src/share/vm/opto/macro.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1802
9e321dcfa5b7
child 1964
4311f23817fd
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

duke@435 1 /*
trims@1907 2 * Copyright (c) 2005, 2009, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_macro.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 //
duke@435 30 // Replace any references to "oldref" in inputs to "use" with "newref".
duke@435 31 // Returns the number of replacements made.
duke@435 32 //
duke@435 33 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
duke@435 34 int nreplacements = 0;
duke@435 35 uint req = use->req();
duke@435 36 for (uint j = 0; j < use->len(); j++) {
duke@435 37 Node *uin = use->in(j);
duke@435 38 if (uin == oldref) {
duke@435 39 if (j < req)
duke@435 40 use->set_req(j, newref);
duke@435 41 else
duke@435 42 use->set_prec(j, newref);
duke@435 43 nreplacements++;
duke@435 44 } else if (j >= req && uin == NULL) {
duke@435 45 break;
duke@435 46 }
duke@435 47 }
duke@435 48 return nreplacements;
duke@435 49 }
duke@435 50
duke@435 51 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
duke@435 52 // Copy debug information and adjust JVMState information
duke@435 53 uint old_dbg_start = oldcall->tf()->domain()->cnt();
duke@435 54 uint new_dbg_start = newcall->tf()->domain()->cnt();
duke@435 55 int jvms_adj = new_dbg_start - old_dbg_start;
duke@435 56 assert (new_dbg_start == newcall->req(), "argument count mismatch");
kvn@498 57
kvn@498 58 Dict* sosn_map = new Dict(cmpkey,hashkey);
duke@435 59 for (uint i = old_dbg_start; i < oldcall->req(); i++) {
kvn@498 60 Node* old_in = oldcall->in(i);
kvn@498 61 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
kvn@895 62 if (old_in != NULL && old_in->is_SafePointScalarObject()) {
kvn@498 63 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
kvn@498 64 uint old_unique = C->unique();
kvn@498 65 Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
kvn@498 66 if (old_unique != C->unique()) {
kvn@1036 67 new_in->set_req(0, newcall->in(0)); // reset control edge
kvn@498 68 new_in = transform_later(new_in); // Register new node.
kvn@498 69 }
kvn@498 70 old_in = new_in;
kvn@498 71 }
kvn@498 72 newcall->add_req(old_in);
duke@435 73 }
kvn@498 74
duke@435 75 newcall->set_jvms(oldcall->jvms());
duke@435 76 for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@435 77 jvms->set_map(newcall);
duke@435 78 jvms->set_locoff(jvms->locoff()+jvms_adj);
duke@435 79 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
duke@435 80 jvms->set_monoff(jvms->monoff()+jvms_adj);
kvn@498 81 jvms->set_scloff(jvms->scloff()+jvms_adj);
duke@435 82 jvms->set_endoff(jvms->endoff()+jvms_adj);
duke@435 83 }
duke@435 84 }
duke@435 85
kvn@855 86 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
kvn@855 87 Node* cmp;
kvn@855 88 if (mask != 0) {
kvn@855 89 Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
kvn@855 90 cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
kvn@855 91 } else {
kvn@855 92 cmp = word;
kvn@855 93 }
kvn@855 94 Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
kvn@855 95 IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
kvn@855 96 transform_later(iff);
duke@435 97
kvn@855 98 // Fast path taken.
kvn@855 99 Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
duke@435 100
duke@435 101 // Fast path not-taken, i.e. slow path
kvn@855 102 Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
kvn@855 103
kvn@855 104 if (return_fast_path) {
kvn@855 105 region->init_req(edge, slow_taken); // Capture slow-control
kvn@855 106 return fast_taken;
kvn@855 107 } else {
kvn@855 108 region->init_req(edge, fast_taken); // Capture fast-control
kvn@855 109 return slow_taken;
kvn@855 110 }
duke@435 111 }
duke@435 112
duke@435 113 //--------------------copy_predefined_input_for_runtime_call--------------------
duke@435 114 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
duke@435 115 // Set fixed predefined input arguments
duke@435 116 call->init_req( TypeFunc::Control, ctrl );
duke@435 117 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) );
duke@435 118 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
duke@435 119 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
duke@435 120 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
duke@435 121 }
duke@435 122
duke@435 123 //------------------------------make_slow_call---------------------------------
duke@435 124 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
duke@435 125
duke@435 126 // Slow-path call
duke@435 127 int size = slow_call_type->domain()->cnt();
duke@435 128 CallNode *call = leaf_name
duke@435 129 ? (CallNode*)new (C, size) CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
duke@435 130 : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
duke@435 131
duke@435 132 // Slow path call has no side-effects, uses few values
duke@435 133 copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
duke@435 134 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
duke@435 135 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
duke@435 136 copy_call_debug_info(oldcall, call);
duke@435 137 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
duke@435 138 _igvn.hash_delete(oldcall);
duke@435 139 _igvn.subsume_node(oldcall, call);
duke@435 140 transform_later(call);
duke@435 141
duke@435 142 return call;
duke@435 143 }
duke@435 144
duke@435 145 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
duke@435 146 _fallthroughproj = NULL;
duke@435 147 _fallthroughcatchproj = NULL;
duke@435 148 _ioproj_fallthrough = NULL;
duke@435 149 _ioproj_catchall = NULL;
duke@435 150 _catchallcatchproj = NULL;
duke@435 151 _memproj_fallthrough = NULL;
duke@435 152 _memproj_catchall = NULL;
duke@435 153 _resproj = NULL;
duke@435 154 for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
duke@435 155 ProjNode *pn = call->fast_out(i)->as_Proj();
duke@435 156 switch (pn->_con) {
duke@435 157 case TypeFunc::Control:
duke@435 158 {
duke@435 159 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
duke@435 160 _fallthroughproj = pn;
duke@435 161 DUIterator_Fast jmax, j = pn->fast_outs(jmax);
duke@435 162 const Node *cn = pn->fast_out(j);
duke@435 163 if (cn->is_Catch()) {
duke@435 164 ProjNode *cpn = NULL;
duke@435 165 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
duke@435 166 cpn = cn->fast_out(k)->as_Proj();
duke@435 167 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
duke@435 168 if (cpn->_con == CatchProjNode::fall_through_index)
duke@435 169 _fallthroughcatchproj = cpn;
duke@435 170 else {
duke@435 171 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
duke@435 172 _catchallcatchproj = cpn;
duke@435 173 }
duke@435 174 }
duke@435 175 }
duke@435 176 break;
duke@435 177 }
duke@435 178 case TypeFunc::I_O:
duke@435 179 if (pn->_is_io_use)
duke@435 180 _ioproj_catchall = pn;
duke@435 181 else
duke@435 182 _ioproj_fallthrough = pn;
duke@435 183 break;
duke@435 184 case TypeFunc::Memory:
duke@435 185 if (pn->_is_io_use)
duke@435 186 _memproj_catchall = pn;
duke@435 187 else
duke@435 188 _memproj_fallthrough = pn;
duke@435 189 break;
duke@435 190 case TypeFunc::Parms:
duke@435 191 _resproj = pn;
duke@435 192 break;
duke@435 193 default:
duke@435 194 assert(false, "unexpected projection from allocation node.");
duke@435 195 }
duke@435 196 }
duke@435 197
duke@435 198 }
duke@435 199
kvn@508 200 // Eliminate a card mark sequence. p2x is a ConvP2XNode
kvn@1286 201 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
kvn@508 202 assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
kvn@1286 203 if (!UseG1GC) {
kvn@1286 204 // vanilla/CMS post barrier
kvn@1286 205 Node *shift = p2x->unique_out();
kvn@1286 206 Node *addp = shift->unique_out();
kvn@1286 207 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
kvn@1286 208 Node *st = addp->last_out(j);
kvn@1286 209 assert(st->is_Store(), "store required");
kvn@1286 210 _igvn.replace_node(st, st->in(MemNode::Memory));
kvn@1286 211 }
kvn@1286 212 } else {
kvn@1286 213 // G1 pre/post barriers
kvn@1286 214 assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
kvn@1286 215 // It could be only one user, URShift node, in Object.clone() instrinsic
kvn@1286 216 // but the new allocation is passed to arraycopy stub and it could not
kvn@1286 217 // be scalar replaced. So we don't check the case.
kvn@1286 218
kvn@1286 219 // Remove G1 post barrier.
kvn@1286 220
kvn@1286 221 // Search for CastP2X->Xor->URShift->Cmp path which
kvn@1286 222 // checks if the store done to a different from the value's region.
kvn@1286 223 // And replace Cmp with #0 (false) to collapse G1 post barrier.
kvn@1286 224 Node* xorx = NULL;
kvn@1286 225 for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
kvn@1286 226 Node* u = p2x->fast_out(i);
kvn@1286 227 if (u->Opcode() == Op_XorX) {
kvn@1286 228 xorx = u;
kvn@1286 229 break;
kvn@1286 230 }
kvn@1286 231 }
kvn@1286 232 assert(xorx != NULL, "missing G1 post barrier");
kvn@1286 233 Node* shift = xorx->unique_out();
kvn@1286 234 Node* cmpx = shift->unique_out();
kvn@1286 235 assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
kvn@1286 236 cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
kvn@1286 237 "missing region check in G1 post barrier");
kvn@1286 238 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 239
kvn@1286 240 // Remove G1 pre barrier.
kvn@1286 241
kvn@1286 242 // Search "if (marking != 0)" check and set it to "false".
