src/share/vm/opto/macro.cpp

Thu, 16 Jul 2009 14:10:42 -0700

author
kvn
date
Thu, 16 Jul 2009 14:10:42 -0700
changeset 1286
fc4be448891f
parent 1215
c96bf21b756f
child 1515
7c57aead6d3e
permissions
-rw-r--r--

6851742: (EA) allocation elimination doesn't work with UseG1GC
Summary: Fix eliminate_card_mark() to eliminate G1 pre/post barriers.
Reviewed-by: never

duke@435 1 /*
xdono@1014 2 * Copyright 2005-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_macro.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 //
duke@435 30 // Replace any references to "oldref" in inputs to "use" with "newref".
duke@435 31 // Returns the number of replacements made.
duke@435 32 //
duke@435 33 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
duke@435 34 int nreplacements = 0;
duke@435 35 uint req = use->req();
duke@435 36 for (uint j = 0; j < use->len(); j++) {
duke@435 37 Node *uin = use->in(j);
duke@435 38 if (uin == oldref) {
duke@435 39 if (j < req)
duke@435 40 use->set_req(j, newref);
duke@435 41 else
duke@435 42 use->set_prec(j, newref);
duke@435 43 nreplacements++;
duke@435 44 } else if (j >= req && uin == NULL) {
duke@435 45 break;
duke@435 46 }
duke@435 47 }
duke@435 48 return nreplacements;
duke@435 49 }
duke@435 50
duke@435 51 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
duke@435 52 // Copy debug information and adjust JVMState information
duke@435 53 uint old_dbg_start = oldcall->tf()->domain()->cnt();
duke@435 54 uint new_dbg_start = newcall->tf()->domain()->cnt();
duke@435 55 int jvms_adj = new_dbg_start - old_dbg_start;
duke@435 56 assert (new_dbg_start == newcall->req(), "argument count mismatch");
kvn@498 57
kvn@498 58 Dict* sosn_map = new Dict(cmpkey,hashkey);
duke@435 59 for (uint i = old_dbg_start; i < oldcall->req(); i++) {
kvn@498 60 Node* old_in = oldcall->in(i);
kvn@498 61 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
kvn@895 62 if (old_in != NULL && old_in->is_SafePointScalarObject()) {
kvn@498 63 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
kvn@498 64 uint old_unique = C->unique();
kvn@498 65 Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
kvn@498 66 if (old_unique != C->unique()) {
kvn@1036 67 new_in->set_req(0, newcall->in(0)); // reset control edge
kvn@498 68 new_in = transform_later(new_in); // Register new node.
kvn@498 69 }
kvn@498 70 old_in = new_in;
kvn@498 71 }
kvn@498 72 newcall->add_req(old_in);
duke@435 73 }
kvn@498 74
duke@435 75 newcall->set_jvms(oldcall->jvms());
duke@435 76 for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@435 77 jvms->set_map(newcall);
duke@435 78 jvms->set_locoff(jvms->locoff()+jvms_adj);
duke@435 79 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
duke@435 80 jvms->set_monoff(jvms->monoff()+jvms_adj);
kvn@498 81 jvms->set_scloff(jvms->scloff()+jvms_adj);
duke@435 82 jvms->set_endoff(jvms->endoff()+jvms_adj);
duke@435 83 }
duke@435 84 }
duke@435 85
kvn@855 86 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
kvn@855 87 Node* cmp;
kvn@855 88 if (mask != 0) {
kvn@855 89 Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
kvn@855 90 cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
kvn@855 91 } else {
kvn@855 92 cmp = word;
kvn@855 93 }
kvn@855 94 Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
kvn@855 95 IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
kvn@855 96 transform_later(iff);
duke@435 97
kvn@855 98 // Fast path taken.
kvn@855 99 Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
duke@435 100
duke@435 101 // Fast path not-taken, i.e. slow path
kvn@855 102 Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
kvn@855 103
kvn@855 104 if (return_fast_path) {
kvn@855 105 region->init_req(edge, slow_taken); // Capture slow-control
kvn@855 106 return fast_taken;
kvn@855 107 } else {
kvn@855 108 region->init_req(edge, fast_taken); // Capture fast-control
kvn@855 109 return slow_taken;
kvn@855 110 }
duke@435 111 }
duke@435 112
duke@435 113 //--------------------copy_predefined_input_for_runtime_call--------------------
duke@435 114 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
duke@435 115 // Set fixed predefined input arguments
duke@435 116 call->init_req( TypeFunc::Control, ctrl );
duke@435 117 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) );
duke@435 118 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
duke@435 119 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
duke@435 120 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
duke@435 121 }
duke@435 122
duke@435 123 //------------------------------make_slow_call---------------------------------
duke@435 124 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
duke@435 125
duke@435 126 // Slow-path call
duke@435 127 int size = slow_call_type->domain()->cnt();
duke@435 128 CallNode *call = leaf_name
duke@435 129 ? (CallNode*)new (C, size) CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
duke@435 130 : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
duke@435 131
duke@435 132 // Slow path call has no side-effects, uses few values
duke@435 133 copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
duke@435 134 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
duke@435 135 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
duke@435 136 copy_call_debug_info(oldcall, call);
duke@435 137 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
duke@435 138 _igvn.hash_delete(oldcall);
duke@435 139 _igvn.subsume_node(oldcall, call);
duke@435 140 transform_later(call);
duke@435 141
duke@435 142 return call;
duke@435 143 }
duke@435 144
duke@435 145 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
duke@435 146 _fallthroughproj = NULL;
duke@435 147 _fallthroughcatchproj = NULL;
duke@435 148 _ioproj_fallthrough = NULL;
duke@435 149 _ioproj_catchall = NULL;
duke@435 150 _catchallcatchproj = NULL;
duke@435 151 _memproj_fallthrough = NULL;
duke@435 152 _memproj_catchall = NULL;
duke@435 153 _resproj = NULL;
duke@435 154 for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
duke@435 155 ProjNode *pn = call->fast_out(i)->as_Proj();
duke@435 156 switch (pn->_con) {
duke@435 157 case TypeFunc::Control:
duke@435 158 {
duke@435 159 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
duke@435 160 _fallthroughproj = pn;
duke@435 161 DUIterator_Fast jmax, j = pn->fast_outs(jmax);
duke@435 162 const Node *cn = pn->fast_out(j);
duke@435 163 if (cn->is_Catch()) {
duke@435 164 ProjNode *cpn = NULL;
duke@435 165 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
duke@435 166 cpn = cn->fast_out(k)->as_Proj();
duke@435 167 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
duke@435 168 if (cpn->_con == CatchProjNode::fall_through_index)
duke@435 169 _fallthroughcatchproj = cpn;
duke@435 170 else {
duke@435 171 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
duke@435 172 _catchallcatchproj = cpn;
duke@435 173 }
duke@435 174 }
duke@435 175 }
duke@435 176 break;
duke@435 177 }
duke@435 178 case TypeFunc::I_O:
duke@435 179 if (pn->_is_io_use)
duke@435 180 _ioproj_catchall = pn;
duke@435 181 else
duke@435 182 _ioproj_fallthrough = pn;
duke@435 183 break;
duke@435 184 case TypeFunc::Memory:
duke@435 185 if (pn->_is_io_use)
duke@435 186 _memproj_catchall = pn;
duke@435 187 else
duke@435 188 _memproj_fallthrough = pn;
duke@435 189 break;
duke@435 190 case TypeFunc::Parms:
duke@435 191 _resproj = pn;
duke@435 192 break;
duke@435 193 default:
duke@435 194 assert(false, "unexpected projection from allocation node.");
duke@435 195 }
duke@435 196 }
duke@435 197
duke@435 198 }
duke@435 199
kvn@508 200 // Eliminate a card mark sequence. p2x is a ConvP2XNode
kvn@1286 201 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
kvn@508 202 assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
kvn@1286 203 if (!UseG1GC) {
kvn@1286 204 // vanilla/CMS post barrier
kvn@1286 205 Node *shift = p2x->unique_out();
kvn@1286 206 Node *addp = shift->unique_out();
kvn@1286 207 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
kvn@1286 208 Node *st = addp->last_out(j);
kvn@1286 209 assert(st->is_Store(), "store required");
kvn@1286 210 _igvn.replace_node(st, st->in(MemNode::Memory));
kvn@1286 211 }
kvn@1286 212 } else {
kvn@1286 213 // G1 pre/post barriers
kvn@1286 214 assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
kvn@1286 215 // It could be only one user, URShift node, in Object.clone() instrinsic
kvn@1286 216 // but the new allocation is passed to arraycopy stub and it could not
kvn@1286 217 // be scalar replaced. So we don't check the case.
kvn@1286 218
kvn@1286 219 // Remove G1 post barrier.
kvn@1286 220
kvn@1286 221 // Search for CastP2X->Xor->URShift->Cmp path which
kvn@1286 222 // checks if the store done to a different from the value's region.
kvn@1286 223 // And replace Cmp with #0 (false) to collapse G1 post barrier.
kvn@1286 224 Node* xorx = NULL;
kvn@1286 225 for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
kvn@1286 226 Node* u = p2x->fast_out(i);
kvn@1286 227 if (u->Opcode() == Op_XorX) {
kvn@1286 228 xorx = u;
kvn@1286 229 break;
kvn@1286 230 }
kvn@1286 231 }
kvn@1286 232 assert(xorx != NULL, "missing G1 post barrier");
kvn@1286 233 Node* shift = xorx->unique_out();
kvn@1286 234 Node* cmpx = shift->unique_out();
kvn@1286 235 assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
kvn@1286 236 cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
kvn@1286 237 "missing region check in G1 post barrier");
kvn@1286 238 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 239
kvn@1286 240 // Remove G1 pre barrier.
kvn@1286 241
kvn@1286 242 // Search "if (marking != 0)" check and set it to "false".
kvn@1286 243 Node* this_region = p2x->in(0);
kvn@1286 244 assert(this_region != NULL, "");
kvn@1286 245 // There is no G1 pre barrier if previous stored value is NULL
kvn@1286 246 // (for example, after initialization).
kvn@1286 247 if (this_region->is_Region() && this_region->req() == 3) {
kvn@1286 248 int ind = 1;
kvn@1286 249 if (!this_region->in(ind)->is_IfFalse()) {
kvn@1286 250 ind = 2;
kvn@1286 251 }
kvn@1286 252 if (this_region->in(ind)->is_IfFalse()) {
kvn@1286 253 Node* bol = this_region->in(ind)->in(0)->in(1);
kvn@1286 254 assert(bol->is_Bool(), "");
kvn@1286 255 cmpx = bol->in(1);
kvn@1286 256 if (bol->as_Bool()->_test._test == BoolTest::ne &&
kvn@1286 257 cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
kvn@1286 258 cmpx->in(1)->is_Load()) {
kvn@1286 259 Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
kvn@1286 260 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
kvn@1286 261 PtrQueue::byte_offset_of_active());
kvn@1286 262 if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
kvn@1286 263 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
kvn@1286 264 adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
kvn@1286 265 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 266 }
kvn@1286 267 }
kvn@1286 268 }
kvn@1286 269 }
kvn@1286 270 // Now CastP2X can be removed since it is used only on dead path
kvn@1286 271 // which currently still alive until igvn optimize it.
kvn@1286 272 assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
kvn@1286 273 _igvn.replace_node(p2x, top());
kvn@508 274 }
kvn@508 275 }
kvn@508 276
kvn@508 277 // Search for a memory operation for the specified memory slice.
kvn@688 278 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
kvn@508 279 Node *orig_mem = mem;
kvn@508 280 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@688 281 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
kvn@508 282 while (true) {
kvn@508 283 if (mem == alloc_mem || mem == start_mem ) {
twisti@1040 284 return mem; // hit one of our sentinels
kvn@508 285 } else if (mem->is_MergeMem()) {
kvn@508 286 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@508 287 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
kvn@508 288 Node *in = mem->in(0);
kvn@508 289 // we can safely skip over safepoints, calls, locks and membars because we
kvn@508 290 // already know that the object is safe to eliminate.
