src/share/vm/opto/macro.cpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 3900
d2a62e0f25eb
child 4115
e626685e9f6c
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

duke@435 1 /*
coleenp@4037 2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "libadt/vectset.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/cfgnode.hpp"
stefank@2314 31 #include "opto/compile.hpp"
stefank@2314 32 #include "opto/connode.hpp"
stefank@2314 33 #include "opto/locknode.hpp"
stefank@2314 34 #include "opto/loopnode.hpp"
stefank@2314 35 #include "opto/macro.hpp"
stefank@2314 36 #include "opto/memnode.hpp"
stefank@2314 37 #include "opto/node.hpp"
stefank@2314 38 #include "opto/phaseX.hpp"
stefank@2314 39 #include "opto/rootnode.hpp"
stefank@2314 40 #include "opto/runtime.hpp"
stefank@2314 41 #include "opto/subnode.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43 #include "runtime/sharedRuntime.hpp"
duke@435 44
duke@435 45
duke@435 46 //
duke@435 47 // Replace any references to "oldref" in inputs to "use" with "newref".
duke@435 48 // Returns the number of replacements made.
duke@435 49 //
duke@435 50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
duke@435 51 int nreplacements = 0;
duke@435 52 uint req = use->req();
duke@435 53 for (uint j = 0; j < use->len(); j++) {
duke@435 54 Node *uin = use->in(j);
duke@435 55 if (uin == oldref) {
duke@435 56 if (j < req)
duke@435 57 use->set_req(j, newref);
duke@435 58 else
duke@435 59 use->set_prec(j, newref);
duke@435 60 nreplacements++;
duke@435 61 } else if (j >= req && uin == NULL) {
duke@435 62 break;
duke@435 63 }
duke@435 64 }
duke@435 65 return nreplacements;
duke@435 66 }
duke@435 67
duke@435 68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
duke@435 69 // Copy debug information and adjust JVMState information
duke@435 70 uint old_dbg_start = oldcall->tf()->domain()->cnt();
duke@435 71 uint new_dbg_start = newcall->tf()->domain()->cnt();
duke@435 72 int jvms_adj = new_dbg_start - old_dbg_start;
duke@435 73 assert (new_dbg_start == newcall->req(), "argument count mismatch");
kvn@498 74
kvn@498 75 Dict* sosn_map = new Dict(cmpkey,hashkey);
duke@435 76 for (uint i = old_dbg_start; i < oldcall->req(); i++) {
kvn@498 77 Node* old_in = oldcall->in(i);
kvn@498 78 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
kvn@895 79 if (old_in != NULL && old_in->is_SafePointScalarObject()) {
kvn@498 80 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
kvn@498 81 uint old_unique = C->unique();
kvn@498 82 Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
kvn@498 83 if (old_unique != C->unique()) {
kvn@3311 84 new_in->set_req(0, C->root()); // reset control edge
kvn@498 85 new_in = transform_later(new_in); // Register new node.
kvn@498 86 }
kvn@498 87 old_in = new_in;
kvn@498 88 }
kvn@498 89 newcall->add_req(old_in);
duke@435 90 }
kvn@498 91
duke@435 92 newcall->set_jvms(oldcall->jvms());
duke@435 93 for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@435 94 jvms->set_map(newcall);
duke@435 95 jvms->set_locoff(jvms->locoff()+jvms_adj);
duke@435 96 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
duke@435 97 jvms->set_monoff(jvms->monoff()+jvms_adj);
kvn@498 98 jvms->set_scloff(jvms->scloff()+jvms_adj);
duke@435 99 jvms->set_endoff(jvms->endoff()+jvms_adj);
duke@435 100 }
duke@435 101 }
duke@435 102
kvn@855 103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
kvn@855 104 Node* cmp;
kvn@855 105 if (mask != 0) {
kvn@855 106 Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
kvn@855 107 cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
kvn@855 108 } else {
kvn@855 109 cmp = word;
kvn@855 110 }
kvn@855 111 Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
kvn@855 112 IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
kvn@855 113 transform_later(iff);
duke@435 114
kvn@855 115 // Fast path taken.
kvn@855 116 Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
duke@435 117
duke@435 118 // Fast path not-taken, i.e. slow path
kvn@855 119 Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
kvn@855 120
kvn@855 121 if (return_fast_path) {
kvn@855 122 region->init_req(edge, slow_taken); // Capture slow-control
kvn@855 123 return fast_taken;
kvn@855 124 } else {
kvn@855 125 region->init_req(edge, fast_taken); // Capture fast-control
kvn@855 126 return slow_taken;
kvn@855 127 }
duke@435 128 }
duke@435 129
duke@435 130 //--------------------copy_predefined_input_for_runtime_call--------------------
duke@435 131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
duke@435 132 // Set fixed predefined input arguments
duke@435 133 call->init_req( TypeFunc::Control, ctrl );
duke@435 134 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) );
duke@435 135 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
duke@435 136 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
duke@435 137 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
duke@435 138 }
duke@435 139
duke@435 140 //------------------------------make_slow_call---------------------------------
duke@435 141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
duke@435 142
duke@435 143 // Slow-path call
duke@435 144 int size = slow_call_type->domain()->cnt();
duke@435 145 CallNode *call = leaf_name
duke@435 146 ? (CallNode*)new (C, size) CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
duke@435 147 : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
duke@435 148
duke@435 149 // Slow path call has no side-effects, uses few values
duke@435 150 copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
duke@435 151 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
duke@435 152 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
duke@435 153 copy_call_debug_info(oldcall, call);
duke@435 154 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
kvn@1976 155 _igvn.replace_node(oldcall, call);
duke@435 156 transform_later(call);
duke@435 157
duke@435 158 return call;
duke@435 159 }
duke@435 160
duke@435 161 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
duke@435 162 _fallthroughproj = NULL;
duke@435 163 _fallthroughcatchproj = NULL;
duke@435 164 _ioproj_fallthrough = NULL;
duke@435 165 _ioproj_catchall = NULL;
duke@435 166 _catchallcatchproj = NULL;
duke@435 167 _memproj_fallthrough = NULL;
duke@435 168 _memproj_catchall = NULL;
duke@435 169 _resproj = NULL;
duke@435 170 for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
duke@435 171 ProjNode *pn = call->fast_out(i)->as_Proj();
duke@435 172 switch (pn->_con) {
duke@435 173 case TypeFunc::Control:
duke@435 174 {
duke@435 175 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
duke@435 176 _fallthroughproj = pn;
duke@435 177 DUIterator_Fast jmax, j = pn->fast_outs(jmax);
duke@435 178 const Node *cn = pn->fast_out(j);
duke@435 179 if (cn->is_Catch()) {
duke@435 180 ProjNode *cpn = NULL;
duke@435 181 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
duke@435 182 cpn = cn->fast_out(k)->as_Proj();
duke@435 183 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
duke@435 184 if (cpn->_con == CatchProjNode::fall_through_index)
duke@435 185 _fallthroughcatchproj = cpn;
duke@435 186 else {
duke@435 187 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
duke@435 188 _catchallcatchproj = cpn;
duke@435 189 }
duke@435 190 }
duke@435 191 }
duke@435 192 break;
duke@435 193 }
duke@435 194 case TypeFunc::I_O:
duke@435 195 if (pn->_is_io_use)
duke@435 196 _ioproj_catchall = pn;
duke@435 197 else
duke@435 198 _ioproj_fallthrough = pn;
duke@435 199 break;
duke@435 200 case TypeFunc::Memory:
duke@435 201 if (pn->_is_io_use)
duke@435 202 _memproj_catchall = pn;
duke@435 203 else
duke@435 204 _memproj_fallthrough = pn;
duke@435 205 break;
duke@435 206 case TypeFunc::Parms:
duke@435 207 _resproj = pn;
duke@435 208 break;
duke@435 209 default:
duke@435 210 assert(false, "unexpected projection from allocation node.");
duke@435 211 }
duke@435 212 }
duke@435 213
duke@435 214 }
duke@435 215
kvn@508 216 // Eliminate a card mark sequence. p2x is a ConvP2XNode
kvn@1286 217 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
kvn@508 218 assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
kvn@1286 219 if (!UseG1GC) {
kvn@1286 220 // vanilla/CMS post barrier
kvn@1286 221 Node *shift = p2x->unique_out();
kvn@1286 222 Node *addp = shift->unique_out();
kvn@1286 223 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
never@2814 224 Node *mem = addp->last_out(j);
never@2814 225 if (UseCondCardMark && mem->is_Load()) {
never@2814 226 assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
never@2814 227 // The load is checking if the card has been written so
never@2814 228 // replace it with zero to fold the test.
never@2814 229 _igvn.replace_node(mem, intcon(0));
never@2814 230 continue;
never@2814 231 }
never@2814 232 assert(mem->is_Store(), "store required");
never@2814 233 _igvn.replace_node(mem, mem->in(MemNode::Memory));
kvn@1286 234 }
kvn@1286 235 } else {
kvn@1286 236 // G1 pre/post barriers
kvn@3521 237 assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
kvn@1286 238 // It could be only one user, URShift node, in Object.clone() instrinsic
kvn@1286 239 // but the new allocation is passed to arraycopy stub and it could not
kvn@1286 240 // be scalar replaced. So we don't check the case.
kvn@1286 241
kvn@3521 242 // An other case of only one user (Xor) is when the value check for NULL
kvn@3521 243 // in G1 post barrier is folded after CCP so the code which used URShift
kvn@3521 244 // is removed.
kvn@3521 245
kvn@3521 246 // Take Region node before eliminating post barrier since it also
kvn@3521 247 // eliminates CastP2X node when it has only one user.
kvn@3521 248 Node* this_region = p2x->in(0);
kvn@3521 249 assert(this_region != NULL, "");
kvn@3521 250
kvn@1286 251 // Remove G1 post barrier.
kvn@1286 252
kvn@1286 253 // Search for CastP2X->Xor->URShift->Cmp path which
kvn@1286 254 // checks if the store done to a different from the value's region.
kvn@1286 255 // And replace Cmp with #0 (false) to collapse G1 post barrier.
kvn@1286 256 Node* xorx = NULL;
kvn@1286 257 for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
kvn@1286 258 Node* u = p2x->fast_out(i);
kvn@1286 259 if (u->Opcode() == Op_XorX) {
kvn@1286 260 xorx = u;
kvn@1286 261 break;
kvn@1286 262 }
kvn@1286 263 }
kvn@1286 264 assert(xorx != NULL, "missing G1 post barrier");
kvn@1286 265 Node* shift = xorx->unique_out();
kvn@1286 266 Node* cmpx = shift->unique_out();
kvn@1286 267 assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
kvn@1286 268 cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
kvn@1286 269 "missing region check in G1 post barrier");
kvn@1286 270 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 271
kvn@1286 272 // Remove G1 pre barrier.
kvn@1286 273
kvn@1286 274 // Search "if (marking != 0)" check and set it to "false".
kvn@1286 275 // There is no G1 pre barrier if previous stored value is NULL
kvn@1286 276 // (for example, after initialization).
kvn@1286 277 if (this_region->is_Region() && this_region->req() == 3) {
kvn@1286 278 int ind = 1;
kvn@1286 279 if (!this_region->in(ind)->is_IfFalse()) {
kvn@1286 280 ind = 2;
kvn@1286 281 }
kvn@1286 282 if (this_region->in(ind)->is_IfFalse()) {
kvn@1286 283 Node* bol = this_region->in(ind)->in(0)->in(1);
kvn@1286 284 assert(bol->is_Bool(), "");
kvn@1286 285 cmpx = bol->in(1);
kvn@1286 286 if (bol->as_Bool()->_test._test == BoolTest::ne &&
kvn@1286 287 cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
kvn@1286 288 cmpx->in(1)->is_Load()) {
kvn@1286 289 Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
kvn@1286 290 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
kvn@1286 291 PtrQueue::byte_offset_of_active());
kvn@1286 292 if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
kvn@1286 293 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
kvn@1286 294 adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
kvn@1286 295 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 296 }
kvn@1286 297 }
kvn@1286 298 }
kvn@1286 299 }
kvn@1286 300 // Now CastP2X can be removed since it is used only on dead path
kvn@1286 301 // which currently still alive until igvn optimize it.
kvn@3521 302 assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
kvn@1286 303 _igvn.replace_node(p2x, top());
kvn@508 304 }
kvn@508 305 }
kvn@508 306
kvn@508 307 // Search for a memory operation for the specified memory slice.
kvn@688 308 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
kvn@508 309 Node *orig_mem = mem;
kvn@508 310 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@688 311 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
kvn@508 312 while (true) {
kvn@508 313 if (mem == alloc_mem || mem == start_mem ) {
twisti@1040 314 return mem; // hit one of our sentinels
kvn@508 315 } else if (mem->is_MergeMem()) {
kvn@508 316 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@508 317 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
kvn@508 318 Node *in = mem->in(0);
kvn@508 319 // we can safely skip over safepoints, calls, locks and membars because we
kvn@508 320 // already know that the object is safe to eliminate.
kvn@508 321 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
kvn@508 322 return in;
kvn@688 323 } else if (in->is_Call()) {
kvn@688 324 CallNode *call = in->as_Call();
kvn@688 325 if (!call->may_modify(tinst, phase)) {
kvn@688 326 mem = call->in(TypeFunc::Memory);
kvn@688 327 }
kvn@688 328 mem = in->in(TypeFunc::Memory);
kvn@688 329 } else if (in->is_MemBar()) {
kvn@508 330 mem = in->in(TypeFunc::Memory);
kvn@508 331 } else {
kvn@508 332 assert(false, "unexpected projection");
kvn@508 333 }
kvn@508 334 } else if (mem->is_Store()) {
kvn@508 335 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 336 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@508 337 if (adr_idx == alias_idx) {
kvn@508 338 assert(atype->isa_oopptr(), "address type must be oopptr");
kvn@508 339 int adr_offset = atype->offset();
kvn@508 340 uint adr_iid = atype->is_oopptr()->instance_id();
kvn@508 341 // Array elements references have the same alias_idx
kvn@508 342 // but different offset and different instance_id.
kvn@508 343 if (adr_offset == offset && adr_iid == alloc->_idx)
kvn@508 344 return mem;
kvn@508 345 } else {
kvn@508 346 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
kvn@508 347 }
kvn@508 348 mem = mem->in(MemNode::Memory);
kvn@1535 349 } else if (mem->is_ClearArray()) {
kvn@1535 350 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
kvn@1535 351 // Can not bypass initialization of the instance
kvn@1535 352 // we are looking.
kvn@1535 353 debug_only(intptr_t offset;)
kvn@1535 354 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
kvn@1535 355 InitializeNode* init = alloc->as_Allocate()->initialization();
kvn@1535 356 // We are looking for stored value, return Initialize node
kvn@1535 357 // or memory edge from Allocate node.
