src/share/vm/opto/macro.cpp

Wed, 08 May 2013 15:08:01 -0700

author
kvn
date
Wed, 08 May 2013 15:08:01 -0700
changeset 5110
6f3fd5150b67
parent 4694
8651f608fea4
child 5111
70120f47d403
permissions
-rw-r--r--

6934604: enable parts of EliminateAutoBox by default
Summary: Resurrected autobox elimination code and enabled part of it by default.
Reviewed-by: roland, twisti

duke@435 1 /*
coleenp@4037 2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "libadt/vectset.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/cfgnode.hpp"
stefank@2314 31 #include "opto/compile.hpp"
stefank@2314 32 #include "opto/connode.hpp"
stefank@2314 33 #include "opto/locknode.hpp"
stefank@2314 34 #include "opto/loopnode.hpp"
stefank@2314 35 #include "opto/macro.hpp"
stefank@2314 36 #include "opto/memnode.hpp"
stefank@2314 37 #include "opto/node.hpp"
stefank@2314 38 #include "opto/phaseX.hpp"
stefank@2314 39 #include "opto/rootnode.hpp"
stefank@2314 40 #include "opto/runtime.hpp"
stefank@2314 41 #include "opto/subnode.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43 #include "runtime/sharedRuntime.hpp"
duke@435 44
duke@435 45
duke@435 46 //
duke@435 47 // Replace any references to "oldref" in inputs to "use" with "newref".
duke@435 48 // Returns the number of replacements made.
duke@435 49 //
duke@435 50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
duke@435 51 int nreplacements = 0;
duke@435 52 uint req = use->req();
duke@435 53 for (uint j = 0; j < use->len(); j++) {
duke@435 54 Node *uin = use->in(j);
duke@435 55 if (uin == oldref) {
duke@435 56 if (j < req)
duke@435 57 use->set_req(j, newref);
duke@435 58 else
duke@435 59 use->set_prec(j, newref);
duke@435 60 nreplacements++;
duke@435 61 } else if (j >= req && uin == NULL) {
duke@435 62 break;
duke@435 63 }
duke@435 64 }
duke@435 65 return nreplacements;
duke@435 66 }
duke@435 67
duke@435 68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
duke@435 69 // Copy debug information and adjust JVMState information
duke@435 70 uint old_dbg_start = oldcall->tf()->domain()->cnt();
duke@435 71 uint new_dbg_start = newcall->tf()->domain()->cnt();
duke@435 72 int jvms_adj = new_dbg_start - old_dbg_start;
duke@435 73 assert (new_dbg_start == newcall->req(), "argument count mismatch");
kvn@498 74
kvn@498 75 Dict* sosn_map = new Dict(cmpkey,hashkey);
duke@435 76 for (uint i = old_dbg_start; i < oldcall->req(); i++) {
kvn@498 77 Node* old_in = oldcall->in(i);
kvn@498 78 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
kvn@895 79 if (old_in != NULL && old_in->is_SafePointScalarObject()) {
kvn@498 80 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
kvn@498 81 uint old_unique = C->unique();
kvn@498 82 Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
kvn@498 83 if (old_unique != C->unique()) {
kvn@3311 84 new_in->set_req(0, C->root()); // reset control edge
kvn@498 85 new_in = transform_later(new_in); // Register new node.
kvn@498 86 }
kvn@498 87 old_in = new_in;
kvn@498 88 }
kvn@498 89 newcall->add_req(old_in);
duke@435 90 }
kvn@498 91
duke@435 92 newcall->set_jvms(oldcall->jvms());
duke@435 93 for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@435 94 jvms->set_map(newcall);
duke@435 95 jvms->set_locoff(jvms->locoff()+jvms_adj);
duke@435 96 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
duke@435 97 jvms->set_monoff(jvms->monoff()+jvms_adj);
kvn@498 98 jvms->set_scloff(jvms->scloff()+jvms_adj);
duke@435 99 jvms->set_endoff(jvms->endoff()+jvms_adj);
duke@435 100 }
duke@435 101 }
duke@435 102
kvn@855 103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
kvn@855 104 Node* cmp;
kvn@855 105 if (mask != 0) {
kvn@4115 106 Node* and_node = transform_later(new (C) AndXNode(word, MakeConX(mask)));
kvn@4115 107 cmp = transform_later(new (C) CmpXNode(and_node, MakeConX(bits)));
kvn@855 108 } else {
kvn@855 109 cmp = word;
kvn@855 110 }
kvn@4115 111 Node* bol = transform_later(new (C) BoolNode(cmp, BoolTest::ne));
kvn@4115 112 IfNode* iff = new (C) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
kvn@855 113 transform_later(iff);
duke@435 114
kvn@855 115 // Fast path taken.
kvn@4115 116 Node *fast_taken = transform_later( new (C) IfFalseNode(iff) );
duke@435 117
duke@435 118 // Fast path not-taken, i.e. slow path
kvn@4115 119 Node *slow_taken = transform_later( new (C) IfTrueNode(iff) );
kvn@855 120
kvn@855 121 if (return_fast_path) {
kvn@855 122 region->init_req(edge, slow_taken); // Capture slow-control
kvn@855 123 return fast_taken;
kvn@855 124 } else {
kvn@855 125 region->init_req(edge, fast_taken); // Capture fast-control
kvn@855 126 return slow_taken;
kvn@855 127 }
duke@435 128 }
duke@435 129
duke@435 130 //--------------------copy_predefined_input_for_runtime_call--------------------
duke@435 131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
duke@435 132 // Set fixed predefined input arguments
duke@435 133 call->init_req( TypeFunc::Control, ctrl );
duke@435 134 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) );
duke@435 135 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
duke@435 136 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
duke@435 137 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
duke@435 138 }
duke@435 139
duke@435 140 //------------------------------make_slow_call---------------------------------
duke@435 141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
duke@435 142
duke@435 143 // Slow-path call
duke@435 144 CallNode *call = leaf_name
kvn@4115 145 ? (CallNode*)new (C) CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
kvn@4115 146 : (CallNode*)new (C) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
duke@435 147
duke@435 148 // Slow path call has no side-effects, uses few values
duke@435 149 copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
duke@435 150 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
duke@435 151 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
duke@435 152 copy_call_debug_info(oldcall, call);
duke@435 153 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
kvn@1976 154 _igvn.replace_node(oldcall, call);
duke@435 155 transform_later(call);
duke@435 156
duke@435 157 return call;
duke@435 158 }
duke@435 159
duke@435 160 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
duke@435 161 _fallthroughproj = NULL;
duke@435 162 _fallthroughcatchproj = NULL;
duke@435 163 _ioproj_fallthrough = NULL;
duke@435 164 _ioproj_catchall = NULL;
duke@435 165 _catchallcatchproj = NULL;
duke@435 166 _memproj_fallthrough = NULL;
duke@435 167 _memproj_catchall = NULL;
duke@435 168 _resproj = NULL;
duke@435 169 for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
duke@435 170 ProjNode *pn = call->fast_out(i)->as_Proj();
duke@435 171 switch (pn->_con) {
duke@435 172 case TypeFunc::Control:
duke@435 173 {
duke@435 174 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
duke@435 175 _fallthroughproj = pn;
duke@435 176 DUIterator_Fast jmax, j = pn->fast_outs(jmax);
duke@435 177 const Node *cn = pn->fast_out(j);
duke@435 178 if (cn->is_Catch()) {
duke@435 179 ProjNode *cpn = NULL;
duke@435 180 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
duke@435 181 cpn = cn->fast_out(k)->as_Proj();
duke@435 182 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
duke@435 183 if (cpn->_con == CatchProjNode::fall_through_index)
duke@435 184 _fallthroughcatchproj = cpn;
duke@435 185 else {
duke@435 186 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
duke@435 187 _catchallcatchproj = cpn;
duke@435 188 }
duke@435 189 }
duke@435 190 }
duke@435 191 break;
duke@435 192 }
duke@435 193 case TypeFunc::I_O:
duke@435 194 if (pn->_is_io_use)
duke@435 195 _ioproj_catchall = pn;
duke@435 196 else
duke@435 197 _ioproj_fallthrough = pn;
duke@435 198 break;
duke@435 199 case TypeFunc::Memory:
duke@435 200 if (pn->_is_io_use)
duke@435 201 _memproj_catchall = pn;
duke@435 202 else
duke@435 203 _memproj_fallthrough = pn;
duke@435 204 break;
duke@435 205 case TypeFunc::Parms:
duke@435 206 _resproj = pn;
duke@435 207 break;
duke@435 208 default:
duke@435 209 assert(false, "unexpected projection from allocation node.");
duke@435 210 }
duke@435 211 }
duke@435 212
duke@435 213 }
duke@435 214
kvn@508 215 // Eliminate a card mark sequence. p2x is a ConvP2XNode
kvn@1286 216 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
kvn@508 217 assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
kvn@1286 218 if (!UseG1GC) {
kvn@1286 219 // vanilla/CMS post barrier
kvn@1286 220 Node *shift = p2x->unique_out();
kvn@1286 221 Node *addp = shift->unique_out();
kvn@1286 222 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
never@2814 223 Node *mem = addp->last_out(j);
never@2814 224 if (UseCondCardMark && mem->is_Load()) {
never@2814 225 assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
never@2814 226 // The load is checking if the card has been written so
never@2814 227 // replace it with zero to fold the test.
never@2814 228 _igvn.replace_node(mem, intcon(0));
never@2814 229 continue;
never@2814 230 }
never@2814 231 assert(mem->is_Store(), "store required");
never@2814 232 _igvn.replace_node(mem, mem->in(MemNode::Memory));
kvn@1286 233 }
kvn@1286 234 } else {
kvn@1286 235 // G1 pre/post barriers
kvn@3521 236 assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
kvn@1286 237 // It could be only one user, URShift node, in Object.clone() instrinsic
kvn@1286 238 // but the new allocation is passed to arraycopy stub and it could not
kvn@1286 239 // be scalar replaced. So we don't check the case.
kvn@1286 240
kvn@3521 241 // An other case of only one user (Xor) is when the value check for NULL
kvn@3521 242 // in G1 post barrier is folded after CCP so the code which used URShift
kvn@3521 243 // is removed.
kvn@3521 244
kvn@3521 245 // Take Region node before eliminating post barrier since it also
kvn@3521 246 // eliminates CastP2X node when it has only one user.
kvn@3521 247 Node* this_region = p2x->in(0);
kvn@3521 248 assert(this_region != NULL, "");
kvn@3521 249
kvn@1286 250 // Remove G1 post barrier.
kvn@1286 251
kvn@1286 252 // Search for CastP2X->Xor->URShift->Cmp path which
kvn@1286 253 // checks if the store done to a different from the value's region.
kvn@1286 254 // And replace Cmp with #0 (false) to collapse G1 post barrier.
kvn@1286 255 Node* xorx = NULL;
kvn@1286 256 for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
kvn@1286 257 Node* u = p2x->fast_out(i);
kvn@1286 258 if (u->Opcode() == Op_XorX) {
kvn@1286 259 xorx = u;
kvn@1286 260 break;
kvn@1286 261 }
kvn@1286 262 }
kvn@1286 263 assert(xorx != NULL, "missing G1 post barrier");
kvn@1286 264 Node* shift = xorx->unique_out();
kvn@1286 265 Node* cmpx = shift->unique_out();
kvn@1286 266 assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
kvn@1286 267 cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
kvn@1286 268 "missing region check in G1 post barrier");
kvn@1286 269 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 270
kvn@1286 271 // Remove G1 pre barrier.
kvn@1286 272
kvn@1286 273 // Search "if (marking != 0)" check and set it to "false".
kvn@1286 274 // There is no G1 pre barrier if previous stored value is NULL
kvn@1286 275 // (for example, after initialization).
kvn@1286 276 if (this_region->is_Region() && this_region->req() == 3) {
kvn@1286 277 int ind = 1;
kvn@1286 278 if (!this_region->in(ind)->is_IfFalse()) {
kvn@1286 279 ind = 2;
kvn@1286 280 }
kvn@1286 281 if (this_region->in(ind)->is_IfFalse()) {
kvn@1286 282 Node* bol = this_region->in(ind)->in(0)->in(1);
kvn@1286 283 assert(bol->is_Bool(), "");
kvn@1286 284 cmpx = bol->in(1);
kvn@1286 285 if (bol->as_Bool()->_test._test == BoolTest::ne &&
kvn@1286 286 cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
kvn@1286 287 cmpx->in(1)->is_Load()) {
kvn@1286 288 Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
kvn@1286 289 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
kvn@1286 290 PtrQueue::byte_offset_of_active());
kvn@1286 291 if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
kvn@1286 292 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
kvn@1286 293 adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
kvn@1286 294 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 295 }
kvn@1286 296 }
kvn@1286 297 }
kvn@1286 298 }
kvn@1286 299 // Now CastP2X can be removed since it is used only on dead path
kvn@1286 300 // which currently still alive until igvn optimize it.
kvn@3521 301 assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
kvn@1286 302 _igvn.replace_node(p2x, top());
kvn@508 303 }
kvn@508 304 }
kvn@508 305
kvn@508 306 // Search for a memory operation for the specified memory slice.
kvn@688 307 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
kvn@508 308 Node *orig_mem = mem;
kvn@508 309 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@688 310 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
kvn@508 311 while (true) {
kvn@508 312 if (mem == alloc_mem || mem == start_mem ) {
twisti@1040 313 return mem; // hit one of our sentinels
kvn@508 314 } else if (mem->is_MergeMem()) {
kvn@508 315 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@508 316 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
kvn@508 317 Node *in = mem->in(0);
kvn@508 318 // we can safely skip over safepoints, calls, locks and membars because we
kvn@508 319 // already know that the object is safe to eliminate.
kvn@508 320 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
kvn@508 321 return in;
kvn@688 322 } else if (in->is_Call()) {
kvn@688 323 CallNode *call = in->as_Call();
kvn@688 324 if (!call->may_modify(tinst, phase)) {
kvn@688 325 mem = call->in(TypeFunc::Memory);
kvn@688 326 }
kvn@688 327 mem = in->in(TypeFunc::Memory);
kvn@688 328 } else if (in->is_MemBar()) {
kvn@508 329 mem = in->in(TypeFunc::Memory);
kvn@508 330 } else {
kvn@508 331 assert(false, "unexpected projection");
kvn@508 332 }
kvn@508 333 } else if (mem->is_Store()) {
kvn@508 334 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 335 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@508 336 if (adr_idx == alias_idx) {
kvn@508 337 assert(atype->isa_oopptr(), "address type must be oopptr");
kvn@508 338 int adr_offset = atype->offset();
kvn@508 339 uint adr_iid = atype->is_oopptr()->instance_id();
kvn@508 340 // Array elements references have the same alias_idx
kvn@508 341 // but different offset and different instance_id.
kvn@508 342 if (adr_offset == offset && adr_iid == alloc->_idx)
kvn@508 343 return mem;
kvn@508 344 } else {
kvn@508 345 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
kvn@508 346 }
kvn@508 347 mem = mem->in(MemNode::Memory);
kvn@1535 348 } else if (mem->is_ClearArray()) {
kvn@1535 349 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
kvn@1535 350 // Can not bypass initialization of the instance
kvn@1535 351 // we are looking.
kvn@1535 352 debug_only(intptr_t offset;)
kvn@1535 353 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
kvn@1535 354 InitializeNode* init = alloc->as_Allocate()->initialization();
kvn@1535 355 // We are looking for stored value, return Initialize node
kvn@1535 356 // or memory edge from Allocate node.
