSet visited(a);
kvn@508 379
kvn@508 380
kvn@508 381 bool done = sfpt_mem == alloc_mem;
kvn@508 382 Node *mem = sfpt_mem;
kvn@508 383 while (!done) {
kvn@508 384 if (visited.test_set(mem->_idx)) {
kvn@508 385 return NULL; // found a loop, give up
kvn@508 386 }
kvn@688 387 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 388 if (mem == start_mem || mem == alloc_mem) {
kvn@508 389 done = true; // hit a sentinel, return appropriate 0 value
kvn@508 390 } else if (mem->is_Initialize()) {
kvn@508 391 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 392 if (mem == NULL) {
kvn@508 393 done = true; // Something go wrong.
kvn@508 394 } else if (mem->is_Store()) {
kvn@508 395 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 396 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
kvn@508 397 done = true;
kvn@508 398 }
kvn@508 399 } else if (mem->is_Store()) {
kvn@508 400 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
kvn@508 401 assert(atype != NULL, "address type must be oopptr");
kvn@508 402 assert(C->get_alias_index(atype) == alias_idx &&
kvn@658 403 atype->is_known_instance_field() && atype->offset() == offset &&
kvn@508 404 atype->instance_id() == instance_id, "store is correct memory slice");
kvn@508 405 done = true;
kvn@508 406 } else if (mem->is_Phi()) {
kvn@508 407 // try to find a phi's unique input
kvn@508 408 Node *unique_input = NULL;
kvn@508 409 Node *top = C->top();
kvn@508 410 for (uint i = 1; i < mem->req(); i++) {
kvn@688 411 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 412 if (n == NULL || n == top || n == mem) {
kvn@508 413 continue;
kvn@508 414 } else if (unique_input == NULL) {
kvn@508 415 unique_input = n;
kvn@508 416 } else if (unique_input != n) {
kvn@508 417 unique_input = top;
kvn@508 418 break;
kvn@508 419 }
kvn@508 420 }
kvn@508 421 if (unique_input != NULL && unique_input != top) {
kvn@508 422 mem = unique_input;
kvn@508 423 } else {
kvn@508 424 done = true;
kvn@508 425 }
kvn@508 426 } else {
kvn@508 427 assert(false, "unexpected node");
kvn@508 428 }
kvn@508 429 }
kvn@508 430 if (mem != NULL) {
kvn@508 431 if (mem == start_mem || mem == alloc_mem) {
kvn@508 432 // hit a sentinel, return appropriate 0 value
kvn@508 433 return _igvn.zerocon(ft);
kvn@508 434 } else if (mem->is_Store()) {
kvn@508 435 return mem->in(MemNode::ValueIn);
kvn@508 436 } else if (mem->is_Phi()) {
kvn@508 437 // attempt to produce a Phi reflecting the values on the input paths of the Phi
kvn@682 438 Node_Stack value_phis(a, 8);
kvn@688 439 Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
kvn@508 440 if (phi != NULL) {
kvn@508 441 return phi;
kvn@682 442 } else {
kvn@682 443 // Kill all new Phis
kvn@682 444 while(value_phis.is_nonempty()) {
kvn@682 445 Node* n = value_phis.node();
kvn@682 446 _igvn.hash_delete(n);
kvn@682 447 _igvn.subsume_node(n, C->top());
kvn@682 448 value_phis.pop();
kvn@682 449 }
kvn@508 450 }
kvn@508 451 }
kvn@508 452 }
kvn@508 453 // Something go wrong.
kvn@508 454 return NULL;
kvn@508 455 }
kvn@508 456
kvn@508 457 // Check the possibility of scalar replacement.
kvn@508 458 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 459 // Scan the uses of the allocation to check for anything that would
kvn@508 460 // prevent us from eliminating it.
kvn@508 461 NOT_PRODUCT( const char* fail_eliminate = NULL; )
kvn@508 462 DEBUG_ONLY( Node* disq_node = NULL; )
kvn@508 463 bool can_eliminate = true;
kvn@508 464
kvn@508 465 Node* res = alloc->result_cast();
kvn@508 466 const TypeOopPtr* res_type = NULL;
kvn@508 467 if (res == NULL) {
kvn@508 468 // All users were eliminated.
kvn@508 469 } else if (!res->is_CheckCastPP()) {
kvn@508 470 alloc->_is_scalar_replaceable = false; // don't try again
kvn@508 471 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
kvn@508 472 can_eliminate = false;
kvn@508 473 } else {
kvn@508 474 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 475 if (res_type == NULL) {
kvn@508 476 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
kvn@508 477 can_eliminate = false;
kvn@508 478 } else if (res_type->isa_aryptr()) {
kvn@508 479 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 480 if (length < 0) {
kvn@508 481 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
kvn@508 482 can_eliminate = false;
kvn@508 483 }
kvn@508 484 }
kvn@508 485 }
kvn@508 486
kvn@508 487 if (can_eliminate && res != NULL) {
kvn@508 488 for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
kvn@508 489 j < jmax && can_eliminate; j++) {
kvn@508 490 Node* use = res->fast_out(j);
kvn@508 491
kvn@508 492 if (use->is_AddP()) {
kvn@508 493 const TypePtr* addp_type = _igvn.type(use)->is_ptr();
kvn@508 494 int offset = addp_type->offset();
kvn@508 495
kvn@508 496 if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
kvn@508 497 NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
kvn@508 498 can_eliminate = false;
kvn@508 499 break;
kvn@508 500 }
kvn@508 501 for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
kvn@508 502 k < kmax && can_eliminate; k++) {
kvn@508 503 Node* n = use->fast_out(k);
kvn@508 504 if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
kvn@508 505 DEBUG_ONLY(disq_node = n;)
kvn@688 506 if (n->is_Load() || n->is_LoadStore()) {
kvn@508 507 NOT_PRODUCT(fail_eliminate = "Field load";)
kvn@508 508 } else {
kvn@508 509 NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
kvn@508 510 }
kvn@508 511 can_eliminate = false;
kvn@508 512 }
kvn@508 513 }
kvn@508 514 } else if (use->is_SafePoint()) {
kvn@508 515 SafePointNode* sfpt = use->as_SafePoint();
kvn@603 516 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
kvn@508 517 // Object is passed as argument.
kvn@508 518 DEBUG_ONLY(disq_node = use;)
kvn@508 519 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
kvn@508 520 can_eliminate = false;
kvn@508 521 }
kvn@508 522 Node* sfptMem = sfpt->memory();
kvn@508 523 if (sfptMem == NULL || sfptMem->is_top()) {
kvn@508 524 DEBUG_ONLY(disq_node = use;)
kvn@508 525 NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
kvn@508 526 can_eliminate = false;
kvn@508 527 } else {
kvn@508 528 safepoints.append_if_missing(sfpt);
kvn@508 529 }
kvn@508 530 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
kvn@508 531 if (use->is_Phi()) {
kvn@508 532 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
kvn@508 533 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 534 } else {
kvn@508 535 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
kvn@508 536 }
kvn@508 537 DEBUG_ONLY(disq_node = use;)
kvn@508 538 } else {
kvn@508 539 if (use->Opcode() == Op_Return) {
kvn@508 540 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 541 }else {
kvn@508 542 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
kvn@508 543 }
kvn@508 544 DEBUG_ONLY(disq_node = use;)
kvn@508 545 }
kvn@508 546 can_eliminate = false;
kvn@508 547 }
kvn@508 548 }
kvn@508 549 }
kvn@508 550
kvn@508 551 #ifndef PRODUCT
kvn@508 552 if (PrintEliminateAllocations) {
kvn@508 553 if (can_eliminate) {
kvn@508 554 tty->print("Scalar ");
kvn@508 555 if (res == NULL)
kvn@508 556 alloc->dump();
kvn@508 557 else
kvn@508 558 res->dump();
kvn@508 559 } else {
kvn@508 560 tty->print("NotScalar (%s)", fail_eliminate);
kvn@508 561 if (res == NULL)
kvn@508 562 alloc->dump();
kvn@508 563 else
kvn@508 564 res->dump();
kvn@508 565 #ifdef ASSERT
kvn@508 566 if (disq_node != NULL) {
kvn@508 567 tty->print(" >>>> ");
kvn@508 568 disq_node->dump();
kvn@508 569 }
kvn@508 570 #endif /*ASSERT*/
kvn@508 571 }
kvn@508 572 }
kvn@508 573 #endif
kvn@508 574 return can_eliminate;
kvn@508 575 }
kvn@508 576
kvn@508 577 // Do scalar replacement.
kvn@508 578 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 579 GrowableArray <SafePointNode *> safepoints_done;
kvn@508 580
kvn@508 581 ciKlass* klass = NULL;
kvn@508 582 ciInstanceKlass* iklass = NULL;
kvn@508 583 int nfields = 0;
kvn@508 584 int array_base;
kvn@508 585 int element_size;
kvn@508 586 BasicType basic_elem_type;
kvn@508 587 ciType* elem_type;
kvn@508 588
kvn@508 589 Node* res = alloc->result_cast();
kvn@508 590 const TypeOopPtr* res_type = NULL;
kvn@508 591 if (res != NULL) { // Could be NULL when there are no users
kvn@508 592 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 593 }
kvn@508 594
kvn@508 595 if (res != NULL) {
kvn@508 596 klass = res_type->klass();
kvn@508 597 if (res_type->isa_instptr()) {
kvn@508 598 // find the fields of the class which will be needed for safepoint debug information
kvn@508 599 assert(klass->is_instance_klass(), "must be an instance klass.");
kvn@508 600 iklass = klass->as_instance_klass();
kvn@508 601 nfields = iklass->nof_nonstatic_fields();
kvn@508 602 } else {
kvn@508 603 // find the array's elements which will be needed for safepoint debug information
kvn@508 604 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 605 assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
kvn@508 606 elem_type = klass->as_array_klass()->element_type();
kvn@508 607 basic_elem_type = elem_type->basic_type();
kvn@508 608 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@508 609 element_size = type2aelembytes(basic_elem_type);
kvn@508 610 }
kvn@508 611 }
kvn@508 612 //
kvn@508 613 // Process the safepoint uses
kvn@508 614 //
kvn@508 615 while (safepoints.length() > 0) {
kvn@508 616 SafePointNode* sfpt = safepoints.pop();
kvn@508 617 Node* mem = sfpt->memory();
kvn@508 618 uint first_ind = sfpt->req();
kvn@508 619 SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
kvn@508 620 #ifdef ASSERT
kvn@508 621 alloc,
kvn@508 622 #endif
kvn@508 623 first_ind, nfields);
kvn@508 624 sobj->init_req(0, sfpt->in(TypeFunc::Control));
kvn@508 625 transform_later(sobj);
kvn@508 626
kvn@508 627 // Scan object's fields adding an input to the safepoint for each field.
