src/share/vm/opto/macro.cpp

Mon, 10 Nov 2014 17:14:59 +0100

author
zmajo
date
Mon, 10 Nov 2014 17:14:59 +0100
changeset 7341
e7b3d177adda
parent 7166
f8afcfbdbf1c
child 7419
d3f3f7677537
permissions
-rw-r--r--

8057622: java/util/stream/test/org/openjdk/tests/java/util/stream/InfiniteStreamWithLimitOpTest: SEGV inside compiled code (sparc)
Summary: In Parse::array_store_check(), add control edge FROM IfTrue branch of runtime type check of the destination array TO loading _element_klass from destination array.
Reviewed-by: kvn, roland, anoll
Contributed-by: Zoltan Majo <zoltan.majo@oracle.com>

     1 /*
     2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "libadt/vectset.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/compile.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/locknode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/macro.hpp"
    36 #include "opto/memnode.hpp"
    37 #include "opto/node.hpp"
    38 #include "opto/phaseX.hpp"
    39 #include "opto/rootnode.hpp"
    40 #include "opto/runtime.hpp"
    41 #include "opto/subnode.hpp"
    42 #include "opto/type.hpp"
    43 #include "runtime/sharedRuntime.hpp"
    46 //
    47 // Replace any references to "oldref" in inputs to "use" with "newref".
    48 // Returns the number of replacements made.
    49 //
    50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
    51   int nreplacements = 0;
    52   uint req = use->req();
    53   for (uint j = 0; j < use->len(); j++) {
    54     Node *uin = use->in(j);
    55     if (uin == oldref) {
    56       if (j < req)
    57         use->set_req(j, newref);
    58       else
    59         use->set_prec(j, newref);
    60       nreplacements++;
    61     } else if (j >= req && uin == NULL) {
    62       break;
    63     }
    64   }
    65   return nreplacements;
    66 }
    68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
    69   // Copy debug information and adjust JVMState information
    70   uint old_dbg_start = oldcall->tf()->domain()->cnt();
    71   uint new_dbg_start = newcall->tf()->domain()->cnt();
    72   int jvms_adj  = new_dbg_start - old_dbg_start;
    73   assert (new_dbg_start == newcall->req(), "argument count mismatch");
    75   // SafePointScalarObject node could be referenced several times in debug info.
    76   // Use Dict to record cloned nodes.
    77   Dict* sosn_map = new Dict(cmpkey,hashkey);
    78   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
    79     Node* old_in = oldcall->in(i);
    80     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
    81     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
    82       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
    83       uint old_unique = C->unique();
    84       Node* new_in = old_sosn->clone(sosn_map);
    85       if (old_unique != C->unique()) { // New node?
    86         new_in->set_req(0, C->root()); // reset control edge
    87         new_in = transform_later(new_in); // Register new node.
    88       }
    89       old_in = new_in;
    90     }
    91     newcall->add_req(old_in);
    92   }
    94   newcall->set_jvms(oldcall->jvms());
    95   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
    96     jvms->set_map(newcall);
    97     jvms->set_locoff(jvms->locoff()+jvms_adj);
    98     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
    99     jvms->set_monoff(jvms->monoff()+jvms_adj);
   100     jvms->set_scloff(jvms->scloff()+jvms_adj);
   101     jvms->set_endoff(jvms->endoff()+jvms_adj);
   102   }
   103 }
   105 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
   106   Node* cmp;
   107   if (mask != 0) {
   108     Node* and_node = transform_later(new (C) AndXNode(word, MakeConX(mask)));
   109     cmp = transform_later(new (C) CmpXNode(and_node, MakeConX(bits)));
   110   } else {
   111     cmp = word;
   112   }
   113   Node* bol = transform_later(new (C) BoolNode(cmp, BoolTest::ne));
   114   IfNode* iff = new (C) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
   115   transform_later(iff);
   117   // Fast path taken.
   118   Node *fast_taken = transform_later( new (C) IfFalseNode(iff) );
   120   // Fast path not-taken, i.e. slow path
   121   Node *slow_taken = transform_later( new (C) IfTrueNode(iff) );
   123   if (return_fast_path) {
   124     region->init_req(edge, slow_taken); // Capture slow-control
   125     return fast_taken;
   126   } else {
   127     region->init_req(edge, fast_taken); // Capture fast-control
   128     return slow_taken;
   129   }
   130 }
   132 //--------------------copy_predefined_input_for_runtime_call--------------------
   133 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
   134   // Set fixed predefined input arguments
   135   call->init_req( TypeFunc::Control, ctrl );
   136   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
   137   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
   138   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
   139   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
   140 }
   142 //------------------------------make_slow_call---------------------------------
   143 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
   145   // Slow-path call
   146  CallNode *call = leaf_name
   147    ? (CallNode*)new (C) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
   148    : (CallNode*)new (C) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
   150   // Slow path call has no side-effects, uses few values
   151   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
   152   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
   153   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
   154   copy_call_debug_info(oldcall, call);
   155   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
   156   _igvn.replace_node(oldcall, call);
   157   transform_later(call);
   159   return call;
   160 }
   162 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
   163   _fallthroughproj = NULL;
   164   _fallthroughcatchproj = NULL;
   165   _ioproj_fallthrough = NULL;
   166   _ioproj_catchall = NULL;
   167   _catchallcatchproj = NULL;
   168   _memproj_fallthrough = NULL;
   169   _memproj_catchall = NULL;
   170   _resproj = NULL;
   171   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
   172     ProjNode *pn = call->fast_out(i)->as_Proj();
   173     switch (pn->_con) {
   174       case TypeFunc::Control:
   175       {
   176         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   177         _fallthroughproj = pn;
   178         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   179         const Node *cn = pn->fast_out(j);
   180         if (cn->is_Catch()) {
   181           ProjNode *cpn = NULL;
   182           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   183             cpn = cn->fast_out(k)->as_Proj();
   184             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   185             if (cpn->_con == CatchProjNode::fall_through_index)
   186               _fallthroughcatchproj = cpn;
   187             else {
   188               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   189               _catchallcatchproj = cpn;
   190             }
   191           }
   192         }
   193         break;
   194       }
   195       case TypeFunc::I_O:
   196         if (pn->_is_io_use)
   197           _ioproj_catchall = pn;
   198         else
   199           _ioproj_fallthrough = pn;
   200         break;
   201       case TypeFunc::Memory:
   202         if (pn->_is_io_use)
   203           _memproj_catchall = pn;
   204         else
   205           _memproj_fallthrough = pn;
   206         break;
   207       case TypeFunc::Parms:
   208         _resproj = pn;
   209         break;
   210       default:
   211         assert(false, "unexpected projection from allocation node.");
   212     }
   213   }
   215 }
   217 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
   218 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
   219   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
   220   if (!UseG1GC) {
   221     // vanilla/CMS post barrier
   222     Node *shift = p2x->unique_out();
   223     Node *addp = shift->unique_out();
   224     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
   225       Node *mem = addp->last_out(j);
   226       if (UseCondCardMark && mem->is_Load()) {
   227         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
   228         // The load is checking if the card has been written so
   229         // replace it with zero to fold the test.
   230         _igvn.replace_node(mem, intcon(0));
   231         continue;
   232       }
   233       assert(mem->is_Store(), "store required");
   234       _igvn.replace_node(mem, mem->in(MemNode::Memory));
   235     }
   236   } else {
   237     // G1 pre/post barriers
   238     assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
   239     // It could be only one user, URShift node, in Object.clone() instrinsic
   240     // but the new allocation is passed to arraycopy stub and it could not
   241     // be scalar replaced. So we don't check the case.
   243     // An other case of only one user (Xor) is when the value check for NULL
   244     // in G1 post barrier is folded after CCP so the code which used URShift
   245     // is removed.
   247     // Take Region node before eliminating post barrier since it also
   248     // eliminates CastP2X node when it has only one user.
   249     Node* this_region = p2x->in(0);
   250     assert(this_region != NULL, "");
   252     // Remove G1 post barrier.
   254     // Search for CastP2X->Xor->URShift->Cmp path which
   255     // checks if the store done to a different from the value's region.
   256     // And replace Cmp with #0 (false) to collapse G1 post barrier.
   257     Node* xorx = NULL;
   258     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
   259       Node* u = p2x->fast_out(i);
   260       if (u->Opcode() == Op_XorX) {
   261         xorx = u;
   262         break;
   263       }
   264     }
   265     assert(xorx != NULL, "missing G1 post barrier");
   266     Node* shift = xorx->unique_out();
   267     Node* cmpx = shift->unique_out();
   268     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
   269     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
   270     "missing region check in G1 post barrier");
   271     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   273     // Remove G1 pre barrier.
   275     // Search "if (marking != 0)" check and set it to "false".
   276     // There is no G1 pre barrier if previous stored value is NULL
   277     // (for example, after initialization).
   278     if (this_region->is_Region() && this_region->req() == 3) {
   279       int ind = 1;
   280       if (!this_region->in(ind)->is_IfFalse()) {
   281         ind = 2;
   282       }
   283       if (this_region->in(ind)->is_IfFalse()) {
   284         Node* bol = this_region->in(ind)->in(0)->in(1);
   285         assert(bol->is_Bool(), "");
   286         cmpx = bol->in(1);
   287         if (bol->as_Bool()->_test._test == BoolTest::ne &&
   288             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
   289             cmpx->in(1)->is_Load()) {
   290           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
   291           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
   292                                               PtrQueue::byte_offset_of_active());
   293           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
   294               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   295               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
   296             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   297           }
   298         }
   299       }
   300     }
   301     // Now CastP2X can be removed since it is used only on dead path
   302     // which currently still alive until igvn optimize it.
   303     assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
   304     _igvn.replace_node(p2x, top());
   305   }
   306 }
   308 // Search for a memory operation for the specified memory slice.
   309 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
   310   Node *orig_mem = mem;
   311   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   312   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
   313   while (true) {
   314     if (mem == alloc_mem || mem == start_mem ) {
   315       return mem;  // hit one of our sentinels
   316     } else if (mem->is_MergeMem()) {
   317       mem = mem->as_MergeMem()->memory_at(alias_idx);
   318     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
   319       Node *in = mem->in(0);
   320       // we can safely skip over safepoints, calls, locks and membars because we
   321       // already know that the object is safe to eliminate.
   322       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
   323         return in;
   324       } else if (in->is_Call()) {
   325         CallNode *call = in->as_Call();
   326         if (!call->may_modify(tinst, phase)) {
   327           mem = call->in(TypeFunc::Memory);
   328         }
   329         mem = in->in(TypeFunc::Memory);
   330       } else if (in->is_MemBar()) {
   331         mem = in->in(TypeFunc::Memory);
   332       } else {
   333         assert(false, "unexpected projection");
   334       }
   335     } else if (mem->is_Store()) {
   336       const TypePtr* atype = mem->as_Store()->adr_type();
   337       int adr_idx = Compile::current()->get_alias_index(atype);
   338       if (adr_idx == alias_idx) {
   339         assert(atype->isa_oopptr(), "address type must be oopptr");
   340         int adr_offset = atype->offset();
   341         uint adr_iid = atype->is_oopptr()->instance_id();
   342         // Array elements references have the same alias_idx
   343         // but different offset and different instance_id.
   344         if (adr_offset == offset && adr_iid == alloc->_idx)
   345           return mem;
   346       } else {
   347         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
   348       }
   349       mem = mem->in(MemNode::Memory);
   350     } else if (mem->is_ClearArray()) {
   351       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
   352         // Can not bypass initialization of the instance
   353         // we are looking.