kvn@508 291 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
kvn@508 292 return in;
kvn@688 293 } else if (in->is_Call()) {
kvn@688 294 CallNode *call = in->as_Call();
kvn@688 295 if (!call->may_modify(tinst, phase)) {
kvn@688 296 mem = call->in(TypeFunc::Memory);
kvn@688 297 }
kvn@688 298 mem = in->in(TypeFunc::Memory);
kvn@688 299 } else if (in->is_MemBar()) {
kvn@508 300 mem = in->in(TypeFunc::Memory);
kvn@508 301 } else {
kvn@508 302 assert(false, "unexpected projection");
kvn@508 303 }
kvn@508 304 } else if (mem->is_Store()) {
kvn@508 305 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 306 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@508 307 if (adr_idx == alias_idx) {
kvn@508 308 assert(atype->isa_oopptr(), "address type must be oopptr");
kvn@508 309 int adr_offset = atype->offset();
kvn@508 310 uint adr_iid = atype->is_oopptr()->instance_id();
kvn@508 311 // Array elements references have the same alias_idx
kvn@508 312 // but different offset and different instance_id.
kvn@508 313 if (adr_offset == offset && adr_iid == alloc->_idx)
kvn@508 314 return mem;
kvn@508 315 } else {
kvn@508 316 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
kvn@508 317 }
kvn@508 318 mem = mem->in(MemNode::Memory);
kvn@1019 319 } else if (mem->Opcode() == Op_SCMemProj) {
kvn@1019 320 assert(mem->in(0)->is_LoadStore(), "sanity");
kvn@1019 321 const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
kvn@1019 322 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@1019 323 if (adr_idx == alias_idx) {
kvn@1019 324 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 325 return NULL;
kvn@1019 326 }
kvn@1019 327 mem = mem->in(0)->in(MemNode::Memory);
kvn@508 328 } else {
kvn@508 329 return mem;
kvn@508 330 }
kvn@682 331 assert(mem != orig_mem, "dead memory loop");
kvn@508 332 }
kvn@508 333 }
kvn@508 334
kvn@508 335 //
kvn@508 336 // Given a Memory Phi, compute a value Phi containing the values from stores
kvn@508 337 // on the input paths.
kvn@508 338 // Note: this function is recursive, its depth is limied by the "level" argument
kvn@508 339 // Returns the computed Phi, or NULL if it cannot compute it.
kvn@682 340 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
kvn@682 341 assert(mem->is_Phi(), "sanity");
kvn@682 342 int alias_idx = C->get_alias_index(adr_t);
kvn@682 343 int offset = adr_t->offset();
kvn@682 344 int instance_id = adr_t->instance_id();
kvn@682 345
kvn@682 346 // Check if an appropriate value phi already exists.
kvn@682 347 Node* region = mem->in(0);
kvn@682 348 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
kvn@682 349 Node* phi = region->fast_out(k);
kvn@682 350 if (phi->is_Phi() && phi != mem &&
kvn@682 351 phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
kvn@682 352 return phi;
kvn@682 353 }
kvn@682 354 }
kvn@682 355 // Check if an appropriate new value phi already exists.
kvn@682 356 Node* new_phi = NULL;
kvn@682 357 uint size = value_phis->size();
kvn@682 358 for (uint i=0; i < size; i++) {
kvn@682 359 if ( mem->_idx == value_phis->index_at(i) ) {
kvn@682 360 return value_phis->node_at(i);
kvn@682 361 }
kvn@682 362 }
kvn@508 363
kvn@508 364 if (level <= 0) {
kvn@688 365 return NULL; // Give up: phi tree too deep
kvn@508 366 }
kvn@508 367 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 368 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@508 369
kvn@508 370 uint length = mem->req();
kvn@508 371 GrowableArray <Node *> values(length, length, NULL);
kvn@508 372
kvn@682 373 // create a new Phi for the value
kvn@682 374 PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
kvn@682 375 transform_later(phi);
kvn@682 376 value_phis->push(phi, mem->_idx);
kvn@682 377
kvn@508 378 for (uint j = 1; j < length; j++) {
kvn@508 379 Node *in = mem->in(j);
kvn@508 380 if (in == NULL || in->is_top()) {
kvn@508 381 values.at_put(j, in);
kvn@508 382 } else {
kvn@688 383 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 384 if (val == start_mem || val == alloc_mem) {
kvn@508 385 // hit a sentinel, return appropriate 0 value
kvn@508 386 values.at_put(j, _igvn.zerocon(ft));
kvn@508 387 continue;
kvn@508 388 }
kvn@508 389 if (val->is_Initialize()) {
kvn@508 390 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 391 }
kvn@508 392 if (val == NULL) {
kvn@508 393 return NULL; // can't find a value on this path
kvn@508 394 }
kvn@508 395 if (val == mem) {
kvn@508 396 values.at_put(j, mem);
kvn@508 397 } else if (val->is_Store()) {
kvn@508 398 values.at_put(j, val->in(MemNode::ValueIn));
kvn@508 399 } else if(val->is_Proj() && val->in(0) == alloc) {
kvn@508 400 values.at_put(j, _igvn.zerocon(ft));
kvn@508 401 } else if (val->is_Phi()) {
kvn@682 402 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
kvn@682 403 if (val == NULL) {
kvn@682 404 return NULL;
kvn@508 405 }
kvn@682 406 values.at_put(j, val);
kvn@1019 407 } else if (val->Opcode() == Op_SCMemProj) {
kvn@1019 408 assert(val->in(0)->is_LoadStore(), "sanity");
kvn@1019 409 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 410 return NULL;
kvn@508 411 } else {
kvn@1019 412 #ifdef ASSERT
kvn@1019 413 val->dump();
kvn@688 414 assert(false, "unknown node on this path");
kvn@1019 415 #endif
kvn@688 416 return NULL; // unknown node on this path
kvn@508 417 }
kvn@508 418 }
kvn@508 419 }
kvn@682 420 // Set Phi's inputs
kvn@508 421 for (uint j = 1; j < length; j++) {
kvn@508 422 if (values.at(j) == mem) {
kvn@508 423 phi->init_req(j, phi);
kvn@508 424 } else {
kvn@508 425 phi->init_req(j, values.at(j));
kvn@508 426 }
kvn@508 427 }
kvn@508 428 return phi;
kvn@508 429 }
kvn@508 430
kvn@508 431 // Search the last value stored into the object's field.
kvn@508 432 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
kvn@658 433 assert(adr_t->is_known_instance_field(), "instance required");
kvn@658 434 int instance_id = adr_t->instance_id();
kvn@658 435 assert((uint)instance_id == alloc->_idx, "wrong allocation");
kvn@508 436
kvn@508 437 int alias_idx = C->get_alias_index(adr_t);
kvn@508 438 int offset = adr_t->offset();
kvn@508 439 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 440 Node *alloc_ctrl = alloc->in(TypeFunc::Control);
kvn@508 441 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@682 442 Arena *a = Thread::current()->resource_area();
kvn@682 443 VectorSet visited(a);
kvn@508 444
kvn@508 445
kvn@508 446 bool done = sfpt_mem == alloc_mem;
kvn@508 447 Node *mem = sfpt_mem;
kvn@508 448 while (!done) {
kvn@508 449 if (visited.test_set(mem->_idx)) {
kvn@508 450 return NULL; // found a loop, give up
kvn@508 451 }
kvn@688 452 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 453 if (mem == start_mem || mem == alloc_mem) {
kvn@508 454 done = true; // hit a sentinel, return appropriate 0 value
kvn@508 455 } else if (mem->is_Initialize()) {
kvn@508 456 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 457 if (mem == NULL) {
kvn@508 458 done = true; // Something go wrong.
kvn@508 459 } else if (mem->is_Store()) {
kvn@508 460 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 461 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
kvn@508 462 done = true;
kvn@508 463 }
kvn@508 464 } else if (mem->is_Store()) {
kvn@508 465 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
kvn@508 466 assert(atype != NULL, "address type must be oopptr");
kvn@508 467 assert(C->get_alias_index(atype) == alias_idx &&
kvn@658 468 atype->is_known_instance_field() && atype->offset() == offset &&
kvn@508 469 atype->instance_id() == instance_id, "store is correct memory slice");
kvn@508 470 done = true;
kvn@508 471 } else if (mem->is_Phi()) {
kvn@508 472 // try to find a phi's unique input
kvn@508 473 Node *unique_input = NULL;
kvn@508 474 Node *top = C->top();
kvn@508 475 for (uint i = 1; i < mem->req(); i++) {
kvn@688 476 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 477 if (n == NULL || n == top || n == mem) {
kvn@508 478 continue;
kvn@508 479 } else if (unique_input == NULL) {
kvn@508 480 unique_input = n;
kvn@508 481 } else if (unique_input != n) {
kvn@508 482 unique_input = top;
kvn@508 483 break;
kvn@508 484 }
kvn@508 485 }
kvn@508 486 if (unique_input != NULL && unique_input != top) {
kvn@508 487 mem = unique_input;
kvn@508 488 } else {
kvn@508 489 done = true;
kvn@508 490 }
kvn@508 491 } else {
kvn@508 492 assert(false, "unexpected node");
kvn@508 493 }
kvn@508 494 }
kvn@508 495 if (mem != NULL) {
kvn@508 496 if (mem == start_mem || mem == alloc_mem) {
kvn@508 497 // hit a sentinel, return appropriate 0 value
kvn@508 498 return _igvn.zerocon(ft);
kvn@508 499 } else if (mem->is_Store()) {
kvn@508 500 return mem->in(MemNode::ValueIn);
kvn@508 501 } else if (mem->is_Phi()) {
kvn@508 502 // attempt to produce a Phi reflecting the values on the input paths of the Phi
kvn@682 503 Node_Stack value_phis(a, 8);
kvn@688 504 Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
kvn@508 505 if (phi != NULL) {
kvn@508 506 return phi;
kvn@682 507 } else {
kvn@682 508 // Kill all new Phis
kvn@682 509 while(value_phis.is_nonempty()) {
kvn@682 510 Node* n = value_phis.node();
kvn@682 511 _igvn.hash_delete(n);
kvn@682 512 _igvn.subsume_node(n, C->top());
kvn@682 513 value_phis.pop();
kvn@682 514 }
kvn@508 515 }
kvn@508 516 }
kvn@508 517 }
kvn@508 518 // Something go wrong.
kvn@508 519 return NULL;
kvn@508 520 }
kvn@508 521
kvn@508 522 // Check the possibility of scalar replacement.
kvn@508 523 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 524 // Scan the uses of the allocation to check for anything that would
kvn@508 525 // prevent us from eliminating it.
kvn@508 526 NOT_PRODUCT( const char* fail_eliminate = NULL; )
kvn@508 527 DEBUG_ONLY( Node* disq_node = NULL; )
kvn@508 528 bool can_eliminate = true;
kvn@508 529
kvn@508 530 Node* res = alloc->result_cast();
kvn@508 531 const TypeOopPtr* res_type = NULL;
kvn@508 532 if (res == NULL) {
kvn@508 533 // All users were eliminated.