kvn@1535 358 if (init != NULL)
kvn@1535 359 return init;
kvn@1535 360 else
kvn@1535 361 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
kvn@1535 362 }
kvn@1535 363 // Otherwise skip it (the call updated 'mem' value).
kvn@1019 364 } else if (mem->Opcode() == Op_SCMemProj) {
kvn@1019 365 assert(mem->in(0)->is_LoadStore(), "sanity");
kvn@1019 366 const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
kvn@1019 367 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@1019 368 if (adr_idx == alias_idx) {
kvn@1019 369 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 370 return NULL;
kvn@1019 371 }
kvn@1019 372 mem = mem->in(0)->in(MemNode::Memory);
kvn@508 373 } else {
kvn@508 374 return mem;
kvn@508 375 }
kvn@682 376 assert(mem != orig_mem, "dead memory loop");
kvn@508 377 }
kvn@508 378 }
kvn@508 379
kvn@508 380 //
kvn@508 381 // Given a Memory Phi, compute a value Phi containing the values from stores
kvn@508 382 // on the input paths.
kvn@508 383 // Note: this function is recursive, its depth is limied by the "level" argument
kvn@508 384 // Returns the computed Phi, or NULL if it cannot compute it.
kvn@682 385 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
kvn@682 386 assert(mem->is_Phi(), "sanity");
kvn@682 387 int alias_idx = C->get_alias_index(adr_t);
kvn@682 388 int offset = adr_t->offset();
kvn@682 389 int instance_id = adr_t->instance_id();
kvn@682 390
kvn@682 391 // Check if an appropriate value phi already exists.
kvn@682 392 Node* region = mem->in(0);
kvn@682 393 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
kvn@682 394 Node* phi = region->fast_out(k);
kvn@682 395 if (phi->is_Phi() && phi != mem &&
kvn@682 396 phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
kvn@682 397 return phi;
kvn@682 398 }
kvn@682 399 }
kvn@682 400 // Check if an appropriate new value phi already exists.
kvn@2985 401 Node* new_phi = value_phis->find(mem->_idx);
kvn@2985 402 if (new_phi != NULL)
kvn@2985 403 return new_phi;
kvn@508 404
kvn@508 405 if (level <= 0) {
kvn@688 406 return NULL; // Give up: phi tree too deep
kvn@508 407 }
kvn@508 408 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 409 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@508 410
kvn@508 411 uint length = mem->req();
zgu@3900 412 GrowableArray <Node *> values(length, length, NULL, false);
kvn@508 413
kvn@682 414 // create a new Phi for the value
kvn@682 415 PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
kvn@682 416 transform_later(phi);
kvn@682 417 value_phis->push(phi, mem->_idx);
kvn@682 418
kvn@508 419 for (uint j = 1; j < length; j++) {
kvn@508 420 Node *in = mem->in(j);
kvn@508 421 if (in == NULL || in->is_top()) {
kvn@508 422 values.at_put(j, in);
kvn@508 423 } else {
kvn@688 424 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 425 if (val == start_mem || val == alloc_mem) {
kvn@508 426 // hit a sentinel, return appropriate 0 value
kvn@508 427 values.at_put(j, _igvn.zerocon(ft));
kvn@508 428 continue;
kvn@508 429 }
kvn@508 430 if (val->is_Initialize()) {
kvn@508 431 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 432 }
kvn@508 433 if (val == NULL) {
kvn@508 434 return NULL; // can't find a value on this path
kvn@508 435 }
kvn@508 436 if (val == mem) {
kvn@508 437 values.at_put(j, mem);
kvn@508 438 } else if (val->is_Store()) {
kvn@508 439 values.at_put(j, val->in(MemNode::ValueIn));
kvn@508 440 } else if(val->is_Proj() && val->in(0) == alloc) {
kvn@508 441 values.at_put(j, _igvn.zerocon(ft));
kvn@508 442 } else if (val->is_Phi()) {
kvn@682 443 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
kvn@682 444 if (val == NULL) {
kvn@682 445 return NULL;
kvn@508 446 }
kvn@682 447 values.at_put(j, val);
kvn@1019 448 } else if (val->Opcode() == Op_SCMemProj) {
kvn@1019 449 assert(val->in(0)->is_LoadStore(), "sanity");
kvn@1019 450 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 451 return NULL;
kvn@508 452 } else {
kvn@1019 453 #ifdef ASSERT
kvn@1019 454 val->dump();
kvn@688 455 assert(false, "unknown node on this path");
kvn@1019 456 #endif
kvn@688 457 return NULL; // unknown node on this path
kvn@508 458 }
kvn@508 459 }
kvn@508 460 }
kvn@682 461 // Set Phi's inputs
kvn@508 462 for (uint j = 1; j < length; j++) {
kvn@508 463 if (values.at(j) == mem) {
kvn@508 464 phi->init_req(j, phi);
kvn@508 465 } else {
kvn@508 466 phi->init_req(j, values.at(j));
kvn@508 467 }
kvn@508 468 }
kvn@508 469 return phi;
kvn@508 470 }
kvn@508 471
kvn@508 472 // Search the last value stored into the object's field.
kvn@508 473 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
kvn@658 474 assert(adr_t->is_known_instance_field(), "instance required");
kvn@658 475 int instance_id = adr_t->instance_id();
kvn@658 476 assert((uint)instance_id == alloc->_idx, "wrong allocation");
kvn@508 477
kvn@508 478 int alias_idx = C->get_alias_index(adr_t);
kvn@508 479 int offset = adr_t->offset();
kvn@508 480 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 481 Node *alloc_ctrl = alloc->in(TypeFunc::Control);
kvn@508 482 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@682 483 Arena *a = Thread::current()->resource_area();
kvn@682 484 VectorSet visited(a);
kvn@508 485
kvn@508 486
kvn@508 487 bool done = sfpt_mem == alloc_mem;
kvn@508 488 Node *mem = sfpt_mem;
kvn@508 489 while (!done) {
kvn@508 490 if (visited.test_set(mem->_idx)) {
kvn@508 491 return NULL; // found a loop, give up
kvn@508 492 }
kvn@688 493 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 494 if (mem == start_mem || mem == alloc_mem) {
kvn@508 495 done = true; // hit a sentinel, return appropriate 0 value
kvn@508 496 } else if (mem->is_Initialize()) {
kvn@508 497 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 498 if (mem == NULL) {
kvn@508 499 done = true; // Something go wrong.
kvn@508 500 } else if (mem->is_Store()) {
kvn@508 501 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 502 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
kvn@508 503 done = true;
kvn@508 504 }
kvn@508 505 } else if (mem->is_Store()) {
kvn@508 506 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
kvn@508 507 assert(atype != NULL, "address type must be oopptr");
kvn@508 508 assert(C->get_alias_index(atype) == alias_idx &&
kvn@658 509 atype->is_known_instance_field() && atype->offset() == offset &&
kvn@508 510 atype->instance_id() == instance_id, "store is correct memory slice");
kvn@508 511 done = true;
kvn@508 512 } else if (mem->is_Phi()) {
kvn@508 513 // try to find a phi's unique input
kvn@508 514 Node *unique_input = NULL;
kvn@508 515 Node *top = C->top();
kvn@508 516 for (uint i = 1; i < mem->req(); i++) {
kvn@688 517 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 518 if (n == NULL || n == top || n == mem) {
kvn@508 519 continue;
kvn@508 520 } else if (unique_input == NULL) {
kvn@508 521 unique_input = n;
kvn@508 522 } else if (unique_input != n) {
kvn@508 523 unique_input = top;
kvn@508 524 break;
kvn@508 525 }
kvn@508 526 }
kvn@508 527 if (unique_input != NULL && unique_input != top) {
kvn@508 528 mem = unique_input;
kvn@508 529 } else {
kvn@508 530 done = true;
kvn@508 531 }
kvn@508 532 } else {
kvn@508 533 assert(false, "unexpected node");
kvn@508 534 }
kvn@508 535 }
kvn@508 536 if (mem != NULL) {
kvn@508 537 if (mem == start_mem || mem == alloc_mem) {
kvn@508 538 // hit a sentinel, return appropriate 0 value
kvn@508 539 return _igvn.zerocon(ft);
kvn@508 540 } else if (mem->is_Store()) {
kvn@508 541 return mem->in(MemNode::ValueIn);
kvn@508 542 } else if (mem->is_Phi()) {
kvn@508 543 // attempt to produce a Phi reflecting the values on the input paths of the Phi
kvn@682 544 Node_Stack value_phis(a, 8);
kvn@688 545 Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
kvn@508 546 if (phi != NULL) {
kvn@508 547 return phi;
kvn@682 548 } else {
kvn@682 549 // Kill all new Phis
kvn@682 550 while(value_phis.is_nonempty()) {
kvn@682 551 Node* n = value_phis.node();
kvn@1976 552 _igvn.replace_node(n, C->top());
kvn@682 553 value_phis.pop();
kvn@682 554 }
kvn@508 555 }
kvn@508 556 }
kvn@508 557 }
kvn@508 558 // Something go wrong.
kvn@508 559 return NULL;
kvn@508 560 }
kvn@508 561
kvn@508 562 // Check the possibility of scalar replacement.
kvn@508 563 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 564 // Scan the uses of the allocation to check for anything that would
kvn@508 565 // prevent us from eliminating it.
kvn@508 566 NOT_PRODUCT( const char* fail_eliminate = NULL; )
kvn@508 567 DEBUG_ONLY( Node* disq_node = NULL; )
kvn@508 568 bool can_eliminate = true;
kvn@508 569
kvn@508 570 Node* res = alloc->result_cast();
kvn@508 571 const TypeOopPtr* res_type = NULL;
kvn@508 572 if (res == NULL) {
kvn@508 573 // All users were eliminated.
kvn@508 574 } else if (!res->is_CheckCastPP()) {
kvn@508 575 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
kvn@508 576 can_eliminate = false;
kvn@508 577 } else {
kvn@508 578 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 579 if (res_type == NULL) {
kvn@508 580 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
kvn@508 581 can_eliminate = false;
kvn@508 582 } else if (res_type->isa_aryptr()) {
kvn@508 583 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 584 if (length < 0) {
kvn@508 585 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
kvn@508 586 can_eliminate = false;
kvn@508 587 }
kvn@508 588 }
kvn@508 589 }
kvn@508 590
kvn@508 591 if (can_eliminate && res != NULL) {
kvn@508 592 for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
kvn@508 593 j < jmax && can_eliminate; j++) {
kvn@508 594 Node* use = res->fast_out(j);
kvn@508 595
kvn@508 596 if (use->is_AddP()) {
kvn@508 597 const TypePtr* addp_type = _igvn.type(use)->is_ptr();
kvn@508 598 int offset = addp_type->offset();
kvn@508 599
kvn@508 600 if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
kvn@508 601 NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
kvn@508 602 can_eliminate = false;
kvn@508 603 break;
kvn@508 604 }
kvn@508 605 for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
kvn@508 606 k < kmax && can_eliminate; k++) {
kvn@508 607 Node* n = use->fast_out(k);
kvn@508 608 if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
kvn@508 609 DEBUG_ONLY(disq_node = n;)
kvn@688 610 if (n->is_Load() || n->is_LoadStore()) {
kvn@508 611 NOT_PRODUCT(fail_eliminate = "Field load";)
kvn@508 612 } else {
kvn@508 613 NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
kvn@508 614 }
kvn@508 615 can_eliminate = false;
kvn@508 616 }
kvn@508 617 }
kvn@508 618 } else if (use->is_SafePoint()) {
kvn@508 619 SafePointNode* sfpt = use->as_SafePoint();
kvn@603 620 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
kvn@508 621 // Object is passed as argument.
kvn@508 622 DEBUG_ONLY(disq_node = use;)
kvn@508 623 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
kvn@508 624 can_eliminate = false;
kvn@508 625 }
kvn@508 626 Node* sfptMem = sfpt->memory();
kvn@508 627 if (sfptMem == NULL || sfptMem->is_top()) {
kvn@508 628 DEBUG_ONLY(disq_node = use;)
kvn@508 629 NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
kvn@508 630 can_eliminate = false;
kvn@508 631 } else {
kvn@508 632 safepoints.append_if_missing(sfpt);
kvn@508 633 }
kvn@508 634 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
kvn@508 635 if (use->is_Phi()) {
kvn@508 636 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
kvn@508 637 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 638 } else {
kvn@508 639 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
kvn@508 640 }
kvn@508 641 DEBUG_ONLY(disq_node = use;)
kvn@508 642 } else {
kvn@508 643 if (use->Opcode() == Op_Return) {
kvn@508 644 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 645 }else {
kvn@508 646 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
kvn@508 647 }
kvn@508 648 DEBUG_ONLY(disq_node = use;)
kvn@508 649 }
kvn@508 650 can_eliminate = false;
kvn@508 651 }
kvn@508 652 }
kvn@508 653 }
kvn@508 654
kvn@508 655 #ifndef PRODUCT
kvn@508 656 if (PrintEliminateAllocations) {
kvn@508 657 if (can_eliminate) {
kvn@508 658 tty->print("Scalar ");
kvn@508 659 if (res == NULL)
kvn@508 660 alloc->dump();
kvn@508 661 else
kvn@508 662 res->dump();
kvn@508 663 } else {
kvn@508 664 tty->print("NotScalar (%s)", fail_eliminate);
kvn@508 665 if (res == NULL)
kvn@508 666 alloc->dump();
kvn@508 667 else
kvn@508 668 res->dump();
kvn@508 669 #ifdef ASSERT
kvn@508 670 if (disq_node != NULL) {
kvn@508 671 tty->print(" >>>> ");
kvn@508 672 disq_node->dump();
kvn@508 673 }
kvn@508 674 #endif /*ASSERT*/
kvn@508 675 }
kvn@508 676 }
kvn@508 677 #endif
kvn@508 678 return can_eliminate;
kvn@508 679 }
kvn@508 680
kvn@508 681 // Do scalar replacement.