   354         debug_only(intptr_t offset;)
   355         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
   356         InitializeNode* init = alloc->as_Allocate()->initialization();
   357         // We are looking for stored value, return Initialize node
   358         // or memory edge from Allocate node.
   359         if (init != NULL)
   360           return init;
   361         else
   362           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
   363       }
   364       // Otherwise skip it (the call updated 'mem' value).
   365     } else if (mem->Opcode() == Op_SCMemProj) {
   366       mem = mem->in(0);
   367       Node* adr = NULL;
   368       if (mem->is_LoadStore()) {
   369         adr = mem->in(MemNode::Address);
   370       } else {
   371         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
   372         adr = mem->in(3); // Destination array
   373       }
   374       const TypePtr* atype = adr->bottom_type()->is_ptr();
   375       int adr_idx = Compile::current()->get_alias_index(atype);
   376       if (adr_idx == alias_idx) {
   377         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   378         return NULL;
   379       }
   380       mem = mem->in(MemNode::Memory);
   381     } else {
   382       return mem;
   383     }
   384     assert(mem != orig_mem, "dead memory loop");
   385   }
   386 }
   388 //
   389 // Given a Memory Phi, compute a value Phi containing the values from stores
   390 // on the input paths.
   391 // Note: this function is recursive, its depth is limied by the "level" argument
   392 // Returns the computed Phi, or NULL if it cannot compute it.
   393 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
   394   assert(mem->is_Phi(), "sanity");
   395   int alias_idx = C->get_alias_index(adr_t);
   396   int offset = adr_t->offset();
   397   int instance_id = adr_t->instance_id();
   399   // Check if an appropriate value phi already exists.
   400   Node* region = mem->in(0);
   401   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
   402     Node* phi = region->fast_out(k);
   403     if (phi->is_Phi() && phi != mem &&
   404         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
   405       return phi;
   406     }
   407   }
   408   // Check if an appropriate new value phi already exists.
   409   Node* new_phi = value_phis->find(mem->_idx);
   410   if (new_phi != NULL)
   411     return new_phi;
   413   if (level <= 0) {
   414     return NULL; // Give up: phi tree too deep
   415   }
   416   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   417   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   419   uint length = mem->req();
   420   GrowableArray <Node *> values(length, length, NULL, false);
   422   // create a new Phi for the value
   423   PhiNode *phi = new (C) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
   424   transform_later(phi);
   425   value_phis->push(phi, mem->_idx);
   427   for (uint j = 1; j < length; j++) {
   428     Node *in = mem->in(j);
   429     if (in == NULL || in->is_top()) {
   430       values.at_put(j, in);
   431     } else  {
   432       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
   433       if (val == start_mem || val == alloc_mem) {
   434         // hit a sentinel, return appropriate 0 value
   435         values.at_put(j, _igvn.zerocon(ft));
   436         continue;
   437       }
   438       if (val->is_Initialize()) {
   439         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   440       }
   441       if (val == NULL) {
   442         return NULL;  // can't find a value on this path
   443       }
   444       if (val == mem) {
   445         values.at_put(j, mem);
   446       } else if (val->is_Store()) {
   447         values.at_put(j, val->in(MemNode::ValueIn));
   448       } else if(val->is_Proj() && val->in(0) == alloc) {
   449         values.at_put(j, _igvn.zerocon(ft));
   450       } else if (val->is_Phi()) {
   451         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
   452         if (val == NULL) {
   453           return NULL;
   454         }
   455         values.at_put(j, val);
   456       } else if (val->Opcode() == Op_SCMemProj) {
   457         assert(val->in(0)->is_LoadStore() || val->in(0)->Opcode() == Op_EncodeISOArray, "sanity");
   458         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   459         return NULL;
   460       } else {
   461 #ifdef ASSERT
   462         val->dump();
   463         assert(false, "unknown node on this path");
   464 #endif
   465         return NULL;  // unknown node on this path
   466       }
   467     }
   468   }
   469   // Set Phi's inputs
   470   for (uint j = 1; j < length; j++) {
   471     if (values.at(j) == mem) {
   472       phi->init_req(j, phi);
   473     } else {
   474       phi->init_req(j, values.at(j));
   475     }
   476   }
   477   return phi;
   478 }
   480 // Search the last value stored into the object's field.
   481 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
   482   assert(adr_t->is_known_instance_field(), "instance required");
   483   int instance_id = adr_t->instance_id();
   484   assert((uint)instance_id == alloc->_idx, "wrong allocation");
   486   int alias_idx = C->get_alias_index(adr_t);
   487   int offset = adr_t->offset();
   488   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   489   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
   490   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   491   Arena *a = Thread::current()->resource_area();
   492   VectorSet visited(a);
   495   bool done = sfpt_mem == alloc_mem;
   496   Node *mem = sfpt_mem;
   497   while (!done) {
   498     if (visited.test_set(mem->_idx)) {
   499       return NULL;  // found a loop, give up
   500     }
   501     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
   502     if (mem == start_mem || mem == alloc_mem) {
   503       done = true;  // hit a sentinel, return appropriate 0 value
   504     } else if (mem->is_Initialize()) {
   505       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   506       if (mem == NULL) {
   507         done = true; // Something go wrong.
   508       } else if (mem->is_Store()) {
   509         const TypePtr* atype = mem->as_Store()->adr_type();
   510         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
   511         done = true;
   512       }
   513     } else if (mem->is_Store()) {
   514       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
   515       assert(atype != NULL, "address type must be oopptr");
   516       assert(C->get_alias_index(atype) == alias_idx &&
   517              atype->is_known_instance_field() && atype->offset() == offset &&
   518              atype->instance_id() == instance_id, "store is correct memory slice");
   519       done = true;
   520     } else if (mem->is_Phi()) {
   521       // try to find a phi's unique input
   522       Node *unique_input = NULL;
   523       Node *top = C->top();
   524       for (uint i = 1; i < mem->req(); i++) {
   525         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
   526         if (n == NULL || n == top || n == mem) {
   527           continue;
   528         } else if (unique_input == NULL) {
   529           unique_input = n;
   530         } else if (unique_input != n) {
   531           unique_input = top;
   532           break;
   533         }
   534       }
   535       if (unique_input != NULL && unique_input != top) {
   536         mem = unique_input;
   537       } else {
   538         done = true;
   539       }
   540     } else {
   541       assert(false, "unexpected node");
   542     }
   543   }
   544   if (mem != NULL) {
   545     if (mem == start_mem || mem == alloc_mem) {
   546       // hit a sentinel, return appropriate 0 value
   547       return _igvn.zerocon(ft);
   548     } else if (mem->is_Store()) {
   549       return mem->in(MemNode::ValueIn);
   550     } else if (mem->is_Phi()) {
   551       // attempt to produce a Phi reflecting the values on the input paths of the Phi
   552       Node_Stack value_phis(a, 8);
   553       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
   554       if (phi != NULL) {
   555         return phi;
   556       } else {
   557         // Kill all new Phis
   558         while(value_phis.is_nonempty()) {
   559           Node* n = value_phis.node();
   560           _igvn.replace_node(n, C->top());
   561           value_phis.pop();
   562         }
   563       }
   564     }
   565   }
   566   // Something go wrong.
   567   return NULL;
   568 }
   570 // Check the possibility of scalar replacement.
   571 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   572   //  Scan the uses of the allocation to check for anything that would
   573   //  prevent us from eliminating it.
   574   NOT_PRODUCT( const char* fail_eliminate = NULL; )
   575   DEBUG_ONLY( Node* disq_node = NULL; )
   576   bool  can_eliminate = true;
   578   Node* res = alloc->result_cast();
   579   const TypeOopPtr* res_type = NULL;
   580   if (res == NULL) {
   581     // All users were eliminated.
   582   } else if (!res->is_CheckCastPP()) {
   583     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
   584     can_eliminate = false;
   585   } else {
   586     res_type = _igvn.type(res)->isa_oopptr();
   587     if (res_type == NULL) {
   588       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
   589       can_eliminate = false;
   590     } else if (res_type->isa_aryptr()) {
   591       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   592       if (length < 0) {
   593         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
   594         can_eliminate = false;
   595       }
   596     }
   597   }
   599   if (can_eliminate && res != NULL) {
   600     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
   601                                j < jmax && can_eliminate; j++) {
   602       Node* use = res->fast_out(j);
   604       if (use->is_AddP()) {
   605         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
   606         int offset = addp_type->offset();
   608         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
   609           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
   610           can_eliminate = false;
   611           break;
   612         }
   613         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
   614                                    k < kmax && can_eliminate; k++) {
   615           Node* n = use->fast_out(k);
   616           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
   617             DEBUG_ONLY(disq_node = n;)
   618             if (n->is_Load() || n->is_LoadStore()) {
   619               NOT_PRODUCT(fail_eliminate = "Field load";)
   620             } else {
   621               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
   622             }
   623             can_eliminate = false;
   624           }
   625         }
   626       } else if (use->is_SafePoint()) {
   627         SafePointNode* sfpt = use->as_SafePoint();
   628         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
   629           // Object is passed as argument.
   630           DEBUG_ONLY(disq_node = use;)
   631           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
   632           can_eliminate = false;
   633         }
   634         Node* sfptMem = sfpt->memory();
   635         if (sfptMem == NULL || sfptMem->is_top()) {
   636           DEBUG_ONLY(disq_node = use;)
   637           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
   638           can_eliminate = false;
   639         } else {
   640           safepoints.append_if_missing(sfpt);
   641         }
   642       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
   643         if (use->is_Phi()) {
   644           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
   645             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   646           } else {
   647             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
   648           }
   649           DEBUG_ONLY(disq_node = use;)
   650         } else {
   651           if (use->Opcode() == Op_Return) {
   652             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   653           }else {
   654             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
   655           }
   656           DEBUG_ONLY(disq_node = use;)
   657         }
   658         can_eliminate = false;
   659       }
   660     }
   661   }
   663 #ifndef PRODUCT
   664   if (PrintEliminateAllocations) {
   665     if (can_eliminate) {
   666       tty->print("Scalar ");
   667       if (res == NULL)
   668         alloc->dump();
   669       else
   670         res->dump();
   671     } else if (alloc->_is_scalar_replaceable) {
   672       tty->print("NotScalar (%s)", fail_eliminate);
   673       if (res == NULL)
   674         alloc->dump();
   675       else
   676         res->dump();
   677 #ifdef ASSERT
   678       if (disq_node != NULL) {
   679           tty->print("  >>>> ");
   680           disq_node->dump();
   681       }
   682 #endif /*ASSERT*/
   683     }
   684   }
   685 #endif
   686   return can_eliminate;
   687 }
   689 // Do scalar replacement.
   690 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   691   GrowableArray <SafePointNode *> safepoints_done;
   693   ciKlass* klass = NULL;
   694   ciInstanceKlass* iklass = NULL;
   695   int nfields = 0;
   696   int array_base;
   697   int element_size;
   698   BasicType basic_elem_type;
   699   ciType* elem_type;
   701   Node* res = alloc->result_cast();
   702   assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result");
   703   const TypeOopPtr* res_type = NULL;
   704   if (res != NULL) { // Could be NULL when there are no users
   705     res_type = _igvn.type(res)->isa_oopptr();
   706   }
   708   if (res != NULL) {
   709     klass = res_type->klass();
   710     if (res_type->isa_instptr()) {
   711       // find the fields of the class which will be needed for safepoint debug information
   712       assert(klass->is_instance_klass(), "must be an instance klass.");
   713       iklass = klass->as_instance_klass();
   714       nfields = iklass->nof_nonstatic_fields();
   715     } else {
   716       // find the array's elements which will be needed for safepoint debug information
   717       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   718       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
   719       elem_type = klass->as_array_klass()->element_type();
   720       basic_elem_type = elem_type->basic_type();
   721       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
   722       element_size = type2aelembytes(basic_elem_type);
   723     }
   724   }
   725   //
   726   // Process the safepoint uses
   727   //
   728   while (safepoints.length() > 0) {
   729     SafePointNode* sfpt = safepoints.pop();
   730     Node* mem = sfpt->memory();
   731     assert(sfpt->jvms() != NULL, "missed JVMS");
   732     // Fields of scalar objs are referenced only at the end
   733     // of regular debuginfo at the last (youngest) JVMS.