kvn@508 628 for (int j = 0; j < nfields; j++) {
kvn@741 629 intptr_t offset;
kvn@508 630 ciField* field = NULL;
kvn@508 631 if (iklass != NULL) {
kvn@508 632 field = iklass->nonstatic_field_at(j);
kvn@508 633 offset = field->offset();
kvn@508 634 elem_type = field->type();
kvn@508 635 basic_elem_type = field->layout_type();
kvn@508 636 } else {
kvn@741 637 offset = array_base + j * (intptr_t)element_size;
kvn@508 638 }
kvn@508 639
kvn@508 640 const Type *field_type;
kvn@508 641 // The next code is taken from Parse::do_get_xxx().
kvn@559 642 if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
kvn@508 643 if (!elem_type->is_loaded()) {
kvn@508 644 field_type = TypeInstPtr::BOTTOM;
kvn@508 645 } else if (field != NULL && field->is_constant()) {
kvn@508 646 // This can happen if the constant oop is non-perm.
kvn@508 647 ciObject* con = field->constant_value().as_object();
kvn@508 648 // Do not "join" in the previous type; it doesn't add value,
kvn@508 649 // and may yield a vacuous result if the field is of interface type.
kvn@508 650 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
kvn@508 651 assert(field_type != NULL, "field singleton type must be consistent");
kvn@508 652 } else {
kvn@508 653 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
kvn@508 654 }
kvn@559 655 if (UseCompressedOops) {
kvn@656 656 field_type = field_type->make_narrowoop();
kvn@559 657 basic_elem_type = T_NARROWOOP;
kvn@559 658 }
kvn@508 659 } else {
kvn@508 660 field_type = Type::get_const_basic_type(basic_elem_type);
kvn@508 661 }
kvn@508 662
kvn@508 663 const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
kvn@508 664
kvn@508 665 Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
kvn@508 666 if (field_val == NULL) {
kvn@508 667 // we weren't able to find a value for this field,
kvn@508 668 // give up on eliminating this allocation
kvn@508 669 alloc->_is_scalar_replaceable = false; // don't try again
kvn@508 670 // remove any extra entries we added to the safepoint
kvn@508 671 uint last = sfpt->req() - 1;
kvn@508 672 for (int k = 0; k < j; k++) {
kvn@508 673 sfpt->del_req(last--);
kvn@508 674 }
kvn@508 675 // rollback processed safepoints
kvn@508 676 while (safepoints_done.length() > 0) {
kvn@508 677 SafePointNode* sfpt_done = safepoints_done.pop();
kvn@508 678 // remove any extra entries we added to the safepoint
kvn@508 679 last = sfpt_done->req() - 1;
kvn@508 680 for (int k = 0; k < nfields; k++) {
kvn@508 681 sfpt_done->del_req(last--);
kvn@508 682 }
kvn@508 683 JVMState *jvms = sfpt_done->jvms();
kvn@508 684 jvms->set_endoff(sfpt_done->req());
kvn@508 685 // Now make a pass over the debug information replacing any references
kvn@508 686 // to SafePointScalarObjectNode with the allocated object.
kvn@508 687 int start = jvms->debug_start();
kvn@508 688 int end = jvms->debug_end();
kvn@508 689 for (int i = start; i < end; i++) {
kvn@508 690 if (sfpt_done->in(i)->is_SafePointScalarObject()) {
kvn@508 691 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
kvn@508 692 if (scobj->first_index() == sfpt_done->req() &&
kvn@508 693 scobj->n_fields() == (uint)nfields) {
kvn@508 694 assert(scobj->alloc() == alloc, "sanity");
kvn@508 695 sfpt_done->set_req(i, res);
kvn@508 696 }
kvn@508 697 }
kvn@508 698 }
kvn@508 699 }
kvn@508 700 #ifndef PRODUCT
kvn@508 701 if (PrintEliminateAllocations) {
kvn@508 702 if (field != NULL) {
kvn@508 703 tty->print("=== At SafePoint node %d can't find value of Field: ",
kvn@508 704 sfpt->_idx);
kvn@508 705 field->print();
kvn@508 706 int field_idx = C->get_alias_index(field_addr_type);
kvn@508 707 tty->print(" (alias_idx=%d)", field_idx);
kvn@508 708 } else { // Array's element
kvn@508 709 tty->print("=== At SafePoint node %d can't find value of array element [%d]",
kvn@508 710 sfpt->_idx, j);
kvn@508 711 }
kvn@508 712 tty->print(", which prevents elimination of: ");
kvn@508 713 if (res == NULL)
kvn@508 714 alloc->dump();
kvn@508 715 else
kvn@508 716 res->dump();
kvn@508 717 }
kvn@508 718 #endif
kvn@508 719 return false;
kvn@508 720 }
kvn@559 721 if (UseCompressedOops && field_type->isa_narrowoop()) {
kvn@559 722 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
kvn@559 723 // to be able scalar replace the allocation.
kvn@656 724 if (field_val->is_EncodeP()) {
kvn@656 725 field_val = field_val->in(1);
kvn@656 726 } else {
kvn@656 727 field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
kvn@656 728 }
kvn@559 729 }
kvn@508 730 sfpt->add_req(field_val);
kvn@508 731 }
kvn@508 732 JVMState *jvms = sfpt->jvms();
kvn@508 733 jvms->set_endoff(sfpt->req());
kvn@508 734 // Now make a pass over the debug information replacing any references
kvn@508 735 // to the allocated object with "sobj"
kvn@508 736 int start = jvms->debug_start();
kvn@508 737 int end = jvms->debug_end();
kvn@508 738 for (int i = start; i < end; i++) {
kvn@508 739 if (sfpt->in(i) == res) {
kvn@508 740 sfpt->set_req(i, sobj);
kvn@508 741 }
kvn@508 742 }
kvn@508 743 safepoints_done.append_if_missing(sfpt); // keep it for rollback
kvn@508 744 }
kvn@508 745 return true;
kvn@508 746 }
kvn@508 747
kvn@508 748 // Process users of eliminated allocation.
kvn@508 749 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
kvn@508 750 Node* res = alloc->result_cast();
kvn@508 751 if (res != NULL) {
kvn@508 752 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
kvn@508 753 Node *use = res->last_out(j);
kvn@508 754 uint oc1 = res->outcnt();
kvn@508 755
kvn@508 756 if (use->is_AddP()) {
kvn@508 757 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
kvn@508 758 Node *n = use->last_out(k);
kvn@508 759 uint oc2 = use->outcnt();
kvn@508 760 if (n->is_Store()) {
kvn@508 761 _igvn.replace_node(n, n->in(MemNode::Memory));
kvn@508 762 } else {
kvn@508 763 assert( n->Opcode() == Op_CastP2X, "CastP2X required");
kvn@508 764 eliminate_card_mark(n);
kvn@508 765 }
kvn@508 766 k -= (oc2 - use->outcnt());
kvn@508 767 }
kvn@508 768 } else {
kvn@508 769 assert( !use->is_SafePoint(), "safepoint uses must have been already elimiated");
kvn@508 770 assert( use->Opcode() == Op_CastP2X, "CastP2X required");
kvn@508 771 eliminate_card_mark(use);
kvn@508 772 }
kvn@508 773 j -= (oc1 - res->outcnt());
kvn@508 774 }
kvn@508 775 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
kvn@508 776 _igvn.remove_dead_node(res);
kvn@508 777 }
kvn@508 778
kvn@508 779 //
kvn@508 780 // Process other users of allocation's projections
kvn@508 781 //
kvn@508 782 if (_resproj != NULL && _resproj->outcnt() != 0) {
kvn@508 783 for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
kvn@508 784 Node *use = _resproj->last_out(j);
kvn@508 785 uint oc1 = _resproj->outcnt();
kvn@508 786 if (use->is_Initialize()) {
kvn@508 787 // Eliminate Initialize node.