kvn@1535 357 if (init != NULL)
kvn@1535 358 return init;
kvn@1535 359 else
kvn@1535 360 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
kvn@1535 361 }
kvn@1535 362 // Otherwise skip it (the call updated 'mem' value).
kvn@1019 363 } else if (mem->Opcode() == Op_SCMemProj) {
kvn@4479 364 mem = mem->in(0);
kvn@4479 365 Node* adr = NULL;
kvn@4479 366 if (mem->is_LoadStore()) {
kvn@4479 367 adr = mem->in(MemNode::Address);
kvn@4479 368 } else {
kvn@4479 369 assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
kvn@4479 370 adr = mem->in(3); // Destination array
kvn@4479 371 }
kvn@4479 372 const TypePtr* atype = adr->bottom_type()->is_ptr();
kvn@1019 373 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@1019 374 if (adr_idx == alias_idx) {
kvn@1019 375 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 376 return NULL;
kvn@1019 377 }
kvn@4479 378 mem = mem->in(MemNode::Memory);
kvn@508 379 } else {
kvn@508 380 return mem;
kvn@508 381 }
kvn@682 382 assert(mem != orig_mem, "dead memory loop");
kvn@508 383 }
kvn@508 384 }
kvn@508 385
kvn@508 386 //
kvn@508 387 // Given a Memory Phi, compute a value Phi containing the values from stores
kvn@508 388 // on the input paths.
kvn@508 389 // Note: this function is recursive, its depth is limied by the "level" argument
kvn@508 390 // Returns the computed Phi, or NULL if it cannot compute it.
kvn@682 391 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
kvn@682 392 assert(mem->is_Phi(), "sanity");
kvn@682 393 int alias_idx = C->get_alias_index(adr_t);
kvn@682 394 int offset = adr_t->offset();
kvn@682 395 int instance_id = adr_t->instance_id();
kvn@682 396
kvn@682 397 // Check if an appropriate value phi already exists.
kvn@682 398 Node* region = mem->in(0);
kvn@682 399 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
kvn@682 400 Node* phi = region->fast_out(k);
kvn@682 401 if (phi->is_Phi() && phi != mem &&
kvn@682 402 phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
kvn@682 403 return phi;
kvn@682 404 }
kvn@682 405 }
kvn@682 406 // Check if an appropriate new value phi already exists.
kvn@2985 407 Node* new_phi = value_phis->find(mem->_idx);
kvn@2985 408 if (new_phi != NULL)
kvn@2985 409 return new_phi;
kvn@508 410
kvn@508 411 if (level <= 0) {
kvn@688 412 return NULL; // Give up: phi tree too deep
kvn@508 413 }
kvn@508 414 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 415 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@508 416
kvn@508 417 uint length = mem->req();
zgu@3900 418 GrowableArray <Node *> values(length, length, NULL, false);
kvn@508 419
kvn@682 420 // create a new Phi for the value
kvn@4115 421 PhiNode *phi = new (C) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
kvn@682 422 transform_later(phi);
kvn@682 423 value_phis->push(phi, mem->_idx);
kvn@682 424
kvn@508 425 for (uint j = 1; j < length; j++) {
kvn@508 426 Node *in = mem->in(j);
kvn@508 427 if (in == NULL || in->is_top()) {
kvn@508 428 values.at_put(j, in);
kvn@508 429 } else {
kvn@688 430 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 431 if (val == start_mem || val == alloc_mem) {
kvn@508 432 // hit a sentinel, return appropriate 0 value
kvn@508 433 values.at_put(j, _igvn.zerocon(ft));
kvn@508 434 continue;
kvn@508 435 }
kvn@508 436 if (val->is_Initialize()) {
kvn@508 437 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 438 }
kvn@508 439 if (val == NULL) {
kvn@508 440 return NULL; // can't find a value on this path
kvn@508 441 }
kvn@508 442 if (val == mem) {
kvn@508 443 values.at_put(j, mem);
kvn@508 444 } else if (val->is_Store()) {
kvn@508 445 values.at_put(j, val->in(MemNode::ValueIn));
kvn@508 446 } else if(val->is_Proj() && val->in(0) == alloc) {
kvn@508 447 values.at_put(j, _igvn.zerocon(ft));
kvn@508 448 } else if (val->is_Phi()) {
kvn@682 449 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
kvn@682 450 if (val == NULL) {
kvn@682 451 return NULL;
kvn@508 452 }
kvn@682 453 values.at_put(j, val);
kvn@1019 454 } else if (val->Opcode() == Op_SCMemProj) {
kvn@4479 455 assert(val->in(0)->is_LoadStore() || val->in(0)->Opcode() == Op_EncodeISOArray, "sanity");
kvn@1019 456 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 457 return NULL;
kvn@508 458 } else {
kvn@1019 459 #ifdef ASSERT
kvn@1019 460 val->dump();
kvn@688 461 assert(false, "unknown node on this path");
kvn@1019 462 #endif
kvn@688 463 return NULL; // unknown node on this path
kvn@508 464 }
kvn@508 465 }
kvn@508 466 }
kvn@682 467 // Set Phi's inputs
kvn@508 468 for (uint j = 1; j < length; j++) {
kvn@508 469 if (values.at(j) == mem) {
kvn@508 470 phi->init_req(j, phi);
kvn@508 471 } else {
kvn@508 472 phi->init_req(j, values.at(j));
kvn@508 473 }
kvn@508 474 }
kvn@508 475 return phi;
kvn@508 476 }
kvn@508 477
kvn@508 478 // Search the last value stored into the object's field.
kvn@508 479 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
kvn@658 480 assert(adr_t->is_known_instance_field(), "instance required");
kvn@658 481 int instance_id = adr_t->instance_id();
kvn@658 482 assert((uint)instance_id == alloc->_idx, "wrong allocation");
kvn@508 483
kvn@508 484 int alias_idx = C->get_alias_index(adr_t);
kvn@508 485 int offset = adr_t->offset();
kvn@508 486 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 487 Node *alloc_ctrl = alloc->in(TypeFunc::Control);
kvn@508 488 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@682 489 Arena *a = Thread::current()->resource_area();
kvn@682 490 VectorSet visited(a);
kvn@508 491
kvn@508 492
kvn@508 493 bool done = sfpt_mem == alloc_mem;
kvn@508 494 Node *mem = sfpt_mem;
kvn@508 495 while (!done) {
kvn@508 496 if (visited.test_set(mem->_idx)) {
kvn@508 497 return NULL; // found a loop, give up
kvn@508 498 }
kvn@688 499 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 500 if (mem == start_mem || mem == alloc_mem) {
kvn@508 501 done = true; // hit a sentinel, return appropriate 0 value
kvn@508 502 } else if (mem->is_Initialize()) {
kvn@508 503 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 504 if (mem == NULL) {
kvn@508 505 done = true; // Something go wrong.
kvn@508 506 } else if (mem->is_Store()) {
kvn@508 507 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 508 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
kvn@508 509 done = true;
kvn@508 510 }
kvn@508 511 } else if (mem->is_Store()) {
kvn@508 512 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
kvn@508 513 assert(atype != NULL, "address type must be oopptr");
kvn@508 514 assert(C->get_alias_index(atype) == alias_idx &&
kvn@658 515 atype->is_known_instance_field() && atype->offset() == offset &&
kvn@508 516 atype->instance_id() == instance_id, "store is correct memory slice");
kvn@508 517 done = true;
kvn@508 518 } else if (mem->is_Phi()) {
kvn@508 519 // try to find a phi's unique input
kvn@508 520 Node *unique_input = NULL;
kvn@508 521 Node *top = C->top();
kvn@508 522 for (uint i = 1; i < mem->req(); i++) {
kvn@688 523 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 524 if (n == NULL || n == top || n == mem) {
kvn@508 525 continue;
kvn@508 526 } else if (unique_input == NULL) {
kvn@508 527 unique_input = n;
kvn@508 528 } else if (unique_input != n) {
kvn@508 529 unique_input = top;
kvn@508 530 break;
kvn@508 531 }
kvn@508 532 }
kvn@508 533 if (unique_input != NULL && unique_input != top) {
kvn@508 534 mem = unique_input;
kvn@508 535 } else {
kvn@508 536 done = true;
kvn@508 537 }
kvn@508 538 } else {
kvn@508 539 assert(false, "unexpected node");
kvn@508 540 }
kvn@508 541 }
kvn@508 542 if (mem != NULL) {
kvn@508 543 if (mem == start_mem || mem == alloc_mem) {
kvn@508 544 // hit a sentinel, return appropriate 0 value
kvn@508 545 return _igvn.zerocon(ft);
kvn@508 546 } else if (mem->is_Store()) {
kvn@508 547 return mem->in(MemNode::ValueIn);
kvn@508 548 } else if (mem->is_Phi()) {
kvn@508 549 // attempt to produce a Phi reflecting the values on the input paths of the Phi
kvn@682 550 Node_Stack value_phis(a, 8);
kvn@688 551 Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
kvn@508 552 if (phi != NULL) {
kvn@508 553 return phi;
kvn@682 554 } else {
kvn@682 555 // Kill all new Phis
kvn@682 556 while(value_phis.is_nonempty()) {
kvn@682 557 Node* n = value_phis.node();
kvn@1976 558 _igvn.replace_node(n, C->top());
kvn@682 559 value_phis.pop();
kvn@682 560 }
kvn@508 561 }
kvn@508 562 }
kvn@508 563 }
kvn@508 564 // Something go wrong.
kvn@508 565 return NULL;
kvn@508 566 }
kvn@508 567
kvn@508 568 // Check the possibility of scalar replacement.
kvn@508 569 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 570 // Scan the uses of the allocation to check for anything that would
kvn@508 571 // prevent us from eliminating it.
kvn@508 572 NOT_PRODUCT( const char* fail_eliminate = NULL; )
kvn@508 573 DEBUG_ONLY( Node* disq_node = NULL; )
kvn@508 574 bool can_eliminate = true;
kvn@508 575
kvn@508 576 Node* res = alloc->result_cast();
kvn@508 577 const TypeOopPtr* res_type = NULL;
kvn@508 578 if (res == NULL) {
kvn@508 579 // All users were eliminated.
kvn@508 580 } else if (!res->is_CheckCastPP()) {
kvn@508 581 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
kvn@508 582 can_eliminate = false;
kvn@508 583 } else {
kvn@508 584 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 585 if (res_type == NULL) {
kvn@508 586 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
kvn@508 587 can_eliminate = false;
kvn@508 588 } else if (res_type->isa_aryptr()) {
kvn@508 589 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 590 if (length < 0) {
kvn@508 591 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
kvn@508 592 can_eliminate = false;
kvn@508 593 }
kvn@508 594 }
kvn@508 595 }
kvn@508 596
kvn@508 597 if (can_eliminate && res != NULL) {
kvn@508 598 for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
kvn@508 599 j < jmax && can_eliminate; j++) {
kvn@508 600 Node* use = res->fast_out(j);
kvn@508 601
kvn@508 602 if (use->is_AddP()) {
kvn@508 603 const TypePtr* addp_type = _igvn.type(use)->is_ptr();
kvn@508 604 int offset = addp_type->offset();
kvn@508 605
kvn@508 606 if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
kvn@508 607 NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
kvn@508 608 can_eliminate = false;
kvn@508 609 break;
kvn@508 610 }
kvn@508 611 for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
kvn@508 612 k < kmax && can_eliminate; k++) {
kvn@508 613 Node* n = use->fast_out(k);
kvn@508 614 if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
kvn@508 615 DEBUG_ONLY(disq_node = n;)
kvn@688 616 if (n->is_Load() || n->is_LoadStore()) {
kvn@508 617 NOT_PRODUCT(fail_eliminate = "Field load";)
kvn@508 618 } else {
kvn@508 619 NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
kvn@508 620 }
kvn@508 621 can_eliminate = false;
kvn@508 622 }
kvn@508 623 }
kvn@508 624 } else if (use->is_SafePoint()) {
kvn@508 625 SafePointNode* sfpt = use->as_SafePoint();
kvn@603 626 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
kvn@508 627 // Object is passed as argument.
kvn@508 628 DEBUG_ONLY(disq_node = use;)
kvn@508 629 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
kvn@508 630 can_eliminate = false;
kvn@508 631 }
kvn@508 632 Node* sfptMem = sfpt->memory();
kvn@508 633 if (sfptMem == NULL || sfptMem->is_top()) {
kvn@508 634 DEBUG_ONLY(disq_node = use;)
kvn@508 635 NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
kvn@508 636 can_eliminate = false;
kvn@508 637 } else {
kvn@508 638 safepoints.append_if_missing(sfpt);
kvn@508 639 }
kvn@508 640 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
kvn@508 641 if (use->is_Phi()) {
kvn@508 642 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
kvn@508 643 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 644 } else {
kvn@508 645 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
kvn@508 646 }
kvn@508 647 DEBUG_ONLY(disq_node = use;)
kvn@508 648 } else {
kvn@508 649 if (use->Opcode() == Op_Return) {
kvn@508 650 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 651 }else {
kvn@508 652 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
kvn@508 653 }
kvn@508 654 DEBUG_ONLY(disq_node = use;)
kvn@508 655 }
kvn@508 656 can_eliminate = false;
kvn@508 657 }
kvn@508 658 }
kvn@508 659 }
kvn@508 660
kvn@508 661 #ifndef PRODUCT
kvn@508 662 if (PrintEliminateAllocations) {
kvn@508 663 if (can_eliminate) {
kvn@508 664 tty->print("Scalar ");
kvn@508 665 if (res == NULL)
kvn@508 666 alloc->dump();
kvn@508 667 else
kvn@508 668 res->dump();
kvn@5110 669 } else if (alloc->_is_scalar_replaceable) {
kvn@508 670 tty->print("NotScalar (%s)", fail_eliminate);
kvn@508 671 if (res == NULL)
kvn@508 672 alloc->dump();
kvn@508 673 else
kvn@508 674 res->dump();
kvn@508 675 #ifdef ASSERT
kvn@508 676 if (disq_node != NULL) {
kvn@508 677 tty->print(" >>>> ");
kvn@508 678 disq_node->dump();
kvn@508 679 }
kvn@508 680 #endif /*ASSERT*/
kvn@508 681 }
kvn@508 682 }
kvn@508 683 #endif
kvn@508 684 return can_eliminate;
kvn@508 685 }
kvn@508 686
kvn@508 687 // Do scalar replacement.
kvn@508 688 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 689 GrowableArray <SafePointNode *> safepoints_done;
kvn@508 690
kvn@508 691 ciKlass* klass = NULL;
kvn@508 692 ciInstanceKlass* iklass = NULL;
kvn@508 693 int nfields = 0;
kvn@508 694 int array_base;
kvn@508 695 int element_size;
kvn@508 696 BasicType basic_elem_type;
kvn@508 697 ciType* elem_type;
kvn@508 698
kvn@508 699 Node* res = alloc->result_cast();
kvn@508 700 const TypeOopPtr* res_type = NULL;
kvn@508 701 if (res != NULL) { // Could be NULL when there are no users
kvn@508 702 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 703 }
kvn@508 704
kvn@508 705 if (res != NULL) {
kvn@508 706 klass = res_type->klass();
kvn@508 707 if (res_type->isa_instptr()) {
kvn@508 708 // find the fields of the class which will be needed for safepoint debug information
kvn@508 709 assert(klass->is_instance_klass(), "must be an instance klass.");
kvn@508 710 iklass = klass->as_instance_klass();
kvn@508 711 nfields = iklass->nof_nonstatic_fields();
kvn@508 712 } else {
kvn@508 713 // find the array's elements which will be needed for safepoint debug information
kvn@508 714 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 715 assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
kvn@508 716 elem_type = klass->as_array_klass()->element_type();
kvn@508 717 basic_elem_type = elem_type->basic_type();
kvn@508 718 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@508 719 element_size = type2aelembytes(basic_elem_type);
kvn@508 720 }
kvn@508 721 }
kvn@508 722 //
kvn@508 723 // Process the safepoint uses
kvn@508 724 //
kvn@508 725 while (safepoints.length() > 0) {
kvn@508 726 SafePointNode* sfpt = safepoints.pop();
kvn@508 727 Node* mem = sfpt->memory();
kvn@508 728 uint first_ind = sfpt->req();
kvn@4115 729 SafePointScalarObjectNode* sobj = new (C) SafePointScalarObjectNode(res_type,
kvn@508 730 #ifdef ASSERT
kvn@508 731 alloc,
kvn@508 732 #endif
kvn@508 733 first_ind, nfields);
kvn@3311 734 sobj->init_req(0, C->root());
kvn@508 735 transform_later(sobj);
kvn@508 736
kvn@508 737 // Scan object's fields adding an input to the safepoint for each field.