   734     // Record relative start index.
   735     uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
   736     SafePointScalarObjectNode* sobj = new (C) SafePointScalarObjectNode(res_type,
   737 #ifdef ASSERT
   738                                                  alloc,
   739 #endif
   740                                                  first_ind, nfields);
   741     sobj->init_req(0, C->root());
   742     transform_later(sobj);
   744     // Scan object's fields adding an input to the safepoint for each field.
   745     for (int j = 0; j < nfields; j++) {
   746       intptr_t offset;
   747       ciField* field = NULL;
   748       if (iklass != NULL) {
   749         field = iklass->nonstatic_field_at(j);
   750         offset = field->offset();
   751         elem_type = field->type();
   752         basic_elem_type = field->layout_type();
   753       } else {
   754         offset = array_base + j * (intptr_t)element_size;
   755       }
   757       const Type *field_type;
   758       // The next code is taken from Parse::do_get_xxx().
   759       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
   760         if (!elem_type->is_loaded()) {
   761           field_type = TypeInstPtr::BOTTOM;
   762         } else if (field != NULL && field->is_constant() && field->is_static()) {
   763           // This can happen if the constant oop is non-perm.
   764           ciObject* con = field->constant_value().as_object();
   765           // Do not "join" in the previous type; it doesn't add value,
   766           // and may yield a vacuous result if the field is of interface type.
   767           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
   768           assert(field_type != NULL, "field singleton type must be consistent");
   769         } else {
   770           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
   771         }
   772         if (UseCompressedOops) {
   773           field_type = field_type->make_narrowoop();
   774           basic_elem_type = T_NARROWOOP;
   775         }
   776       } else {
   777         field_type = Type::get_const_basic_type(basic_elem_type);
   778       }
   780       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
   782       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
   783       if (field_val == NULL) {
   784         // We weren't able to find a value for this field,
   785         // give up on eliminating this allocation.
   787         // Remove any extra entries we added to the safepoint.
   788         uint last = sfpt->req() - 1;
   789         for (int k = 0;  k < j; k++) {
   790           sfpt->del_req(last--);
   791         }
   792         // rollback processed safepoints
   793         while (safepoints_done.length() > 0) {
   794           SafePointNode* sfpt_done = safepoints_done.pop();
   795           // remove any extra entries we added to the safepoint
   796           last = sfpt_done->req() - 1;
   797           for (int k = 0;  k < nfields; k++) {
   798             sfpt_done->del_req(last--);
   799           }
   800           JVMState *jvms = sfpt_done->jvms();
   801           jvms->set_endoff(sfpt_done->req());
   802           // Now make a pass over the debug information replacing any references
   803           // to SafePointScalarObjectNode with the allocated object.
   804           int start = jvms->debug_start();
   805           int end   = jvms->debug_end();
   806           for (int i = start; i < end; i++) {
   807             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
   808               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
   809               if (scobj->first_index(jvms) == sfpt_done->req() &&
   810                   scobj->n_fields() == (uint)nfields) {
   811                 assert(scobj->alloc() == alloc, "sanity");
   812                 sfpt_done->set_req(i, res);
   813               }
   814             }
   815           }
   816         }
   817 #ifndef PRODUCT
   818         if (PrintEliminateAllocations) {
   819           if (field != NULL) {
   820             tty->print("=== At SafePoint node %d can't find value of Field: ",
   821                        sfpt->_idx);
   822             field->print();
   823             int field_idx = C->get_alias_index(field_addr_type);
   824             tty->print(" (alias_idx=%d)", field_idx);
   825           } else { // Array's element
   826             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
   827                        sfpt->_idx, j);
   828           }
   829           tty->print(", which prevents elimination of: ");
   830           if (res == NULL)
   831             alloc->dump();
   832           else
   833             res->dump();
   834         }
   835 #endif
   836         return false;
   837       }
   838       if (UseCompressedOops && field_type->isa_narrowoop()) {
   839         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
   840         // to be able scalar replace the allocation.
   841         if (field_val->is_EncodeP()) {
   842           field_val = field_val->in(1);
   843         } else {
   844           field_val = transform_later(new (C) DecodeNNode(field_val, field_val->get_ptr_type()));
   845         }
   846       }
   847       sfpt->add_req(field_val);
   848     }
   849     JVMState *jvms = sfpt->jvms();
   850     jvms->set_endoff(sfpt->req());
   851     // Now make a pass over the debug information replacing any references
   852     // to the allocated object with "sobj"
   853     int start = jvms->debug_start();
   854     int end   = jvms->debug_end();
   855     sfpt->replace_edges_in_range(res, sobj, start, end);
   856     safepoints_done.append_if_missing(sfpt); // keep it for rollback
   857   }
   858   return true;
   859 }
   861 // Process users of eliminated allocation.
   862 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
   863   Node* res = alloc->result_cast();
   864   if (res != NULL) {
   865     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
   866       Node *use = res->last_out(j);
   867       uint oc1 = res->outcnt();
   869       if (use->is_AddP()) {
   870         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
   871           Node *n = use->last_out(k);
   872           uint oc2 = use->outcnt();
   873           if (n->is_Store()) {
   874 #ifdef ASSERT
   875             // Verify that there is no dependent MemBarVolatile nodes,
   876             // they should be removed during IGVN, see MemBarNode::Ideal().
   877             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
   878                                        p < pmax; p++) {
   879               Node* mb = n->fast_out(p);
   880               assert(mb->is_Initialize() || !mb->is_MemBar() ||
   881                      mb->req() <= MemBarNode::Precedent ||
   882                      mb->in(MemBarNode::Precedent) != n,
   883                      "MemBarVolatile should be eliminated for non-escaping object");
   884             }
   885 #endif
   886             _igvn.replace_node(n, n->in(MemNode::Memory));
   887           } else {
   888             eliminate_card_mark(n);
   889           }
   890           k -= (oc2 - use->outcnt());
   891         }
   892       } else {
   893         eliminate_card_mark(use);
   894       }
   895       j -= (oc1 - res->outcnt());
   896     }
   897     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
   898     _igvn.remove_dead_node(res);
   899   }
   901   //
   902   // Process other users of allocation's projections
   903   //
   904   if (_resproj != NULL && _resproj->outcnt() != 0) {
   905     // First disconnect stores captured by Initialize node.
   906     // If Initialize node is eliminated first in the following code,
   907     // it will kill such stores and DUIterator_Last will assert.
   908     for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
   909       Node *use = _resproj->fast_out(j);
   910       if (use->is_AddP()) {
   911         // raw memory addresses used only by the initialization
   912         _igvn.replace_node(use, C->top());
   913         --j; --jmax;
   914       }
   915     }
   916     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
   917       Node *use = _resproj->last_out(j);
   918       uint oc1 = _resproj->outcnt();
   919       if (use->is_Initialize()) {
   920         // Eliminate Initialize node.
   921         InitializeNode *init = use->as_Initialize();
   922         assert(init->outcnt() <= 2, "only a control and memory projection expected");
   923         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
   924         if (ctrl_proj != NULL) {
   925            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
   926           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
   927         }
   928         Node *mem_proj = init->proj_out(TypeFunc::Memory);
   929         if (mem_proj != NULL) {
   930           Node *mem = init->in(TypeFunc::Memory);
   931 #ifdef ASSERT
   932           if (mem->is_MergeMem()) {
   933             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
   934           } else {
   935             assert(mem == _memproj_fallthrough, "allocation memory projection");
   936           }
   937 #endif
   938           _igvn.replace_node(mem_proj, mem);
   939         }
   940       } else  {
   941         assert(false, "only Initialize or AddP expected");
   942       }
   943       j -= (oc1 - _resproj->outcnt());
   944     }
   945   }
   946   if (_fallthroughcatchproj != NULL) {
   947     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
   948   }
   949   if (_memproj_fallthrough != NULL) {
   950     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
   951   }
   952   if (_memproj_catchall != NULL) {
   953     _igvn.replace_node(_memproj_catchall, C->top());
   954   }
   955   if (_ioproj_fallthrough != NULL) {
   956     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
   957   }
   958   if (_ioproj_catchall != NULL) {
   959     _igvn.replace_node(_ioproj_catchall, C->top());
   960   }
   961   if (_catchallcatchproj != NULL) {
   962     _igvn.replace_node(_catchallcatchproj, C->top());
   963   }
   964 }
   966 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
   967   if (!EliminateAllocations || !alloc->_is_non_escaping) {
   968     return false;
   969   }
   970   Node* klass = alloc->in(AllocateNode::KlassNode);
   971   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
   972   Node* res = alloc->result_cast();
   973   // Eliminate boxing allocations which are not used
   974   // regardless scalar replacable status.
   975   bool boxing_alloc = C->eliminate_boxing() &&
   976                       tklass->klass()->is_instance_klass()  &&
   977                       tklass->klass()->as_instance_klass()->is_box_klass();
   978   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
   979     return false;
   980   }
   982   extract_call_projections(alloc);
   984   GrowableArray <SafePointNode *> safepoints;
   985   if (!can_eliminate_allocation(alloc, safepoints)) {
   986     return false;
   987   }
   989   if (!alloc->_is_scalar_replaceable) {
   990     assert(res == NULL, "sanity");
   991     // We can only eliminate allocation if all debug info references
   992     // are already replaced with SafePointScalarObject because
   993     // we can't search for a fields value without instance_id.
   994     if (safepoints.length() > 0) {
   995       return false;
   996     }
   997   }
   999   if (!scalar_replacement(alloc, safepoints)) {
  1000     return false;
  1003   CompileLog* log = C->log();
  1004   if (log != NULL) {
  1005     log->head("eliminate_allocation type='%d'",
  1006               log->identify(tklass->klass()));
  1007     JVMState* p = alloc->jvms();
  1008     while (p != NULL) {
  1009       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  1010       p = p->caller();
  1012     log->tail("eliminate_allocation");
  1015   process_users_of_allocation(alloc);
  1017 #ifndef PRODUCT
  1018   if (PrintEliminateAllocations) {
  1019     if (alloc->is_AllocateArray())
  1020       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
  1021     else
  1022       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
  1024 #endif
  1026   return true;
  1029 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
  1030   // EA should remove all uses of non-escaping boxing node.
