src/share/vm/opto/macro.cpp

Fri, 14 Mar 2008 16:40:42 -0700

author
kvn
date
Fri, 14 Mar 2008 16:40:42 -0700
changeset 501
6dbf1a175d6b
parent 498
eac007780a58
child 508
a8880a78d355
permissions
-rw-r--r--

6672848: (Escape Analysis) improve lock elimination with EA
Summary: Remove lock/unlock MemBar nodes and specify locks in debug info for deoptimization.
Reviewed-by: never

duke@435 1 /*
duke@435 2 * Copyright 2005-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_macro.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 //
duke@435 30 // Replace any references to "oldref" in inputs to "use" with "newref".
duke@435 31 // Returns the number of replacements made.
duke@435 32 //
duke@435 33 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
duke@435 34 int nreplacements = 0;
duke@435 35 uint req = use->req();
duke@435 36 for (uint j = 0; j < use->len(); j++) {
duke@435 37 Node *uin = use->in(j);
duke@435 38 if (uin == oldref) {
duke@435 39 if (j < req)
duke@435 40 use->set_req(j, newref);
duke@435 41 else
duke@435 42 use->set_prec(j, newref);
duke@435 43 nreplacements++;
duke@435 44 } else if (j >= req && uin == NULL) {
duke@435 45 break;
duke@435 46 }
duke@435 47 }
duke@435 48 return nreplacements;
duke@435 49 }
duke@435 50
duke@435 51 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
duke@435 52 // Copy debug information and adjust JVMState information
duke@435 53 uint old_dbg_start = oldcall->tf()->domain()->cnt();
duke@435 54 uint new_dbg_start = newcall->tf()->domain()->cnt();
duke@435 55 int jvms_adj = new_dbg_start - old_dbg_start;
duke@435 56 assert (new_dbg_start == newcall->req(), "argument count mismatch");
kvn@498 57
kvn@498 58 Dict* sosn_map = new Dict(cmpkey,hashkey);
duke@435 59 for (uint i = old_dbg_start; i < oldcall->req(); i++) {
kvn@498 60 Node* old_in = oldcall->in(i);
kvn@498 61 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
kvn@498 62 if (old_in->is_SafePointScalarObject()) {
kvn@498 63 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
kvn@498 64 uint old_unique = C->unique();
kvn@498 65 Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
kvn@498 66 if (old_unique != C->unique()) {
kvn@498 67 new_in = transform_later(new_in); // Register new node.
kvn@498 68 }
kvn@498 69 old_in = new_in;
kvn@498 70 }
kvn@498 71 newcall->add_req(old_in);
duke@435 72 }
kvn@498 73
duke@435 74 newcall->set_jvms(oldcall->jvms());
duke@435 75 for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@435 76 jvms->set_map(newcall);
duke@435 77 jvms->set_locoff(jvms->locoff()+jvms_adj);
duke@435 78 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
duke@435 79 jvms->set_monoff(jvms->monoff()+jvms_adj);
kvn@498 80 jvms->set_scloff(jvms->scloff()+jvms_adj);
duke@435 81 jvms->set_endoff(jvms->endoff()+jvms_adj);
duke@435 82 }
duke@435 83 }
duke@435 84
duke@435 85 Node* PhaseMacroExpand::opt_iff(Node* region, Node* iff) {
duke@435 86 IfNode *opt_iff = transform_later(iff)->as_If();
duke@435 87
duke@435 88 // Fast path taken; set region slot 2
duke@435 89 Node *fast_taken = transform_later( new (C, 1) IfFalseNode(opt_iff) );
duke@435 90 region->init_req(2,fast_taken); // Capture fast-control
duke@435 91
duke@435 92 // Fast path not-taken, i.e. slow path
duke@435 93 Node *slow_taken = transform_later( new (C, 1) IfTrueNode(opt_iff) );
duke@435 94 return slow_taken;
duke@435 95 }
duke@435 96
duke@435 97 //--------------------copy_predefined_input_for_runtime_call--------------------
duke@435 98 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
duke@435 99 // Set fixed predefined input arguments
duke@435 100 call->init_req( TypeFunc::Control, ctrl );
duke@435 101 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) );
duke@435 102 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
duke@435 103 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
duke@435 104 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
duke@435 105 }
duke@435 106
duke@435 107 //------------------------------make_slow_call---------------------------------
duke@435 108 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
duke@435 109
duke@435 110 // Slow-path call
duke@435 111 int size = slow_call_type->domain()->cnt();
duke@435 112 CallNode *call = leaf_name
duke@435 113 ? (CallNode*)new (C, size) CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
duke@435 114 : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
duke@435 115
duke@435 116 // Slow path call has no side-effects, uses few values
duke@435 117 copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
duke@435 118 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
duke@435 119 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
duke@435 120 copy_call_debug_info(oldcall, call);
duke@435 121 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
duke@435 122 _igvn.hash_delete(oldcall);
duke@435 123 _igvn.subsume_node(oldcall, call);
duke@435 124 transform_later(call);
duke@435 125
duke@435 126 return call;
duke@435 127 }
duke@435 128
duke@435 129 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
duke@435 130 _fallthroughproj = NULL;
duke@435 131 _fallthroughcatchproj = NULL;
duke@435 132 _ioproj_fallthrough = NULL;
duke@435 133 _ioproj_catchall = NULL;
duke@435 134 _catchallcatchproj = NULL;
duke@435 135 _memproj_fallthrough = NULL;
duke@435 136 _memproj_catchall = NULL;
duke@435 137 _resproj = NULL;
duke@435 138 for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
duke@435 139 ProjNode *pn = call->fast_out(i)->as_Proj();
duke@435 140 switch (pn->_con) {
duke@435 141 case TypeFunc::Control:
duke@435 142 {
duke@435 143 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
duke@435 144 _fallthroughproj = pn;
duke@435 145 DUIterator_Fast jmax, j = pn->fast_outs(jmax);
duke@435 146 const Node *cn = pn->fast_out(j);
duke@435 147 if (cn->is_Catch()) {
duke@435 148 ProjNode *cpn = NULL;