kvn@508 534 } else if (!res->is_CheckCastPP()) {
kvn@508 535 alloc->_is_scalar_replaceable = false; // don't try again
kvn@508 536 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
kvn@508 537 can_eliminate = false;
kvn@508 538 } else {
kvn@508 539 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 540 if (res_type == NULL) {
kvn@508 541 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
kvn@508 542 can_eliminate = false;
kvn@508 543 } else if (res_type->isa_aryptr()) {
kvn@508 544 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 545 if (length < 0) {
kvn@508 546 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
kvn@508 547 can_eliminate = false;
kvn@508 548 }
kvn@508 549 }
kvn@508 550 }
kvn@508 551
kvn@508 552 if (can_eliminate && res != NULL) {
kvn@508 553 for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
kvn@508 554 j < jmax && can_eliminate; j++) {
kvn@508 555 Node* use = res->fast_out(j);
kvn@508 556
kvn@508 557 if (use->is_AddP()) {
kvn@508 558 const TypePtr* addp_type = _igvn.type(use)->is_ptr();
kvn@508 559 int offset = addp_type->offset();
kvn@508 560
kvn@508 561 if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
kvn@508 562 NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
kvn@508 563 can_eliminate = false;
kvn@508 564 break;
kvn@508 565 }
kvn@508 566 for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
kvn@508 567 k < kmax && can_eliminate; k++) {
kvn@508 568 Node* n = use->fast_out(k);
kvn@508 569 if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
kvn@508 570 DEBUG_ONLY(disq_node = n;)
kvn@688 571 if (n->is_Load() || n->is_LoadStore()) {
kvn@508 572 NOT_PRODUCT(fail_eliminate = "Field load";)
kvn@508 573 } else {
kvn@508 574 NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
kvn@508 575 }
kvn@508 576 can_eliminate = false;
kvn@508 577 }
kvn@508 578 }
kvn@508 579 } else if (use->is_SafePoint()) {
kvn@508 580 SafePointNode* sfpt = use->as_SafePoint();
kvn@603 581 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
kvn@508 582 // Object is passed as argument.
kvn@508 583 DEBUG_ONLY(disq_node = use;)
kvn@508 584 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
kvn@508 585 can_eliminate = false;
kvn@508 586 }
kvn@508 587 Node* sfptMem = sfpt->memory();
kvn@508 588 if (sfptMem == NULL || sfptMem->is_top()) {
kvn@508 589 DEBUG_ONLY(disq_node = use;)
kvn@508 590 NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
kvn@508 591 can_eliminate = false;
kvn@508 592 } else {
kvn@508 593 safepoints.append_if_missing(sfpt);
kvn@508 594 }
kvn@508 595 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
kvn@508 596 if (use->is_Phi()) {
kvn@508 597 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
kvn@508 598 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 599 } else {
kvn@508 600 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
kvn@508 601 }
kvn@508 602 DEBUG_ONLY(disq_node = use;)
kvn@508 603 } else {
kvn@508 604 if (use->Opcode() == Op_Return) {
kvn@508 605 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 606 }else {
kvn@508 607 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
kvn@508 608 }
kvn@508 609 DEBUG_ONLY(disq_node = use;)
kvn@508 610 }
kvn@508 611 can_eliminate = false;
kvn@508 612 }
kvn@508 613 }
kvn@508 614 }
kvn@508 615
kvn@508 616 #ifndef PRODUCT
kvn@508 617 if (PrintEliminateAllocations) {
kvn@508 618 if (can_eliminate) {
kvn@508 619 tty->print("Scalar ");
kvn@508 620 if (res == NULL)
kvn@508 621 alloc->dump();
kvn@508 622 else
kvn@508 623 res->dump();
kvn@508 624 } else {
kvn@508 625 tty->print("NotScalar (%s)", fail_eliminate);
kvn@508 626 if (res == NULL)
kvn@508 627 alloc->dump();
kvn@508 628 else
kvn@508 629 res->dump();
kvn@508 630 #ifdef ASSERT
kvn@508 631 if (disq_node != NULL) {
kvn@508 632 tty->print(" >>>> ");
kvn@508 633 disq_node->dump();
kvn@508 634 }
kvn@508 635 #endif /*ASSERT*/
kvn@508 636 }
kvn@508 637 }
kvn@508 638 #endif
kvn@508 639 return can_eliminate;
kvn@508 640 }
kvn@508 641
kvn@508 642 // Do scalar replacement.
kvn@508 643 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 644 GrowableArray <SafePointNode *> safepoints_done;
kvn@508 645
kvn@508 646 ciKlass* klass = NULL;
kvn@508 647 ciInstanceKlass* iklass = NULL;
kvn@508 648 int nfields = 0;
kvn@508 649 int array_base;
kvn@508 650 int element_size;
kvn@508 651 BasicType basic_elem_type;
kvn@508 652 ciType* elem_type;
kvn@508 653
kvn@508 654 Node* res = alloc->result_cast();
kvn@508 655 const TypeOopPtr* res_type = NULL;
kvn@508 656 if (res != NULL) { // Could be NULL when there are no users
kvn@508 657 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 658 }
kvn@508 659
kvn@508 660 if (res != NULL) {
kvn@508 661 klass = res_type->klass();
kvn@508 662 if (res_type->isa_instptr()) {
kvn@508 663 // find the fields of the class which will be needed for safepoint debug information
kvn@508 664 assert(klass->is_instance_klass(), "must be an instance klass.");
kvn@508 665 iklass = klass->as_instance_klass();
kvn@508 666 nfields = iklass->nof_nonstatic_fields();
kvn@508 667 } else {
kvn@508 668 // find the array's elements which will be needed for safepoint debug information
kvn@508 669 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 670 assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
kvn@508 671 elem_type = klass->as_array_klass()->element_type();
kvn@508 672 basic_elem_type = elem_type->basic_type();
kvn@508 673 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@508 674 element_size = type2aelembytes(basic_elem_type);
kvn@508 675 }
kvn@508 676 }
kvn@508 677 //
kvn@508 678 // Process the safepoint uses
kvn@508 679 //
kvn@508 680 while (safepoints.length() > 0) {
kvn@508 681 SafePointNode* sfpt = safepoints.pop();
kvn@508 682 Node* mem = sfpt->memory();
kvn@508 683 uint first_ind = sfpt->req();
kvn@508 684 SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
kvn@508 685 #ifdef ASSERT
kvn@508 686 alloc,
kvn@508 687 #endif
kvn@508 688 first_ind, nfields);
kvn@508 689 sobj->init_req(0, sfpt->in(TypeFunc::Control));
kvn@508 690 transform_later(sobj);
kvn@508 691
kvn@508 692 // Scan object's fields adding an input to the safepoint for each field.
kvn@508 693 for (int j = 0; j < nfields; j++) {
kvn@741 694 intptr_t offset;
kvn@508 695 ciField* field = NULL;
kvn@508 696 if (iklass != NULL) {
kvn@508 697 field = iklass->nonstatic_field_at(j);
kvn@508 698 offset = field->offset();
kvn@508 699 elem_type = field->type();
kvn@508 700 basic_elem_type = field->layout_type();
kvn@508 701 } else {
kvn@741 702 offset = array_base + j * (intptr_t)element_size;
kvn@508 703 }
kvn@508 704
kvn@508 705 const Type *field_type;
kvn@508 706 // The next code is taken from Parse::do_get_xxx().
kvn@559 707 if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
kvn@508 708 if (!elem_type->is_loaded()) {
kvn@508 709 field_type = TypeInstPtr::BOTTOM;
kvn@508 710 } else if (field != NULL && field->is_constant()) {
kvn@508 711 // This can happen if the constant oop is non-perm.
kvn@508 712 ciObject* con = field->constant_value().as_object();
kvn@508 713 // Do not "join" in the previous type; it doesn't add value,
kvn@508 714 // and may yield a vacuous result if the field is of interface type.
kvn@508 715 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
kvn@508 716 assert(field_type != NULL, "field singleton type must be consistent");
kvn@508 717 } else {
kvn@508 718 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
kvn@508 719 }
kvn@559 720 if (UseCompressedOops) {
kvn@656 721 field_type = field_type->make_narrowoop();
kvn@559 722 basic_elem_type = T_NARROWOOP;
kvn@559 723 }
kvn@508 724 } else {
kvn@508 725 field_type = Type::get_const_basic_type(basic_elem_type);
kvn@508 726 }
kvn@508 727
kvn@508 728 const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
kvn@508 729
kvn@508 730 Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
kvn@508 731 if (field_val == NULL) {
kvn@508 732 // we weren't able to find a value for this field,
kvn@508 733 // give up on eliminating this allocation
kvn@508 734 alloc->_is_scalar_replaceable = false; // don't try again
kvn@508 735 // remove any extra entries we added to the safepoint
kvn@508 736 uint last = sfpt->req() - 1;
kvn@508 737 for (int k = 0; k < j; k++) {
kvn@508 738 sfpt->del_req(last--);
kvn@508 739 }
kvn@508 740 // rollback processed safepoints
kvn@508 741 while (safepoints_done.length() > 0) {
kvn@508 742 SafePointNode* sfpt_done = safepoints_done.pop();
kvn@508 743 // remove any extra entries we added to the safepoint
kvn@508 744 last = sfpt_done->req() - 1;
kvn@508 745 for (int k = 0; k < nfields; k++) {
kvn@508 746 sfpt_done->del_req(last--);
kvn@508 747 }
kvn@508 748 JVMState *jvms = sfpt_done->jvms();
kvn@508 749 jvms->set_endoff(sfpt_done->req());
kvn@508 750 // Now make a pass over the debug information replacing any references
kvn@508 751 // to SafePointScalarObjectNode with the allocated object.
kvn@508 752 int start = jvms->debug_start();
kvn@508 753 int end = jvms->debug_end();
kvn@508 754 for (int i = start; i < end; i++) {
kvn@508 755 if (sfpt_done->in(i)->is_SafePointScalarObject()) {
kvn@508 756 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
kvn@508 757 if (scobj->first_index() == sfpt_done->req() &&
kvn@508 758 scobj->n_fields() == (uint)nfields) {
kvn@508 759 assert(scobj->alloc() == alloc, "sanity");
kvn@508 760 sfpt_done->set_req(i, res);
kvn@508 761 }
kvn@508 762 }
kvn@508 763 }
kvn@508 764 }
kvn@508 765 #ifndef PRODUCT
kvn@508 766 if (PrintEliminateAllocations) {
kvn@508 767 if (field != NULL) {
kvn@508 768 tty->print("=== At SafePoint node %d can't find value of Field: ",
kvn@508 769 sfpt->_idx);
kvn@508 770 field->print();
kvn@508 771 int field_idx = C->get_alias_index(field_addr_type);
kvn@508 772 tty->print(" (alias_idx=%d)", field_idx);
kvn@508 773 } else { // Array's element
kvn@508 774 tty->print("=== At SafePoint node %d can't find value of array element [%d]",
kvn@508 775 sfpt->_idx, j);
kvn@508 776 }
kvn@508 777 tty->print(", which prevents elimination of: ");
kvn@508 778 if (res == NULL)
kvn@508 779 alloc->dump();
kvn@508 780 else
kvn@508 781 res->dump();
kvn@508 782 }
kvn@508 783 #endif
kvn@508 784 return false;
kvn@508 785 }
kvn@559 786 if (UseCompressedOops && field_type->isa_narrowoop()) {
kvn@559 787 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
kvn@559 788 // to be able scalar replace the allocation.
kvn@656 789 if (field_val->is_EncodeP()) {
kvn@656 790 field_val = field_val->in(1);
kvn@656 791 } else {
kvn@656 792 field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
kvn@656 793 }
kvn@559 794 }
kvn@508 795 sfpt->add_req(field_val);
kvn@508 796 }
kvn@508 797 JVMState *jvms = sfpt->jvms();
kvn@508 798 jvms->set_endoff(sfpt->req());
kvn@508 799 // Now make a pass over the debug information replacing any references
kvn@508 800 // to the allocated object with "sobj"
kvn@508 801 int start = jvms->debug_start();
kvn@508 802 int end = jvms->debug_end();
kvn@508 803 for (int i = start; i < end; i++) {
kvn@508 804 if (sfpt->in(i) == res) {
kvn@508 805 sfpt->set_req(i, sobj);
kvn@508 806 }
kvn@508 807 }
kvn@508 808 safepoints_done.append_if_missing(sfpt); // keep it for rollback
kvn@508 809 }
kvn@508 810 return true;
kvn@508 811 }
kvn@508 812
kvn@508 813 // Process users of eliminated allocation.