kvn@508 682 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 683 GrowableArray <SafePointNode *> safepoints_done;
kvn@508 684
kvn@508 685 ciKlass* klass = NULL;
kvn@508 686 ciInstanceKlass* iklass = NULL;
kvn@508 687 int nfields = 0;
kvn@508 688 int array_base;
kvn@508 689 int element_size;
kvn@508 690 BasicType basic_elem_type;
kvn@508 691 ciType* elem_type;
kvn@508 692
kvn@508 693 Node* res = alloc->result_cast();
kvn@508 694 const TypeOopPtr* res_type = NULL;
kvn@508 695 if (res != NULL) { // Could be NULL when there are no users
kvn@508 696 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 697 }
kvn@508 698
kvn@508 699 if (res != NULL) {
kvn@508 700 klass = res_type->klass();
kvn@508 701 if (res_type->isa_instptr()) {
kvn@508 702 // find the fields of the class which will be needed for safepoint debug information
kvn@508 703 assert(klass->is_instance_klass(), "must be an instance klass.");
kvn@508 704 iklass = klass->as_instance_klass();
kvn@508 705 nfields = iklass->nof_nonstatic_fields();
kvn@508 706 } else {
kvn@508 707 // find the array's elements which will be needed for safepoint debug information
kvn@508 708 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 709 assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
kvn@508 710 elem_type = klass->as_array_klass()->element_type();
kvn@508 711 basic_elem_type = elem_type->basic_type();
kvn@508 712 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@508 713 element_size = type2aelembytes(basic_elem_type);
kvn@508 714 }
kvn@508 715 }
kvn@508 716 //
kvn@508 717 // Process the safepoint uses
kvn@508 718 //
kvn@508 719 while (safepoints.length() > 0) {
kvn@508 720 SafePointNode* sfpt = safepoints.pop();
kvn@508 721 Node* mem = sfpt->memory();
kvn@508 722 uint first_ind = sfpt->req();
kvn@508 723 SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
kvn@508 724 #ifdef ASSERT
kvn@508 725 alloc,
kvn@508 726 #endif
kvn@508 727 first_ind, nfields);
kvn@3311 728 sobj->init_req(0, C->root());
kvn@508 729 transform_later(sobj);
kvn@508 730
kvn@508 731 // Scan object's fields adding an input to the safepoint for each field.
kvn@508 732 for (int j = 0; j < nfields; j++) {
kvn@741 733 intptr_t offset;
kvn@508 734 ciField* field = NULL;
kvn@508 735 if (iklass != NULL) {
kvn@508 736 field = iklass->nonstatic_field_at(j);
kvn@508 737 offset = field->offset();
kvn@508 738 elem_type = field->type();
kvn@508 739 basic_elem_type = field->layout_type();
kvn@508 740 } else {
kvn@741 741 offset = array_base + j * (intptr_t)element_size;
kvn@508 742 }
kvn@508 743
kvn@508 744 const Type *field_type;
kvn@508 745 // The next code is taken from Parse::do_get_xxx().
kvn@559 746 if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
kvn@508 747 if (!elem_type->is_loaded()) {
kvn@508 748 field_type = TypeInstPtr::BOTTOM;
kvn@2037 749 } else if (field != NULL && field->is_constant() && field->is_static()) {
kvn@508 750 // This can happen if the constant oop is non-perm.
kvn@508 751 ciObject* con = field->constant_value().as_object();
kvn@508 752 // Do not "join" in the previous type; it doesn't add value,
kvn@508 753 // and may yield a vacuous result if the field is of interface type.
kvn@508 754 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
kvn@508 755 assert(field_type != NULL, "field singleton type must be consistent");
kvn@508 756 } else {
kvn@508 757 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
kvn@508 758 }
kvn@559 759 if (UseCompressedOops) {
kvn@656 760 field_type = field_type->make_narrowoop();
kvn@559 761 basic_elem_type = T_NARROWOOP;
kvn@559 762 }
kvn@508 763 } else {
kvn@508 764 field_type = Type::get_const_basic_type(basic_elem_type);
kvn@508 765 }
kvn@508 766
kvn@508 767 const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
kvn@508 768
kvn@508 769 Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
kvn@508 770 if (field_val == NULL) {
kvn@3311 771 // We weren't able to find a value for this field,
kvn@3311 772 // give up on eliminating this allocation.
kvn@3311 773
kvn@3311 774 // Remove any extra entries we added to the safepoint.
kvn@508 775 uint last = sfpt->req() - 1;
kvn@508 776 for (int k = 0; k < j; k++) {
kvn@508 777 sfpt->del_req(last--);
kvn@508 778 }
kvn@508 779 // rollback processed safepoints
kvn@508 780 while (safepoints_done.length() > 0) {
kvn@508 781 SafePointNode* sfpt_done = safepoints_done.pop();
kvn@508 782 // remove any extra entries we added to the safepoint
kvn@508 783 last = sfpt_done->req() - 1;
kvn@508 784 for (int k = 0; k < nfields; k++) {
kvn@508 785 sfpt_done->del_req(last--);
kvn@508 786 }
kvn@508 787 JVMState *jvms = sfpt_done->jvms();
kvn@508 788 jvms->set_endoff(sfpt_done->req());
kvn@508 789 // Now make a pass over the debug information replacing any references
kvn@508 790 // to SafePointScalarObjectNode with the allocated object.
kvn@508 791 int start = jvms->debug_start();
kvn@508 792 int end = jvms->debug_end();
kvn@508 793 for (int i = start; i < end; i++) {
kvn@508 794 if (sfpt_done->in(i)->is_SafePointScalarObject()) {
kvn@508 795 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
kvn@508 796 if (scobj->first_index() == sfpt_done->req() &&
kvn@508 797 scobj->n_fields() == (uint)nfields) {
kvn@508 798 assert(scobj->alloc() == alloc, "sanity");
kvn@508 799 sfpt_done->set_req(i, res);
kvn@508 800 }
kvn@508 801 }
kvn@508 802 }
kvn@508 803 }
kvn@508 804 #ifndef PRODUCT
kvn@508 805 if (PrintEliminateAllocations) {
kvn@508 806 if (field != NULL) {
kvn@508 807 tty->print("=== At SafePoint node %d can't find value of Field: ",
kvn@508 808 sfpt->_idx);
kvn@508 809 field->print();
kvn@508 810 int field_idx = C->get_alias_index(field_addr_type);
kvn@508 811 tty->print(" (alias_idx=%d)", field_idx);
kvn@508 812 } else { // Array's element
kvn@508 813 tty->print("=== At SafePoint node %d can't find value of array element [%d]",
kvn@508 814 sfpt->_idx, j);
kvn@508 815 }
kvn@508 816 tty->print(", which prevents elimination of: ");
kvn@508 817 if (res == NULL)
kvn@508 818 alloc->dump();
kvn@508 819 else
kvn@508 820 res->dump();
kvn@508 821 }
kvn@508 822 #endif
kvn@508 823 return false;
kvn@508 824 }
kvn@559 825 if (UseCompressedOops && field_type->isa_narrowoop()) {
kvn@559 826 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
kvn@559 827 // to be able scalar replace the allocation.
kvn@656 828 if (field_val->is_EncodeP()) {
kvn@656 829 field_val = field_val->in(1);
kvn@656 830 } else {
kvn@656 831 field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
kvn@656 832 }
kvn@559 833 }
kvn@508 834 sfpt->add_req(field_val);
kvn@508 835 }
kvn@508 836 JVMState *jvms = sfpt->jvms();
kvn@508 837 jvms->set_endoff(sfpt->req());
kvn@508 838 // Now make a pass over the debug information replacing any references
kvn@508 839 // to the allocated object with "sobj"
kvn@508 840 int start = jvms->debug_start();
kvn@508 841 int end = jvms->debug_end();
kvn@508 842 for (int i = start; i < end; i++) {
kvn@508 843 if (sfpt->in(i) == res) {
kvn@508 844 sfpt->set_req(i, sobj);
kvn@508 845 }
kvn@508 846 }
kvn@508 847 safepoints_done.append_if_missing(sfpt); // keep it for rollback
kvn@508 848 }
kvn@508 849 return true;
kvn@508 850 }
kvn@508 851
kvn@508 852 // Process users of eliminated allocation.
kvn@508 853 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
kvn@508 854 Node* res = alloc->result_cast();
kvn@508 855 if (res != NULL) {
kvn@508 856 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
kvn@508 857 Node *use = res->last_out(j);
kvn@508 858 uint oc1 = res->outcnt();
kvn@508 859
kvn@508 860 if (use->is_AddP()) {
kvn@508 861 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
kvn@508 862 Node *n = use->last_out(k);
kvn@508 863 uint oc2 = use->outcnt();
kvn@508 864 if (n->is_Store()) {
kvn@1535 865 #ifdef ASSERT
kvn@1535 866 // Verify that there is no dependent MemBarVolatile nodes,
kvn@1535 867 // they should be removed during IGVN, see MemBarNode::Ideal().
kvn@1535 868 for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
kvn@1535 869 p < pmax; p++) {
kvn@1535 870 Node* mb = n->fast_out(p);
kvn@1535 871 assert(mb->is_Initialize() || !mb->is_MemBar() ||
kvn@1535 872 mb->req() <= MemBarNode::Precedent ||
kvn@1535 873 mb->in(MemBarNode::Precedent) != n,
kvn@1535 874 "MemBarVolatile should be eliminated for non-escaping object");
kvn@1535 875 }
kvn@1535 876 #endif
kvn@508 877 _igvn.replace_node(n, n->in(MemNode::Memory));
kvn@508 878 } else {
kvn@508 879 eliminate_card_mark(n);
kvn@508 880 }
kvn@508 881 k -= (oc2 - use->outcnt());
kvn@508 882 }
kvn@508 883 } else {
kvn@508 884 eliminate_card_mark(use);
kvn@508 885 }
kvn@508 886 j -= (oc1 - res->outcnt());
kvn@508 887 }
kvn@508 888 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
kvn@508 889 _igvn.remove_dead_node(res);
kvn@508 890 }
kvn@508 891
kvn@508 892 //
kvn@508 893 // Process other users of allocation's projections
kvn@508 894 //
kvn@508 895 if (_resproj != NULL && _resproj->outcnt() != 0) {
kvn@508 896 for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
kvn@508 897 Node *use = _resproj->last_out(j);
kvn@508 898 uint oc1 = _resproj->outcnt();
kvn@508 899 if (use->is_Initialize()) {
kvn@508 900 // Eliminate Initialize node.
kvn@508 901 InitializeNode *init = use->as_Initialize();
kvn@508 902 assert(init->outcnt() <= 2, "only a control and memory projection expected");
kvn@508 903 Node *ctrl_proj = init->proj_out(TypeFunc::Control);
kvn@508 904 if (ctrl_proj != NULL) {
kvn@508 905 assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
kvn@508 906 _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
kvn@508 907 }
kvn@508 908 Node *mem_proj = init->proj_out(TypeFunc::Memory);
kvn@508 909 if (mem_proj != NULL) {
kvn@508 910 Node *mem = init->in(TypeFunc::Memory);
kvn@508 911 #ifdef ASSERT
kvn@508 912 if (mem->is_MergeMem()) {
kvn@508 913 assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
kvn@508 914 } else {
kvn@508 915 assert(mem == _memproj_fallthrough, "allocation memory projection");
kvn@508 916 }
kvn@508 917 #endif
kvn@508 918 _igvn.replace_node(mem_proj, mem);
kvn@508 919 }
kvn@508 920 } else if (use->is_AddP()) {
kvn@508 921 // raw memory addresses used only by the initialization
kvn@1143 922 _igvn.replace_node(use, C->top());
kvn@508 923 } else {
kvn@508 924 assert(false, "only Initialize or AddP expected");
kvn@508 925 }
kvn@508 926 j -= (oc1 - _resproj->outcnt());
kvn@508 927 }
kvn@508 928 }
kvn@508 929 if (_fallthroughcatchproj != NULL) {
kvn@508 930 _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
kvn@508 931 }
kvn@508 932 if (_memproj_fallthrough != NULL) {
kvn@508 933 _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
kvn@508 934 }
kvn@508 935 if (_memproj_catchall != NULL) {
kvn@508 936 _igvn.replace_node(_memproj_catchall, C->top());
kvn@508 937 }
kvn@508 938 if (_ioproj_fallthrough != NULL) {
kvn@508 939 _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
kvn@508 940 }
kvn@508 941 if (_ioproj_catchall != NULL) {
kvn@508 942 _igvn.replace_node(_ioproj_catchall, C->top());
kvn@508 943 }
kvn@508 944 if (_catchallcatchproj != NULL) {
kvn@508 945 _igvn.replace_node(_catchallcatchproj, C->top());
kvn@508 946 }
kvn@508 947 }
kvn@508 948
kvn@508 949 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
kvn@508 950
kvn@508 951 if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
kvn@508 952 return false;
kvn@508 953 }
kvn@508 954
kvn@508 955 extract_call_projections(alloc);
kvn@508 956
kvn@508 957 GrowableArray <SafePointNode *> safepoints;
kvn@508 958 if (!can_eliminate_allocation(alloc, safepoints)) {
kvn@508 959 return false;
kvn@508 960 }
kvn@508 961
kvn@508 962 if (!scalar_replacement(alloc, safepoints)) {
kvn@508 963 return false;
kvn@508 964 }
kvn@508 965
never@1515 966 CompileLog* log = C->log();
never@1515 967 if (log != NULL) {
never@1515 968 Node* klass = alloc->in(AllocateNode::KlassNode);
never@1515 969 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
never@1515 970 log->head("eliminate_allocation type='%d'",
never@1515 971 log->identify(tklass->klass()));
never@1515 972 JVMState* p = alloc->jvms();
never@1515 973 while (p != NULL) {
never@1515 974 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 975 p = p->caller();
never@1515 976 }
never@1515 977 log->tail("eliminate_allocation");
never@1515 978 }
never@1515 979
kvn@508 980 process_users_of_allocation(alloc);
kvn@508 981
kvn@508 982 #ifndef PRODUCT
never@1515 983 if (PrintEliminateAllocations) {
never@1515 984 if (alloc->is_AllocateArray())
never@1515 985 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
never@1515 986 else
never@1515 987 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
never@1515 988 }
kvn@508 989 #endif
kvn@508 990
kvn@508 991 return true;
kvn@508 992 }
kvn@508 993
duke@435 994
duke@435 995 //---------------------------set_eden_pointers-------------------------
duke@435 996 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
duke@435 997 if (UseTLAB) { // Private allocation: load from TLS
duke@435 998 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
duke@435 999 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
duke@435 1000 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
duke@435 1001 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
duke@435 1002 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
duke@435 1003 } else { // Shared allocation: load from globals
duke@435 1004 CollectedHeap* ch = Universe::heap();
duke@435 1005 address top_adr = (address)ch->top_addr();
duke@435 1006 address end_adr = (address)ch->end_addr();
duke@435 1007 eden_top_adr = makecon(TypeRawPtr::make(top_adr));
duke@435 1008 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
duke@435 1009 }
duke@435 1010 }
duke@435 1011
duke@435 1012
duke@435 1013 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
duke@435 1014 Node* adr = basic_plus_adr(base, offset);
kvn@855 1015 const TypePtr* adr_type = adr->bottom_type()->is_ptr();
coleenp@548 1016 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
duke@435 1017 transform_later(value);
duke@435 1018 return value;
duke@435 1019 }
duke@435 1020
duke@435 1021
duke@435 1022 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
duke@435 1023 Node* adr = basic_plus_adr(base, offset);
coleenp@548 1024 mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
duke@435 1025 transform_later(mem);
duke@435 1026 return mem;
duke@435 1027 }
duke@435 1028
duke@435 1029 //=============================================================================
duke@435 1030 //
duke@435 1031 // A L L O C A T I O N
duke@435 1032 //
duke@435 1033 // Allocation attempts to be fast in the case of frequent small objects.
