src/share/vm/opto/macro.cpp

Fri, 07 Jan 2011 10:42:32 -0500

author
phh
date
Fri, 07 Jan 2011 10:42:32 -0500
changeset 2423
b1a2afa37ec4
parent 2314
f95d63e2154a
child 2814
149bb459be66
permissions
-rw-r--r--

7003271: Hotspot should track cumulative Java heap bytes allocated on a per-thread basis
Summary: Track allocated bytes in Thread's, update on TLAB retirement and direct allocation in Eden and tenured, add JNI methods for ThreadMXBean.
Reviewed-by: coleenp, kvn, dholmes, ysr

duke@435 1 /*
phh@2423 2 * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "libadt/vectset.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/cfgnode.hpp"
stefank@2314 31 #include "opto/compile.hpp"
stefank@2314 32 #include "opto/connode.hpp"
stefank@2314 33 #include "opto/locknode.hpp"
stefank@2314 34 #include "opto/loopnode.hpp"
stefank@2314 35 #include "opto/macro.hpp"
stefank@2314 36 #include "opto/memnode.hpp"
stefank@2314 37 #include "opto/node.hpp"
stefank@2314 38 #include "opto/phaseX.hpp"
stefank@2314 39 #include "opto/rootnode.hpp"
stefank@2314 40 #include "opto/runtime.hpp"
stefank@2314 41 #include "opto/subnode.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43 #include "runtime/sharedRuntime.hpp"
duke@435 44
duke@435 45
duke@435 46 //
duke@435 47 // Replace any references to "oldref" in inputs to "use" with "newref".
duke@435 48 // Returns the number of replacements made.
duke@435 49 //
duke@435 50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
duke@435 51 int nreplacements = 0;
duke@435 52 uint req = use->req();
duke@435 53 for (uint j = 0; j < use->len(); j++) {
duke@435 54 Node *uin = use->in(j);
duke@435 55 if (uin == oldref) {
duke@435 56 if (j < req)
duke@435 57 use->set_req(j, newref);
duke@435 58 else
duke@435 59 use->set_prec(j, newref);
duke@435 60 nreplacements++;
duke@435 61 } else if (j >= req && uin == NULL) {
duke@435 62 break;
duke@435 63 }
duke@435 64 }
duke@435 65 return nreplacements;
duke@435 66 }
duke@435 67
duke@435 68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
duke@435 69 // Copy debug information and adjust JVMState information
duke@435 70 uint old_dbg_start = oldcall->tf()->domain()->cnt();
duke@435 71 uint new_dbg_start = newcall->tf()->domain()->cnt();
duke@435 72 int jvms_adj = new_dbg_start - old_dbg_start;
duke@435 73 assert (new_dbg_start == newcall->req(), "argument count mismatch");
kvn@498 74
kvn@498 75 Dict* sosn_map = new Dict(cmpkey,hashkey);
duke@435 76 for (uint i = old_dbg_start; i < oldcall->req(); i++) {
kvn@498 77 Node* old_in = oldcall->in(i);
kvn@498 78 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
kvn@895 79 if (old_in != NULL && old_in->is_SafePointScalarObject()) {
kvn@498 80 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
kvn@498 81 uint old_unique = C->unique();
kvn@498 82 Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
kvn@498 83 if (old_unique != C->unique()) {
kvn@1036 84 new_in->set_req(0, newcall->in(0)); // reset control edge
kvn@498 85 new_in = transform_later(new_in); // Register new node.
kvn@498 86 }
kvn@498 87 old_in = new_in;
kvn@498 88 }
kvn@498 89 newcall->add_req(old_in);
duke@435 90 }
kvn@498 91
duke@435 92 newcall->set_jvms(oldcall->jvms());
duke@435 93 for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@435 94 jvms->set_map(newcall);
duke@435 95 jvms->set_locoff(jvms->locoff()+jvms_adj);
duke@435 96 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
duke@435 97 jvms->set_monoff(jvms->monoff()+jvms_adj);
kvn@498 98 jvms->set_scloff(jvms->scloff()+jvms_adj);
duke@435 99 jvms->set_endoff(jvms->endoff()+jvms_adj);
duke@435 100 }
duke@435 101 }
duke@435 102
kvn@855 103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
kvn@855 104 Node* cmp;
kvn@855 105 if (mask != 0) {
kvn@855 106 Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
kvn@855 107 cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
kvn@855 108 } else {
kvn@855 109 cmp = word;
kvn@855 110 }
kvn@855 111 Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
kvn@855 112 IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
kvn@855 113 transform_later(iff);
duke@435 114
kvn@855 115 // Fast path taken.
kvn@855 116 Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
duke@435 117
duke@435 118 // Fast path not-taken, i.e. slow path
kvn@855 119 Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
kvn@855 120
kvn@855 121 if (return_fast_path) {
kvn@855 122 region->init_req(edge, slow_taken); // Capture slow-control
kvn@855 123 return fast_taken;
kvn@855 124 } else {
kvn@855 125 region->init_req(edge, fast_taken); // Capture fast-control
kvn@855 126 return slow_taken;
kvn@855 127 }
duke@435 128 }
duke@435 129
duke@435 130 //--------------------copy_predefined_input_for_runtime_call--------------------
duke@435 131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
duke@435 132 // Set fixed predefined input arguments
duke@435 133 call->init_req( TypeFunc::Control, ctrl );
duke@435 134 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) );
duke@435 135 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
duke@435 136 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
duke@435 137 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
duke@435 138 }
duke@435 139
duke@435 140 //------------------------------make_slow_call---------------------------------
duke@435 141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
duke@435 142
duke@435 143 // Slow-path call
duke@435 144 int size = slow_call_type->domain()->cnt();
duke@435 145 CallNode *call = leaf_name
duke@435 146 ? (CallNode*)new (C, size) CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
duke@435 147 : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
duke@435 148
duke@435 149 // Slow path call has no side-effects, uses few values
duke@435 150 copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
duke@435 151 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
duke@435 152 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
duke@435 153 copy_call_debug_info(oldcall, call);
duke@435 154 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
kvn@1976 155 _igvn.replace_node(oldcall, call);
duke@435 156 transform_later(call);
duke@435 157
duke@435 158 return call;
duke@435 159 }
duke@435 160
duke@435 161 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
duke@435 162 _fallthroughproj = NULL;
duke@435 163 _fallthroughcatchproj = NULL;
duke@435 164 _ioproj_fallthrough = NULL;
duke@435 165 _ioproj_catchall = NULL;
duke@435 166 _catchallcatchproj = NULL;
duke@435 167 _memproj_fallthrough = NULL;
duke@435 168 _memproj_catchall = NULL;
duke@435 169 _resproj = NULL;
duke@435 170 for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
duke@435 171 ProjNode *pn = call->fast_out(i)->as_Proj();
duke@435 172 switch (pn->_con) {
duke@435 173 case TypeFunc::Control:
duke@435 174 {
duke@435 175 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
duke@435 176 _fallthroughproj = pn;
duke@435 177 DUIterator_Fast jmax, j = pn->fast_outs(jmax);
duke@435 178 const Node *cn = pn->fast_out(j);
duke@435 179 if (cn->is_Catch()) {
duke@435 180 ProjNode *cpn = NULL;
duke@435 181 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
duke@435 182 cpn = cn->fast_out(k)->as_Proj();
duke@435 183 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
duke@435 184 if (cpn->_con == CatchProjNode::fall_through_index)
duke@435 185 _fallthroughcatchproj = cpn;
duke@435 186 else {
duke@435 187 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
duke@435 188 _catchallcatchproj = cpn;
duke@435 189 }
duke@435 190 }
duke@435 191 }
duke@435 192 break;
duke@435 193 }
duke@435 194 case TypeFunc::I_O:
duke@435 195 if (pn->_is_io_use)
duke@435 196 _ioproj_catchall = pn;
duke@435 197 else
duke@435 198 _ioproj_fallthrough = pn;
duke@435 199 break;
duke@435 200 case TypeFunc::Memory:
duke@435 201 if (pn->_is_io_use)
duke@435 202 _memproj_catchall = pn;
duke@435 203 else
duke@435 204 _memproj_fallthrough = pn;
duke@435 205 break;
duke@435 206 case TypeFunc::Parms:
duke@435 207 _resproj = pn;
duke@435 208 break;
duke@435 209 default:
duke@435 210 assert(false, "unexpected projection from allocation node.");
duke@435 211 }
duke@435 212 }
duke@435 213
duke@435 214 }
duke@435 215
kvn@508 216 // Eliminate a card mark sequence. p2x is a ConvP2XNode
kvn@1286 217 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
kvn@508 218 assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
kvn@1286 219 if (!UseG1GC) {
kvn@1286 220 // vanilla/CMS post barrier
kvn@1286 221 Node *shift = p2x->unique_out();
kvn@1286 222 Node *addp = shift->unique_out();
kvn@1286 223 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
kvn@1286 224 Node *st = addp->last_out(j);
kvn@1286 225 assert(st->is_Store(), "store required");
kvn@1286 226 _igvn.replace_node(st, st->in(MemNode::Memory));
kvn@1286 227 }
kvn@1286 228 } else {
kvn@1286 229 // G1 pre/post barriers
kvn@1286 230 assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
kvn@1286 231 // It could be only one user, URShift node, in Object.clone() instrinsic
kvn@1286 232 // but the new allocation is passed to arraycopy stub and it could not
kvn@1286 233 // be scalar replaced. So we don't check the case.
kvn@1286 234
kvn@1286 235 // Remove G1 post barrier.
kvn@1286 236
kvn@1286 237 // Search for CastP2X->Xor->URShift->Cmp path which
kvn@1286 238 // checks if the store done to a different from the value's region.
kvn@1286 239 // And replace Cmp with #0 (false) to collapse G1 post barrier.
kvn@1286 240 Node* xorx = NULL;
kvn@1286 241 for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
kvn@1286 242 Node* u = p2x->fast_out(i);
kvn@1286 243 if (u->Opcode() == Op_XorX) {
kvn@1286 244 xorx = u;
kvn@1286 245 break;
kvn@1286 246 }
kvn@1286 247 }
kvn@1286 248 assert(xorx != NULL, "missing G1 post barrier");
kvn@1286 249 Node* shift = xorx->unique_out();
kvn@1286 250 Node* cmpx = shift->unique_out();
kvn@1286 251 assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
kvn@1286 252 cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
kvn@1286 253 "missing region check in G1 post barrier");
kvn@1286 254 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 255
kvn@1286 256 // Remove G1 pre barrier.
kvn@1286 257
kvn@1286 258 // Search "if (marking != 0)" check and set it to "false".
kvn@1286 259 Node* this_region = p2x->in(0);
kvn@1286 260 assert(this_region != NULL, "");
kvn@1286 261 // There is no G1 pre barrier if previous stored value is NULL
kvn@1286 262 // (for example, after initialization).
kvn@1286 263 if (this_region->is_Region() && this_region->req() == 3) {
kvn@1286 264 int ind = 1;
kvn@1286 265 if (!this_region->in(ind)->is_IfFalse()) {
kvn@1286 266 ind = 2;
kvn@1286 267 }
kvn@1286 268 if (this_region->in(ind)->is_IfFalse()) {
kvn@1286 269 Node* bol = this_region->in(ind)->in(0)->in(1);
kvn@1286 270 assert(bol->is_Bool(), "");
kvn@1286 271 cmpx = bol->in(1);
kvn@1286 272 if (bol->as_Bool()->_test._test == BoolTest::ne &&
kvn@1286 273 cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
kvn@1286 274 cmpx->in(1)->is_Load()) {
kvn@1286 275 Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
kvn@1286 276 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
kvn@1286 277 PtrQueue::byte_offset_of_active());
kvn@1286 278 if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
kvn@1286 279 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
kvn@1286 280 adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
kvn@1286 281 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 282 }
kvn@1286 283 }
kvn@1286 284 }
kvn@1286 285 }
kvn@1286 286 // Now CastP2X can be removed since it is used only on dead path
kvn@1286 287 // which currently still alive until igvn optimize it.
kvn@1286 288 assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
kvn@1286 289 _igvn.replace_node(p2x, top());
kvn@508 290 }
kvn@508 291 }
kvn@508 292
kvn@508 293 // Search for a memory operation for the specified memory slice.
kvn@688 294 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
kvn@508 295 Node *orig_mem = mem;
kvn@508 296 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@688 297 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
kvn@508 298 while (true) {
kvn@508 299 if (mem == alloc_mem || mem == start_mem ) {
twisti@1040 300 return mem; // hit one of our sentinels
kvn@508 301 } else if (mem->is_MergeMem()) {
kvn@508 302 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@508 303 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
kvn@508 304 Node *in = mem->in(0);
kvn@508 305 // we can safely skip over safepoints, calls, locks and membars because we
kvn@508 306 // already know that the object is safe to eliminate.