kvn@1286 243 Node* this_region = p2x->in(0);
kvn@1286 244 assert(this_region != NULL, "");
kvn@1286 245 // There is no G1 pre barrier if previous stored value is NULL
kvn@1286 246 // (for example, after initialization).
kvn@1286 247 if (this_region->is_Region() && this_region->req() == 3) {
kvn@1286 248 int ind = 1;
kvn@1286 249 if (!this_region->in(ind)->is_IfFalse()) {
kvn@1286 250 ind = 2;
kvn@1286 251 }
kvn@1286 252 if (this_region->in(ind)->is_IfFalse()) {
kvn@1286 253 Node* bol = this_region->in(ind)->in(0)->in(1);
kvn@1286 254 assert(bol->is_Bool(), "");
kvn@1286 255 cmpx = bol->in(1);
kvn@1286 256 if (bol->as_Bool()->_test._test == BoolTest::ne &&
kvn@1286 257 cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
kvn@1286 258 cmpx->in(1)->is_Load()) {
kvn@1286 259 Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
kvn@1286 260 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
kvn@1286 261 PtrQueue::byte_offset_of_active());
kvn@1286 262 if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
kvn@1286 263 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
kvn@1286 264 adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
kvn@1286 265 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 266 }
kvn@1286 267 }
kvn@1286 268 }
kvn@1286 269 }
kvn@1286 270 // Now CastP2X can be removed since it is used only on dead path
kvn@1286 271 // which currently still alive until igvn optimize it.
kvn@1286 272 assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
kvn@1286 273 _igvn.replace_node(p2x, top());
kvn@508 274 }
kvn@508 275 }
kvn@508 276
kvn@508 277 // Search for a memory operation for the specified memory slice.
kvn@688 278 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
kvn@508 279 Node *orig_mem = mem;
kvn@508 280 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@688 281 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
kvn@508 282 while (true) {
kvn@508 283 if (mem == alloc_mem || mem == start_mem ) {
twisti@1040 284 return mem; // hit one of our sentinels
kvn@508 285 } else if (mem->is_MergeMem()) {
kvn@508 286 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@508 287 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
kvn@508 288 Node *in = mem->in(0);
kvn@508 289 // we can safely skip over safepoints, calls, locks and membars because we
kvn@508 290 // already know that the object is safe to eliminate.
kvn@508 291 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
kvn@508 292 return in;
kvn@688 293 } else if (in->is_Call()) {
kvn@688 294 CallNode *call = in->as_Call();
kvn@688 295 if (!call->may_modify(tinst, phase)) {
kvn@688 296 mem = call->in(TypeFunc::Memory);
kvn@688 297 }
kvn@688 298 mem = in->in(TypeFunc::Memory);
kvn@688 299 } else if (in->is_MemBar()) {
kvn@508 300 mem = in->in(TypeFunc::Memory);
kvn@508 301 } else {
kvn@508 302 assert(false, "unexpected projection");
kvn@508 303 }
kvn@508 304 } else if (mem->is_Store()) {
kvn@508 305 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 306 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@508 307 if (adr_idx == alias_idx) {
kvn@508 308 assert(atype->isa_oopptr(), "address type must be oopptr");
kvn@508 309 int adr_offset = atype->offset();
kvn@508 310 uint adr_iid = atype->is_oopptr()->instance_id();
kvn@508 311 // Array elements references have the same alias_idx
kvn@508 312 // but different offset and different instance_id.
kvn@508 313 if (adr_offset == offset && adr_iid == alloc->_idx)
kvn@508 314 return mem;
kvn@508 315 } else {
kvn@508 316 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
kvn@508 317 }
kvn@508 318 mem = mem->in(MemNode::Memory);
kvn@1535 319 } else if (mem->is_ClearArray()) {
kvn@1535 320 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
kvn@1535 321 // Can not bypass initialization of the instance
kvn@1535 322 // we are looking.
kvn@1535 323 debug_only(intptr_t offset;)
kvn@1535 324 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
kvn@1535 325 InitializeNode* init = alloc->as_Allocate()->initialization();
kvn@1535 326 // We are looking for stored value, return Initialize node
kvn@1535 327 // or memory edge from Allocate node.
kvn@1535 328 if (init != NULL)
kvn@1535 329 return init;
kvn@1535 330 else
kvn@1535 331 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
kvn@1535 332 }
kvn@1535 333 // Otherwise skip it (the call updated 'mem' value).
kvn@1019 334 } else if (mem->Opcode() == Op_SCMemProj) {
kvn@1019 335 assert(mem->in(0)->is_LoadStore(), "sanity");
kvn@1019 336 const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
kvn@1019 337 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@1019 338 if (adr_idx == alias_idx) {
kvn@1019 339 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 340 return NULL;
kvn@1019 341 }
kvn@1019 342 mem = mem->in(0)->in(MemNode::Memory);
kvn@508 343 } else {
kvn@508 344 return mem;
kvn@508 345 }
kvn@682 346 assert(mem != orig_mem, "dead memory loop");
kvn@508 347 }
kvn@508 348 }
kvn@508 349
kvn@508 350 //
kvn@508 351 // Given a Memory Phi, compute a value Phi containing the values from stores
kvn@508 352 // on the input paths.
kvn@508 353 // Note: this function is recursive, its depth is limied by the "level" argument
kvn@508 354 // Returns the computed Phi, or NULL if it cannot compute it.
kvn@682 355 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
kvn@682 356 assert(mem->is_Phi(), "sanity");
kvn@682 357 int alias_idx = C->get_alias_index(adr_t);
kvn@682 358 int offset = adr_t->offset();
kvn@682 359 int instance_id = adr_t->instance_id();
kvn@682 360
kvn@682 361 // Check if an appropriate value phi already exists.
kvn@682 362 Node* region = mem->in(0);
kvn@682 363 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
kvn@682 364 Node* phi = region->fast_out(k);
kvn@682 365 if (phi->is_Phi() && phi != mem &&
kvn@682 366 phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
kvn@682 367 return phi;
kvn@682 368 }
kvn@682 369 }
kvn@682 370 // Check if an appropriate new value phi already exists.
kvn@682 371 Node* new_phi = NULL;
kvn@682 372 uint size = value_phis->size();
kvn@682 373 for (uint i=0; i < size; i++) {
kvn@682 374 if ( mem->_idx == value_phis->index_at(i) ) {
kvn@682 375 return value_phis->node_at(i);
kvn@682 376 }
kvn@682 377 }
kvn@508 378
kvn@508 379 if (level <= 0) {
kvn@688 380 return NULL; // Give up: phi tree too deep
kvn@508 381 }
kvn@508 382 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 383 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@508 384
kvn@508 385 uint length = mem->req();
kvn@508 386 GrowableArray <Node *> values(length, length, NULL);
kvn@508 387
kvn@682 388 // create a new Phi for the value
kvn@682 389 PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
kvn@682 390 transform_later(phi);
kvn@682 391 value_phis->push(phi, mem->_idx);
kvn@682 392
kvn@508 393 for (uint j = 1; j < length; j++) {
kvn@508 394 Node *in = mem->in(j);
kvn@508 395 if (in == NULL || in->is_top()) {
kvn@508 396 values.at_put(j, in);
kvn@508 397 } else {
kvn@688 398 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 399 if (val == start_mem || val == alloc_mem) {
kvn@508 400 // hit a sentinel, return appropriate 0 value
kvn@508 401 values.at_put(j, _igvn.zerocon(ft));
kvn@508 402 continue;
kvn@508 403 }
kvn@508 404 if (val->is_Initialize()) {
kvn@508 405 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 406 }
kvn@508 407 if (val == NULL) {
kvn@508 408 return NULL; // can't find a value on this path
kvn@508 409 }
kvn@508 410 if (val == mem) {
kvn@508 411 values.at_put(j, mem);
kvn@508 412 } else if (val->is_Store()) {
kvn@508 413 values.at_put(j, val->in(MemNode::ValueIn));
kvn@508 414 } else if(val->is_Proj() && val->in(0) == alloc) {
kvn@508 415 values.at_put(j, _igvn.zerocon(ft));
kvn@508 416 } else if (val->is_Phi()) {
kvn@682 417 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
kvn@682 418 if (val == NULL) {
kvn@682 419 return NULL;
kvn@508 420 }
kvn@682 421 values.at_put(j, val);
kvn@1019 422 } else if (val->Opcode() == Op_SCMemProj) {
kvn@1019 423 assert(val->in(0)->is_LoadStore(), "sanity");
kvn@1019 424 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 425 return NULL;
kvn@508 426 } else {
kvn@1019 427 #ifdef ASSERT
kvn@1019 428 val->dump();
kvn@688 429 assert(false, "unknown node on this path");
kvn@1019 430 #endif
kvn@688 431 return NULL; // unknown node on this path
kvn@508 432 }
kvn@508 433 }
kvn@508 434 }
kvn@682 435 // Set Phi's inputs
kvn@508 436 for (uint j = 1; j < length; j++) {
kvn@508 437 if (values.at(j) == mem) {
kvn@508 438 phi->init_req(j, phi);
kvn@508 439 } else {
kvn@508 440 phi->init_req(j, values.at(j));
kvn@508 441 }
kvn@508 442 }
kvn@508 443 return phi;
kvn@508 444 }
kvn@508 445
kvn@508 446 // Search the last value stored into the object's field.