kvn@508 788 InitializeNode *init = use->as_Initialize();
kvn@508 789 assert(init->outcnt() <= 2, "only a control and memory projection expected");
kvn@508 790 Node *ctrl_proj = init->proj_out(TypeFunc::Control);
kvn@508 791 if (ctrl_proj != NULL) {
kvn@508 792 assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
kvn@508 793 _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
kvn@508 794 }
kvn@508 795 Node *mem_proj = init->proj_out(TypeFunc::Memory);
kvn@508 796 if (mem_proj != NULL) {
kvn@508 797 Node *mem = init->in(TypeFunc::Memory);
kvn@508 798 #ifdef ASSERT
kvn@508 799 if (mem->is_MergeMem()) {
kvn@508 800 assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
kvn@508 801 } else {
kvn@508 802 assert(mem == _memproj_fallthrough, "allocation memory projection");
kvn@508 803 }
kvn@508 804 #endif
kvn@508 805 _igvn.replace_node(mem_proj, mem);
kvn@508 806 }
kvn@508 807 } else if (use->is_AddP()) {
kvn@508 808 // raw memory addresses used only by the initialization
kvn@1143 809 _igvn.replace_node(use, C->top());
kvn@508 810 } else {
kvn@508 811 assert(false, "only Initialize or AddP expected");
kvn@508 812 }
kvn@508 813 j -= (oc1 - _resproj->outcnt());
kvn@508 814 }
kvn@508 815 }
kvn@508 816 if (_fallthroughcatchproj != NULL) {
kvn@508 817 _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
kvn@508 818 }
kvn@508 819 if (_memproj_fallthrough != NULL) {
kvn@508 820 _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
kvn@508 821 }
kvn@508 822 if (_memproj_catchall != NULL) {
kvn@508 823 _igvn.replace_node(_memproj_catchall, C->top());
kvn@508 824 }
kvn@508 825 if (_ioproj_fallthrough != NULL) {
kvn@508 826 _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
kvn@508 827 }
kvn@508 828 if (_ioproj_catchall != NULL) {
kvn@508 829 _igvn.replace_node(_ioproj_catchall, C->top());
kvn@508 830 }
kvn@508 831 if (_catchallcatchproj != NULL) {
kvn@508 832 _igvn.replace_node(_catchallcatchproj, C->top());
kvn@508 833 }
kvn@508 834 }
kvn@508 835
kvn@508 836 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
kvn@508 837
kvn@508 838 if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
kvn@508 839 return false;
kvn@508 840 }
kvn@508 841
kvn@508 842 extract_call_projections(alloc);
kvn@508 843
kvn@508 844 GrowableArray <SafePointNode *> safepoints;
kvn@508 845 if (!can_eliminate_allocation(alloc, safepoints)) {
kvn@508 846 return false;
kvn@508 847 }
kvn@508 848
kvn@508 849 if (!scalar_replacement(alloc, safepoints)) {
kvn@508 850 return false;
kvn@508 851 }
kvn@508 852
kvn@508 853 process_users_of_allocation(alloc);
kvn@508 854
kvn@508 855 #ifndef PRODUCT
kvn@508 856 if (PrintEliminateAllocations) {
kvn@508 857 if (alloc->is_AllocateArray())
kvn@508 858 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
kvn@508 859 else
kvn@508 860 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
kvn@508 861 }
kvn@508 862 #endif
kvn@508 863
kvn@508 864 return true;
kvn@508 865 }
kvn@508 866
duke@435 867
duke@435 868 //---------------------------set_eden_pointers-------------------------
duke@435 869 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
duke@435 870 if (UseTLAB) { // Private allocation: load from TLS
duke@435 871 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
duke@435 872 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
duke@435 873 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
duke@435 874 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
duke@435 875 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
duke@435 876 } else { // Shared allocation: load from globals
duke@435 877 CollectedHeap* ch = Universe::heap();
duke@435 878 address top_adr = (address)ch->top_addr();
duke@435 879 address end_adr = (address)ch->end_addr();
duke@435 880 eden_top_adr = makecon(TypeRawPtr::make(top_adr));
duke@435 881 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
duke@435 882 }
duke@435 883 }
duke@435 884
duke@435 885
duke@435 886 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
duke@435 887 Node* adr = basic_plus_adr(base, offset);
kvn@855 888 const TypePtr* adr_type = adr->bottom_type()->is_ptr();
coleenp@548 889 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
duke@435 890 transform_later(value);
duke@435 891 return value;
duke@435 892 }
duke@435 893
duke@435 894
duke@435 895 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
duke@435 896 Node* adr = basic_plus_adr(base, offset);
coleenp@548 897 mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
duke@435 898 transform_later(mem);
duke@435 899 return mem;
duke@435 900 }
duke@435 901
duke@435 902 //=============================================================================
duke@435 903 //
duke@435 904 // A L L O C A T I O N
duke@435 905 //
duke@435 906 // Allocation attempts to be fast in the case of frequent small objects.
duke@435 907 // It breaks down like this:
duke@435 908 //
duke@435 909 // 1) Size in doublewords is computed. This is a constant for objects and
duke@435 910 // variable for most arrays. Doubleword units are used to avoid size
duke@435 911 // overflow of huge doubleword arrays. We need doublewords in the end for
duke@435 912 // rounding.
duke@435 913 //
duke@435 914 // 2) Size is checked for being 'too large'. Too-large allocations will go
duke@435 915 // the slow path into the VM. The slow path can throw any required
duke@435 916 // exceptions, and does all the special checks for very large arrays. The
duke@435 917 // size test can constant-fold away for objects. For objects with
duke@435 918 // finalizers it constant-folds the otherway: you always go slow with
duke@435 919 // finalizers.
duke@435 920 //
duke@435 921 // 3) If NOT using TLABs, this is the contended loop-back point.
duke@435 922 // Load-Locked the heap top. If using TLABs normal-load the heap top.
duke@435 923 //
duke@435 924 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route.
duke@435 925 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish
duke@435 926 // "size*8" we always enter the VM, where "largish" is a constant picked small
duke@435 927 // enough that there's always space between the eden max and 4Gig (old space is
duke@435 928 // there so it's quite large) and large enough that the cost of entering the VM
duke@435 929 // is dwarfed by the cost to initialize the space.
duke@435 930 //
duke@435 931 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
duke@435 932 // down. If contended, repeat at step 3. If using TLABs normal-store
duke@435 933 // adjusted heap top back down; there is no contention.
duke@435 934 //
duke@435 935 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark
duke@435 936 // fields.
duke@435 937 //
duke@435 938 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
duke@435 939 // oop flavor.
duke@435 940 //
duke@435 941 //=============================================================================
duke@435 942 // FastAllocateSizeLimit value is in DOUBLEWORDS.
duke@435 943 // Allocations bigger than this always go the slow route.
duke@435 944 // This value must be small enough that allocation attempts that need to
duke@435 945 // trigger exceptions go the slow route. Also, it must be small enough so
duke@435 946 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
duke@435 947 //=============================================================================j//
duke@435 948 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
duke@435 949 // The allocator will coalesce int->oop copies away. See comment in
duke@435 950 // coalesce.cpp about how this works. It depends critically on the exact
duke@435 951 // code shape produced here, so if you are changing this code shape
duke@435 952 // make sure the GC info for the heap-top is correct in and around the
duke@435 953 // slow-path call.
duke@435 954 //
duke@435 955
duke@435 956 void PhaseMacroExpand::expand_allocate_common(
duke@435 957 AllocateNode* alloc, // allocation node to be expanded
duke@435 958 Node* length, // array length for an array allocation
duke@435 959 const TypeFunc* slow_call_type, // Type of slow call
duke@435 960 address slow_call_address // Address of slow call
duke@435 961 )
duke@435 962 {
duke@435 963
duke@435 964 Node* ctrl = alloc->in(TypeFunc::Control);
duke@435 965 Node* mem = alloc->in(TypeFunc::Memory);
duke@435 966 Node* i_o = alloc->in(TypeFunc::I_O);
duke@435 967 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize);
duke@435 968 Node* klass_node = alloc->in(AllocateNode::KlassNode);
duke@435 969 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
duke@435 970
duke@435 971 assert(ctrl != NULL, "must have control");
duke@435 972 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
duke@435 973 // they will not be used if "always_slow" is set
duke@435 974 enum { slow_result_path = 1, fast_result_path = 2 };
duke@435 975 Node *result_region;
duke@435 976 Node *result_phi_rawmem;
duke@435 977 Node *result_phi_rawoop;
duke@435 978 Node *result_phi_i_o;
duke@435 979
duke@435 980 // The initial slow comparison is a size check, the comparison
duke@435 981 // we want to do is a BoolTest::gt
duke@435 982 bool always_slow = false;
duke@435 983 int tv = _igvn.find_int_con(initial_slow_test, -1);
duke@435 984 if (tv >= 0) {
duke@435 985 always_slow = (tv == 1);
duke@435 986 initial_slow_test = NULL;
duke@435 987 } else {
duke@435 988 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
duke@435 989 }
duke@435 990
kvn@1215 991 if (C->env()->dtrace_alloc_probes() ||
ysr@777 992 !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
ysr@777 993 (UseConcMarkSweepGC && CMSIncrementalMode))) {
duke@435 994 // Force slow-path allocation
duke@435 995 always_slow = true;
duke@435 996 initial_slow_test = NULL;
duke@435 997 }
duke@435 998
ysr@777 999
duke@435 1000 enum { too_big_or_final_path = 1, need_gc_path = 2 };
duke@435 1001 Node *slow_region = NULL;
duke@435 1002 Node *toobig_false = ctrl;
duke@435 1003
duke@435 1004 assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
duke@435 1005 // generate the initial test if necessary
duke@435 1006 if (initial_slow_test != NULL ) {
duke@435 1007 slow_region = new (C, 3) RegionNode(3);
duke@435 1008
duke@435 1009 // Now make the initial failure test. Usually a too-big test but
duke@435 1010 // might be a TRUE for finalizers or a fancy class check for
duke@435 1011 // newInstance0.