kvn@508 738 for (int j = 0; j < nfields; j++) {
kvn@741 739 intptr_t offset;
kvn@508 740 ciField* field = NULL;
kvn@508 741 if (iklass != NULL) {
kvn@508 742 field = iklass->nonstatic_field_at(j);
kvn@508 743 offset = field->offset();
kvn@508 744 elem_type = field->type();
kvn@508 745 basic_elem_type = field->layout_type();
kvn@508 746 } else {
kvn@741 747 offset = array_base + j * (intptr_t)element_size;
kvn@508 748 }
kvn@508 749
kvn@508 750 const Type *field_type;
kvn@508 751 // The next code is taken from Parse::do_get_xxx().
kvn@559 752 if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
kvn@508 753 if (!elem_type->is_loaded()) {
kvn@508 754 field_type = TypeInstPtr::BOTTOM;
kvn@2037 755 } else if (field != NULL && field->is_constant() && field->is_static()) {
kvn@508 756 // This can happen if the constant oop is non-perm.
kvn@508 757 ciObject* con = field->constant_value().as_object();
kvn@508 758 // Do not "join" in the previous type; it doesn't add value,
kvn@508 759 // and may yield a vacuous result if the field is of interface type.
kvn@508 760 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
kvn@508 761 assert(field_type != NULL, "field singleton type must be consistent");
kvn@508 762 } else {
kvn@508 763 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
kvn@508 764 }
kvn@559 765 if (UseCompressedOops) {
kvn@656 766 field_type = field_type->make_narrowoop();
kvn@559 767 basic_elem_type = T_NARROWOOP;
kvn@559 768 }
kvn@508 769 } else {
kvn@508 770 field_type = Type::get_const_basic_type(basic_elem_type);
kvn@508 771 }
kvn@508 772
kvn@508 773 const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
kvn@508 774
kvn@508 775 Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
kvn@508 776 if (field_val == NULL) {
kvn@3311 777 // We weren't able to find a value for this field,
kvn@3311 778 // give up on eliminating this allocation.
kvn@3311 779
kvn@3311 780 // Remove any extra entries we added to the safepoint.
kvn@508 781 uint last = sfpt->req() - 1;
kvn@508 782 for (int k = 0; k < j; k++) {
kvn@508 783 sfpt->del_req(last--);
kvn@508 784 }
kvn@508 785 // rollback processed safepoints
kvn@508 786 while (safepoints_done.length() > 0) {
kvn@508 787 SafePointNode* sfpt_done = safepoints_done.pop();
kvn@508 788 // remove any extra entries we added to the safepoint
kvn@508 789 last = sfpt_done->req() - 1;
kvn@508 790 for (int k = 0; k < nfields; k++) {
kvn@508 791 sfpt_done->del_req(last--);
kvn@508 792 }
kvn@508 793 JVMState *jvms = sfpt_done->jvms();
kvn@508 794 jvms->set_endoff(sfpt_done->req());
kvn@508 795 // Now make a pass over the debug information replacing any references
kvn@508 796 // to SafePointScalarObjectNode with the allocated object.
kvn@508 797 int start = jvms->debug_start();
kvn@508 798 int end = jvms->debug_end();
kvn@508 799 for (int i = start; i < end; i++) {
kvn@508 800 if (sfpt_done->in(i)->is_SafePointScalarObject()) {
kvn@508 801 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
kvn@508 802 if (scobj->first_index() == sfpt_done->req() &&
kvn@508 803 scobj->n_fields() == (uint)nfields) {
kvn@508 804 assert(scobj->alloc() == alloc, "sanity");
kvn@508 805 sfpt_done->set_req(i, res);
kvn@508 806 }
kvn@508 807 }
kvn@508 808 }
kvn@508 809 }
kvn@508 810 #ifndef PRODUCT
kvn@508 811 if (PrintEliminateAllocations) {
kvn@508 812 if (field != NULL) {
kvn@508 813 tty->print("=== At SafePoint node %d can't find value of Field: ",
kvn@508 814 sfpt->_idx);
kvn@508 815 field->print();
kvn@508 816 int field_idx = C->get_alias_index(field_addr_type);
kvn@508 817 tty->print(" (alias_idx=%d)", field_idx);
kvn@508 818 } else { // Array's element
kvn@508 819 tty->print("=== At SafePoint node %d can't find value of array element [%d]",
kvn@508 820 sfpt->_idx, j);
kvn@508 821 }
kvn@508 822 tty->print(", which prevents elimination of: ");
kvn@508 823 if (res == NULL)
kvn@508 824 alloc->dump();
kvn@508 825 else
kvn@508 826 res->dump();
kvn@508 827 }
kvn@508 828 #endif
kvn@508 829 return false;
kvn@508 830 }
kvn@559 831 if (UseCompressedOops && field_type->isa_narrowoop()) {
kvn@559 832 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
kvn@559 833 // to be able scalar replace the allocation.
kvn@656 834 if (field_val->is_EncodeP()) {
kvn@656 835 field_val = field_val->in(1);
kvn@656 836 } else {
kvn@4115 837 field_val = transform_later(new (C) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
kvn@656 838 }
kvn@559 839 }
kvn@508 840 sfpt->add_req(field_val);
kvn@508 841 }
kvn@508 842 JVMState *jvms = sfpt->jvms();
kvn@508 843 jvms->set_endoff(sfpt->req());
kvn@508 844 // Now make a pass over the debug information replacing any references
kvn@508 845 // to the allocated object with "sobj"
kvn@508 846 int start = jvms->debug_start();
kvn@508 847 int end = jvms->debug_end();
kvn@5110 848 sfpt->replace_edges_in_range(res, sobj, start, end);
kvn@508 849 safepoints_done.append_if_missing(sfpt); // keep it for rollback
kvn@508 850 }
kvn@508 851 return true;
kvn@508 852 }
kvn@508 853
kvn@508 854 // Process users of eliminated allocation.
kvn@5110 855 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
kvn@508 856 Node* res = alloc->result_cast();
kvn@508 857 if (res != NULL) {
kvn@508 858 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
kvn@508 859 Node *use = res->last_out(j);
kvn@508 860 uint oc1 = res->outcnt();
kvn@508 861
kvn@508 862 if (use->is_AddP()) {
kvn@508 863 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
kvn@508 864 Node *n = use->last_out(k);
kvn@508 865 uint oc2 = use->outcnt();
kvn@508 866 if (n->is_Store()) {
kvn@1535 867 #ifdef ASSERT
kvn@1535 868 // Verify that there is no dependent MemBarVolatile nodes,
kvn@1535 869 // they should be removed during IGVN, see MemBarNode::Ideal().
kvn@1535 870 for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
kvn@1535 871 p < pmax; p++) {
kvn@1535 872 Node* mb = n->fast_out(p);
kvn@1535 873 assert(mb->is_Initialize() || !mb->is_MemBar() ||
kvn@1535 874 mb->req() <= MemBarNode::Precedent ||
kvn@1535 875 mb->in(MemBarNode::Precedent) != n,
kvn@1535 876 "MemBarVolatile should be eliminated for non-escaping object");
kvn@1535 877 }
kvn@1535 878 #endif
kvn@508 879 _igvn.replace_node(n, n->in(MemNode::Memory));
kvn@508 880 } else {
kvn@508 881 eliminate_card_mark(n);
kvn@508 882 }
kvn@508 883 k -= (oc2 - use->outcnt());
kvn@508 884 }
kvn@508 885 } else {
kvn@508 886 eliminate_card_mark(use);
kvn@508 887 }
kvn@508 888 j -= (oc1 - res->outcnt());
kvn@508 889 }
kvn@508 890 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
kvn@508 891 _igvn.remove_dead_node(res);
kvn@508 892 }
kvn@508 893
kvn@508 894 //
kvn@508 895 // Process other users of allocation's projections
kvn@508 896 //
kvn@508 897 if (_resproj != NULL && _resproj->outcnt() != 0) {
kvn@5110 898 // First disconnect stores captured by Initialize node.
kvn@5110 899 // If Initialize node is eliminated first in the following code,
kvn@5110 900 // it will kill such stores and DUIterator_Last will assert.
kvn@5110 901 for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax); j < jmax; j++) {
kvn@5110 902 Node *use = _resproj->fast_out(j);
kvn@5110 903 if (use->is_AddP()) {
kvn@5110 904 // raw memory addresses used only by the initialization
kvn@5110 905 _igvn.replace_node(use, C->top());
kvn@5110 906 --j; --jmax;
kvn@5110 907 }
kvn@5110 908 }
kvn@508 909 for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
kvn@508 910 Node *use = _resproj->last_out(j);
kvn@508 911 uint oc1 = _resproj->outcnt();
kvn@508 912 if (use->is_Initialize()) {
kvn@508 913 // Eliminate Initialize node.
kvn@508 914 InitializeNode *init = use->as_Initialize();
kvn@508 915 assert(init->outcnt() <= 2, "only a control and memory projection expected");
kvn@508 916 Node *ctrl_proj = init->proj_out(TypeFunc::Control);
kvn@508 917 if (ctrl_proj != NULL) {
kvn@508 918 assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
kvn@508 919 _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
kvn@508 920 }
kvn@508 921 Node *mem_proj = init->proj_out(TypeFunc::Memory);
kvn@508 922 if (mem_proj != NULL) {
kvn@508 923 Node *mem = init->in(TypeFunc::Memory);
kvn@508 924 #ifdef ASSERT
kvn@508 925 if (mem->is_MergeMem()) {
kvn@508 926 assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
kvn@508 927 } else {
kvn@508 928 assert(mem == _memproj_fallthrough, "allocation memory projection");
kvn@508 929 }
kvn@508 930 #endif
kvn@508 931 _igvn.replace_node(mem_proj, mem);
kvn@508 932 }
kvn@508 933 } else {
kvn@508 934 assert(false, "only Initialize or AddP expected");
kvn@508 935 }
kvn@508 936 j -= (oc1 - _resproj->outcnt());
kvn@508 937 }
kvn@508 938 }
kvn@508 939 if (_fallthroughcatchproj != NULL) {
kvn@508 940 _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
kvn@508 941 }
kvn@508 942 if (_memproj_fallthrough != NULL) {
kvn@508 943 _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
kvn@508 944 }
kvn@508 945 if (_memproj_catchall != NULL) {
kvn@508 946 _igvn.replace_node(_memproj_catchall, C->top());
kvn@508 947 }
kvn@508 948 if (_ioproj_fallthrough != NULL) {
kvn@508 949 _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
kvn@508 950 }
kvn@508 951 if (_ioproj_catchall != NULL) {
kvn@508 952 _igvn.replace_node(_ioproj_catchall, C->top());
kvn@508 953 }
kvn@508 954 if (_catchallcatchproj != NULL) {
kvn@508 955 _igvn.replace_node(_catchallcatchproj, C->top());
kvn@508 956 }
kvn@508 957 }
kvn@508 958
kvn@508 959 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
kvn@5110 960 if (!EliminateAllocations || !alloc->_is_non_escaping) {
kvn@5110 961 return false;
kvn@5110 962 }
kvn@5110 963 Node* klass = alloc->in(AllocateNode::KlassNode);
kvn@5110 964 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
kvn@5110 965 Node* res = alloc->result_cast();
kvn@5110 966 // Eliminate boxing allocations which are not used
kvn@5110 967 // regardless scalar replacable status.
kvn@5110 968 bool boxing_alloc = C->eliminate_boxing() &&
kvn@5110 969 tklass->klass()->is_instance_klass() &&
kvn@5110 970 tklass->klass()->as_instance_klass()->is_box_klass();
kvn@5110 971 if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
kvn@508 972 return false;
kvn@508 973 }
kvn@508 974
kvn@508 975 extract_call_projections(alloc);
kvn@508 976
kvn@508 977 GrowableArray <SafePointNode *> safepoints;
kvn@508 978 if (!can_eliminate_allocation(alloc, safepoints)) {
kvn@508 979 return false;
kvn@508 980 }
kvn@508 981
kvn@5110 982 if (!alloc->_is_scalar_replaceable) {
kvn@5110 983 assert(res == NULL, "sanity");
kvn@5110 984 // We can only eliminate allocation if all debug info references
kvn@5110 985 // are already replaced with SafePointScalarObject because
kvn@5110 986 // we can't search for a fields value without instance_id.
kvn@5110 987 if (safepoints.length() > 0) {
kvn@5110 988 return false;
kvn@5110 989 }
kvn@5110 990 }
kvn@5110 991
kvn@508 992 if (!scalar_replacement(alloc, safepoints)) {
kvn@508 993 return false;
kvn@508 994 }
kvn@508 995
never@1515 996 CompileLog* log = C->log();
never@1515 997 if (log != NULL) {
never@1515 998 log->head("eliminate_allocation type='%d'",
never@1515 999 log->identify(tklass->klass()));
never@1515 1000 JVMState* p = alloc->jvms();
never@1515 1001 while (p != NULL) {
never@1515 1002 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 1003 p = p->caller();
never@1515 1004 }
never@1515 1005 log->tail("eliminate_allocation");
never@1515 1006 }
never@1515 1007
kvn@508 1008 process_users_of_allocation(alloc);
kvn@508 1009
kvn@508 1010 #ifndef PRODUCT
never@1515 1011 if (PrintEliminateAllocations) {
never@1515 1012 if (alloc->is_AllocateArray())
never@1515 1013 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
never@1515 1014 else
never@1515 1015 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
never@1515 1016 }
kvn@508 1017 #endif
kvn@508 1018
kvn@508 1019 return true;
kvn@508 1020 }
kvn@508 1021
kvn@5110 1022 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
kvn@5110 1023 // EA should remove all uses of non-escaping boxing node.