kvn@508 814 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
kvn@508 815 Node* res = alloc->result_cast();
kvn@508 816 if (res != NULL) {
kvn@508 817 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
kvn@508 818 Node *use = res->last_out(j);
kvn@508 819 uint oc1 = res->outcnt();
kvn@508 820
kvn@508 821 if (use->is_AddP()) {
kvn@508 822 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
kvn@508 823 Node *n = use->last_out(k);
kvn@508 824 uint oc2 = use->outcnt();
kvn@508 825 if (n->is_Store()) {
kvn@508 826 _igvn.replace_node(n, n->in(MemNode::Memory));
kvn@508 827 } else {
kvn@508 828 eliminate_card_mark(n);
kvn@508 829 }
kvn@508 830 k -= (oc2 - use->outcnt());
kvn@508 831 }
kvn@508 832 } else {
kvn@508 833 eliminate_card_mark(use);
kvn@508 834 }
kvn@508 835 j -= (oc1 - res->outcnt());
kvn@508 836 }
kvn@508 837 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
kvn@508 838 _igvn.remove_dead_node(res);
kvn@508 839 }
kvn@508 840
kvn@508 841 //
kvn@508 842 // Process other users of allocation's projections
kvn@508 843 //
kvn@508 844 if (_resproj != NULL && _resproj->outcnt() != 0) {
kvn@508 845 for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
kvn@508 846 Node *use = _resproj->last_out(j);
kvn@508 847 uint oc1 = _resproj->outcnt();
kvn@508 848 if (use->is_Initialize()) {
kvn@508 849 // Eliminate Initialize node.
kvn@508 850 InitializeNode *init = use->as_Initialize();
kvn@508 851 assert(init->outcnt() <= 2, "only a control and memory projection expected");
kvn@508 852 Node *ctrl_proj = init->proj_out(TypeFunc::Control);
kvn@508 853 if (ctrl_proj != NULL) {
kvn@508 854 assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
kvn@508 855 _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
kvn@508 856 }
kvn@508 857 Node *mem_proj = init->proj_out(TypeFunc::Memory);
kvn@508 858 if (mem_proj != NULL) {
kvn@508 859 Node *mem = init->in(TypeFunc::Memory);
kvn@508 860 #ifdef ASSERT
kvn@508 861 if (mem->is_MergeMem()) {
kvn@508 862 assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
kvn@508 863 } else {
kvn@508 864 assert(mem == _memproj_fallthrough, "allocation memory projection");
kvn@508 865 }
kvn@508 866 #endif
kvn@508 867 _igvn.replace_node(mem_proj, mem);
kvn@508 868 }
kvn@508 869 } else if (use->is_AddP()) {
kvn@508 870 // raw memory addresses used only by the initialization
kvn@1143 871 _igvn.replace_node(use, C->top());
kvn@508 872 } else {
kvn@508 873 assert(false, "only Initialize or AddP expected");
kvn@508 874 }
kvn@508 875 j -= (oc1 - _resproj->outcnt());
kvn@508 876 }
kvn@508 877 }
kvn@508 878 if (_fallthroughcatchproj != NULL) {
kvn@508 879 _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
kvn@508 880 }
kvn@508 881 if (_memproj_fallthrough != NULL) {
kvn@508 882 _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
kvn@508 883 }
kvn@508 884 if (_memproj_catchall != NULL) {
kvn@508 885 _igvn.replace_node(_memproj_catchall, C->top());
kvn@508 886 }
kvn@508 887 if (_ioproj_fallthrough != NULL) {
kvn@508 888 _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
kvn@508 889 }
kvn@508 890 if (_ioproj_catchall != NULL) {
kvn@508 891 _igvn.replace_node(_ioproj_catchall, C->top());
kvn@508 892 }
kvn@508 893 if (_catchallcatchproj != NULL) {
kvn@508 894 _igvn.replace_node(_catchallcatchproj, C->top());
kvn@508 895 }
kvn@508 896 }
kvn@508 897
kvn@508 898 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
kvn@508 899
kvn@508 900 if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
kvn@508 901 return false;
kvn@508 902 }
kvn@508 903
kvn@508 904 extract_call_projections(alloc);
kvn@508 905
kvn@508 906 GrowableArray <SafePointNode *> safepoints;
kvn@508 907 if (!can_eliminate_allocation(alloc, safepoints)) {
kvn@508 908 return false;
kvn@508 909 }
kvn@508 910
kvn@508 911 if (!scalar_replacement(alloc, safepoints)) {
kvn@508 912 return false;
kvn@508 913 }
kvn@508 914
kvn@508 915 process_users_of_allocation(alloc);
kvn@508 916
kvn@508 917 #ifndef PRODUCT
kvn@508 918 if (PrintEliminateAllocations) {
kvn@508 919 if (alloc->is_AllocateArray())
kvn@508 920 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
kvn@508 921 else
kvn@508 922 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
kvn@508 923 }
kvn@508 924 #endif
kvn@508 925
kvn@508 926 return true;
kvn@508 927 }
kvn@508 928
duke@435 929
duke@435 930 //---------------------------set_eden_pointers-------------------------
duke@435 931 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
duke@435 932 if (UseTLAB) { // Private allocation: load from TLS
duke@435 933 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
duke@435 934 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
duke@435 935 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
duke@435 936 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
duke@435 937 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
duke@435 938 } else { // Shared allocation: load from globals
duke@435 939 CollectedHeap* ch = Universe::heap();
duke@435 940 address top_adr = (address)ch->top_addr();
duke@435 941 address end_adr = (address)ch->end_addr();
duke@435 942 eden_top_adr = makecon(TypeRawPtr::make(top_adr));
duke@435 943 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
duke@435 944 }
duke@435 945 }
duke@435 946
duke@435 947
duke@435 948 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
duke@435 949 Node* adr = basic_plus_adr(base, offset);
kvn@855 950 const TypePtr* adr_type = adr->bottom_type()->is_ptr();
coleenp@548 951 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
duke@435 952 transform_later(value);
duke@435 953 return value;
duke@435 954 }
duke@435 955
duke@435 956
duke@435 957 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
duke@435 958 Node* adr = basic_plus_adr(base, offset);
coleenp@548 959 mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
duke@435 960 transform_later(mem);
duke@435 961 return mem;
duke@435 962 }
duke@435 963
duke@435 964 //=============================================================================
duke@435 965 //
duke@435 966 // A L L O C A T I O N
duke@435 967 //
duke@435 968 // Allocation attempts to be fast in the case of frequent small objects.
duke@435 969 // It breaks down like this:
duke@435 970 //
duke@435 971 // 1) Size in doublewords is computed. This is a constant for objects and
duke@435 972 // variable for most arrays. Doubleword units are used to avoid size
duke@435 973 // overflow of huge doubleword arrays. We need doublewords in the end for
duke@435 974 // rounding.
duke@435 975 //
duke@435 976 // 2) Size is checked for being 'too large'. Too-large allocations will go
duke@435 977 // the slow path into the VM. The slow path can throw any required
duke@435 978 // exceptions, and does all the special checks for very large arrays. The
duke@435 979 // size test can constant-fold away for objects. For objects with
duke@435 980 // finalizers it constant-folds the otherway: you always go slow with
duke@435 981 // finalizers.
duke@435 982 //
duke@435 983 // 3) If NOT using TLABs, this is the contended loop-back point.
duke@435 984 // Load-Locked the heap top. If using TLABs normal-load the heap top.
duke@435 985 //
duke@435 986 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route.
duke@435 987 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish
duke@435 988 // "size*8" we always enter the VM, where "largish" is a constant picked small
duke@435 989 // enough that there's always space between the eden max and 4Gig (old space is
duke@435 990 // there so it's quite large) and large enough that the cost of entering the VM
duke@435 991 // is dwarfed by the cost to initialize the space.
duke@435 992 //
duke@435 993 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
duke@435 994 // down. If contended, repeat at step 3. If using TLABs normal-store
duke@435 995 // adjusted heap top back down; there is no contention.
duke@435 996 //
duke@435 997 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark
duke@435 998 // fields.
duke@435 999 //
duke@435 1000 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
duke@435 1001 // oop flavor.
duke@435 1002 //
duke@435 1003 //=============================================================================
duke@435 1004 // FastAllocateSizeLimit value is in DOUBLEWORDS.
duke@435 1005 // Allocations bigger than this always go the slow route.
duke@435 1006 // This value must be small enough that allocation attempts that need to
duke@435 1007 // trigger exceptions go the slow route. Also, it must be small enough so
duke@435 1008 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
duke@435 1009 //=============================================================================j//
duke@435 1010 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
duke@435 1011 // The allocator will coalesce int->oop copies away. See comment in
duke@435 1012 // coalesce.cpp about how this works. It depends critically on the exact
duke@435 1013 // code shape produced here, so if you are changing this code shape
duke@435 1014 // make sure the GC info for the heap-top is correct in and around the
duke@435 1015 // slow-path call.
duke@435 1016 //
duke@435 1017
duke@435 1018 void PhaseMacroExpand::expand_allocate_common(
duke@435 1019 AllocateNode* alloc, // allocation node to be expanded
duke@435 1020 Node* length, // array length for an array allocation
duke@435 1021 const TypeFunc* slow_call_type, // Type of slow call
duke@435 1022 address slow_call_address // Address of slow call
duke@435 1023 )
duke@435 1024 {
duke@435 1025
duke@435 1026 Node* ctrl = alloc->in(TypeFunc::Control);
duke@435 1027 Node* mem = alloc->in(TypeFunc::Memory);
duke@435 1028 Node* i_o = alloc->in(TypeFunc::I_O);
duke@435 1029 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize);
duke@435 1030 Node* klass_node = alloc->in(AllocateNode::KlassNode);
duke@435 1031 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
duke@435 1032
duke@435 1033 assert(ctrl != NULL, "must have control");
duke@435 1034 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
duke@435 1035 // they will not be used if "always_slow" is set
duke@435 1036 enum { slow_result_path = 1, fast_result_path = 2 };
duke@435 1037 Node *result_region;
duke@435 1038 Node *result_phi_rawmem;
duke@435 1039 Node *result_phi_rawoop;
duke@435 1040 Node *result_phi_i_o;
duke@435 1041
duke@435 1042 // The initial slow comparison is a size check, the comparison
duke@435 1043 // we want to do is a BoolTest::gt
duke@435 1044 bool always_slow = false;
duke@435 1045 int tv = _igvn.find_int_con(initial_slow_test, -1);
duke@435 1046 if (tv >= 0) {
duke@435 1047 always_slow = (tv == 1);
duke@435 1048 initial_slow_test = NULL;
duke@435 1049 } else {
duke@435 1050 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
duke@435 1051 }
duke@435 1052
kvn@1215 1053 if (C->env()->dtrace_alloc_probes() ||
ysr@777 1054 !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
ysr@777 1055 (UseConcMarkSweepGC && CMSIncrementalMode))) {
duke@435 1056 // Force slow-path allocation
duke@435 1057 always_slow = true;
duke@435 1058 initial_slow_test = NULL;
duke@435 1059 }
duke@435 1060
ysr@777 1061
duke@435 1062 enum { too_big_or_final_path = 1, need_gc_path = 2 };
duke@435 1063 Node *slow_region = NULL;
duke@435 1064 Node *toobig_false = ctrl;
duke@435 1065
duke@435 1066 assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
duke@435 1067 // generate the initial test if necessary
duke@435 1068 if (initial_slow_test != NULL ) {
duke@435 1069 slow_region = new (C, 3) RegionNode(3);
duke@435 1070
duke@435 1071 // Now make the initial failure test. Usually a too-big test but
duke@435 1072 // might be a TRUE for finalizers or a fancy class check for
duke@435 1073 // newInstance0.
duke@435 1074 IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
duke@435 1075 transform_later(toobig_iff);
duke@435 1076 // Plug the failing-too-big test into the slow-path region
duke@435 1077 Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
duke@435 1078 transform_later(toobig_true);
duke@435 1079 slow_region ->init_req( too_big_or_final_path, toobig_true );
duke@435 1080 toobig_false = new (C, 1) IfFalseNode( toobig_iff );
duke@435 1081 transform_later(toobig_false);
duke@435 1082 } else { // No initial test, just fall into next case
duke@435 1083 toobig_false = ctrl;
duke@435 1084 debug_only(slow_region = NodeSentinel);
duke@435 1085 }
duke@435 1086
duke@435 1087 Node *slow_mem = mem; // save the current memory state for slow path
duke@435 1088 // generate the fast allocation code unless we know that the initial test will always go slow
duke@435 1089 if (!always_slow) {
kvn@1000 1090 // Fast path modifies only raw memory.