duke@435 1034 // It breaks down like this:
duke@435 1035 //
duke@435 1036 // 1) Size in doublewords is computed. This is a constant for objects and
duke@435 1037 // variable for most arrays. Doubleword units are used to avoid size
duke@435 1038 // overflow of huge doubleword arrays. We need doublewords in the end for
duke@435 1039 // rounding.
duke@435 1040 //
duke@435 1041 // 2) Size is checked for being 'too large'. Too-large allocations will go
duke@435 1042 // the slow path into the VM. The slow path can throw any required
duke@435 1043 // exceptions, and does all the special checks for very large arrays. The
duke@435 1044 // size test can constant-fold away for objects. For objects with
duke@435 1045 // finalizers it constant-folds the otherway: you always go slow with
duke@435 1046 // finalizers.
duke@435 1047 //
duke@435 1048 // 3) If NOT using TLABs, this is the contended loop-back point.
duke@435 1049 // Load-Locked the heap top. If using TLABs normal-load the heap top.
duke@435 1050 //
duke@435 1051 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route.
duke@435 1052 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish
duke@435 1053 // "size*8" we always enter the VM, where "largish" is a constant picked small
duke@435 1054 // enough that there's always space between the eden max and 4Gig (old space is
duke@435 1055 // there so it's quite large) and large enough that the cost of entering the VM
duke@435 1056 // is dwarfed by the cost to initialize the space.
duke@435 1057 //
duke@435 1058 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
duke@435 1059 // down. If contended, repeat at step 3. If using TLABs normal-store
duke@435 1060 // adjusted heap top back down; there is no contention.
duke@435 1061 //
duke@435 1062 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark
duke@435 1063 // fields.
duke@435 1064 //
duke@435 1065 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
duke@435 1066 // oop flavor.
duke@435 1067 //
duke@435 1068 //=============================================================================
duke@435 1069 // FastAllocateSizeLimit value is in DOUBLEWORDS.
duke@435 1070 // Allocations bigger than this always go the slow route.
duke@435 1071 // This value must be small enough that allocation attempts that need to
duke@435 1072 // trigger exceptions go the slow route. Also, it must be small enough so
duke@435 1073 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
duke@435 1074 //=============================================================================j//
duke@435 1075 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
duke@435 1076 // The allocator will coalesce int->oop copies away. See comment in
duke@435 1077 // coalesce.cpp about how this works. It depends critically on the exact
duke@435 1078 // code shape produced here, so if you are changing this code shape
duke@435 1079 // make sure the GC info for the heap-top is correct in and around the
duke@435 1080 // slow-path call.
duke@435 1081 //
duke@435 1082
duke@435 1083 void PhaseMacroExpand::expand_allocate_common(
duke@435 1084 AllocateNode* alloc, // allocation node to be expanded
duke@435 1085 Node* length, // array length for an array allocation
duke@435 1086 const TypeFunc* slow_call_type, // Type of slow call
duke@435 1087 address slow_call_address // Address of slow call
duke@435 1088 )
duke@435 1089 {
duke@435 1090
duke@435 1091 Node* ctrl = alloc->in(TypeFunc::Control);
duke@435 1092 Node* mem = alloc->in(TypeFunc::Memory);
duke@435 1093 Node* i_o = alloc->in(TypeFunc::I_O);
duke@435 1094 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize);
duke@435 1095 Node* klass_node = alloc->in(AllocateNode::KlassNode);
duke@435 1096 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
duke@435 1097
roland@3392 1098 Node* storestore = alloc->storestore();
roland@3392 1099 if (storestore != NULL) {
roland@3392 1100 // Break this link that is no longer useful and confuses register allocation
roland@3392 1101 storestore->set_req(MemBarNode::Precedent, top());
roland@3392 1102 }
roland@3392 1103
duke@435 1104 assert(ctrl != NULL, "must have control");
duke@435 1105 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
duke@435 1106 // they will not be used if "always_slow" is set
duke@435 1107 enum { slow_result_path = 1, fast_result_path = 2 };
duke@435 1108 Node *result_region;
duke@435 1109 Node *result_phi_rawmem;
duke@435 1110 Node *result_phi_rawoop;
duke@435 1111 Node *result_phi_i_o;
duke@435 1112
duke@435 1113 // The initial slow comparison is a size check, the comparison
duke@435 1114 // we want to do is a BoolTest::gt
duke@435 1115 bool always_slow = false;
duke@435 1116 int tv = _igvn.find_int_con(initial_slow_test, -1);
duke@435 1117 if (tv >= 0) {
duke@435 1118 always_slow = (tv == 1);
duke@435 1119 initial_slow_test = NULL;
duke@435 1120 } else {
duke@435 1121 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
duke@435 1122 }
duke@435 1123
kvn@1215 1124 if (C->env()->dtrace_alloc_probes() ||
ysr@777 1125 !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
ysr@777 1126 (UseConcMarkSweepGC && CMSIncrementalMode))) {
duke@435 1127 // Force slow-path allocation
duke@435 1128 always_slow = true;
duke@435 1129 initial_slow_test = NULL;
duke@435 1130 }
duke@435 1131
ysr@777 1132
duke@435 1133 enum { too_big_or_final_path = 1, need_gc_path = 2 };
duke@435 1134 Node *slow_region = NULL;
duke@435 1135 Node *toobig_false = ctrl;
duke@435 1136
duke@435 1137 assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
duke@435 1138 // generate the initial test if necessary
duke@435 1139 if (initial_slow_test != NULL ) {
duke@435 1140 slow_region = new (C, 3) RegionNode(3);
duke@435 1141
duke@435 1142 // Now make the initial failure test. Usually a too-big test but
duke@435 1143 // might be a TRUE for finalizers or a fancy class check for
duke@435 1144 // newInstance0.
duke@435 1145 IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
duke@435 1146 transform_later(toobig_iff);
duke@435 1147 // Plug the failing-too-big test into the slow-path region
duke@435 1148 Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
duke@435 1149 transform_later(toobig_true);
duke@435 1150 slow_region ->init_req( too_big_or_final_path, toobig_true );
duke@435 1151 toobig_false = new (C, 1) IfFalseNode( toobig_iff );
duke@435 1152 transform_later(toobig_false);
duke@435 1153 } else { // No initial test, just fall into next case
duke@435 1154 toobig_false = ctrl;
duke@435 1155 debug_only(slow_region = NodeSentinel);
duke@435 1156 }
duke@435 1157
duke@435 1158 Node *slow_mem = mem; // save the current memory state for slow path
duke@435 1159 // generate the fast allocation code unless we know that the initial test will always go slow
duke@435 1160 if (!always_slow) {
kvn@1000 1161 // Fast path modifies only raw memory.
kvn@1000 1162 if (mem->is_MergeMem()) {
kvn@1000 1163 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
kvn@1000 1164 }
kvn@1000 1165
ysr@777 1166 Node* eden_top_adr;
ysr@777 1167 Node* eden_end_adr;
ysr@777 1168
ysr@777 1169 set_eden_pointers(eden_top_adr, eden_end_adr);
ysr@777 1170
ysr@777 1171 // Load Eden::end. Loop invariant and hoisted.
ysr@777 1172 //
ysr@777 1173 // Note: We set the control input on "eden_end" and "old_eden_top" when using
ysr@777 1174 // a TLAB to work around a bug where these values were being moved across
ysr@777 1175 // a safepoint. These are not oops, so they cannot be include in the oop
phh@2423 1176 // map, but they can be changed by a GC. The proper way to fix this would
ysr@777 1177 // be to set the raw memory state when generating a SafepointNode. However
ysr@777 1178 // this will require extensive changes to the loop optimization in order to
ysr@777 1179 // prevent a degradation of the optimization.
ysr@777 1180 // See comment in memnode.hpp, around line 227 in class LoadPNode.
ysr@777 1181 Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
ysr@777 1182
duke@435 1183 // allocate the Region and Phi nodes for the result
duke@435 1184 result_region = new (C, 3) RegionNode(3);
phh@2423 1185 result_phi_rawmem = new (C, 3) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
phh@2423 1186 result_phi_rawoop = new (C, 3) PhiNode(result_region, TypeRawPtr::BOTTOM);
phh@2423 1187 result_phi_i_o = new (C, 3) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
duke@435 1188
duke@435 1189 // We need a Region for the loop-back contended case.
duke@435 1190 enum { fall_in_path = 1, contended_loopback_path = 2 };
duke@435 1191 Node *contended_region;
duke@435 1192 Node *contended_phi_rawmem;
phh@2423 1193 if (UseTLAB) {
duke@435 1194 contended_region = toobig_false;
duke@435 1195 contended_phi_rawmem = mem;
duke@435 1196 } else {
duke@435 1197 contended_region = new (C, 3) RegionNode(3);
phh@2423 1198 contended_phi_rawmem = new (C, 3) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 1199 // Now handle the passing-too-big test. We fall into the contended
duke@435 1200 // loop-back merge point.
phh@2423 1201 contended_region ->init_req(fall_in_path, toobig_false);
phh@2423 1202 contended_phi_rawmem->init_req(fall_in_path, mem);
duke@435 1203 transform_later(contended_region);
duke@435 1204 transform_later(contended_phi_rawmem);
duke@435 1205 }
duke@435 1206
duke@435 1207 // Load(-locked) the heap top.
duke@435 1208 // See note above concerning the control input when using a TLAB
duke@435 1209 Node *old_eden_top = UseTLAB
phh@2423 1210 ? new (C, 3) LoadPNode (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
phh@2423 1211 : new (C, 3) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
duke@435 1212
duke@435 1213 transform_later(old_eden_top);
duke@435 1214 // Add to heap top to get a new heap top
phh@2423 1215 Node *new_eden_top = new (C, 4) AddPNode(top(), old_eden_top, size_in_bytes);
duke@435 1216 transform_later(new_eden_top);
duke@435 1217 // Check for needing a GC; compare against heap end
phh@2423 1218 Node *needgc_cmp = new (C, 3) CmpPNode(new_eden_top, eden_end);
duke@435 1219 transform_later(needgc_cmp);
phh@2423 1220 Node *needgc_bol = new (C, 2) BoolNode(needgc_cmp, BoolTest::ge);
duke@435 1221 transform_later(needgc_bol);
phh@2423 1222 IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
duke@435 1223 transform_later(needgc_iff);
duke@435 1224
duke@435 1225 // Plug the failing-heap-space-need-gc test into the slow-path region
phh@2423 1226 Node *needgc_true = new (C, 1) IfTrueNode(needgc_iff);
duke@435 1227 transform_later(needgc_true);
phh@2423 1228 if (initial_slow_test) {
phh@2423 1229 slow_region->init_req(need_gc_path, needgc_true);
duke@435 1230 // This completes all paths into the slow merge point
duke@435 1231 transform_later(slow_region);
duke@435 1232 } else { // No initial slow path needed!
duke@435 1233 // Just fall from the need-GC path straight into the VM call.
phh@2423 1234 slow_region = needgc_true;
duke@435 1235 }
duke@435 1236 // No need for a GC. Setup for the Store-Conditional
phh@2423 1237 Node *needgc_false = new (C, 1) IfFalseNode(needgc_iff);
duke@435 1238 transform_later(needgc_false);
duke@435 1239
duke@435 1240 // Grab regular I/O before optional prefetch may change it.
duke@435 1241 // Slow-path does no I/O so just set it to the original I/O.
phh@2423 1242 result_phi_i_o->init_req(slow_result_path, i_o);
duke@435 1243
duke@435 1244 i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
duke@435 1245 old_eden_top, new_eden_top, length);
duke@435 1246
phh@2423 1247 // Name successful fast-path variables
phh@2423 1248 Node* fast_oop = old_eden_top;
phh@2423 1249 Node* fast_oop_ctrl;
phh@2423 1250 Node* fast_oop_rawmem;
phh@2423 1251
duke@435 1252 // Store (-conditional) the modified eden top back down.
duke@435 1253 // StorePConditional produces flags for a test PLUS a modified raw
duke@435 1254 // memory state.
phh@2423 1255 if (UseTLAB) {
phh@2423 1256 Node* store_eden_top =
phh@2423 1257 new (C, 4) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
phh@2423 1258 TypeRawPtr::BOTTOM, new_eden_top);
duke@435 1259 transform_later(store_eden_top);
duke@435 1260 fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
phh@2423 1261 fast_oop_rawmem = store_eden_top;
duke@435 1262 } else {
phh@2423 1263 Node* store_eden_top =
phh@2423 1264 new (C, 5) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
phh@2423 1265 new_eden_top, fast_oop/*old_eden_top*/);
duke@435 1266 transform_later(store_eden_top);
phh@2423 1267 Node *contention_check = new (C, 2) BoolNode(store_eden_top, BoolTest::ne);
duke@435 1268 transform_later(contention_check);
duke@435 1269 store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
duke@435 1270 transform_later(store_eden_top);
duke@435 1271
duke@435 1272 // If not using TLABs, check to see if there was contention.
phh@2423 1273 IfNode *contention_iff = new (C, 2) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
duke@435 1274 transform_later(contention_iff);
phh@2423 1275 Node *contention_true = new (C, 1) IfTrueNode(contention_iff);
duke@435 1276 transform_later(contention_true);
duke@435 1277 // If contention, loopback and try again.
phh@2423 1278 contended_region->init_req(contended_loopback_path, contention_true);
phh@2423 1279 contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
duke@435 1280
duke@435 1281 // Fast-path succeeded with no contention!