kvn@5110 1024 if (!C->eliminate_boxing() || boxing->proj_out(TypeFunc::Parms) != NULL) {
kvn@5110 1025 return false;
kvn@5110 1026 }
kvn@5110 1027
kvn@5110 1028 extract_call_projections(boxing);
kvn@5110 1029
kvn@5110 1030 const TypeTuple* r = boxing->tf()->range();
kvn@5110 1031 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@5110 1032 const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
kvn@5110 1033 assert(t != NULL, "sanity");
kvn@5110 1034
kvn@5110 1035 CompileLog* log = C->log();
kvn@5110 1036 if (log != NULL) {
kvn@5110 1037 log->head("eliminate_boxing type='%d'",
kvn@5110 1038 log->identify(t->klass()));
kvn@5110 1039 JVMState* p = boxing->jvms();
kvn@5110 1040 while (p != NULL) {
kvn@5110 1041 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
kvn@5110 1042 p = p->caller();
kvn@5110 1043 }
kvn@5110 1044 log->tail("eliminate_boxing");
kvn@5110 1045 }
kvn@5110 1046
kvn@5110 1047 process_users_of_allocation(boxing);
kvn@5110 1048
kvn@5110 1049 #ifndef PRODUCT
kvn@5110 1050 if (PrintEliminateAllocations) {
kvn@5110 1051 tty->print("++++ Eliminated: %d ", boxing->_idx);
kvn@5110 1052 boxing->method()->print_short_name(tty);
kvn@5110 1053 tty->cr();
kvn@5110 1054 }
kvn@5110 1055 #endif
kvn@5110 1056
kvn@5110 1057 return true;
kvn@5110 1058 }
duke@435 1059
duke@435 1060 //---------------------------set_eden_pointers-------------------------
duke@435 1061 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
duke@435 1062 if (UseTLAB) { // Private allocation: load from TLS
kvn@4115 1063 Node* thread = transform_later(new (C) ThreadLocalNode());
duke@435 1064 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
duke@435 1065 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
duke@435 1066 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
duke@435 1067 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
duke@435 1068 } else { // Shared allocation: load from globals
duke@435 1069 CollectedHeap* ch = Universe::heap();
duke@435 1070 address top_adr = (address)ch->top_addr();
duke@435 1071 address end_adr = (address)ch->end_addr();
duke@435 1072 eden_top_adr = makecon(TypeRawPtr::make(top_adr));
duke@435 1073 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
duke@435 1074 }
duke@435 1075 }
duke@435 1076
duke@435 1077
duke@435 1078 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
duke@435 1079 Node* adr = basic_plus_adr(base, offset);
kvn@855 1080 const TypePtr* adr_type = adr->bottom_type()->is_ptr();
coleenp@548 1081 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
duke@435 1082 transform_later(value);
duke@435 1083 return value;
duke@435 1084 }
duke@435 1085
duke@435 1086
duke@435 1087 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
duke@435 1088 Node* adr = basic_plus_adr(base, offset);
coleenp@548 1089 mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
duke@435 1090 transform_later(mem);
duke@435 1091 return mem;
duke@435 1092 }
duke@435 1093
duke@435 1094 //=============================================================================
duke@435 1095 //
duke@435 1096 // A L L O C A T I O N
duke@435 1097 //
duke@435 1098 // Allocation attempts to be fast in the case of frequent small objects.
duke@435 1099 // It breaks down like this:
duke@435 1100 //
duke@435 1101 // 1) Size in doublewords is computed. This is a constant for objects and
duke@435 1102 // variable for most arrays. Doubleword units are used to avoid size
duke@435 1103 // overflow of huge doubleword arrays. We need doublewords in the end for
duke@435 1104 // rounding.
duke@435 1105 //
duke@435 1106 // 2) Size is checked for being 'too large'. Too-large allocations will go
duke@435 1107 // the slow path into the VM. The slow path can throw any required
duke@435 1108 // exceptions, and does all the special checks for very large arrays. The
duke@435 1109 // size test can constant-fold away for objects. For objects with
duke@435 1110 // finalizers it constant-folds the otherway: you always go slow with
duke@435 1111 // finalizers.
duke@435 1112 //
duke@435 1113 // 3) If NOT using TLABs, this is the contended loop-back point.
duke@435 1114 // Load-Locked the heap top. If using TLABs normal-load the heap top.
duke@435 1115 //
duke@435 1116 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route.
duke@435 1117 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish
duke@435 1118 // "size*8" we always enter the VM, where "largish" is a constant picked small
duke@435 1119 // enough that there's always space between the eden max and 4Gig (old space is
duke@435 1120 // there so it's quite large) and large enough that the cost of entering the VM
duke@435 1121 // is dwarfed by the cost to initialize the space.
duke@435 1122 //
duke@435 1123 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
duke@435 1124 // down. If contended, repeat at step 3. If using TLABs normal-store
duke@435 1125 // adjusted heap top back down; there is no contention.
duke@435 1126 //
duke@435 1127 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark
duke@435 1128 // fields.
duke@435 1129 //
duke@435 1130 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
duke@435 1131 // oop flavor.
duke@435 1132 //
duke@435 1133 //=============================================================================
duke@435 1134 // FastAllocateSizeLimit value is in DOUBLEWORDS.
duke@435 1135 // Allocations bigger than this always go the slow route.
duke@435 1136 // This value must be small enough that allocation attempts that need to
duke@435 1137 // trigger exceptions go the slow route. Also, it must be small enough so
duke@435 1138 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
duke@435 1139 //=============================================================================j//
duke@435 1140 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
duke@435 1141 // The allocator will coalesce int->oop copies away. See comment in
duke@435 1142 // coalesce.cpp about how this works. It depends critically on the exact
duke@435 1143 // code shape produced here, so if you are changing this code shape
duke@435 1144 // make sure the GC info for the heap-top is correct in and around the
duke@435 1145 // slow-path call.
duke@435 1146 //
duke@435 1147
duke@435 1148 void PhaseMacroExpand::expand_allocate_common(
duke@435 1149 AllocateNode* alloc, // allocation node to be expanded
duke@435 1150 Node* length, // array length for an array allocation
duke@435 1151 const TypeFunc* slow_call_type, // Type of slow call
duke@435 1152 address slow_call_address // Address of slow call
duke@435 1153 )
duke@435 1154 {
duke@435 1155
duke@435 1156 Node* ctrl = alloc->in(TypeFunc::Control);
duke@435 1157 Node* mem = alloc->in(TypeFunc::Memory);
duke@435 1158 Node* i_o = alloc->in(TypeFunc::I_O);
duke@435 1159 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize);
duke@435 1160 Node* klass_node = alloc->in(AllocateNode::KlassNode);
duke@435 1161 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
duke@435 1162
duke@435 1163 assert(ctrl != NULL, "must have control");
duke@435 1164 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
duke@435 1165 // they will not be used if "always_slow" is set
duke@435 1166 enum { slow_result_path = 1, fast_result_path = 2 };
duke@435 1167 Node *result_region;
duke@435 1168 Node *result_phi_rawmem;
duke@435 1169 Node *result_phi_rawoop;
duke@435 1170 Node *result_phi_i_o;
duke@435 1171
duke@435 1172 // The initial slow comparison is a size check, the comparison
duke@435 1173 // we want to do is a BoolTest::gt
duke@435 1174 bool always_slow = false;
duke@435 1175 int tv = _igvn.find_int_con(initial_slow_test, -1);
duke@435 1176 if (tv >= 0) {
duke@435 1177 always_slow = (tv == 1);
duke@435 1178 initial_slow_test = NULL;
duke@435 1179 } else {
duke@435 1180 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
duke@435 1181 }
duke@435 1182
kvn@1215 1183 if (C->env()->dtrace_alloc_probes() ||
ysr@777 1184 !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
ysr@777 1185 (UseConcMarkSweepGC && CMSIncrementalMode))) {
duke@435 1186 // Force slow-path allocation
duke@435 1187 always_slow = true;
duke@435 1188 initial_slow_test = NULL;
duke@435 1189 }
duke@435 1190
ysr@777 1191
duke@435 1192 enum { too_big_or_final_path = 1, need_gc_path = 2 };
duke@435 1193 Node *slow_region = NULL;
duke@435 1194 Node *toobig_false = ctrl;
duke@435 1195
duke@435 1196 assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
duke@435 1197 // generate the initial test if necessary
duke@435 1198 if (initial_slow_test != NULL ) {
kvn@4115 1199 slow_region = new (C) RegionNode(3);
duke@435 1200
duke@435 1201 // Now make the initial failure test. Usually a too-big test but
duke@435 1202 // might be a TRUE for finalizers or a fancy class check for
duke@435 1203 // newInstance0.
kvn@4115 1204 IfNode *toobig_iff = new (C) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
duke@435 1205 transform_later(toobig_iff);
duke@435 1206 // Plug the failing-too-big test into the slow-path region
kvn@4115 1207 Node *toobig_true = new (C) IfTrueNode( toobig_iff );
duke@435 1208 transform_later(toobig_true);
duke@435 1209 slow_region ->init_req( too_big_or_final_path, toobig_true );
kvn@4115 1210 toobig_false = new (C) IfFalseNode( toobig_iff );
duke@435 1211 transform_later(toobig_false);
duke@435 1212 } else { // No initial test, just fall into next case
duke@435 1213 toobig_false = ctrl;
duke@435 1214 debug_only(slow_region = NodeSentinel);
duke@435 1215 }
duke@435 1216
duke@435 1217 Node *slow_mem = mem; // save the current memory state for slow path
duke@435 1218 // generate the fast allocation code unless we know that the initial test will always go slow
duke@435 1219 if (!always_slow) {
kvn@1000 1220 // Fast path modifies only raw memory.
kvn@1000 1221 if (mem->is_MergeMem()) {
kvn@1000 1222 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
kvn@1000 1223 }
kvn@1000 1224
ysr@777 1225 Node* eden_top_adr;
ysr@777 1226 Node* eden_end_adr;
ysr@777 1227
ysr@777 1228 set_eden_pointers(eden_top_adr, eden_end_adr);
ysr@777 1229
ysr@777 1230 // Load Eden::end. Loop invariant and hoisted.
ysr@777 1231 //
ysr@777 1232 // Note: We set the control input on "eden_end" and "old_eden_top" when using
ysr@777 1233 // a TLAB to work around a bug where these values were being moved across
ysr@777 1234 // a safepoint. These are not oops, so they cannot be include in the oop
phh@2423 1235 // map, but they can be changed by a GC. The proper way to fix this would
ysr@777 1236 // be to set the raw memory state when generating a SafepointNode. However
ysr@777 1237 // this will require extensive changes to the loop optimization in order to
ysr@777 1238 // prevent a degradation of the optimization.
ysr@777 1239 // See comment in memnode.hpp, around line 227 in class LoadPNode.
ysr@777 1240 Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
ysr@777 1241
duke@435 1242 // allocate the Region and Phi nodes for the result
kvn@4115 1243 result_region = new (C) RegionNode(3);
kvn@4115 1244 result_phi_rawmem = new (C) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@4115 1245 result_phi_rawoop = new (C) PhiNode(result_region, TypeRawPtr::BOTTOM);
kvn@4115 1246 result_phi_i_o = new (C) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
duke@435 1247
duke@435 1248 // We need a Region for the loop-back contended case.
duke@435 1249 enum { fall_in_path = 1, contended_loopback_path = 2 };
duke@435 1250 Node *contended_region;
duke@435 1251 Node *contended_phi_rawmem;
phh@2423 1252 if (UseTLAB) {
duke@435 1253 contended_region = toobig_false;
duke@435 1254 contended_phi_rawmem = mem;
duke@435 1255 } else {
kvn@4115 1256 contended_region = new (C) RegionNode(3);
kvn@4115 1257 contended_phi_rawmem = new (C) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 1258 // Now handle the passing-too-big test. We fall into the contended
duke@435 1259 // loop-back merge point.
phh@2423 1260 contended_region ->init_req(fall_in_path, toobig_false);
phh@2423 1261 contended_phi_rawmem->init_req(fall_in_path, mem);
duke@435 1262 transform_later(contended_region);
duke@435 1263 transform_later(contended_phi_rawmem);
duke@435 1264 }
duke@435 1265
duke@435 1266 // Load(-locked) the heap top.
duke@435 1267 // See note above concerning the control input when using a TLAB
duke@435 1268 Node *old_eden_top = UseTLAB
kvn@4115 1269 ? new (C) LoadPNode (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
kvn@4115 1270 : new (C) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
duke@435 1271
duke@435 1272 transform_later(old_eden_top);
duke@435 1273 // Add to heap top to get a new heap top
kvn@4115 1274 Node *new_eden_top = new (C) AddPNode(top(), old_eden_top, size_in_bytes);
duke@435 1275 transform_later(new_eden_top);
duke@435 1276 // Check for needing a GC; compare against heap end
kvn@4115 1277 Node *needgc_cmp = new (C) CmpPNode(new_eden_top, eden_end);
duke@435 1278 transform_later(needgc_cmp);
kvn@4115 1279 Node *needgc_bol = new (C) BoolNode(needgc_cmp, BoolTest::ge);
duke@435 1280 transform_later(needgc_bol);
kvn@4115 1281 IfNode *needgc_iff = new (C) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
duke@435 1282 transform_later(needgc_iff);
duke@435 1283
duke@435 1284 // Plug the failing-heap-space-need-gc test into the slow-path region
kvn@4115 1285 Node *needgc_true = new (C) IfTrueNode(needgc_iff);
duke@435 1286 transform_later(needgc_true);
phh@2423 1287 if (initial_slow_test) {
phh@2423 1288 slow_region->init_req(need_gc_path, needgc_true);
duke@435 1289 // This completes all paths into the slow merge point
duke@435 1290 transform_later(slow_region);
duke@435 1291 } else { // No initial slow path needed!
duke@435 1292 // Just fall from the need-GC path straight into the VM call.
phh@2423 1293 slow_region = needgc_true;
duke@435 1294 }
duke@435 1295 // No need for a GC. Setup for the Store-Conditional
kvn@4115 1296 Node *needgc_false = new (C) IfFalseNode(needgc_iff);
duke@435 1297 transform_later(needgc_false);
duke@435 1298
duke@435 1299 // Grab regular I/O before optional prefetch may change it.
duke@435 1300 // Slow-path does no I/O so just set it to the original I/O.
phh@2423 1301 result_phi_i_o->init_req(slow_result_path, i_o);
duke@435 1302
duke@435 1303 i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
duke@435 1304 old_eden_top, new_eden_top, length);
duke@435 1305
phh@2423 1306 // Name successful fast-path variables
phh@2423 1307 Node* fast_oop = old_eden_top;
phh@2423 1308 Node* fast_oop_ctrl;
phh@2423 1309 Node* fast_oop_rawmem;
phh@2423 1310
duke@435 1311 // Store (-conditional) the modified eden top back down.
duke@435 1312 // StorePConditional produces flags for a test PLUS a modified raw
duke@435 1313 // memory state.
phh@2423 1314 if (UseTLAB) {
phh@2423 1315 Node* store_eden_top =
kvn@4115 1316 new (C) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
phh@2423 1317 TypeRawPtr::BOTTOM, new_eden_top);
duke@435 1318 transform_later(store_eden_top);
duke@435 1319 fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
phh@2423 1320 fast_oop_rawmem = store_eden_top;
duke@435 1321 } else {
phh@2423 1322 Node* store_eden_top =
kvn@4115 1323 new (C) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
phh@2423 1324 new_eden_top, fast_oop/*old_eden_top*/);
duke@435 1325 transform_later(store_eden_top);
kvn@4115 1326 Node *contention_check = new (C) BoolNode(store_eden_top, BoolTest::ne);
duke@435 1327 transform_later(contention_check);
kvn@4115 1328 store_eden_top = new (C) SCMemProjNode(store_eden_top);
duke@435 1329 transform_later(store_eden_top);
duke@435 1330
duke@435 1331 // If not using TLABs, check to see if there was contention.
kvn@4115 1332 IfNode *contention_iff = new (C) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
duke@435 1333 transform_later(contention_iff);
kvn@4115 1334 Node *contention_true = new (C) IfTrueNode(contention_iff);
duke@435 1335 transform_later(contention_true);
duke@435 1336 // If contention, loopback and try again.
phh@2423 1337 contended_region->init_req(contended_loopback_path, contention_true);
phh@2423 1338 contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
duke@435 1339
duke@435 1340 // Fast-path succeeded with no contention!