kvn@508 307 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
kvn@508 308 return in;
kvn@688 309 } else if (in->is_Call()) {
kvn@688 310 CallNode *call = in->as_Call();
kvn@688 311 if (!call->may_modify(tinst, phase)) {
kvn@688 312 mem = call->in(TypeFunc::Memory);
kvn@688 313 }
kvn@688 314 mem = in->in(TypeFunc::Memory);
kvn@688 315 } else if (in->is_MemBar()) {
kvn@508 316 mem = in->in(TypeFunc::Memory);
kvn@508 317 } else {
kvn@508 318 assert(false, "unexpected projection");
kvn@508 319 }
kvn@508 320 } else if (mem->is_Store()) {
kvn@508 321 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 322 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@508 323 if (adr_idx == alias_idx) {
kvn@508 324 assert(atype->isa_oopptr(), "address type must be oopptr");
kvn@508 325 int adr_offset = atype->offset();
kvn@508 326 uint adr_iid = atype->is_oopptr()->instance_id();
kvn@508 327 // Array elements references have the same alias_idx
kvn@508 328 // but different offset and different instance_id.
kvn@508 329 if (adr_offset == offset && adr_iid == alloc->_idx)
kvn@508 330 return mem;
kvn@508 331 } else {
kvn@508 332 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
kvn@508 333 }
kvn@508 334 mem = mem->in(MemNode::Memory);
kvn@1535 335 } else if (mem->is_ClearArray()) {
kvn@1535 336 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
kvn@1535 337 // Can not bypass initialization of the instance
kvn@1535 338 // we are looking.
kvn@1535 339 debug_only(intptr_t offset;)
kvn@1535 340 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
kvn@1535 341 InitializeNode* init = alloc->as_Allocate()->initialization();
kvn@1535 342 // We are looking for stored value, return Initialize node
kvn@1535 343 // or memory edge from Allocate node.
kvn@1535 344 if (init != NULL)
kvn@1535 345 return init;
kvn@1535 346 else
kvn@1535 347 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
kvn@1535 348 }
kvn@1535 349 // Otherwise skip it (the call updated 'mem' value).
kvn@1019 350 } else if (mem->Opcode() == Op_SCMemProj) {
kvn@1019 351 assert(mem->in(0)->is_LoadStore(), "sanity");
kvn@1019 352 const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
kvn@1019 353 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@1019 354 if (adr_idx == alias_idx) {
kvn@1019 355 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 356 return NULL;
kvn@1019 357 }
kvn@1019 358 mem = mem->in(0)->in(MemNode::Memory);
kvn@508 359 } else {
kvn@508 360 return mem;
kvn@508 361 }
kvn@682 362 assert(mem != orig_mem, "dead memory loop");
kvn@508 363 }
kvn@508 364 }
kvn@508 365
kvn@508 366 //
kvn@508 367 // Given a Memory Phi, compute a value Phi containing the values from stores
kvn@508 368 // on the input paths.
kvn@508 369 // Note: this function is recursive, its depth is limied by the "level" argument
kvn@508 370 // Returns the computed Phi, or NULL if it cannot compute it.
kvn@682 371 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
kvn@682 372 assert(mem->is_Phi(), "sanity");
kvn@682 373 int alias_idx = C->get_alias_index(adr_t);
kvn@682 374 int offset = adr_t->offset();
kvn@682 375 int instance_id = adr_t->instance_id();
kvn@682 376
kvn@682 377 // Check if an appropriate value phi already exists.
kvn@682 378 Node* region = mem->in(0);
kvn@682 379 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
kvn@682 380 Node* phi = region->fast_out(k);
kvn@682 381 if (phi->is_Phi() && phi != mem &&
kvn@682 382 phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
kvn@682 383 return phi;
kvn@682 384 }
kvn@682 385 }
kvn@682 386 // Check if an appropriate new value phi already exists.
kvn@682 387 Node* new_phi = NULL;
kvn@682 388 uint size = value_phis->size();
kvn@682 389 for (uint i=0; i < size; i++) {
kvn@682 390 if ( mem->_idx == value_phis->index_at(i) ) {
kvn@682 391 return value_phis->node_at(i);
kvn@682 392 }
kvn@682 393 }
kvn@508 394
kvn@508 395 if (level <= 0) {
kvn@688 396 return NULL; // Give up: phi tree too deep
kvn@508 397 }
kvn@508 398 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 399 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@508 400
kvn@508 401 uint length = mem->req();
kvn@508 402 GrowableArray <Node *> values(length, length, NULL);
kvn@508 403
kvn@682 404 // create a new Phi for the value
kvn@682 405 PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
kvn@682 406 transform_later(phi);
kvn@682 407 value_phis->push(phi, mem->_idx);
kvn@682 408
kvn@508 409 for (uint j = 1; j < length; j++) {
kvn@508 410 Node *in = mem->in(j);
kvn@508 411 if (in == NULL || in->is_top()) {
kvn@508 412 values.at_put(j, in);
kvn@508 413 } else {
kvn@688 414 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 415 if (val == start_mem || val == alloc_mem) {
kvn@508 416 // hit a sentinel, return appropriate 0 value
kvn@508 417 values.at_put(j, _igvn.zerocon(ft));
kvn@508 418 continue;
kvn@508 419 }
kvn@508 420 if (val->is_Initialize()) {
kvn@508 421 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 422 }
kvn@508 423 if (val == NULL) {
kvn@508 424 return NULL; // can't find a value on this path
kvn@508 425 }
kvn@508 426 if (val == mem) {
kvn@508 427 values.at_put(j, mem);
kvn@508 428 } else if (val->is_Store()) {
kvn@508 429 values.at_put(j, val->in(MemNode::ValueIn));
kvn@508 430 } else if(val->is_Proj() && val->in(0) == alloc) {
kvn@508 431 values.at_put(j, _igvn.zerocon(ft));
kvn@508 432 } else if (val->is_Phi()) {
kvn@682 433 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
kvn@682 434 if (val == NULL) {
kvn@682 435 return NULL;
kvn@508 436 }
kvn@682 437 values.at_put(j, val);
kvn@1019 438 } else if (val->Opcode() == Op_SCMemProj) {
kvn@1019 439 assert(val->in(0)->is_LoadStore(), "sanity");
kvn@1019 440 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 441 return NULL;
kvn@508 442 } else {
kvn@1019 443 #ifdef ASSERT
kvn@1019 444 val->dump();
kvn@688 445 assert(false, "unknown node on this path");
kvn@1019 446 #endif
kvn@688 447 return NULL; // unknown node on this path
kvn@508 448 }
kvn@508 449 }
kvn@508 450 }
kvn@682 451 // Set Phi's inputs
kvn@508 452 for (uint j = 1; j < length; j++) {
kvn@508 453 if (values.at(j) == mem) {
kvn@508 454 phi->init_req(j, phi);
kvn@508 455 } else {
kvn@508 456 phi->init_req(j, values.at(j));
kvn@508 457 }
kvn@508 458 }
kvn@508 459 return phi;
kvn@508 460 }
kvn@508 461
kvn@508 462 // Search the last value stored into the object's field.
kvn@508 463 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
kvn@658 464 assert(adr_t->is_known_instance_field(), "instance required");
kvn@658 465 int instance_id = adr_t->instance_id();
kvn@658 466 assert((uint)instance_id == alloc->_idx, "wrong allocation");
kvn@508 467
kvn@508 468 int alias_idx = C->get_alias_index(adr_t);
kvn@508 469 int offset = adr_t->offset();
kvn@508 470 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 471 Node *alloc_ctrl = alloc->in(TypeFunc::Control);
kvn@508 472 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@682 473 Arena *a = Thread::current()->resource_area();
kvn@682 474 VectorSet visited(a);
kvn@508 475
kvn@508 476
kvn@508 477 bool done = sfpt_mem == alloc_mem;
kvn@508 478 Node *mem = sfpt_mem;
kvn@508 479 while (!done) {
kvn@508 480 if (visited.test_set(mem->_idx)) {
kvn@508 481 return NULL; // found a loop, give up
kvn@508 482 }
kvn@688 483 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 484 if (mem == start_mem || mem == alloc_mem) {
kvn@508 485 done = true; // hit a sentinel, return appropriate 0 value
kvn@508 486 } else if (mem->is_Initialize()) {
kvn@508 487 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 488 if (mem == NULL) {
kvn@508 489 done = true; // Something go wrong.
kvn@508 490 } else if (mem->is_Store()) {
kvn@508 491 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 492 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
kvn@508 493 done = true;
kvn@508 494 }
kvn@508 495 } else if (mem->is_Store()) {
kvn@508 496 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
kvn@508 497 assert(atype != NULL, "address type must be oopptr");
kvn@508 498 assert(C->get_alias_index(atype) == alias_idx &&
kvn@658 499 atype->is_known_instance_field() && atype->offset() == offset &&
kvn@508 500 atype->instance_id() == instance_id, "store is correct memory slice");
kvn@508 501 done = true;
kvn@508 502 } else if (mem->is_Phi()) {
kvn@508 503 // try to find a phi's unique input
kvn@508 504 Node *unique_input = NULL;
kvn@508 505 Node *top = C->top();
kvn@508 506 for (uint i = 1; i < mem->req(); i++) {
kvn@688 507 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 508 if (n == NULL || n == top || n == mem) {
kvn@508 509 continue;
kvn@508 510 } else if (unique_input == NULL) {
kvn@508 511 unique_input = n;
kvn@508 512 } else if (unique_input != n) {
kvn@508 513 unique_input = top;
kvn@508 514 break;
kvn@508 515 }
kvn@508 516 }
kvn@508 517 if (unique_input != NULL && unique_input != top) {
kvn@508 518 mem = unique_input;
kvn@508 519 } else {
kvn@508 520 done = true;
kvn@508 521 }
kvn@508 522 } else {
kvn@508 523 assert(false, "unexpected node");
kvn@508 524 }
kvn@508 525 }
kvn@508 526 if (mem != NULL) {
kvn@508 527 if (mem == start_mem || mem == alloc_mem) {
kvn@508 528 // hit a sentinel, return appropriate 0 value
kvn@508 529 return _igvn.zerocon(ft);
kvn@508 530 } else if (mem->is_Store()) {
kvn@508 531 return mem->in(MemNode::ValueIn);
kvn@508 532 } else if (mem->is_Phi()) {
kvn@508 533 // attempt to produce a Phi reflecting the values on the input paths of the Phi
kvn@682 534 Node_Stack value_phis(a, 8);
kvn@688 535 Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
kvn@508 536 if (phi != NULL) {
kvn@508 537 return phi;
kvn@682 538 } else {
kvn@682 539 // Kill all new Phis
kvn@682 540 while(value_phis.is_nonempty()) {
kvn@682 541 Node* n = value_phis.node();
kvn@1976 542 _igvn.replace_node(n, C->top());
kvn@682 543 value_phis.pop();
kvn@682 544 }
kvn@508 545 }
kvn@508 546 }
kvn@508 547 }
kvn@508 548 // Something go wrong.
kvn@508 549 return NULL;
kvn@508 550 }
kvn@508 551
kvn@508 552 // Check the possibility of scalar replacement.
kvn@508 553 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 554 // Scan the uses of the allocation to check for anything that would
kvn@508 555 // prevent us from eliminating it.
kvn@508 556 NOT_PRODUCT( const char* fail_eliminate = NULL; )
kvn@508 557 DEBUG_ONLY( Node* disq_node = NULL; )
kvn@508 558 bool can_eliminate = true;
kvn@508 559
kvn@508 560 Node* res = alloc->result_cast();
kvn@508 561 const TypeOopPtr* res_type = NULL;
kvn@508 562 if (res == NULL) {
kvn@508 563 // All users were eliminated.
kvn@508 564 } else if (!res->is_CheckCastPP()) {
kvn@508 565 alloc->_is_scalar_replaceable = false; // don't try again
kvn@508 566 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
kvn@508 567 can_eliminate = false;
kvn@508 568 } else {
kvn@508 569 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 570 if (res_type == NULL) {
kvn@508 571 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
kvn@508 572 can_eliminate = false;
kvn@508 573 } else if (res_type->isa_aryptr()) {
kvn@508 574 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 575 if (length < 0) {
kvn@508 576 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
kvn@508 577 can_eliminate = false;
kvn@508 578 }
kvn@508 579 }
kvn@508 580 }
kvn@508 581
kvn@508 582 if (can_eliminate && res != NULL) {
kvn@508 583 for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
kvn@508 584 j < jmax && can_eliminate; j++) {
kvn@508 585 Node* use = res->fast_out(j);
kvn@508 586
kvn@508 587 if (use->is_AddP()) {
kvn@508 588 const TypePtr* addp_type = _igvn.type(use)->is_ptr();
kvn@508 589 int offset = addp_type->offset();
kvn@508 590
kvn@508 591 if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
kvn@508 592 NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
kvn@508 593 can_eliminate = false;
kvn@508 594 break;
kvn@508 595 }
kvn@508 596 for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
kvn@508 597 k < kmax && can_eliminate; k++) {
kvn@508 598 Node* n = use->fast_out(k);
kvn@508 599 if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
kvn@508 600 DEBUG_ONLY(disq_node = n;)
kvn@688 601 if (n->is_Load() || n->is_LoadStore()) {
kvn@508 602 NOT_PRODUCT(fail_eliminate = "Field load";)
kvn@508 603 } else {
kvn@508 604 NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
kvn@508 605 }
kvn@508 606 can_eliminate = false;
kvn@508 607 }
kvn@508 608 }
kvn@508 609 } else if (use->is_SafePoint()) {
kvn@508 610 SafePointNode* sfpt = use->as_SafePoint();
kvn@603 611 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
kvn@508 612 // Object is passed as argument.