duke@435 149 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
duke@435 150 cpn = cn->fast_out(k)->as_Proj();
duke@435 151 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
duke@435 152 if (cpn->_con == CatchProjNode::fall_through_index)
duke@435 153 _fallthroughcatchproj = cpn;
duke@435 154 else {
duke@435 155 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
duke@435 156 _catchallcatchproj = cpn;
duke@435 157 }
duke@435 158 }
duke@435 159 }
duke@435 160 break;
duke@435 161 }
duke@435 162 case TypeFunc::I_O:
duke@435 163 if (pn->_is_io_use)
duke@435 164 _ioproj_catchall = pn;
duke@435 165 else
duke@435 166 _ioproj_fallthrough = pn;
duke@435 167 break;
duke@435 168 case TypeFunc::Memory:
duke@435 169 if (pn->_is_io_use)
duke@435 170 _memproj_catchall = pn;
duke@435 171 else
duke@435 172 _memproj_fallthrough = pn;
duke@435 173 break;
duke@435 174 case TypeFunc::Parms:
duke@435 175 _resproj = pn;
duke@435 176 break;
duke@435 177 default:
duke@435 178 assert(false, "unexpected projection from allocation node.");
duke@435 179 }
duke@435 180 }
duke@435 181
duke@435 182 }
duke@435 183
duke@435 184
duke@435 185 //---------------------------set_eden_pointers-------------------------
duke@435 186 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
duke@435 187 if (UseTLAB) { // Private allocation: load from TLS
duke@435 188 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
duke@435 189 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
duke@435 190 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
duke@435 191 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
duke@435 192 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
duke@435 193 } else { // Shared allocation: load from globals
duke@435 194 CollectedHeap* ch = Universe::heap();
duke@435 195 address top_adr = (address)ch->top_addr();
duke@435 196 address end_adr = (address)ch->end_addr();
duke@435 197 eden_top_adr = makecon(TypeRawPtr::make(top_adr));
duke@435 198 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
duke@435 199 }
duke@435 200 }
duke@435 201
duke@435 202
duke@435 203 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
duke@435 204 Node* adr = basic_plus_adr(base, offset);
duke@435 205 const TypePtr* adr_type = TypeRawPtr::BOTTOM;
duke@435 206 Node* value = LoadNode::make(C, ctl, mem, adr, adr_type, value_type, bt);
duke@435 207 transform_later(value);
duke@435 208 return value;
duke@435 209 }
duke@435 210
duke@435 211
duke@435 212 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
duke@435 213 Node* adr = basic_plus_adr(base, offset);
duke@435 214 mem = StoreNode::make(C, ctl, mem, adr, NULL, value, bt);
duke@435 215 transform_later(mem);
duke@435 216 return mem;
duke@435 217 }
duke@435 218
duke@435 219 //=============================================================================
duke@435 220 //
duke@435 221 // A L L O C A T I O N
duke@435 222 //
duke@435 223 // Allocation attempts to be fast in the case of frequent small objects.
duke@435 224 // It breaks down like this:
duke@435 225 //
duke@435 226 // 1) Size in doublewords is computed. This is a constant for objects and
duke@435 227 // variable for most arrays. Doubleword units are used to avoid size
duke@435 228 // overflow of huge doubleword arrays. We need doublewords in the end for
duke@435 229 // rounding.
duke@435 230 //
duke@435 231 // 2) Size is checked for being 'too large'. Too-large allocations will go
duke@435 232 // the slow path into the VM. The slow path can throw any required
duke@435 233 // exceptions, and does all the special checks for very large arrays. The
duke@435 234 // size test can constant-fold away for objects. For objects with
duke@435 235 // finalizers it constant-folds the otherway: you always go slow with
duke@435 236 // finalizers.
duke@435 237 //
duke@435 238 // 3) If NOT using TLABs, this is the contended loop-back point.
duke@435 239 // Load-Locked the heap top. If using TLABs normal-load the heap top.
duke@435 240 //
duke@435 241 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route.
duke@435 242 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish
duke@435 243 // "size*8" we always enter the VM, where "largish" is a constant picked small
duke@435 244 // enough that there's always space between the eden max and 4Gig (old space is
duke@435 245 // there so it's quite large) and large enough that the cost of entering the VM
duke@435 246 // is dwarfed by the cost to initialize the space.
duke@435 247 //
duke@435 248 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
duke@435 249 // down. If contended, repeat at step 3. If using TLABs normal-store
duke@435 250 // adjusted heap top back down; there is no contention.
duke@435 251 //
duke@435 252 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark
duke@435 253 // fields.
duke@435 254 //
duke@435 255 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
duke@435 256 // oop flavor.
duke@435 257 //
duke@435 258 //=============================================================================
duke@435 259 // FastAllocateSizeLimit value is in DOUBLEWORDS.
duke@435 260 // Allocations bigger than this always go the slow route.
duke@435 261 // This value must be small enough that allocation attempts that need to
duke@435 262 // trigger exceptions go the slow route. Also, it must be small enough so
duke@435 263 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
duke@435 264 //=============================================================================j//
duke@435 265 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
duke@435 266 // The allocator will coalesce int->oop copies away. See comment in
duke@435 267 // coalesce.cpp about how this works. It depends critically on the exact
duke@435 268 // code shape produced here, so if you are changing this code shape
duke@435 269 // make sure the GC info for the heap-top is correct in and around the
duke@435 270 // slow-path call.