kvn@4115 1341 Node *contention_false = new (C) IfFalseNode(contention_iff);
duke@435 1342 transform_later(contention_false);
duke@435 1343 fast_oop_ctrl = contention_false;
phh@2423 1344
phh@2423 1345 // Bump total allocated bytes for this thread
kvn@4115 1346 Node* thread = new (C) ThreadLocalNode();
phh@2423 1347 transform_later(thread);
phh@2423 1348 Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
phh@2423 1349 in_bytes(JavaThread::allocated_bytes_offset()));
phh@2423 1350 Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
phh@2423 1351 0, TypeLong::LONG, T_LONG);
phh@2423 1352 #ifdef _LP64
phh@2423 1353 Node* alloc_size = size_in_bytes;
phh@2423 1354 #else
kvn@4115 1355 Node* alloc_size = new (C) ConvI2LNode(size_in_bytes);
phh@2423 1356 transform_later(alloc_size);
phh@2423 1357 #endif
kvn@4115 1358 Node* new_alloc_bytes = new (C) AddLNode(alloc_bytes, alloc_size);
phh@2423 1359 transform_later(new_alloc_bytes);
phh@2423 1360 fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
phh@2423 1361 0, new_alloc_bytes, T_LONG);
duke@435 1362 }
duke@435 1363
roland@3392 1364 InitializeNode* init = alloc->initialization();
duke@435 1365 fast_oop_rawmem = initialize_object(alloc,
duke@435 1366 fast_oop_ctrl, fast_oop_rawmem, fast_oop,
duke@435 1367 klass_node, length, size_in_bytes);
duke@435 1368
roland@3392 1369 // If initialization is performed by an array copy, any required
roland@3392 1370 // MemBarStoreStore was already added. If the object does not
roland@3392 1371 // escape no need for a MemBarStoreStore. Otherwise we need a
roland@3392 1372 // MemBarStoreStore so that stores that initialize this object
roland@3392 1373 // can't be reordered with a subsequent store that makes this
roland@3392 1374 // object accessible by other threads.
roland@3392 1375 if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
roland@3392 1376 if (init == NULL || init->req() < InitializeNode::RawStores) {
roland@3392 1377 // No InitializeNode or no stores captured by zeroing
roland@3392 1378 // elimination. Simply add the MemBarStoreStore after object
roland@3392 1379 // initialization.
roland@4694 1380 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
roland@3392 1381 transform_later(mb);
roland@3392 1382
roland@3392 1383 mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
roland@3392 1384 mb->init_req(TypeFunc::Control, fast_oop_ctrl);
kvn@4115 1385 fast_oop_ctrl = new (C) ProjNode(mb,TypeFunc::Control);
roland@3392 1386 transform_later(fast_oop_ctrl);
kvn@4115 1387 fast_oop_rawmem = new (C) ProjNode(mb,TypeFunc::Memory);
roland@3392 1388 transform_later(fast_oop_rawmem);
roland@3392 1389 } else {
roland@3392 1390 // Add the MemBarStoreStore after the InitializeNode so that
roland@3392 1391 // all stores performing the initialization that were moved
roland@3392 1392 // before the InitializeNode happen before the storestore
roland@3392 1393 // barrier.
roland@3392 1394
roland@3392 1395 Node* init_ctrl = init->proj_out(TypeFunc::Control);
roland@3392 1396 Node* init_mem = init->proj_out(TypeFunc::Memory);
roland@3392 1397
roland@3392 1398 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
roland@3392 1399 transform_later(mb);
roland@3392 1400
kvn@4115 1401 Node* ctrl = new (C) ProjNode(init,TypeFunc::Control);
roland@3392 1402 transform_later(ctrl);
kvn@4115 1403 Node* mem = new (C) ProjNode(init,TypeFunc::Memory);
roland@3392 1404 transform_later(mem);
roland@3392 1405
roland@3392 1406 // The MemBarStoreStore depends on control and memory coming
roland@3392 1407 // from the InitializeNode
roland@3392 1408 mb->init_req(TypeFunc::Memory, mem);
roland@3392 1409 mb->init_req(TypeFunc::Control, ctrl);
roland@3392 1410
kvn@4115 1411 ctrl = new (C) ProjNode(mb,TypeFunc::Control);
roland@3392 1412 transform_later(ctrl);
kvn@4115 1413 mem = new (C) ProjNode(mb,TypeFunc::Memory);
roland@3392 1414 transform_later(mem);
roland@3392 1415
roland@3392 1416 // All nodes that depended on the InitializeNode for control
roland@3392 1417 // and memory must now depend on the MemBarNode that itself
roland@3392 1418 // depends on the InitializeNode
roland@3392 1419 _igvn.replace_node(init_ctrl, ctrl);
roland@3392 1420 _igvn.replace_node(init_mem, mem);
roland@3392 1421 }
roland@3392 1422 }
roland@3392 1423
kvn@1215 1424 if (C->env()->dtrace_extended_probes()) {
duke@435 1425 // Slow-path call
duke@435 1426 int size = TypeFunc::Parms + 2;
kvn@4115 1427 CallLeafNode *call = new (C) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
kvn@4115 1428 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
kvn@4115 1429 "dtrace_object_alloc",
kvn@4115 1430 TypeRawPtr::BOTTOM);
duke@435 1431
duke@435 1432 // Get base of thread-local storage area
kvn@4115 1433 Node* thread = new (C) ThreadLocalNode();
duke@435 1434 transform_later(thread);
duke@435 1435
duke@435 1436 call->init_req(TypeFunc::Parms+0, thread);
duke@435 1437 call->init_req(TypeFunc::Parms+1, fast_oop);
phh@2423 1438 call->init_req(TypeFunc::Control, fast_oop_ctrl);
phh@2423 1439 call->init_req(TypeFunc::I_O , top()); // does no i/o
phh@2423 1440 call->init_req(TypeFunc::Memory , fast_oop_rawmem);
phh@2423 1441 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
phh@2423 1442 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
duke@435 1443 transform_later(call);
kvn@4115 1444 fast_oop_ctrl = new (C) ProjNode(call,TypeFunc::Control);
duke@435 1445 transform_later(fast_oop_ctrl);
kvn@4115 1446 fast_oop_rawmem = new (C) ProjNode(call,TypeFunc::Memory);
duke@435 1447 transform_later(fast_oop_rawmem);
duke@435 1448 }
duke@435 1449
duke@435 1450 // Plug in the successful fast-path into the result merge point
phh@2423 1451 result_region ->init_req(fast_result_path, fast_oop_ctrl);
phh@2423 1452 result_phi_rawoop->init_req(fast_result_path, fast_oop);
phh@2423 1453 result_phi_i_o ->init_req(fast_result_path, i_o);
phh@2423 1454 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
duke@435 1455 } else {
duke@435 1456 slow_region = ctrl;
kvn@3396 1457 result_phi_i_o = i_o; // Rename it to use in the following code.
duke@435 1458 }
duke@435 1459
duke@435 1460 // Generate slow-path call
kvn@4115 1461 CallNode *call = new (C) CallStaticJavaNode(slow_call_type, slow_call_address,
kvn@4115 1462 OptoRuntime::stub_name(slow_call_address),
kvn@4115 1463 alloc->jvms()->bci(),
kvn@4115 1464 TypePtr::BOTTOM);
duke@435 1465 call->init_req( TypeFunc::Control, slow_region );
duke@435 1466 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1467 call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
duke@435 1468 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1469 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1470
duke@435 1471 call->init_req(TypeFunc::Parms+0, klass_node);
duke@435 1472 if (length != NULL) {
duke@435 1473 call->init_req(TypeFunc::Parms+1, length);
duke@435 1474 }
duke@435 1475
duke@435 1476 // Copy debug information and adjust JVMState information, then replace
duke@435 1477 // allocate node with the call
duke@435 1478 copy_call_debug_info((CallNode *) alloc, call);
duke@435 1479 if (!always_slow) {
duke@435 1480 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
kvn@3396 1481 } else {
kvn@3396 1482 // Hook i_o projection to avoid its elimination during allocation
kvn@3396 1483 // replacement (when only a slow call is generated).
kvn@3396 1484 call->set_req(TypeFunc::I_O, result_phi_i_o);
duke@435 1485 }
kvn@1976 1486 _igvn.replace_node(alloc, call);
duke@435 1487 transform_later(call);
duke@435 1488
duke@435 1489 // Identify the output projections from the allocate node and
duke@435 1490 // adjust any references to them.
duke@435 1491 // The control and io projections look like:
duke@435 1492 //
duke@435 1493 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl)
duke@435 1494 // Allocate Catch
duke@435 1495 // ^---Proj(io) <-------+ ^---CatchProj(io)
duke@435 1496 //
duke@435 1497 // We are interested in the CatchProj nodes.
duke@435 1498 //
duke@435 1499 extract_call_projections(call);
duke@435 1500
kvn@3396 1501 // An allocate node has separate memory projections for the uses on
kvn@3396 1502 // the control and i_o paths. Replace the control memory projection with
kvn@3396 1503 // result_phi_rawmem (unless we are only generating a slow call when
kvn@3396 1504 // both memory projections are combined)
duke@435 1505 if (!always_slow && _memproj_fallthrough != NULL) {
duke@435 1506 for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1507 Node *use = _memproj_fallthrough->fast_out(i);
kvn@3847 1508 _igvn.rehash_node_delayed(use);
duke@435 1509 imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
duke@435 1510 // back up iterator
duke@435 1511 --i;
duke@435 1512 }
duke@435 1513 }
kvn@3396 1514 // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
kvn@3396 1515 // _memproj_catchall so we end up with a call that has only 1 memory projection.
duke@435 1516 if (_memproj_catchall != NULL ) {
duke@435 1517 if (_memproj_fallthrough == NULL) {
kvn@4115 1518 _memproj_fallthrough = new (C) ProjNode(call, TypeFunc::Memory);
duke@435 1519 transform_later(_memproj_fallthrough);
duke@435 1520 }
duke@435 1521 for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1522 Node *use = _memproj_catchall->fast_out(i);
kvn@3847 1523 _igvn.rehash_node_delayed(use);
duke@435 1524 imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
duke@435 1525 // back up iterator
duke@435 1526 --i;
duke@435 1527 }
kvn@3396 1528 assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
kvn@3396 1529 _igvn.remove_dead_node(_memproj_catchall);
duke@435 1530 }
duke@435 1531
kvn@3396 1532 // An allocate node has separate i_o projections for the uses on the control
kvn@3396 1533 // and i_o paths. Always replace the control i_o projection with result i_o
kvn@3396 1534 // otherwise incoming i_o become dead when only a slow call is generated
kvn@3396 1535 // (it is different from memory projections where both projections are
kvn@3396 1536 // combined in such case).
kvn@3396 1537 if (_ioproj_fallthrough != NULL) {
duke@435 1538 for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1539 Node *use = _ioproj_fallthrough->fast_out(i);
kvn@3847 1540 _igvn.rehash_node_delayed(use);
duke@435 1541 imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
duke@435 1542 // back up iterator
duke@435 1543 --i;
duke@435 1544 }
duke@435 1545 }
kvn@3396 1546 // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
kvn@3396 1547 // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
duke@435 1548 if (_ioproj_catchall != NULL ) {
kvn@3396 1549 if (_ioproj_fallthrough == NULL) {
kvn@4115 1550 _ioproj_fallthrough = new (C) ProjNode(call, TypeFunc::I_O);
kvn@3396 1551 transform_later(_ioproj_fallthrough);
kvn@3396 1552 }
duke@435 1553 for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1554 Node *use = _ioproj_catchall->fast_out(i);
kvn@3847 1555 _igvn.rehash_node_delayed(use);
duke@435 1556 imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
duke@435 1557 // back up iterator
duke@435 1558 --i;
duke@435 1559 }
kvn@3396 1560 assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
kvn@3396 1561 _igvn.remove_dead_node(_ioproj_catchall);
duke@435 1562 }
duke@435 1563
duke@435 1564 // if we generated only a slow call, we are done
kvn@3396 1565 if (always_slow) {
kvn@3396 1566 // Now we can unhook i_o.
kvn@3398 1567 if (result_phi_i_o->outcnt() > 1) {
kvn@3398 1568 call->set_req(TypeFunc::I_O, top());
kvn@3398 1569 } else {
kvn@3398 1570 assert(result_phi_i_o->unique_ctrl_out() == call, "");
kvn@3398 1571 // Case of new array with negative size known during compilation.
kvn@3398 1572 // AllocateArrayNode::Ideal() optimization disconnect unreachable
kvn@3398 1573 // following code since call to runtime will throw exception.
kvn@3398 1574 // As result there will be no users of i_o after the call.
kvn@3398 1575 // Leave i_o attached to this call to avoid problems in preceding graph.
kvn@3398 1576 }
duke@435 1577 return;
kvn@3396 1578 }
duke@435 1579
duke@435 1580
duke@435 1581 if (_fallthroughcatchproj != NULL) {
duke@435 1582 ctrl = _fallthroughcatchproj->clone();
duke@435 1583 transform_later(ctrl);
kvn@1143 1584 _igvn.replace_node(_fallthroughcatchproj, result_region);
duke@435 1585 } else {
duke@435 1586 ctrl = top();
duke@435 1587 }
duke@435 1588 Node *slow_result;
duke@435 1589 if (_resproj == NULL) {
duke@435 1590 // no uses of the allocation result
duke@435 1591 slow_result = top();
duke@435 1592 } else {
duke@435 1593 slow_result = _resproj->clone();
duke@435 1594 transform_later(slow_result);
kvn@1143 1595 _igvn.replace_node(_resproj, result_phi_rawoop);
duke@435 1596 }
duke@435 1597
duke@435 1598 // Plug slow-path into result merge point
duke@435 1599 result_region ->init_req( slow_result_path, ctrl );
duke@435 1600 result_phi_rawoop->init_req( slow_result_path, slow_result);
duke@435 1601 result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
duke@435 1602 transform_later(result_region);
duke@435 1603 transform_later(result_phi_rawoop);
duke@435 1604 transform_later(result_phi_rawmem);
duke@435 1605 transform_later(result_phi_i_o);
duke@435 1606 // This completes all paths into the result merge point
duke@435 1607 }
duke@435 1608
duke@435 1609
duke@435 1610 // Helper for PhaseMacroExpand::expand_allocate_common.
duke@435 1611 // Initializes the newly-allocated storage.
duke@435 1612 Node*
duke@435 1613 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
duke@435 1614 Node* control, Node* rawmem, Node* object,
duke@435 1615 Node* klass_node, Node* length,
duke@435 1616 Node* size_in_bytes) {
duke@435 1617 InitializeNode* init = alloc->initialization();
duke@435 1618 // Store the klass & mark bits
duke@435 1619 Node* mark_node = NULL;
duke@435 1620 // For now only enable fast locking for non-array types
duke@435 1621 if (UseBiasedLocking && (length == NULL)) {
stefank@3391 1622 mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 1623 } else {
duke@435 1624 mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
duke@435 1625 }
duke@435 1626 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
coleenp@548 1627
coleenp@4037 1628 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
duke@435 1629 int header_size = alloc->minimum_header_size(); // conservatively small
duke@435 1630
duke@435 1631 // Array length
duke@435 1632 if (length != NULL) { // Arrays need length field
duke@435 1633 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
duke@435 1634 // conservatively small header size:
coleenp@548 1635 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1636 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
duke@435 1637 if (k->is_array_klass()) // we know the exact header size in most cases:
duke@435 1638 header_size = Klass::layout_helper_header_size(k->layout_helper());
duke@435 1639 }
duke@435 1640
duke@435 1641 // Clear the object body, if necessary.