kvn@508 613 DEBUG_ONLY(disq_node = use;)
kvn@508 614 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
kvn@508 615 can_eliminate = false;
kvn@508 616 }
kvn@508 617 Node* sfptMem = sfpt->memory();
kvn@508 618 if (sfptMem == NULL || sfptMem->is_top()) {
kvn@508 619 DEBUG_ONLY(disq_node = use;)
kvn@508 620 NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
kvn@508 621 can_eliminate = false;
kvn@508 622 } else {
kvn@508 623 safepoints.append_if_missing(sfpt);
kvn@508 624 }
kvn@508 625 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
kvn@508 626 if (use->is_Phi()) {
kvn@508 627 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
kvn@508 628 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 629 } else {
kvn@508 630 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
kvn@508 631 }
kvn@508 632 DEBUG_ONLY(disq_node = use;)
kvn@508 633 } else {
kvn@508 634 if (use->Opcode() == Op_Return) {
kvn@508 635 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 636 }else {
kvn@508 637 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
kvn@508 638 }
kvn@508 639 DEBUG_ONLY(disq_node = use;)
kvn@508 640 }
kvn@508 641 can_eliminate = false;
kvn@508 642 }
kvn@508 643 }
kvn@508 644 }
kvn@508 645
kvn@508 646 #ifndef PRODUCT
kvn@508 647 if (PrintEliminateAllocations) {
kvn@508 648 if (can_eliminate) {
kvn@508 649 tty->print("Scalar ");
kvn@508 650 if (res == NULL)
kvn@508 651 alloc->dump();
kvn@508 652 else
kvn@508 653 res->dump();
kvn@508 654 } else {
kvn@508 655 tty->print("NotScalar (%s)", fail_eliminate);
kvn@508 656 if (res == NULL)
kvn@508 657 alloc->dump();
kvn@508 658 else
kvn@508 659 res->dump();
kvn@508 660 #ifdef ASSERT
kvn@508 661 if (disq_node != NULL) {
kvn@508 662 tty->print(" >>>> ");
kvn@508 663 disq_node->dump();
kvn@508 664 }
kvn@508 665 #endif /*ASSERT*/
kvn@508 666 }
kvn@508 667 }
kvn@508 668 #endif
kvn@508 669 return can_eliminate;
kvn@508 670 }
kvn@508 671
kvn@508 672 // Do scalar replacement.
kvn@508 673 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 674 GrowableArray <SafePointNode *> safepoints_done;
kvn@508 675
kvn@508 676 ciKlass* klass = NULL;
kvn@508 677 ciInstanceKlass* iklass = NULL;
kvn@508 678 int nfields = 0;
kvn@508 679 int array_base;
kvn@508 680 int element_size;
kvn@508 681 BasicType basic_elem_type;
kvn@508 682 ciType* elem_type;
kvn@508 683
kvn@508 684 Node* res = alloc->result_cast();
kvn@508 685 const TypeOopPtr* res_type = NULL;
kvn@508 686 if (res != NULL) { // Could be NULL when there are no users
kvn@508 687 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 688 }
kvn@508 689
kvn@508 690 if (res != NULL) {
kvn@508 691 klass = res_type->klass();
kvn@508 692 if (res_type->isa_instptr()) {
kvn@508 693 // find the fields of the class which will be needed for safepoint debug information
kvn@508 694 assert(klass->is_instance_klass(), "must be an instance klass.");
kvn@508 695 iklass = klass->as_instance_klass();
kvn@508 696 nfields = iklass->nof_nonstatic_fields();
kvn@508 697 } else {
kvn@508 698 // find the array's elements which will be needed for safepoint debug information
kvn@508 699 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 700 assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
kvn@508 701 elem_type = klass->as_array_klass()->element_type();
kvn@508 702 basic_elem_type = elem_type->basic_type();
kvn@508 703 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@508 704 element_size = type2aelembytes(basic_elem_type);
kvn@508 705 }
kvn@508 706 }
kvn@508 707 //
kvn@508 708 // Process the safepoint uses
kvn@508 709 //
kvn@508 710 while (safepoints.length() > 0) {
kvn@508 711 SafePointNode* sfpt = safepoints.pop();
kvn@508 712 Node* mem = sfpt->memory();
kvn@508 713 uint first_ind = sfpt->req();
kvn@508 714 SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
kvn@508 715 #ifdef ASSERT
kvn@508 716 alloc,
kvn@508 717 #endif
kvn@508 718 first_ind, nfields);
kvn@508 719 sobj->init_req(0, sfpt->in(TypeFunc::Control));
kvn@508 720 transform_later(sobj);
kvn@508 721
kvn@508 722 // Scan object's fields adding an input to the safepoint for each field.
kvn@508 723 for (int j = 0; j < nfields; j++) {
kvn@741 724 intptr_t offset;
kvn@508 725 ciField* field = NULL;
kvn@508 726 if (iklass != NULL) {
kvn@508 727 field = iklass->nonstatic_field_at(j);
kvn@508 728 offset = field->offset();
kvn@508 729 elem_type = field->type();
kvn@508 730 basic_elem_type = field->layout_type();
kvn@508 731 } else {
kvn@741 732 offset = array_base + j * (intptr_t)element_size;
kvn@508 733 }
kvn@508 734
kvn@508 735 const Type *field_type;
kvn@508 736 // The next code is taken from Parse::do_get_xxx().
kvn@559 737 if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
kvn@508 738 if (!elem_type->is_loaded()) {
kvn@508 739 field_type = TypeInstPtr::BOTTOM;
kvn@2037 740 } else if (field != NULL && field->is_constant() && field->is_static()) {
kvn@508 741 // This can happen if the constant oop is non-perm.
kvn@508 742 ciObject* con = field->constant_value().as_object();
kvn@508 743 // Do not "join" in the previous type; it doesn't add value,
kvn@508 744 // and may yield a vacuous result if the field is of interface type.
kvn@508 745 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
kvn@508 746 assert(field_type != NULL, "field singleton type must be consistent");
kvn@508 747 } else {
kvn@508 748 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
kvn@508 749 }
kvn@559 750 if (UseCompressedOops) {
kvn@656 751 field_type = field_type->make_narrowoop();
kvn@559 752 basic_elem_type = T_NARROWOOP;
kvn@559 753 }
kvn@508 754 } else {
kvn@508 755 field_type = Type::get_const_basic_type(basic_elem_type);
kvn@508 756 }
kvn@508 757
kvn@508 758 const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
kvn@508 759
kvn@508 760 Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
kvn@508 761 if (field_val == NULL) {
kvn@508 762 // we weren't able to find a value for this field,
kvn@508 763 // give up on eliminating this allocation
kvn@508 764 alloc->_is_scalar_replaceable = false; // don't try again
kvn@508 765 // remove any extra entries we added to the safepoint
kvn@508 766 uint last = sfpt->req() - 1;
kvn@508 767 for (int k = 0; k < j; k++) {
kvn@508 768 sfpt->del_req(last--);
kvn@508 769 }
kvn@508 770 // rollback processed safepoints
kvn@508 771 while (safepoints_done.length() > 0) {
kvn@508 772 SafePointNode* sfpt_done = safepoints_done.pop();
kvn@508 773 // remove any extra entries we added to the safepoint
kvn@508 774 last = sfpt_done->req() - 1;
kvn@508 775 for (int k = 0; k < nfields; k++) {
kvn@508 776 sfpt_done->del_req(last--);
kvn@508 777 }
kvn@508 778 JVMState *jvms = sfpt_done->jvms();
kvn@508 779 jvms->set_endoff(sfpt_done->req());
kvn@508 780 // Now make a pass over the debug information replacing any references
kvn@508 781 // to SafePointScalarObjectNode with the allocated object.
kvn@508 782 int start = jvms->debug_start();
kvn@508 783 int end = jvms->debug_end();
kvn@508 784 for (int i = start; i < end; i++) {
kvn@508 785 if (sfpt_done->in(i)->is_SafePointScalarObject()) {
kvn@508 786 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
kvn@508 787 if (scobj->first_index() == sfpt_done->req() &&
kvn@508 788 scobj->n_fields() == (uint)nfields) {
kvn@508 789 assert(scobj->alloc() == alloc, "sanity");
kvn@508 790 sfpt_done->set_req(i, res);
kvn@508 791 }
kvn@508 792 }
kvn@508 793 }
kvn@508 794 }
kvn@508 795 #ifndef PRODUCT
kvn@508 796 if (PrintEliminateAllocations) {
kvn@508 797 if (field != NULL) {
kvn@508 798 tty->print("=== At SafePoint node %d can't find value of Field: ",
kvn@508 799 sfpt->_idx);
kvn@508 800 field->print();
kvn@508 801 int field_idx = C->get_alias_index(field_addr_type);
kvn@508 802 tty->print(" (alias_idx=%d)", field_idx);
kvn@508 803 } else { // Array's element
kvn@508 804 tty->print("=== At SafePoint node %d can't find value of array element [%d]",
kvn@508 805 sfpt->_idx, j);
kvn@508 806 }
kvn@508 807 tty->print(", which prevents elimination of: ");
kvn@508 808 if (res == NULL)
kvn@508 809 alloc->dump();
kvn@508 810 else
kvn@508 811 res->dump();
kvn@508 812 }
kvn@508 813 #endif
kvn@508 814 return false;
kvn@508 815 }
kvn@559 816 if (UseCompressedOops && field_type->isa_narrowoop()) {
kvn@559 817 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
kvn@559 818 // to be able scalar replace the allocation.
kvn@656 819 if (field_val->is_EncodeP()) {
kvn@656 820 field_val = field_val->in(1);
kvn@656 821 } else {
kvn@656 822 field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
kvn@656 823 }
kvn@559 824 }
kvn@508 825 sfpt->add_req(field_val);
kvn@508 826 }
kvn@508 827 JVMState *jvms = sfpt->jvms();
kvn@508 828 jvms->set_endoff(sfpt->req());
kvn@508 829 // Now make a pass over the debug information replacing any references
kvn@508 830 // to the allocated object with "sobj"
kvn@508 831 int start = jvms->debug_start();
kvn@508 832 int end = jvms->debug_end();
kvn@508 833 for (int i = start; i < end; i++) {
kvn@508 834 if (sfpt->in(i) == res) {
kvn@508 835 sfpt->set_req(i, sobj);
kvn@508 836 }
kvn@508 837 }
kvn@508 838 safepoints_done.append_if_missing(sfpt); // keep it for rollback
kvn@508 839 }
kvn@508 840 return true;
kvn@508 841 }
kvn@508 842
kvn@508 843 // Process users of eliminated allocation.
kvn@508 844 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
kvn@508 845 Node* res = alloc->result_cast();
kvn@508 846 if (res != NULL) {
kvn@508 847 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
kvn@508 848 Node *use = res->last_out(j);
kvn@508 849 uint oc1 = res->outcnt();
kvn@508 850
kvn@508 851 if (use->is_AddP()) {
kvn@508 852 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
kvn@508 853 Node *n = use->last_out(k);
kvn@508 854 uint oc2 = use->outcnt();
kvn@508 855 if (n->is_Store()) {
kvn@1535 856 #ifdef ASSERT
kvn@1535 857 // Verify that there is no dependent MemBarVolatile nodes,
kvn@1535 858 // they should be removed during IGVN, see MemBarNode::Ideal().
kvn@1535 859 for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
kvn@1535 860 p < pmax; p++) {
kvn@1535 861 Node* mb = n->fast_out(p);
kvn@1535 862 assert(mb->is_Initialize() || !mb->is_MemBar() ||
kvn@1535 863 mb->req() <= MemBarNode::Precedent ||
kvn@1535 864 mb->in(MemBarNode::Precedent) != n,
kvn@1535 865 "MemBarVolatile should be eliminated for non-escaping object");
kvn@1535 866 }
kvn@1535 867 #endif
kvn@508 868 _igvn.replace_node(n, n->in(MemNode::Memory));
kvn@508 869 } else {
kvn@508 870 eliminate_card_mark(n);
kvn@508 871 }
kvn@508 872 k -= (oc2 - use->outcnt());
kvn@508 873 }
kvn@508 874 } else {
kvn@508 875 eliminate_card_mark(use);
kvn@508 876 }
kvn@508 877 j -= (oc1 - res->outcnt());
kvn@508 878 }
kvn@508 879 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
kvn@508 880 _igvn.remove_dead_node(res);
kvn@508 881 }
kvn@508 882
kvn@508 883 //
kvn@508 884 // Process other users of allocation's projections
kvn@508 885 //
kvn@508 886 if (_resproj != NULL && _resproj->outcnt() != 0) {
kvn@508 887 for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
kvn@508 888 Node *use = _resproj->last_out(j);
kvn@508 889 uint oc1 = _resproj->outcnt();
kvn@508 890 if (use->is_Initialize()) {
kvn@508 891 // Eliminate Initialize node.