phh@2423 1282 Node *contention_false = new (C, 1) IfFalseNode(contention_iff);
duke@435 1283 transform_later(contention_false);
duke@435 1284 fast_oop_ctrl = contention_false;
phh@2423 1285
phh@2423 1286 // Bump total allocated bytes for this thread
phh@2423 1287 Node* thread = new (C, 1) ThreadLocalNode();
phh@2423 1288 transform_later(thread);
phh@2423 1289 Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
phh@2423 1290 in_bytes(JavaThread::allocated_bytes_offset()));
phh@2423 1291 Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
phh@2423 1292 0, TypeLong::LONG, T_LONG);
phh@2423 1293 #ifdef _LP64
phh@2423 1294 Node* alloc_size = size_in_bytes;
phh@2423 1295 #else
phh@2423 1296 Node* alloc_size = new (C, 2) ConvI2LNode(size_in_bytes);
phh@2423 1297 transform_later(alloc_size);
phh@2423 1298 #endif
phh@2423 1299 Node* new_alloc_bytes = new (C, 3) AddLNode(alloc_bytes, alloc_size);
phh@2423 1300 transform_later(new_alloc_bytes);
phh@2423 1301 fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
phh@2423 1302 0, new_alloc_bytes, T_LONG);
duke@435 1303 }
duke@435 1304
roland@3392 1305 InitializeNode* init = alloc->initialization();
duke@435 1306 fast_oop_rawmem = initialize_object(alloc,
duke@435 1307 fast_oop_ctrl, fast_oop_rawmem, fast_oop,
duke@435 1308 klass_node, length, size_in_bytes);
duke@435 1309
roland@3392 1310 // If initialization is performed by an array copy, any required
roland@3392 1311 // MemBarStoreStore was already added. If the object does not
roland@3392 1312 // escape no need for a MemBarStoreStore. Otherwise we need a
roland@3392 1313 // MemBarStoreStore so that stores that initialize this object
roland@3392 1314 // can't be reordered with a subsequent store that makes this
roland@3392 1315 // object accessible by other threads.
roland@3392 1316 if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
roland@3392 1317 if (init == NULL || init->req() < InitializeNode::RawStores) {
roland@3392 1318 // No InitializeNode or no stores captured by zeroing
roland@3392 1319 // elimination. Simply add the MemBarStoreStore after object
roland@3392 1320 // initialization.
roland@3392 1321 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot, fast_oop_rawmem);
roland@3392 1322 transform_later(mb);
roland@3392 1323
roland@3392 1324 mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
roland@3392 1325 mb->init_req(TypeFunc::Control, fast_oop_ctrl);
roland@3392 1326 fast_oop_ctrl = new (C, 1) ProjNode(mb,TypeFunc::Control);
roland@3392 1327 transform_later(fast_oop_ctrl);
roland@3392 1328 fast_oop_rawmem = new (C, 1) ProjNode(mb,TypeFunc::Memory);
roland@3392 1329 transform_later(fast_oop_rawmem);
roland@3392 1330 } else {
roland@3392 1331 // Add the MemBarStoreStore after the InitializeNode so that
roland@3392 1332 // all stores performing the initialization that were moved
roland@3392 1333 // before the InitializeNode happen before the storestore
roland@3392 1334 // barrier.
roland@3392 1335
roland@3392 1336 Node* init_ctrl = init->proj_out(TypeFunc::Control);
roland@3392 1337 Node* init_mem = init->proj_out(TypeFunc::Memory);
roland@3392 1338
roland@3392 1339 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
roland@3392 1340 transform_later(mb);
roland@3392 1341
roland@3392 1342 Node* ctrl = new (C, 1) ProjNode(init,TypeFunc::Control);
roland@3392 1343 transform_later(ctrl);
roland@3392 1344 Node* mem = new (C, 1) ProjNode(init,TypeFunc::Memory);
roland@3392 1345 transform_later(mem);
roland@3392 1346
roland@3392 1347 // The MemBarStoreStore depends on control and memory coming
roland@3392 1348 // from the InitializeNode
roland@3392 1349 mb->init_req(TypeFunc::Memory, mem);
roland@3392 1350 mb->init_req(TypeFunc::Control, ctrl);
roland@3392 1351
roland@3392 1352 ctrl = new (C, 1) ProjNode(mb,TypeFunc::Control);
roland@3392 1353 transform_later(ctrl);
roland@3392 1354 mem = new (C, 1) ProjNode(mb,TypeFunc::Memory);
roland@3392 1355 transform_later(mem);
roland@3392 1356
roland@3392 1357 // All nodes that depended on the InitializeNode for control
roland@3392 1358 // and memory must now depend on the MemBarNode that itself
roland@3392 1359 // depends on the InitializeNode
roland@3392 1360 _igvn.replace_node(init_ctrl, ctrl);
roland@3392 1361 _igvn.replace_node(init_mem, mem);
roland@3392 1362 }
roland@3392 1363 }
roland@3392 1364
kvn@1215 1365 if (C->env()->dtrace_extended_probes()) {
duke@435 1366 // Slow-path call
duke@435 1367 int size = TypeFunc::Parms + 2;
duke@435 1368 CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
duke@435 1369 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
duke@435 1370 "dtrace_object_alloc",
duke@435 1371 TypeRawPtr::BOTTOM);
duke@435 1372
duke@435 1373 // Get base of thread-local storage area
duke@435 1374 Node* thread = new (C, 1) ThreadLocalNode();
duke@435 1375 transform_later(thread);
duke@435 1376
duke@435 1377 call->init_req(TypeFunc::Parms+0, thread);
duke@435 1378 call->init_req(TypeFunc::Parms+1, fast_oop);
phh@2423 1379 call->init_req(TypeFunc::Control, fast_oop_ctrl);
phh@2423 1380 call->init_req(TypeFunc::I_O , top()); // does no i/o
phh@2423 1381 call->init_req(TypeFunc::Memory , fast_oop_rawmem);
phh@2423 1382 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
phh@2423 1383 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
duke@435 1384 transform_later(call);
duke@435 1385 fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
duke@435 1386 transform_later(fast_oop_ctrl);
duke@435 1387 fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
duke@435 1388 transform_later(fast_oop_rawmem);
duke@435 1389 }
duke@435 1390
duke@435 1391 // Plug in the successful fast-path into the result merge point
phh@2423 1392 result_region ->init_req(fast_result_path, fast_oop_ctrl);
phh@2423 1393 result_phi_rawoop->init_req(fast_result_path, fast_oop);
phh@2423 1394 result_phi_i_o ->init_req(fast_result_path, i_o);
phh@2423 1395 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
duke@435 1396 } else {
duke@435 1397 slow_region = ctrl;
kvn@3396 1398 result_phi_i_o = i_o; // Rename it to use in the following code.
duke@435 1399 }
duke@435 1400
duke@435 1401 // Generate slow-path call
duke@435 1402 CallNode *call = new (C, slow_call_type->domain()->cnt())
duke@435 1403 CallStaticJavaNode(slow_call_type, slow_call_address,
duke@435 1404 OptoRuntime::stub_name(slow_call_address),
duke@435 1405 alloc->jvms()->bci(),
duke@435 1406 TypePtr::BOTTOM);
duke@435 1407 call->init_req( TypeFunc::Control, slow_region );
duke@435 1408 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1409 call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
duke@435 1410 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1411 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1412
duke@435 1413 call->init_req(TypeFunc::Parms+0, klass_node);
duke@435 1414 if (length != NULL) {
duke@435 1415 call->init_req(TypeFunc::Parms+1, length);
duke@435 1416 }
duke@435 1417
duke@435 1418 // Copy debug information and adjust JVMState information, then replace
duke@435 1419 // allocate node with the call
duke@435 1420 copy_call_debug_info((CallNode *) alloc, call);
duke@435 1421 if (!always_slow) {
duke@435 1422 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
kvn@3396 1423 } else {
kvn@3396 1424 // Hook i_o projection to avoid its elimination during allocation
kvn@3396 1425 // replacement (when only a slow call is generated).
kvn@3396 1426 call->set_req(TypeFunc::I_O, result_phi_i_o);
duke@435 1427 }
kvn@1976 1428 _igvn.replace_node(alloc, call);
duke@435 1429 transform_later(call);
duke@435 1430
duke@435 1431 // Identify the output projections from the allocate node and
duke@435 1432 // adjust any references to them.
duke@435 1433 // The control and io projections look like:
duke@435 1434 //
duke@435 1435 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl)
duke@435 1436 // Allocate Catch
duke@435 1437 // ^---Proj(io) <-------+ ^---CatchProj(io)
duke@435 1438 //
duke@435 1439 // We are interested in the CatchProj nodes.
duke@435 1440 //
duke@435 1441 extract_call_projections(call);
duke@435 1442
kvn@3396 1443 // An allocate node has separate memory projections for the uses on
kvn@3396 1444 // the control and i_o paths. Replace the control memory projection with
kvn@3396 1445 // result_phi_rawmem (unless we are only generating a slow call when
kvn@3396 1446 // both memory projections are combined)
duke@435 1447 if (!always_slow && _memproj_fallthrough != NULL) {
duke@435 1448 for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1449 Node *use = _memproj_fallthrough->fast_out(i);
kvn@3847 1450 _igvn.rehash_node_delayed(use);
duke@435 1451 imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
duke@435 1452 // back up iterator
duke@435 1453 --i;
duke@435 1454 }
duke@435 1455 }
kvn@3396 1456 // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
kvn@3396 1457 // _memproj_catchall so we end up with a call that has only 1 memory projection.
duke@435 1458 if (_memproj_catchall != NULL ) {
duke@435 1459 if (_memproj_fallthrough == NULL) {
duke@435 1460 _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
duke@435 1461 transform_later(_memproj_fallthrough);
duke@435 1462 }
duke@435 1463 for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1464 Node *use = _memproj_catchall->fast_out(i);
kvn@3847 1465 _igvn.rehash_node_delayed(use);
duke@435 1466 imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
duke@435 1467 // back up iterator
duke@435 1468 --i;
duke@435 1469 }
kvn@3396 1470 assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
kvn@3396 1471 _igvn.remove_dead_node(_memproj_catchall);
duke@435 1472 }
duke@435 1473
kvn@3396 1474 // An allocate node has separate i_o projections for the uses on the control
kvn@3396 1475 // and i_o paths. Always replace the control i_o projection with result i_o
kvn@3396 1476 // otherwise incoming i_o become dead when only a slow call is generated
kvn@3396 1477 // (it is different from memory projections where both projections are
kvn@3396 1478 // combined in such case).
kvn@3396 1479 if (_ioproj_fallthrough != NULL) {
duke@435 1480 for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1481 Node *use = _ioproj_fallthrough->fast_out(i);
kvn@3847 1482 _igvn.rehash_node_delayed(use);
duke@435 1483 imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
duke@435 1484 // back up iterator
duke@435 1485 --i;
duke@435 1486 }
duke@435 1487 }
kvn@3396 1488 // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
kvn@3396 1489 // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
duke@435 1490 if (_ioproj_catchall != NULL ) {
kvn@3396 1491 if (_ioproj_fallthrough == NULL) {
kvn@3396 1492 _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
kvn@3396 1493 transform_later(_ioproj_fallthrough);
kvn@3396 1494 }
duke@435 1495 for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1496 Node *use = _ioproj_catchall->fast_out(i);
kvn@3847 1497 _igvn.rehash_node_delayed(use);
duke@435 1498 imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
duke@435 1499 // back up iterator
duke@435 1500 --i;
duke@435 1501 }
kvn@3396 1502 assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
kvn@3396 1503 _igvn.remove_dead_node(_ioproj_catchall);
duke@435 1504 }
duke@435 1505
duke@435 1506 // if we generated only a slow call, we are done
kvn@3396 1507 if (always_slow) {
kvn@3396 1508 // Now we can unhook i_o.
kvn@3398 1509 if (result_phi_i_o->outcnt() > 1) {
kvn@3398 1510 call->set_req(TypeFunc::I_O, top());
kvn@3398 1511 } else {
kvn@3398 1512 assert(result_phi_i_o->unique_ctrl_out() == call, "");
kvn@3398 1513 // Case of new array with negative size known during compilation.
kvn@3398 1514 // AllocateArrayNode::Ideal() optimization disconnect unreachable
kvn@3398 1515 // following code since call to runtime will throw exception.
kvn@3398 1516 // As result there will be no users of i_o after the call.
kvn@3398 1517 // Leave i_o attached to this call to avoid problems in preceding graph.
kvn@3398 1518 }
duke@435 1519 return;
kvn@3396 1520 }
duke@435 1521
duke@435 1522
duke@435 1523 if (_fallthroughcatchproj != NULL) {
duke@435 1524 ctrl = _fallthroughcatchproj->clone();
duke@435 1525 transform_later(ctrl);
kvn@1143 1526 _igvn.replace_node(_fallthroughcatchproj, result_region);
duke@435 1527 } else {
duke@435 1528 ctrl = top();
duke@435 1529 }
duke@435 1530 Node *slow_result;
duke@435 1531 if (_resproj == NULL) {
duke@435 1532 // no uses of the allocation result
duke@435 1533 slow_result = top();
duke@435 1534 } else {
duke@435 1535 slow_result = _resproj->clone();
duke@435 1536 transform_later(slow_result);
kvn@1143 1537 _igvn.replace_node(_resproj, result_phi_rawoop);
duke@435 1538 }
duke@435 1539
duke@435 1540 // Plug slow-path into result merge point
duke@435 1541 result_region ->init_req( slow_result_path, ctrl );
duke@435 1542 result_phi_rawoop->init_req( slow_result_path, slow_result);
duke@435 1543 result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
duke@435 1544 transform_later(result_region);
duke@435 1545 transform_later(result_phi_rawoop);
duke@435 1546 transform_later(result_phi_rawmem);
duke@435 1547 transform_later(result_phi_i_o);
duke@435 1548 // This completes all paths into the result merge point
duke@435 1549 }
duke@435 1550
duke@435 1551
duke@435 1552 // Helper for PhaseMacroExpand::expand_allocate_common.
duke@435 1553 // Initializes the newly-allocated storage.
duke@435 1554 Node*
duke@435 1555 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
duke@435 1556 Node* control, Node* rawmem, Node* object,
duke@435 1557 Node* klass_node, Node* length,
duke@435 1558 Node* size_in_bytes) {
duke@435 1559 InitializeNode* init = alloc->initialization();
duke@435 1560 // Store the klass & mark bits
duke@435 1561 Node* mark_node = NULL;
duke@435 1562 // For now only enable fast locking for non-array types
duke@435 1563 if (UseBiasedLocking && (length == NULL)) {
stefank@3391 1564 mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 1565 } else {
duke@435 1566 mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
duke@435 1567 }
duke@435 1568 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
coleenp@548 1569
coleenp@4037 1570 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
duke@435 1571 int header_size = alloc->minimum_header_size(); // conservatively small
duke@435 1572
duke@435 1573 // Array length
duke@435 1574 if (length != NULL) { // Arrays need length field
duke@435 1575 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
duke@435 1576 // conservatively small header size:
coleenp@548 1577 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1578 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
duke@435 1579 if (k->is_array_klass()) // we know the exact header size in most cases:
duke@435 1580 header_size = Klass::layout_helper_header_size(k->layout_helper());
duke@435 1581 }
duke@435 1582
duke@435 1583 // Clear the object body, if necessary.
duke@435 1584 if (init == NULL) {
duke@435 1585 // The init has somehow disappeared; be cautious and clear everything.