  1031   if (!C->eliminate_boxing() || boxing->proj_out(TypeFunc::Parms) != NULL) {
  1032     return false;
  1035   assert(boxing->result_cast() == NULL, "unexpected boxing node result");
  1037   extract_call_projections(boxing);
  1039   const TypeTuple* r = boxing->tf()->range();
  1040   assert(r->cnt() > TypeFunc::Parms, "sanity");
  1041   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
  1042   assert(t != NULL, "sanity");
  1044   CompileLog* log = C->log();
  1045   if (log != NULL) {
  1046     log->head("eliminate_boxing type='%d'",
  1047               log->identify(t->klass()));
  1048     JVMState* p = boxing->jvms();
  1049     while (p != NULL) {
  1050       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  1051       p = p->caller();
  1053     log->tail("eliminate_boxing");
  1056   process_users_of_allocation(boxing);
  1058 #ifndef PRODUCT
  1059   if (PrintEliminateAllocations) {
  1060     tty->print("++++ Eliminated: %d ", boxing->_idx);
  1061     boxing->method()->print_short_name(tty);
  1062     tty->cr();
  1064 #endif
  1066   return true;
  1069 //---------------------------set_eden_pointers-------------------------
  1070 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
  1071   if (UseTLAB) {                // Private allocation: load from TLS
  1072     Node* thread = transform_later(new (C) ThreadLocalNode());
  1073     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
  1074     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
  1075     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
  1076     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
  1077   } else {                      // Shared allocation: load from globals
  1078     CollectedHeap* ch = Universe::heap();
  1079     address top_adr = (address)ch->top_addr();
  1080     address end_adr = (address)ch->end_addr();
  1081     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
  1082     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
  1087 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
  1088   Node* adr = basic_plus_adr(base, offset);
  1089   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
  1090   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
  1091   transform_later(value);
  1092   return value;
  1096 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
  1097   Node* adr = basic_plus_adr(base, offset);
  1098   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
  1099   transform_later(mem);
  1100   return mem;
  1103 //=============================================================================
  1104 //
  1105 //                              A L L O C A T I O N
  1106 //
  1107 // Allocation attempts to be fast in the case of frequent small objects.
  1108 // It breaks down like this:
  1109 //
  1110 // 1) Size in doublewords is computed.  This is a constant for objects and
  1111 // variable for most arrays.  Doubleword units are used to avoid size
  1112 // overflow of huge doubleword arrays.  We need doublewords in the end for
  1113 // rounding.
  1114 //
  1115 // 2) Size is checked for being 'too large'.  Too-large allocations will go
  1116 // the slow path into the VM.  The slow path can throw any required
  1117 // exceptions, and does all the special checks for very large arrays.  The
  1118 // size test can constant-fold away for objects.  For objects with
  1119 // finalizers it constant-folds the otherway: you always go slow with
  1120 // finalizers.
  1121 //
  1122 // 3) If NOT using TLABs, this is the contended loop-back point.
  1123 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
  1124 //
  1125 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
  1126 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
  1127 // "size*8" we always enter the VM, where "largish" is a constant picked small
  1128 // enough that there's always space between the eden max and 4Gig (old space is
  1129 // there so it's quite large) and large enough that the cost of entering the VM
  1130 // is dwarfed by the cost to initialize the space.
  1131 //
  1132 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
  1133 // down.  If contended, repeat at step 3.  If using TLABs normal-store
  1134 // adjusted heap top back down; there is no contention.
  1135 //
  1136 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
  1137 // fields.
  1138 //
  1139 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
  1140 // oop flavor.
  1141 //
  1142 //=============================================================================
  1143 // FastAllocateSizeLimit value is in DOUBLEWORDS.
  1144 // Allocations bigger than this always go the slow route.
  1145 // This value must be small enough that allocation attempts that need to
  1146 // trigger exceptions go the slow route.  Also, it must be small enough so
  1147 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
  1148 //=============================================================================j//
  1149 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
  1150 // The allocator will coalesce int->oop copies away.  See comment in
  1151 // coalesce.cpp about how this works.  It depends critically on the exact
  1152 // code shape produced here, so if you are changing this code shape
  1153 // make sure the GC info for the heap-top is correct in and around the
  1154 // slow-path call.
  1155 //
  1157 void PhaseMacroExpand::expand_allocate_common(
  1158             AllocateNode* alloc, // allocation node to be expanded
  1159             Node* length,  // array length for an array allocation
  1160             const TypeFunc* slow_call_type, // Type of slow call
  1161             address slow_call_address  // Address of slow call
  1165   Node* ctrl = alloc->in(TypeFunc::Control);
  1166   Node* mem  = alloc->in(TypeFunc::Memory);
  1167   Node* i_o  = alloc->in(TypeFunc::I_O);
  1168   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
  1169   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
  1170   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
  1172   assert(ctrl != NULL, "must have control");
  1173   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
  1174   // they will not be used if "always_slow" is set
  1175   enum { slow_result_path = 1, fast_result_path = 2 };
  1176   Node *result_region;
  1177   Node *result_phi_rawmem;
  1178   Node *result_phi_rawoop;
  1179   Node *result_phi_i_o;
  1181   // The initial slow comparison is a size check, the comparison
  1182   // we want to do is a BoolTest::gt
  1183   bool always_slow = false;
  1184   int tv = _igvn.find_int_con(initial_slow_test, -1);
  1185   if (tv >= 0) {
  1186     always_slow = (tv == 1);
  1187     initial_slow_test = NULL;
  1188   } else {
  1189     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
  1192   if (C->env()->dtrace_alloc_probes() ||
  1193       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
  1194                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
  1195     // Force slow-path allocation
  1196     always_slow = true;
  1197     initial_slow_test = NULL;
  1201   enum { too_big_or_final_path = 1, need_gc_path = 2 };
  1202   Node *slow_region = NULL;
  1203   Node *toobig_false = ctrl;
  1205   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
  1206   // generate the initial test if necessary
  1207   if (initial_slow_test != NULL ) {
  1208     slow_region = new (C) RegionNode(3);
  1210     // Now make the initial failure test.  Usually a too-big test but
  1211     // might be a TRUE for finalizers or a fancy class check for
  1212     // newInstance0.
  1213     IfNode *toobig_iff = new (C) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
  1214     transform_later(toobig_iff);
  1215     // Plug the failing-too-big test into the slow-path region
  1216     Node *toobig_true = new (C) IfTrueNode( toobig_iff );
  1217     transform_later(toobig_true);
  1218     slow_region    ->init_req( too_big_or_final_path, toobig_true );
  1219     toobig_false = new (C) IfFalseNode( toobig_iff );
  1220     transform_later(toobig_false);
  1221   } else {         // No initial test, just fall into next case
  1222     toobig_false = ctrl;
  1223     debug_only(slow_region = NodeSentinel);
  1226   Node *slow_mem = mem;  // save the current memory state for slow path
  1227   // generate the fast allocation code unless we know that the initial test will always go slow
  1228   if (!always_slow) {
  1229     // Fast path modifies only raw memory.
  1230     if (mem->is_MergeMem()) {
  1231       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
  1234     Node* eden_top_adr;
  1235     Node* eden_end_adr;
  1237     set_eden_pointers(eden_top_adr, eden_end_adr);
  1239     // Load Eden::end.  Loop invariant and hoisted.
  1240     //
  1241     // Note: We set the control input on "eden_end" and "old_eden_top" when using
  1242     //       a TLAB to work around a bug where these values were being moved across
  1243     //       a safepoint.  These are not oops, so they cannot be include in the oop
  1244     //       map, but they can be changed by a GC.   The proper way to fix this would
  1245     //       be to set the raw memory state when generating a  SafepointNode.  However
  1246     //       this will require extensive changes to the loop optimization in order to
  1247     //       prevent a degradation of the optimization.
  1248     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
  1249     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
  1251     // allocate the Region and Phi nodes for the result
  1252     result_region = new (C) RegionNode(3);
  1253     result_phi_rawmem = new (C) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1254     result_phi_rawoop = new (C) PhiNode(result_region, TypeRawPtr::BOTTOM);
  1255     result_phi_i_o    = new (C) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
  1257     // We need a Region for the loop-back contended case.
  1258     enum { fall_in_path = 1, contended_loopback_path = 2 };
  1259     Node *contended_region;
  1260     Node *contended_phi_rawmem;
  1261     if (UseTLAB) {
  1262       contended_region = toobig_false;
  1263       contended_phi_rawmem = mem;
  1264     } else {
  1265       contended_region = new (C) RegionNode(3);
  1266       contended_phi_rawmem = new (C) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1267       // Now handle the passing-too-big test.  We fall into the contended
  1268       // loop-back merge point.
  1269       contended_region    ->init_req(fall_in_path, toobig_false);
  1270       contended_phi_rawmem->init_req(fall_in_path, mem);
  1271       transform_later(contended_region);
  1272       transform_later(contended_phi_rawmem);
  1275     // Load(-locked) the heap top.
  1276     // See note above concerning the control input when using a TLAB
  1277     Node *old_eden_top = UseTLAB
  1278       ? new (C) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered)
  1279       : new (C) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire);
  1281     transform_later(old_eden_top);
  1282     // Add to heap top to get a new heap top
  1283     Node *new_eden_top = new (C) AddPNode(top(), old_eden_top, size_in_bytes);
  1284     transform_later(new_eden_top);
  1285     // Check for needing a GC; compare against heap end
  1286     Node *needgc_cmp = new (C) CmpPNode(new_eden_top, eden_end);
  1287     transform_later(needgc_cmp);
  1288     Node *needgc_bol = new (C) BoolNode(needgc_cmp, BoolTest::ge);
  1289     transform_later(needgc_bol);
  1290     IfNode *needgc_iff = new (C) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
  1291     transform_later(needgc_iff);
  1293     // Plug the failing-heap-space-need-gc test into the slow-path region
  1294     Node *needgc_true = new (C) IfTrueNode(needgc_iff);
  1295     transform_later(needgc_true);
  1296     if (initial_slow_test) {
  1297       slow_region->init_req(need_gc_path, needgc_true);
  1298       // This completes all paths into the slow merge point
  1299       transform_later(slow_region);
  1300     } else {                      // No initial slow path needed!
  1301       // Just fall from the need-GC path straight into the VM call.
  1302       slow_region = needgc_true;
  1304     // No need for a GC.  Setup for the Store-Conditional
  1305     Node *needgc_false = new (C) IfFalseNode(needgc_iff);
  1306     transform_later(needgc_false);
  1308     // Grab regular I/O before optional prefetch may change it.
  1309     // Slow-path does no I/O so just set it to the original I/O.
  1310     result_phi_i_o->init_req(slow_result_path, i_o);
  1312     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
  1313                               old_eden_top, new_eden_top, length);
  1315     // Name successful fast-path variables
  1316     Node* fast_oop = old_eden_top;
  1317     Node* fast_oop_ctrl;
  1318     Node* fast_oop_rawmem;
  1320     // Store (-conditional) the modified eden top back down.
  1321     // StorePConditional produces flags for a test PLUS a modified raw
  1322     // memory state.
  1323     if (UseTLAB) {
  1324       Node* store_eden_top =
  1325         new (C) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1326                               TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered);
  1327       transform_later(store_eden_top);
  1328       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
  1329       fast_oop_rawmem = store_eden_top;
  1330     } else {
  1331       Node* store_eden_top =
  1332         new (C) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1333                                          new_eden_top, fast_oop/*old_eden_top*/);
  1334       transform_later(store_eden_top);
  1335       Node *contention_check = new (C) BoolNode(store_eden_top, BoolTest::ne);
  1336       transform_later(contention_check);
  1337       store_eden_top = new (C) SCMemProjNode(store_eden_top);
  1338       transform_later(store_eden_top);
  1340       // If not using TLABs, check to see if there was contention.
  1341       IfNode *contention_iff = new (C) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
  1342       transform_later(contention_iff);
  1343       Node *contention_true = new (C) IfTrueNode(contention_iff);
  1344       transform_later(contention_true);
  1345       // If contention, loopback and try again.
  1346       contended_region->init_req(contended_loopback_path, contention_true);
  1347       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
  1349       // Fast-path succeeded with no contention!