kvn@508 892 InitializeNode *init = use->as_Initialize();
kvn@508 893 assert(init->outcnt() <= 2, "only a control and memory projection expected");
kvn@508 894 Node *ctrl_proj = init->proj_out(TypeFunc::Control);
kvn@508 895 if (ctrl_proj != NULL) {
kvn@508 896 assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
kvn@508 897 _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
kvn@508 898 }
kvn@508 899 Node *mem_proj = init->proj_out(TypeFunc::Memory);
kvn@508 900 if (mem_proj != NULL) {
kvn@508 901 Node *mem = init->in(TypeFunc::Memory);
kvn@508 902 #ifdef ASSERT
kvn@508 903 if (mem->is_MergeMem()) {
kvn@508 904 assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
kvn@508 905 } else {
kvn@508 906 assert(mem == _memproj_fallthrough, "allocation memory projection");
kvn@508 907 }
kvn@508 908 #endif
kvn@508 909 _igvn.replace_node(mem_proj, mem);
kvn@508 910 }
kvn@508 911 } else if (use->is_AddP()) {
kvn@508 912 // raw memory addresses used only by the initialization
kvn@1143 913 _igvn.replace_node(use, C->top());
kvn@508 914 } else {
kvn@508 915 assert(false, "only Initialize or AddP expected");
kvn@508 916 }
kvn@508 917 j -= (oc1 - _resproj->outcnt());
kvn@508 918 }
kvn@508 919 }
kvn@508 920 if (_fallthroughcatchproj != NULL) {
kvn@508 921 _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
kvn@508 922 }
kvn@508 923 if (_memproj_fallthrough != NULL) {
kvn@508 924 _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
kvn@508 925 }
kvn@508 926 if (_memproj_catchall != NULL) {
kvn@508 927 _igvn.replace_node(_memproj_catchall, C->top());
kvn@508 928 }
kvn@508 929 if (_ioproj_fallthrough != NULL) {
kvn@508 930 _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
kvn@508 931 }
kvn@508 932 if (_ioproj_catchall != NULL) {
kvn@508 933 _igvn.replace_node(_ioproj_catchall, C->top());
kvn@508 934 }
kvn@508 935 if (_catchallcatchproj != NULL) {
kvn@508 936 _igvn.replace_node(_catchallcatchproj, C->top());
kvn@508 937 }
kvn@508 938 }
kvn@508 939
kvn@508 940 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
kvn@508 941
kvn@508 942 if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
kvn@508 943 return false;
kvn@508 944 }
kvn@508 945
kvn@508 946 extract_call_projections(alloc);
kvn@508 947
kvn@508 948 GrowableArray <SafePointNode *> safepoints;
kvn@508 949 if (!can_eliminate_allocation(alloc, safepoints)) {
kvn@508 950 return false;
kvn@508 951 }
kvn@508 952
kvn@508 953 if (!scalar_replacement(alloc, safepoints)) {
kvn@508 954 return false;
kvn@508 955 }
kvn@508 956
never@1515 957 CompileLog* log = C->log();
never@1515 958 if (log != NULL) {
never@1515 959 Node* klass = alloc->in(AllocateNode::KlassNode);
never@1515 960 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
never@1515 961 log->head("eliminate_allocation type='%d'",
never@1515 962 log->identify(tklass->klass()));
never@1515 963 JVMState* p = alloc->jvms();
never@1515 964 while (p != NULL) {
never@1515 965 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 966 p = p->caller();
never@1515 967 }
never@1515 968 log->tail("eliminate_allocation");
never@1515 969 }
never@1515 970
kvn@508 971 process_users_of_allocation(alloc);
kvn@508 972
kvn@508 973 #ifndef PRODUCT
never@1515 974 if (PrintEliminateAllocations) {
never@1515 975 if (alloc->is_AllocateArray())
never@1515 976 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
never@1515 977 else
never@1515 978 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
never@1515 979 }
kvn@508 980 #endif
kvn@508 981
kvn@508 982 return true;
kvn@508 983 }
kvn@508 984
duke@435 985
duke@435 986 //---------------------------set_eden_pointers-------------------------
duke@435 987 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
duke@435 988 if (UseTLAB) { // Private allocation: load from TLS
duke@435 989 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
duke@435 990 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
duke@435 991 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
duke@435 992 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
duke@435 993 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
duke@435 994 } else { // Shared allocation: load from globals
duke@435 995 CollectedHeap* ch = Universe::heap();
duke@435 996 address top_adr = (address)ch->top_addr();
duke@435 997 address end_adr = (address)ch->end_addr();
duke@435 998 eden_top_adr = makecon(TypeRawPtr::make(top_adr));
duke@435 999 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
duke@435 1000 }
duke@435 1001 }
duke@435 1002
duke@435 1003
duke@435 1004 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
duke@435 1005 Node* adr = basic_plus_adr(base, offset);
kvn@855 1006 const TypePtr* adr_type = adr->bottom_type()->is_ptr();
coleenp@548 1007 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
duke@435 1008 transform_later(value);
duke@435 1009 return value;
duke@435 1010 }
duke@435 1011
duke@435 1012
duke@435 1013 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
duke@435 1014 Node* adr = basic_plus_adr(base, offset);
coleenp@548 1015 mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
duke@435 1016 transform_later(mem);
duke@435 1017 return mem;
duke@435 1018 }
duke@435 1019
duke@435 1020 //=============================================================================
duke@435 1021 //
duke@435 1022 // A L L O C A T I O N
duke@435 1023 //
duke@435 1024 // Allocation attempts to be fast in the case of frequent small objects.
duke@435 1025 // It breaks down like this:
duke@435 1026 //
duke@435 1027 // 1) Size in doublewords is computed. This is a constant for objects and
duke@435 1028 // variable for most arrays. Doubleword units are used to avoid size
duke@435 1029 // overflow of huge doubleword arrays. We need doublewords in the end for
duke@435 1030 // rounding.
duke@435 1031 //
duke@435 1032 // 2) Size is checked for being 'too large'. Too-large allocations will go
duke@435 1033 // the slow path into the VM. The slow path can throw any required
duke@435 1034 // exceptions, and does all the special checks for very large arrays. The
duke@435 1035 // size test can constant-fold away for objects. For objects with
duke@435 1036 // finalizers it constant-folds the otherway: you always go slow with
duke@435 1037 // finalizers.
duke@435 1038 //
duke@435 1039 // 3) If NOT using TLABs, this is the contended loop-back point.
duke@435 1040 // Load-Locked the heap top. If using TLABs normal-load the heap top.
duke@435 1041 //
duke@435 1042 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route.
duke@435 1043 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish
duke@435 1044 // "size*8" we always enter the VM, where "largish" is a constant picked small
duke@435 1045 // enough that there's always space between the eden max and 4Gig (old space is
duke@435 1046 // there so it's quite large) and large enough that the cost of entering the VM
duke@435 1047 // is dwarfed by the cost to initialize the space.
duke@435 1048 //
duke@435 1049 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
duke@435 1050 // down. If contended, repeat at step 3. If using TLABs normal-store
duke@435 1051 // adjusted heap top back down; there is no contention.
duke@435 1052 //
duke@435 1053 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark
duke@435 1054 // fields.
duke@435 1055 //
duke@435 1056 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
duke@435 1057 // oop flavor.
duke@435 1058 //
duke@435 1059 //=============================================================================
duke@435 1060 // FastAllocateSizeLimit value is in DOUBLEWORDS.
duke@435 1061 // Allocations bigger than this always go the slow route.
duke@435 1062 // This value must be small enough that allocation attempts that need to
duke@435 1063 // trigger exceptions go the slow route. Also, it must be small enough so
duke@435 1064 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
duke@435 1065 //=============================================================================j//
duke@435 1066 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
duke@435 1067 // The allocator will coalesce int->oop copies away. See comment in
duke@435 1068 // coalesce.cpp about how this works. It depends critically on the exact
duke@435 1069 // code shape produced here, so if you are changing this code shape
duke@435 1070 // make sure the GC info for the heap-top is correct in and around the
duke@435 1071 // slow-path call.
duke@435 1072 //
duke@435 1073
duke@435 1074 void PhaseMacroExpand::expand_allocate_common(
duke@435 1075 AllocateNode* alloc, // allocation node to be expanded
duke@435 1076 Node* length, // array length for an array allocation
duke@435 1077 const TypeFunc* slow_call_type, // Type of slow call
duke@435 1078 address slow_call_address // Address of slow call
duke@435 1079 )
duke@435 1080 {
duke@435 1081
duke@435 1082 Node* ctrl = alloc->in(TypeFunc::Control);
duke@435 1083 Node* mem = alloc->in(TypeFunc::Memory);
duke@435 1084 Node* i_o = alloc->in(TypeFunc::I_O);
duke@435 1085 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize);
duke@435 1086 Node* klass_node = alloc->in(AllocateNode::KlassNode);
duke@435 1087 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
duke@435 1088
duke@435 1089 assert(ctrl != NULL, "must have control");
duke@435 1090 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
duke@435 1091 // they will not be used if "always_slow" is set
duke@435 1092 enum { slow_result_path = 1, fast_result_path = 2 };
duke@435 1093 Node *result_region;
duke@435 1094 Node *result_phi_rawmem;
duke@435 1095 Node *result_phi_rawoop;
duke@435 1096 Node *result_phi_i_o;
duke@435 1097
duke@435 1098 // The initial slow comparison is a size check, the comparison
duke@435 1099 // we want to do is a BoolTest::gt
duke@435 1100 bool always_slow = false;
duke@435 1101 int tv = _igvn.find_int_con(initial_slow_test, -1);
duke@435 1102 if (tv >= 0) {
duke@435 1103 always_slow = (tv == 1);
duke@435 1104 initial_slow_test = NULL;
duke@435 1105 } else {
duke@435 1106 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
duke@435 1107 }
duke@435 1108
kvn@1215 1109 if (C->env()->dtrace_alloc_probes() ||
ysr@777 1110 !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
ysr@777 1111 (UseConcMarkSweepGC && CMSIncrementalMode))) {
duke@435 1112 // Force slow-path allocation
duke@435 1113 always_slow = true;
duke@435 1114 initial_slow_test = NULL;
duke@435 1115 }
duke@435 1116
ysr@777 1117
duke@435 1118 enum { too_big_or_final_path = 1, need_gc_path = 2 };
duke@435 1119 Node *slow_region = NULL;
duke@435 1120 Node *toobig_false = ctrl;
duke@435 1121
duke@435 1122 assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
duke@435 1123 // generate the initial test if necessary
duke@435 1124 if (initial_slow_test != NULL ) {
duke@435 1125 slow_region = new (C, 3) RegionNode(3);
duke@435 1126
duke@435 1127 // Now make the initial failure test. Usually a too-big test but
duke@435 1128 // might be a TRUE for finalizers or a fancy class check for
duke@435 1129 // newInstance0.
duke@435 1130 IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
duke@435 1131 transform_later(toobig_iff);
duke@435 1132 // Plug the failing-too-big test into the slow-path region
duke@435 1133 Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
duke@435 1134 transform_later(toobig_true);
duke@435 1135 slow_region ->init_req( too_big_or_final_path, toobig_true );
duke@435 1136 toobig_false = new (C, 1) IfFalseNode( toobig_iff );
duke@435 1137 transform_later(toobig_false);
duke@435 1138 } else { // No initial test, just fall into next case
duke@435 1139 toobig_false = ctrl;
duke@435 1140 debug_only(slow_region = NodeSentinel);
duke@435 1141 }
duke@435 1142
duke@435 1143 Node *slow_mem = mem; // save the current memory state for slow path
duke@435 1144 // generate the fast allocation code unless we know that the initial test will always go slow
duke@435 1145 if (!always_slow) {
kvn@1000 1146 // Fast path modifies only raw memory.
kvn@1000 1147 if (mem->is_MergeMem()) {
kvn@1000 1148 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
kvn@1000 1149 }
kvn@1000 1150
ysr@777 1151 Node* eden_top_adr;
ysr@777 1152 Node* eden_end_adr;
ysr@777 1153
ysr@777 1154 set_eden_pointers(eden_top_adr, eden_end_adr);
ysr@777 1155
ysr@777 1156 // Load Eden::end. Loop invariant and hoisted.