duke@435 1012 IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
duke@435 1013 transform_later(toobig_iff);
duke@435 1014 // Plug the failing-too-big test into the slow-path region
duke@435 1015 Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
duke@435 1016 transform_later(toobig_true);
duke@435 1017 slow_region ->init_req( too_big_or_final_path, toobig_true );
duke@435 1018 toobig_false = new (C, 1) IfFalseNode( toobig_iff );
duke@435 1019 transform_later(toobig_false);
duke@435 1020 } else { // No initial test, just fall into next case
duke@435 1021 toobig_false = ctrl;
duke@435 1022 debug_only(slow_region = NodeSentinel);
duke@435 1023 }
duke@435 1024
duke@435 1025 Node *slow_mem = mem; // save the current memory state for slow path
duke@435 1026 // generate the fast allocation code unless we know that the initial test will always go slow
duke@435 1027 if (!always_slow) {
kvn@1000 1028 // Fast path modifies only raw memory.
kvn@1000 1029 if (mem->is_MergeMem()) {
kvn@1000 1030 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
kvn@1000 1031 }
kvn@1000 1032
ysr@777 1033 Node* eden_top_adr;
ysr@777 1034 Node* eden_end_adr;
ysr@777 1035
ysr@777 1036 set_eden_pointers(eden_top_adr, eden_end_adr);
ysr@777 1037
ysr@777 1038 // Load Eden::end. Loop invariant and hoisted.
ysr@777 1039 //
ysr@777 1040 // Note: We set the control input on "eden_end" and "old_eden_top" when using
ysr@777 1041 // a TLAB to work around a bug where these values were being moved across
ysr@777 1042 // a safepoint. These are not oops, so they cannot be include in the oop
ysr@777 1043 // map, but the can be changed by a GC. The proper way to fix this would
ysr@777 1044 // be to set the raw memory state when generating a SafepointNode. However
ysr@777 1045 // this will require extensive changes to the loop optimization in order to
ysr@777 1046 // prevent a degradation of the optimization.
ysr@777 1047 // See comment in memnode.hpp, around line 227 in class LoadPNode.
ysr@777 1048 Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
ysr@777 1049
duke@435 1050 // allocate the Region and Phi nodes for the result
duke@435 1051 result_region = new (C, 3) RegionNode(3);
duke@435 1052 result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
duke@435 1053 result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
duke@435 1054 result_phi_i_o = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
duke@435 1055
duke@435 1056 // We need a Region for the loop-back contended case.
duke@435 1057 enum { fall_in_path = 1, contended_loopback_path = 2 };
duke@435 1058 Node *contended_region;
duke@435 1059 Node *contended_phi_rawmem;
duke@435 1060 if( UseTLAB ) {
duke@435 1061 contended_region = toobig_false;
duke@435 1062 contended_phi_rawmem = mem;
duke@435 1063 } else {
duke@435 1064 contended_region = new (C, 3) RegionNode(3);
duke@435 1065 contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 1066 // Now handle the passing-too-big test. We fall into the contended
duke@435 1067 // loop-back merge point.
duke@435 1068 contended_region ->init_req( fall_in_path, toobig_false );
duke@435 1069 contended_phi_rawmem->init_req( fall_in_path, mem );
duke@435 1070 transform_later(contended_region);
duke@435 1071 transform_later(contended_phi_rawmem);
duke@435 1072 }
duke@435 1073
duke@435 1074 // Load(-locked) the heap top.
duke@435 1075 // See note above concerning the control input when using a TLAB
duke@435 1076 Node *old_eden_top = UseTLAB
duke@435 1077 ? new (C, 3) LoadPNode ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
duke@435 1078 : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
duke@435 1079
duke@435 1080 transform_later(old_eden_top);
duke@435 1081 // Add to heap top to get a new heap top
duke@435 1082 Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
duke@435 1083 transform_later(new_eden_top);
duke@435 1084 // Check for needing a GC; compare against heap end
duke@435 1085 Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
duke@435 1086 transform_later(needgc_cmp);
duke@435 1087 Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
duke@435 1088 transform_later(needgc_bol);
duke@435 1089 IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1090 transform_later(needgc_iff);
duke@435 1091
duke@435 1092 // Plug the failing-heap-space-need-gc test into the slow-path region
duke@435 1093 Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
duke@435 1094 transform_later(needgc_true);
duke@435 1095 if( initial_slow_test ) {
duke@435 1096 slow_region ->init_req( need_gc_path, needgc_true );
duke@435 1097 // This completes all paths into the slow merge point
duke@435 1098 transform_later(slow_region);
duke@435 1099 } else { // No initial slow path needed!
duke@435 1100 // Just fall from the need-GC path straight into the VM call.
duke@435 1101 slow_region = needgc_true;
duke@435 1102 }
duke@435 1103 // No need for a GC. Setup for the Store-Conditional
duke@435 1104 Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
duke@435 1105 transform_later(needgc_false);
duke@435 1106
duke@435 1107 // Grab regular I/O before optional prefetch may change it.
duke@435 1108 // Slow-path does no I/O so just set it to the original I/O.
duke@435 1109 result_phi_i_o->init_req( slow_result_path, i_o );
duke@435 1110
duke@435 1111 i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
duke@435 1112 old_eden_top, new_eden_top, length);
duke@435 1113
duke@435 1114 // Store (-conditional) the modified eden top back down.
duke@435 1115 // StorePConditional produces flags for a test PLUS a modified raw
duke@435 1116 // memory state.
duke@435 1117 Node *store_eden_top;
duke@435 1118 Node *fast_oop_ctrl;
duke@435 1119 if( UseTLAB ) {
duke@435 1120 store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
duke@435 1121 transform_later(store_eden_top);
duke@435 1122 fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
duke@435 1123 } else {
duke@435 1124 store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
duke@435 1125 transform_later(store_eden_top);
duke@435 1126 Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
duke@435 1127 transform_later(contention_check);
duke@435 1128 store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
duke@435 1129 transform_later(store_eden_top);
duke@435 1130
duke@435 1131 // If not using TLABs, check to see if there was contention.
duke@435 1132 IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
duke@435 1133 transform_later(contention_iff);
duke@435 1134 Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
duke@435 1135 transform_later(contention_true);
duke@435 1136 // If contention, loopback and try again.
duke@435 1137 contended_region->init_req( contended_loopback_path, contention_true );
duke@435 1138 contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
duke@435 1139
duke@435 1140 // Fast-path succeeded with no contention!
duke@435 1141 Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
duke@435 1142 transform_later(contention_false);
duke@435 1143 fast_oop_ctrl = contention_false;
duke@435 1144 }
duke@435 1145
duke@435 1146 // Rename successful fast-path variables to make meaning more obvious
duke@435 1147 Node* fast_oop = old_eden_top;
duke@435 1148 Node* fast_oop_rawmem = store_eden_top;
duke@435 1149 fast_oop_rawmem = initialize_object(alloc,
duke@435 1150 fast_oop_ctrl, fast_oop_rawmem, fast_oop,
duke@435 1151 klass_node, length, size_in_bytes);
duke@435 1152
kvn@1215 1153 if (C->env()->dtrace_extended_probes()) {
duke@435 1154 // Slow-path call
duke@435 1155 int size = TypeFunc::Parms + 2;
duke@435 1156 CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
duke@435 1157 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
duke@435 1158 "dtrace_object_alloc",
duke@435 1159 TypeRawPtr::BOTTOM);
duke@435 1160
duke@435 1161 // Get base of thread-local storage area
duke@435 1162 Node* thread = new (C, 1) ThreadLocalNode();
duke@435 1163 transform_later(thread);
duke@435 1164
duke@435 1165 call->init_req(TypeFunc::Parms+0, thread);
duke@435 1166 call->init_req(TypeFunc::Parms+1, fast_oop);
duke@435 1167 call->init_req( TypeFunc::Control, fast_oop_ctrl );
duke@435 1168 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1169 call->init_req( TypeFunc::Memory , fast_oop_rawmem );
duke@435 1170 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1171 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1172 transform_later(call);
duke@435 1173 fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
duke@435 1174 transform_later(fast_oop_ctrl);
duke@435 1175 fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
duke@435 1176 transform_later(fast_oop_rawmem);
duke@435 1177 }
duke@435 1178
duke@435 1179 // Plug in the successful fast-path into the result merge point
duke@435 1180 result_region ->init_req( fast_result_path, fast_oop_ctrl );
duke@435 1181 result_phi_rawoop->init_req( fast_result_path, fast_oop );
duke@435 1182 result_phi_i_o ->init_req( fast_result_path, i_o );
duke@435 1183 result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
duke@435 1184 } else {
duke@435 1185 slow_region = ctrl;
duke@435 1186 }
duke@435 1187
duke@435 1188 // Generate slow-path call
duke@435 1189 CallNode *call = new (C, slow_call_type->domain()->cnt())
duke@435 1190 CallStaticJavaNode(slow_call_type, slow_call_address,
duke@435 1191 OptoRuntime::stub_name(slow_call_address),
duke@435 1192 alloc->jvms()->bci(),
duke@435 1193 TypePtr::BOTTOM);
duke@435 1194 call->init_req( TypeFunc::Control, slow_region );
duke@435 1195 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1196 call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
duke@435 1197 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1198 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1199
duke@435 1200 call->init_req(TypeFunc::Parms+0, klass_node);
duke@435 1201 if (length != NULL) {
duke@435 1202 call->init_req(TypeFunc::Parms+1, length);
duke@435 1203 }
duke@435 1204
duke@435 1205 // Copy debug information and adjust JVMState information, then replace
duke@435 1206 // allocate node with the call
duke@435 1207 copy_call_debug_info((CallNode *) alloc, call);
duke@435 1208 if (!always_slow) {
duke@435 1209 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
duke@435 1210 }
duke@435 1211 _igvn.hash_delete(alloc);
duke@435 1212 _igvn.subsume_node(alloc, call);
duke@435 1213 transform_later(call);
duke@435 1214
duke@435 1215 // Identify the output projections from the allocate node and
duke@435 1216 // adjust any references to them.