duke@435 271 //
duke@435 272
duke@435 273 void PhaseMacroExpand::expand_allocate_common(
duke@435 274 AllocateNode* alloc, // allocation node to be expanded
duke@435 275 Node* length, // array length for an array allocation
duke@435 276 const TypeFunc* slow_call_type, // Type of slow call
duke@435 277 address slow_call_address // Address of slow call
duke@435 278 )
duke@435 279 {
duke@435 280
duke@435 281 Node* ctrl = alloc->in(TypeFunc::Control);
duke@435 282 Node* mem = alloc->in(TypeFunc::Memory);
duke@435 283 Node* i_o = alloc->in(TypeFunc::I_O);
duke@435 284 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize);
duke@435 285 Node* klass_node = alloc->in(AllocateNode::KlassNode);
duke@435 286 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
duke@435 287
duke@435 288 Node* eden_top_adr;
duke@435 289 Node* eden_end_adr;
duke@435 290 set_eden_pointers(eden_top_adr, eden_end_adr);
duke@435 291
duke@435 292 uint raw_idx = C->get_alias_index(TypeRawPtr::BOTTOM);
duke@435 293 assert(ctrl != NULL, "must have control");
duke@435 294
duke@435 295 // Load Eden::end. Loop invariant and hoisted.
duke@435 296 //
duke@435 297 // Note: We set the control input on "eden_end" and "old_eden_top" when using
duke@435 298 // a TLAB to work around a bug where these values were being moved across
duke@435 299 // a safepoint. These are not oops, so they cannot be include in the oop
duke@435 300 // map, but the can be changed by a GC. The proper way to fix this would
duke@435 301 // be to set the raw memory state when generating a SafepointNode. However
duke@435 302 // this will require extensive changes to the loop optimization in order to
duke@435 303 // prevent a degradation of the optimization.
duke@435 304 // See comment in memnode.hpp, around line 227 in class LoadPNode.
duke@435 305 Node* eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 306
duke@435 307 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
duke@435 308 // they will not be used if "always_slow" is set
duke@435 309 enum { slow_result_path = 1, fast_result_path = 2 };
duke@435 310 Node *result_region;
duke@435 311 Node *result_phi_rawmem;
duke@435 312 Node *result_phi_rawoop;
duke@435 313 Node *result_phi_i_o;
duke@435 314
duke@435 315 // The initial slow comparison is a size check, the comparison
duke@435 316 // we want to do is a BoolTest::gt
duke@435 317 bool always_slow = false;
duke@435 318 int tv = _igvn.find_int_con(initial_slow_test, -1);
duke@435 319 if (tv >= 0) {
duke@435 320 always_slow = (tv == 1);
duke@435 321 initial_slow_test = NULL;
duke@435 322 } else {
duke@435 323 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
duke@435 324 }
duke@435 325
duke@435 326 if (DTraceAllocProbes) {
duke@435 327 // Force slow-path allocation
duke@435 328 always_slow = true;
duke@435 329 initial_slow_test = NULL;
duke@435 330 }
duke@435 331
duke@435 332 enum { too_big_or_final_path = 1, need_gc_path = 2 };
duke@435 333 Node *slow_region = NULL;
duke@435 334 Node *toobig_false = ctrl;
duke@435 335
duke@435 336 assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
duke@435 337 // generate the initial test if necessary
duke@435 338 if (initial_slow_test != NULL ) {
duke@435 339 slow_region = new (C, 3) RegionNode(3);
duke@435 340
duke@435 341 // Now make the initial failure test. Usually a too-big test but
duke@435 342 // might be a TRUE for finalizers or a fancy class check for
duke@435 343 // newInstance0.
duke@435 344 IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
duke@435 345 transform_later(toobig_iff);
duke@435 346 // Plug the failing-too-big test into the slow-path region
duke@435 347 Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
duke@435 348 transform_later(toobig_true);
duke@435 349 slow_region ->init_req( too_big_or_final_path, toobig_true );
duke@435 350 toobig_false = new (C, 1) IfFalseNode( toobig_iff );
duke@435 351 transform_later(toobig_false);
duke@435 352 } else { // No initial test, just fall into next case
duke@435 353 toobig_false = ctrl;
duke@435 354 debug_only(slow_region = NodeSentinel);
duke@435 355 }
duke@435 356
duke@435 357 Node *slow_mem = mem; // save the current memory state for slow path
duke@435 358 // generate the fast allocation code unless we know that the initial test will always go slow
duke@435 359 if (!always_slow) {
duke@435 360 // allocate the Region and Phi nodes for the result
duke@435 361 result_region = new (C, 3) RegionNode(3);
duke@435 362 result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
duke@435 363 result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
duke@435 364 result_phi_i_o = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
duke@435 365
duke@435 366 // We need a Region for the loop-back contended case.
duke@435 367 enum { fall_in_path = 1, contended_loopback_path = 2 };
duke@435 368 Node *contended_region;
duke@435 369 Node *contended_phi_rawmem;
duke@435 370 if( UseTLAB ) {
duke@435 371 contended_region = toobig_false;
duke@435 372 contended_phi_rawmem = mem;
duke@435 373 } else {
duke@435 374 contended_region = new (C, 3) RegionNode(3);
duke@435 375 contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 376 // Now handle the passing-too-big test. We fall into the contended
duke@435 377 // loop-back merge point.
duke@435 378 contended_region ->init_req( fall_in_path, toobig_false );
duke@435 379 contended_phi_rawmem->init_req( fall_in_path, mem );
duke@435 380 transform_later(contended_region);
duke@435 381 transform_later(contended_phi_rawmem);
duke@435 382 }
duke@435 383
duke@435 384 // Load(-locked) the heap top.
duke@435 385 // See note above concerning the control input when using a TLAB
duke@435 386 Node *old_eden_top = UseTLAB
duke@435 387 ? new (C, 3) LoadPNode ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
duke@435 388 : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
duke@435 389
duke@435 390 transform_later(old_eden_top);
duke@435 391 // Add to heap top to get a new heap top
duke@435 392 Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
duke@435 393 transform_later(new_eden_top);
duke@435 394 // Check for needing a GC; compare against heap end
duke@435 395 Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
duke@435 396 transform_later(needgc_cmp);
duke@435 397 Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
duke@435 398 transform_later(needgc_bol);
duke@435 399 IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 400 transform_later(needgc_iff);
duke@435 401
duke@435 402 // Plug the failing-heap-space-need-gc test into the slow-path region
duke@435 403 Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
duke@435 404 transform_later(needgc_true);
duke@435 405 if( initial_slow_test ) {
duke@435 406 slow_region ->init_req( need_gc_path, needgc_true );
duke@435 407 // This completes all paths into the slow merge point
duke@435 408 transform_later(slow_region);
duke@435 409 } else { // No initial slow path needed!