kvn@1000 1091 if (mem->is_MergeMem()) {
kvn@1000 1092 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
kvn@1000 1093 }
kvn@1000 1094
ysr@777 1095 Node* eden_top_adr;
ysr@777 1096 Node* eden_end_adr;
ysr@777 1097
ysr@777 1098 set_eden_pointers(eden_top_adr, eden_end_adr);
ysr@777 1099
ysr@777 1100 // Load Eden::end. Loop invariant and hoisted.
ysr@777 1101 //
ysr@777 1102 // Note: We set the control input on "eden_end" and "old_eden_top" when using
ysr@777 1103 // a TLAB to work around a bug where these values were being moved across
ysr@777 1104 // a safepoint. These are not oops, so they cannot be include in the oop
ysr@777 1105 // map, but the can be changed by a GC. The proper way to fix this would
ysr@777 1106 // be to set the raw memory state when generating a SafepointNode. However
ysr@777 1107 // this will require extensive changes to the loop optimization in order to
ysr@777 1108 // prevent a degradation of the optimization.
ysr@777 1109 // See comment in memnode.hpp, around line 227 in class LoadPNode.
ysr@777 1110 Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
ysr@777 1111
duke@435 1112 // allocate the Region and Phi nodes for the result
duke@435 1113 result_region = new (C, 3) RegionNode(3);
duke@435 1114 result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
duke@435 1115 result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
duke@435 1116 result_phi_i_o = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
duke@435 1117
duke@435 1118 // We need a Region for the loop-back contended case.
duke@435 1119 enum { fall_in_path = 1, contended_loopback_path = 2 };
duke@435 1120 Node *contended_region;
duke@435 1121 Node *contended_phi_rawmem;
duke@435 1122 if( UseTLAB ) {
duke@435 1123 contended_region = toobig_false;
duke@435 1124 contended_phi_rawmem = mem;
duke@435 1125 } else {
duke@435 1126 contended_region = new (C, 3) RegionNode(3);
duke@435 1127 contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 1128 // Now handle the passing-too-big test. We fall into the contended
duke@435 1129 // loop-back merge point.
duke@435 1130 contended_region ->init_req( fall_in_path, toobig_false );
duke@435 1131 contended_phi_rawmem->init_req( fall_in_path, mem );
duke@435 1132 transform_later(contended_region);
duke@435 1133 transform_later(contended_phi_rawmem);
duke@435 1134 }
duke@435 1135
duke@435 1136 // Load(-locked) the heap top.
duke@435 1137 // See note above concerning the control input when using a TLAB
duke@435 1138 Node *old_eden_top = UseTLAB
duke@435 1139 ? new (C, 3) LoadPNode ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
duke@435 1140 : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
duke@435 1141
duke@435 1142 transform_later(old_eden_top);
duke@435 1143 // Add to heap top to get a new heap top
duke@435 1144 Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
duke@435 1145 transform_later(new_eden_top);
duke@435 1146 // Check for needing a GC; compare against heap end
duke@435 1147 Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
duke@435 1148 transform_later(needgc_cmp);
duke@435 1149 Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
duke@435 1150 transform_later(needgc_bol);
duke@435 1151 IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1152 transform_later(needgc_iff);
duke@435 1153
duke@435 1154 // Plug the failing-heap-space-need-gc test into the slow-path region
duke@435 1155 Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
duke@435 1156 transform_later(needgc_true);
duke@435 1157 if( initial_slow_test ) {
duke@435 1158 slow_region ->init_req( need_gc_path, needgc_true );
duke@435 1159 // This completes all paths into the slow merge point
duke@435 1160 transform_later(slow_region);
duke@435 1161 } else { // No initial slow path needed!
duke@435 1162 // Just fall from the need-GC path straight into the VM call.
duke@435 1163 slow_region = needgc_true;
duke@435 1164 }
duke@435 1165 // No need for a GC. Setup for the Store-Conditional
duke@435 1166 Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
duke@435 1167 transform_later(needgc_false);
duke@435 1168
duke@435 1169 // Grab regular I/O before optional prefetch may change it.
duke@435 1170 // Slow-path does no I/O so just set it to the original I/O.
duke@435 1171 result_phi_i_o->init_req( slow_result_path, i_o );
duke@435 1172
duke@435 1173 i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
duke@435 1174 old_eden_top, new_eden_top, length);
duke@435 1175
duke@435 1176 // Store (-conditional) the modified eden top back down.
duke@435 1177 // StorePConditional produces flags for a test PLUS a modified raw
duke@435 1178 // memory state.
duke@435 1179 Node *store_eden_top;
duke@435 1180 Node *fast_oop_ctrl;
duke@435 1181 if( UseTLAB ) {
duke@435 1182 store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
duke@435 1183 transform_later(store_eden_top);
duke@435 1184 fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
duke@435 1185 } else {
duke@435 1186 store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
duke@435 1187 transform_later(store_eden_top);
duke@435 1188 Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
duke@435 1189 transform_later(contention_check);
duke@435 1190 store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
duke@435 1191 transform_later(store_eden_top);
duke@435 1192
duke@435 1193 // If not using TLABs, check to see if there was contention.
duke@435 1194 IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
duke@435 1195 transform_later(contention_iff);
duke@435 1196 Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
duke@435 1197 transform_later(contention_true);
duke@435 1198 // If contention, loopback and try again.
duke@435 1199 contended_region->init_req( contended_loopback_path, contention_true );
duke@435 1200 contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
duke@435 1201
duke@435 1202 // Fast-path succeeded with no contention!
duke@435 1203 Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
duke@435 1204 transform_later(contention_false);
duke@435 1205 fast_oop_ctrl = contention_false;
duke@435 1206 }
duke@435 1207
duke@435 1208 // Rename successful fast-path variables to make meaning more obvious
duke@435 1209 Node* fast_oop = old_eden_top;
duke@435 1210 Node* fast_oop_rawmem = store_eden_top;
duke@435 1211 fast_oop_rawmem = initialize_object(alloc,
duke@435 1212 fast_oop_ctrl, fast_oop_rawmem, fast_oop,
duke@435 1213 klass_node, length, size_in_bytes);
duke@435 1214
kvn@1215 1215 if (C->env()->dtrace_extended_probes()) {
duke@435 1216 // Slow-path call
duke@435 1217 int size = TypeFunc::Parms + 2;
duke@435 1218 CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
duke@435 1219 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
duke@435 1220 "dtrace_object_alloc",
duke@435 1221 TypeRawPtr::BOTTOM);
duke@435 1222
duke@435 1223 // Get base of thread-local storage area
duke@435 1224 Node* thread = new (C, 1) ThreadLocalNode();
duke@435 1225 transform_later(thread);
duke@435 1226
duke@435 1227 call->init_req(TypeFunc::Parms+0, thread);
duke@435 1228 call->init_req(TypeFunc::Parms+1, fast_oop);
duke@435 1229 call->init_req( TypeFunc::Control, fast_oop_ctrl );
duke@435 1230 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1231 call->init_req( TypeFunc::Memory , fast_oop_rawmem );
duke@435 1232 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1233 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1234 transform_later(call);
duke@435 1235 fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
duke@435 1236 transform_later(fast_oop_ctrl);
duke@435 1237 fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
duke@435 1238 transform_later(fast_oop_rawmem);
duke@435 1239 }
duke@435 1240
duke@435 1241 // Plug in the successful fast-path into the result merge point
duke@435 1242 result_region ->init_req( fast_result_path, fast_oop_ctrl );
duke@435 1243 result_phi_rawoop->init_req( fast_result_path, fast_oop );
duke@435 1244 result_phi_i_o ->init_req( fast_result_path, i_o );
duke@435 1245 result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
duke@435 1246 } else {
duke@435 1247 slow_region = ctrl;
duke@435 1248 }
duke@435 1249
duke@435 1250 // Generate slow-path call
duke@435 1251 CallNode *call = new (C, slow_call_type->domain()->cnt())
duke@435 1252 CallStaticJavaNode(slow_call_type, slow_call_address,
duke@435 1253 OptoRuntime::stub_name(slow_call_address),
duke@435 1254 alloc->jvms()->bci(),
duke@435 1255 TypePtr::BOTTOM);
duke@435 1256 call->init_req( TypeFunc::Control, slow_region );
duke@435 1257 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1258 call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
duke@435 1259 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1260 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1261
duke@435 1262 call->init_req(TypeFunc::Parms+0, klass_node);
duke@435 1263 if (length != NULL) {
duke@435 1264 call->init_req(TypeFunc::Parms+1, length);
duke@435 1265 }
duke@435 1266
duke@435 1267 // Copy debug information and adjust JVMState information, then replace
duke@435 1268 // allocate node with the call
duke@435 1269 copy_call_debug_info((CallNode *) alloc, call);
duke@435 1270 if (!always_slow) {
duke@435 1271 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
duke@435 1272 }
duke@435 1273 _igvn.hash_delete(alloc);
duke@435 1274 _igvn.subsume_node(alloc, call);
duke@435 1275 transform_later(call);
duke@435 1276
duke@435 1277 // Identify the output projections from the allocate node and
duke@435 1278 // adjust any references to them.
duke@435 1279 // The control and io projections look like:
duke@435 1280 //
duke@435 1281 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl)
duke@435 1282 // Allocate Catch
duke@435 1283 // ^---Proj(io) <-------+ ^---CatchProj(io)
duke@435 1284 //
duke@435 1285 // We are interested in the CatchProj nodes.
duke@435 1286 //
duke@435 1287 extract_call_projections(call);
duke@435 1288
duke@435 1289 // An allocate node has separate memory projections for the uses on the control and i_o paths
duke@435 1290 // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
duke@435 1291 if (!always_slow && _memproj_fallthrough != NULL) {
duke@435 1292 for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1293 Node *use = _memproj_fallthrough->fast_out(i);
duke@435 1294 _igvn.hash_delete(use);
duke@435 1295 imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
duke@435 1296 _igvn._worklist.push(use);
duke@435 1297 // back up iterator
duke@435 1298 --i;
duke@435 1299 }
duke@435 1300 }
duke@435 1301 // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
duke@435 1302 // we end up with a call that has only 1 memory projection
duke@435 1303 if (_memproj_catchall != NULL ) {
duke@435 1304 if (_memproj_fallthrough == NULL) {
duke@435 1305 _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
duke@435 1306 transform_later(_memproj_fallthrough);
duke@435 1307 }
duke@435 1308 for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1309 Node *use = _memproj_catchall->fast_out(i);
duke@435 1310 _igvn.hash_delete(use);
duke@435 1311 imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
duke@435 1312 _igvn._worklist.push(use);
duke@435 1313 // back up iterator
duke@435 1314 --i;
duke@435 1315 }
duke@435 1316 }
duke@435 1317
duke@435 1318 // An allocate node has separate i_o projections for the uses on the control and i_o paths
duke@435 1319 // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
duke@435 1320 if (_ioproj_fallthrough == NULL) {
duke@435 1321 _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
duke@435 1322 transform_later(_ioproj_fallthrough);
duke@435 1323 } else if (!always_slow) {
duke@435 1324 for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1325 Node *use = _ioproj_fallthrough->fast_out(i);
duke@435 1326
duke@435 1327 _igvn.hash_delete(use);
duke@435 1328 imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
duke@435 1329 _igvn._worklist.push(use);
duke@435 1330 // back up iterator
duke@435 1331 --i;
duke@435 1332 }
duke@435 1333 }
duke@435 1334 // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
duke@435 1335 // we end up with a call that has only 1 control projection
duke@435 1336 if (_ioproj_catchall != NULL ) {
duke@435 1337 for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1338 Node *use = _ioproj_catchall->fast_out(i);
duke@435 1339 _igvn.hash_delete(use);
duke@435 1340 imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
duke@435 1341 _igvn._worklist.push(use);
duke@435 1342 // back up iterator
duke@435 1343 --i;
duke@435 1344 }
duke@435 1345 }
duke@435 1346
duke@435 1347 // if we generated only a slow call, we are done
duke@435 1348 if (always_slow)
duke@435 1349 return;
duke@435 1350
duke@435 1351
duke@435 1352 if (_fallthroughcatchproj != NULL) {
duke@435 1353 ctrl = _fallthroughcatchproj->clone();
duke@435 1354 transform_later(ctrl);
kvn@1143 1355 _igvn.replace_node(_fallthroughcatchproj, result_region);
duke@435 1356 } else {
duke@435 1357 ctrl = top();
duke@435 1358 }
duke@435 1359 Node *slow_result;
duke@435 1360 if (_resproj == NULL) {
duke@435 1361 // no uses of the allocation result
duke@435 1362 slow_result = top();
duke@435 1363 } else {
duke@435 1364 slow_result = _resproj->clone();
duke@435 1365 transform_later(slow_result);
kvn@1143 1366 _igvn.replace_node(_resproj, result_phi_rawoop);
duke@435 1367 }
duke@435 1368
duke@435 1369 // Plug slow-path into result merge point
duke@435 1370 result_region ->init_req( slow_result_path, ctrl );
duke@435 1371 result_phi_rawoop->init_req( slow_result_path, slow_result);
duke@435 1372 result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
duke@435 1373 transform_later(result_region);
duke@435 1374 transform_later(result_phi_rawoop);
duke@435 1375 transform_later(result_phi_rawmem);
duke@435 1376 transform_later(result_phi_i_o);
duke@435 1377 // This completes all paths into the result merge point
duke@435 1378 }
duke@435 1379
duke@435 1380
duke@435 1381 // Helper for PhaseMacroExpand::expand_allocate_common.