  1350       Node *contention_false = new (C) IfFalseNode(contention_iff);
  1351       transform_later(contention_false);
  1352       fast_oop_ctrl = contention_false;
  1354       // Bump total allocated bytes for this thread
  1355       Node* thread = new (C) ThreadLocalNode();
  1356       transform_later(thread);
  1357       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
  1358                                              in_bytes(JavaThread::allocated_bytes_offset()));
  1359       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1360                                     0, TypeLong::LONG, T_LONG);
  1361 #ifdef _LP64
  1362       Node* alloc_size = size_in_bytes;
  1363 #else
  1364       Node* alloc_size = new (C) ConvI2LNode(size_in_bytes);
  1365       transform_later(alloc_size);
  1366 #endif
  1367       Node* new_alloc_bytes = new (C) AddLNode(alloc_bytes, alloc_size);
  1368       transform_later(new_alloc_bytes);
  1369       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1370                                    0, new_alloc_bytes, T_LONG);
  1373     InitializeNode* init = alloc->initialization();
  1374     fast_oop_rawmem = initialize_object(alloc,
  1375                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
  1376                                         klass_node, length, size_in_bytes);
  1378     // If initialization is performed by an array copy, any required
  1379     // MemBarStoreStore was already added. If the object does not
  1380     // escape no need for a MemBarStoreStore. Otherwise we need a
  1381     // MemBarStoreStore so that stores that initialize this object
  1382     // can't be reordered with a subsequent store that makes this
  1383     // object accessible by other threads.
  1384     if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
  1385       if (init == NULL || init->req() < InitializeNode::RawStores) {
  1386         // No InitializeNode or no stores captured by zeroing
  1387         // elimination. Simply add the MemBarStoreStore after object
  1388         // initialization.
  1389         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
  1390         transform_later(mb);
  1392         mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
  1393         mb->init_req(TypeFunc::Control, fast_oop_ctrl);
  1394         fast_oop_ctrl = new (C) ProjNode(mb,TypeFunc::Control);
  1395         transform_later(fast_oop_ctrl);
  1396         fast_oop_rawmem = new (C) ProjNode(mb,TypeFunc::Memory);
  1397         transform_later(fast_oop_rawmem);
  1398       } else {
  1399         // Add the MemBarStoreStore after the InitializeNode so that
  1400         // all stores performing the initialization that were moved
  1401         // before the InitializeNode happen before the storestore
  1402         // barrier.
  1404         Node* init_ctrl = init->proj_out(TypeFunc::Control);
  1405         Node* init_mem = init->proj_out(TypeFunc::Memory);
  1407         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
  1408         transform_later(mb);
  1410         Node* ctrl = new (C) ProjNode(init,TypeFunc::Control);
  1411         transform_later(ctrl);
  1412         Node* mem = new (C) ProjNode(init,TypeFunc::Memory);
  1413         transform_later(mem);
  1415         // The MemBarStoreStore depends on control and memory coming
  1416         // from the InitializeNode
  1417         mb->init_req(TypeFunc::Memory, mem);
  1418         mb->init_req(TypeFunc::Control, ctrl);
  1420         ctrl = new (C) ProjNode(mb,TypeFunc::Control);
  1421         transform_later(ctrl);
  1422         mem = new (C) ProjNode(mb,TypeFunc::Memory);
  1423         transform_later(mem);
  1425         // All nodes that depended on the InitializeNode for control
  1426         // and memory must now depend on the MemBarNode that itself
  1427         // depends on the InitializeNode
  1428         _igvn.replace_node(init_ctrl, ctrl);
  1429         _igvn.replace_node(init_mem, mem);
  1433     if (C->env()->dtrace_extended_probes()) {
  1434       // Slow-path call
  1435       int size = TypeFunc::Parms + 2;
  1436       CallLeafNode *call = new (C) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
  1437                                                 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
  1438                                                 "dtrace_object_alloc",
  1439                                                 TypeRawPtr::BOTTOM);
  1441       // Get base of thread-local storage area
  1442       Node* thread = new (C) ThreadLocalNode();
  1443       transform_later(thread);
  1445       call->init_req(TypeFunc::Parms+0, thread);
  1446       call->init_req(TypeFunc::Parms+1, fast_oop);
  1447       call->init_req(TypeFunc::Control, fast_oop_ctrl);
  1448       call->init_req(TypeFunc::I_O    , top()); // does no i/o
  1449       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
  1450       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
  1451       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
  1452       transform_later(call);
  1453       fast_oop_ctrl = new (C) ProjNode(call,TypeFunc::Control);
  1454       transform_later(fast_oop_ctrl);
  1455       fast_oop_rawmem = new (C) ProjNode(call,TypeFunc::Memory);
  1456       transform_later(fast_oop_rawmem);
  1459     // Plug in the successful fast-path into the result merge point
  1460     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
  1461     result_phi_rawoop->init_req(fast_result_path, fast_oop);
  1462     result_phi_i_o   ->init_req(fast_result_path, i_o);
  1463     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
  1464   } else {
  1465     slow_region = ctrl;
  1466     result_phi_i_o = i_o; // Rename it to use in the following code.
  1469   // Generate slow-path call
  1470   CallNode *call = new (C) CallStaticJavaNode(slow_call_type, slow_call_address,
  1471                                OptoRuntime::stub_name(slow_call_address),
  1472                                alloc->jvms()->bci(),
  1473                                TypePtr::BOTTOM);
  1474   call->init_req( TypeFunc::Control, slow_region );
  1475   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  1476   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
  1477   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  1478   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
  1480   call->init_req(TypeFunc::Parms+0, klass_node);
  1481   if (length != NULL) {
  1482     call->init_req(TypeFunc::Parms+1, length);
  1485   // Copy debug information and adjust JVMState information, then replace
  1486   // allocate node with the call
  1487   copy_call_debug_info((CallNode *) alloc,  call);
  1488   if (!always_slow) {
  1489     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
  1490   } else {
  1491     // Hook i_o projection to avoid its elimination during allocation
  1492     // replacement (when only a slow call is generated).
  1493     call->set_req(TypeFunc::I_O, result_phi_i_o);
  1495   _igvn.replace_node(alloc, call);
  1496   transform_later(call);
  1498   // Identify the output projections from the allocate node and
  1499   // adjust any references to them.
  1500   // The control and io projections look like:
  1501   //
  1502   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
  1503   //  Allocate                   Catch
  1504   //        ^---Proj(io) <-------+   ^---CatchProj(io)
  1505   //
  1506   //  We are interested in the CatchProj nodes.
  1507   //
  1508   extract_call_projections(call);
  1510   // An allocate node has separate memory projections for the uses on
  1511   // the control and i_o paths. Replace the control memory projection with
  1512   // result_phi_rawmem (unless we are only generating a slow call when
  1513   // both memory projections are combined)
  1514   if (!always_slow && _memproj_fallthrough != NULL) {
  1515     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1516       Node *use = _memproj_fallthrough->fast_out(i);
  1517       _igvn.rehash_node_delayed(use);
  1518       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
  1519       // back up iterator
  1520       --i;
  1523   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
  1524   // _memproj_catchall so we end up with a call that has only 1 memory projection.
  1525   if (_memproj_catchall != NULL ) {
  1526     if (_memproj_fallthrough == NULL) {
  1527       _memproj_fallthrough = new (C) ProjNode(call, TypeFunc::Memory);
  1528       transform_later(_memproj_fallthrough);
  1530     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
  1531       Node *use = _memproj_catchall->fast_out(i);
  1532       _igvn.rehash_node_delayed(use);
  1533       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
  1534       // back up iterator
  1535       --i;
  1537     assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
  1538     _igvn.remove_dead_node(_memproj_catchall);
  1541   // An allocate node has separate i_o projections for the uses on the control
  1542   // and i_o paths. Always replace the control i_o projection with result i_o
  1543   // otherwise incoming i_o become dead when only a slow call is generated
  1544   // (it is different from memory projections where both projections are
  1545   // combined in such case).
  1546   if (_ioproj_fallthrough != NULL) {
  1547     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1548       Node *use = _ioproj_fallthrough->fast_out(i);
  1549       _igvn.rehash_node_delayed(use);
  1550       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
  1551       // back up iterator
  1552       --i;
  1555   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
  1556   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
  1557   if (_ioproj_catchall != NULL ) {
  1558     if (_ioproj_fallthrough == NULL) {
  1559       _ioproj_fallthrough = new (C) ProjNode(call, TypeFunc::I_O);
  1560       transform_later(_ioproj_fallthrough);
  1562     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
  1563       Node *use = _ioproj_catchall->fast_out(i);
  1564       _igvn.rehash_node_delayed(use);
  1565       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
  1566       // back up iterator
  1567       --i;
  1569     assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
  1570     _igvn.remove_dead_node(_ioproj_catchall);
  1573   // if we generated only a slow call, we are done
  1574   if (always_slow) {
  1575     // Now we can unhook i_o.
  1576     if (result_phi_i_o->outcnt() > 1) {
  1577       call->set_req(TypeFunc::I_O, top());
  1578     } else {
  1579       assert(result_phi_i_o->unique_ctrl_out() == call, "");
  1580       // Case of new array with negative size known during compilation.
  1581       // AllocateArrayNode::Ideal() optimization disconnect unreachable
  1582       // following code since call to runtime will throw exception.
  1583       // As result there will be no users of i_o after the call.
  1584       // Leave i_o attached to this call to avoid problems in preceding graph.
  1586     return;
  1590   if (_fallthroughcatchproj != NULL) {
  1591     ctrl = _fallthroughcatchproj->clone();
  1592     transform_later(ctrl);
  1593     _igvn.replace_node(_fallthroughcatchproj, result_region);
  1594   } else {
  1595     ctrl = top();
  1597   Node *slow_result;
  1598   if (_resproj == NULL) {
  1599     // no uses of the allocation result
  1600     slow_result = top();
  1601   } else {
  1602     slow_result = _resproj->clone();
  1603     transform_later(slow_result);
  1604     _igvn.replace_node(_resproj, result_phi_rawoop);
  1607   // Plug slow-path into result merge point
  1608   result_region    ->init_req( slow_result_path, ctrl );
  1609   result_phi_rawoop->init_req( slow_result_path, slow_result);
  1610   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
  1611   transform_later(result_region);
  1612   transform_later(result_phi_rawoop);
  1613   transform_later(result_phi_rawmem);
  1614   transform_later(result_phi_i_o);
  1615   // This completes all paths into the result merge point
  1619 // Helper for PhaseMacroExpand::expand_allocate_common.
  1620 // Initializes the newly-allocated storage.
  1621 Node*
  1622 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
  1623                                     Node* control, Node* rawmem, Node* object,
  1624                                     Node* klass_node, Node* length,
  1625                                     Node* size_in_bytes) {
  1626   InitializeNode* init = alloc->initialization();
  1627   // Store the klass & mark bits
  1628   Node* mark_node = NULL;
  1629   // For now only enable fast locking for non-array types
  1630   if (UseBiasedLocking && (length == NULL)) {
  1631     mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
  1632   } else {
  1633     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
  1635   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
  1637   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
  1638   int header_size = alloc->minimum_header_size();  // conservatively small
  1640   // Array length
  1641   if (length != NULL) {         // Arrays need length field
  1642     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
  1643     // conservatively small header size:
  1644     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1645     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1646     if (k->is_array_klass())    // we know the exact header size in most cases:
  1647       header_size = Klass::layout_helper_header_size(k->layout_helper());
  1650   // Clear the object body, if necessary.
  1651   if (init == NULL) {
  1652     // The init has somehow disappeared; be cautious and clear everything.