duke@435 410 // Just fall from the need-GC path straight into the VM call.
duke@435 411 slow_region = needgc_true;
duke@435 412 }
duke@435 413 // No need for a GC. Setup for the Store-Conditional
duke@435 414 Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
duke@435 415 transform_later(needgc_false);
duke@435 416
duke@435 417 // Grab regular I/O before optional prefetch may change it.
duke@435 418 // Slow-path does no I/O so just set it to the original I/O.
duke@435 419 result_phi_i_o->init_req( slow_result_path, i_o );
duke@435 420
duke@435 421 i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
duke@435 422 old_eden_top, new_eden_top, length);
duke@435 423
duke@435 424 // Store (-conditional) the modified eden top back down.
duke@435 425 // StorePConditional produces flags for a test PLUS a modified raw
duke@435 426 // memory state.
duke@435 427 Node *store_eden_top;
duke@435 428 Node *fast_oop_ctrl;
duke@435 429 if( UseTLAB ) {
duke@435 430 store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
duke@435 431 transform_later(store_eden_top);
duke@435 432 fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
duke@435 433 } else {
duke@435 434 store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
duke@435 435 transform_later(store_eden_top);
duke@435 436 Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
duke@435 437 transform_later(contention_check);
duke@435 438 store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
duke@435 439 transform_later(store_eden_top);
duke@435 440
duke@435 441 // If not using TLABs, check to see if there was contention.
duke@435 442 IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
duke@435 443 transform_later(contention_iff);
duke@435 444 Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
duke@435 445 transform_later(contention_true);
duke@435 446 // If contention, loopback and try again.
duke@435 447 contended_region->init_req( contended_loopback_path, contention_true );
duke@435 448 contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
duke@435 449
duke@435 450 // Fast-path succeeded with no contention!
duke@435 451 Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
duke@435 452 transform_later(contention_false);
duke@435 453 fast_oop_ctrl = contention_false;
duke@435 454 }
duke@435 455
duke@435 456 // Rename successful fast-path variables to make meaning more obvious
duke@435 457 Node* fast_oop = old_eden_top;
duke@435 458 Node* fast_oop_rawmem = store_eden_top;
duke@435 459 fast_oop_rawmem = initialize_object(alloc,
duke@435 460 fast_oop_ctrl, fast_oop_rawmem, fast_oop,
duke@435 461 klass_node, length, size_in_bytes);
duke@435 462
duke@435 463 if (ExtendedDTraceProbes) {
duke@435 464 // Slow-path call
duke@435 465 int size = TypeFunc::Parms + 2;
duke@435 466 CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
duke@435 467 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
duke@435 468 "dtrace_object_alloc",
duke@435 469 TypeRawPtr::BOTTOM);
duke@435 470
duke@435 471 // Get base of thread-local storage area
duke@435 472 Node* thread = new (C, 1) ThreadLocalNode();
duke@435 473 transform_later(thread);
duke@435 474
duke@435 475 call->init_req(TypeFunc::Parms+0, thread);
duke@435 476 call->init_req(TypeFunc::Parms+1, fast_oop);
duke@435 477 call->init_req( TypeFunc::Control, fast_oop_ctrl );
duke@435 478 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 479 call->init_req( TypeFunc::Memory , fast_oop_rawmem );
duke@435 480 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 481 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 482 transform_later(call);
duke@435 483 fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
duke@435 484 transform_later(fast_oop_ctrl);
duke@435 485 fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
duke@435 486 transform_later(fast_oop_rawmem);
duke@435 487 }
duke@435 488
duke@435 489 // Plug in the successful fast-path into the result merge point
duke@435 490 result_region ->init_req( fast_result_path, fast_oop_ctrl );
duke@435 491 result_phi_rawoop->init_req( fast_result_path, fast_oop );
duke@435 492 result_phi_i_o ->init_req( fast_result_path, i_o );
duke@435 493 result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
duke@435 494 } else {
duke@435 495 slow_region = ctrl;
duke@435 496 }
duke@435 497
duke@435 498 // Generate slow-path call
duke@435 499 CallNode *call = new (C, slow_call_type->domain()->cnt())
duke@435 500 CallStaticJavaNode(slow_call_type, slow_call_address,
duke@435 501 OptoRuntime::stub_name(slow_call_address),
duke@435 502 alloc->jvms()->bci(),
duke@435 503 TypePtr::BOTTOM);
duke@435 504 call->init_req( TypeFunc::Control, slow_region );
duke@435 505 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 506 call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
duke@435 507 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 508 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 509
duke@435 510 call->init_req(TypeFunc::Parms+0, klass_node);
duke@435 511 if (length != NULL) {
duke@435 512 call->init_req(TypeFunc::Parms+1, length);
duke@435 513 }
duke@435 514
duke@435 515 // Copy debug information and adjust JVMState information, then replace
duke@435 516 // allocate node with the call
duke@435 517 copy_call_debug_info((CallNode *) alloc, call);
duke@435 518 if (!always_slow) {
duke@435 519 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
duke@435 520 }
duke@435 521 _igvn.hash_delete(alloc);
duke@435 522 _igvn.subsume_node(alloc, call);
duke@435 523 transform_later(call);
duke@435 524
duke@435 525 // Identify the output projections from the allocate node and
duke@435 526 // adjust any references to them.
duke@435 527 // The control and io projections look like:
duke@435 528 //
duke@435 529 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl)
duke@435 530 // Allocate Catch
duke@435 531 // ^---Proj(io) <-------+ ^---CatchProj(io)
duke@435 532 //
duke@435 533 // We are interested in the CatchProj nodes.