duke@435 1382 // Initializes the newly-allocated storage.
duke@435 1383 Node*
duke@435 1384 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
duke@435 1385 Node* control, Node* rawmem, Node* object,
duke@435 1386 Node* klass_node, Node* length,
duke@435 1387 Node* size_in_bytes) {
duke@435 1388 InitializeNode* init = alloc->initialization();
duke@435 1389 // Store the klass & mark bits
duke@435 1390 Node* mark_node = NULL;
duke@435 1391 // For now only enable fast locking for non-array types
duke@435 1392 if (UseBiasedLocking && (length == NULL)) {
duke@435 1393 mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 1394 } else {
duke@435 1395 mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
duke@435 1396 }
duke@435 1397 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
coleenp@548 1398
duke@435 1399 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
duke@435 1400 int header_size = alloc->minimum_header_size(); // conservatively small
duke@435 1401
duke@435 1402 // Array length
duke@435 1403 if (length != NULL) { // Arrays need length field
duke@435 1404 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
duke@435 1405 // conservatively small header size:
coleenp@548 1406 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1407 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
duke@435 1408 if (k->is_array_klass()) // we know the exact header size in most cases:
duke@435 1409 header_size = Klass::layout_helper_header_size(k->layout_helper());
duke@435 1410 }
duke@435 1411
duke@435 1412 // Clear the object body, if necessary.
duke@435 1413 if (init == NULL) {
duke@435 1414 // The init has somehow disappeared; be cautious and clear everything.
duke@435 1415 //
duke@435 1416 // This can happen if a node is allocated but an uncommon trap occurs
duke@435 1417 // immediately. In this case, the Initialize gets associated with the
duke@435 1418 // trap, and may be placed in a different (outer) loop, if the Allocate
duke@435 1419 // is in a loop. If (this is rare) the inner loop gets unrolled, then
duke@435 1420 // there can be two Allocates to one Initialize. The answer in all these
duke@435 1421 // edge cases is safety first. It is always safe to clear immediately
duke@435 1422 // within an Allocate, and then (maybe or maybe not) clear some more later.
duke@435 1423 if (!ZeroTLAB)
duke@435 1424 rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
duke@435 1425 header_size, size_in_bytes,
duke@435 1426 &_igvn);
duke@435 1427 } else {
duke@435 1428 if (!init->is_complete()) {
duke@435 1429 // Try to win by zeroing only what the init does not store.
duke@435 1430 // We can also try to do some peephole optimizations,
duke@435 1431 // such as combining some adjacent subword stores.
duke@435 1432 rawmem = init->complete_stores(control, rawmem, object,
duke@435 1433 header_size, size_in_bytes, &_igvn);
duke@435 1434 }
duke@435 1435 // We have no more use for this link, since the AllocateNode goes away:
duke@435 1436 init->set_req(InitializeNode::RawAddress, top());
duke@435 1437 // (If we keep the link, it just confuses the register allocator,
duke@435 1438 // who thinks he sees a real use of the address by the membar.)
duke@435 1439 }
duke@435 1440
duke@435 1441 return rawmem;
duke@435 1442 }
duke@435 1443
duke@435 1444 // Generate prefetch instructions for next allocations.
duke@435 1445 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
duke@435 1446 Node*& contended_phi_rawmem,
duke@435 1447 Node* old_eden_top, Node* new_eden_top,
duke@435 1448 Node* length) {
duke@435 1449 if( UseTLAB && AllocatePrefetchStyle == 2 ) {
duke@435 1450 // Generate prefetch allocation with watermark check.
duke@435 1451 // As an allocation hits the watermark, we will prefetch starting
duke@435 1452 // at a "distance" away from watermark.
duke@435 1453 enum { fall_in_path = 1, pf_path = 2 };
duke@435 1454
duke@435 1455 Node *pf_region = new (C, 3) RegionNode(3);
duke@435 1456 Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
duke@435 1457 TypeRawPtr::BOTTOM );
duke@435 1458 // I/O is used for Prefetch
duke@435 1459 Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
duke@435 1460
duke@435 1461 Node *thread = new (C, 1) ThreadLocalNode();
duke@435 1462 transform_later(thread);
duke@435 1463
duke@435 1464 Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
duke@435 1465 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
duke@435 1466 transform_later(eden_pf_adr);
duke@435 1467
duke@435 1468 Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
duke@435 1469 contended_phi_rawmem, eden_pf_adr,
duke@435 1470 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
duke@435 1471 transform_later(old_pf_wm);
duke@435 1472
duke@435 1473 // check against new_eden_top
duke@435 1474 Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
duke@435 1475 transform_later(need_pf_cmp);
duke@435 1476 Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
duke@435 1477 transform_later(need_pf_bol);
duke@435 1478 IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
duke@435 1479 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1480 transform_later(need_pf_iff);
duke@435 1481
duke@435 1482 // true node, add prefetchdistance
duke@435 1483 Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
duke@435 1484 transform_later(need_pf_true);
duke@435 1485
duke@435 1486 Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
duke@435 1487 transform_later(need_pf_false);
duke@435 1488
duke@435 1489 Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
duke@435 1490 _igvn.MakeConX(AllocatePrefetchDistance) );
duke@435 1491 transform_later(new_pf_wmt );
duke@435 1492 new_pf_wmt->set_req(0, need_pf_true);
duke@435 1493
duke@435 1494 Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
duke@435 1495 contended_phi_rawmem, eden_pf_adr,
duke@435 1496 TypeRawPtr::BOTTOM, new_pf_wmt );
duke@435 1497 transform_later(store_new_wmt);
duke@435 1498
duke@435 1499 // adding prefetches
duke@435 1500 pf_phi_abio->init_req( fall_in_path, i_o );
duke@435 1501
duke@435 1502 Node *prefetch_adr;
duke@435 1503 Node *prefetch;
duke@435 1504 uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
duke@435 1505 uint step_size = AllocatePrefetchStepSize;
duke@435 1506 uint distance = 0;
duke@435 1507
duke@435 1508 for ( uint i = 0; i < lines; i++ ) {
duke@435 1509 prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
duke@435 1510 _igvn.MakeConX(distance) );
duke@435 1511 transform_later(prefetch_adr);
duke@435 1512 prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
duke@435 1513 transform_later(prefetch);
duke@435 1514 distance += step_size;
duke@435 1515 i_o = prefetch;
duke@435 1516 }
duke@435 1517 pf_phi_abio->set_req( pf_path, i_o );
duke@435 1518
duke@435 1519 pf_region->init_req( fall_in_path, need_pf_false );
duke@435 1520 pf_region->init_req( pf_path, need_pf_true );
duke@435 1521
duke@435 1522 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
duke@435 1523 pf_phi_rawmem->init_req( pf_path, store_new_wmt );
duke@435 1524
duke@435 1525 transform_later(pf_region);
duke@435 1526 transform_later(pf_phi_rawmem);
duke@435 1527 transform_later(pf_phi_abio);
duke@435 1528
duke@435 1529 needgc_false = pf_region;
duke@435 1530 contended_phi_rawmem = pf_phi_rawmem;
duke@435 1531 i_o = pf_phi_abio;
duke@435 1532 } else if( AllocatePrefetchStyle > 0 ) {
duke@435 1533 // Insert a prefetch for each allocation only on the fast-path
duke@435 1534 Node *prefetch_adr;
duke@435 1535 Node *prefetch;
duke@435 1536 // Generate several prefetch instructions only for arrays.
duke@435 1537 uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
duke@435 1538 uint step_size = AllocatePrefetchStepSize;
duke@435 1539 uint distance = AllocatePrefetchDistance;
duke@435 1540 for ( uint i = 0; i < lines; i++ ) {
duke@435 1541 prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
duke@435 1542 _igvn.MakeConX(distance) );
duke@435 1543 transform_later(prefetch_adr);
duke@435 1544 prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
duke@435 1545 // Do not let it float too high, since if eden_top == eden_end,
duke@435 1546 // both might be null.
duke@435 1547 if( i == 0 ) { // Set control for first prefetch, next follows it
duke@435 1548 prefetch->init_req(0, needgc_false);
duke@435 1549 }
duke@435 1550 transform_later(prefetch);
duke@435 1551 distance += step_size;
duke@435 1552 i_o = prefetch;
duke@435 1553 }
duke@435 1554 }
duke@435 1555 return i_o;
duke@435 1556 }
duke@435 1557
duke@435 1558
duke@435 1559 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
duke@435 1560 expand_allocate_common(alloc, NULL,
duke@435 1561 OptoRuntime::new_instance_Type(),
duke@435 1562 OptoRuntime::new_instance_Java());
duke@435 1563 }
duke@435 1564
duke@435 1565 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
duke@435 1566 Node* length = alloc->in(AllocateNode::ALength);
duke@435 1567 expand_allocate_common(alloc, length,
duke@435 1568 OptoRuntime::new_array_Type(),
duke@435 1569 OptoRuntime::new_array_Java());
duke@435 1570 }
duke@435 1571
duke@435 1572
duke@435 1573 // we have determined that this lock/unlock can be eliminated, we simply
duke@435 1574 // eliminate the node without expanding it.
duke@435 1575 //
duke@435 1576 // Note: The membar's associated with the lock/unlock are currently not
duke@435 1577 // eliminated. This should be investigated as a future enhancement.
duke@435 1578 //
kvn@501 1579 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
kvn@501 1580
kvn@501 1581 if (!alock->is_eliminated()) {
kvn@501 1582 return false;
kvn@501 1583 }
kvn@895 1584 if (alock->is_Lock() && !alock->is_coarsened()) {
kvn@895 1585 // Create new "eliminated" BoxLock node and use it
kvn@895 1586 // in monitor debug info for the same object.
kvn@895 1587 BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
kvn@895 1588 Node* obj = alock->obj_node();
kvn@895 1589 if (!oldbox->is_eliminated()) {
kvn@895 1590 BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
kvn@895 1591 newbox->set_eliminated();
kvn@895 1592 transform_later(newbox);
kvn@895 1593 // Replace old box node with new box for all users
kvn@895 1594 // of the same object.