duke@435 1642 if (init == NULL) {
duke@435 1643 // The init has somehow disappeared; be cautious and clear everything.
duke@435 1644 //
duke@435 1645 // This can happen if a node is allocated but an uncommon trap occurs
duke@435 1646 // immediately. In this case, the Initialize gets associated with the
duke@435 1647 // trap, and may be placed in a different (outer) loop, if the Allocate
duke@435 1648 // is in a loop. If (this is rare) the inner loop gets unrolled, then
duke@435 1649 // there can be two Allocates to one Initialize. The answer in all these
duke@435 1650 // edge cases is safety first. It is always safe to clear immediately
duke@435 1651 // within an Allocate, and then (maybe or maybe not) clear some more later.
duke@435 1652 if (!ZeroTLAB)
duke@435 1653 rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
duke@435 1654 header_size, size_in_bytes,
duke@435 1655 &_igvn);
duke@435 1656 } else {
duke@435 1657 if (!init->is_complete()) {
duke@435 1658 // Try to win by zeroing only what the init does not store.
duke@435 1659 // We can also try to do some peephole optimizations,
duke@435 1660 // such as combining some adjacent subword stores.
duke@435 1661 rawmem = init->complete_stores(control, rawmem, object,
duke@435 1662 header_size, size_in_bytes, &_igvn);
duke@435 1663 }
duke@435 1664 // We have no more use for this link, since the AllocateNode goes away:
duke@435 1665 init->set_req(InitializeNode::RawAddress, top());
duke@435 1666 // (If we keep the link, it just confuses the register allocator,
duke@435 1667 // who thinks he sees a real use of the address by the membar.)
duke@435 1668 }
duke@435 1669
duke@435 1670 return rawmem;
duke@435 1671 }
duke@435 1672
duke@435 1673 // Generate prefetch instructions for next allocations.
duke@435 1674 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
duke@435 1675 Node*& contended_phi_rawmem,
duke@435 1676 Node* old_eden_top, Node* new_eden_top,
duke@435 1677 Node* length) {
kvn@1802 1678 enum { fall_in_path = 1, pf_path = 2 };
duke@435 1679 if( UseTLAB && AllocatePrefetchStyle == 2 ) {
duke@435 1680 // Generate prefetch allocation with watermark check.
duke@435 1681 // As an allocation hits the watermark, we will prefetch starting
duke@435 1682 // at a "distance" away from watermark.
duke@435 1683
kvn@4115 1684 Node *pf_region = new (C) RegionNode(3);
kvn@4115 1685 Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
duke@435 1686 TypeRawPtr::BOTTOM );
duke@435 1687 // I/O is used for Prefetch
kvn@4115 1688 Node *pf_phi_abio = new (C) PhiNode( pf_region, Type::ABIO );
duke@435 1689
kvn@4115 1690 Node *thread = new (C) ThreadLocalNode();
duke@435 1691 transform_later(thread);
duke@435 1692
kvn@4115 1693 Node *eden_pf_adr = new (C) AddPNode( top()/*not oop*/, thread,
duke@435 1694 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
duke@435 1695 transform_later(eden_pf_adr);
duke@435 1696
kvn@4115 1697 Node *old_pf_wm = new (C) LoadPNode( needgc_false,
duke@435 1698 contended_phi_rawmem, eden_pf_adr,
duke@435 1699 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
duke@435 1700 transform_later(old_pf_wm);
duke@435 1701
duke@435 1702 // check against new_eden_top
kvn@4115 1703 Node *need_pf_cmp = new (C) CmpPNode( new_eden_top, old_pf_wm );
duke@435 1704 transform_later(need_pf_cmp);
kvn@4115 1705 Node *need_pf_bol = new (C) BoolNode( need_pf_cmp, BoolTest::ge );
duke@435 1706 transform_later(need_pf_bol);
kvn@4115 1707 IfNode *need_pf_iff = new (C) IfNode( needgc_false, need_pf_bol,
duke@435 1708 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1709 transform_later(need_pf_iff);
duke@435 1710
duke@435 1711 // true node, add prefetchdistance
kvn@4115 1712 Node *need_pf_true = new (C) IfTrueNode( need_pf_iff );
duke@435 1713 transform_later(need_pf_true);
duke@435 1714
kvn@4115 1715 Node *need_pf_false = new (C) IfFalseNode( need_pf_iff );
duke@435 1716 transform_later(need_pf_false);
duke@435 1717
kvn@4115 1718 Node *new_pf_wmt = new (C) AddPNode( top(), old_pf_wm,
duke@435 1719 _igvn.MakeConX(AllocatePrefetchDistance) );
duke@435 1720 transform_later(new_pf_wmt );
duke@435 1721 new_pf_wmt->set_req(0, need_pf_true);
duke@435 1722
kvn@4115 1723 Node *store_new_wmt = new (C) StorePNode( need_pf_true,
duke@435 1724 contended_phi_rawmem, eden_pf_adr,
duke@435 1725 TypeRawPtr::BOTTOM, new_pf_wmt );
duke@435 1726 transform_later(store_new_wmt);
duke@435 1727
duke@435 1728 // adding prefetches
duke@435 1729 pf_phi_abio->init_req( fall_in_path, i_o );
duke@435 1730
duke@435 1731 Node *prefetch_adr;
duke@435 1732 Node *prefetch;
duke@435 1733 uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
duke@435 1734 uint step_size = AllocatePrefetchStepSize;
duke@435 1735 uint distance = 0;
duke@435 1736
duke@435 1737 for ( uint i = 0; i < lines; i++ ) {
kvn@4115 1738 prefetch_adr = new (C) AddPNode( old_pf_wm, new_pf_wmt,
duke@435 1739 _igvn.MakeConX(distance) );
duke@435 1740 transform_later(prefetch_adr);
kvn@4115 1741 prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
duke@435 1742 transform_later(prefetch);
duke@435 1743 distance += step_size;
duke@435 1744 i_o = prefetch;
duke@435 1745 }
duke@435 1746 pf_phi_abio->set_req( pf_path, i_o );
duke@435 1747
duke@435 1748 pf_region->init_req( fall_in_path, need_pf_false );
duke@435 1749 pf_region->init_req( pf_path, need_pf_true );
duke@435 1750
duke@435 1751 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
duke@435 1752 pf_phi_rawmem->init_req( pf_path, store_new_wmt );
duke@435 1753
duke@435 1754 transform_later(pf_region);
duke@435 1755 transform_later(pf_phi_rawmem);
duke@435 1756 transform_later(pf_phi_abio);
duke@435 1757
duke@435 1758 needgc_false = pf_region;
duke@435 1759 contended_phi_rawmem = pf_phi_rawmem;
duke@435 1760 i_o = pf_phi_abio;
kvn@1802 1761 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
kvn@3052 1762 // Insert a prefetch for each allocation.
kvn@3052 1763 // This code is used for Sparc with BIS.
kvn@4115 1764 Node *pf_region = new (C) RegionNode(3);
kvn@4115 1765 Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
kvn@4115 1766 TypeRawPtr::BOTTOM );
kvn@1802 1767
kvn@3052 1768 // Generate several prefetch instructions.
kvn@3052 1769 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
kvn@1802 1770 uint step_size = AllocatePrefetchStepSize;
kvn@1802 1771 uint distance = AllocatePrefetchDistance;
kvn@1802 1772
kvn@1802 1773 // Next cache address.
kvn@4115 1774 Node *cache_adr = new (C) AddPNode(old_eden_top, old_eden_top,
kvn@1802 1775 _igvn.MakeConX(distance));
kvn@1802 1776 transform_later(cache_adr);
kvn@4115 1777 cache_adr = new (C) CastP2XNode(needgc_false, cache_adr);
kvn@1802 1778 transform_later(cache_adr);
kvn@1802 1779 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
kvn@4115 1780 cache_adr = new (C) AndXNode(cache_adr, mask);
kvn@1802 1781 transform_later(cache_adr);
kvn@4115 1782 cache_adr = new (C) CastX2PNode(cache_adr);
kvn@1802 1783 transform_later(cache_adr);
kvn@1802 1784
kvn@1802 1785 // Prefetch
kvn@4115 1786 Node *prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
kvn@1802 1787 prefetch->set_req(0, needgc_false);
kvn@1802 1788 transform_later(prefetch);
kvn@1802 1789 contended_phi_rawmem = prefetch;
kvn@1802 1790 Node *prefetch_adr;
kvn@1802 1791 distance = step_size;
kvn@1802 1792 for ( uint i = 1; i < lines; i++ ) {
kvn@4115 1793 prefetch_adr = new (C) AddPNode( cache_adr, cache_adr,
kvn@1802 1794 _igvn.MakeConX(distance) );
kvn@1802 1795 transform_later(prefetch_adr);
kvn@4115 1796 prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
kvn@1802 1797 transform_later(prefetch);
kvn@1802 1798 distance += step_size;
kvn@1802 1799 contended_phi_rawmem = prefetch;
kvn@1802 1800 }
duke@435 1801 } else if( AllocatePrefetchStyle > 0 ) {
duke@435 1802 // Insert a prefetch for each allocation only on the fast-path
duke@435 1803 Node *prefetch_adr;
duke@435 1804 Node *prefetch;
kvn@3052 1805 // Generate several prefetch instructions.
kvn@3052 1806 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
duke@435 1807 uint step_size = AllocatePrefetchStepSize;
duke@435 1808 uint distance = AllocatePrefetchDistance;
duke@435 1809 for ( uint i = 0; i < lines; i++ ) {
kvn@4115 1810 prefetch_adr = new (C) AddPNode( old_eden_top, new_eden_top,
duke@435 1811 _igvn.MakeConX(distance) );
duke@435 1812 transform_later(prefetch_adr);
kvn@4115 1813 prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
duke@435 1814 // Do not let it float too high, since if eden_top == eden_end,
duke@435 1815 // both might be null.
duke@435 1816 if( i == 0 ) { // Set control for first prefetch, next follows it
duke@435 1817 prefetch->init_req(0, needgc_false);
duke@435 1818 }
duke@435 1819 transform_later(prefetch);
duke@435 1820 distance += step_size;
duke@435 1821 i_o = prefetch;
duke@435 1822 }
duke@435 1823 }
duke@435 1824 return i_o;
duke@435 1825 }
duke@435 1826
duke@435 1827
duke@435 1828 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
duke@435 1829 expand_allocate_common(alloc, NULL,
duke@435 1830 OptoRuntime::new_instance_Type(),
duke@435 1831 OptoRuntime::new_instance_Java());
duke@435 1832 }
duke@435 1833
duke@435 1834 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
duke@435 1835 Node* length = alloc->in(AllocateNode::ALength);
kvn@3157 1836 InitializeNode* init = alloc->initialization();
kvn@3157 1837 Node* klass_node = alloc->in(AllocateNode::KlassNode);
kvn@3157 1838 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
kvn@3157 1839 address slow_call_address; // Address of slow call
kvn@3157 1840 if (init != NULL && init->is_complete_with_arraycopy() &&
kvn@3157 1841 k->is_type_array_klass()) {
kvn@3157 1842 // Don't zero type array during slow allocation in VM since
kvn@3157 1843 // it will be initialized later by arraycopy in compiled code.
kvn@3157 1844 slow_call_address = OptoRuntime::new_array_nozero_Java();
kvn@3157 1845 } else {
kvn@3157 1846 slow_call_address = OptoRuntime::new_array_Java();
kvn@3157 1847 }
duke@435 1848 expand_allocate_common(alloc, length,
duke@435 1849 OptoRuntime::new_array_Type(),
kvn@3157 1850 slow_call_address);
duke@435 1851 }
duke@435 1852
kvn@3406 1853 //-------------------mark_eliminated_box----------------------------------
kvn@3406 1854 //
kvn@2951 1855 // During EA obj may point to several objects but after few ideal graph
kvn@2951 1856 // transformations (CCP) it may point to only one non escaping object
kvn@2951 1857 // (but still using phi), corresponding locks and unlocks will be marked
kvn@2951 1858 // for elimination. Later obj could be replaced with a new node (new phi)
kvn@2951 1859 // and which does not have escape information. And later after some graph
kvn@2951 1860 // reshape other locks and unlocks (which were not marked for elimination
kvn@2951 1861 // before) are connected to this new obj (phi) but they still will not be
kvn@2951 1862 // marked for elimination since new obj has no escape information.
kvn@2951 1863 // Mark all associated (same box and obj) lock and unlock nodes for
kvn@2951 1864 // elimination if some of them marked already.
kvn@3406 1865 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
kvn@3421 1866 if (oldbox->as_BoxLock()->is_eliminated())
kvn@3421 1867 return; // This BoxLock node was processed already.
kvn@3406 1868
kvn@3421 1869 // New implementation (EliminateNestedLocks) has separate BoxLock
kvn@3421 1870 // node for each locked region so mark all associated locks/unlocks as
kvn@3421 1871 // eliminated even if different objects are referenced in one locked region
kvn@3421 1872 // (for example, OSR compilation of nested loop inside locked scope).
kvn@3421 1873 if (EliminateNestedLocks ||
kvn@3406 1874 oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
kvn@3406 1875 // Box is used only in one lock region. Mark this box as eliminated.
kvn@3406 1876 _igvn.hash_delete(oldbox);
kvn@3406 1877 oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
kvn@3406 1878 _igvn.hash_insert(oldbox);
kvn@3406 1879
kvn@3406 1880 for (uint i = 0; i < oldbox->outcnt(); i++) {
kvn@3406 1881 Node* u = oldbox->raw_out(i);
kvn@3406 1882 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
kvn@3406 1883 AbstractLockNode* alock = u->as_AbstractLock();
kvn@3406 1884 // Check lock's box since box could be referenced by Lock's debug info.
kvn@3406 1885 if (alock->box_node() == oldbox) {
kvn@3406 1886 // Mark eliminated all related locks and unlocks.
kvn@3406 1887 alock->set_non_esc_obj();
kvn@3406 1888 }
kvn@3406 1889 }
kvn@3406 1890 }
kvn@2951 1891 return;
kvn@501 1892 }
kvn@3406 1893
kvn@3406 1894 // Create new "eliminated" BoxLock node and use it in monitor debug info
kvn@3406 1895 // instead of oldbox for the same object.
kvn@3419 1896 BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
kvn@3406 1897
kvn@3406 1898 // Note: BoxLock node is marked eliminated only here and it is used
kvn@3406 1899 // to indicate that all associated lock and unlock nodes are marked
kvn@3406 1900 // for elimination.
kvn@3406 1901 newbox->set_eliminated();
kvn@3406 1902 transform_later(newbox);
kvn@3406 1903
kvn@3406 1904 // Replace old box node with new box for all users of the same object.
kvn@3406 1905 for (uint i = 0; i < oldbox->outcnt();) {
kvn@3406 1906 bool next_edge = true;
kvn@3406 1907
kvn@3406 1908 Node* u = oldbox->raw_out(i);
kvn@3406 1909 if (u->is_AbstractLock()) {
kvn@3406 1910 AbstractLockNode* alock = u->as_AbstractLock();
kvn@3407 1911 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
kvn@3406 1912 // Replace Box and mark eliminated all related locks and unlocks.
kvn@3406 1913 alock->set_non_esc_obj();
kvn@3847 1914 _igvn.rehash_node_delayed(alock);
kvn@3406 1915 alock->set_box_node(newbox);
kvn@3406 1916 next_edge = false;
kvn@3406 1917 }
kvn@3406 1918 }
kvn@3407 1919 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
kvn@3406 1920 FastLockNode* flock = u->as_FastLock();
kvn@3406 1921 assert(flock->box_node() == oldbox, "sanity");
kvn@3847 1922 _igvn.rehash_node_delayed(flock);
kvn@3406 1923 flock->set_box_node(newbox);
kvn@3406 1924 next_edge = false;
kvn@3406 1925 }
kvn@3406 1926
kvn@3406 1927 // Replace old box in monitor debug info.