ysr@777 1157 //
ysr@777 1158 // Note: We set the control input on "eden_end" and "old_eden_top" when using
ysr@777 1159 // a TLAB to work around a bug where these values were being moved across
ysr@777 1160 // a safepoint. These are not oops, so they cannot be include in the oop
phh@2423 1161 // map, but they can be changed by a GC. The proper way to fix this would
ysr@777 1162 // be to set the raw memory state when generating a SafepointNode. However
ysr@777 1163 // this will require extensive changes to the loop optimization in order to
ysr@777 1164 // prevent a degradation of the optimization.
ysr@777 1165 // See comment in memnode.hpp, around line 227 in class LoadPNode.
ysr@777 1166 Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
ysr@777 1167
duke@435 1168 // allocate the Region and Phi nodes for the result
duke@435 1169 result_region = new (C, 3) RegionNode(3);
phh@2423 1170 result_phi_rawmem = new (C, 3) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
phh@2423 1171 result_phi_rawoop = new (C, 3) PhiNode(result_region, TypeRawPtr::BOTTOM);
phh@2423 1172 result_phi_i_o = new (C, 3) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
duke@435 1173
duke@435 1174 // We need a Region for the loop-back contended case.
duke@435 1175 enum { fall_in_path = 1, contended_loopback_path = 2 };
duke@435 1176 Node *contended_region;
duke@435 1177 Node *contended_phi_rawmem;
phh@2423 1178 if (UseTLAB) {
duke@435 1179 contended_region = toobig_false;
duke@435 1180 contended_phi_rawmem = mem;
duke@435 1181 } else {
duke@435 1182 contended_region = new (C, 3) RegionNode(3);
phh@2423 1183 contended_phi_rawmem = new (C, 3) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 1184 // Now handle the passing-too-big test. We fall into the contended
duke@435 1185 // loop-back merge point.
phh@2423 1186 contended_region ->init_req(fall_in_path, toobig_false);
phh@2423 1187 contended_phi_rawmem->init_req(fall_in_path, mem);
duke@435 1188 transform_later(contended_region);
duke@435 1189 transform_later(contended_phi_rawmem);
duke@435 1190 }
duke@435 1191
duke@435 1192 // Load(-locked) the heap top.
duke@435 1193 // See note above concerning the control input when using a TLAB
duke@435 1194 Node *old_eden_top = UseTLAB
phh@2423 1195 ? new (C, 3) LoadPNode (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
phh@2423 1196 : new (C, 3) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
duke@435 1197
duke@435 1198 transform_later(old_eden_top);
duke@435 1199 // Add to heap top to get a new heap top
phh@2423 1200 Node *new_eden_top = new (C, 4) AddPNode(top(), old_eden_top, size_in_bytes);
duke@435 1201 transform_later(new_eden_top);
duke@435 1202 // Check for needing a GC; compare against heap end
phh@2423 1203 Node *needgc_cmp = new (C, 3) CmpPNode(new_eden_top, eden_end);
duke@435 1204 transform_later(needgc_cmp);
phh@2423 1205 Node *needgc_bol = new (C, 2) BoolNode(needgc_cmp, BoolTest::ge);
duke@435 1206 transform_later(needgc_bol);
phh@2423 1207 IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
duke@435 1208 transform_later(needgc_iff);
duke@435 1209
duke@435 1210 // Plug the failing-heap-space-need-gc test into the slow-path region
phh@2423 1211 Node *needgc_true = new (C, 1) IfTrueNode(needgc_iff);
duke@435 1212 transform_later(needgc_true);
phh@2423 1213 if (initial_slow_test) {
phh@2423 1214 slow_region->init_req(need_gc_path, needgc_true);
duke@435 1215 // This completes all paths into the slow merge point
duke@435 1216 transform_later(slow_region);
duke@435 1217 } else { // No initial slow path needed!
duke@435 1218 // Just fall from the need-GC path straight into the VM call.
phh@2423 1219 slow_region = needgc_true;
duke@435 1220 }
duke@435 1221 // No need for a GC. Setup for the Store-Conditional
phh@2423 1222 Node *needgc_false = new (C, 1) IfFalseNode(needgc_iff);
duke@435 1223 transform_later(needgc_false);
duke@435 1224
duke@435 1225 // Grab regular I/O before optional prefetch may change it.
duke@435 1226 // Slow-path does no I/O so just set it to the original I/O.
phh@2423 1227 result_phi_i_o->init_req(slow_result_path, i_o);
duke@435 1228
duke@435 1229 i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
duke@435 1230 old_eden_top, new_eden_top, length);
duke@435 1231
phh@2423 1232 // Name successful fast-path variables
phh@2423 1233 Node* fast_oop = old_eden_top;
phh@2423 1234 Node* fast_oop_ctrl;
phh@2423 1235 Node* fast_oop_rawmem;
phh@2423 1236
duke@435 1237 // Store (-conditional) the modified eden top back down.
duke@435 1238 // StorePConditional produces flags for a test PLUS a modified raw
duke@435 1239 // memory state.
phh@2423 1240 if (UseTLAB) {
phh@2423 1241 Node* store_eden_top =
phh@2423 1242 new (C, 4) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
phh@2423 1243 TypeRawPtr::BOTTOM, new_eden_top);
duke@435 1244 transform_later(store_eden_top);
duke@435 1245 fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
phh@2423 1246 fast_oop_rawmem = store_eden_top;
duke@435 1247 } else {
phh@2423 1248 Node* store_eden_top =
phh@2423 1249 new (C, 5) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
phh@2423 1250 new_eden_top, fast_oop/*old_eden_top*/);
duke@435 1251 transform_later(store_eden_top);
phh@2423 1252 Node *contention_check = new (C, 2) BoolNode(store_eden_top, BoolTest::ne);
duke@435 1253 transform_later(contention_check);
duke@435 1254 store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
duke@435 1255 transform_later(store_eden_top);
duke@435 1256
duke@435 1257 // If not using TLABs, check to see if there was contention.
phh@2423 1258 IfNode *contention_iff = new (C, 2) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
duke@435 1259 transform_later(contention_iff);
phh@2423 1260 Node *contention_true = new (C, 1) IfTrueNode(contention_iff);
duke@435 1261 transform_later(contention_true);
duke@435 1262 // If contention, loopback and try again.
phh@2423 1263 contended_region->init_req(contended_loopback_path, contention_true);
phh@2423 1264 contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
duke@435 1265
duke@435 1266 // Fast-path succeeded with no contention!
phh@2423 1267 Node *contention_false = new (C, 1) IfFalseNode(contention_iff);
duke@435 1268 transform_later(contention_false);
duke@435 1269 fast_oop_ctrl = contention_false;
phh@2423 1270
phh@2423 1271 // Bump total allocated bytes for this thread
phh@2423 1272 Node* thread = new (C, 1) ThreadLocalNode();
phh@2423 1273 transform_later(thread);
phh@2423 1274 Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
phh@2423 1275 in_bytes(JavaThread::allocated_bytes_offset()));
phh@2423 1276 Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
phh@2423 1277 0, TypeLong::LONG, T_LONG);
phh@2423 1278 #ifdef _LP64
phh@2423 1279 Node* alloc_size = size_in_bytes;
phh@2423 1280 #else
phh@2423 1281 Node* alloc_size = new (C, 2) ConvI2LNode(size_in_bytes);
phh@2423 1282 transform_later(alloc_size);
phh@2423 1283 #endif
phh@2423 1284 Node* new_alloc_bytes = new (C, 3) AddLNode(alloc_bytes, alloc_size);
phh@2423 1285 transform_later(new_alloc_bytes);
phh@2423 1286 fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
phh@2423 1287 0, new_alloc_bytes, T_LONG);
duke@435 1288 }
duke@435 1289
duke@435 1290 fast_oop_rawmem = initialize_object(alloc,
duke@435 1291 fast_oop_ctrl, fast_oop_rawmem, fast_oop,
duke@435 1292 klass_node, length, size_in_bytes);
duke@435 1293
kvn@1215 1294 if (C->env()->dtrace_extended_probes()) {
duke@435 1295 // Slow-path call
duke@435 1296 int size = TypeFunc::Parms + 2;
duke@435 1297 CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
duke@435 1298 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
duke@435 1299 "dtrace_object_alloc",
duke@435 1300 TypeRawPtr::BOTTOM);
duke@435 1301
duke@435 1302 // Get base of thread-local storage area
duke@435 1303 Node* thread = new (C, 1) ThreadLocalNode();
duke@435 1304 transform_later(thread);
duke@435 1305
duke@435 1306 call->init_req(TypeFunc::Parms+0, thread);
duke@435 1307 call->init_req(TypeFunc::Parms+1, fast_oop);
phh@2423 1308 call->init_req(TypeFunc::Control, fast_oop_ctrl);
phh@2423 1309 call->init_req(TypeFunc::I_O , top()); // does no i/o
phh@2423 1310 call->init_req(TypeFunc::Memory , fast_oop_rawmem);
phh@2423 1311 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
phh@2423 1312 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
duke@435 1313 transform_later(call);
duke@435 1314 fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
duke@435 1315 transform_later(fast_oop_ctrl);
duke@435 1316 fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
duke@435 1317 transform_later(fast_oop_rawmem);
duke@435 1318 }
duke@435 1319
duke@435 1320 // Plug in the successful fast-path into the result merge point
phh@2423 1321 result_region ->init_req(fast_result_path, fast_oop_ctrl);
phh@2423 1322 result_phi_rawoop->init_req(fast_result_path, fast_oop);
phh@2423 1323 result_phi_i_o ->init_req(fast_result_path, i_o);
phh@2423 1324 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
duke@435 1325 } else {
duke@435 1326 slow_region = ctrl;
duke@435 1327 }
duke@435 1328
duke@435 1329 // Generate slow-path call
duke@435 1330 CallNode *call = new (C, slow_call_type->domain()->cnt())
duke@435 1331 CallStaticJavaNode(slow_call_type, slow_call_address,
duke@435 1332 OptoRuntime::stub_name(slow_call_address),
duke@435 1333 alloc->jvms()->bci(),
duke@435 1334 TypePtr::BOTTOM);
duke@435 1335 call->init_req( TypeFunc::Control, slow_region );
duke@435 1336 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1337 call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
duke@435 1338 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1339 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1340
duke@435 1341 call->init_req(TypeFunc::Parms+0, klass_node);
duke@435 1342 if (length != NULL) {
duke@435 1343 call->init_req(TypeFunc::Parms+1, length);
duke@435 1344 }
duke@435 1345
duke@435 1346 // Copy debug information and adjust JVMState information, then replace
duke@435 1347 // allocate node with the call
duke@435 1348 copy_call_debug_info((CallNode *) alloc, call);
duke@435 1349 if (!always_slow) {
duke@435 1350 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
duke@435 1351 }
kvn@1976 1352 _igvn.replace_node(alloc, call);
duke@435 1353 transform_later(call);
duke@435 1354
duke@435 1355 // Identify the output projections from the allocate node and
duke@435 1356 // adjust any references to them.
duke@435 1357 // The control and io projections look like:
duke@435 1358 //
duke@435 1359 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl)
duke@435 1360 // Allocate Catch
duke@435 1361 // ^---Proj(io) <-------+ ^---CatchProj(io)
duke@435 1362 //
duke@435 1363 // We are interested in the CatchProj nodes.