  1653     //
  1654     // This can happen if a node is allocated but an uncommon trap occurs
  1655     // immediately.  In this case, the Initialize gets associated with the
  1656     // trap, and may be placed in a different (outer) loop, if the Allocate
  1657     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
  1658     // there can be two Allocates to one Initialize.  The answer in all these
  1659     // edge cases is safety first.  It is always safe to clear immediately
  1660     // within an Allocate, and then (maybe or maybe not) clear some more later.
  1661     if (!ZeroTLAB)
  1662       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
  1663                                             header_size, size_in_bytes,
  1664                                             &_igvn);
  1665   } else {
  1666     if (!init->is_complete()) {
  1667       // Try to win by zeroing only what the init does not store.
  1668       // We can also try to do some peephole optimizations,
  1669       // such as combining some adjacent subword stores.
  1670       rawmem = init->complete_stores(control, rawmem, object,
  1671                                      header_size, size_in_bytes, &_igvn);
  1673     // We have no more use for this link, since the AllocateNode goes away:
  1674     init->set_req(InitializeNode::RawAddress, top());
  1675     // (If we keep the link, it just confuses the register allocator,
  1676     // who thinks he sees a real use of the address by the membar.)
  1679   return rawmem;
  1682 // Generate prefetch instructions for next allocations.
  1683 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
  1684                                         Node*& contended_phi_rawmem,
  1685                                         Node* old_eden_top, Node* new_eden_top,
  1686                                         Node* length) {
  1687    enum { fall_in_path = 1, pf_path = 2 };
  1688    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
  1689       // Generate prefetch allocation with watermark check.
  1690       // As an allocation hits the watermark, we will prefetch starting
  1691       // at a "distance" away from watermark.
  1693       Node *pf_region = new (C) RegionNode(3);
  1694       Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
  1695                                                 TypeRawPtr::BOTTOM );
  1696       // I/O is used for Prefetch
  1697       Node *pf_phi_abio = new (C) PhiNode( pf_region, Type::ABIO );
  1699       Node *thread = new (C) ThreadLocalNode();
  1700       transform_later(thread);
  1702       Node *eden_pf_adr = new (C) AddPNode( top()/*not oop*/, thread,
  1703                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
  1704       transform_later(eden_pf_adr);
  1706       Node *old_pf_wm = new (C) LoadPNode(needgc_false,
  1707                                    contended_phi_rawmem, eden_pf_adr,
  1708                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
  1709                                    MemNode::unordered);
  1710       transform_later(old_pf_wm);
  1712       // check against new_eden_top
  1713       Node *need_pf_cmp = new (C) CmpPNode( new_eden_top, old_pf_wm );
  1714       transform_later(need_pf_cmp);
  1715       Node *need_pf_bol = new (C) BoolNode( need_pf_cmp, BoolTest::ge );
  1716       transform_later(need_pf_bol);
  1717       IfNode *need_pf_iff = new (C) IfNode( needgc_false, need_pf_bol,
  1718                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
  1719       transform_later(need_pf_iff);
  1721       // true node, add prefetchdistance
  1722       Node *need_pf_true = new (C) IfTrueNode( need_pf_iff );
  1723       transform_later(need_pf_true);
  1725       Node *need_pf_false = new (C) IfFalseNode( need_pf_iff );
  1726       transform_later(need_pf_false);
  1728       Node *new_pf_wmt = new (C) AddPNode( top(), old_pf_wm,
  1729                                     _igvn.MakeConX(AllocatePrefetchDistance) );
  1730       transform_later(new_pf_wmt );
  1731       new_pf_wmt->set_req(0, need_pf_true);
  1733       Node *store_new_wmt = new (C) StorePNode(need_pf_true,
  1734                                        contended_phi_rawmem, eden_pf_adr,
  1735                                        TypeRawPtr::BOTTOM, new_pf_wmt,
  1736                                        MemNode::unordered);
  1737       transform_later(store_new_wmt);
  1739       // adding prefetches
  1740       pf_phi_abio->init_req( fall_in_path, i_o );
  1742       Node *prefetch_adr;
  1743       Node *prefetch;
  1744       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
  1745       uint step_size = AllocatePrefetchStepSize;
  1746       uint distance = 0;
  1748       for ( uint i = 0; i < lines; i++ ) {
  1749         prefetch_adr = new (C) AddPNode( old_pf_wm, new_pf_wmt,
  1750                                             _igvn.MakeConX(distance) );
  1751         transform_later(prefetch_adr);
  1752         prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
  1753         transform_later(prefetch);
  1754         distance += step_size;
  1755         i_o = prefetch;
  1757       pf_phi_abio->set_req( pf_path, i_o );
  1759       pf_region->init_req( fall_in_path, need_pf_false );
  1760       pf_region->init_req( pf_path, need_pf_true );
  1762       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
  1763       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
  1765       transform_later(pf_region);
  1766       transform_later(pf_phi_rawmem);
  1767       transform_later(pf_phi_abio);
  1769       needgc_false = pf_region;
  1770       contended_phi_rawmem = pf_phi_rawmem;
  1771       i_o = pf_phi_abio;
  1772    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
  1773       // Insert a prefetch for each allocation.
  1774       // This code is used for Sparc with BIS.
  1775       Node *pf_region = new (C) RegionNode(3);
  1776       Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
  1777                                              TypeRawPtr::BOTTOM );
  1779       // Generate several prefetch instructions.
  1780       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
  1781       uint step_size = AllocatePrefetchStepSize;
  1782       uint distance = AllocatePrefetchDistance;
  1784       // Next cache address.
  1785       Node *cache_adr = new (C) AddPNode(old_eden_top, old_eden_top,
  1786                                             _igvn.MakeConX(distance));
  1787       transform_later(cache_adr);
  1788       cache_adr = new (C) CastP2XNode(needgc_false, cache_adr);
  1789       transform_later(cache_adr);
  1790       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
  1791       cache_adr = new (C) AndXNode(cache_adr, mask);
  1792       transform_later(cache_adr);
  1793       cache_adr = new (C) CastX2PNode(cache_adr);
  1794       transform_later(cache_adr);
  1796       // Prefetch
  1797       Node *prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
  1798       prefetch->set_req(0, needgc_false);
  1799       transform_later(prefetch);
  1800       contended_phi_rawmem = prefetch;
  1801       Node *prefetch_adr;
  1802       distance = step_size;
  1803       for ( uint i = 1; i < lines; i++ ) {
  1804         prefetch_adr = new (C) AddPNode( cache_adr, cache_adr,
  1805                                             _igvn.MakeConX(distance) );
  1806         transform_later(prefetch_adr);
  1807         prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
  1808         transform_later(prefetch);
  1809         distance += step_size;
  1810         contended_phi_rawmem = prefetch;
  1812    } else if( AllocatePrefetchStyle > 0 ) {
  1813       // Insert a prefetch for each allocation only on the fast-path
  1814       Node *prefetch_adr;
  1815       Node *prefetch;
  1816       // Generate several prefetch instructions.
  1817       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
  1818       uint step_size = AllocatePrefetchStepSize;
  1819       uint distance = AllocatePrefetchDistance;
  1820       for ( uint i = 0; i < lines; i++ ) {
  1821         prefetch_adr = new (C) AddPNode( old_eden_top, new_eden_top,
  1822                                             _igvn.MakeConX(distance) );
  1823         transform_later(prefetch_adr);
  1824         prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
  1825         // Do not let it float too high, since if eden_top == eden_end,
  1826         // both might be null.
  1827         if( i == 0 ) { // Set control for first prefetch, next follows it
  1828           prefetch->init_req(0, needgc_false);
  1830         transform_later(prefetch);
  1831         distance += step_size;
  1832         i_o = prefetch;
  1835    return i_o;
  1839 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
  1840   expand_allocate_common(alloc, NULL,
  1841                          OptoRuntime::new_instance_Type(),
  1842                          OptoRuntime::new_instance_Java());
  1845 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
  1846   Node* length = alloc->in(AllocateNode::ALength);
  1847   InitializeNode* init = alloc->initialization();
  1848   Node* klass_node = alloc->in(AllocateNode::KlassNode);
  1849   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1850   address slow_call_address;  // Address of slow call
  1851   if (init != NULL && init->is_complete_with_arraycopy() &&
  1852       k->is_type_array_klass()) {
  1853     // Don't zero type array during slow allocation in VM since
  1854     // it will be initialized later by arraycopy in compiled code.
  1855     slow_call_address = OptoRuntime::new_array_nozero_Java();
  1856   } else {
  1857     slow_call_address = OptoRuntime::new_array_Java();
  1859   expand_allocate_common(alloc, length,
  1860                          OptoRuntime::new_array_Type(),
  1861                          slow_call_address);
  1864 //-------------------mark_eliminated_box----------------------------------
  1865 //
  1866 // During EA obj may point to several objects but after few ideal graph
  1867 // transformations (CCP) it may point to only one non escaping object
  1868 // (but still using phi), corresponding locks and unlocks will be marked
  1869 // for elimination. Later obj could be replaced with a new node (new phi)
  1870 // and which does not have escape information. And later after some graph
  1871 // reshape other locks and unlocks (which were not marked for elimination
  1872 // before) are connected to this new obj (phi) but they still will not be
  1873 // marked for elimination since new obj has no escape information.
  1874 // Mark all associated (same box and obj) lock and unlock nodes for
  1875 // elimination if some of them marked already.
  1876 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
  1877   if (oldbox->as_BoxLock()->is_eliminated())
  1878     return; // This BoxLock node was processed already.
  1880   // New implementation (EliminateNestedLocks) has separate BoxLock
  1881   // node for each locked region so mark all associated locks/unlocks as
  1882   // eliminated even if different objects are referenced in one locked region
  1883   // (for example, OSR compilation of nested loop inside locked scope).
  1884   if (EliminateNestedLocks ||
  1885       oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
  1886     // Box is used only in one lock region. Mark this box as eliminated.
  1887     _igvn.hash_delete(oldbox);
  1888     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
  1889     _igvn.hash_insert(oldbox);
  1891     for (uint i = 0; i < oldbox->outcnt(); i++) {
  1892       Node* u = oldbox->raw_out(i);
  1893       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
  1894         AbstractLockNode* alock = u->as_AbstractLock();
  1895         // Check lock's box since box could be referenced by Lock's debug info.
  1896         if (alock->box_node() == oldbox) {
  1897           // Mark eliminated all related locks and unlocks.
  1898           alock->set_non_esc_obj();
  1902     return;
  1905   // Create new "eliminated" BoxLock node and use it in monitor debug info
  1906   // instead of oldbox for the same object.
  1907   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
  1909   // Note: BoxLock node is marked eliminated only here and it is used
  1910   // to indicate that all associated lock and unlock nodes are marked
  1911   // for elimination.
  1912   newbox->set_eliminated();
  1913   transform_later(newbox);
  1915   // Replace old box node with new box for all users of the same object.
  1916   for (uint i = 0; i < oldbox->outcnt();) {
  1917     bool next_edge = true;
  1919     Node* u = oldbox->raw_out(i);
  1920     if (u->is_AbstractLock()) {
  1921       AbstractLockNode* alock = u->as_AbstractLock();
  1922       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
  1923         // Replace Box and mark eliminated all related locks and unlocks.
  1924         alock->set_non_esc_obj();
  1925         _igvn.rehash_node_delayed(alock);
  1926         alock->set_box_node(newbox);
  1927         next_edge = false;
  1930     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
  1931       FastLockNode* flock = u->as_FastLock();
  1932       assert(flock->box_node() == oldbox, "sanity");
  1933       _igvn.rehash_node_delayed(flock);
  1934       flock->set_box_node(newbox);
  1935       next_edge = false;
  1938     // Replace old box in monitor debug info.