kvn@895 1595 for (uint i = 0; i < oldbox->outcnt();) {
kvn@895 1596
kvn@895 1597 bool next_edge = true;
kvn@895 1598 Node* u = oldbox->raw_out(i);
kvn@895 1599 if (u == alock) {
kvn@895 1600 i++;
kvn@895 1601 continue; // It will be removed below
kvn@895 1602 }
kvn@895 1603 if (u->is_Lock() &&
kvn@895 1604 u->as_Lock()->obj_node() == obj &&
kvn@895 1605 // oldbox could be referenced in debug info also
kvn@895 1606 u->as_Lock()->box_node() == oldbox) {
kvn@895 1607 assert(u->as_Lock()->is_eliminated(), "sanity");
kvn@895 1608 _igvn.hash_delete(u);
kvn@895 1609 u->set_req(TypeFunc::Parms + 1, newbox);
kvn@895 1610 next_edge = false;
kvn@895 1611 #ifdef ASSERT
kvn@895 1612 } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
kvn@895 1613 assert(u->as_Unlock()->is_eliminated(), "sanity");
kvn@895 1614 #endif
kvn@895 1615 }
kvn@895 1616 // Replace old box in monitor debug info.
kvn@895 1617 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
kvn@895 1618 SafePointNode* sfn = u->as_SafePoint();
kvn@895 1619 JVMState* youngest_jvms = sfn->jvms();
kvn@895 1620 int max_depth = youngest_jvms->depth();
kvn@895 1621 for (int depth = 1; depth <= max_depth; depth++) {
kvn@895 1622 JVMState* jvms = youngest_jvms->of_depth(depth);
kvn@895 1623 int num_mon = jvms->nof_monitors();
kvn@895 1624 // Loop over monitors
kvn@895 1625 for (int idx = 0; idx < num_mon; idx++) {
kvn@895 1626 Node* obj_node = sfn->monitor_obj(jvms, idx);
kvn@895 1627 Node* box_node = sfn->monitor_box(jvms, idx);
kvn@895 1628 if (box_node == oldbox && obj_node == obj) {
kvn@895 1629 int j = jvms->monitor_box_offset(idx);
kvn@895 1630 _igvn.hash_delete(u);
kvn@895 1631 u->set_req(j, newbox);
kvn@895 1632 next_edge = false;
kvn@895 1633 }
kvn@895 1634 } // for (int idx = 0;
kvn@895 1635 } // for (int depth = 1;
kvn@895 1636 } // if (u->is_SafePoint()
kvn@895 1637 if (next_edge) i++;
kvn@895 1638 } // for (uint i = 0; i < oldbox->outcnt();)
kvn@895 1639 } // if (!oldbox->is_eliminated())
kvn@895 1640 } // if (alock->is_Lock() && !lock->is_coarsened())
kvn@501 1641
kvn@501 1642 #ifndef PRODUCT
kvn@501 1643 if (PrintEliminateLocks) {
kvn@501 1644 if (alock->is_Lock()) {
kvn@501 1645 tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
kvn@501 1646 } else {
kvn@501 1647 tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
kvn@501 1648 }
kvn@501 1649 }
kvn@501 1650 #endif
kvn@501 1651
kvn@501 1652 Node* mem = alock->in(TypeFunc::Memory);
kvn@501 1653 Node* ctrl = alock->in(TypeFunc::Control);
kvn@501 1654
kvn@501 1655 extract_call_projections(alock);
kvn@501 1656 // There are 2 projections from the lock. The lock node will
kvn@501 1657 // be deleted when its last use is subsumed below.
kvn@501 1658 assert(alock->outcnt() == 2 &&
kvn@501 1659 _fallthroughproj != NULL &&
kvn@501 1660 _memproj_fallthrough != NULL,
kvn@501 1661 "Unexpected projections from Lock/Unlock");
kvn@501 1662
kvn@501 1663 Node* fallthroughproj = _fallthroughproj;
kvn@501 1664 Node* memproj_fallthrough = _memproj_fallthrough;
duke@435 1665
duke@435 1666 // The memory projection from a lock/unlock is RawMem
duke@435 1667 // The input to a Lock is merged memory, so extract its RawMem input
duke@435 1668 // (unless the MergeMem has been optimized away.)
duke@435 1669 if (alock->is_Lock()) {
kvn@501 1670 // Seach for MemBarAcquire node and delete it also.
kvn@501 1671 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
kvn@501 1672 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
kvn@501 1673 Node* ctrlproj = membar->proj_out(TypeFunc::Control);
kvn@501 1674 Node* memproj = membar->proj_out(TypeFunc::Memory);
kvn@1143 1675 _igvn.replace_node(ctrlproj, fallthroughproj);
kvn@1143 1676 _igvn.replace_node(memproj, memproj_fallthrough);
kvn@895 1677
kvn@895 1678 // Delete FastLock node also if this Lock node is unique user
kvn@895 1679 // (a loop peeling may clone a Lock node).
kvn@895 1680 Node* flock = alock->as_Lock()->fastlock_node();
kvn@895 1681 if (flock->outcnt() == 1) {
kvn@895 1682 assert(flock->unique_out() == alock, "sanity");
kvn@1143 1683 _igvn.replace_node(flock, top());
kvn@895 1684 }
duke@435 1685 }
duke@435 1686
kvn@501 1687 // Seach for MemBarRelease node and delete it also.
kvn@501 1688 if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
kvn@501 1689 ctrl->in(0)->is_MemBar()) {
kvn@501 1690 MemBarNode* membar = ctrl->in(0)->as_MemBar();
kvn@501 1691 assert(membar->Opcode() == Op_MemBarRelease &&
kvn@501 1692 mem->is_Proj() && membar == mem->in(0), "");
kvn@1143 1693 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 1694 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 1695 fallthroughproj = ctrl;
kvn@501 1696 memproj_fallthrough = mem;
kvn@501 1697 ctrl = membar->in(TypeFunc::Control);
kvn@501 1698 mem = membar->in(TypeFunc::Memory);
kvn@501 1699 }
kvn@501 1700
kvn@1143 1701 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 1702 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 1703 return true;
duke@435 1704 }
duke@435 1705
duke@435 1706
duke@435 1707 //------------------------------expand_lock_node----------------------
duke@435 1708 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
duke@435 1709
duke@435 1710 Node* ctrl = lock->in(TypeFunc::Control);
duke@435 1711 Node* mem = lock->in(TypeFunc::Memory);
duke@435 1712 Node* obj = lock->obj_node();
duke@435 1713 Node* box = lock->box_node();
kvn@501 1714 Node* flock = lock->fastlock_node();
duke@435 1715
duke@435 1716 // Make the merge point
kvn@855 1717 Node *region;
kvn@855 1718 Node *mem_phi;
kvn@855 1719 Node *slow_path;
duke@435 1720
kvn@855 1721 if (UseOptoBiasInlining) {
kvn@855 1722 /*
twisti@1040 1723 * See the full description in MacroAssembler::biased_locking_enter().
kvn@855 1724 *
kvn@855 1725 * if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
kvn@855 1726 * // The object is biased.
kvn@855 1727 * proto_node = klass->prototype_header;
kvn@855 1728 * o_node = thread | proto_node;
kvn@855 1729 * x_node = o_node ^ mark_word;
kvn@855 1730 * if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
kvn@855 1731 * // Done.
kvn@855 1732 * } else {
kvn@855 1733 * if( (x_node & biased_lock_mask) != 0 ) {
kvn@855 1734 * // The klass's prototype header is no longer biased.
kvn@855 1735 * cas(&mark_word, mark_word, proto_node)
kvn@855 1736 * goto cas_lock;
kvn@855 1737 * } else {
kvn@855 1738 * // The klass's prototype header is still biased.
kvn@855 1739 * if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
kvn@855 1740 * old = mark_word;
kvn@855 1741 * new = o_node;
kvn@855 1742 * } else {
kvn@855 1743 * // Different thread or anonymous biased.
kvn@855 1744 * old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
kvn@855 1745 * new = thread | old;
kvn@855 1746 * }
kvn@855 1747 * // Try to rebias.
kvn@855 1748 * if( cas(&mark_word, old, new) == 0 ) {
kvn@855 1749 * // Done.
kvn@855 1750 * } else {
kvn@855 1751 * goto slow_path; // Failed.
kvn@855 1752 * }
kvn@855 1753 * }
kvn@855 1754 * }
kvn@855 1755 * } else {
kvn@855 1756 * // The object is not biased.
kvn@855 1757 * cas_lock:
kvn@855 1758 * if( FastLock(obj) == 0 ) {
kvn@855 1759 * // Done.
kvn@855 1760 * } else {
kvn@855 1761 * slow_path:
kvn@855 1762 * OptoRuntime::complete_monitor_locking_Java(obj);
kvn@855 1763 * }
kvn@855 1764 * }
kvn@855 1765 */
kvn@855 1766
kvn@855 1767 region = new (C, 5) RegionNode(5);
kvn@855 1768 // create a Phi for the memory state
kvn@855 1769 mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1770
kvn@855 1771 Node* fast_lock_region = new (C, 3) RegionNode(3);
kvn@855 1772 Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1773
kvn@855 1774 // First, check mark word for the biased lock pattern.
kvn@855 1775 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 1776
kvn@855 1777 // Get fast path - mark word has the biased lock pattern.
kvn@855 1778 ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
kvn@855 1779 markOopDesc::biased_lock_mask_in_place,
kvn@855 1780 markOopDesc::biased_lock_pattern, true);
kvn@855 1781 // fast_lock_region->in(1) is set to slow path.
kvn@855 1782 fast_lock_mem_phi->init_req(1, mem);
kvn@855 1783
kvn@855 1784 // Now check that the lock is biased to the current thread and has
kvn@855 1785 // the same epoch and bias as Klass::_prototype_header.
kvn@855 1786
kvn@855 1787 // Special-case a fresh allocation to avoid building nodes:
kvn@855 1788 Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
kvn@855 1789 if (klass_node == NULL) {
kvn@855 1790 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
kvn@855 1791 klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
kvn@925 1792 #ifdef _LP64
kvn@925 1793 if (UseCompressedOops && klass_node->is_DecodeN()) {
kvn@925 1794 assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
kvn@925 1795 klass_node->in(1)->init_req(0, ctrl);
kvn@925 1796 } else
kvn@925 1797 #endif
kvn@925 1798 klass_node->init_req(0, ctrl);
kvn@855 1799 }
kvn@855 1800 Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
kvn@855 1801
kvn@855 1802 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
kvn@855 1803 Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
kvn@855 1804 Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
kvn@855 1805 Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
kvn@855 1806
kvn@855 1807 // Get slow path - mark word does NOT match the value.
kvn@855 1808 Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node,
kvn@855 1809 (~markOopDesc::age_mask_in_place), 0);
kvn@855 1810 // region->in(3) is set to fast path - the object is biased to the current thread.
kvn@855 1811 mem_phi->init_req(3, mem);
kvn@855 1812
kvn@855 1813
kvn@855 1814 // Mark word does NOT match the value (thread | Klass::_prototype_header).
kvn@855 1815
kvn@855 1816
kvn@855 1817 // First, check biased pattern.
kvn@855 1818 // Get fast path - _prototype_header has the same biased lock pattern.
kvn@855 1819 ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
kvn@855 1820 markOopDesc::biased_lock_mask_in_place, 0, true);
kvn@855 1821
kvn@855 1822 not_biased_ctrl = fast_lock_region->in(2); // Slow path
kvn@855 1823 // fast_lock_region->in(2) - the prototype header is no longer biased
kvn@855 1824 // and we have to revoke the bias on this object.
kvn@855 1825 // We are going to try to reset the mark of this object to the prototype
kvn@855 1826 // value and fall through to the CAS-based locking scheme.
kvn@855 1827 Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@855 1828 Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
kvn@855 1829 proto_node, mark_node);
kvn@855 1830 transform_later(cas);
kvn@855 1831 Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
kvn@855 1832 fast_lock_mem_phi->init_req(2, proj);
kvn@855 1833
kvn@855 1834
kvn@855 1835 // Second, check epoch bits.