duke@435 1364 //
duke@435 1365 extract_call_projections(call);
duke@435 1366
duke@435 1367 // An allocate node has separate memory projections for the uses on the control and i_o paths
duke@435 1368 // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
duke@435 1369 if (!always_slow && _memproj_fallthrough != NULL) {
duke@435 1370 for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1371 Node *use = _memproj_fallthrough->fast_out(i);
duke@435 1372 _igvn.hash_delete(use);
duke@435 1373 imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
duke@435 1374 _igvn._worklist.push(use);
duke@435 1375 // back up iterator
duke@435 1376 --i;
duke@435 1377 }
duke@435 1378 }
duke@435 1379 // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
duke@435 1380 // we end up with a call that has only 1 memory projection
duke@435 1381 if (_memproj_catchall != NULL ) {
duke@435 1382 if (_memproj_fallthrough == NULL) {
duke@435 1383 _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
duke@435 1384 transform_later(_memproj_fallthrough);
duke@435 1385 }
duke@435 1386 for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1387 Node *use = _memproj_catchall->fast_out(i);
duke@435 1388 _igvn.hash_delete(use);
duke@435 1389 imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
duke@435 1390 _igvn._worklist.push(use);
duke@435 1391 // back up iterator
duke@435 1392 --i;
duke@435 1393 }
duke@435 1394 }
duke@435 1395
duke@435 1396 // An allocate node has separate i_o projections for the uses on the control and i_o paths
duke@435 1397 // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
duke@435 1398 if (_ioproj_fallthrough == NULL) {
duke@435 1399 _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
duke@435 1400 transform_later(_ioproj_fallthrough);
duke@435 1401 } else if (!always_slow) {
duke@435 1402 for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1403 Node *use = _ioproj_fallthrough->fast_out(i);
duke@435 1404
duke@435 1405 _igvn.hash_delete(use);
duke@435 1406 imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
duke@435 1407 _igvn._worklist.push(use);
duke@435 1408 // back up iterator
duke@435 1409 --i;
duke@435 1410 }
duke@435 1411 }
duke@435 1412 // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
duke@435 1413 // we end up with a call that has only 1 control projection
duke@435 1414 if (_ioproj_catchall != NULL ) {
duke@435 1415 for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1416 Node *use = _ioproj_catchall->fast_out(i);
duke@435 1417 _igvn.hash_delete(use);
duke@435 1418 imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
duke@435 1419 _igvn._worklist.push(use);
duke@435 1420 // back up iterator
duke@435 1421 --i;
duke@435 1422 }
duke@435 1423 }
duke@435 1424
duke@435 1425 // if we generated only a slow call, we are done
duke@435 1426 if (always_slow)
duke@435 1427 return;
duke@435 1428
duke@435 1429
duke@435 1430 if (_fallthroughcatchproj != NULL) {
duke@435 1431 ctrl = _fallthroughcatchproj->clone();
duke@435 1432 transform_later(ctrl);
kvn@1143 1433 _igvn.replace_node(_fallthroughcatchproj, result_region);
duke@435 1434 } else {
duke@435 1435 ctrl = top();
duke@435 1436 }
duke@435 1437 Node *slow_result;
duke@435 1438 if (_resproj == NULL) {
duke@435 1439 // no uses of the allocation result
duke@435 1440 slow_result = top();
duke@435 1441 } else {
duke@435 1442 slow_result = _resproj->clone();
duke@435 1443 transform_later(slow_result);
kvn@1143 1444 _igvn.replace_node(_resproj, result_phi_rawoop);
duke@435 1445 }
duke@435 1446
duke@435 1447 // Plug slow-path into result merge point
duke@435 1448 result_region ->init_req( slow_result_path, ctrl );
duke@435 1449 result_phi_rawoop->init_req( slow_result_path, slow_result);
duke@435 1450 result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
duke@435 1451 transform_later(result_region);
duke@435 1452 transform_later(result_phi_rawoop);
duke@435 1453 transform_later(result_phi_rawmem);
duke@435 1454 transform_later(result_phi_i_o);
duke@435 1455 // This completes all paths into the result merge point
duke@435 1456 }
duke@435 1457
duke@435 1458
duke@435 1459 // Helper for PhaseMacroExpand::expand_allocate_common.
duke@435 1460 // Initializes the newly-allocated storage.
duke@435 1461 Node*
duke@435 1462 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
duke@435 1463 Node* control, Node* rawmem, Node* object,
duke@435 1464 Node* klass_node, Node* length,
duke@435 1465 Node* size_in_bytes) {
duke@435 1466 InitializeNode* init = alloc->initialization();
duke@435 1467 // Store the klass & mark bits
duke@435 1468 Node* mark_node = NULL;
duke@435 1469 // For now only enable fast locking for non-array types
duke@435 1470 if (UseBiasedLocking && (length == NULL)) {
kvn@1964 1471 mark_node = make_load(control, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 1472 } else {
duke@435 1473 mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
duke@435 1474 }
duke@435 1475 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
coleenp@548 1476
duke@435 1477 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
duke@435 1478 int header_size = alloc->minimum_header_size(); // conservatively small
duke@435 1479
duke@435 1480 // Array length
duke@435 1481 if (length != NULL) { // Arrays need length field
duke@435 1482 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
duke@435 1483 // conservatively small header size:
coleenp@548 1484 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1485 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
duke@435 1486 if (k->is_array_klass()) // we know the exact header size in most cases:
duke@435 1487 header_size = Klass::layout_helper_header_size(k->layout_helper());
duke@435 1488 }
duke@435 1489
duke@435 1490 // Clear the object body, if necessary.
duke@435 1491 if (init == NULL) {
duke@435 1492 // The init has somehow disappeared; be cautious and clear everything.
duke@435 1493 //
duke@435 1494 // This can happen if a node is allocated but an uncommon trap occurs
duke@435 1495 // immediately. In this case, the Initialize gets associated with the
duke@435 1496 // trap, and may be placed in a different (outer) loop, if the Allocate
duke@435 1497 // is in a loop. If (this is rare) the inner loop gets unrolled, then
duke@435 1498 // there can be two Allocates to one Initialize. The answer in all these
duke@435 1499 // edge cases is safety first. It is always safe to clear immediately
duke@435 1500 // within an Allocate, and then (maybe or maybe not) clear some more later.
duke@435 1501 if (!ZeroTLAB)
duke@435 1502 rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
duke@435 1503 header_size, size_in_bytes,
duke@435 1504 &_igvn);
duke@435 1505 } else {
duke@435 1506 if (!init->is_complete()) {
duke@435 1507 // Try to win by zeroing only what the init does not store.
duke@435 1508 // We can also try to do some peephole optimizations,
duke@435 1509 // such as combining some adjacent subword stores.
duke@435 1510 rawmem = init->complete_stores(control, rawmem, object,
duke@435 1511 header_size, size_in_bytes, &_igvn);
duke@435 1512 }
duke@435 1513 // We have no more use for this link, since the AllocateNode goes away:
duke@435 1514 init->set_req(InitializeNode::RawAddress, top());
duke@435 1515 // (If we keep the link, it just confuses the register allocator,
duke@435 1516 // who thinks he sees a real use of the address by the membar.)
duke@435 1517 }
duke@435 1518
duke@435 1519 return rawmem;
duke@435 1520 }
duke@435 1521
duke@435 1522 // Generate prefetch instructions for next allocations.
duke@435 1523 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
duke@435 1524 Node*& contended_phi_rawmem,
duke@435 1525 Node* old_eden_top, Node* new_eden_top,
duke@435 1526 Node* length) {
kvn@1802 1527 enum { fall_in_path = 1, pf_path = 2 };
duke@435 1528 if( UseTLAB && AllocatePrefetchStyle == 2 ) {
duke@435 1529 // Generate prefetch allocation with watermark check.
duke@435 1530 // As an allocation hits the watermark, we will prefetch starting
duke@435 1531 // at a "distance" away from watermark.
duke@435 1532
duke@435 1533 Node *pf_region = new (C, 3) RegionNode(3);
duke@435 1534 Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
duke@435 1535 TypeRawPtr::BOTTOM );
duke@435 1536 // I/O is used for Prefetch
duke@435 1537 Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
duke@435 1538
duke@435 1539 Node *thread = new (C, 1) ThreadLocalNode();
duke@435 1540 transform_later(thread);
duke@435 1541
duke@435 1542 Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
duke@435 1543 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
duke@435 1544 transform_later(eden_pf_adr);
duke@435 1545
duke@435 1546 Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
duke@435 1547 contended_phi_rawmem, eden_pf_adr,
duke@435 1548 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
duke@435 1549 transform_later(old_pf_wm);
duke@435 1550
duke@435 1551 // check against new_eden_top
duke@435 1552 Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
duke@435 1553 transform_later(need_pf_cmp);
duke@435 1554 Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
duke@435 1555 transform_later(need_pf_bol);
duke@435 1556 IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
duke@435 1557 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1558 transform_later(need_pf_iff);
duke@435 1559
duke@435 1560 // true node, add prefetchdistance
duke@435 1561 Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
duke@435 1562 transform_later(need_pf_true);
duke@435 1563
duke@435 1564 Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
duke@435 1565 transform_later(need_pf_false);
duke@435 1566
duke@435 1567 Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
duke@435 1568 _igvn.MakeConX(AllocatePrefetchDistance) );
duke@435 1569 transform_later(new_pf_wmt );
duke@435 1570 new_pf_wmt->set_req(0, need_pf_true);
duke@435 1571
duke@435 1572 Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
duke@435 1573 contended_phi_rawmem, eden_pf_adr,
duke@435 1574 TypeRawPtr::BOTTOM, new_pf_wmt );
duke@435 1575 transform_later(store_new_wmt);
duke@435 1576
duke@435 1577 // adding prefetches
duke@435 1578 pf_phi_abio->init_req( fall_in_path, i_o );
duke@435 1579
duke@435 1580 Node *prefetch_adr;
duke@435 1581 Node *prefetch;
duke@435 1582 uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
duke@435 1583 uint step_size = AllocatePrefetchStepSize;
duke@435 1584 uint distance = 0;
duke@435 1585
duke@435 1586 for ( uint i = 0; i < lines; i++ ) {
duke@435 1587 prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
duke@435 1588 _igvn.MakeConX(distance) );
duke@435 1589 transform_later(prefetch_adr);
duke@435 1590 prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
duke@435 1591 transform_later(prefetch);
duke@435 1592 distance += step_size;
duke@435 1593 i_o = prefetch;
duke@435 1594 }
duke@435 1595 pf_phi_abio->set_req( pf_path, i_o );
duke@435 1596
duke@435 1597 pf_region->init_req( fall_in_path, need_pf_false );
duke@435 1598 pf_region->init_req( pf_path, need_pf_true );
duke@435 1599
duke@435 1600 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
duke@435 1601 pf_phi_rawmem->init_req( pf_path, store_new_wmt );
duke@435 1602
duke@435 1603 transform_later(pf_region);
duke@435 1604 transform_later(pf_phi_rawmem);
duke@435 1605 transform_later(pf_phi_abio);
duke@435 1606
duke@435 1607 needgc_false = pf_region;
duke@435 1608 contended_phi_rawmem = pf_phi_rawmem;
duke@435 1609 i_o = pf_phi_abio;
kvn@1802 1610 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
kvn@1802 1611 // Insert a prefetch for each allocation only on the fast-path
kvn@1802 1612 Node *pf_region = new (C, 3) RegionNode(3);
kvn@1802 1613 Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
kvn@1802 1614 TypeRawPtr::BOTTOM );
kvn@1802 1615
kvn@1802 1616 // Generate several prefetch instructions only for arrays.
kvn@1802 1617 uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
kvn@1802 1618 uint step_size = AllocatePrefetchStepSize;
kvn@1802 1619 uint distance = AllocatePrefetchDistance;
kvn@1802 1620
kvn@1802 1621 // Next cache address.
kvn@1802 1622 Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
kvn@1802 1623 _igvn.MakeConX(distance));
kvn@1802 1624 transform_later(cache_adr);
kvn@1802 1625 cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
kvn@1802 1626 transform_later(cache_adr);
kvn@1802 1627 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
kvn@1802 1628 cache_adr = new (C, 3) AndXNode(cache_adr, mask);
kvn@1802 1629 transform_later(cache_adr);
kvn@1802 1630 cache_adr = new (C, 2) CastX2PNode(cache_adr);
kvn@1802 1631 transform_later(cache_adr);
kvn@1802 1632
kvn@1802 1633 // Prefetch
kvn@1802 1634 Node *prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, cache_adr );
kvn@1802 1635 prefetch->set_req(0, needgc_false);
kvn@1802 1636 transform_later(prefetch);
kvn@1802 1637 contended_phi_rawmem = prefetch;
kvn@1802 1638 Node *prefetch_adr;
kvn@1802 1639 distance = step_size;
kvn@1802 1640 for ( uint i = 1; i < lines; i++ ) {
kvn@1802 1641 prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
kvn@1802 1642 _igvn.MakeConX(distance) );
kvn@1802 1643 transform_later(prefetch_adr);
kvn@1802 1644 prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, prefetch_adr );
kvn@1802 1645 transform_later(prefetch);
kvn@1802 1646 distance += step_size;
kvn@1802 1647 contended_phi_rawmem = prefetch;
kvn@1802 1648 }
duke@435 1649 } else if( AllocatePrefetchStyle > 0 ) {
duke@435 1650 // Insert a prefetch for each allocation only on the fast-path
duke@435 1651 Node *prefetch_adr;
duke@435 1652 Node *prefetch;
duke@435 1653 // Generate several prefetch instructions only for arrays.
duke@435 1654 uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
duke@435 1655 uint step_size = AllocatePrefetchStepSize;
duke@435 1656 uint distance = AllocatePrefetchDistance;
duke@435 1657 for ( uint i = 0; i < lines; i++ ) {
duke@435 1658 prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
duke@435 1659 _igvn.MakeConX(distance) );
duke@435 1660 transform_later(prefetch_adr);
duke@435 1661 prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
duke@435 1662 // Do not let it float too high, since if eden_top == eden_end,
duke@435 1663 // both might be null.
duke@435 1664 if( i == 0 ) { // Set control for first prefetch, next follows it
duke@435 1665 prefetch->init_req(0, needgc_false);
duke@435 1666 }
duke@435 1667 transform_later(prefetch);
duke@435 1668 distance += step_size;
duke@435 1669 i_o = prefetch;
duke@435 1670 }
duke@435 1671 }
duke@435 1672 return i_o;
duke@435 1673 }
duke@435 1674
duke@435 1675
duke@435 1676 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
duke@435 1677 expand_allocate_common(alloc, NULL,
duke@435 1678 OptoRuntime::new_instance_Type(),
duke@435 1679 OptoRuntime::new_instance_Java());
duke@435 1680 }
duke@435 1681
duke@435 1682 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
duke@435 1683 Node* length = alloc->in(AllocateNode::ALength);
duke@435 1684 expand_allocate_common(alloc, length,
duke@435 1685 OptoRuntime::new_array_Type(),
duke@435 1686 OptoRuntime::new_array_Java());
duke@435 1687 }
duke@435 1688
duke@435 1689
duke@435 1690 // we have determined that this lock/unlock can be eliminated, we simply
duke@435 1691 // eliminate the node without expanding it.