duke@435 1586 //
duke@435 1587 // This can happen if a node is allocated but an uncommon trap occurs
duke@435 1588 // immediately. In this case, the Initialize gets associated with the
duke@435 1589 // trap, and may be placed in a different (outer) loop, if the Allocate
duke@435 1590 // is in a loop. If (this is rare) the inner loop gets unrolled, then
duke@435 1591 // there can be two Allocates to one Initialize. The answer in all these
duke@435 1592 // edge cases is safety first. It is always safe to clear immediately
duke@435 1593 // within an Allocate, and then (maybe or maybe not) clear some more later.
duke@435 1594 if (!ZeroTLAB)
duke@435 1595 rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
duke@435 1596 header_size, size_in_bytes,
duke@435 1597 &_igvn);
duke@435 1598 } else {
duke@435 1599 if (!init->is_complete()) {
duke@435 1600 // Try to win by zeroing only what the init does not store.
duke@435 1601 // We can also try to do some peephole optimizations,
duke@435 1602 // such as combining some adjacent subword stores.
duke@435 1603 rawmem = init->complete_stores(control, rawmem, object,
duke@435 1604 header_size, size_in_bytes, &_igvn);
duke@435 1605 }
duke@435 1606 // We have no more use for this link, since the AllocateNode goes away:
duke@435 1607 init->set_req(InitializeNode::RawAddress, top());
duke@435 1608 // (If we keep the link, it just confuses the register allocator,
duke@435 1609 // who thinks he sees a real use of the address by the membar.)
duke@435 1610 }
duke@435 1611
duke@435 1612 return rawmem;
duke@435 1613 }
duke@435 1614
duke@435 1615 // Generate prefetch instructions for next allocations.
duke@435 1616 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
duke@435 1617 Node*& contended_phi_rawmem,
duke@435 1618 Node* old_eden_top, Node* new_eden_top,
duke@435 1619 Node* length) {
kvn@1802 1620 enum { fall_in_path = 1, pf_path = 2 };
duke@435 1621 if( UseTLAB && AllocatePrefetchStyle == 2 ) {
duke@435 1622 // Generate prefetch allocation with watermark check.
duke@435 1623 // As an allocation hits the watermark, we will prefetch starting
duke@435 1624 // at a "distance" away from watermark.
duke@435 1625
duke@435 1626 Node *pf_region = new (C, 3) RegionNode(3);
duke@435 1627 Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
duke@435 1628 TypeRawPtr::BOTTOM );
duke@435 1629 // I/O is used for Prefetch
duke@435 1630 Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
duke@435 1631
duke@435 1632 Node *thread = new (C, 1) ThreadLocalNode();
duke@435 1633 transform_later(thread);
duke@435 1634
duke@435 1635 Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
duke@435 1636 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
duke@435 1637 transform_later(eden_pf_adr);
duke@435 1638
duke@435 1639 Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
duke@435 1640 contended_phi_rawmem, eden_pf_adr,
duke@435 1641 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
duke@435 1642 transform_later(old_pf_wm);
duke@435 1643
duke@435 1644 // check against new_eden_top
duke@435 1645 Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
duke@435 1646 transform_later(need_pf_cmp);
duke@435 1647 Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
duke@435 1648 transform_later(need_pf_bol);
duke@435 1649 IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
duke@435 1650 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1651 transform_later(need_pf_iff);
duke@435 1652
duke@435 1653 // true node, add prefetchdistance
duke@435 1654 Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
duke@435 1655 transform_later(need_pf_true);
duke@435 1656
duke@435 1657 Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
duke@435 1658 transform_later(need_pf_false);
duke@435 1659
duke@435 1660 Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
duke@435 1661 _igvn.MakeConX(AllocatePrefetchDistance) );
duke@435 1662 transform_later(new_pf_wmt );
duke@435 1663 new_pf_wmt->set_req(0, need_pf_true);
duke@435 1664
duke@435 1665 Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
duke@435 1666 contended_phi_rawmem, eden_pf_adr,
duke@435 1667 TypeRawPtr::BOTTOM, new_pf_wmt );
duke@435 1668 transform_later(store_new_wmt);
duke@435 1669
duke@435 1670 // adding prefetches
duke@435 1671 pf_phi_abio->init_req( fall_in_path, i_o );
duke@435 1672
duke@435 1673 Node *prefetch_adr;
duke@435 1674 Node *prefetch;
duke@435 1675 uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
duke@435 1676 uint step_size = AllocatePrefetchStepSize;
duke@435 1677 uint distance = 0;
duke@435 1678
duke@435 1679 for ( uint i = 0; i < lines; i++ ) {
duke@435 1680 prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
duke@435 1681 _igvn.MakeConX(distance) );
duke@435 1682 transform_later(prefetch_adr);
kvn@3052 1683 prefetch = new (C, 3) PrefetchAllocationNode( i_o, prefetch_adr );
duke@435 1684 transform_later(prefetch);
duke@435 1685 distance += step_size;
duke@435 1686 i_o = prefetch;
duke@435 1687 }
duke@435 1688 pf_phi_abio->set_req( pf_path, i_o );
duke@435 1689
duke@435 1690 pf_region->init_req( fall_in_path, need_pf_false );
duke@435 1691 pf_region->init_req( pf_path, need_pf_true );
duke@435 1692
duke@435 1693 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
duke@435 1694 pf_phi_rawmem->init_req( pf_path, store_new_wmt );
duke@435 1695
duke@435 1696 transform_later(pf_region);
duke@435 1697 transform_later(pf_phi_rawmem);
duke@435 1698 transform_later(pf_phi_abio);
duke@435 1699
duke@435 1700 needgc_false = pf_region;
duke@435 1701 contended_phi_rawmem = pf_phi_rawmem;
duke@435 1702 i_o = pf_phi_abio;
kvn@1802 1703 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
kvn@3052 1704 // Insert a prefetch for each allocation.
kvn@3052 1705 // This code is used for Sparc with BIS.
kvn@1802 1706 Node *pf_region = new (C, 3) RegionNode(3);
kvn@1802 1707 Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
kvn@1802 1708 TypeRawPtr::BOTTOM );
kvn@1802 1709
kvn@3052 1710 // Generate several prefetch instructions.
kvn@3052 1711 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
kvn@1802 1712 uint step_size = AllocatePrefetchStepSize;
kvn@1802 1713 uint distance = AllocatePrefetchDistance;
kvn@1802 1714
kvn@1802 1715 // Next cache address.
kvn@1802 1716 Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
kvn@1802 1717 _igvn.MakeConX(distance));
kvn@1802 1718 transform_later(cache_adr);
kvn@1802 1719 cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
kvn@1802 1720 transform_later(cache_adr);
kvn@1802 1721 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
kvn@1802 1722 cache_adr = new (C, 3) AndXNode(cache_adr, mask);
kvn@1802 1723 transform_later(cache_adr);
kvn@1802 1724 cache_adr = new (C, 2) CastX2PNode(cache_adr);
kvn@1802 1725 transform_later(cache_adr);
kvn@1802 1726
kvn@1802 1727 // Prefetch
kvn@3052 1728 Node *prefetch = new (C, 3) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
kvn@1802 1729 prefetch->set_req(0, needgc_false);
kvn@1802 1730 transform_later(prefetch);
kvn@1802 1731 contended_phi_rawmem = prefetch;
kvn@1802 1732 Node *prefetch_adr;
kvn@1802 1733 distance = step_size;
kvn@1802 1734 for ( uint i = 1; i < lines; i++ ) {
kvn@1802 1735 prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
kvn@1802 1736 _igvn.MakeConX(distance) );
kvn@1802 1737 transform_later(prefetch_adr);
kvn@3052 1738 prefetch = new (C, 3) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
kvn@1802 1739 transform_later(prefetch);
kvn@1802 1740 distance += step_size;
kvn@1802 1741 contended_phi_rawmem = prefetch;
kvn@1802 1742 }
duke@435 1743 } else if( AllocatePrefetchStyle > 0 ) {
duke@435 1744 // Insert a prefetch for each allocation only on the fast-path
duke@435 1745 Node *prefetch_adr;
duke@435 1746 Node *prefetch;
kvn@3052 1747 // Generate several prefetch instructions.
kvn@3052 1748 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
duke@435 1749 uint step_size = AllocatePrefetchStepSize;
duke@435 1750 uint distance = AllocatePrefetchDistance;
duke@435 1751 for ( uint i = 0; i < lines; i++ ) {
duke@435 1752 prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
duke@435 1753 _igvn.MakeConX(distance) );
duke@435 1754 transform_later(prefetch_adr);
kvn@3052 1755 prefetch = new (C, 3) PrefetchAllocationNode( i_o, prefetch_adr );
duke@435 1756 // Do not let it float too high, since if eden_top == eden_end,
duke@435 1757 // both might be null.
duke@435 1758 if( i == 0 ) { // Set control for first prefetch, next follows it
duke@435 1759 prefetch->init_req(0, needgc_false);
duke@435 1760 }
duke@435 1761 transform_later(prefetch);
duke@435 1762 distance += step_size;
duke@435 1763 i_o = prefetch;
duke@435 1764 }
duke@435 1765 }
duke@435 1766 return i_o;
duke@435 1767 }
duke@435 1768
duke@435 1769
duke@435 1770 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
duke@435 1771 expand_allocate_common(alloc, NULL,
duke@435 1772 OptoRuntime::new_instance_Type(),
duke@435 1773 OptoRuntime::new_instance_Java());
duke@435 1774 }
duke@435 1775
duke@435 1776 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
duke@435 1777 Node* length = alloc->in(AllocateNode::ALength);
kvn@3157 1778 InitializeNode* init = alloc->initialization();
kvn@3157 1779 Node* klass_node = alloc->in(AllocateNode::KlassNode);
kvn@3157 1780 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
kvn@3157 1781 address slow_call_address; // Address of slow call
kvn@3157 1782 if (init != NULL && init->is_complete_with_arraycopy() &&
kvn@3157 1783 k->is_type_array_klass()) {
kvn@3157 1784 // Don't zero type array during slow allocation in VM since
kvn@3157 1785 // it will be initialized later by arraycopy in compiled code.
kvn@3157 1786 slow_call_address = OptoRuntime::new_array_nozero_Java();
kvn@3157 1787 } else {
kvn@3157 1788 slow_call_address = OptoRuntime::new_array_Java();
kvn@3157 1789 }
duke@435 1790 expand_allocate_common(alloc, length,
duke@435 1791 OptoRuntime::new_array_Type(),
kvn@3157 1792 slow_call_address);
duke@435 1793 }
duke@435 1794
kvn@3406 1795 //-------------------mark_eliminated_box----------------------------------
kvn@3406 1796 //
kvn@2951 1797 // During EA obj may point to several objects but after few ideal graph
kvn@2951 1798 // transformations (CCP) it may point to only one non escaping object
kvn@2951 1799 // (but still using phi), corresponding locks and unlocks will be marked
kvn@2951 1800 // for elimination. Later obj could be replaced with a new node (new phi)
kvn@2951 1801 // and which does not have escape information. And later after some graph
kvn@2951 1802 // reshape other locks and unlocks (which were not marked for elimination
kvn@2951 1803 // before) are connected to this new obj (phi) but they still will not be
kvn@2951 1804 // marked for elimination since new obj has no escape information.
kvn@2951 1805 // Mark all associated (same box and obj) lock and unlock nodes for
kvn@2951 1806 // elimination if some of them marked already.
kvn@3406 1807 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
kvn@3421 1808 if (oldbox->as_BoxLock()->is_eliminated())
kvn@3421 1809 return; // This BoxLock node was processed already.
kvn@3406 1810
kvn@3421 1811 // New implementation (EliminateNestedLocks) has separate BoxLock
kvn@3421 1812 // node for each locked region so mark all associated locks/unlocks as
kvn@3421 1813 // eliminated even if different objects are referenced in one locked region
kvn@3421 1814 // (for example, OSR compilation of nested loop inside locked scope).
kvn@3421 1815 if (EliminateNestedLocks ||
kvn@3406 1816 oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
kvn@3406 1817 // Box is used only in one lock region. Mark this box as eliminated.
kvn@3406 1818 _igvn.hash_delete(oldbox);
kvn@3406 1819 oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
kvn@3406 1820 _igvn.hash_insert(oldbox);
kvn@3406 1821
kvn@3406 1822 for (uint i = 0; i < oldbox->outcnt(); i++) {
kvn@3406 1823 Node* u = oldbox->raw_out(i);
kvn@3406 1824 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
kvn@3406 1825 AbstractLockNode* alock = u->as_AbstractLock();
kvn@3406 1826 // Check lock's box since box could be referenced by Lock's debug info.
kvn@3406 1827 if (alock->box_node() == oldbox) {
kvn@3406 1828 // Mark eliminated all related locks and unlocks.
kvn@3406 1829 alock->set_non_esc_obj();
kvn@3406 1830 }
kvn@3406 1831 }
kvn@3406 1832 }
kvn@2951 1833 return;
kvn@501 1834 }
kvn@3406 1835
kvn@3406 1836 // Create new "eliminated" BoxLock node and use it in monitor debug info
kvn@3406 1837 // instead of oldbox for the same object.
kvn@3419 1838 BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
kvn@3406 1839
kvn@3406 1840 // Note: BoxLock node is marked eliminated only here and it is used
kvn@3406 1841 // to indicate that all associated lock and unlock nodes are marked
kvn@3406 1842 // for elimination.
kvn@3406 1843 newbox->set_eliminated();
kvn@3406 1844 transform_later(newbox);
kvn@3406 1845
kvn@3406 1846 // Replace old box node with new box for all users of the same object.
kvn@3406 1847 for (uint i = 0; i < oldbox->outcnt();) {
kvn@3406 1848 bool next_edge = true;
kvn@3406 1849
kvn@3406 1850 Node* u = oldbox->raw_out(i);
kvn@3406 1851 if (u->is_AbstractLock()) {
kvn@3406 1852 AbstractLockNode* alock = u->as_AbstractLock();
kvn@3407 1853 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
kvn@3406 1854 // Replace Box and mark eliminated all related locks and unlocks.
kvn@3406 1855 alock->set_non_esc_obj();
kvn@3847 1856 _igvn.rehash_node_delayed(alock);
kvn@3406 1857 alock->set_box_node(newbox);
kvn@3406 1858 next_edge = false;
kvn@3406 1859 }
kvn@3406 1860 }
kvn@3407 1861 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
kvn@3406 1862 FastLockNode* flock = u->as_FastLock();
kvn@3406 1863 assert(flock->box_node() == oldbox, "sanity");
kvn@3847 1864 _igvn.rehash_node_delayed(flock);
kvn@3406 1865 flock->set_box_node(newbox);
kvn@3406 1866 next_edge = false;
kvn@3406 1867 }
kvn@3406 1868
kvn@3406 1869 // Replace old box in monitor debug info.