kvn@855 1836 Node* rebiased_region = new (C, 3) RegionNode(3);
kvn@855 1837 Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
kvn@855 1838 Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
kvn@855 1839
kvn@855 1840 // Get slow path - mark word does NOT match epoch bits.
kvn@855 1841 Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node,
kvn@855 1842 markOopDesc::epoch_mask_in_place, 0);
kvn@855 1843 // The epoch of the current bias is not valid, attempt to rebias the object
kvn@855 1844 // toward the current thread.
kvn@855 1845 rebiased_region->init_req(2, epoch_ctrl);
kvn@855 1846 old_phi->init_req(2, mark_node);
kvn@855 1847 new_phi->init_req(2, o_node);
kvn@855 1848
kvn@855 1849 // rebiased_region->in(1) is set to fast path.
kvn@855 1850 // The epoch of the current bias is still valid but we know
kvn@855 1851 // nothing about the owner; it might be set or it might be clear.
kvn@855 1852 Node* cmask = MakeConX(markOopDesc::biased_lock_mask_in_place |
kvn@855 1853 markOopDesc::age_mask_in_place |
kvn@855 1854 markOopDesc::epoch_mask_in_place);
kvn@855 1855 Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
kvn@855 1856 cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
kvn@855 1857 Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
kvn@855 1858 old_phi->init_req(1, old);
kvn@855 1859 new_phi->init_req(1, new_mark);
kvn@855 1860
kvn@855 1861 transform_later(rebiased_region);
kvn@855 1862 transform_later(old_phi);
kvn@855 1863 transform_later(new_phi);
kvn@855 1864
kvn@855 1865 // Try to acquire the bias of the object using an atomic operation.
kvn@855 1866 // If this fails we will go in to the runtime to revoke the object's bias.
kvn@855 1867 cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
kvn@855 1868 new_phi, old_phi);
kvn@855 1869 transform_later(cas);
kvn@855 1870 proj = transform_later( new (C, 1) SCMemProjNode(cas));
kvn@855 1871
kvn@855 1872 // Get slow path - Failed to CAS.
kvn@855 1873 not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
kvn@855 1874 mem_phi->init_req(4, proj);
kvn@855 1875 // region->in(4) is set to fast path - the object is rebiased to the current thread.
kvn@855 1876
kvn@855 1877 // Failed to CAS.
kvn@855 1878 slow_path = new (C, 3) RegionNode(3);
kvn@855 1879 Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1880
kvn@855 1881 slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
kvn@855 1882 slow_mem->init_req(1, proj);
kvn@855 1883
kvn@855 1884 // Call CAS-based locking scheme (FastLock node).
kvn@855 1885
kvn@855 1886 transform_later(fast_lock_region);
kvn@855 1887 transform_later(fast_lock_mem_phi);
kvn@855 1888
kvn@855 1889 // Get slow path - FastLock failed to lock the object.
kvn@855 1890 ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
kvn@855 1891 mem_phi->init_req(2, fast_lock_mem_phi);
kvn@855 1892 // region->in(2) is set to fast path - the object is locked to the current thread.
kvn@855 1893
kvn@855 1894 slow_path->init_req(2, ctrl); // Capture slow-control
kvn@855 1895 slow_mem->init_req(2, fast_lock_mem_phi);
kvn@855 1896
kvn@855 1897 transform_later(slow_path);
kvn@855 1898 transform_later(slow_mem);
kvn@855 1899 // Reset lock's memory edge.
kvn@855 1900 lock->set_req(TypeFunc::Memory, slow_mem);
kvn@855 1901
kvn@855 1902 } else {
kvn@855 1903 region = new (C, 3) RegionNode(3);
kvn@855 1904 // create a Phi for the memory state
kvn@855 1905 mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1906
kvn@855 1907 // Optimize test; set region slot 2
kvn@855 1908 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
kvn@855 1909 mem_phi->init_req(2, mem);
kvn@855 1910 }
duke@435 1911
duke@435 1912 // Make slow path call
duke@435 1913 CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
duke@435 1914
duke@435 1915 extract_call_projections(call);
duke@435 1916
duke@435 1917 // Slow path can only throw asynchronous exceptions, which are always
duke@435 1918 // de-opted. So the compiler thinks the slow-call can never throw an
duke@435 1919 // exception. If it DOES throw an exception we would need the debug
duke@435 1920 // info removed first (since if it throws there is no monitor).
duke@435 1921 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 1922 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 1923
duke@435 1924 // Capture slow path
duke@435 1925 // disconnect fall-through projection from call and create a new one
duke@435 1926 // hook up users of fall-through projection to region
duke@435 1927 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 1928 transform_later(slow_ctrl);
duke@435 1929 _igvn.hash_delete(_fallthroughproj);
duke@435 1930 _fallthroughproj->disconnect_inputs(NULL);
duke@435 1931 region->init_req(1, slow_ctrl);
duke@435 1932 // region inputs are now complete
duke@435 1933 transform_later(region);
kvn@1143 1934 _igvn.replace_node(_fallthroughproj, region);
duke@435 1935
kvn@855 1936 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 1937 mem_phi->init_req(1, memproj );
duke@435 1938 transform_later(mem_phi);
kvn@1143 1939 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 1940 }
duke@435 1941
duke@435 1942 //------------------------------expand_unlock_node----------------------
duke@435 1943 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
duke@435 1944
kvn@501 1945 Node* ctrl = unlock->in(TypeFunc::Control);
duke@435 1946 Node* mem = unlock->in(TypeFunc::Memory);
duke@435 1947 Node* obj = unlock->obj_node();
duke@435 1948 Node* box = unlock->box_node();
duke@435 1949
duke@435 1950 // No need for a null check on unlock
duke@435 1951
duke@435 1952 // Make the merge point
kvn@855 1953 Node *region;
kvn@855 1954 Node *mem_phi;
kvn@855 1955
kvn@855 1956 if (UseOptoBiasInlining) {
kvn@855 1957 // Check for biased locking unlock case, which is a no-op.
twisti@1040 1958 // See the full description in MacroAssembler::biased_locking_exit().
kvn@855 1959 region = new (C, 4) RegionNode(4);
kvn@855 1960 // create a Phi for the memory state
kvn@855 1961 mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1962 mem_phi->init_req(3, mem);
kvn@855 1963
kvn@855 1964 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 1965 ctrl = opt_bits_test(ctrl, region, 3, mark_node,
kvn@855 1966 markOopDesc::biased_lock_mask_in_place,
kvn@855 1967 markOopDesc::biased_lock_pattern);
kvn@855 1968 } else {
kvn@855 1969 region = new (C, 3) RegionNode(3);
kvn@855 1970 // create a Phi for the memory state
kvn@855 1971 mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1972 }
duke@435 1973
duke@435 1974 FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
duke@435 1975 funlock = transform_later( funlock )->as_FastUnlock();
duke@435 1976 // Optimize test; set region slot 2
kvn@855 1977 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
duke@435 1978
duke@435 1979 CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
duke@435 1980
duke@435 1981 extract_call_projections(call);
duke@435 1982
duke@435 1983 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 1984 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 1985
duke@435 1986 // No exceptions for unlocking
duke@435 1987 // Capture slow path
duke@435 1988 // disconnect fall-through projection from call and create a new one
duke@435 1989 // hook up users of fall-through projection to region
duke@435 1990 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 1991 transform_later(slow_ctrl);
duke@435 1992 _igvn.hash_delete(_fallthroughproj);
duke@435 1993 _fallthroughproj->disconnect_inputs(NULL);
duke@435 1994 region->init_req(1, slow_ctrl);
duke@435 1995 // region inputs are now complete
duke@435 1996 transform_later(region);
kvn@1143 1997 _igvn.replace_node(_fallthroughproj, region);
duke@435 1998
duke@435 1999 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 2000 mem_phi->init_req(1, memproj );
duke@435 2001 mem_phi->init_req(2, mem);
duke@435 2002 transform_later(mem_phi);
kvn@1143 2003 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2004 }
duke@435 2005
duke@435 2006 //------------------------------expand_macro_nodes----------------------
duke@435 2007 // Returns true if a failure occurred.
duke@435 2008 bool PhaseMacroExpand::expand_macro_nodes() {
duke@435 2009 if (C->macro_count() == 0)
duke@435 2010 return false;
kvn@895 2011 // First, attempt to eliminate locks
kvn@508 2012 bool progress = true;
kvn@508 2013 while (progress) {
kvn@508 2014 progress = false;
kvn@508 2015 for (int i = C->macro_count(); i > 0; i--) {
kvn@508 2016 Node * n = C->macro_node(i-1);
kvn@508 2017 bool success = false;
kvn@508 2018 debug_only(int old_macro_count = C->macro_count(););
kvn@895 2019 if (n->is_AbstractLock()) {
kvn@895 2020 success = eliminate_locking_node(n->as_AbstractLock());
kvn@895 2021 } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
kvn@1143 2022 _igvn.replace_node(n, n->in(1));
kvn@895 2023 success = true;
kvn@895 2024 }
kvn@895 2025 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@895 2026 progress = progress || success;
kvn@895 2027 }
kvn@895 2028 }
kvn@895 2029 // Next, attempt to eliminate allocations
kvn@895 2030 progress = true;
kvn@895 2031 while (progress) {
kvn@895 2032 progress = false;
kvn@895 2033 for (int i = C->macro_count(); i > 0; i--) {
kvn@895 2034 Node * n = C->macro_node(i-1);
kvn@895 2035 bool success = false;
kvn@895 2036 debug_only(int old_macro_count = C->macro_count(););
kvn@508 2037 switch (n->class_id()) {
kvn@508 2038 case Node::Class_Allocate:
kvn@508 2039 case Node::Class_AllocateArray:
kvn@508 2040 success = eliminate_allocate_node(n->as_Allocate());
kvn@508 2041 break;
kvn@508 2042 case Node::Class_Lock:
kvn@508 2043 case Node::Class_Unlock:
kvn@895 2044 assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
kvn@508 2045 break;
kvn@508 2046 default:
kvn@895 2047 assert(false, "unknown node type in macro list");
kvn@508 2048 }
kvn@508 2049 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@508 2050 progress = progress || success;
kvn@508 2051 }
kvn@508 2052 }
kvn@508 2053 // Make sure expansion will not cause node limit to be exceeded.
kvn@508 2054 // Worst case is a macro node gets expanded into about 50 nodes.
kvn@508 2055 // Allow 50% more for optimization.
duke@435 2056 if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
duke@435 2057 return true;
kvn@508 2058
duke@435 2059 // expand "macro" nodes
duke@435 2060 // nodes are removed from the macro list as they are processed
duke@435 2061 while (C->macro_count() > 0) {
kvn@508 2062 int macro_count = C->macro_count();
kvn@508 2063 Node * n = C->macro_node(macro_count-1);
duke@435 2064 assert(n->is_macro(), "only macro nodes expected here");
duke@435 2065 if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
duke@435 2066 // node is unreachable, so don't try to expand it
duke@435 2067 C->remove_macro_node(n);
duke@435 2068 continue;
duke@435 2069 }
duke@435 2070 switch (n->class_id()) {
duke@435 2071 case Node::Class_Allocate:
duke@435 2072 expand_allocate(n->as_Allocate());
duke@435 2073 break;
duke@435 2074 case Node::Class_AllocateArray:
duke@435 2075 expand_allocate_array(n->as_AllocateArray());
duke@435 2076 break;
duke@435 2077 case Node::Class_Lock:
duke@435 2078 expand_lock_node(n->as_Lock());
duke@435 2079 break;
duke@435 2080 case Node::Class_Unlock:
duke@435 2081 expand_unlock_node(n->as_Unlock());
duke@435 2082 break;
duke@435 2083 default:
duke@435 2084 assert(false, "unknown node type in macro list");
duke@435 2085 }
kvn@508 2086 assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
duke@435 2087 if (C->failing()) return true;
duke@435 2088 }
coleenp@548 2089
coleenp@548 2090 _igvn.set_delay_transform(false);
duke@435 2091 _igvn.optimize();
duke@435 2092 return false;
duke@435 2093 }

mercurial