  1939     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
  1940       SafePointNode* sfn = u->as_SafePoint();
  1941       JVMState* youngest_jvms = sfn->jvms();
  1942       int max_depth = youngest_jvms->depth();
  1943       for (int depth = 1; depth <= max_depth; depth++) {
  1944         JVMState* jvms = youngest_jvms->of_depth(depth);
  1945         int num_mon  = jvms->nof_monitors();
  1946         // Loop over monitors
  1947         for (int idx = 0; idx < num_mon; idx++) {
  1948           Node* obj_node = sfn->monitor_obj(jvms, idx);
  1949           Node* box_node = sfn->monitor_box(jvms, idx);
  1950           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
  1951             int j = jvms->monitor_box_offset(idx);
  1952             _igvn.replace_input_of(u, j, newbox);
  1953             next_edge = false;
  1958     if (next_edge) i++;
  1962 //-----------------------mark_eliminated_locking_nodes-----------------------
  1963 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
  1964   if (EliminateNestedLocks) {
  1965     if (alock->is_nested()) {
  1966        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
  1967        return;
  1968     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
  1969       // Only Lock node has JVMState needed here.
  1970       if (alock->jvms() != NULL && alock->as_Lock()->is_nested_lock_region()) {
  1971         // Mark eliminated related nested locks and unlocks.
  1972         Node* obj = alock->obj_node();
  1973         BoxLockNode* box_node = alock->box_node()->as_BoxLock();
  1974         assert(!box_node->is_eliminated(), "should not be marked yet");
  1975         // Note: BoxLock node is marked eliminated only here
  1976         // and it is used to indicate that all associated lock
  1977         // and unlock nodes are marked for elimination.
  1978         box_node->set_eliminated(); // Box's hash is always NO_HASH here
  1979         for (uint i = 0; i < box_node->outcnt(); i++) {
  1980           Node* u = box_node->raw_out(i);
  1981           if (u->is_AbstractLock()) {
  1982             alock = u->as_AbstractLock();
  1983             if (alock->box_node() == box_node) {
  1984               // Verify that this Box is referenced only by related locks.
  1985               assert(alock->obj_node()->eqv_uncast(obj), "");
  1986               // Mark all related locks and unlocks.
  1987               alock->set_nested();
  1992       return;
  1994     // Process locks for non escaping object
  1995     assert(alock->is_non_esc_obj(), "");
  1996   } // EliminateNestedLocks
  1998   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
  1999     // Look for all locks of this object and mark them and
  2000     // corresponding BoxLock nodes as eliminated.
  2001     Node* obj = alock->obj_node();
  2002     for (uint j = 0; j < obj->outcnt(); j++) {
  2003       Node* o = obj->raw_out(j);
  2004       if (o->is_AbstractLock() &&
  2005           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
  2006         alock = o->as_AbstractLock();
  2007         Node* box = alock->box_node();
  2008         // Replace old box node with new eliminated box for all users
  2009         // of the same object and mark related locks as eliminated.
  2010         mark_eliminated_box(box, obj);
  2016 // we have determined that this lock/unlock can be eliminated, we simply
  2017 // eliminate the node without expanding it.
  2018 //
  2019 // Note:  The membar's associated with the lock/unlock are currently not
  2020 //        eliminated.  This should be investigated as a future enhancement.
  2021 //
  2022 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
  2024   if (!alock->is_eliminated()) {
  2025     return false;
  2027 #ifdef ASSERT
  2028   if (!alock->is_coarsened()) {
  2029     // Check that new "eliminated" BoxLock node is created.
  2030     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
  2031     assert(oldbox->is_eliminated(), "should be done already");
  2033 #endif
  2034   CompileLog* log = C->log();
  2035   if (log != NULL) {
  2036     log->head("eliminate_lock lock='%d'",
  2037               alock->is_Lock());
  2038     JVMState* p = alock->jvms();
  2039     while (p != NULL) {
  2040       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  2041       p = p->caller();
  2043     log->tail("eliminate_lock");
  2046   #ifndef PRODUCT
  2047   if (PrintEliminateLocks) {
  2048     if (alock->is_Lock()) {
  2049       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
  2050     } else {
  2051       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
  2054   #endif
  2056   Node* mem  = alock->in(TypeFunc::Memory);
  2057   Node* ctrl = alock->in(TypeFunc::Control);
  2059   extract_call_projections(alock);
  2060   // There are 2 projections from the lock.  The lock node will
  2061   // be deleted when its last use is subsumed below.
  2062   assert(alock->outcnt() == 2 &&
  2063          _fallthroughproj != NULL &&
  2064          _memproj_fallthrough != NULL,
  2065          "Unexpected projections from Lock/Unlock");
  2067   Node* fallthroughproj = _fallthroughproj;
  2068   Node* memproj_fallthrough = _memproj_fallthrough;
  2070   // The memory projection from a lock/unlock is RawMem
  2071   // The input to a Lock is merged memory, so extract its RawMem input
  2072   // (unless the MergeMem has been optimized away.)
  2073   if (alock->is_Lock()) {
  2074     // Seach for MemBarAcquireLock node and delete it also.
  2075     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
  2076     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
  2077     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
  2078     Node* memproj = membar->proj_out(TypeFunc::Memory);
  2079     _igvn.replace_node(ctrlproj, fallthroughproj);
  2080     _igvn.replace_node(memproj, memproj_fallthrough);
  2082     // Delete FastLock node also if this Lock node is unique user
  2083     // (a loop peeling may clone a Lock node).
  2084     Node* flock = alock->as_Lock()->fastlock_node();
  2085     if (flock->outcnt() == 1) {
  2086       assert(flock->unique_out() == alock, "sanity");
  2087       _igvn.replace_node(flock, top());
  2091   // Seach for MemBarReleaseLock node and delete it also.
  2092   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
  2093       ctrl->in(0)->is_MemBar()) {
  2094     MemBarNode* membar = ctrl->in(0)->as_MemBar();
  2095     assert(membar->Opcode() == Op_MemBarReleaseLock &&
  2096            mem->is_Proj() && membar == mem->in(0), "");
  2097     _igvn.replace_node(fallthroughproj, ctrl);
  2098     _igvn.replace_node(memproj_fallthrough, mem);
  2099     fallthroughproj = ctrl;
  2100     memproj_fallthrough = mem;
  2101     ctrl = membar->in(TypeFunc::Control);
  2102     mem  = membar->in(TypeFunc::Memory);
  2105   _igvn.replace_node(fallthroughproj, ctrl);
  2106   _igvn.replace_node(memproj_fallthrough, mem);
  2107   return true;
  2111 //------------------------------expand_lock_node----------------------
  2112 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
  2114   Node* ctrl = lock->in(TypeFunc::Control);
  2115   Node* mem = lock->in(TypeFunc::Memory);
  2116   Node* obj = lock->obj_node();
  2117   Node* box = lock->box_node();
  2118   Node* flock = lock->fastlock_node();
  2120   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
  2122   // Make the merge point
  2123   Node *region;
  2124   Node *mem_phi;
  2125   Node *slow_path;
  2127   if (UseOptoBiasInlining) {
  2128     /*
  2129      *  See the full description in MacroAssembler::biased_locking_enter().
  2131      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
  2132      *    // The object is biased.
  2133      *    proto_node = klass->prototype_header;
  2134      *    o_node = thread | proto_node;
  2135      *    x_node = o_node ^ mark_word;
  2136      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
  2137      *      // Done.
  2138      *    } else {
  2139      *      if( (x_node & biased_lock_mask) != 0 ) {
  2140      *        // The klass's prototype header is no longer biased.
  2141      *        cas(&mark_word, mark_word, proto_node)
  2142      *        goto cas_lock;
  2143      *      } else {
  2144      *        // The klass's prototype header is still biased.
  2145      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
  2146      *          old = mark_word;
  2147      *          new = o_node;
  2148      *        } else {
  2149      *          // Different thread or anonymous biased.
  2150      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
  2151      *          new = thread | old;
  2152      *        }
  2153      *        // Try to rebias.
  2154      *        if( cas(&mark_word, old, new) == 0 ) {
  2155      *          // Done.
  2156      *        } else {
  2157      *          goto slow_path; // Failed.
  2158      *        }
  2159      *      }
  2160      *    }
  2161      *  } else {
  2162      *    // The object is not biased.
  2163      *    cas_lock:
  2164      *    if( FastLock(obj) == 0 ) {
  2165      *      // Done.
  2166      *    } else {
  2167      *      slow_path:
  2168      *      OptoRuntime::complete_monitor_locking_Java(obj);
  2169      *    }
  2170      *  }
  2171      */
  2173     region  = new (C) RegionNode(5);
  2174     // create a Phi for the memory state
  2175     mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2177     Node* fast_lock_region  = new (C) RegionNode(3);
  2178     Node* fast_lock_mem_phi = new (C) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2180     // First, check mark word for the biased lock pattern.
  2181     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  2183     // Get fast path - mark word has the biased lock pattern.
  2184     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
  2185                          markOopDesc::biased_lock_mask_in_place,
  2186                          markOopDesc::biased_lock_pattern, true);
  2187     // fast_lock_region->in(1) is set to slow path.
  2188     fast_lock_mem_phi->init_req(1, mem);
  2190     // Now check that the lock is biased to the current thread and has
  2191     // the same epoch and bias as Klass::_prototype_header.
  2193     // Special-case a fresh allocation to avoid building nodes:
  2194     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
  2195     if (klass_node == NULL) {
  2196       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  2197       klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr()));
  2198 #ifdef _LP64
  2199       if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
  2200         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
  2201         klass_node->in(1)->init_req(0, ctrl);
  2202       } else
  2203 #endif
  2204       klass_node->init_req(0, ctrl);
  2206     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
  2208     Node* thread = transform_later(new (C) ThreadLocalNode());
  2209     Node* cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
  2210     Node* o_node = transform_later(new (C) OrXNode(cast_thread, proto_node));
  2211     Node* x_node = transform_later(new (C) XorXNode(o_node, mark_node));
  2213     // Get slow path - mark word does NOT match the value.
  2214     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
  2215                                       (~markOopDesc::age_mask_in_place), 0);
  2216     // region->in(3) is set to fast path - the object is biased to the current thread.
  2217     mem_phi->init_req(3, mem);
  2220     // Mark word does NOT match the value (thread | Klass::_prototype_header).
  2223     // First, check biased pattern.
  2224     // Get fast path - _prototype_header has the same biased lock pattern.
  2225     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
  2226                           markOopDesc::biased_lock_mask_in_place, 0, true);
  2228     not_biased_ctrl = fast_lock_region->in(2); // Slow path
  2229     // fast_lock_region->in(2) - the prototype header is no longer biased
  2230     // and we have to revoke the bias on this object.
  2231     // We are going to try to reset the mark of this object to the prototype
  2232     // value and fall through to the CAS-based locking scheme.
  2233     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  2234     Node* cas = new (C) StoreXConditionalNode(not_biased_ctrl, mem, adr,
  2235                                               proto_node, mark_node);
  2236     transform_later(cas);
  2237     Node* proj = transform_later( new (C) SCMemProjNode(cas));
  2238     fast_lock_mem_phi->init_req(2, proj);
  2241     // Second, check epoch bits.
  2242     Node* rebiased_region  = new (C) RegionNode(3);
  2243     Node* old_phi = new (C) PhiNode( rebiased_region, TypeX_X);
  2244     Node* new_phi = new (C) PhiNode( rebiased_region, TypeX_X);
  2246     // Get slow path - mark word does NOT match epoch bits.
  2247     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
  2248                                       markOopDesc::epoch_mask_in_place, 0);
  2249     // The epoch of the current bias is not valid, attempt to rebias the object
  2250     // toward the current thread.