kvn@3406 1870 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
kvn@3406 1871 SafePointNode* sfn = u->as_SafePoint();
kvn@3406 1872 JVMState* youngest_jvms = sfn->jvms();
kvn@3406 1873 int max_depth = youngest_jvms->depth();
kvn@3406 1874 for (int depth = 1; depth <= max_depth; depth++) {
kvn@3406 1875 JVMState* jvms = youngest_jvms->of_depth(depth);
kvn@3406 1876 int num_mon = jvms->nof_monitors();
kvn@3406 1877 // Loop over monitors
kvn@3406 1878 for (int idx = 0; idx < num_mon; idx++) {
kvn@3406 1879 Node* obj_node = sfn->monitor_obj(jvms, idx);
kvn@3406 1880 Node* box_node = sfn->monitor_box(jvms, idx);
kvn@3407 1881 if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
kvn@3406 1882 int j = jvms->monitor_box_offset(idx);
kvn@3847 1883 _igvn.replace_input_of(u, j, newbox);
kvn@3406 1884 next_edge = false;
kvn@3406 1885 }
kvn@3406 1886 }
kvn@3406 1887 }
kvn@3406 1888 }
kvn@3406 1889 if (next_edge) i++;
kvn@3406 1890 }
kvn@3406 1891 }
kvn@3406 1892
kvn@3406 1893 //-----------------------mark_eliminated_locking_nodes-----------------------
kvn@3406 1894 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
kvn@3406 1895 if (EliminateNestedLocks) {
kvn@3406 1896 if (alock->is_nested()) {
kvn@3406 1897 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
kvn@3406 1898 return;
kvn@3406 1899 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
kvn@3406 1900 // Only Lock node has JVMState needed here.
kvn@3406 1901 if (alock->jvms() != NULL && alock->as_Lock()->is_nested_lock_region()) {
kvn@3406 1902 // Mark eliminated related nested locks and unlocks.
kvn@3406 1903 Node* obj = alock->obj_node();
kvn@3406 1904 BoxLockNode* box_node = alock->box_node()->as_BoxLock();
kvn@3406 1905 assert(!box_node->is_eliminated(), "should not be marked yet");
kvn@2951 1906 // Note: BoxLock node is marked eliminated only here
kvn@2951 1907 // and it is used to indicate that all associated lock
kvn@2951 1908 // and unlock nodes are marked for elimination.
kvn@3406 1909 box_node->set_eliminated(); // Box's hash is always NO_HASH here
kvn@3406 1910 for (uint i = 0; i < box_node->outcnt(); i++) {
kvn@3406 1911 Node* u = box_node->raw_out(i);
kvn@3406 1912 if (u->is_AbstractLock()) {
kvn@3406 1913 alock = u->as_AbstractLock();
kvn@3406 1914 if (alock->box_node() == box_node) {
kvn@3406 1915 // Verify that this Box is referenced only by related locks.
kvn@3407 1916 assert(alock->obj_node()->eqv_uncast(obj), "");
kvn@3406 1917 // Mark all related locks and unlocks.
kvn@3406 1918 alock->set_nested();
kvn@3406 1919 }
kvn@3406 1920 }
kvn@3406 1921 }
kvn@3406 1922 }
kvn@3406 1923 return;
kvn@3406 1924 }
kvn@3406 1925 // Process locks for non escaping object
kvn@3406 1926 assert(alock->is_non_esc_obj(), "");
kvn@3406 1927 } // EliminateNestedLocks
kvn@895 1928
kvn@3406 1929 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
kvn@3406 1930 // Look for all locks of this object and mark them and
kvn@3406 1931 // corresponding BoxLock nodes as eliminated.
kvn@3406 1932 Node* obj = alock->obj_node();
kvn@3406 1933 for (uint j = 0; j < obj->outcnt(); j++) {
kvn@3406 1934 Node* o = obj->raw_out(j);
kvn@3407 1935 if (o->is_AbstractLock() &&
kvn@3407 1936 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
kvn@3406 1937 alock = o->as_AbstractLock();
kvn@3406 1938 Node* box = alock->box_node();
kvn@3406 1939 // Replace old box node with new eliminated box for all users
kvn@3406 1940 // of the same object and mark related locks as eliminated.
kvn@3406 1941 mark_eliminated_box(box, obj);
kvn@3406 1942 }
kvn@3406 1943 }
kvn@3406 1944 }
kvn@2951 1945 }
kvn@501 1946
kvn@2951 1947 // we have determined that this lock/unlock can be eliminated, we simply
kvn@2951 1948 // eliminate the node without expanding it.
kvn@2951 1949 //
kvn@2951 1950 // Note: The membar's associated with the lock/unlock are currently not
kvn@2951 1951 // eliminated. This should be investigated as a future enhancement.
kvn@2951 1952 //
kvn@2951 1953 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
kvn@2951 1954
kvn@2951 1955 if (!alock->is_eliminated()) {
kvn@2951 1956 return false;
kvn@2951 1957 }
kvn@2951 1958 #ifdef ASSERT
kvn@3406 1959 if (!alock->is_coarsened()) {
kvn@2951 1960 // Check that new "eliminated" BoxLock node is created.
kvn@2951 1961 BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
kvn@2951 1962 assert(oldbox->is_eliminated(), "should be done already");
kvn@2951 1963 }
kvn@2951 1964 #endif
never@1515 1965 CompileLog* log = C->log();
never@1515 1966 if (log != NULL) {
never@1515 1967 log->head("eliminate_lock lock='%d'",
never@1515 1968 alock->is_Lock());
never@1515 1969 JVMState* p = alock->jvms();
never@1515 1970 while (p != NULL) {
never@1515 1971 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 1972 p = p->caller();
never@1515 1973 }
never@1515 1974 log->tail("eliminate_lock");
never@1515 1975 }
never@1515 1976
kvn@501 1977 #ifndef PRODUCT
kvn@501 1978 if (PrintEliminateLocks) {
kvn@501 1979 if (alock->is_Lock()) {
kvn@3311 1980 tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
kvn@501 1981 } else {
kvn@3311 1982 tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
kvn@501 1983 }
kvn@501 1984 }
kvn@501 1985 #endif
kvn@501 1986
kvn@501 1987 Node* mem = alock->in(TypeFunc::Memory);
kvn@501 1988 Node* ctrl = alock->in(TypeFunc::Control);
kvn@501 1989
kvn@501 1990 extract_call_projections(alock);
kvn@501 1991 // There are 2 projections from the lock. The lock node will
kvn@501 1992 // be deleted when its last use is subsumed below.
kvn@501 1993 assert(alock->outcnt() == 2 &&
kvn@501 1994 _fallthroughproj != NULL &&
kvn@501 1995 _memproj_fallthrough != NULL,
kvn@501 1996 "Unexpected projections from Lock/Unlock");
kvn@501 1997
kvn@501 1998 Node* fallthroughproj = _fallthroughproj;
kvn@501 1999 Node* memproj_fallthrough = _memproj_fallthrough;
duke@435 2000
duke@435 2001 // The memory projection from a lock/unlock is RawMem
duke@435 2002 // The input to a Lock is merged memory, so extract its RawMem input
duke@435 2003 // (unless the MergeMem has been optimized away.)
duke@435 2004 if (alock->is_Lock()) {
roland@3047 2005 // Seach for MemBarAcquireLock node and delete it also.
kvn@501 2006 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
roland@3047 2007 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
kvn@501 2008 Node* ctrlproj = membar->proj_out(TypeFunc::Control);
kvn@501 2009 Node* memproj = membar->proj_out(TypeFunc::Memory);
kvn@1143 2010 _igvn.replace_node(ctrlproj, fallthroughproj);
kvn@1143 2011 _igvn.replace_node(memproj, memproj_fallthrough);
kvn@895 2012
kvn@895 2013 // Delete FastLock node also if this Lock node is unique user
kvn@895 2014 // (a loop peeling may clone a Lock node).
kvn@895 2015 Node* flock = alock->as_Lock()->fastlock_node();
kvn@895 2016 if (flock->outcnt() == 1) {
kvn@895 2017 assert(flock->unique_out() == alock, "sanity");
kvn@1143 2018 _igvn.replace_node(flock, top());
kvn@895 2019 }
duke@435 2020 }
duke@435 2021
roland@3047 2022 // Seach for MemBarReleaseLock node and delete it also.
kvn@501 2023 if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
kvn@501 2024 ctrl->in(0)->is_MemBar()) {
kvn@501 2025 MemBarNode* membar = ctrl->in(0)->as_MemBar();
roland@3047 2026 assert(membar->Opcode() == Op_MemBarReleaseLock &&
kvn@501 2027 mem->is_Proj() && membar == mem->in(0), "");
kvn@1143 2028 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 2029 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 2030 fallthroughproj = ctrl;
kvn@501 2031 memproj_fallthrough = mem;
kvn@501 2032 ctrl = membar->in(TypeFunc::Control);
kvn@501 2033 mem = membar->in(TypeFunc::Memory);
kvn@501 2034 }
kvn@501 2035
kvn@1143 2036 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 2037 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 2038 return true;
duke@435 2039 }
duke@435 2040
duke@435 2041
duke@435 2042 //------------------------------expand_lock_node----------------------
duke@435 2043 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
duke@435 2044
duke@435 2045 Node* ctrl = lock->in(TypeFunc::Control);
duke@435 2046 Node* mem = lock->in(TypeFunc::Memory);
duke@435 2047 Node* obj = lock->obj_node();
duke@435 2048 Node* box = lock->box_node();
kvn@501 2049 Node* flock = lock->fastlock_node();
duke@435 2050
kvn@3419 2051 assert(!box->as_BoxLock()->is_eliminated(), "sanity");
kvn@3406 2052
duke@435 2053 // Make the merge point
kvn@855 2054 Node *region;
kvn@855 2055 Node *mem_phi;
kvn@855 2056 Node *slow_path;
duke@435 2057
kvn@855 2058 if (UseOptoBiasInlining) {
kvn@855 2059 /*
twisti@1040 2060 * See the full description in MacroAssembler::biased_locking_enter().
kvn@855 2061 *
kvn@855 2062 * if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
kvn@855 2063 * // The object is biased.
kvn@855 2064 * proto_node = klass->prototype_header;
kvn@855 2065 * o_node = thread | proto_node;
kvn@855 2066 * x_node = o_node ^ mark_word;
kvn@855 2067 * if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
kvn@855 2068 * // Done.
kvn@855 2069 * } else {
kvn@855 2070 * if( (x_node & biased_lock_mask) != 0 ) {
kvn@855 2071 * // The klass's prototype header is no longer biased.
kvn@855 2072 * cas(&mark_word, mark_word, proto_node)
kvn@855 2073 * goto cas_lock;
kvn@855 2074 * } else {
kvn@855 2075 * // The klass's prototype header is still biased.
kvn@855 2076 * if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
kvn@855 2077 * old = mark_word;
kvn@855 2078 * new = o_node;
kvn@855 2079 * } else {
kvn@855 2080 * // Different thread or anonymous biased.
kvn@855 2081 * old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
kvn@855 2082 * new = thread | old;
kvn@855 2083 * }
kvn@855 2084 * // Try to rebias.
kvn@855 2085 * if( cas(&mark_word, old, new) == 0 ) {
kvn@855 2086 * // Done.
kvn@855 2087 * } else {
kvn@855 2088 * goto slow_path; // Failed.
kvn@855 2089 * }
kvn@855 2090 * }
kvn@855 2091 * }
kvn@855 2092 * } else {
kvn@855 2093 * // The object is not biased.
kvn@855 2094 * cas_lock:
kvn@855 2095 * if( FastLock(obj) == 0 ) {
kvn@855 2096 * // Done.
kvn@855 2097 * } else {
kvn@855 2098 * slow_path:
kvn@855 2099 * OptoRuntime::complete_monitor_locking_Java(obj);
kvn@855 2100 * }
kvn@855 2101 * }
kvn@855 2102 */
kvn@855 2103
kvn@855 2104 region = new (C, 5) RegionNode(5);
kvn@855 2105 // create a Phi for the memory state
kvn@855 2106 mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2107
kvn@855 2108 Node* fast_lock_region = new (C, 3) RegionNode(3);
kvn@855 2109 Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2110
kvn@855 2111 // First, check mark word for the biased lock pattern.
kvn@855 2112 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 2113
kvn@855 2114 // Get fast path - mark word has the biased lock pattern.
kvn@855 2115 ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
kvn@855 2116 markOopDesc::biased_lock_mask_in_place,
kvn@855 2117 markOopDesc::biased_lock_pattern, true);
kvn@855 2118 // fast_lock_region->in(1) is set to slow path.
kvn@855 2119 fast_lock_mem_phi->init_req(1, mem);
kvn@855 2120
kvn@855 2121 // Now check that the lock is biased to the current thread and has
kvn@855 2122 // the same epoch and bias as Klass::_prototype_header.
kvn@855 2123
kvn@855 2124 // Special-case a fresh allocation to avoid building nodes:
kvn@855 2125 Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
kvn@855 2126 if (klass_node == NULL) {
kvn@855 2127 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
kvn@855 2128 klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
kvn@925 2129 #ifdef _LP64
kvn@925 2130 if (UseCompressedOops && klass_node->is_DecodeN()) {
kvn@925 2131 assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
kvn@925 2132 klass_node->in(1)->init_req(0, ctrl);
kvn@925 2133 } else
kvn@925 2134 #endif
kvn@925 2135 klass_node->init_req(0, ctrl);
kvn@855 2136 }
stefank@3391 2137 Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
kvn@855 2138
kvn@855 2139 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
kvn@855 2140 Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
kvn@855 2141 Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
kvn@855 2142 Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
kvn@855 2143
kvn@855 2144 // Get slow path - mark word does NOT match the value.
kvn@855 2145 Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node,
kvn@855 2146 (~markOopDesc::age_mask_in_place), 0);
kvn@855 2147 // region->in(3) is set to fast path - the object is biased to the current thread.
kvn@855 2148 mem_phi->init_req(3, mem);
kvn@855 2149
kvn@855 2150
kvn@855 2151 // Mark word does NOT match the value (thread | Klass::_prototype_header).
kvn@855 2152
kvn@855 2153
kvn@855 2154 // First, check biased pattern.
kvn@855 2155 // Get fast path - _prototype_header has the same biased lock pattern.
kvn@855 2156 ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
kvn@855 2157 markOopDesc::biased_lock_mask_in_place, 0, true);
kvn@855 2158
kvn@855 2159 not_biased_ctrl = fast_lock_region->in(2); // Slow path
kvn@855 2160 // fast_lock_region->in(2) - the prototype header is no longer biased
kvn@855 2161 // and we have to revoke the bias on this object.
kvn@855 2162 // We are going to try to reset the mark of this object to the prototype
kvn@855 2163 // value and fall through to the CAS-based locking scheme.