kvn@508 447 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
kvn@658 448 assert(adr_t->is_known_instance_field(), "instance required");
kvn@658 449 int instance_id = adr_t->instance_id();
kvn@658 450 assert((uint)instance_id == alloc->_idx, "wrong allocation");
kvn@508 451
kvn@508 452 int alias_idx = C->get_alias_index(adr_t);
kvn@508 453 int offset = adr_t->offset();
kvn@508 454 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 455 Node *alloc_ctrl = alloc->in(TypeFunc::Control);
kvn@508 456 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@682 457 Arena *a = Thread::current()->resource_area();
kvn@682 458 VectorSet visited(a);
kvn@508 459
kvn@508 460
kvn@508 461 bool done = sfpt_mem == alloc_mem;
kvn@508 462 Node *mem = sfpt_mem;
kvn@508 463 while (!done) {
kvn@508 464 if (visited.test_set(mem->_idx)) {
kvn@508 465 return NULL; // found a loop, give up
kvn@508 466 }
kvn@688 467 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 468 if (mem == start_mem || mem == alloc_mem) {
kvn@508 469 done = true; // hit a sentinel, return appropriate 0 value
kvn@508 470 } else if (mem->is_Initialize()) {
kvn@508 471 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 472 if (mem == NULL) {
kvn@508 473 done = true; // Something go wrong.
kvn@508 474 } else if (mem->is_Store()) {
kvn@508 475 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 476 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
kvn@508 477 done = true;
kvn@508 478 }
kvn@508 479 } else if (mem->is_Store()) {
kvn@508 480 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
kvn@508 481 assert(atype != NULL, "address type must be oopptr");
kvn@508 482 assert(C->get_alias_index(atype) == alias_idx &&
kvn@658 483 atype->is_known_instance_field() && atype->offset() == offset &&
kvn@508 484 atype->instance_id() == instance_id, "store is correct memory slice");
kvn@508 485 done = true;
kvn@508 486 } else if (mem->is_Phi()) {
kvn@508 487 // try to find a phi's unique input
kvn@508 488 Node *unique_input = NULL;
kvn@508 489 Node *top = C->top();
kvn@508 490 for (uint i = 1; i < mem->req(); i++) {
kvn@688 491 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 492 if (n == NULL || n == top || n == mem) {
kvn@508 493 continue;
kvn@508 494 } else if (unique_input == NULL) {
kvn@508 495 unique_input = n;
kvn@508 496 } else if (unique_input != n) {
kvn@508 497 unique_input = top;
kvn@508 498 break;
kvn@508 499 }
kvn@508 500 }
kvn@508 501 if (unique_input != NULL && unique_input != top) {
kvn@508 502 mem = unique_input;
kvn@508 503 } else {
kvn@508 504 done = true;
kvn@508 505 }
kvn@508 506 } else {
kvn@508 507 assert(false, "unexpected node");
kvn@508 508 }
kvn@508 509 }
kvn@508 510 if (mem != NULL) {
kvn@508 511 if (mem == start_mem || mem == alloc_mem) {
kvn@508 512 // hit a sentinel, return appropriate 0 value
kvn@508 513 return _igvn.zerocon(ft);
kvn@508 514 } else if (mem->is_Store()) {
kvn@508 515 return mem->in(MemNode::ValueIn);
kvn@508 516 } else if (mem->is_Phi()) {
kvn@508 517 // attempt to produce a Phi reflecting the values on the input paths of the Phi
kvn@682 518 Node_Stack value_phis(a, 8);
kvn@688 519 Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
kvn@508 520 if (phi != NULL) {
kvn@508 521 return phi;
kvn@682 522 } else {
kvn@682 523 // Kill all new Phis
kvn@682 524 while(value_phis.is_nonempty()) {
kvn@682 525 Node* n = value_phis.node();
kvn@682 526 _igvn.hash_delete(n);
kvn@682 527 _igvn.subsume_node(n, C->top());
kvn@682 528 value_phis.pop();
kvn@682 529 }
kvn@508 530 }
kvn@508 531 }
kvn@508 532 }
kvn@508 533 // Something go wrong.
kvn@508 534 return NULL;
kvn@508 535 }
kvn@508 536
kvn@508 537 // Check the possibility of scalar replacement.
kvn@508 538 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 539 // Scan the uses of the allocation to check for anything that would
kvn@508 540 // prevent us from eliminating it.
kvn@508 541 NOT_PRODUCT( const char* fail_eliminate = NULL; )
kvn@508 542 DEBUG_ONLY( Node* disq_node = NULL; )
kvn@508 543 bool can_eliminate = true;
kvn@508 544
kvn@508 545 Node* res = alloc->result_cast();
kvn@508 546 const TypeOopPtr* res_type = NULL;
kvn@508 547 if (res == NULL) {
kvn@508 548 // All users were eliminated.
kvn@508 549 } else if (!res->is_CheckCastPP()) {
kvn@508 550 alloc->_is_scalar_replaceable = false; // don't try again
kvn@508 551 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
kvn@508 552 can_eliminate = false;
kvn@508 553 } else {
kvn@508 554 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 555 if (res_type == NULL) {
kvn@508 556 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
kvn@508 557 can_eliminate = false;
kvn@508 558 } else if (res_type->isa_aryptr()) {
kvn@508 559 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 560 if (length < 0) {
kvn@508 561 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
kvn@508 562 can_eliminate = false;
kvn@508 563 }
kvn@508 564 }
kvn@508 565 }
kvn@508 566
kvn@508 567 if (can_eliminate && res != NULL) {
kvn@508 568 for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
kvn@508 569 j < jmax && can_eliminate; j++) {
kvn@508 570 Node* use = res->fast_out(j);
kvn@508 571
kvn@508 572 if (use->is_AddP()) {
kvn@508 573 const TypePtr* addp_type = _igvn.type(use)->is_ptr();
kvn@508 574 int offset = addp_type->offset();
kvn@508 575
kvn@508 576 if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
kvn@508 577 NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
kvn@508 578 can_eliminate = false;
kvn@508 579 break;
kvn@508 580 }
kvn@508 581 for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
kvn@508 582 k < kmax && can_eliminate; k++) {
kvn@508 583 Node* n = use->fast_out(k);
kvn@508 584 if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
kvn@508 585 DEBUG_ONLY(disq_node = n;)
kvn@688 586 if (n->is_Load() || n->is_LoadStore()) {
kvn@508 587 NOT_PRODUCT(fail_eliminate = "Field load";)
kvn@508 588 } else {
kvn@508 589 NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
kvn@508 590 }
kvn@508 591 can_eliminate = false;
kvn@508 592 }
kvn@508 593 }
kvn@508 594 } else if (use->is_SafePoint()) {
kvn@508 595 SafePointNode* sfpt = use->as_SafePoint();
kvn@603 596 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
kvn@508 597 // Object is passed as argument.
kvn@508 598 DEBUG_ONLY(disq_node = use;)
kvn@508 599 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
kvn@508 600 can_eliminate = false;
kvn@508 601 }
kvn@508 602 Node* sfptMem = sfpt->memory();
kvn@508 603 if (sfptMem == NULL || sfptMem->is_top()) {
kvn@508 604 DEBUG_ONLY(disq_node = use;)
kvn@508 605 NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
kvn@508 606 can_eliminate = false;
kvn@508 607 } else {
kvn@508 608 safepoints.append_if_missing(sfpt);
kvn@508 609 }
kvn@508 610 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
kvn@508 611 if (use->is_Phi()) {
kvn@508 612 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
kvn@508 613 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 614 } else {
kvn@508 615 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
kvn@508 616 }
kvn@508 617 DEBUG_ONLY(disq_node = use;)
kvn@508 618 } else {
kvn@508 619 if (use->Opcode() == Op_Return) {
kvn@508 620 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 621 }else {
kvn@508 622 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
kvn@508 623 }
kvn@508 624 DEBUG_ONLY(disq_node = use;)
kvn@508 625 }
kvn@508 626 can_eliminate = false;
kvn@508 627 }
kvn@508 628 }
kvn@508 629 }
kvn@508 630
kvn@508 631 #ifndef PRODUCT
kvn@508 632 if (PrintEliminateAllocations) {
kvn@508 633 if (can_eliminate) {
kvn@508 634 tty->print("Scalar ");
kvn@508 635 if (res == NULL)
kvn@508 636 alloc->dump();
kvn@508 637 else
kvn@508 638 res->dump();
kvn@508 639 } else {
kvn@508 640 tty->print("NotScalar (%s)", fail_eliminate);
kvn@508 641 if (res == NULL)
kvn@508 642 alloc->dump();
kvn@508 643 else
kvn@508 644 res->dump();
kvn@508 645 #ifdef ASSERT
kvn@508 646 if (disq_node != NULL) {
kvn@508 647 tty->print(" >>>> ");
kvn@508 648 disq_node->dump();
kvn@508 649 }
kvn@508 650 #endif /*ASSERT*/
kvn@508 651 }
kvn@508 652 }
kvn@508 653 #endif
kvn@508 654 return can_eliminate;
kvn@508 655 }
kvn@508 656
kvn@508 657 // Do scalar replacement.