duke@435 1217 // The control and io projections look like:
duke@435 1218 //
duke@435 1219 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl)
duke@435 1220 // Allocate Catch
duke@435 1221 // ^---Proj(io) <-------+ ^---CatchProj(io)
duke@435 1222 //
duke@435 1223 // We are interested in the CatchProj nodes.
duke@435 1224 //
duke@435 1225 extract_call_projections(call);
duke@435 1226
duke@435 1227 // An allocate node has separate memory projections for the uses on the control and i_o paths
duke@435 1228 // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
duke@435 1229 if (!always_slow && _memproj_fallthrough != NULL) {
duke@435 1230 for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1231 Node *use = _memproj_fallthrough->fast_out(i);
duke@435 1232 _igvn.hash_delete(use);
duke@435 1233 imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
duke@435 1234 _igvn._worklist.push(use);
duke@435 1235 // back up iterator
duke@435 1236 --i;
duke@435 1237 }
duke@435 1238 }
duke@435 1239 // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
duke@435 1240 // we end up with a call that has only 1 memory projection
duke@435 1241 if (_memproj_catchall != NULL ) {
duke@435 1242 if (_memproj_fallthrough == NULL) {
duke@435 1243 _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
duke@435 1244 transform_later(_memproj_fallthrough);
duke@435 1245 }
duke@435 1246 for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1247 Node *use = _memproj_catchall->fast_out(i);
duke@435 1248 _igvn.hash_delete(use);
duke@435 1249 imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
duke@435 1250 _igvn._worklist.push(use);
duke@435 1251 // back up iterator
duke@435 1252 --i;
duke@435 1253 }
duke@435 1254 }
duke@435 1255
duke@435 1256 // An allocate node has separate i_o projections for the uses on the control and i_o paths
duke@435 1257 // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
duke@435 1258 if (_ioproj_fallthrough == NULL) {
duke@435 1259 _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
duke@435 1260 transform_later(_ioproj_fallthrough);
duke@435 1261 } else if (!always_slow) {
duke@435 1262 for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1263 Node *use = _ioproj_fallthrough->fast_out(i);
duke@435 1264
duke@435 1265 _igvn.hash_delete(use);
duke@435 1266 imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
duke@435 1267 _igvn._worklist.push(use);
duke@435 1268 // back up iterator
duke@435 1269 --i;
duke@435 1270 }
duke@435 1271 }
duke@435 1272 // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
duke@435 1273 // we end up with a call that has only 1 control projection
duke@435 1274 if (_ioproj_catchall != NULL ) {
duke@435 1275 for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1276 Node *use = _ioproj_catchall->fast_out(i);
duke@435 1277 _igvn.hash_delete(use);
duke@435 1278 imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
duke@435 1279 _igvn._worklist.push(use);
duke@435 1280 // back up iterator
duke@435 1281 --i;
duke@435 1282 }
duke@435 1283 }
duke@435 1284
duke@435 1285 // if we generated only a slow call, we are done
duke@435 1286 if (always_slow)
duke@435 1287 return;
duke@435 1288
duke@435 1289
duke@435 1290 if (_fallthroughcatchproj != NULL) {
duke@435 1291 ctrl = _fallthroughcatchproj->clone();
duke@435 1292 transform_later(ctrl);
kvn@1143 1293 _igvn.replace_node(_fallthroughcatchproj, result_region);
duke@435 1294 } else {
duke@435 1295 ctrl = top();
duke@435 1296 }
duke@435 1297 Node *slow_result;
duke@435 1298 if (_resproj == NULL) {
duke@435 1299 // no uses of the allocation result
duke@435 1300 slow_result = top();
duke@435 1301 } else {
duke@435 1302 slow_result = _resproj->clone();
duke@435 1303 transform_later(slow_result);
kvn@1143 1304 _igvn.replace_node(_resproj, result_phi_rawoop);
duke@435 1305 }
duke@435 1306
duke@435 1307 // Plug slow-path into result merge point
duke@435 1308 result_region ->init_req( slow_result_path, ctrl );
duke@435 1309 result_phi_rawoop->init_req( slow_result_path, slow_result);
duke@435 1310 result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
duke@435 1311 transform_later(result_region);
duke@435 1312 transform_later(result_phi_rawoop);
duke@435 1313 transform_later(result_phi_rawmem);
duke@435 1314 transform_later(result_phi_i_o);
duke@435 1315 // This completes all paths into the result merge point
duke@435 1316 }
duke@435 1317
duke@435 1318
duke@435 1319 // Helper for PhaseMacroExpand::expand_allocate_common.
duke@435 1320 // Initializes the newly-allocated storage.
duke@435 1321 Node*
duke@435 1322 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
duke@435 1323 Node* control, Node* rawmem, Node* object,
duke@435 1324 Node* klass_node, Node* length,
duke@435 1325 Node* size_in_bytes) {
duke@435 1326 InitializeNode* init = alloc->initialization();
duke@435 1327 // Store the klass & mark bits
duke@435 1328 Node* mark_node = NULL;
duke@435 1329 // For now only enable fast locking for non-array types
duke@435 1330 if (UseBiasedLocking && (length == NULL)) {
duke@435 1331 mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 1332 } else {
duke@435 1333 mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
duke@435 1334 }
duke@435 1335 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
coleenp@548 1336
duke@435 1337 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
duke@435 1338 int header_size = alloc->minimum_header_size(); // conservatively small
duke@435 1339
duke@435 1340 // Array length
duke@435 1341 if (length != NULL) { // Arrays need length field
duke@435 1342 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
duke@435 1343 // conservatively small header size:
coleenp@548 1344 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1345 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
duke@435 1346 if (k->is_array_klass()) // we know the exact header size in most cases:
duke@435 1347 header_size = Klass::layout_helper_header_size(k->layout_helper());
duke@435 1348 }
duke@435 1349
duke@435 1350 // Clear the object body, if necessary.
duke@435 1351 if (init == NULL) {
duke@435 1352 // The init has somehow disappeared; be cautious and clear everything.
duke@435 1353 //
duke@435 1354 // This can happen if a node is allocated but an uncommon trap occurs
duke@435 1355 // immediately. In this case, the Initialize gets associated with the
duke@435 1356 // trap, and may be placed in a different (outer) loop, if the Allocate
duke@435 1357 // is in a loop. If (this is rare) the inner loop gets unrolled, then
duke@435 1358 // there can be two Allocates to one Initialize. The answer in all these
duke@435 1359 // edge cases is safety first. It is always safe to clear immediately
duke@435 1360 // within an Allocate, and then (maybe or maybe not) clear some more later.
duke@435 1361 if (!ZeroTLAB)
duke@435 1362 rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
duke@435 1363 header_size, size_in_bytes,
duke@435 1364 &_igvn);
duke@435 1365 } else {
duke@435 1366 if (!init->is_complete()) {
duke@435 1367 // Try to win by zeroing only what the init does not store.
duke@435 1368 // We can also try to do some peephole optimizations,
duke@435 1369 // such as combining some adjacent subword stores.
duke@435 1370 rawmem = init->complete_stores(control, rawmem, object,
duke@435 1371 header_size, size_in_bytes, &_igvn);
duke@435 1372 }
duke@435 1373 // We have no more use for this link, since the AllocateNode goes away:
duke@435 1374 init->set_req(InitializeNode::RawAddress, top());
duke@435 1375 // (If we keep the link, it just confuses the register allocator,
duke@435 1376 // who thinks he sees a real use of the address by the membar.)
duke@435 1377 }
duke@435 1378
duke@435 1379 return rawmem;
duke@435 1380 }
duke@435 1381
duke@435 1382 // Generate prefetch instructions for next allocations.
duke@435 1383 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
duke@435 1384 Node*& contended_phi_rawmem,
duke@435 1385 Node* old_eden_top, Node* new_eden_top,
duke@435 1386 Node* length) {
duke@435 1387 if( UseTLAB && AllocatePrefetchStyle == 2 ) {
duke@435 1388 // Generate prefetch allocation with watermark check.
duke@435 1389 // As an allocation hits the watermark, we will prefetch starting
duke@435 1390 // at a "distance" away from watermark.