kvn@3406 1928 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
kvn@3406 1929 SafePointNode* sfn = u->as_SafePoint();
kvn@3406 1930 JVMState* youngest_jvms = sfn->jvms();
kvn@3406 1931 int max_depth = youngest_jvms->depth();
kvn@3406 1932 for (int depth = 1; depth <= max_depth; depth++) {
kvn@3406 1933 JVMState* jvms = youngest_jvms->of_depth(depth);
kvn@3406 1934 int num_mon = jvms->nof_monitors();
kvn@3406 1935 // Loop over monitors
kvn@3406 1936 for (int idx = 0; idx < num_mon; idx++) {
kvn@3406 1937 Node* obj_node = sfn->monitor_obj(jvms, idx);
kvn@3406 1938 Node* box_node = sfn->monitor_box(jvms, idx);
kvn@3407 1939 if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
kvn@3406 1940 int j = jvms->monitor_box_offset(idx);
kvn@3847 1941 _igvn.replace_input_of(u, j, newbox);
kvn@3406 1942 next_edge = false;
kvn@3406 1943 }
kvn@3406 1944 }
kvn@3406 1945 }
kvn@3406 1946 }
kvn@3406 1947 if (next_edge) i++;
kvn@3406 1948 }
kvn@3406 1949 }
kvn@3406 1950
kvn@3406 1951 //-----------------------mark_eliminated_locking_nodes-----------------------
kvn@3406 1952 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
kvn@3406 1953 if (EliminateNestedLocks) {
kvn@3406 1954 if (alock->is_nested()) {
kvn@3406 1955 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
kvn@3406 1956 return;
kvn@3406 1957 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
kvn@3406 1958 // Only Lock node has JVMState needed here.
kvn@3406 1959 if (alock->jvms() != NULL && alock->as_Lock()->is_nested_lock_region()) {
kvn@3406 1960 // Mark eliminated related nested locks and unlocks.
kvn@3406 1961 Node* obj = alock->obj_node();
kvn@3406 1962 BoxLockNode* box_node = alock->box_node()->as_BoxLock();
kvn@3406 1963 assert(!box_node->is_eliminated(), "should not be marked yet");
kvn@2951 1964 // Note: BoxLock node is marked eliminated only here
kvn@2951 1965 // and it is used to indicate that all associated lock
kvn@2951 1966 // and unlock nodes are marked for elimination.
kvn@3406 1967 box_node->set_eliminated(); // Box's hash is always NO_HASH here
kvn@3406 1968 for (uint i = 0; i < box_node->outcnt(); i++) {
kvn@3406 1969 Node* u = box_node->raw_out(i);
kvn@3406 1970 if (u->is_AbstractLock()) {
kvn@3406 1971 alock = u->as_AbstractLock();
kvn@3406 1972 if (alock->box_node() == box_node) {
kvn@3406 1973 // Verify that this Box is referenced only by related locks.
kvn@3407 1974 assert(alock->obj_node()->eqv_uncast(obj), "");
kvn@3406 1975 // Mark all related locks and unlocks.
kvn@3406 1976 alock->set_nested();
kvn@3406 1977 }
kvn@3406 1978 }
kvn@3406 1979 }
kvn@3406 1980 }
kvn@3406 1981 return;
kvn@3406 1982 }
kvn@3406 1983 // Process locks for non escaping object
kvn@3406 1984 assert(alock->is_non_esc_obj(), "");
kvn@3406 1985 } // EliminateNestedLocks
kvn@895 1986
kvn@3406 1987 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
kvn@3406 1988 // Look for all locks of this object and mark them and
kvn@3406 1989 // corresponding BoxLock nodes as eliminated.
kvn@3406 1990 Node* obj = alock->obj_node();
kvn@3406 1991 for (uint j = 0; j < obj->outcnt(); j++) {
kvn@3406 1992 Node* o = obj->raw_out(j);
kvn@3407 1993 if (o->is_AbstractLock() &&
kvn@3407 1994 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
kvn@3406 1995 alock = o->as_AbstractLock();
kvn@3406 1996 Node* box = alock->box_node();
kvn@3406 1997 // Replace old box node with new eliminated box for all users
kvn@3406 1998 // of the same object and mark related locks as eliminated.
kvn@3406 1999 mark_eliminated_box(box, obj);
kvn@3406 2000 }
kvn@3406 2001 }
kvn@3406 2002 }
kvn@2951 2003 }
kvn@501 2004
kvn@2951 2005 // we have determined that this lock/unlock can be eliminated, we simply
kvn@2951 2006 // eliminate the node without expanding it.
kvn@2951 2007 //
kvn@2951 2008 // Note: The membar's associated with the lock/unlock are currently not
kvn@2951 2009 // eliminated. This should be investigated as a future enhancement.
kvn@2951 2010 //
kvn@2951 2011 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
kvn@2951 2012
kvn@2951 2013 if (!alock->is_eliminated()) {
kvn@2951 2014 return false;
kvn@2951 2015 }
kvn@2951 2016 #ifdef ASSERT
kvn@3406 2017 if (!alock->is_coarsened()) {
kvn@2951 2018 // Check that new "eliminated" BoxLock node is created.
kvn@2951 2019 BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
kvn@2951 2020 assert(oldbox->is_eliminated(), "should be done already");
kvn@2951 2021 }
kvn@2951 2022 #endif
never@1515 2023 CompileLog* log = C->log();
never@1515 2024 if (log != NULL) {
never@1515 2025 log->head("eliminate_lock lock='%d'",
never@1515 2026 alock->is_Lock());
never@1515 2027 JVMState* p = alock->jvms();
never@1515 2028 while (p != NULL) {
never@1515 2029 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 2030 p = p->caller();
never@1515 2031 }
never@1515 2032 log->tail("eliminate_lock");
never@1515 2033 }
never@1515 2034
kvn@501 2035 #ifndef PRODUCT
kvn@501 2036 if (PrintEliminateLocks) {
kvn@501 2037 if (alock->is_Lock()) {
kvn@3311 2038 tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
kvn@501 2039 } else {
kvn@3311 2040 tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
kvn@501 2041 }
kvn@501 2042 }
kvn@501 2043 #endif
kvn@501 2044
kvn@501 2045 Node* mem = alock->in(TypeFunc::Memory);
kvn@501 2046 Node* ctrl = alock->in(TypeFunc::Control);
kvn@501 2047
kvn@501 2048 extract_call_projections(alock);
kvn@501 2049 // There are 2 projections from the lock. The lock node will
kvn@501 2050 // be deleted when its last use is subsumed below.
kvn@501 2051 assert(alock->outcnt() == 2 &&
kvn@501 2052 _fallthroughproj != NULL &&
kvn@501 2053 _memproj_fallthrough != NULL,
kvn@501 2054 "Unexpected projections from Lock/Unlock");
kvn@501 2055
kvn@501 2056 Node* fallthroughproj = _fallthroughproj;
kvn@501 2057 Node* memproj_fallthrough = _memproj_fallthrough;
duke@435 2058
duke@435 2059 // The memory projection from a lock/unlock is RawMem
duke@435 2060 // The input to a Lock is merged memory, so extract its RawMem input
duke@435 2061 // (unless the MergeMem has been optimized away.)
duke@435 2062 if (alock->is_Lock()) {
roland@3047 2063 // Seach for MemBarAcquireLock node and delete it also.
kvn@501 2064 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
roland@3047 2065 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
kvn@501 2066 Node* ctrlproj = membar->proj_out(TypeFunc::Control);
kvn@501 2067 Node* memproj = membar->proj_out(TypeFunc::Memory);
kvn@1143 2068 _igvn.replace_node(ctrlproj, fallthroughproj);
kvn@1143 2069 _igvn.replace_node(memproj, memproj_fallthrough);
kvn@895 2070
kvn@895 2071 // Delete FastLock node also if this Lock node is unique user
kvn@895 2072 // (a loop peeling may clone a Lock node).
kvn@895 2073 Node* flock = alock->as_Lock()->fastlock_node();
kvn@895 2074 if (flock->outcnt() == 1) {
kvn@895 2075 assert(flock->unique_out() == alock, "sanity");
kvn@1143 2076 _igvn.replace_node(flock, top());
kvn@895 2077 }
duke@435 2078 }
duke@435 2079
roland@3047 2080 // Seach for MemBarReleaseLock node and delete it also.
kvn@501 2081 if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
kvn@501 2082 ctrl->in(0)->is_MemBar()) {
kvn@501 2083 MemBarNode* membar = ctrl->in(0)->as_MemBar();
roland@3047 2084 assert(membar->Opcode() == Op_MemBarReleaseLock &&
kvn@501 2085 mem->is_Proj() && membar == mem->in(0), "");
kvn@1143 2086 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 2087 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 2088 fallthroughproj = ctrl;
kvn@501 2089 memproj_fallthrough = mem;
kvn@501 2090 ctrl = membar->in(TypeFunc::Control);
kvn@501 2091 mem = membar->in(TypeFunc::Memory);
kvn@501 2092 }
kvn@501 2093
kvn@1143 2094 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 2095 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 2096 return true;
duke@435 2097 }
duke@435 2098
duke@435 2099
duke@435 2100 //------------------------------expand_lock_node----------------------
duke@435 2101 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
duke@435 2102
duke@435 2103 Node* ctrl = lock->in(TypeFunc::Control);
duke@435 2104 Node* mem = lock->in(TypeFunc::Memory);
duke@435 2105 Node* obj = lock->obj_node();
duke@435 2106 Node* box = lock->box_node();
kvn@501 2107 Node* flock = lock->fastlock_node();
duke@435 2108
kvn@3419 2109 assert(!box->as_BoxLock()->is_eliminated(), "sanity");
kvn@3406 2110
duke@435 2111 // Make the merge point
kvn@855 2112 Node *region;
kvn@855 2113 Node *mem_phi;
kvn@855 2114 Node *slow_path;
duke@435 2115
kvn@855 2116 if (UseOptoBiasInlining) {
kvn@855 2117 /*
twisti@1040 2118 * See the full description in MacroAssembler::biased_locking_enter().
kvn@855 2119 *
kvn@855 2120 * if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
kvn@855 2121 * // The object is biased.
kvn@855 2122 * proto_node = klass->prototype_header;
kvn@855 2123 * o_node = thread | proto_node;
kvn@855 2124 * x_node = o_node ^ mark_word;
kvn@855 2125 * if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
kvn@855 2126 * // Done.
kvn@855 2127 * } else {
kvn@855 2128 * if( (x_node & biased_lock_mask) != 0 ) {
kvn@855 2129 * // The klass's prototype header is no longer biased.
kvn@855 2130 * cas(&mark_word, mark_word, proto_node)
kvn@855 2131 * goto cas_lock;
kvn@855 2132 * } else {
kvn@855 2133 * // The klass's prototype header is still biased.
kvn@855 2134 * if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
kvn@855 2135 * old = mark_word;
kvn@855 2136 * new = o_node;
kvn@855 2137 * } else {
kvn@855 2138 * // Different thread or anonymous biased.
kvn@855 2139 * old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
kvn@855 2140 * new = thread | old;
kvn@855 2141 * }
kvn@855 2142 * // Try to rebias.
kvn@855 2143 * if( cas(&mark_word, old, new) == 0 ) {
kvn@855 2144 * // Done.
kvn@855 2145 * } else {
kvn@855 2146 * goto slow_path; // Failed.
kvn@855 2147 * }
kvn@855 2148 * }
kvn@855 2149 * }
kvn@855 2150 * } else {
kvn@855 2151 * // The object is not biased.
kvn@855 2152 * cas_lock:
kvn@855 2153 * if( FastLock(obj) == 0 ) {
kvn@855 2154 * // Done.
kvn@855 2155 * } else {
kvn@855 2156 * slow_path:
kvn@855 2157 * OptoRuntime::complete_monitor_locking_Java(obj);
kvn@855 2158 * }
kvn@855 2159 * }
kvn@855 2160 */
kvn@855 2161
kvn@4115 2162 region = new (C) RegionNode(5);
kvn@855 2163 // create a Phi for the memory state
kvn@4115 2164 mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2165
kvn@4115 2166 Node* fast_lock_region = new (C) RegionNode(3);
kvn@4115 2167 Node* fast_lock_mem_phi = new (C) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2168
kvn@855 2169 // First, check mark word for the biased lock pattern.
kvn@855 2170 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 2171
kvn@855 2172 // Get fast path - mark word has the biased lock pattern.
kvn@855 2173 ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
kvn@855 2174 markOopDesc::biased_lock_mask_in_place,
kvn@855 2175 markOopDesc::biased_lock_pattern, true);
kvn@855 2176 // fast_lock_region->in(1) is set to slow path.
kvn@855 2177 fast_lock_mem_phi->init_req(1, mem);
kvn@855 2178
kvn@855 2179 // Now check that the lock is biased to the current thread and has
kvn@855 2180 // the same epoch and bias as Klass::_prototype_header.
kvn@855 2181
kvn@855 2182 // Special-case a fresh allocation to avoid building nodes:
kvn@855 2183 Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
kvn@855 2184 if (klass_node == NULL) {
kvn@855 2185 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
kvn@855 2186 klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
kvn@925 2187 #ifdef _LP64
roland@4159 2188 if (UseCompressedKlassPointers && klass_node->is_DecodeNKlass()) {
kvn@925 2189 assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
kvn@925 2190 klass_node->in(1)->init_req(0, ctrl);
kvn@925 2191 } else
kvn@925 2192 #endif
kvn@925 2193 klass_node->init_req(0, ctrl);
kvn@855 2194 }
stefank@3391 2195 Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
kvn@855 2196
kvn@4115 2197 Node* thread = transform_later(new (C) ThreadLocalNode());
kvn@4115 2198 Node* cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
kvn@4115 2199 Node* o_node = transform_later(new (C) OrXNode(cast_thread, proto_node));
kvn@4115 2200 Node* x_node = transform_later(new (C) XorXNode(o_node, mark_node));
kvn@855 2201
kvn@855 2202 // Get slow path - mark word does NOT match the value.
kvn@855 2203 Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node,
kvn@855 2204 (~markOopDesc::age_mask_in_place), 0);
kvn@855 2205 // region->in(3) is set to fast path - the object is biased to the current thread.
kvn@855 2206 mem_phi->init_req(3, mem);
kvn@855 2207
kvn@855 2208
kvn@855 2209 // Mark word does NOT match the value (thread | Klass::_prototype_header).
kvn@855 2210
kvn@855 2211
kvn@855 2212 // First, check biased pattern.
kvn@855 2213 // Get fast path - _prototype_header has the same biased lock pattern.
kvn@855 2214 ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
kvn@855 2215 markOopDesc::biased_lock_mask_in_place, 0, true);
kvn@855 2216
kvn@855 2217 not_biased_ctrl = fast_lock_region->in(2); // Slow path
kvn@855 2218 // fast_lock_region->in(2) - the prototype header is no longer biased
kvn@855 2219 // and we have to revoke the bias on this object.
kvn@855 2220 // We are going to try to reset the mark of this object to the prototype
kvn@855 2221 // value and fall through to the CAS-based locking scheme.
kvn@855 2222 Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@4115 2223 Node* cas = new (C) StoreXConditionalNode(not_biased_ctrl, mem, adr,
kvn@4115 2224 proto_node, mark_node);
kvn@855 2225 transform_later(cas);
kvn@4115 2226 Node* proj = transform_later( new (C) SCMemProjNode(cas));
kvn@855 2227 fast_lock_mem_phi->init_req(2, proj);
kvn@855 2228
kvn@855 2229
kvn@855 2230 // Second, check epoch bits.