kvn@508 658 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 659 GrowableArray <SafePointNode *> safepoints_done;
kvn@508 660
kvn@508 661 ciKlass* klass = NULL;
kvn@508 662 ciInstanceKlass* iklass = NULL;
kvn@508 663 int nfields = 0;
kvn@508 664 int array_base;
kvn@508 665 int element_size;
kvn@508 666 BasicType basic_elem_type;
kvn@508 667 ciType* elem_type;
kvn@508 668
kvn@508 669 Node* res = alloc->result_cast();
kvn@508 670 const TypeOopPtr* res_type = NULL;
kvn@508 671 if (res != NULL) { // Could be NULL when there are no users
kvn@508 672 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 673 }
kvn@508 674
kvn@508 675 if (res != NULL) {
kvn@508 676 klass = res_type->klass();
kvn@508 677 if (res_type->isa_instptr()) {
kvn@508 678 // find the fields of the class which will be needed for safepoint debug information
kvn@508 679 assert(klass->is_instance_klass(), "must be an instance klass.");
kvn@508 680 iklass = klass->as_instance_klass();
kvn@508 681 nfields = iklass->nof_nonstatic_fields();
kvn@508 682 } else {
kvn@508 683 // find the array's elements which will be needed for safepoint debug information
kvn@508 684 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 685 assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
kvn@508 686 elem_type = klass->as_array_klass()->element_type();
kvn@508 687 basic_elem_type = elem_type->basic_type();
kvn@508 688 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@508 689 element_size = type2aelembytes(basic_elem_type);
kvn@508 690 }
kvn@508 691 }
kvn@508 692 //
kvn@508 693 // Process the safepoint uses
kvn@508 694 //
kvn@508 695 while (safepoints.length() > 0) {
kvn@508 696 SafePointNode* sfpt = safepoints.pop();
kvn@508 697 Node* mem = sfpt->memory();
kvn@508 698 uint first_ind = sfpt->req();
kvn@508 699 SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
kvn@508 700 #ifdef ASSERT
kvn@508 701 alloc,
kvn@508 702 #endif
kvn@508 703 first_ind, nfields);
kvn@508 704 sobj->init_req(0, sfpt->in(TypeFunc::Control));
kvn@508 705 transform_later(sobj);
kvn@508 706
kvn@508 707 // Scan object's fields adding an input to the safepoint for each field.
kvn@508 708 for (int j = 0; j < nfields; j++) {
kvn@741 709 intptr_t offset;
kvn@508 710 ciField* field = NULL;
kvn@508 711 if (iklass != NULL) {
kvn@508 712 field = iklass->nonstatic_field_at(j);
kvn@508 713 offset = field->offset();
kvn@508 714 elem_type = field->type();
kvn@508 715 basic_elem_type = field->layout_type();
kvn@508 716 } else {
kvn@741 717 offset = array_base + j * (intptr_t)element_size;
kvn@508 718 }
kvn@508 719
kvn@508 720 const Type *field_type;
kvn@508 721 // The next code is taken from Parse::do_get_xxx().
kvn@559 722 if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
kvn@508 723 if (!elem_type->is_loaded()) {
kvn@508 724 field_type = TypeInstPtr::BOTTOM;
kvn@508 725 } else if (field != NULL && field->is_constant()) {
kvn@508 726 // This can happen if the constant oop is non-perm.
kvn@508 727 ciObject* con = field->constant_value().as_object();
kvn@508 728 // Do not "join" in the previous type; it doesn't add value,
kvn@508 729 // and may yield a vacuous result if the field is of interface type.
kvn@508 730 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
kvn@508 731 assert(field_type != NULL, "field singleton type must be consistent");
kvn@508 732 } else {
kvn@508 733 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
kvn@508 734 }
kvn@559 735 if (UseCompressedOops) {
kvn@656 736 field_type = field_type->make_narrowoop();
kvn@559 737 basic_elem_type = T_NARROWOOP;
kvn@559 738 }
kvn@508 739 } else {
kvn@508 740 field_type = Type::get_const_basic_type(basic_elem_type);
kvn@508 741 }
kvn@508 742
kvn@508 743 const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
kvn@508 744
kvn@508 745 Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
kvn@508 746 if (field_val == NULL) {
kvn@508 747 // we weren't able to find a value for this field,
kvn@508 748 // give up on eliminating this allocation
kvn@508 749 alloc->_is_scalar_replaceable = false; // don't try again
kvn@508 750 // remove any extra entries we added to the safepoint
kvn@508 751 uint last = sfpt->req() - 1;
kvn@508 752 for (int k = 0; k < j; k++) {
kvn@508 753 sfpt->del_req(last--);
kvn@508 754 }
kvn@508 755 // rollback processed safepoints
kvn@508 756 while (safepoints_done.length() > 0) {
kvn@508 757 SafePointNode* sfpt_done = safepoints_done.pop();
kvn@508 758 // remove any extra entries we added to the safepoint
kvn@508 759 last = sfpt_done->req() - 1;
kvn@508 760 for (int k = 0; k < nfields; k++) {
kvn@508 761 sfpt_done->del_req(last--);
kvn@508 762 }
kvn@508 763 JVMState *jvms = sfpt_done->jvms();
kvn@508 764 jvms->set_endoff(sfpt_done->req());
kvn@508 765 // Now make a pass over the debug information replacing any references
kvn@508 766 // to SafePointScalarObjectNode with the allocated object.
kvn@508 767 int start = jvms->debug_start();
kvn@508 768 int end = jvms->debug_end();
kvn@508 769 for (int i = start; i < end; i++) {
kvn@508 770 if (sfpt_done->in(i)->is_SafePointScalarObject()) {
kvn@508 771 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
kvn@508 772 if (scobj->first_index() == sfpt_done->req() &&
kvn@508 773 scobj->n_fields() == (uint)nfields) {
kvn@508 774 assert(scobj->alloc() == alloc, "sanity");
kvn@508 775 sfpt_done->set_req(i, res);
kvn@508 776 }
kvn@508 777 }
kvn@508 778 }
kvn@508 779 }
kvn@508 780 #ifndef PRODUCT
kvn@508 781 if (PrintEliminateAllocations) {
kvn@508 782 if (field != NULL) {
kvn@508 783 tty->print("=== At SafePoint node %d can't find value of Field: ",
kvn@508 784 sfpt->_idx);
kvn@508 785 field->print();
kvn@508 786 int field_idx = C->get_alias_index(field_addr_type);
kvn@508 787 tty->print(" (alias_idx=%d)", field_idx);
kvn@508 788 } else { // Array's element
kvn@508 789 tty->print("=== At SafePoint node %d can't find value of array element [%d]",
kvn@508 790 sfpt->_idx, j);
kvn@508 791 }
kvn@508 792 tty->print(", which prevents elimination of: ");
kvn@508 793 if (res == NULL)
kvn@508 794 alloc->dump();
kvn@508 795 else
kvn@508 796 res->dump();
kvn@508 797 }
kvn@508 798 #endif
kvn@508 799 return false;
kvn@508 800 }
kvn@559 801 if (UseCompressedOops && field_type->isa_narrowoop()) {
kvn@559 802 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
kvn@559 803 // to be able scalar replace the allocation.
kvn@656 804 if (field_val->is_EncodeP()) {
kvn@656 805 field_val = field_val->in(1);
kvn@656 806 } else {
kvn@656 807 field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
kvn@656 808 }
kvn@559 809 }
kvn@508 810 sfpt->add_req(field_val);
kvn@508 811 }
kvn@508 812 JVMState *jvms = sfpt->jvms();
kvn@508 813 jvms->set_endoff(sfpt->req());
kvn@508 814 // Now make a pass over the debug information replacing any references
kvn@508 815 // to the allocated object with "sobj"
kvn@508 816 int start = jvms->debug_start();
kvn@508 817 int end = jvms->debug_end();
kvn@508 818 for (int i = start; i < end; i++) {
kvn@508 819 if (sfpt->in(i) == res) {
kvn@508 820 sfpt->set_req(i, sobj);
kvn@508 821 }
kvn@508 822 }
kvn@508 823 safepoints_done.append_if_missing(sfpt); // keep it for rollback
kvn@508 824 }
kvn@508 825 return true;
kvn@508 826 }
kvn@508 827
kvn@508 828 // Process users of eliminated allocation.
kvn@508 829 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
kvn@508 830 Node* res = alloc->result_cast();
kvn@508 831 if (res != NULL) {
kvn@508 832 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
kvn@508 833 Node *use = res->last_out(j);
kvn@508 834 uint oc1 = res->outcnt();
kvn@508 835
kvn@508 836 if (use->is_AddP()) {
kvn@508 837 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
kvn@508 838 Node *n = use->last_out(k);
kvn@508 839 uint oc2 = use->outcnt();
kvn@508 840 if (n->is_Store()) {
kvn@1535 841 #ifdef ASSERT
kvn@1535 842 // Verify that there is no dependent MemBarVolatile nodes,
kvn@1535 843 // they should be removed during IGVN, see MemBarNode::Ideal().