duke@435 534 //
duke@435 535 extract_call_projections(call);
duke@435 536
duke@435 537 // An allocate node has separate memory projections for the uses on the control and i_o paths
duke@435 538 // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
duke@435 539 if (!always_slow && _memproj_fallthrough != NULL) {
duke@435 540 for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 541 Node *use = _memproj_fallthrough->fast_out(i);
duke@435 542 _igvn.hash_delete(use);
duke@435 543 imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
duke@435 544 _igvn._worklist.push(use);
duke@435 545 // back up iterator
duke@435 546 --i;
duke@435 547 }
duke@435 548 }
duke@435 549 // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
duke@435 550 // we end up with a call that has only 1 memory projection
duke@435 551 if (_memproj_catchall != NULL ) {
duke@435 552 if (_memproj_fallthrough == NULL) {
duke@435 553 _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
duke@435 554 transform_later(_memproj_fallthrough);
duke@435 555 }
duke@435 556 for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 557 Node *use = _memproj_catchall->fast_out(i);
duke@435 558 _igvn.hash_delete(use);
duke@435 559 imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
duke@435 560 _igvn._worklist.push(use);
duke@435 561 // back up iterator
duke@435 562 --i;
duke@435 563 }
duke@435 564 }
duke@435 565
duke@435 566 mem = result_phi_rawmem;
duke@435 567
duke@435 568 // An allocate node has separate i_o projections for the uses on the control and i_o paths
duke@435 569 // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
duke@435 570 if (_ioproj_fallthrough == NULL) {
duke@435 571 _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
duke@435 572 transform_later(_ioproj_fallthrough);
duke@435 573 } else if (!always_slow) {
duke@435 574 for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 575 Node *use = _ioproj_fallthrough->fast_out(i);
duke@435 576
duke@435 577 _igvn.hash_delete(use);
duke@435 578 imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
duke@435 579 _igvn._worklist.push(use);
duke@435 580 // back up iterator
duke@435 581 --i;
duke@435 582 }
duke@435 583 }
duke@435 584 // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
duke@435 585 // we end up with a call that has only 1 control projection
duke@435 586 if (_ioproj_catchall != NULL ) {
duke@435 587 for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 588 Node *use = _ioproj_catchall->fast_out(i);
duke@435 589 _igvn.hash_delete(use);
duke@435 590 imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
duke@435 591 _igvn._worklist.push(use);
duke@435 592 // back up iterator
duke@435 593 --i;
duke@435 594 }
duke@435 595 }
duke@435 596
duke@435 597 // if we generated only a slow call, we are done
duke@435 598 if (always_slow)
duke@435 599 return;
duke@435 600
duke@435 601
duke@435 602 if (_fallthroughcatchproj != NULL) {
duke@435 603 ctrl = _fallthroughcatchproj->clone();
duke@435 604 transform_later(ctrl);
duke@435 605 _igvn.hash_delete(_fallthroughcatchproj);
duke@435 606 _igvn.subsume_node(_fallthroughcatchproj, result_region);
duke@435 607 } else {
duke@435 608 ctrl = top();
duke@435 609 }
duke@435 610 Node *slow_result;
duke@435 611 if (_resproj == NULL) {
duke@435 612 // no uses of the allocation result
duke@435 613 slow_result = top();
duke@435 614 } else {
duke@435 615 slow_result = _resproj->clone();
duke@435 616 transform_later(slow_result);
duke@435 617 _igvn.hash_delete(_resproj);
duke@435 618 _igvn.subsume_node(_resproj, result_phi_rawoop);
duke@435 619 }
duke@435 620
duke@435 621 // Plug slow-path into result merge point
duke@435 622 result_region ->init_req( slow_result_path, ctrl );
duke@435 623 result_phi_rawoop->init_req( slow_result_path, slow_result);
duke@435 624 result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
duke@435 625 transform_later(result_region);
duke@435 626 transform_later(result_phi_rawoop);
duke@435 627 transform_later(result_phi_rawmem);
duke@435 628 transform_later(result_phi_i_o);
duke@435 629 // This completes all paths into the result merge point
duke@435 630 }
duke@435 631
duke@435 632
duke@435 633 // Helper for PhaseMacroExpand::expand_allocate_common.
duke@435 634 // Initializes the newly-allocated storage.
duke@435 635 Node*
duke@435 636 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
duke@435 637 Node* control, Node* rawmem, Node* object,
duke@435 638 Node* klass_node, Node* length,
duke@435 639 Node* size_in_bytes) {
duke@435 640 InitializeNode* init = alloc->initialization();
duke@435 641 // Store the klass & mark bits
duke@435 642 Node* mark_node = NULL;
duke@435 643 // For now only enable fast locking for non-array types
duke@435 644 if (UseBiasedLocking && (length == NULL)) {
duke@435 645 mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 646 } else {
duke@435 647 mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
duke@435 648 }
duke@435 649 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
duke@435 650 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
duke@435 651 int header_size = alloc->minimum_header_size(); // conservatively small
duke@435 652
duke@435 653 // Array length
duke@435 654 if (length != NULL) { // Arrays need length field
duke@435 655 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
duke@435 656 // conservatively small header size:
duke@435 657 header_size = sizeof(arrayOopDesc);
duke@435 658 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
duke@435 659 if (k->is_array_klass()) // we know the exact header size in most cases:
duke@435 660 header_size = Klass::layout_helper_header_size(k->layout_helper());
duke@435 661 }
duke@435 662
duke@435 663 // Clear the object body, if necessary.
duke@435 664 if (init == NULL) {
duke@435 665 // The init has somehow disappeared; be cautious and clear everything.
duke@435 666 //
duke@435 667 // This can happen if a node is allocated but an uncommon trap occurs
duke@435 668 // immediately. In this case, the Initialize gets associated with the
duke@435 669 // trap, and may be placed in a different (outer) loop, if the Allocate
duke@435 670 // is in a loop. If (this is rare) the inner loop gets unrolled, then
duke@435 671 // there can be two Allocates to one Initialize. The answer in all these
duke@435 672 // edge cases is safety first. It is always safe to clear immediately
duke@435 673 // within an Allocate, and then (maybe or maybe not) clear some more later.
duke@435 674 if (!ZeroTLAB)
duke@435 675 rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
duke@435 676 header_size, size_in_bytes,
duke@435 677 &_igvn);
duke@435 678 } else {
duke@435 679 if (!init->is_complete()) {
duke@435 680 // Try to win by zeroing only what the init does not store.