kvn@855 2164 Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@855 2165 Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
kvn@855 2166 proto_node, mark_node);
kvn@855 2167 transform_later(cas);
kvn@855 2168 Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
kvn@855 2169 fast_lock_mem_phi->init_req(2, proj);
kvn@855 2170
kvn@855 2171
kvn@855 2172 // Second, check epoch bits.
kvn@855 2173 Node* rebiased_region = new (C, 3) RegionNode(3);
kvn@855 2174 Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
kvn@855 2175 Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
kvn@855 2176
kvn@855 2177 // Get slow path - mark word does NOT match epoch bits.
kvn@855 2178 Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node,
kvn@855 2179 markOopDesc::epoch_mask_in_place, 0);
kvn@855 2180 // The epoch of the current bias is not valid, attempt to rebias the object
kvn@855 2181 // toward the current thread.
kvn@855 2182 rebiased_region->init_req(2, epoch_ctrl);
kvn@855 2183 old_phi->init_req(2, mark_node);
kvn@855 2184 new_phi->init_req(2, o_node);
kvn@855 2185
kvn@855 2186 // rebiased_region->in(1) is set to fast path.
kvn@855 2187 // The epoch of the current bias is still valid but we know
kvn@855 2188 // nothing about the owner; it might be set or it might be clear.
kvn@855 2189 Node* cmask = MakeConX(markOopDesc::biased_lock_mask_in_place |
kvn@855 2190 markOopDesc::age_mask_in_place |
kvn@855 2191 markOopDesc::epoch_mask_in_place);
kvn@855 2192 Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
kvn@855 2193 cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
kvn@855 2194 Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
kvn@855 2195 old_phi->init_req(1, old);
kvn@855 2196 new_phi->init_req(1, new_mark);
kvn@855 2197
kvn@855 2198 transform_later(rebiased_region);
kvn@855 2199 transform_later(old_phi);
kvn@855 2200 transform_later(new_phi);
kvn@855 2201
kvn@855 2202 // Try to acquire the bias of the object using an atomic operation.
kvn@855 2203 // If this fails we will go in to the runtime to revoke the object's bias.
kvn@855 2204 cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
kvn@855 2205 new_phi, old_phi);
kvn@855 2206 transform_later(cas);
kvn@855 2207 proj = transform_later( new (C, 1) SCMemProjNode(cas));
kvn@855 2208
kvn@855 2209 // Get slow path - Failed to CAS.
kvn@855 2210 not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
kvn@855 2211 mem_phi->init_req(4, proj);
kvn@855 2212 // region->in(4) is set to fast path - the object is rebiased to the current thread.
kvn@855 2213
kvn@855 2214 // Failed to CAS.
kvn@855 2215 slow_path = new (C, 3) RegionNode(3);
kvn@855 2216 Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2217
kvn@855 2218 slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
kvn@855 2219 slow_mem->init_req(1, proj);
kvn@855 2220
kvn@855 2221 // Call CAS-based locking scheme (FastLock node).
kvn@855 2222
kvn@855 2223 transform_later(fast_lock_region);
kvn@855 2224 transform_later(fast_lock_mem_phi);
kvn@855 2225
kvn@855 2226 // Get slow path - FastLock failed to lock the object.
kvn@855 2227 ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
kvn@855 2228 mem_phi->init_req(2, fast_lock_mem_phi);
kvn@855 2229 // region->in(2) is set to fast path - the object is locked to the current thread.
kvn@855 2230
kvn@855 2231 slow_path->init_req(2, ctrl); // Capture slow-control
kvn@855 2232 slow_mem->init_req(2, fast_lock_mem_phi);
kvn@855 2233
kvn@855 2234 transform_later(slow_path);
kvn@855 2235 transform_later(slow_mem);
kvn@855 2236 // Reset lock's memory edge.
kvn@855 2237 lock->set_req(TypeFunc::Memory, slow_mem);
kvn@855 2238
kvn@855 2239 } else {
kvn@855 2240 region = new (C, 3) RegionNode(3);
kvn@855 2241 // create a Phi for the memory state
kvn@855 2242 mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2243
kvn@855 2244 // Optimize test; set region slot 2
kvn@855 2245 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
kvn@855 2246 mem_phi->init_req(2, mem);
kvn@855 2247 }
duke@435 2248
duke@435 2249 // Make slow path call
duke@435 2250 CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
duke@435 2251
duke@435 2252 extract_call_projections(call);
duke@435 2253
duke@435 2254 // Slow path can only throw asynchronous exceptions, which are always
duke@435 2255 // de-opted. So the compiler thinks the slow-call can never throw an
duke@435 2256 // exception. If it DOES throw an exception we would need the debug
duke@435 2257 // info removed first (since if it throws there is no monitor).
duke@435 2258 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2259 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2260
duke@435 2261 // Capture slow path
duke@435 2262 // disconnect fall-through projection from call and create a new one
duke@435 2263 // hook up users of fall-through projection to region
duke@435 2264 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2265 transform_later(slow_ctrl);
duke@435 2266 _igvn.hash_delete(_fallthroughproj);
duke@435 2267 _fallthroughproj->disconnect_inputs(NULL);
duke@435 2268 region->init_req(1, slow_ctrl);
duke@435 2269 // region inputs are now complete
duke@435 2270 transform_later(region);
kvn@1143 2271 _igvn.replace_node(_fallthroughproj, region);
duke@435 2272
kvn@855 2273 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 2274 mem_phi->init_req(1, memproj );
duke@435 2275 transform_later(mem_phi);
kvn@1143 2276 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2277 }
duke@435 2278
duke@435 2279 //------------------------------expand_unlock_node----------------------
duke@435 2280 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
duke@435 2281
kvn@501 2282 Node* ctrl = unlock->in(TypeFunc::Control);
duke@435 2283 Node* mem = unlock->in(TypeFunc::Memory);
duke@435 2284 Node* obj = unlock->obj_node();
duke@435 2285 Node* box = unlock->box_node();
duke@435 2286
kvn@3419 2287 assert(!box->as_BoxLock()->is_eliminated(), "sanity");
kvn@3406 2288
duke@435 2289 // No need for a null check on unlock
duke@435 2290
duke@435 2291 // Make the merge point
kvn@855 2292 Node *region;
kvn@855 2293 Node *mem_phi;
kvn@855 2294
kvn@855 2295 if (UseOptoBiasInlining) {
kvn@855 2296 // Check for biased locking unlock case, which is a no-op.
twisti@1040 2297 // See the full description in MacroAssembler::biased_locking_exit().
kvn@855 2298 region = new (C, 4) RegionNode(4);
kvn@855 2299 // create a Phi for the memory state
kvn@855 2300 mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2301 mem_phi->init_req(3, mem);
kvn@855 2302
kvn@855 2303 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 2304 ctrl = opt_bits_test(ctrl, region, 3, mark_node,
kvn@855 2305 markOopDesc::biased_lock_mask_in_place,
kvn@855 2306 markOopDesc::biased_lock_pattern);
kvn@855 2307 } else {
kvn@855 2308 region = new (C, 3) RegionNode(3);
kvn@855 2309 // create a Phi for the memory state
kvn@855 2310 mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2311 }
duke@435 2312
duke@435 2313 FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
duke@435 2314 funlock = transform_later( funlock )->as_FastUnlock();
duke@435 2315 // Optimize test; set region slot 2
kvn@855 2316 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
duke@435 2317
duke@435 2318 CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
duke@435 2319
duke@435 2320 extract_call_projections(call);
duke@435 2321
duke@435 2322 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2323 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2324
duke@435 2325 // No exceptions for unlocking
duke@435 2326 // Capture slow path
duke@435 2327 // disconnect fall-through projection from call and create a new one
duke@435 2328 // hook up users of fall-through projection to region
duke@435 2329 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2330 transform_later(slow_ctrl);
duke@435 2331 _igvn.hash_delete(_fallthroughproj);
duke@435 2332 _fallthroughproj->disconnect_inputs(NULL);
duke@435 2333 region->init_req(1, slow_ctrl);
duke@435 2334 // region inputs are now complete
duke@435 2335 transform_later(region);
kvn@1143 2336 _igvn.replace_node(_fallthroughproj, region);
duke@435 2337
duke@435 2338 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 2339 mem_phi->init_req(1, memproj );
duke@435 2340 mem_phi->init_req(2, mem);
duke@435 2341 transform_later(mem_phi);
kvn@1143 2342 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2343 }
duke@435 2344
kvn@3311 2345 //---------------------------eliminate_macro_nodes----------------------
kvn@3311 2346 // Eliminate scalar replaced allocations and associated locks.
kvn@3311 2347 void PhaseMacroExpand::eliminate_macro_nodes() {
duke@435 2348 if (C->macro_count() == 0)
kvn@3311 2349 return;
kvn@3311 2350
kvn@895 2351 // First, attempt to eliminate locks
kvn@2951 2352 int cnt = C->macro_count();
kvn@2951 2353 for (int i=0; i < cnt; i++) {
kvn@2951 2354 Node *n = C->macro_node(i);
kvn@2951 2355 if (n->is_AbstractLock()) { // Lock and Unlock nodes
kvn@2951 2356 // Before elimination mark all associated (same box and obj)
kvn@2951 2357 // lock and unlock nodes.
kvn@2951 2358 mark_eliminated_locking_nodes(n->as_AbstractLock());
kvn@2951 2359 }
kvn@2951 2360 }
kvn@508 2361 bool progress = true;
kvn@508 2362 while (progress) {
kvn@508 2363 progress = false;
kvn@508 2364 for (int i = C->macro_count(); i > 0; i--) {
kvn@508 2365 Node * n = C->macro_node(i-1);
kvn@508 2366 bool success = false;
kvn@508 2367 debug_only(int old_macro_count = C->macro_count(););
kvn@895 2368 if (n->is_AbstractLock()) {
kvn@895 2369 success = eliminate_locking_node(n->as_AbstractLock());
kvn@895 2370 }
kvn@895 2371 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@895 2372 progress = progress || success;
kvn@895 2373 }
kvn@895 2374 }
kvn@895 2375 // Next, attempt to eliminate allocations
kvn@895 2376 progress = true;
kvn@895 2377 while (progress) {
kvn@895 2378 progress = false;
kvn@895 2379 for (int i = C->macro_count(); i > 0; i--) {
kvn@895 2380 Node * n = C->macro_node(i-1);
kvn@895 2381 bool success = false;
kvn@895 2382 debug_only(int old_macro_count = C->macro_count(););
kvn@508 2383 switch (n->class_id()) {
kvn@508 2384 case Node::Class_Allocate:
kvn@508 2385 case Node::Class_AllocateArray:
kvn@508 2386 success = eliminate_allocate_node(n->as_Allocate());
kvn@508 2387 break;
kvn@508 2388 case Node::Class_Lock:
kvn@508 2389 case Node::Class_Unlock:
kvn@895 2390 assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
kvn@508 2391 break;
kvn@508 2392 default:
kvn@3311 2393 assert(n->Opcode() == Op_LoopLimit ||
kvn@3311 2394 n->Opcode() == Op_Opaque1 ||
kvn@3311 2395 n->Opcode() == Op_Opaque2, "unknown node type in macro list");
kvn@508 2396 }
kvn@508 2397 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@508 2398 progress = progress || success;
kvn@508 2399 }
kvn@508 2400 }
kvn@3311 2401 }
kvn@3311 2402
kvn@3311 2403 //------------------------------expand_macro_nodes----------------------
kvn@3311 2404 // Returns true if a failure occurred.
kvn@3311 2405 bool PhaseMacroExpand::expand_macro_nodes() {
kvn@3311 2406 // Last attempt to eliminate macro nodes.
kvn@3311 2407 eliminate_macro_nodes();
kvn@3311 2408
kvn@508 2409 // Make sure expansion will not cause node limit to be exceeded.
kvn@508 2410 // Worst case is a macro node gets expanded into about 50 nodes.
kvn@508 2411 // Allow 50% more for optimization.
duke@435 2412 if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
duke@435 2413 return true;
kvn@508 2414
kvn@3311 2415 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
kvn@3311 2416 bool progress = true;
kvn@3311 2417 while (progress) {
kvn@3311 2418 progress = false;
kvn@3311 2419 for (int i = C->macro_count(); i > 0; i--) {
kvn@3311 2420 Node * n = C->macro_node(i-1);
kvn@3311 2421 bool success = false;
kvn@3311 2422 debug_only(int old_macro_count = C->macro_count(););
kvn@3311 2423 if (n->Opcode() == Op_LoopLimit) {
kvn@3311 2424 // Remove it from macro list and put on IGVN worklist to optimize.
kvn@3311 2425 C->remove_macro_node(n);
kvn@3311 2426 _igvn._worklist.push(n);
kvn@3311 2427 success = true;
kvn@3311 2428 } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
kvn@3311 2429 _igvn.replace_node(n, n->in(1));
kvn@3311 2430 success = true;
kvn@3311 2431 }
kvn@3311 2432 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@3311 2433 progress = progress || success;
kvn@3311 2434 }
kvn@3311 2435 }
kvn@3311 2436
duke@435 2437 // expand "macro" nodes
duke@435 2438 // nodes are removed from the macro list as they are processed
duke@435 2439 while (C->macro_count() > 0) {
kvn@508 2440 int macro_count = C->macro_count();
kvn@508 2441 Node * n = C->macro_node(macro_count-1);
duke@435 2442 assert(n->is_macro(), "only macro nodes expected here");
duke@435 2443 if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
duke@435 2444 // node is unreachable, so don't try to expand it
duke@435 2445 C->remove_macro_node(n);
duke@435 2446 continue;
duke@435 2447 }
duke@435 2448 switch (n->class_id()) {
duke@435 2449 case Node::Class_Allocate:
duke@435 2450 expand_allocate(n->as_Allocate());
duke@435 2451 break;
duke@435 2452 case Node::Class_AllocateArray:
duke@435 2453 expand_allocate_array(n->as_AllocateArray());
duke@435 2454 break;
duke@435 2455 case Node::Class_Lock:
duke@435 2456 expand_lock_node(n->as_Lock());
duke@435 2457 break;
duke@435 2458 case Node::Class_Unlock:
duke@435 2459 expand_unlock_node(n->as_Unlock());
duke@435 2460 break;
duke@435 2461 default:
duke@435 2462 assert(false, "unknown node type in macro list");
duke@435 2463 }
kvn@508 2464 assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
duke@435 2465 if (C->failing()) return true;
duke@435 2466 }
coleenp@548 2467
coleenp@548 2468 _igvn.set_delay_transform(false);
duke@435 2469 _igvn.optimize();
kvn@3311 2470 if (C->failing()) return true;
duke@435 2471 return false;
duke@435 2472 }

mercurial