kvn@1535 844 for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
kvn@1535 845 p < pmax; p++) {
kvn@1535 846 Node* mb = n->fast_out(p);
kvn@1535 847 assert(mb->is_Initialize() || !mb->is_MemBar() ||
kvn@1535 848 mb->req() <= MemBarNode::Precedent ||
kvn@1535 849 mb->in(MemBarNode::Precedent) != n,
kvn@1535 850 "MemBarVolatile should be eliminated for non-escaping object");
kvn@1535 851 }
kvn@1535 852 #endif
kvn@508 853 _igvn.replace_node(n, n->in(MemNode::Memory));
kvn@508 854 } else {
kvn@508 855 eliminate_card_mark(n);
kvn@508 856 }
kvn@508 857 k -= (oc2 - use->outcnt());
kvn@508 858 }
kvn@508 859 } else {
kvn@508 860 eliminate_card_mark(use);
kvn@508 861 }
kvn@508 862 j -= (oc1 - res->outcnt());
kvn@508 863 }
kvn@508 864 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
kvn@508 865 _igvn.remove_dead_node(res);
kvn@508 866 }
kvn@508 867
kvn@508 868 //
kvn@508 869 // Process other users of allocation's projections
kvn@508 870 //
kvn@508 871 if (_resproj != NULL && _resproj->outcnt() != 0) {
kvn@508 872 for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
kvn@508 873 Node *use = _resproj->last_out(j);
kvn@508 874 uint oc1 = _resproj->outcnt();
kvn@508 875 if (use->is_Initialize()) {
kvn@508 876 // Eliminate Initialize node.
kvn@508 877 InitializeNode *init = use->as_Initialize();
kvn@508 878 assert(init->outcnt() <= 2, "only a control and memory projection expected");
kvn@508 879 Node *ctrl_proj = init->proj_out(TypeFunc::Control);
kvn@508 880 if (ctrl_proj != NULL) {
kvn@508 881 assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
kvn@508 882 _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
kvn@508 883 }
kvn@508 884 Node *mem_proj = init->proj_out(TypeFunc::Memory);
kvn@508 885 if (mem_proj != NULL) {
kvn@508 886 Node *mem = init->in(TypeFunc::Memory);
kvn@508 887 #ifdef ASSERT
kvn@508 888 if (mem->is_MergeMem()) {
kvn@508 889 assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
kvn@508 890 } else {
kvn@508 891 assert(mem == _memproj_fallthrough, "allocation memory projection");
kvn@508 892 }
kvn@508 893 #endif
kvn@508 894 _igvn.replace_node(mem_proj, mem);
kvn@508 895 }
kvn@508 896 } else if (use->is_AddP()) {
kvn@508 897 // raw memory addresses used only by the initialization
kvn@1143 898 _igvn.replace_node(use, C->top());
kvn@508 899 } else {
kvn@508 900 assert(false, "only Initialize or AddP expected");
kvn@508 901 }
kvn@508 902 j -= (oc1 - _resproj->outcnt());
kvn@508 903 }
kvn@508 904 }
kvn@508 905 if (_fallthroughcatchproj != NULL) {
kvn@508 906 _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
kvn@508 907 }
kvn@508 908 if (_memproj_fallthrough != NULL) {
kvn@508 909 _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
kvn@508 910 }
kvn@508 911 if (_memproj_catchall != NULL) {
kvn@508 912 _igvn.replace_node(_memproj_catchall, C->top());
kvn@508 913 }
kvn@508 914 if (_ioproj_fallthrough != NULL) {
kvn@508 915 _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
kvn@508 916 }
kvn@508 917 if (_ioproj_catchall != NULL) {
kvn@508 918 _igvn.replace_node(_ioproj_catchall, C->top());
kvn@508 919 }
kvn@508 920 if (_catchallcatchproj != NULL) {
kvn@508 921 _igvn.replace_node(_catchallcatchproj, C->top());
kvn@508 922 }
kvn@508 923 }
kvn@508 924
kvn@508 925 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
kvn@508 926
kvn@508 927 if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
kvn@508 928 return false;
kvn@508 929 }
kvn@508 930
kvn@508 931 extract_call_projections(alloc);
kvn@508 932
kvn@508 933 GrowableArray <SafePointNode *> safepoints;
kvn@508 934 if (!can_eliminate_allocation(alloc, safepoints)) {
kvn@508 935 return false;
kvn@508 936 }
kvn@508 937
kvn@508 938 if (!scalar_replacement(alloc, safepoints)) {
kvn@508 939 return false;
kvn@508 940 }
kvn@508 941
never@1515 942 CompileLog* log = C->log();
never@1515 943 if (log != NULL) {
never@1515 944 Node* klass = alloc->in(AllocateNode::KlassNode);
never@1515 945 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
never@1515 946 log->head("eliminate_allocation type='%d'",
never@1515 947 log->identify(tklass->klass()));
never@1515 948 JVMState* p = alloc->jvms();
never@1515 949 while (p != NULL) {
never@1515 950 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 951 p = p->caller();
never@1515 952 }
never@1515 953 log->tail("eliminate_allocation");
never@1515 954 }
never@1515 955
kvn@508 956 process_users_of_allocation(alloc);
kvn@508 957
kvn@508 958 #ifndef PRODUCT
never@1515 959 if (PrintEliminateAllocations) {
never@1515 960 if (alloc->is_AllocateArray())
never@1515 961 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
never@1515 962 else
never@1515 963 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
never@1515 964 }
kvn@508 965 #endif
kvn@508 966
kvn@508 967 return true;
kvn@508 968 }
kvn@508 969
duke@435 970
duke@435 971 //---------------------------set_eden_pointers-------------------------
duke@435 972 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
duke@435 973 if (UseTLAB) { // Private allocation: load from TLS
duke@435 974 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
duke@435 975 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
duke@435 976 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
duke@435 977 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
duke@435 978 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
duke@435 979 } else { // Shared allocation: load from globals
duke@435 980 CollectedHeap* ch = Universe::heap();
duke@435 981 address top_adr = (address)ch->top_addr();
duke@435 982 address end_adr = (address)ch->end_addr();
duke@435 983 eden_top_adr = makecon(TypeRawPtr::make(top_adr));
duke@435 984 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
duke@435 985 }
duke@435 986 }
duke@435 987
duke@435 988
duke@435 989 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
duke@435 990 Node* adr = basic_plus_adr(base, offset);
kvn@855 991 const TypePtr* adr_type = adr->bottom_type()->is_ptr();
coleenp@548 992 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
duke@435 993 transform_later(value);
duke@435 994 return value;
duke@435 995 }
duke@435 996
duke@435 997
duke@435 998 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
duke@435 999 Node* adr = basic_plus_adr(base, offset);
coleenp@548 1000 mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
duke@435 1001 transform_later(mem);
duke@435 1002 return mem;
duke@435 1003 }
duke@435 1004
duke@435 1005 //=============================================================================
duke@435 1006 //
duke@435 1007 // A L L O C A T I O N
duke@435 1008 //
duke@435 1009 // Allocation attempts to be fast in the case of frequent small objects.
duke@435 1010 // It breaks down like this:
duke@435 1011 //
duke@435 1012 // 1) Size in doublewords is computed. This is a constant for objects and
duke@435 1013 // variable for most arrays. Doubleword units are used to avoid size
duke@435 1014 // overflow of huge doubleword arrays. We need doublewords in the end for
duke@435 1015 // rounding.
duke@435 1016 //
duke@435 1017 // 2) Size is checked for being 'too large'. Too-large allocations will go
duke@435 1018 // the slow path into the VM. The slow path can throw any required
duke@435 1019 // exceptions, and does all the special checks for very large arrays. The
duke@435 1020 // size test can constant-fold away for objects. For objects with
duke@435 1021 // finalizers it constant-folds the otherway: you always go slow with
duke@435 1022 // finalizers.
duke@435 1023 //
duke@435 1024 // 3) If NOT using TLABs, this is the contended loop-back point.
duke@435 1025 // Load-Locked the heap top. If using TLABs normal-load the heap top.
duke@435 1026 //
duke@435 1027 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route.
duke@435 1028 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish
duke@435 1029 // "size*8" we always enter the VM, where "largish" is a constant picked small
duke@435 1030 // enough that there's always space between the eden max and 4Gig (old space is
duke@435 1031 // there so it's quite large) and large enough that the cost of entering the VM
duke@435 1032 // is dwarfed by the cost to initialize the space.
duke@435 1033 //
duke@435 1034 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
duke@435 1035 // down. If contended, repeat at step 3. If using TLABs normal-store
duke@435 1036 // adjusted heap top back down; there is no contention.
duke@435 1037 //
duke@435 1038 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark
duke@435 1039 // fields.
duke@435 1040 //
duke@435 1041 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
duke@435 1042 // oop flavor.
duke@435 1043 //
duke@435 1044 //=============================================================================
duke@435 1045 // FastAllocateSizeLimit value is in DOUBLEWORDS.
duke@435 1046 // Allocations bigger than this always go the slow route.
duke@435 1047 // This value must be small enough that allocation attempts that need to
duke@435 1048 // trigger exceptions go the slow route. Also, it must be small enough so
duke@435 1049 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
duke@435 1050 //=============================================================================j//
duke@435 1051 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
duke@435 1052 // The allocator will coalesce int->oop copies away. See comment in
duke@435 1053 // coalesce.cpp about how this works. It depends critically on the exact
duke@435 1054 // code shape produced here, so if you are changing this code shape
duke@435 1055 // make sure the GC info for the heap-top is correct in and around the
duke@435 1056 // slow-path call.