duke@435 681 // We can also try to do some peephole optimizations,
duke@435 682 // such as combining some adjacent subword stores.
duke@435 683 rawmem = init->complete_stores(control, rawmem, object,
duke@435 684 header_size, size_in_bytes, &_igvn);
duke@435 685 }
duke@435 686
duke@435 687 // We have no more use for this link, since the AllocateNode goes away:
duke@435 688 init->set_req(InitializeNode::RawAddress, top());
duke@435 689 // (If we keep the link, it just confuses the register allocator,
duke@435 690 // who thinks he sees a real use of the address by the membar.)
duke@435 691 }
duke@435 692
duke@435 693 return rawmem;
duke@435 694 }
duke@435 695
duke@435 696 // Generate prefetch instructions for next allocations.
duke@435 697 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
duke@435 698 Node*& contended_phi_rawmem,
duke@435 699 Node* old_eden_top, Node* new_eden_top,
duke@435 700 Node* length) {
duke@435 701 if( UseTLAB && AllocatePrefetchStyle == 2 ) {
duke@435 702 // Generate prefetch allocation with watermark check.
duke@435 703 // As an allocation hits the watermark, we will prefetch starting
duke@435 704 // at a "distance" away from watermark.
duke@435 705 enum { fall_in_path = 1, pf_path = 2 };
duke@435 706
duke@435 707 Node *pf_region = new (C, 3) RegionNode(3);
duke@435 708 Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
duke@435 709 TypeRawPtr::BOTTOM );
duke@435 710 // I/O is used for Prefetch
duke@435 711 Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
duke@435 712
duke@435 713 Node *thread = new (C, 1) ThreadLocalNode();
duke@435 714 transform_later(thread);
duke@435 715
duke@435 716 Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
duke@435 717 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
duke@435 718 transform_later(eden_pf_adr);
duke@435 719
duke@435 720 Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
duke@435 721 contended_phi_rawmem, eden_pf_adr,
duke@435 722 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
duke@435 723 transform_later(old_pf_wm);
duke@435 724
duke@435 725 // check against new_eden_top
duke@435 726 Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
duke@435 727 transform_later(need_pf_cmp);
duke@435 728 Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
duke@435 729 transform_later(need_pf_bol);
duke@435 730 IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
duke@435 731 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 732 transform_later(need_pf_iff);
duke@435 733
duke@435 734 // true node, add prefetchdistance
duke@435 735 Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
duke@435 736 transform_later(need_pf_true);
duke@435 737
duke@435 738 Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
duke@435 739 transform_later(need_pf_false);
duke@435 740
duke@435 741 Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
duke@435 742 _igvn.MakeConX(AllocatePrefetchDistance) );
duke@435 743 transform_later(new_pf_wmt );
duke@435 744 new_pf_wmt->set_req(0, need_pf_true);
duke@435 745
duke@435 746 Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
duke@435 747 contended_phi_rawmem, eden_pf_adr,
duke@435 748 TypeRawPtr::BOTTOM, new_pf_wmt );
duke@435 749 transform_later(store_new_wmt);
duke@435 750
duke@435 751 // adding prefetches
duke@435 752 pf_phi_abio->init_req( fall_in_path, i_o );
duke@435 753
duke@435 754 Node *prefetch_adr;
duke@435 755 Node *prefetch;
duke@435 756 uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
duke@435 757 uint step_size = AllocatePrefetchStepSize;
duke@435 758 uint distance = 0;
duke@435 759
duke@435 760 for ( uint i = 0; i < lines; i++ ) {
duke@435 761 prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
duke@435 762 _igvn.MakeConX(distance) );
duke@435 763 transform_later(prefetch_adr);
duke@435 764 prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
duke@435 765 transform_later(prefetch);
duke@435 766 distance += step_size;
duke@435 767 i_o = prefetch;
duke@435 768 }
duke@435 769 pf_phi_abio->set_req( pf_path, i_o );
duke@435 770
duke@435 771 pf_region->init_req( fall_in_path, need_pf_false );
duke@435 772 pf_region->init_req( pf_path, need_pf_true );
duke@435 773
duke@435 774 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
duke@435 775 pf_phi_rawmem->init_req( pf_path, store_new_wmt );
duke@435 776
duke@435 777 transform_later(pf_region);
duke@435 778 transform_later(pf_phi_rawmem);
duke@435 779 transform_later(pf_phi_abio);
duke@435 780
duke@435 781 needgc_false = pf_region;
duke@435 782 contended_phi_rawmem = pf_phi_rawmem;
duke@435 783 i_o = pf_phi_abio;
duke@435 784 } else if( AllocatePrefetchStyle > 0 ) {
duke@435 785 // Insert a prefetch for each allocation only on the fast-path
duke@435 786 Node *prefetch_adr;
duke@435 787 Node *prefetch;
duke@435 788 // Generate several prefetch instructions only for arrays.
duke@435 789 uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
duke@435 790 uint step_size = AllocatePrefetchStepSize;
duke@435 791 uint distance = AllocatePrefetchDistance;
duke@435 792 for ( uint i = 0; i < lines; i++ ) {
duke@435 793 prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
duke@435 794 _igvn.MakeConX(distance) );
duke@435 795 transform_later(prefetch_adr);
duke@435 796 prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
duke@435 797 // Do not let it float too high, since if eden_top == eden_end,
duke@435 798 // both might be null.
duke@435 799 if( i == 0 ) { // Set control for first prefetch, next follows it
duke@435 800 prefetch->init_req(0, needgc_false);
duke@435 801 }
duke@435 802 transform_later(prefetch);
duke@435 803 distance += step_size;
duke@435 804 i_o = prefetch;
duke@435 805 }
duke@435 806 }
duke@435 807 return i_o;
duke@435 808 }
duke@435 809
duke@435 810
duke@435 811 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
duke@435 812 expand_allocate_common(alloc, NULL,
duke@435 813 OptoRuntime::new_instance_Type(),
duke@435 814 OptoRuntime::new_instance_Java());
duke@435 815 }
duke@435 816
duke@435 817 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
duke@435 818 Node* length = alloc->in(AllocateNode::ALength);
duke@435 819 expand_allocate_common(alloc, length,
duke@435 820 OptoRuntime::new_array_Type(),
duke@435 821 OptoRuntime::new_array_Java());
duke@435 822 }
duke@435 823
duke@435 824
duke@435 825 // we have determined that this lock/unlock can be eliminated, we simply
duke@435 826 // eliminate the node without expanding it.