  2251     rebiased_region->init_req(2, epoch_ctrl);
  2252     old_phi->init_req(2, mark_node);
  2253     new_phi->init_req(2, o_node);
  2255     // rebiased_region->in(1) is set to fast path.
  2256     // The epoch of the current bias is still valid but we know
  2257     // nothing about the owner; it might be set or it might be clear.
  2258     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
  2259                              markOopDesc::age_mask_in_place |
  2260                              markOopDesc::epoch_mask_in_place);
  2261     Node* old = transform_later(new (C) AndXNode(mark_node, cmask));
  2262     cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
  2263     Node* new_mark = transform_later(new (C) OrXNode(cast_thread, old));
  2264     old_phi->init_req(1, old);
  2265     new_phi->init_req(1, new_mark);
  2267     transform_later(rebiased_region);
  2268     transform_later(old_phi);
  2269     transform_later(new_phi);
  2271     // Try to acquire the bias of the object using an atomic operation.
  2272     // If this fails we will go in to the runtime to revoke the object's bias.
  2273     cas = new (C) StoreXConditionalNode(rebiased_region, mem, adr,
  2274                                            new_phi, old_phi);
  2275     transform_later(cas);
  2276     proj = transform_later( new (C) SCMemProjNode(cas));
  2278     // Get slow path - Failed to CAS.
  2279     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
  2280     mem_phi->init_req(4, proj);
  2281     // region->in(4) is set to fast path - the object is rebiased to the current thread.
  2283     // Failed to CAS.
  2284     slow_path  = new (C) RegionNode(3);
  2285     Node *slow_mem = new (C) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
  2287     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
  2288     slow_mem->init_req(1, proj);
  2290     // Call CAS-based locking scheme (FastLock node).
  2292     transform_later(fast_lock_region);
  2293     transform_later(fast_lock_mem_phi);
  2295     // Get slow path - FastLock failed to lock the object.
  2296     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
  2297     mem_phi->init_req(2, fast_lock_mem_phi);
  2298     // region->in(2) is set to fast path - the object is locked to the current thread.
  2300     slow_path->init_req(2, ctrl); // Capture slow-control
  2301     slow_mem->init_req(2, fast_lock_mem_phi);
  2303     transform_later(slow_path);
  2304     transform_later(slow_mem);
  2305     // Reset lock's memory edge.
  2306     lock->set_req(TypeFunc::Memory, slow_mem);
  2308   } else {
  2309     region  = new (C) RegionNode(3);
  2310     // create a Phi for the memory state
  2311     mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2313     // Optimize test; set region slot 2
  2314     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
  2315     mem_phi->init_req(2, mem);
  2318   // Make slow path call
  2319   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
  2321   extract_call_projections(call);
  2323   // Slow path can only throw asynchronous exceptions, which are always
  2324   // de-opted.  So the compiler thinks the slow-call can never throw an
  2325   // exception.  If it DOES throw an exception we would need the debug
  2326   // info removed first (since if it throws there is no monitor).
  2327   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2328            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2330   // Capture slow path
  2331   // disconnect fall-through projection from call and create a new one
  2332   // hook up users of fall-through projection to region
  2333   Node *slow_ctrl = _fallthroughproj->clone();
  2334   transform_later(slow_ctrl);
  2335   _igvn.hash_delete(_fallthroughproj);
  2336   _fallthroughproj->disconnect_inputs(NULL, C);
  2337   region->init_req(1, slow_ctrl);
  2338   // region inputs are now complete
  2339   transform_later(region);
  2340   _igvn.replace_node(_fallthroughproj, region);
  2342   Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
  2343   mem_phi->init_req(1, memproj );
  2344   transform_later(mem_phi);
  2345   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2348 //------------------------------expand_unlock_node----------------------
  2349 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
  2351   Node* ctrl = unlock->in(TypeFunc::Control);
  2352   Node* mem = unlock->in(TypeFunc::Memory);
  2353   Node* obj = unlock->obj_node();
  2354   Node* box = unlock->box_node();
  2356   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
  2358   // No need for a null check on unlock
  2360   // Make the merge point
  2361   Node *region;
  2362   Node *mem_phi;
  2364   if (UseOptoBiasInlining) {
  2365     // Check for biased locking unlock case, which is a no-op.
  2366     // See the full description in MacroAssembler::biased_locking_exit().
  2367     region  = new (C) RegionNode(4);
  2368     // create a Phi for the memory state
  2369     mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2370     mem_phi->init_req(3, mem);
  2372     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  2373     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
  2374                          markOopDesc::biased_lock_mask_in_place,
  2375                          markOopDesc::biased_lock_pattern);
  2376   } else {
  2377     region  = new (C) RegionNode(3);
  2378     // create a Phi for the memory state
  2379     mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2382   FastUnlockNode *funlock = new (C) FastUnlockNode( ctrl, obj, box );
  2383   funlock = transform_later( funlock )->as_FastUnlock();
  2384   // Optimize test; set region slot 2
  2385   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
  2387   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
  2389   extract_call_projections(call);
  2391   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2392            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2394   // No exceptions for unlocking
  2395   // Capture slow path
  2396   // disconnect fall-through projection from call and create a new one
  2397   // hook up users of fall-through projection to region
  2398   Node *slow_ctrl = _fallthroughproj->clone();
  2399   transform_later(slow_ctrl);
  2400   _igvn.hash_delete(_fallthroughproj);
  2401   _fallthroughproj->disconnect_inputs(NULL, C);
  2402   region->init_req(1, slow_ctrl);
  2403   // region inputs are now complete
  2404   transform_later(region);
  2405   _igvn.replace_node(_fallthroughproj, region);
  2407   Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
  2408   mem_phi->init_req(1, memproj );
  2409   mem_phi->init_req(2, mem);
  2410   transform_later(mem_phi);
  2411   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2414 //---------------------------eliminate_macro_nodes----------------------
  2415 // Eliminate scalar replaced allocations and associated locks.
  2416 void PhaseMacroExpand::eliminate_macro_nodes() {
  2417   if (C->macro_count() == 0)
  2418     return;
  2420   // First, attempt to eliminate locks
  2421   int cnt = C->macro_count();
  2422   for (int i=0; i < cnt; i++) {
  2423     Node *n = C->macro_node(i);
  2424     if (n->is_AbstractLock()) { // Lock and Unlock nodes
  2425       // Before elimination mark all associated (same box and obj)
  2426       // lock and unlock nodes.
  2427       mark_eliminated_locking_nodes(n->as_AbstractLock());
  2430   bool progress = true;
  2431   while (progress) {
  2432     progress = false;
  2433     for (int i = C->macro_count(); i > 0; i--) {
  2434       Node * n = C->macro_node(i-1);
  2435       bool success = false;
  2436       debug_only(int old_macro_count = C->macro_count(););
  2437       if (n->is_AbstractLock()) {
  2438         success = eliminate_locking_node(n->as_AbstractLock());
  2440       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2441       progress = progress || success;
  2444   // Next, attempt to eliminate allocations
  2445   _has_locks = false;
  2446   progress = true;
  2447   while (progress) {
  2448     progress = false;
  2449     for (int i = C->macro_count(); i > 0; i--) {
  2450       Node * n = C->macro_node(i-1);
  2451       bool success = false;
  2452       debug_only(int old_macro_count = C->macro_count(););
  2453       switch (n->class_id()) {
  2454       case Node::Class_Allocate:
  2455       case Node::Class_AllocateArray:
  2456         success = eliminate_allocate_node(n->as_Allocate());
  2457         break;
  2458       case Node::Class_CallStaticJava:
  2459         success = eliminate_boxing_node(n->as_CallStaticJava());
  2460         break;
  2461       case Node::Class_Lock:
  2462       case Node::Class_Unlock:
  2463         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
  2464         _has_locks = true;
  2465         break;
  2466       default:
  2467         assert(n->Opcode() == Op_LoopLimit ||
  2468                n->Opcode() == Op_Opaque1   ||
  2469                n->Opcode() == Op_Opaque2   ||
  2470                n->Opcode() == Op_Opaque3, "unknown node type in macro list");
  2472       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2473       progress = progress || success;
  2478 //------------------------------expand_macro_nodes----------------------
  2479 //  Returns true if a failure occurred.
  2480 bool PhaseMacroExpand::expand_macro_nodes() {
  2481   // Last attempt to eliminate macro nodes.
  2482   eliminate_macro_nodes();
  2484   // Make sure expansion will not cause node limit to be exceeded.
  2485   // Worst case is a macro node gets expanded into about 50 nodes.
  2486   // Allow 50% more for optimization.
  2487   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
  2488     return true;
  2490   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
  2491   bool progress = true;
  2492   while (progress) {
  2493     progress = false;
  2494     for (int i = C->macro_count(); i > 0; i--) {
  2495       Node * n = C->macro_node(i-1);
  2496       bool success = false;
  2497       debug_only(int old_macro_count = C->macro_count(););
  2498       if (n->Opcode() == Op_LoopLimit) {
  2499         // Remove it from macro list and put on IGVN worklist to optimize.
  2500         C->remove_macro_node(n);
  2501         _igvn._worklist.push(n);
  2502         success = true;
  2503       } else if (n->Opcode() == Op_CallStaticJava) {
  2504         // Remove it from macro list and put on IGVN worklist to optimize.
  2505         C->remove_macro_node(n);
  2506         _igvn._worklist.push(n);
  2507         success = true;
  2508       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
  2509         _igvn.replace_node(n, n->in(1));
  2510         success = true;
  2511 #if INCLUDE_RTM_OPT
  2512       } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
  2513         assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
  2514         assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
  2515         Node* cmp = n->unique_out();
  2516 #ifdef ASSERT
  2517         // Validate graph.
  2518         assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
  2519         BoolNode* bol = cmp->unique_out()->as_Bool();
  2520         assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
  2521                (bol->_test._test == BoolTest::ne), "");
  2522         IfNode* ifn = bol->unique_out()->as_If();
  2523         assert((ifn->outcnt() == 2) &&
  2524                ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change), "");
  2525 #endif
  2526         Node* repl = n->in(1);
  2527         if (!_has_locks) {
  2528           // Remove RTM state check if there are no locks in the code.
  2529           // Replace input to compare the same value.
  2530           repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
  2532         _igvn.replace_node(n, repl);
  2533         success = true;
  2534 #endif
  2536       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2537       progress = progress || success;
  2541   // expand "macro" nodes
  2542   // nodes are removed from the macro list as they are processed
  2543   while (C->macro_count() > 0) {
  2544     int macro_count = C->macro_count();
  2545     Node * n = C->macro_node(macro_count-1);
  2546     assert(n->is_macro(), "only macro nodes expected here");
  2547     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
  2548       // node is unreachable, so don't try to expand it
  2549       C->remove_macro_node(n);
  2550       continue;
  2552     switch (n->class_id()) {
  2553     case Node::Class_Allocate:
  2554       expand_allocate(n->as_Allocate());
  2555       break;
  2556     case Node::Class_AllocateArray:
  2557       expand_allocate_array(n->as_AllocateArray());
  2558       break;
  2559     case Node::Class_Lock:
  2560       expand_lock_node(n->as_Lock());
  2561       break;
  2562     case Node::Class_Unlock:
  2563       expand_unlock_node(n->as_Unlock());
  2564       break;
  2565     default:
  2566       assert(false, "unknown node type in macro list");
  2568     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
  2569     if (C->failing())  return true;
  2572   _igvn.set_delay_transform(false);
  2573   _igvn.optimize();
  2574   if (C->failing())  return true;
  2575   return false;

mercurial