duke@435 1057 //
duke@435 1058
duke@435 1059 void PhaseMacroExpand::expand_allocate_common(
duke@435 1060 AllocateNode* alloc, // allocation node to be expanded
duke@435 1061 Node* length, // array length for an array allocation
duke@435 1062 const TypeFunc* slow_call_type, // Type of slow call
duke@435 1063 address slow_call_address // Address of slow call
duke@435 1064 )
duke@435 1065 {
duke@435 1066
duke@435 1067 Node* ctrl = alloc->in(TypeFunc::Control);
duke@435 1068 Node* mem = alloc->in(TypeFunc::Memory);
duke@435 1069 Node* i_o = alloc->in(TypeFunc::I_O);
duke@435 1070 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize);
duke@435 1071 Node* klass_node = alloc->in(AllocateNode::KlassNode);
duke@435 1072 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
duke@435 1073
duke@435 1074 assert(ctrl != NULL, "must have control");
duke@435 1075 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
duke@435 1076 // they will not be used if "always_slow" is set
duke@435 1077 enum { slow_result_path = 1, fast_result_path = 2 };
duke@435 1078 Node *result_region;
duke@435 1079 Node *result_phi_rawmem;
duke@435 1080 Node *result_phi_rawoop;
duke@435 1081 Node *result_phi_i_o;
duke@435 1082
duke@435 1083 // The initial slow comparison is a size check, the comparison
duke@435 1084 // we want to do is a BoolTest::gt
duke@435 1085 bool always_slow = false;
duke@435 1086 int tv = _igvn.find_int_con(initial_slow_test, -1);
duke@435 1087 if (tv >= 0) {
duke@435 1088 always_slow = (tv == 1);
duke@435 1089 initial_slow_test = NULL;
duke@435 1090 } else {
duke@435 1091 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
duke@435 1092 }
duke@435 1093
kvn@1215 1094 if (C->env()->dtrace_alloc_probes() ||
ysr@777 1095 !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
ysr@777 1096 (UseConcMarkSweepGC && CMSIncrementalMode))) {
duke@435 1097 // Force slow-path allocation
duke@435 1098 always_slow = true;
duke@435 1099 initial_slow_test = NULL;
duke@435 1100 }
duke@435 1101
ysr@777 1102
duke@435 1103 enum { too_big_or_final_path = 1, need_gc_path = 2 };
duke@435 1104 Node *slow_region = NULL;
duke@435 1105 Node *toobig_false = ctrl;
duke@435 1106
duke@435 1107 assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
duke@435 1108 // generate the initial test if necessary
duke@435 1109 if (initial_slow_test != NULL ) {
duke@435 1110 slow_region = new (C, 3) RegionNode(3);
duke@435 1111
duke@435 1112 // Now make the initial failure test. Usually a too-big test but
duke@435 1113 // might be a TRUE for finalizers or a fancy class check for
duke@435 1114 // newInstance0.
duke@435 1115 IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
duke@435 1116 transform_later(toobig_iff);
duke@435 1117 // Plug the failing-too-big test into the slow-path region
duke@435 1118 Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
duke@435 1119 transform_later(toobig_true);
duke@435 1120 slow_region ->init_req( too_big_or_final_path, toobig_true );
duke@435 1121 toobig_false = new (C, 1) IfFalseNode( toobig_iff );
duke@435 1122 transform_later(toobig_false);
duke@435 1123 } else { // No initial test, just fall into next case
duke@435 1124 toobig_false = ctrl;
duke@435 1125 debug_only(slow_region = NodeSentinel);
duke@435 1126 }
duke@435 1127
duke@435 1128 Node *slow_mem = mem; // save the current memory state for slow path
duke@435 1129 // generate the fast allocation code unless we know that the initial test will always go slow
duke@435 1130 if (!always_slow) {
kvn@1000 1131 // Fast path modifies only raw memory.
kvn@1000 1132 if (mem->is_MergeMem()) {
kvn@1000 1133 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
kvn@1000 1134 }
kvn@1000 1135
ysr@777 1136 Node* eden_top_adr;
ysr@777 1137 Node* eden_end_adr;
ysr@777 1138
ysr@777 1139 set_eden_pointers(eden_top_adr, eden_end_adr);
ysr@777 1140
ysr@777 1141 // Load Eden::end. Loop invariant and hoisted.
ysr@777 1142 //
ysr@777 1143 // Note: We set the control input on "eden_end" and "old_eden_top" when using
ysr@777 1144 // a TLAB to work around a bug where these values were being moved across
ysr@777 1145 // a safepoint. These are not oops, so they cannot be include in the oop
ysr@777 1146 // map, but the can be changed by a GC. The proper way to fix this would
ysr@777 1147 // be to set the raw memory state when generating a SafepointNode. However
ysr@777 1148 // this will require extensive changes to the loop optimization in order to
ysr@777 1149 // prevent a degradation of the optimization.
ysr@777 1150 // See comment in memnode.hpp, around line 227 in class LoadPNode.
ysr@777 1151 Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
ysr@777 1152
duke@435 1153 // allocate the Region and Phi nodes for the result
duke@435 1154 result_region = new (C, 3) RegionNode(3);
duke@435 1155 result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
duke@435 1156 result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
duke@435 1157 result_phi_i_o = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
duke@435 1158
duke@435 1159 // We need a Region for the loop-back contended case.
duke@435 1160 enum { fall_in_path = 1, contended_loopback_path = 2 };
duke@435 1161 Node *contended_region;
duke@435 1162 Node *contended_phi_rawmem;
duke@435 1163 if( UseTLAB ) {
duke@435 1164 contended_region = toobig_false;
duke@435 1165 contended_phi_rawmem = mem;
duke@435 1166 } else {
duke@435 1167 contended_region = new (C, 3) RegionNode(3);
duke@435 1168 contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 1169 // Now handle the passing-too-big test. We fall into the contended
duke@435 1170 // loop-back merge point.
duke@435 1171 contended_region ->init_req( fall_in_path, toobig_false );
duke@435 1172 contended_phi_rawmem->init_req( fall_in_path, mem );
duke@435 1173 transform_later(contended_region);
duke@435 1174 transform_later(contended_phi_rawmem);
duke@435 1175 }
duke@435 1176
duke@435 1177 // Load(-locked) the heap top.
duke@435 1178 // See note above concerning the control input when using a TLAB
duke@435 1179 Node *old_eden_top = UseTLAB
duke@435 1180 ? new (C, 3) LoadPNode ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
duke@435 1181 : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
duke@435 1182
duke@435 1183 transform_later(old_eden_top);
duke@435 1184 // Add to heap top to get a new heap top
duke@435 1185 Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
duke@435 1186 transform_later(new_eden_top);
duke@435 1187 // Check for needing a GC; compare against heap end
duke@435 1188 Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
duke@435 1189 transform_later(needgc_cmp);
duke@435 1190 Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
duke@435 1191 transform_later(needgc_bol);
duke@435 1192 IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1193 transform_later(needgc_iff);
duke@435 1194
duke@435 1195 // Plug the failing-heap-space-need-gc test into the slow-path region
duke@435 1196 Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
duke@435 1197 transform_later(needgc_true);
duke@435 1198 if( initial_slow_test ) {
duke@435 1199 slow_region ->init_req( need_gc_path, needgc_true );
duke@435 1200 // This completes all paths into the slow merge point
duke@435 1201 transform_later(slow_region);
duke@435 1202 } else { // No initial slow path needed!
duke@435 1203 // Just fall from the need-GC path straight into the VM call.
duke@435 1204 slow_region = needgc_true;
duke@435 1205 }
duke@435 1206 // No need for a GC. Setup for the Store-Conditional
duke@435 1207 Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
duke@435 1208 transform_later(needgc_false);
duke@435 1209
duke@435 1210 // Grab regular I/O before optional prefetch may change it.
duke@435 1211 // Slow-path does no I/O so just set it to the original I/O.
duke@435 1212 result_phi_i_o->init_req( slow_result_path, i_o );
duke@435 1213
duke@435 1214 i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
duke@435 1215 old_eden_top, new_eden_top, length);
duke@435 1216
duke@435 1217 // Store (-conditional) the modified eden top back down.
duke@435 1218 // StorePConditional produces flags for a test PLUS a modified raw
duke@435 1219 // memory state.
duke@435 1220 Node *store_eden_top;
duke@435 1221 Node *fast_oop_ctrl;
duke@435 1222 if( UseTLAB ) {
duke@435 1223 store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
duke@435 1224 transform_later(store_eden_top);
duke@435 1225 fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
duke@435 1226 } else {
duke@435 1227 store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
duke@435 1228 transform_later(store_eden_top);
duke@435 1229 Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
duke@435 1230 transform_later(contention_check);
duke@435 1231 store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
duke@435 1232 transform_later(store_eden_top);
duke@435 1233
duke@435 1234 // If not using TLABs, check to see if there was contention.
duke@435 1235 IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
duke@435 1236 transform_later(contention_iff);
duke@435 1237 Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
duke@435 1238 transform_later(contention_true);
duke@435 1239 // If contention, loopback and try again.
duke@435 1240 contended_region->init_req( contended_loopback_path, contention_true );
duke@435 1241 contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
duke@435 1242
duke@435 1243 // Fast-path succeeded with no contention!