duke@435 1391 enum { fall_in_path = 1, pf_path = 2 };
duke@435 1392
duke@435 1393 Node *pf_region = new (C, 3) RegionNode(3);
duke@435 1394 Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
duke@435 1395 TypeRawPtr::BOTTOM );
duke@435 1396 // I/O is used for Prefetch
duke@435 1397 Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
duke@435 1398
duke@435 1399 Node *thread = new (C, 1) ThreadLocalNode();
duke@435 1400 transform_later(thread);
duke@435 1401
duke@435 1402 Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
duke@435 1403 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
duke@435 1404 transform_later(eden_pf_adr);
duke@435 1405
duke@435 1406 Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
duke@435 1407 contended_phi_rawmem, eden_pf_adr,
duke@435 1408 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
duke@435 1409 transform_later(old_pf_wm);
duke@435 1410
duke@435 1411 // check against new_eden_top
duke@435 1412 Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
duke@435 1413 transform_later(need_pf_cmp);
duke@435 1414 Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
duke@435 1415 transform_later(need_pf_bol);
duke@435 1416 IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
duke@435 1417 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1418 transform_later(need_pf_iff);
duke@435 1419
duke@435 1420 // true node, add prefetchdistance
duke@435 1421 Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
duke@435 1422 transform_later(need_pf_true);
duke@435 1423
duke@435 1424 Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
duke@435 1425 transform_later(need_pf_false);
duke@435 1426
duke@435 1427 Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
duke@435 1428 _igvn.MakeConX(AllocatePrefetchDistance) );
duke@435 1429 transform_later(new_pf_wmt );
duke@435 1430 new_pf_wmt->set_req(0, need_pf_true);
duke@435 1431
duke@435 1432 Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
duke@435 1433 contended_phi_rawmem, eden_pf_adr,
duke@435 1434 TypeRawPtr::BOTTOM, new_pf_wmt );
duke@435 1435 transform_later(store_new_wmt);
duke@435 1436
duke@435 1437 // adding prefetches
duke@435 1438 pf_phi_abio->init_req( fall_in_path, i_o );
duke@435 1439
duke@435 1440 Node *prefetch_adr;
duke@435 1441 Node *prefetch;
duke@435 1442 uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
duke@435 1443 uint step_size = AllocatePrefetchStepSize;
duke@435 1444 uint distance = 0;
duke@435 1445
duke@435 1446 for ( uint i = 0; i < lines; i++ ) {
duke@435 1447 prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
duke@435 1448 _igvn.MakeConX(distance) );
duke@435 1449 transform_later(prefetch_adr);
duke@435 1450 prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
duke@435 1451 transform_later(prefetch);
duke@435 1452 distance += step_size;
duke@435 1453 i_o = prefetch;
duke@435 1454 }
duke@435 1455 pf_phi_abio->set_req( pf_path, i_o );
duke@435 1456
duke@435 1457 pf_region->init_req( fall_in_path, need_pf_false );
duke@435 1458 pf_region->init_req( pf_path, need_pf_true );
duke@435 1459
duke@435 1460 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
duke@435 1461 pf_phi_rawmem->init_req( pf_path, store_new_wmt );
duke@435 1462
duke@435 1463 transform_later(pf_region);
duke@435 1464 transform_later(pf_phi_rawmem);
duke@435 1465 transform_later(pf_phi_abio);
duke@435 1466
duke@435 1467 needgc_false = pf_region;
duke@435 1468 contended_phi_rawmem = pf_phi_rawmem;
duke@435 1469 i_o = pf_phi_abio;
duke@435 1470 } else if( AllocatePrefetchStyle > 0 ) {
duke@435 1471 // Insert a prefetch for each allocation only on the fast-path
duke@435 1472 Node *prefetch_adr;
duke@435 1473 Node *prefetch;
duke@435 1474 // Generate several prefetch instructions only for arrays.
duke@435 1475 uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
duke@435 1476 uint step_size = AllocatePrefetchStepSize;
duke@435 1477 uint distance = AllocatePrefetchDistance;
duke@435 1478 for ( uint i = 0; i < lines; i++ ) {
duke@435 1479 prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
duke@435 1480 _igvn.MakeConX(distance) );
duke@435 1481 transform_later(prefetch_adr);
duke@435 1482 prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
duke@435 1483 // Do not let it float too high, since if eden_top == eden_end,
duke@435 1484 // both might be null.
duke@435 1485 if( i == 0 ) { // Set control for first prefetch, next follows it
duke@435 1486 prefetch->init_req(0, needgc_false);
duke@435 1487 }
duke@435 1488 transform_later(prefetch);
duke@435 1489 distance += step_size;
duke@435 1490 i_o = prefetch;
duke@435 1491 }
duke@435 1492 }
duke@435 1493 return i_o;
duke@435 1494 }
duke@435 1495
duke@435 1496
duke@435 1497 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
duke@435 1498 expand_allocate_common(alloc, NULL,
duke@435 1499 OptoRuntime::new_instance_Type(),
duke@435 1500 OptoRuntime::new_instance_Java());
duke@435 1501 }
duke@435 1502
duke@435 1503 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
duke@435 1504 Node* length = alloc->in(AllocateNode::ALength);
duke@435 1505 expand_allocate_common(alloc, length,
duke@435 1506 OptoRuntime::new_array_Type(),
duke@435 1507 OptoRuntime::new_array_Java());
duke@435 1508 }
duke@435 1509
duke@435 1510
duke@435 1511 // we have determined that this lock/unlock can be eliminated, we simply
duke@435 1512 // eliminate the node without expanding it.
duke@435 1513 //
duke@435 1514 // Note: The membar's associated with the lock/unlock are currently not
duke@435 1515 // eliminated. This should be investigated as a future enhancement.
duke@435 1516 //
kvn@501 1517 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
kvn@501 1518
kvn@501 1519 if (!alock->is_eliminated()) {
kvn@501 1520 return false;
kvn@501 1521 }
kvn@895 1522 if (alock->is_Lock() && !alock->is_coarsened()) {
kvn@895 1523 // Create new "eliminated" BoxLock node and use it
kvn@895 1524 // in monitor debug info for the same object.
kvn@895 1525 BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
kvn@895 1526 Node* obj = alock->obj_node();
kvn@895 1527 if (!oldbox->is_eliminated()) {
kvn@895 1528 BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
kvn@895 1529 newbox->set_eliminated();
kvn@895 1530 transform_later(newbox);
kvn@895 1531 // Replace old box node with new box for all users
kvn@895 1532 // of the same object.
kvn@895 1533 for (uint i = 0; i < oldbox->outcnt();) {
kvn@895 1534
kvn@895 1535 bool next_edge = true;
kvn@895 1536 Node* u = oldbox->raw_out(i);
kvn@895 1537 if (u == alock) {
kvn@895 1538 i++;
kvn@895 1539 continue; // It will be removed below
kvn@895 1540 }
kvn@895 1541 if (u->is_Lock() &&
kvn@895 1542 u->as_Lock()->obj_node() == obj &&
kvn@895 1543 // oldbox could be referenced in debug info also
kvn@895 1544 u->as_Lock()->box_node() == oldbox) {
kvn@895 1545 assert(u->as_Lock()->is_eliminated(), "sanity");
kvn@895 1546 _igvn.hash_delete(u);
kvn@895 1547 u->set_req(TypeFunc::Parms + 1, newbox);
kvn@895 1548 next_edge = false;
kvn@895 1549 #ifdef ASSERT
kvn@895 1550 } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
kvn@895 1551 assert(u->as_Unlock()->is_eliminated(), "sanity");
kvn@895 1552 #endif
kvn@895 1553 }
kvn@895 1554 // Replace old box in monitor debug info.
kvn@895 1555 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
kvn@895 1556 SafePointNode* sfn = u->as_SafePoint();
kvn@895 1557 JVMState* youngest_jvms = sfn->jvms();
kvn@895 1558 int max_depth = youngest_jvms->depth();
kvn@895 1559 for (int depth = 1; depth <= max_depth; depth++) {
kvn@895 1560 JVMState* jvms = youngest_jvms->of_depth(depth);
kvn@895 1561 int num_mon = jvms->nof_monitors();
kvn@895 1562 // Loop over monitors
kvn@895 1563 for (int idx = 0; idx < num_mon; idx++) {
kvn@895 1564 Node* obj_node = sfn->monitor_obj(jvms, idx);
kvn@895 1565 Node* box_node = sfn->monitor_box(jvms, idx);
kvn@895 1566 if (box_node == oldbox && obj_node == obj) {
kvn@895 1567 int j = jvms->monitor_box_offset(idx);
kvn@895 1568 _igvn.hash_delete(u);
kvn@895 1569 u->set_req(j, newbox);
kvn@895 1570 next_edge = false;
kvn@895 1571 }
kvn@895 1572 } // for (int idx = 0;
kvn@895 1573 } // for (int depth = 1;
kvn@895 1574 } // if (u->is_SafePoint()
kvn@895 1575 if (next_edge) i++;
kvn@895 1576 } // for (uint i = 0; i < oldbox->outcnt();)
kvn@895 1577 } // if (!oldbox->is_eliminated())
kvn@895 1578 } // if (alock->is_Lock() && !lock->is_coarsened())
kvn@501 1579
kvn@501 1580 #ifndef PRODUCT
kvn@501 1581 if (PrintEliminateLocks) {
kvn@501 1582 if (alock->is_Lock()) {
kvn@501 1583 tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
kvn@501 1584 } else {
kvn@501 1585 tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
kvn@501 1586 }
kvn@501 1587 }
kvn@501 1588 #endif
kvn@501 1589
kvn@501 1590 Node* mem = alock->in(TypeFunc::Memory);
kvn@501 1591 Node* ctrl = alock->in(TypeFunc::Control);
kvn@501 1592
kvn@501 1593 extract_call_projections(alock);
kvn@501 1594 // There are 2 projections from the lock. The lock node will
kvn@501 1595 // be deleted when its last use is subsumed below.
kvn@501 1596 assert(alock->outcnt() == 2 &&
kvn@501 1597 _fallthroughproj != NULL &&
kvn@501 1598 _memproj_fallthrough != NULL,
kvn@501 1599 "Unexpected projections from Lock/Unlock");
kvn@501 1600
kvn@501 1601 Node* fallthroughproj = _fallthroughproj;
kvn@501 1602 Node* memproj_fallthrough = _memproj_fallthrough;
duke@435 1603
duke@435 1604 // The memory projection from a lock/unlock is RawMem
duke@435 1605 // The input to a Lock is merged memory, so extract its RawMem input
duke@435 1606 // (unless the MergeMem has been optimized away.)
duke@435 1607 if (alock->is_Lock()) {
kvn@501 1608 // Seach for MemBarAcquire node and delete it also.
kvn@501 1609 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
kvn@501 1610 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
kvn@501 1611 Node* ctrlproj = membar->proj_out(TypeFunc::Control);
kvn@501 1612 Node* memproj = membar->proj_out(TypeFunc::Memory);
kvn@1143 1613 _igvn.replace_node(ctrlproj, fallthroughproj);
kvn@1143 1614 _igvn.replace_node(memproj, memproj_fallthrough);
kvn@895 1615
kvn@895 1616 // Delete FastLock node also if this Lock node is unique user
kvn@895 1617 // (a loop peeling may clone a Lock node).