duke@435 1692 //
duke@435 1693 // Note: The membar's associated with the lock/unlock are currently not
duke@435 1694 // eliminated. This should be investigated as a future enhancement.
duke@435 1695 //
kvn@501 1696 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
kvn@501 1697
kvn@501 1698 if (!alock->is_eliminated()) {
kvn@501 1699 return false;
kvn@501 1700 }
kvn@895 1701 if (alock->is_Lock() && !alock->is_coarsened()) {
kvn@895 1702 // Create new "eliminated" BoxLock node and use it
kvn@895 1703 // in monitor debug info for the same object.
kvn@895 1704 BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
kvn@895 1705 Node* obj = alock->obj_node();
kvn@895 1706 if (!oldbox->is_eliminated()) {
kvn@895 1707 BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
kvn@895 1708 newbox->set_eliminated();
kvn@895 1709 transform_later(newbox);
kvn@895 1710 // Replace old box node with new box for all users
kvn@895 1711 // of the same object.
kvn@895 1712 for (uint i = 0; i < oldbox->outcnt();) {
kvn@895 1713
kvn@895 1714 bool next_edge = true;
kvn@895 1715 Node* u = oldbox->raw_out(i);
kvn@895 1716 if (u == alock) {
kvn@895 1717 i++;
kvn@895 1718 continue; // It will be removed below
kvn@895 1719 }
kvn@895 1720 if (u->is_Lock() &&
kvn@895 1721 u->as_Lock()->obj_node() == obj &&
kvn@895 1722 // oldbox could be referenced in debug info also
kvn@895 1723 u->as_Lock()->box_node() == oldbox) {
kvn@895 1724 assert(u->as_Lock()->is_eliminated(), "sanity");
kvn@895 1725 _igvn.hash_delete(u);
kvn@895 1726 u->set_req(TypeFunc::Parms + 1, newbox);
kvn@895 1727 next_edge = false;
kvn@895 1728 #ifdef ASSERT
kvn@895 1729 } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
kvn@895 1730 assert(u->as_Unlock()->is_eliminated(), "sanity");
kvn@895 1731 #endif
kvn@895 1732 }
kvn@895 1733 // Replace old box in monitor debug info.
kvn@895 1734 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
kvn@895 1735 SafePointNode* sfn = u->as_SafePoint();
kvn@895 1736 JVMState* youngest_jvms = sfn->jvms();
kvn@895 1737 int max_depth = youngest_jvms->depth();
kvn@895 1738 for (int depth = 1; depth <= max_depth; depth++) {
kvn@895 1739 JVMState* jvms = youngest_jvms->of_depth(depth);
kvn@895 1740 int num_mon = jvms->nof_monitors();
kvn@895 1741 // Loop over monitors
kvn@895 1742 for (int idx = 0; idx < num_mon; idx++) {
kvn@895 1743 Node* obj_node = sfn->monitor_obj(jvms, idx);
kvn@895 1744 Node* box_node = sfn->monitor_box(jvms, idx);
kvn@895 1745 if (box_node == oldbox && obj_node == obj) {
kvn@895 1746 int j = jvms->monitor_box_offset(idx);
kvn@895 1747 _igvn.hash_delete(u);
kvn@895 1748 u->set_req(j, newbox);
kvn@895 1749 next_edge = false;
kvn@895 1750 }
kvn@895 1751 } // for (int idx = 0;
kvn@895 1752 } // for (int depth = 1;
kvn@895 1753 } // if (u->is_SafePoint()
kvn@895 1754 if (next_edge) i++;
kvn@895 1755 } // for (uint i = 0; i < oldbox->outcnt();)
kvn@895 1756 } // if (!oldbox->is_eliminated())
kvn@895 1757 } // if (alock->is_Lock() && !lock->is_coarsened())
kvn@501 1758
never@1515 1759 CompileLog* log = C->log();
never@1515 1760 if (log != NULL) {
never@1515 1761 log->head("eliminate_lock lock='%d'",
never@1515 1762 alock->is_Lock());
never@1515 1763 JVMState* p = alock->jvms();
never@1515 1764 while (p != NULL) {
never@1515 1765 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 1766 p = p->caller();
never@1515 1767 }
never@1515 1768 log->tail("eliminate_lock");
never@1515 1769 }
never@1515 1770
kvn@501 1771 #ifndef PRODUCT
kvn@501 1772 if (PrintEliminateLocks) {
kvn@501 1773 if (alock->is_Lock()) {
kvn@501 1774 tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
kvn@501 1775 } else {
kvn@501 1776 tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
kvn@501 1777 }
kvn@501 1778 }
kvn@501 1779 #endif
kvn@501 1780
kvn@501 1781 Node* mem = alock->in(TypeFunc::Memory);
kvn@501 1782 Node* ctrl = alock->in(TypeFunc::Control);
kvn@501 1783
kvn@501 1784 extract_call_projections(alock);
kvn@501 1785 // There are 2 projections from the lock. The lock node will
kvn@501 1786 // be deleted when its last use is subsumed below.
kvn@501 1787 assert(alock->outcnt() == 2 &&
kvn@501 1788 _fallthroughproj != NULL &&
kvn@501 1789 _memproj_fallthrough != NULL,
kvn@501 1790 "Unexpected projections from Lock/Unlock");
kvn@501 1791
kvn@501 1792 Node* fallthroughproj = _fallthroughproj;
kvn@501 1793 Node* memproj_fallthrough = _memproj_fallthrough;
duke@435 1794
duke@435 1795 // The memory projection from a lock/unlock is RawMem
duke@435 1796 // The input to a Lock is merged memory, so extract its RawMem input
duke@435 1797 // (unless the MergeMem has been optimized away.)
duke@435 1798 if (alock->is_Lock()) {
kvn@501 1799 // Seach for MemBarAcquire node and delete it also.
kvn@501 1800 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
kvn@501 1801 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
kvn@501 1802 Node* ctrlproj = membar->proj_out(TypeFunc::Control);
kvn@501 1803 Node* memproj = membar->proj_out(TypeFunc::Memory);
kvn@1143 1804 _igvn.replace_node(ctrlproj, fallthroughproj);
kvn@1143 1805 _igvn.replace_node(memproj, memproj_fallthrough);
kvn@895 1806
kvn@895 1807 // Delete FastLock node also if this Lock node is unique user
kvn@895 1808 // (a loop peeling may clone a Lock node).
kvn@895 1809 Node* flock = alock->as_Lock()->fastlock_node();
kvn@895 1810 if (flock->outcnt() == 1) {
kvn@895 1811 assert(flock->unique_out() == alock, "sanity");
kvn@1143 1812 _igvn.replace_node(flock, top());
kvn@895 1813 }
duke@435 1814 }
duke@435 1815
kvn@501 1816 // Seach for MemBarRelease node and delete it also.
kvn@501 1817 if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
kvn@501 1818 ctrl->in(0)->is_MemBar()) {
kvn@501 1819 MemBarNode* membar = ctrl->in(0)->as_MemBar();
kvn@501 1820 assert(membar->Opcode() == Op_MemBarRelease &&
kvn@501 1821 mem->is_Proj() && membar == mem->in(0), "");
kvn@1143 1822 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 1823 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 1824 fallthroughproj = ctrl;
kvn@501 1825 memproj_fallthrough = mem;
kvn@501 1826 ctrl = membar->in(TypeFunc::Control);
kvn@501 1827 mem = membar->in(TypeFunc::Memory);
kvn@501 1828 }
kvn@501 1829
kvn@1143 1830 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 1831 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 1832 return true;
duke@435 1833 }
duke@435 1834
duke@435 1835
duke@435 1836 //------------------------------expand_lock_node----------------------
duke@435 1837 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
duke@435 1838
duke@435 1839 Node* ctrl = lock->in(TypeFunc::Control);
duke@435 1840 Node* mem = lock->in(TypeFunc::Memory);
duke@435 1841 Node* obj = lock->obj_node();
duke@435 1842 Node* box = lock->box_node();
kvn@501 1843 Node* flock = lock->fastlock_node();
duke@435 1844
duke@435 1845 // Make the merge point
kvn@855 1846 Node *region;
kvn@855 1847 Node *mem_phi;
kvn@855 1848 Node *slow_path;
duke@435 1849
kvn@855 1850 if (UseOptoBiasInlining) {
kvn@855 1851 /*
twisti@1040 1852 * See the full description in MacroAssembler::biased_locking_enter().
kvn@855 1853 *
kvn@855 1854 * if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
kvn@855 1855 * // The object is biased.
kvn@855 1856 * proto_node = klass->prototype_header;
kvn@855 1857 * o_node = thread | proto_node;
kvn@855 1858 * x_node = o_node ^ mark_word;
kvn@855 1859 * if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
kvn@855 1860 * // Done.
kvn@855 1861 * } else {
kvn@855 1862 * if( (x_node & biased_lock_mask) != 0 ) {
kvn@855 1863 * // The klass's prototype header is no longer biased.
kvn@855 1864 * cas(&mark_word, mark_word, proto_node)
kvn@855 1865 * goto cas_lock;
kvn@855 1866 * } else {
kvn@855 1867 * // The klass's prototype header is still biased.
kvn@855 1868 * if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
kvn@855 1869 * old = mark_word;
kvn@855 1870 * new = o_node;
kvn@855 1871 * } else {
kvn@855 1872 * // Different thread or anonymous biased.
kvn@855 1873 * old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
kvn@855 1874 * new = thread | old;
kvn@855 1875 * }
kvn@855 1876 * // Try to rebias.
kvn@855 1877 * if( cas(&mark_word, old, new) == 0 ) {
kvn@855 1878 * // Done.
kvn@855 1879 * } else {
kvn@855 1880 * goto slow_path; // Failed.
kvn@855 1881 * }
kvn@855 1882 * }
kvn@855 1883 * }
kvn@855 1884 * } else {
kvn@855 1885 * // The object is not biased.
kvn@855 1886 * cas_lock:
kvn@855 1887 * if( FastLock(obj) == 0 ) {
kvn@855 1888 * // Done.
kvn@855 1889 * } else {
kvn@855 1890 * slow_path:
kvn@855 1891 * OptoRuntime::complete_monitor_locking_Java(obj);
kvn@855 1892 * }
kvn@855 1893 * }
kvn@855 1894 */
kvn@855 1895
kvn@855 1896 region = new (C, 5) RegionNode(5);
kvn@855 1897 // create a Phi for the memory state
kvn@855 1898 mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1899
kvn@855 1900 Node* fast_lock_region = new (C, 3) RegionNode(3);
kvn@855 1901 Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1902
kvn@855 1903 // First, check mark word for the biased lock pattern.
kvn@855 1904 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 1905
kvn@855 1906 // Get fast path - mark word has the biased lock pattern.
kvn@855 1907 ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
kvn@855 1908 markOopDesc::biased_lock_mask_in_place,
kvn@855 1909 markOopDesc::biased_lock_pattern, true);
kvn@855 1910 // fast_lock_region->in(1) is set to slow path.
kvn@855 1911 fast_lock_mem_phi->init_req(1, mem);
kvn@855 1912
kvn@855 1913 // Now check that the lock is biased to the current thread and has
kvn@855 1914 // the same epoch and bias as Klass::_prototype_header.
kvn@855 1915
kvn@855 1916 // Special-case a fresh allocation to avoid building nodes:
kvn@855 1917 Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
kvn@855 1918 if (klass_node == NULL) {
kvn@855 1919 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
kvn@855 1920 klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
kvn@925 1921 #ifdef _LP64
kvn@925 1922 if (UseCompressedOops && klass_node->is_DecodeN()) {
kvn@925 1923 assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
kvn@925 1924 klass_node->in(1)->init_req(0, ctrl);
kvn@925 1925 } else
kvn@925 1926 #endif
kvn@925 1927 klass_node->init_req(0, ctrl);
kvn@855 1928 }
kvn@855 1929 Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
kvn@855 1930
kvn@855 1931 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
kvn@855 1932 Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
kvn@855 1933 Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
kvn@855 1934 Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
kvn@855 1935
kvn@855 1936 // Get slow path - mark word does NOT match the value.
kvn@855 1937 Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node,
kvn@855 1938 (~markOopDesc::age_mask_in_place), 0);
kvn@855 1939 // region->in(3) is set to fast path - the object is biased to the current thread.
kvn@855 1940 mem_phi->init_req(3, mem);
kvn@855 1941
kvn@855 1942
kvn@855 1943 // Mark word does NOT match the value (thread | Klass::_prototype_header).
kvn@855 1944
kvn@855 1945
kvn@855 1946 // First, check biased pattern.