duke@435 1244 Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
duke@435 1245 transform_later(contention_false);
duke@435 1246 fast_oop_ctrl = contention_false;
duke@435 1247 }
duke@435 1248
duke@435 1249 // Rename successful fast-path variables to make meaning more obvious
duke@435 1250 Node* fast_oop = old_eden_top;
duke@435 1251 Node* fast_oop_rawmem = store_eden_top;
duke@435 1252 fast_oop_rawmem = initialize_object(alloc,
duke@435 1253 fast_oop_ctrl, fast_oop_rawmem, fast_oop,
duke@435 1254 klass_node, length, size_in_bytes);
duke@435 1255
kvn@1215 1256 if (C->env()->dtrace_extended_probes()) {
duke@435 1257 // Slow-path call
duke@435 1258 int size = TypeFunc::Parms + 2;
duke@435 1259 CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
duke@435 1260 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
duke@435 1261 "dtrace_object_alloc",
duke@435 1262 TypeRawPtr::BOTTOM);
duke@435 1263
duke@435 1264 // Get base of thread-local storage area
duke@435 1265 Node* thread = new (C, 1) ThreadLocalNode();
duke@435 1266 transform_later(thread);
duke@435 1267
duke@435 1268 call->init_req(TypeFunc::Parms+0, thread);
duke@435 1269 call->init_req(TypeFunc::Parms+1, fast_oop);
duke@435 1270 call->init_req( TypeFunc::Control, fast_oop_ctrl );
duke@435 1271 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1272 call->init_req( TypeFunc::Memory , fast_oop_rawmem );
duke@435 1273 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1274 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1275 transform_later(call);
duke@435 1276 fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
duke@435 1277 transform_later(fast_oop_ctrl);
duke@435 1278 fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
duke@435 1279 transform_later(fast_oop_rawmem);
duke@435 1280 }
duke@435 1281
duke@435 1282 // Plug in the successful fast-path into the result merge point
duke@435 1283 result_region ->init_req( fast_result_path, fast_oop_ctrl );
duke@435 1284 result_phi_rawoop->init_req( fast_result_path, fast_oop );
duke@435 1285 result_phi_i_o ->init_req( fast_result_path, i_o );
duke@435 1286 result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
duke@435 1287 } else {
duke@435 1288 slow_region = ctrl;
duke@435 1289 }
duke@435 1290
duke@435 1291 // Generate slow-path call
duke@435 1292 CallNode *call = new (C, slow_call_type->domain()->cnt())
duke@435 1293 CallStaticJavaNode(slow_call_type, slow_call_address,
duke@435 1294 OptoRuntime::stub_name(slow_call_address),
duke@435 1295 alloc->jvms()->bci(),
duke@435 1296 TypePtr::BOTTOM);
duke@435 1297 call->init_req( TypeFunc::Control, slow_region );
duke@435 1298 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1299 call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
duke@435 1300 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1301 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1302
duke@435 1303 call->init_req(TypeFunc::Parms+0, klass_node);
duke@435 1304 if (length != NULL) {
duke@435 1305 call->init_req(TypeFunc::Parms+1, length);
duke@435 1306 }
duke@435 1307
duke@435 1308 // Copy debug information and adjust JVMState information, then replace
duke@435 1309 // allocate node with the call
duke@435 1310 copy_call_debug_info((CallNode *) alloc, call);
duke@435 1311 if (!always_slow) {
duke@435 1312 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
duke@435 1313 }
duke@435 1314 _igvn.hash_delete(alloc);
duke@435 1315 _igvn.subsume_node(alloc, call);
duke@435 1316 transform_later(call);
duke@435 1317
duke@435 1318 // Identify the output projections from the allocate node and
duke@435 1319 // adjust any references to them.
duke@435 1320 // The control and io projections look like:
duke@435 1321 //
duke@435 1322 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl)
duke@435 1323 // Allocate Catch
duke@435 1324 // ^---Proj(io) <-------+ ^---CatchProj(io)
duke@435 1325 //
duke@435 1326 // We are interested in the CatchProj nodes.
duke@435 1327 //
duke@435 1328 extract_call_projections(call);
duke@435 1329
duke@435 1330 // An allocate node has separate memory projections for the uses on the control and i_o paths
duke@435 1331 // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
duke@435 1332 if (!always_slow && _memproj_fallthrough != NULL) {
duke@435 1333 for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1334 Node *use = _memproj_fallthrough->fast_out(i);
duke@435 1335 _igvn.hash_delete(use);
duke@435 1336 imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
duke@435 1337 _igvn._worklist.push(use);
duke@435 1338 // back up iterator
duke@435 1339 --i;
duke@435 1340 }
duke@435 1341 }
duke@435 1342 // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
duke@435 1343 // we end up with a call that has only 1 memory projection
duke@435 1344 if (_memproj_catchall != NULL ) {
duke@435 1345 if (_memproj_fallthrough == NULL) {
duke@435 1346 _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
duke@435 1347 transform_later(_memproj_fallthrough);
duke@435 1348 }
duke@435 1349 for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1350 Node *use = _memproj_catchall->fast_out(i);
duke@435 1351 _igvn.hash_delete(use);
duke@435 1352 imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
duke@435 1353 _igvn._worklist.push(use);
duke@435 1354 // back up iterator
duke@435 1355 --i;
duke@435 1356 }
duke@435 1357 }
duke@435 1358
duke@435 1359 // An allocate node has separate i_o projections for the uses on the control and i_o paths
duke@435 1360 // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
duke@435 1361 if (_ioproj_fallthrough == NULL) {
duke@435 1362 _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
duke@435 1363 transform_later(_ioproj_fallthrough);
duke@435 1364 } else if (!always_slow) {
duke@435 1365 for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1366 Node *use = _ioproj_fallthrough->fast_out(i);
duke@435 1367
duke@435 1368 _igvn.hash_delete(use);
duke@435 1369 imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
duke@435 1370 _igvn._worklist.push(use);
duke@435 1371 // back up iterator
duke@435 1372 --i;
duke@435 1373 }
duke@435 1374 }
duke@435 1375 // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
duke@435 1376 // we end up with a call that has only 1 control projection
duke@435 1377 if (_ioproj_catchall != NULL ) {
duke@435 1378 for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1379 Node *use = _ioproj_catchall->fast_out(i);
duke@435 1380 _igvn.hash_delete(use);
duke@435 1381 imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
duke@435 1382 _igvn._worklist.push(use);
duke@435 1383 // back up iterator
duke@435 1384 --i;
duke@435 1385 }
duke@435 1386 }
duke@435 1387
duke@435 1388 // if we generated only a slow call, we are done
duke@435 1389 if (always_slow)
duke@435 1390 return;
duke@435 1391
duke@435 1392
duke@435 1393 if (_fallthroughcatchproj != NULL) {
duke@435 1394 ctrl = _fallthroughcatchproj->clone();
duke@435 1395 transform_later(ctrl);
kvn@1143 1396 _igvn.replace_node(_fallthroughcatchproj, result_region);
duke@435 1397 } else {
duke@435 1398 ctrl = top();
duke@435 1399 }
duke@435 1400 Node *slow_result;
duke@435 1401 if (_resproj == NULL) {
duke@435 1402 // no uses of the allocation result
duke@435 1403 slow_result = top();
duke@435 1404 } else {
duke@435 1405 slow_result = _resproj->clone();
duke@435 1406 transform_later(slow_result);
kvn@1143 1407 _igvn.replace_node(_resproj, result_phi_rawoop);
duke@435 1408 }
duke@435 1409
duke@435 1410 // Plug slow-path into result merge point
duke@435 1411 result_region ->init_req( slow_result_path, ctrl );
duke@435 1412 result_phi_rawoop->init_req( slow_result_path, slow_result);
duke@435 1413 result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
duke@435 1414 transform_later(result_region);
duke@435 1415 transform_later(result_phi_rawoop);
duke@435 1416 transform_later(result_phi_rawmem);
duke@435 1417 transform_later(result_phi_i_o);
duke@435 1418 // This completes all paths into the result merge point
duke@435 1419 }
duke@435 1420
duke@435 1421
duke@435 1422 // Helper for PhaseMacroExpand::expand_allocate_common.
duke@435 1423 // Initializes the newly-allocated storage.
duke@435 1424 Node*
duke@435 1425 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
duke@435 1426 Node* control, Node* rawmem, Node* object,
duke@435 1427 Node* klass_node, Node* length,
duke@435 1428 Node* size_in_bytes) {
duke@435 1429 InitializeNode* init = alloc->initialization();
duke@435 1430 // Store the klass & mark bits
duke@435 1431 Node* mark_node = NULL;
duke@435 1432 // For now only enable fast locking for non-array types
duke@435 1433 if (UseBiasedLocking && (length == NULL)) {
duke@435 1434 mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 1435 } else {
duke@435 1436 mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
duke@435 1437 }
duke@435 1438 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
coleenp@548 1439
duke@435 1440 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
duke@435 1441 int header_size = alloc->minimum_header_size(); // conservatively small
duke@435 1442
duke@435 1443 // Array length
duke@435 1444 if (length != NULL) { // Arrays need length field
duke@435 1445 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
duke@435 1446 // conservatively small header size:
coleenp@548 1447 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1448 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
duke@435 1449 if (k->is_array_klass()) // we know the exact header size in most cases:
duke@435 1450 header_size = Klass::layout_helper_header_size(k->layout_helper());
duke@435 1451 }
duke@435 1452
duke@435 1453 // Clear the object body, if necessary.
duke@435 1454 if (init == NULL) {
duke@435 1455 // The init has somehow disappeared; be cautious and clear everything.
duke@435 1456 //
duke@435 1457 // This can happen if a node is allocated but an uncommon trap occurs
duke@435 1458 // immediately. In this case, the Initialize gets associated with the
duke@435 1459 // trap, and may be placed in a different (outer) loop, if the Allocate
duke@435 1460 // is in a loop. If (this is rare) the inner loop gets unrolled, then
duke@435 1461 // there can be two Allocates to one Initialize. The answer in all these
duke@435 1462 // edge cases is safety first. It is always safe to clear immediately
duke@435 1463 // within an Allocate, and then (maybe or maybe not) clear some more later.