kvn@895 1618 Node* flock = alock->as_Lock()->fastlock_node();
kvn@895 1619 if (flock->outcnt() == 1) {
kvn@895 1620 assert(flock->unique_out() == alock, "sanity");
kvn@1143 1621 _igvn.replace_node(flock, top());
kvn@895 1622 }
duke@435 1623 }
duke@435 1624
kvn@501 1625 // Seach for MemBarRelease node and delete it also.
kvn@501 1626 if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
kvn@501 1627 ctrl->in(0)->is_MemBar()) {
kvn@501 1628 MemBarNode* membar = ctrl->in(0)->as_MemBar();
kvn@501 1629 assert(membar->Opcode() == Op_MemBarRelease &&
kvn@501 1630 mem->is_Proj() && membar == mem->in(0), "");
kvn@1143 1631 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 1632 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 1633 fallthroughproj = ctrl;
kvn@501 1634 memproj_fallthrough = mem;
kvn@501 1635 ctrl = membar->in(TypeFunc::Control);
kvn@501 1636 mem = membar->in(TypeFunc::Memory);
kvn@501 1637 }
kvn@501 1638
kvn@1143 1639 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 1640 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 1641 return true;
duke@435 1642 }
duke@435 1643
duke@435 1644
duke@435 1645 //------------------------------expand_lock_node----------------------
duke@435 1646 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
duke@435 1647
duke@435 1648 Node* ctrl = lock->in(TypeFunc::Control);
duke@435 1649 Node* mem = lock->in(TypeFunc::Memory);
duke@435 1650 Node* obj = lock->obj_node();
duke@435 1651 Node* box = lock->box_node();
kvn@501 1652 Node* flock = lock->fastlock_node();
duke@435 1653
duke@435 1654 // Make the merge point
kvn@855 1655 Node *region;
kvn@855 1656 Node *mem_phi;
kvn@855 1657 Node *slow_path;
duke@435 1658
kvn@855 1659 if (UseOptoBiasInlining) {
kvn@855 1660 /*
twisti@1040 1661 * See the full description in MacroAssembler::biased_locking_enter().
kvn@855 1662 *
kvn@855 1663 * if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
kvn@855 1664 * // The object is biased.
kvn@855 1665 * proto_node = klass->prototype_header;
kvn@855 1666 * o_node = thread | proto_node;
kvn@855 1667 * x_node = o_node ^ mark_word;
kvn@855 1668 * if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
kvn@855 1669 * // Done.
kvn@855 1670 * } else {
kvn@855 1671 * if( (x_node & biased_lock_mask) != 0 ) {
kvn@855 1672 * // The klass's prototype header is no longer biased.
kvn@855 1673 * cas(&mark_word, mark_word, proto_node)
kvn@855 1674 * goto cas_lock;
kvn@855 1675 * } else {
kvn@855 1676 * // The klass's prototype header is still biased.
kvn@855 1677 * if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
kvn@855 1678 * old = mark_word;
kvn@855 1679 * new = o_node;
kvn@855 1680 * } else {
kvn@855 1681 * // Different thread or anonymous biased.
kvn@855 1682 * old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
kvn@855 1683 * new = thread | old;
kvn@855 1684 * }
kvn@855 1685 * // Try to rebias.
kvn@855 1686 * if( cas(&mark_word, old, new) == 0 ) {
kvn@855 1687 * // Done.
kvn@855 1688 * } else {
kvn@855 1689 * goto slow_path; // Failed.
kvn@855 1690 * }
kvn@855 1691 * }
kvn@855 1692 * }
kvn@855 1693 * } else {
kvn@855 1694 * // The object is not biased.
kvn@855 1695 * cas_lock:
kvn@855 1696 * if( FastLock(obj) == 0 ) {
kvn@855 1697 * // Done.
kvn@855 1698 * } else {
kvn@855 1699 * slow_path:
kvn@855 1700 * OptoRuntime::complete_monitor_locking_Java(obj);
kvn@855 1701 * }
kvn@855 1702 * }
kvn@855 1703 */
kvn@855 1704
kvn@855 1705 region = new (C, 5) RegionNode(5);
kvn@855 1706 // create a Phi for the memory state
kvn@855 1707 mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1708
kvn@855 1709 Node* fast_lock_region = new (C, 3) RegionNode(3);
kvn@855 1710 Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1711
kvn@855 1712 // First, check mark word for the biased lock pattern.
kvn@855 1713 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 1714
kvn@855 1715 // Get fast path - mark word has the biased lock pattern.
kvn@855 1716 ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
kvn@855 1717 markOopDesc::biased_lock_mask_in_place,
kvn@855 1718 markOopDesc::biased_lock_pattern, true);
kvn@855 1719 // fast_lock_region->in(1) is set to slow path.
kvn@855 1720 fast_lock_mem_phi->init_req(1, mem);
kvn@855 1721
kvn@855 1722 // Now check that the lock is biased to the current thread and has
kvn@855 1723 // the same epoch and bias as Klass::_prototype_header.
kvn@855 1724
kvn@855 1725 // Special-case a fresh allocation to avoid building nodes:
kvn@855 1726 Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
kvn@855 1727 if (klass_node == NULL) {
kvn@855 1728 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
kvn@855 1729 klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
kvn@925 1730 #ifdef _LP64
kvn@925 1731 if (UseCompressedOops && klass_node->is_DecodeN()) {
kvn@925 1732 assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
kvn@925 1733 klass_node->in(1)->init_req(0, ctrl);
kvn@925 1734 } else
kvn@925 1735 #endif
kvn@925 1736 klass_node->init_req(0, ctrl);
kvn@855 1737 }
kvn@855 1738 Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
kvn@855 1739
kvn@855 1740 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
kvn@855 1741 Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
kvn@855 1742 Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
kvn@855 1743 Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
kvn@855 1744
kvn@855 1745 // Get slow path - mark word does NOT match the value.
kvn@855 1746 Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node,
kvn@855 1747 (~markOopDesc::age_mask_in_place), 0);
kvn@855 1748 // region->in(3) is set to fast path - the object is biased to the current thread.
kvn@855 1749 mem_phi->init_req(3, mem);
kvn@855 1750
kvn@855 1751
kvn@855 1752 // Mark word does NOT match the value (thread | Klass::_prototype_header).
kvn@855 1753
kvn@855 1754
kvn@855 1755 // First, check biased pattern.
kvn@855 1756 // Get fast path - _prototype_header has the same biased lock pattern.
kvn@855 1757 ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
kvn@855 1758 markOopDesc::biased_lock_mask_in_place, 0, true);
kvn@855 1759
kvn@855 1760 not_biased_ctrl = fast_lock_region->in(2); // Slow path
kvn@855 1761 // fast_lock_region->in(2) - the prototype header is no longer biased
kvn@855 1762 // and we have to revoke the bias on this object.
kvn@855 1763 // We are going to try to reset the mark of this object to the prototype
kvn@855 1764 // value and fall through to the CAS-based locking scheme.
kvn@855 1765 Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@855 1766 Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
kvn@855 1767 proto_node, mark_node);
kvn@855 1768 transform_later(cas);
kvn@855 1769 Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
kvn@855 1770 fast_lock_mem_phi->init_req(2, proj);
kvn@855 1771
kvn@855 1772
kvn@855 1773 // Second, check epoch bits.
kvn@855 1774 Node* rebiased_region = new (C, 3) RegionNode(3);
kvn@855 1775 Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
kvn@855 1776 Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
kvn@855 1777
kvn@855 1778 // Get slow path - mark word does NOT match epoch bits.
kvn@855 1779 Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node,
kvn@855 1780 markOopDesc::epoch_mask_in_place, 0);
kvn@855 1781 // The epoch of the current bias is not valid, attempt to rebias the object
kvn@855 1782 // toward the current thread.
kvn@855 1783 rebiased_region->init_req(2, epoch_ctrl);
kvn@855 1784 old_phi->init_req(2, mark_node);
kvn@855 1785 new_phi->init_req(2, o_node);
kvn@855 1786
kvn@855 1787 // rebiased_region->in(1) is set to fast path.
kvn@855 1788 // The epoch of the current bias is still valid but we know
kvn@855 1789 // nothing about the owner; it might be set or it might be clear.
kvn@855 1790 Node* cmask = MakeConX(markOopDesc::biased_lock_mask_in_place |
kvn@855 1791 markOopDesc::age_mask_in_place |
kvn@855 1792 markOopDesc::epoch_mask_in_place);
kvn@855 1793 Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
kvn@855 1794 cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
kvn@855 1795 Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
kvn@855 1796 old_phi->init_req(1, old);
kvn@855 1797 new_phi->init_req(1, new_mark);
kvn@855 1798
kvn@855 1799 transform_later(rebiased_region);
kvn@855 1800 transform_later(old_phi);
kvn@855 1801 transform_later(new_phi);
kvn@855 1802
kvn@855 1803 // Try to acquire the bias of the object using an atomic operation.
kvn@855 1804 // If this fails we will go in to the runtime to revoke the object's bias.
kvn@855 1805 cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
kvn@855 1806 new_phi, old_phi);
kvn@855 1807 transform_later(cas);
kvn@855 1808 proj = transform_later( new (C, 1) SCMemProjNode(cas));
kvn@855 1809
kvn@855 1810 // Get slow path - Failed to CAS.
kvn@855 1811 not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
kvn@855 1812 mem_phi->init_req(4, proj);
kvn@855 1813 // region->in(4) is set to fast path - the object is rebiased to the current thread.
kvn@855 1814
kvn@855 1815 // Failed to CAS.
kvn@855 1816 slow_path = new (C, 3) RegionNode(3);
kvn@855 1817 Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1818
kvn@855 1819 slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
kvn@855 1820 slow_mem->init_req(1, proj);
kvn@855 1821
kvn@855 1822 // Call CAS-based locking scheme (FastLock node).