kvn@855 1947 // Get fast path - _prototype_header has the same biased lock pattern.
kvn@855 1948 ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
kvn@855 1949 markOopDesc::biased_lock_mask_in_place, 0, true);
kvn@855 1950
kvn@855 1951 not_biased_ctrl = fast_lock_region->in(2); // Slow path
kvn@855 1952 // fast_lock_region->in(2) - the prototype header is no longer biased
kvn@855 1953 // and we have to revoke the bias on this object.
kvn@855 1954 // We are going to try to reset the mark of this object to the prototype
kvn@855 1955 // value and fall through to the CAS-based locking scheme.
kvn@855 1956 Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@855 1957 Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
kvn@855 1958 proto_node, mark_node);
kvn@855 1959 transform_later(cas);
kvn@855 1960 Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
kvn@855 1961 fast_lock_mem_phi->init_req(2, proj);
kvn@855 1962
kvn@855 1963
kvn@855 1964 // Second, check epoch bits.
kvn@855 1965 Node* rebiased_region = new (C, 3) RegionNode(3);
kvn@855 1966 Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
kvn@855 1967 Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
kvn@855 1968
kvn@855 1969 // Get slow path - mark word does NOT match epoch bits.
kvn@855 1970 Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node,
kvn@855 1971 markOopDesc::epoch_mask_in_place, 0);
kvn@855 1972 // The epoch of the current bias is not valid, attempt to rebias the object
kvn@855 1973 // toward the current thread.
kvn@855 1974 rebiased_region->init_req(2, epoch_ctrl);
kvn@855 1975 old_phi->init_req(2, mark_node);
kvn@855 1976 new_phi->init_req(2, o_node);
kvn@855 1977
kvn@855 1978 // rebiased_region->in(1) is set to fast path.
kvn@855 1979 // The epoch of the current bias is still valid but we know
kvn@855 1980 // nothing about the owner; it might be set or it might be clear.
kvn@855 1981 Node* cmask = MakeConX(markOopDesc::biased_lock_mask_in_place |
kvn@855 1982 markOopDesc::age_mask_in_place |
kvn@855 1983 markOopDesc::epoch_mask_in_place);
kvn@855 1984 Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
kvn@855 1985 cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
kvn@855 1986 Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
kvn@855 1987 old_phi->init_req(1, old);
kvn@855 1988 new_phi->init_req(1, new_mark);
kvn@855 1989
kvn@855 1990 transform_later(rebiased_region);
kvn@855 1991 transform_later(old_phi);
kvn@855 1992 transform_later(new_phi);
kvn@855 1993
kvn@855 1994 // Try to acquire the bias of the object using an atomic operation.
kvn@855 1995 // If this fails we will go in to the runtime to revoke the object's bias.
kvn@855 1996 cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
kvn@855 1997 new_phi, old_phi);
kvn@855 1998 transform_later(cas);
kvn@855 1999 proj = transform_later( new (C, 1) SCMemProjNode(cas));
kvn@855 2000
kvn@855 2001 // Get slow path - Failed to CAS.
kvn@855 2002 not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
kvn@855 2003 mem_phi->init_req(4, proj);
kvn@855 2004 // region->in(4) is set to fast path - the object is rebiased to the current thread.
kvn@855 2005
kvn@855 2006 // Failed to CAS.
kvn@855 2007 slow_path = new (C, 3) RegionNode(3);
kvn@855 2008 Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2009
kvn@855 2010 slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
kvn@855 2011 slow_mem->init_req(1, proj);
kvn@855 2012
kvn@855 2013 // Call CAS-based locking scheme (FastLock node).
kvn@855 2014
kvn@855 2015 transform_later(fast_lock_region);
kvn@855 2016 transform_later(fast_lock_mem_phi);
kvn@855 2017
kvn@855 2018 // Get slow path - FastLock failed to lock the object.
kvn@855 2019 ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
kvn@855 2020 mem_phi->init_req(2, fast_lock_mem_phi);
kvn@855 2021 // region->in(2) is set to fast path - the object is locked to the current thread.
kvn@855 2022
kvn@855 2023 slow_path->init_req(2, ctrl); // Capture slow-control
kvn@855 2024 slow_mem->init_req(2, fast_lock_mem_phi);
kvn@855 2025
kvn@855 2026 transform_later(slow_path);
kvn@855 2027 transform_later(slow_mem);
kvn@855 2028 // Reset lock's memory edge.
kvn@855 2029 lock->set_req(TypeFunc::Memory, slow_mem);
kvn@855 2030
kvn@855 2031 } else {
kvn@855 2032 region = new (C, 3) RegionNode(3);
kvn@855 2033 // create a Phi for the memory state
kvn@855 2034 mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2035
kvn@855 2036 // Optimize test; set region slot 2
kvn@855 2037 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
kvn@855 2038 mem_phi->init_req(2, mem);
kvn@855 2039 }
duke@435 2040
duke@435 2041 // Make slow path call
duke@435 2042 CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
duke@435 2043
duke@435 2044 extract_call_projections(call);
duke@435 2045
duke@435 2046 // Slow path can only throw asynchronous exceptions, which are always
duke@435 2047 // de-opted. So the compiler thinks the slow-call can never throw an
duke@435 2048 // exception. If it DOES throw an exception we would need the debug
duke@435 2049 // info removed first (since if it throws there is no monitor).
duke@435 2050 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2051 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2052
duke@435 2053 // Capture slow path
duke@435 2054 // disconnect fall-through projection from call and create a new one
duke@435 2055 // hook up users of fall-through projection to region
duke@435 2056 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2057 transform_later(slow_ctrl);
duke@435 2058 _igvn.hash_delete(_fallthroughproj);
duke@435 2059 _fallthroughproj->disconnect_inputs(NULL);
duke@435 2060 region->init_req(1, slow_ctrl);
duke@435 2061 // region inputs are now complete
duke@435 2062 transform_later(region);
kvn@1143 2063 _igvn.replace_node(_fallthroughproj, region);
duke@435 2064
kvn@855 2065 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 2066 mem_phi->init_req(1, memproj );
duke@435 2067 transform_later(mem_phi);
kvn@1143 2068 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2069 }
duke@435 2070
duke@435 2071 //------------------------------expand_unlock_node----------------------
duke@435 2072 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
duke@435 2073
kvn@501 2074 Node* ctrl = unlock->in(TypeFunc::Control);
duke@435 2075 Node* mem = unlock->in(TypeFunc::Memory);
duke@435 2076 Node* obj = unlock->obj_node();
duke@435 2077 Node* box = unlock->box_node();
duke@435 2078
duke@435 2079 // No need for a null check on unlock
duke@435 2080
duke@435 2081 // Make the merge point
kvn@855 2082 Node *region;
kvn@855 2083 Node *mem_phi;
kvn@855 2084
kvn@855 2085 if (UseOptoBiasInlining) {
kvn@855 2086 // Check for biased locking unlock case, which is a no-op.
twisti@1040 2087 // See the full description in MacroAssembler::biased_locking_exit().
kvn@855 2088 region = new (C, 4) RegionNode(4);
kvn@855 2089 // create a Phi for the memory state
kvn@855 2090 mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2091 mem_phi->init_req(3, mem);
kvn@855 2092
kvn@855 2093 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 2094 ctrl = opt_bits_test(ctrl, region, 3, mark_node,
kvn@855 2095 markOopDesc::biased_lock_mask_in_place,
kvn@855 2096 markOopDesc::biased_lock_pattern);
kvn@855 2097 } else {
kvn@855 2098 region = new (C, 3) RegionNode(3);
kvn@855 2099 // create a Phi for the memory state
kvn@855 2100 mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2101 }
duke@435 2102
duke@435 2103 FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
duke@435 2104 funlock = transform_later( funlock )->as_FastUnlock();
duke@435 2105 // Optimize test; set region slot 2
kvn@855 2106 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
duke@435 2107
duke@435 2108 CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
duke@435 2109
duke@435 2110 extract_call_projections(call);
duke@435 2111
duke@435 2112 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2113 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2114
duke@435 2115 // No exceptions for unlocking
duke@435 2116 // Capture slow path
duke@435 2117 // disconnect fall-through projection from call and create a new one
duke@435 2118 // hook up users of fall-through projection to region
duke@435 2119 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2120 transform_later(slow_ctrl);
duke@435 2121 _igvn.hash_delete(_fallthroughproj);
duke@435 2122 _fallthroughproj->disconnect_inputs(NULL);
duke@435 2123 region->init_req(1, slow_ctrl);
duke@435 2124 // region inputs are now complete
duke@435 2125 transform_later(region);
kvn@1143 2126 _igvn.replace_node(_fallthroughproj, region);
duke@435 2127
duke@435 2128 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 2129 mem_phi->init_req(1, memproj );
duke@435 2130 mem_phi->init_req(2, mem);
duke@435 2131 transform_later(mem_phi);
kvn@1143 2132 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2133 }
duke@435 2134
duke@435 2135 //------------------------------expand_macro_nodes----------------------
duke@435 2136 // Returns true if a failure occurred.
duke@435 2137 bool PhaseMacroExpand::expand_macro_nodes() {
duke@435 2138 if (C->macro_count() == 0)
duke@435 2139 return false;
kvn@895 2140 // First, attempt to eliminate locks
kvn@508 2141 bool progress = true;
kvn@508 2142 while (progress) {
kvn@508 2143 progress = false;
kvn@508 2144 for (int i = C->macro_count(); i > 0; i--) {
kvn@508 2145 Node * n = C->macro_node(i-1);
kvn@508 2146 bool success = false;
kvn@508 2147 debug_only(int old_macro_count = C->macro_count(););
kvn@895 2148 if (n->is_AbstractLock()) {
kvn@895 2149 success = eliminate_locking_node(n->as_AbstractLock());
kvn@895 2150 } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
kvn@1143 2151 _igvn.replace_node(n, n->in(1));
kvn@895 2152 success = true;
kvn@895 2153 }
kvn@895 2154 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@895 2155 progress = progress || success;
kvn@895 2156 }
kvn@895 2157 }
kvn@895 2158 // Next, attempt to eliminate allocations
kvn@895 2159 progress = true;
kvn@895 2160 while (progress) {
kvn@895 2161 progress = false;
kvn@895 2162 for (int i = C->macro_count(); i > 0; i--) {
kvn@895 2163 Node * n = C->macro_node(i-1);
kvn@895 2164 bool success = false;
kvn@895 2165 debug_only(int old_macro_count = C->macro_count(););
kvn@508 2166 switch (n->class_id()) {
kvn@508 2167 case Node::Class_Allocate:
kvn@508 2168 case Node::Class_AllocateArray:
kvn@508 2169 success = eliminate_allocate_node(n->as_Allocate());
kvn@508 2170 break;
kvn@508 2171 case Node::Class_Lock:
kvn@508 2172 case Node::Class_Unlock:
kvn@895 2173 assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
kvn@508 2174 break;
kvn@508 2175 default:
kvn@895 2176 assert(false, "unknown node type in macro list");
kvn@508 2177 }
kvn@508 2178 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@508 2179 progress = progress || success;
kvn@508 2180 }
kvn@508 2181 }
kvn@508 2182 // Make sure expansion will not cause node limit to be exceeded.
kvn@508 2183 // Worst case is a macro node gets expanded into about 50 nodes.
kvn@508 2184 // Allow 50% more for optimization.
duke@435 2185 if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
duke@435 2186 return true;
kvn@508 2187
duke@435 2188 // expand "macro" nodes
duke@435 2189 // nodes are removed from the macro list as they are processed
duke@435 2190 while (C->macro_count() > 0) {
kvn@508 2191 int macro_count = C->macro_count();
kvn@508 2192 Node * n = C->macro_node(macro_count-1);
duke@435 2193 assert(n->is_macro(), "only macro nodes expected here");
duke@435 2194 if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
duke@435 2195 // node is unreachable, so don't try to expand it
duke@435 2196 C->remove_macro_node(n);
duke@435 2197 continue;
duke@435 2198 }
duke@435 2199 switch (n->class_id()) {
duke@435 2200 case Node::Class_Allocate:
duke@435 2201 expand_allocate(n->as_Allocate());
duke@435 2202 break;
duke@435 2203 case Node::Class_AllocateArray:
duke@435 2204 expand_allocate_array(n->as_AllocateArray());
duke@435 2205 break;
duke@435 2206 case Node::Class_Lock:
duke@435 2207 expand_lock_node(n->as_Lock());
duke@435 2208 break;
duke@435 2209 case Node::Class_Unlock:
duke@435 2210 expand_unlock_node(n->as_Unlock());
duke@435 2211 break;
duke@435 2212 default:
duke@435 2213 assert(false, "unknown node type in macro list");
duke@435 2214 }
kvn@508 2215 assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
duke@435 2216 if (C->failing()) return true;
duke@435 2217 }
coleenp@548 2218
coleenp@548 2219 _igvn.set_delay_transform(false);
duke@435 2220 _igvn.optimize();
duke@435 2221 return false;
duke@435 2222 }

mercurial