duke@435 827 //
duke@435 828 // Note: The membar's associated with the lock/unlock are currently not
duke@435 829 // eliminated. This should be investigated as a future enhancement.
duke@435 830 //
kvn@501 831 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
kvn@501 832
kvn@501 833 if (!alock->is_eliminated()) {
kvn@501 834 return false;
kvn@501 835 }
kvn@501 836 // Mark the box lock as eliminated if all correspondent locks are eliminated
kvn@501 837 // to construct correct debug info.
kvn@501 838 BoxLockNode* box = alock->box_node()->as_BoxLock();
kvn@501 839 if (!box->is_eliminated()) {
kvn@501 840 bool eliminate = true;
kvn@501 841 for (DUIterator_Fast imax, i = box->fast_outs(imax); i < imax; i++) {
kvn@501 842 Node *lck = box->fast_out(i);
kvn@501 843 if (lck->is_Lock() && !lck->as_AbstractLock()->is_eliminated()) {
kvn@501 844 eliminate = false;
kvn@501 845 break;
kvn@501 846 }
kvn@501 847 }
kvn@501 848 if (eliminate)
kvn@501 849 box->set_eliminated();
kvn@501 850 }
kvn@501 851
kvn@501 852 #ifndef PRODUCT
kvn@501 853 if (PrintEliminateLocks) {
kvn@501 854 if (alock->is_Lock()) {
kvn@501 855 tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
kvn@501 856 } else {
kvn@501 857 tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
kvn@501 858 }
kvn@501 859 }
kvn@501 860 #endif
kvn@501 861
kvn@501 862 Node* mem = alock->in(TypeFunc::Memory);
kvn@501 863 Node* ctrl = alock->in(TypeFunc::Control);
kvn@501 864
kvn@501 865 extract_call_projections(alock);
kvn@501 866 // There are 2 projections from the lock. The lock node will
kvn@501 867 // be deleted when its last use is subsumed below.
kvn@501 868 assert(alock->outcnt() == 2 &&
kvn@501 869 _fallthroughproj != NULL &&
kvn@501 870 _memproj_fallthrough != NULL,
kvn@501 871 "Unexpected projections from Lock/Unlock");
kvn@501 872
kvn@501 873 Node* fallthroughproj = _fallthroughproj;
kvn@501 874 Node* memproj_fallthrough = _memproj_fallthrough;
duke@435 875
duke@435 876 // The memory projection from a lock/unlock is RawMem
duke@435 877 // The input to a Lock is merged memory, so extract its RawMem input
duke@435 878 // (unless the MergeMem has been optimized away.)
duke@435 879 if (alock->is_Lock()) {
kvn@501 880 // Seach for MemBarAcquire node and delete it also.
kvn@501 881 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
kvn@501 882 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
kvn@501 883 Node* ctrlproj = membar->proj_out(TypeFunc::Control);
kvn@501 884 Node* memproj = membar->proj_out(TypeFunc::Memory);
kvn@501 885 _igvn.hash_delete(ctrlproj);
kvn@501 886 _igvn.subsume_node(ctrlproj, fallthroughproj);
kvn@501 887 _igvn.hash_delete(memproj);
kvn@501 888 _igvn.subsume_node(memproj, memproj_fallthrough);
duke@435 889 }
duke@435 890
kvn@501 891 // Seach for MemBarRelease node and delete it also.
kvn@501 892 if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
kvn@501 893 ctrl->in(0)->is_MemBar()) {
kvn@501 894 MemBarNode* membar = ctrl->in(0)->as_MemBar();
kvn@501 895 assert(membar->Opcode() == Op_MemBarRelease &&
kvn@501 896 mem->is_Proj() && membar == mem->in(0), "");
kvn@501 897 _igvn.hash_delete(fallthroughproj);
kvn@501 898 _igvn.subsume_node(fallthroughproj, ctrl);
kvn@501 899 _igvn.hash_delete(memproj_fallthrough);
kvn@501 900 _igvn.subsume_node(memproj_fallthrough, mem);
kvn@501 901 fallthroughproj = ctrl;
kvn@501 902 memproj_fallthrough = mem;
kvn@501 903 ctrl = membar->in(TypeFunc::Control);
kvn@501 904 mem = membar->in(TypeFunc::Memory);
kvn@501 905 }
kvn@501 906
kvn@501 907 _igvn.hash_delete(fallthroughproj);
kvn@501 908 _igvn.subsume_node(fallthroughproj, ctrl);
kvn@501 909 _igvn.hash_delete(memproj_fallthrough);
kvn@501 910 _igvn.subsume_node(memproj_fallthrough, mem);
kvn@501 911 return true;
duke@435 912 }
duke@435 913
duke@435 914
duke@435 915 //------------------------------expand_lock_node----------------------
duke@435 916 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
duke@435 917
kvn@501 918 if (eliminate_locking_node(lock)) {
kvn@501 919 return;
kvn@501 920 }
kvn@501 921
duke@435 922 Node* ctrl = lock->in(TypeFunc::Control);
duke@435 923 Node* mem = lock->in(TypeFunc::Memory);
duke@435 924 Node* obj = lock->obj_node();
duke@435 925 Node* box = lock->box_node();
kvn@501 926 Node* flock = lock->fastlock_node();
duke@435 927
duke@435 928 // Make the merge point
duke@435 929 Node *region = new (C, 3) RegionNode(3);
duke@435 930
duke@435 931 Node *bol = transform_later(new (C, 2) BoolNode(flock,BoolTest::ne));
duke@435 932 Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
duke@435 933 // Optimize test; set region slot 2
duke@435 934 Node *slow_path = opt_iff(region,iff);
duke@435 935
duke@435 936 // Make slow path call
duke@435 937 CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
duke@435 938
duke@435 939 extract_call_projections(call);
duke@435 940
duke@435 941 // Slow path can only throw asynchronous exceptions, which are always
duke@435 942 // de-opted. So the compiler thinks the slow-call can never throw an
duke@435 943 // exception. If it DOES throw an exception we would need the debug
duke@435 944 // info removed first (since if it throws there is no monitor).