kvn@855 1823
kvn@855 1824 transform_later(fast_lock_region);
kvn@855 1825 transform_later(fast_lock_mem_phi);
kvn@855 1826
kvn@855 1827 // Get slow path - FastLock failed to lock the object.
kvn@855 1828 ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
kvn@855 1829 mem_phi->init_req(2, fast_lock_mem_phi);
kvn@855 1830 // region->in(2) is set to fast path - the object is locked to the current thread.
kvn@855 1831
kvn@855 1832 slow_path->init_req(2, ctrl); // Capture slow-control
kvn@855 1833 slow_mem->init_req(2, fast_lock_mem_phi);
kvn@855 1834
kvn@855 1835 transform_later(slow_path);
kvn@855 1836 transform_later(slow_mem);
kvn@855 1837 // Reset lock's memory edge.
kvn@855 1838 lock->set_req(TypeFunc::Memory, slow_mem);
kvn@855 1839
kvn@855 1840 } else {
kvn@855 1841 region = new (C, 3) RegionNode(3);
kvn@855 1842 // create a Phi for the memory state
kvn@855 1843 mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1844
kvn@855 1845 // Optimize test; set region slot 2
kvn@855 1846 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
kvn@855 1847 mem_phi->init_req(2, mem);
kvn@855 1848 }
duke@435 1849
duke@435 1850 // Make slow path call
duke@435 1851 CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
duke@435 1852
duke@435 1853 extract_call_projections(call);
duke@435 1854
duke@435 1855 // Slow path can only throw asynchronous exceptions, which are always
duke@435 1856 // de-opted. So the compiler thinks the slow-call can never throw an
duke@435 1857 // exception. If it DOES throw an exception we would need the debug
duke@435 1858 // info removed first (since if it throws there is no monitor).
duke@435 1859 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 1860 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 1861
duke@435 1862 // Capture slow path
duke@435 1863 // disconnect fall-through projection from call and create a new one
duke@435 1864 // hook up users of fall-through projection to region
duke@435 1865 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 1866 transform_later(slow_ctrl);
duke@435 1867 _igvn.hash_delete(_fallthroughproj);
duke@435 1868 _fallthroughproj->disconnect_inputs(NULL);
duke@435 1869 region->init_req(1, slow_ctrl);
duke@435 1870 // region inputs are now complete
duke@435 1871 transform_later(region);
kvn@1143 1872 _igvn.replace_node(_fallthroughproj, region);
duke@435 1873
kvn@855 1874 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 1875 mem_phi->init_req(1, memproj );
duke@435 1876 transform_later(mem_phi);
kvn@1143 1877 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 1878 }
duke@435 1879
duke@435 1880 //------------------------------expand_unlock_node----------------------
duke@435 1881 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
duke@435 1882
kvn@501 1883 Node* ctrl = unlock->in(TypeFunc::Control);
duke@435 1884 Node* mem = unlock->in(TypeFunc::Memory);
duke@435 1885 Node* obj = unlock->obj_node();
duke@435 1886 Node* box = unlock->box_node();
duke@435 1887
duke@435 1888 // No need for a null check on unlock
duke@435 1889
duke@435 1890 // Make the merge point
kvn@855 1891 Node *region;
kvn@855 1892 Node *mem_phi;
kvn@855 1893
kvn@855 1894 if (UseOptoBiasInlining) {
kvn@855 1895 // Check for biased locking unlock case, which is a no-op.
twisti@1040 1896 // See the full description in MacroAssembler::biased_locking_exit().
kvn@855 1897 region = new (C, 4) RegionNode(4);
kvn@855 1898 // create a Phi for the memory state
kvn@855 1899 mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1900 mem_phi->init_req(3, mem);
kvn@855 1901
kvn@855 1902 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 1903 ctrl = opt_bits_test(ctrl, region, 3, mark_node,
kvn@855 1904 markOopDesc::biased_lock_mask_in_place,
kvn@855 1905 markOopDesc::biased_lock_pattern);
kvn@855 1906 } else {
kvn@855 1907 region = new (C, 3) RegionNode(3);
kvn@855 1908 // create a Phi for the memory state
kvn@855 1909 mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1910 }
duke@435 1911
duke@435 1912 FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
duke@435 1913 funlock = transform_later( funlock )->as_FastUnlock();
duke@435 1914 // Optimize test; set region slot 2
kvn@855 1915 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
duke@435 1916
duke@435 1917 CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
duke@435 1918
duke@435 1919 extract_call_projections(call);
duke@435 1920
duke@435 1921 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 1922 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 1923
duke@435 1924 // No exceptions for unlocking
duke@435 1925 // Capture slow path
duke@435 1926 // disconnect fall-through projection from call and create a new one
duke@435 1927 // hook up users of fall-through projection to region
duke@435 1928 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 1929 transform_later(slow_ctrl);
duke@435 1930 _igvn.hash_delete(_fallthroughproj);
duke@435 1931 _fallthroughproj->disconnect_inputs(NULL);
duke@435 1932 region->init_req(1, slow_ctrl);
duke@435 1933 // region inputs are now complete
duke@435 1934 transform_later(region);
kvn@1143 1935 _igvn.replace_node(_fallthroughproj, region);
duke@435 1936
duke@435 1937 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 1938 mem_phi->init_req(1, memproj );
duke@435 1939 mem_phi->init_req(2, mem);
duke@435 1940 transform_later(mem_phi);
kvn@1143 1941 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 1942 }
duke@435 1943
duke@435 1944 //------------------------------expand_macro_nodes----------------------
duke@435 1945 // Returns true if a failure occurred.
duke@435 1946 bool PhaseMacroExpand::expand_macro_nodes() {
duke@435 1947 if (C->macro_count() == 0)
duke@435 1948 return false;
kvn@895 1949 // First, attempt to eliminate locks
kvn@508 1950 bool progress = true;
kvn@508 1951 while (progress) {
kvn@508 1952 progress = false;
kvn@508 1953 for (int i = C->macro_count(); i > 0; i--) {
kvn@508 1954 Node * n = C->macro_node(i-1);
kvn@508 1955 bool success = false;
kvn@508 1956 debug_only(int old_macro_count = C->macro_count(););
kvn@895 1957 if (n->is_AbstractLock()) {
kvn@895 1958 success = eliminate_locking_node(n->as_AbstractLock());
kvn@895 1959 } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
kvn@1143 1960 _igvn.replace_node(n, n->in(1));
kvn@895 1961 success = true;
kvn@895 1962 }
kvn@895 1963 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@895 1964 progress = progress || success;
kvn@895 1965 }
kvn@895 1966 }
kvn@895 1967 // Next, attempt to eliminate allocations
kvn@895 1968 progress = true;
kvn@895 1969 while (progress) {
kvn@895 1970 progress = false;
kvn@895 1971 for (int i = C->macro_count(); i > 0; i--) {
kvn@895 1972 Node * n = C->macro_node(i-1);
kvn@895 1973 bool success = false;
kvn@895 1974 debug_only(int old_macro_count = C->macro_count(););
kvn@508 1975 switch (n->class_id()) {
kvn@508 1976 case Node::Class_Allocate:
kvn@508 1977 case Node::Class_AllocateArray:
kvn@508 1978 success = eliminate_allocate_node(n->as_Allocate());
kvn@508 1979 break;
kvn@508 1980 case Node::Class_Lock:
kvn@508 1981 case Node::Class_Unlock:
kvn@895 1982 assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
kvn@508 1983 break;
kvn@508 1984 default:
kvn@895 1985 assert(false, "unknown node type in macro list");
kvn@508 1986 }
kvn@508 1987 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@508 1988 progress = progress || success;
kvn@508 1989 }
kvn@508 1990 }
kvn@508 1991 // Make sure expansion will not cause node limit to be exceeded.
kvn@508 1992 // Worst case is a macro node gets expanded into about 50 nodes.
kvn@508 1993 // Allow 50% more for optimization.
duke@435 1994 if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
duke@435 1995 return true;
kvn@508 1996
duke@435 1997 // expand "macro" nodes
duke@435 1998 // nodes are removed from the macro list as they are processed
duke@435 1999 while (C->macro_count() > 0) {
kvn@508 2000 int macro_count = C->macro_count();
kvn@508 2001 Node * n = C->macro_node(macro_count-1);
duke@435 2002 assert(n->is_macro(), "only macro nodes expected here");
duke@435 2003 if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
duke@435 2004 // node is unreachable, so don't try to expand it
duke@435 2005 C->remove_macro_node(n);
duke@435 2006 continue;
duke@435 2007 }
duke@435 2008 switch (n->class_id()) {
duke@435 2009 case Node::Class_Allocate:
duke@435 2010 expand_allocate(n->as_Allocate());
duke@435 2011 break;
duke@435 2012 case Node::Class_AllocateArray:
duke@435 2013 expand_allocate_array(n->as_AllocateArray());
duke@435 2014 break;
duke@435 2015 case Node::Class_Lock:
duke@435 2016 expand_lock_node(n->as_Lock());
duke@435 2017 break;
duke@435 2018 case Node::Class_Unlock:
duke@435 2019 expand_unlock_node(n->as_Unlock());
duke@435 2020 break;
duke@435 2021 default:
duke@435 2022 assert(false, "unknown node type in macro list");
duke@435 2023 }
kvn@508 2024 assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
duke@435 2025 if (C->failing()) return true;
duke@435 2026 }
coleenp@548 2027
coleenp@548 2028 _igvn.set_delay_transform(false);
duke@435 2029 _igvn.optimize();
duke@435 2030 return false;
duke@435 2031 }

mercurial