kvn@4115 2231 Node* rebiased_region = new (C) RegionNode(3);
kvn@4115 2232 Node* old_phi = new (C) PhiNode( rebiased_region, TypeX_X);
kvn@4115 2233 Node* new_phi = new (C) PhiNode( rebiased_region, TypeX_X);
kvn@855 2234
kvn@855 2235 // Get slow path - mark word does NOT match epoch bits.
kvn@855 2236 Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node,
kvn@855 2237 markOopDesc::epoch_mask_in_place, 0);
kvn@855 2238 // The epoch of the current bias is not valid, attempt to rebias the object
kvn@855 2239 // toward the current thread.
kvn@855 2240 rebiased_region->init_req(2, epoch_ctrl);
kvn@855 2241 old_phi->init_req(2, mark_node);
kvn@855 2242 new_phi->init_req(2, o_node);
kvn@855 2243
kvn@855 2244 // rebiased_region->in(1) is set to fast path.
kvn@855 2245 // The epoch of the current bias is still valid but we know
kvn@855 2246 // nothing about the owner; it might be set or it might be clear.
kvn@855 2247 Node* cmask = MakeConX(markOopDesc::biased_lock_mask_in_place |
kvn@855 2248 markOopDesc::age_mask_in_place |
kvn@855 2249 markOopDesc::epoch_mask_in_place);
kvn@4115 2250 Node* old = transform_later(new (C) AndXNode(mark_node, cmask));
kvn@4115 2251 cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
kvn@4115 2252 Node* new_mark = transform_later(new (C) OrXNode(cast_thread, old));
kvn@855 2253 old_phi->init_req(1, old);
kvn@855 2254 new_phi->init_req(1, new_mark);
kvn@855 2255
kvn@855 2256 transform_later(rebiased_region);
kvn@855 2257 transform_later(old_phi);
kvn@855 2258 transform_later(new_phi);
kvn@855 2259
kvn@855 2260 // Try to acquire the bias of the object using an atomic operation.
kvn@855 2261 // If this fails we will go in to the runtime to revoke the object's bias.
kvn@4115 2262 cas = new (C) StoreXConditionalNode(rebiased_region, mem, adr,
kvn@855 2263 new_phi, old_phi);
kvn@855 2264 transform_later(cas);
kvn@4115 2265 proj = transform_later( new (C) SCMemProjNode(cas));
kvn@855 2266
kvn@855 2267 // Get slow path - Failed to CAS.
kvn@855 2268 not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
kvn@855 2269 mem_phi->init_req(4, proj);
kvn@855 2270 // region->in(4) is set to fast path - the object is rebiased to the current thread.
kvn@855 2271
kvn@855 2272 // Failed to CAS.
kvn@4115 2273 slow_path = new (C) RegionNode(3);
kvn@4115 2274 Node *slow_mem = new (C) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2275
kvn@855 2276 slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
kvn@855 2277 slow_mem->init_req(1, proj);
kvn@855 2278
kvn@855 2279 // Call CAS-based locking scheme (FastLock node).
kvn@855 2280
kvn@855 2281 transform_later(fast_lock_region);
kvn@855 2282 transform_later(fast_lock_mem_phi);
kvn@855 2283
kvn@855 2284 // Get slow path - FastLock failed to lock the object.
kvn@855 2285 ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
kvn@855 2286 mem_phi->init_req(2, fast_lock_mem_phi);
kvn@855 2287 // region->in(2) is set to fast path - the object is locked to the current thread.
kvn@855 2288
kvn@855 2289 slow_path->init_req(2, ctrl); // Capture slow-control
kvn@855 2290 slow_mem->init_req(2, fast_lock_mem_phi);
kvn@855 2291
kvn@855 2292 transform_later(slow_path);
kvn@855 2293 transform_later(slow_mem);
kvn@855 2294 // Reset lock's memory edge.
kvn@855 2295 lock->set_req(TypeFunc::Memory, slow_mem);
kvn@855 2296
kvn@855 2297 } else {
kvn@4115 2298 region = new (C) RegionNode(3);
kvn@855 2299 // create a Phi for the memory state
kvn@4115 2300 mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2301
kvn@855 2302 // Optimize test; set region slot 2
kvn@855 2303 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
kvn@855 2304 mem_phi->init_req(2, mem);
kvn@855 2305 }
duke@435 2306
duke@435 2307 // Make slow path call
duke@435 2308 CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
duke@435 2309
duke@435 2310 extract_call_projections(call);
duke@435 2311
duke@435 2312 // Slow path can only throw asynchronous exceptions, which are always
duke@435 2313 // de-opted. So the compiler thinks the slow-call can never throw an
duke@435 2314 // exception. If it DOES throw an exception we would need the debug
duke@435 2315 // info removed first (since if it throws there is no monitor).
duke@435 2316 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2317 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2318
duke@435 2319 // Capture slow path
duke@435 2320 // disconnect fall-through projection from call and create a new one
duke@435 2321 // hook up users of fall-through projection to region
duke@435 2322 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2323 transform_later(slow_ctrl);
duke@435 2324 _igvn.hash_delete(_fallthroughproj);
bharadwaj@4315 2325 _fallthroughproj->disconnect_inputs(NULL, C);
duke@435 2326 region->init_req(1, slow_ctrl);
duke@435 2327 // region inputs are now complete
duke@435 2328 transform_later(region);
kvn@1143 2329 _igvn.replace_node(_fallthroughproj, region);
duke@435 2330
kvn@4115 2331 Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
duke@435 2332 mem_phi->init_req(1, memproj );
duke@435 2333 transform_later(mem_phi);
kvn@1143 2334 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2335 }
duke@435 2336
duke@435 2337 //------------------------------expand_unlock_node----------------------
duke@435 2338 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
duke@435 2339
kvn@501 2340 Node* ctrl = unlock->in(TypeFunc::Control);
duke@435 2341 Node* mem = unlock->in(TypeFunc::Memory);
duke@435 2342 Node* obj = unlock->obj_node();
duke@435 2343 Node* box = unlock->box_node();
duke@435 2344
kvn@3419 2345 assert(!box->as_BoxLock()->is_eliminated(), "sanity");
kvn@3406 2346
duke@435 2347 // No need for a null check on unlock
duke@435 2348
duke@435 2349 // Make the merge point
kvn@855 2350 Node *region;
kvn@855 2351 Node *mem_phi;
kvn@855 2352
kvn@855 2353 if (UseOptoBiasInlining) {
kvn@855 2354 // Check for biased locking unlock case, which is a no-op.
twisti@1040 2355 // See the full description in MacroAssembler::biased_locking_exit().
kvn@4115 2356 region = new (C) RegionNode(4);
kvn@855 2357 // create a Phi for the memory state
kvn@4115 2358 mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2359 mem_phi->init_req(3, mem);
kvn@855 2360
kvn@855 2361 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 2362 ctrl = opt_bits_test(ctrl, region, 3, mark_node,
kvn@855 2363 markOopDesc::biased_lock_mask_in_place,
kvn@855 2364 markOopDesc::biased_lock_pattern);
kvn@855 2365 } else {
kvn@4115 2366 region = new (C) RegionNode(3);
kvn@855 2367 // create a Phi for the memory state
kvn@4115 2368 mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2369 }
duke@435 2370
kvn@4115 2371 FastUnlockNode *funlock = new (C) FastUnlockNode( ctrl, obj, box );
duke@435 2372 funlock = transform_later( funlock )->as_FastUnlock();
duke@435 2373 // Optimize test; set region slot 2
kvn@855 2374 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
duke@435 2375
duke@435 2376 CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
duke@435 2377
duke@435 2378 extract_call_projections(call);
duke@435 2379
duke@435 2380 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2381 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2382
duke@435 2383 // No exceptions for unlocking
duke@435 2384 // Capture slow path
duke@435 2385 // disconnect fall-through projection from call and create a new one
duke@435 2386 // hook up users of fall-through projection to region
duke@435 2387 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2388 transform_later(slow_ctrl);
duke@435 2389 _igvn.hash_delete(_fallthroughproj);
bharadwaj@4315 2390 _fallthroughproj->disconnect_inputs(NULL, C);
duke@435 2391 region->init_req(1, slow_ctrl);
duke@435 2392 // region inputs are now complete
duke@435 2393 transform_later(region);
kvn@1143 2394 _igvn.replace_node(_fallthroughproj, region);
duke@435 2395
kvn@4115 2396 Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
duke@435 2397 mem_phi->init_req(1, memproj );
duke@435 2398 mem_phi->init_req(2, mem);
duke@435 2399 transform_later(mem_phi);
kvn@1143 2400 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2401 }
duke@435 2402
kvn@3311 2403 //---------------------------eliminate_macro_nodes----------------------
kvn@3311 2404 // Eliminate scalar replaced allocations and associated locks.
kvn@3311 2405 void PhaseMacroExpand::eliminate_macro_nodes() {
duke@435 2406 if (C->macro_count() == 0)
kvn@3311 2407 return;
kvn@3311 2408
kvn@895 2409 // First, attempt to eliminate locks
kvn@2951 2410 int cnt = C->macro_count();
kvn@2951 2411 for (int i=0; i < cnt; i++) {
kvn@2951 2412 Node *n = C->macro_node(i);
kvn@2951 2413 if (n->is_AbstractLock()) { // Lock and Unlock nodes
kvn@2951 2414 // Before elimination mark all associated (same box and obj)
kvn@2951 2415 // lock and unlock nodes.
kvn@2951 2416 mark_eliminated_locking_nodes(n->as_AbstractLock());
kvn@2951 2417 }
kvn@2951 2418 }
kvn@508 2419 bool progress = true;
kvn@508 2420 while (progress) {
kvn@508 2421 progress = false;
kvn@508 2422 for (int i = C->macro_count(); i > 0; i--) {
kvn@508 2423 Node * n = C->macro_node(i-1);
kvn@508 2424 bool success = false;
kvn@508 2425 debug_only(int old_macro_count = C->macro_count(););
kvn@895 2426 if (n->is_AbstractLock()) {
kvn@895 2427 success = eliminate_locking_node(n->as_AbstractLock());
kvn@895 2428 }
kvn@895 2429 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@895 2430 progress = progress || success;
kvn@895 2431 }
kvn@895 2432 }
kvn@895 2433 // Next, attempt to eliminate allocations
kvn@895 2434 progress = true;
kvn@895 2435 while (progress) {
kvn@895 2436 progress = false;
kvn@895 2437 for (int i = C->macro_count(); i > 0; i--) {
kvn@895 2438 Node * n = C->macro_node(i-1);
kvn@895 2439 bool success = false;
kvn@895 2440 debug_only(int old_macro_count = C->macro_count(););
kvn@508 2441 switch (n->class_id()) {
kvn@508 2442 case Node::Class_Allocate:
kvn@508 2443 case Node::Class_AllocateArray:
kvn@508 2444 success = eliminate_allocate_node(n->as_Allocate());
kvn@508 2445 break;
kvn@5110 2446 case Node::Class_CallStaticJava:
kvn@5110 2447 success = eliminate_boxing_node(n->as_CallStaticJava());
kvn@5110 2448 break;
kvn@508 2449 case Node::Class_Lock:
kvn@508 2450 case Node::Class_Unlock:
kvn@895 2451 assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
kvn@508 2452 break;
kvn@508 2453 default:
kvn@3311 2454 assert(n->Opcode() == Op_LoopLimit ||
kvn@3311 2455 n->Opcode() == Op_Opaque1 ||
kvn@3311 2456 n->Opcode() == Op_Opaque2, "unknown node type in macro list");
kvn@508 2457 }
kvn@508 2458 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@508 2459 progress = progress || success;
kvn@508 2460 }
kvn@508 2461 }
kvn@3311 2462 }
kvn@3311 2463
kvn@3311 2464 //------------------------------expand_macro_nodes----------------------
kvn@3311 2465 // Returns true if a failure occurred.
kvn@3311 2466 bool PhaseMacroExpand::expand_macro_nodes() {
kvn@3311 2467 // Last attempt to eliminate macro nodes.
kvn@3311 2468 eliminate_macro_nodes();
kvn@3311 2469
kvn@508 2470 // Make sure expansion will not cause node limit to be exceeded.
kvn@508 2471 // Worst case is a macro node gets expanded into about 50 nodes.
kvn@508 2472 // Allow 50% more for optimization.
duke@435 2473 if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
duke@435 2474 return true;
kvn@508 2475
kvn@3311 2476 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
kvn@3311 2477 bool progress = true;
kvn@3311 2478 while (progress) {
kvn@3311 2479 progress = false;
kvn@3311 2480 for (int i = C->macro_count(); i > 0; i--) {
kvn@3311 2481 Node * n = C->macro_node(i-1);
kvn@3311 2482 bool success = false;
kvn@3311 2483 debug_only(int old_macro_count = C->macro_count(););
kvn@3311 2484 if (n->Opcode() == Op_LoopLimit) {
kvn@3311 2485 // Remove it from macro list and put on IGVN worklist to optimize.
kvn@3311 2486 C->remove_macro_node(n);
kvn@3311 2487 _igvn._worklist.push(n);
kvn@3311 2488 success = true;
kvn@5110 2489 } else if (n->Opcode() == Op_CallStaticJava) {
kvn@5110 2490 // Remove it from macro list and put on IGVN worklist to optimize.
kvn@5110 2491 C->remove_macro_node(n);
kvn@5110 2492 _igvn._worklist.push(n);
kvn@5110 2493 success = true;
kvn@3311 2494 } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
kvn@3311 2495 _igvn.replace_node(n, n->in(1));
kvn@3311 2496 success = true;
kvn@3311 2497 }
kvn@3311 2498 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@3311 2499 progress = progress || success;
kvn@3311 2500 }
kvn@3311 2501 }
kvn@3311 2502
duke@435 2503 // expand "macro" nodes
duke@435 2504 // nodes are removed from the macro list as they are processed
duke@435 2505 while (C->macro_count() > 0) {
kvn@508 2506 int macro_count = C->macro_count();
kvn@508 2507 Node * n = C->macro_node(macro_count-1);
duke@435 2508 assert(n->is_macro(), "only macro nodes expected here");
duke@435 2509 if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
duke@435 2510 // node is unreachable, so don't try to expand it
duke@435 2511 C->remove_macro_node(n);
duke@435 2512 continue;
duke@435 2513 }
duke@435 2514 switch (n->class_id()) {
duke@435 2515 case Node::Class_Allocate:
duke@435 2516 expand_allocate(n->as_Allocate());
duke@435 2517 break;
duke@435 2518 case Node::Class_AllocateArray:
duke@435 2519 expand_allocate_array(n->as_AllocateArray());
duke@435 2520 break;
duke@435 2521 case Node::Class_Lock:
duke@435 2522 expand_lock_node(n->as_Lock());
duke@435 2523 break;
duke@435 2524 case Node::Class_Unlock:
duke@435 2525 expand_unlock_node(n->as_Unlock());
duke@435 2526 break;
duke@435 2527 default:
duke@435 2528 assert(false, "unknown node type in macro list");
duke@435 2529 }
kvn@508 2530 assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
duke@435 2531 if (C->failing()) return true;
duke@435 2532 }
coleenp@548 2533
coleenp@548 2534 _igvn.set_delay_transform(false);
duke@435 2535 _igvn.optimize();
kvn@3311 2536 if (C->failing()) return true;
duke@435 2537 return false;
duke@435 2538 }

mercurial