duke@435 945 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 946 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 947
duke@435 948 // Capture slow path
duke@435 949 // disconnect fall-through projection from call and create a new one
duke@435 950 // hook up users of fall-through projection to region
duke@435 951 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 952 transform_later(slow_ctrl);
duke@435 953 _igvn.hash_delete(_fallthroughproj);
duke@435 954 _fallthroughproj->disconnect_inputs(NULL);
duke@435 955 region->init_req(1, slow_ctrl);
duke@435 956 // region inputs are now complete
duke@435 957 transform_later(region);
duke@435 958 _igvn.subsume_node(_fallthroughproj, region);
duke@435 959
duke@435 960 // create a Phi for the memory state
duke@435 961 Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 962 Node *memproj = transform_later( new (C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 963 mem_phi->init_req(1, memproj );
duke@435 964 mem_phi->init_req(2, mem);
duke@435 965 transform_later(mem_phi);
duke@435 966 _igvn.hash_delete(_memproj_fallthrough);
duke@435 967 _igvn.subsume_node(_memproj_fallthrough, mem_phi);
duke@435 968
duke@435 969
duke@435 970 }
duke@435 971
duke@435 972 //------------------------------expand_unlock_node----------------------
duke@435 973 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
duke@435 974
kvn@501 975 if (eliminate_locking_node(unlock)) {
kvn@501 976 return;
kvn@501 977 }
kvn@501 978
kvn@501 979 Node* ctrl = unlock->in(TypeFunc::Control);
duke@435 980 Node* mem = unlock->in(TypeFunc::Memory);
duke@435 981 Node* obj = unlock->obj_node();
duke@435 982 Node* box = unlock->box_node();
duke@435 983
duke@435 984 // No need for a null check on unlock
duke@435 985
duke@435 986 // Make the merge point
duke@435 987 RegionNode *region = new (C, 3) RegionNode(3);
duke@435 988
duke@435 989 FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
duke@435 990 funlock = transform_later( funlock )->as_FastUnlock();
duke@435 991 Node *bol = transform_later(new (C, 2) BoolNode(funlock,BoolTest::ne));
duke@435 992 Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
duke@435 993 // Optimize test; set region slot 2
duke@435 994 Node *slow_path = opt_iff(region,iff);
duke@435 995
duke@435 996 CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
duke@435 997
duke@435 998 extract_call_projections(call);
duke@435 999
duke@435 1000 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 1001 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 1002
duke@435 1003 // No exceptions for unlocking
duke@435 1004 // Capture slow path
duke@435 1005 // disconnect fall-through projection from call and create a new one
duke@435 1006 // hook up users of fall-through projection to region
duke@435 1007 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 1008 transform_later(slow_ctrl);
duke@435 1009 _igvn.hash_delete(_fallthroughproj);
duke@435 1010 _fallthroughproj->disconnect_inputs(NULL);
duke@435 1011 region->init_req(1, slow_ctrl);
duke@435 1012 // region inputs are now complete
duke@435 1013 transform_later(region);
duke@435 1014 _igvn.subsume_node(_fallthroughproj, region);
duke@435 1015
duke@435 1016 // create a Phi for the memory state
duke@435 1017 Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 1018 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 1019 mem_phi->init_req(1, memproj );
duke@435 1020 mem_phi->init_req(2, mem);
duke@435 1021 transform_later(mem_phi);
duke@435 1022 _igvn.hash_delete(_memproj_fallthrough);
duke@435 1023 _igvn.subsume_node(_memproj_fallthrough, mem_phi);
duke@435 1024
duke@435 1025
duke@435 1026 }
duke@435 1027
duke@435 1028 //------------------------------expand_macro_nodes----------------------
duke@435 1029 // Returns true if a failure occurred.
duke@435 1030 bool PhaseMacroExpand::expand_macro_nodes() {
duke@435 1031 if (C->macro_count() == 0)
duke@435 1032 return false;
duke@435 1033 // Make sure expansion will not cause node limit to be exceeded. Worst case is a
duke@435 1034 // macro node gets expanded into about 50 nodes. Allow 50% more for optimization
duke@435 1035 if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
duke@435 1036 return true;
duke@435 1037 // expand "macro" nodes
duke@435 1038 // nodes are removed from the macro list as they are processed
duke@435 1039 while (C->macro_count() > 0) {
duke@435 1040 Node * n = C->macro_node(0);
duke@435 1041 assert(n->is_macro(), "only macro nodes expected here");
duke@435 1042 if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
duke@435 1043 // node is unreachable, so don't try to expand it
duke@435 1044 C->remove_macro_node(n);
duke@435 1045 continue;
duke@435 1046 }
duke@435 1047 switch (n->class_id()) {
duke@435 1048 case Node::Class_Allocate:
duke@435 1049 expand_allocate(n->as_Allocate());
duke@435 1050 break;
duke@435 1051 case Node::Class_AllocateArray:
duke@435 1052 expand_allocate_array(n->as_AllocateArray());
duke@435 1053 break;
duke@435 1054 case Node::Class_Lock:
duke@435 1055 expand_lock_node(n->as_Lock());
duke@435 1056 break;
duke@435 1057 case Node::Class_Unlock:
duke@435 1058 expand_unlock_node(n->as_Unlock());
duke@435 1059 break;
duke@435 1060 default:
duke@435 1061 assert(false, "unknown node type in macro list");
duke@435 1062 }
duke@435 1063 if (C->failing()) return true;
duke@435 1064 }
duke@435 1065 _igvn.optimize();
duke@435 1066 return false;
duke@435 1067 }

mercurial