duke@435 1464 if (!ZeroTLAB)
duke@435 1465 rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
duke@435 1466 header_size, size_in_bytes,
duke@435 1467 &_igvn);
duke@435 1468 } else {
duke@435 1469 if (!init->is_complete()) {
duke@435 1470 // Try to win by zeroing only what the init does not store.
duke@435 1471 // We can also try to do some peephole optimizations,
duke@435 1472 // such as combining some adjacent subword stores.
duke@435 1473 rawmem = init->complete_stores(control, rawmem, object,
duke@435 1474 header_size, size_in_bytes, &_igvn);
duke@435 1475 }
duke@435 1476 // We have no more use for this link, since the AllocateNode goes away:
duke@435 1477 init->set_req(InitializeNode::RawAddress, top());
duke@435 1478 // (If we keep the link, it just confuses the register allocator,
duke@435 1479 // who thinks he sees a real use of the address by the membar.)
duke@435 1480 }
duke@435 1481
duke@435 1482 return rawmem;
duke@435 1483 }
duke@435 1484
duke@435 1485 // Generate prefetch instructions for next allocations.
duke@435 1486 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
duke@435 1487 Node*& contended_phi_rawmem,
duke@435 1488 Node* old_eden_top, Node* new_eden_top,
duke@435 1489 Node* length) {
kvn@1802 1490 enum { fall_in_path = 1, pf_path = 2 };
duke@435 1491 if( UseTLAB && AllocatePrefetchStyle == 2 ) {
duke@435 1492 // Generate prefetch allocation with watermark check.
duke@435 1493 // As an allocation hits the watermark, we will prefetch starting
duke@435 1494 // at a "distance" away from watermark.
duke@435 1495
duke@435 1496 Node *pf_region = new (C, 3) RegionNode(3);
duke@435 1497 Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
duke@435 1498 TypeRawPtr::BOTTOM );
duke@435 1499 // I/O is used for Prefetch
duke@435 1500 Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
duke@435 1501
duke@435 1502 Node *thread = new (C, 1) ThreadLocalNode();
duke@435 1503 transform_later(thread);
duke@435 1504
duke@435 1505 Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
duke@435 1506 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
duke@435 1507 transform_later(eden_pf_adr);
duke@435 1508
duke@435 1509 Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
duke@435 1510 contended_phi_rawmem, eden_pf_adr,
duke@435 1511 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
duke@435 1512 transform_later(old_pf_wm);
duke@435 1513
duke@435 1514 // check against new_eden_top
duke@435 1515 Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
duke@435 1516 transform_later(need_pf_cmp);
duke@435 1517 Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
duke@435 1518 transform_later(need_pf_bol);
duke@435 1519 IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
duke@435 1520 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1521 transform_later(need_pf_iff);
duke@435 1522
duke@435 1523 // true node, add prefetchdistance
duke@435 1524 Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
duke@435 1525 transform_later(need_pf_true);
duke@435 1526
duke@435 1527 Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
duke@435 1528 transform_later(need_pf_false);
duke@435 1529
duke@435 1530 Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
duke@435 1531 _igvn.MakeConX(AllocatePrefetchDistance) );
duke@435 1532 transform_later(new_pf_wmt );
duke@435 1533 new_pf_wmt->set_req(0, need_pf_true);
duke@435 1534
duke@435 1535 Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
duke@435 1536 contended_phi_rawmem, eden_pf_adr,
duke@435 1537 TypeRawPtr::BOTTOM, new_pf_wmt );
duke@435 1538 transform_later(store_new_wmt);
duke@435 1539
duke@435 1540 // adding prefetches
duke@435 1541 pf_phi_abio->init_req( fall_in_path, i_o );
duke@435 1542
duke@435 1543 Node *prefetch_adr;
duke@435 1544 Node *prefetch;
duke@435 1545 uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
duke@435 1546 uint step_size = AllocatePrefetchStepSize;
duke@435 1547 uint distance = 0;
duke@435 1548
duke@435 1549 for ( uint i = 0; i < lines; i++ ) {
duke@435 1550 prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
duke@435 1551 _igvn.MakeConX(distance) );
duke@435 1552 transform_later(prefetch_adr);
duke@435 1553 prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
duke@435 1554 transform_later(prefetch);
duke@435 1555 distance += step_size;
duke@435 1556 i_o = prefetch;
duke@435 1557 }
duke@435 1558 pf_phi_abio->set_req( pf_path, i_o );
duke@435 1559
duke@435 1560 pf_region->init_req( fall_in_path, need_pf_false );
duke@435 1561 pf_region->init_req( pf_path, need_pf_true );
duke@435 1562
duke@435 1563 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
duke@435 1564 pf_phi_rawmem->init_req( pf_path, store_new_wmt );
duke@435 1565
duke@435 1566 transform_later(pf_region);
duke@435 1567 transform_later(pf_phi_rawmem);
duke@435 1568 transform_later(pf_phi_abio);
duke@435 1569
duke@435 1570 needgc_false = pf_region;
duke@435 1571 contended_phi_rawmem = pf_phi_rawmem;
duke@435 1572 i_o = pf_phi_abio;
kvn@1802 1573 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
kvn@1802 1574 // Insert a prefetch for each allocation only on the fast-path
kvn@1802 1575 Node *pf_region = new (C, 3) RegionNode(3);
kvn@1802 1576 Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
kvn@1802 1577 TypeRawPtr::BOTTOM );
kvn@1802 1578
kvn@1802 1579 // Generate several prefetch instructions only for arrays.
kvn@1802 1580 uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
kvn@1802 1581 uint step_size = AllocatePrefetchStepSize;
kvn@1802 1582 uint distance = AllocatePrefetchDistance;
kvn@1802 1583
kvn@1802 1584 // Next cache address.
kvn@1802 1585 Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
kvn@1802 1586 _igvn.MakeConX(distance));
kvn@1802 1587 transform_later(cache_adr);
kvn@1802 1588 cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
kvn@1802 1589 transform_later(cache_adr);
kvn@1802 1590 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
kvn@1802 1591 cache_adr = new (C, 3) AndXNode(cache_adr, mask);
kvn@1802 1592 transform_later(cache_adr);
kvn@1802 1593 cache_adr = new (C, 2) CastX2PNode(cache_adr);
kvn@1802 1594 transform_later(cache_adr);
kvn@1802 1595
kvn@1802 1596 // Prefetch
kvn@1802 1597 Node *prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, cache_adr );
kvn@1802 1598 prefetch->set_req(0, needgc_false);
kvn@1802 1599 transform_later(prefetch);
kvn@1802 1600 contended_phi_rawmem = prefetch;
kvn@1802 1601 Node *prefetch_adr;
kvn@1802 1602 distance = step_size;
kvn@1802 1603 for ( uint i = 1; i < lines; i++ ) {
kvn@1802 1604 prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
kvn@1802 1605 _igvn.MakeConX(distance) );
kvn@1802 1606 transform_later(prefetch_adr);
kvn@1802 1607 prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, prefetch_adr );
kvn@1802 1608 transform_later(prefetch);
kvn@1802 1609 distance += step_size;
kvn@1802 1610 contended_phi_rawmem = prefetch;
kvn@1802 1611 }
duke@435 1612 } else if( AllocatePrefetchStyle > 0 ) {
duke@435 1613 // Insert a prefetch for each allocation only on the fast-path
duke@435 1614 Node *prefetch_adr;
duke@435 1615 Node *prefetch;
duke@435 1616 // Generate several prefetch instructions only for arrays.
duke@435 1617 uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
duke@435 1618 uint step_size = AllocatePrefetchStepSize;
duke@435 1619 uint distance = AllocatePrefetchDistance;
duke@435 1620 for ( uint i = 0; i < lines; i++ ) {
duke@435 1621 prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
duke@435 1622 _igvn.MakeConX(distance) );
duke@435 1623 transform_later(prefetch_adr);
duke@435 1624 prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
duke@435 1625 // Do not let it float too high, since if eden_top == eden_end,
duke@435 1626 // both might be null.
duke@435 1627 if( i == 0 ) { // Set control for first prefetch, next follows it
duke@435 1628 prefetch->init_req(0, needgc_false);
duke@435 1629 }
duke@435 1630 transform_later(prefetch);
duke@435 1631 distance += step_size;
duke@435 1632 i_o = prefetch;
duke@435 1633 }
duke@435 1634 }
duke@435 1635 return i_o;
duke@435 1636 }
duke@435 1637
duke@435 1638
duke@435 1639 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
duke@435 1640 expand_allocate_common(alloc, NULL,
duke@435 1641 OptoRuntime::new_instance_Type(),
duke@435 1642 OptoRuntime::new_instance_Java());
duke@435 1643 }
duke@435 1644
duke@435 1645 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
duke@435 1646 Node* length = alloc->in(AllocateNode::ALength);
duke@435 1647 expand_allocate_common(alloc, length,
duke@435 1648 OptoRuntime::new_array_Type(),
duke@435 1649 OptoRuntime::new_array_Java());
duke@435 1650 }
duke@435 1651
duke@435 1652
duke@435 1653 // we have determined that this lock/unlock can be eliminated, we simply
duke@435 1654 // eliminate the node without expanding it.
duke@435 1655 //
duke@435 1656 // Note: The membar's associated with the lock/unlock are currently not
duke@435 1657 // eliminated. This should be investigated as a future enhancement.
duke@435 1658 //
kvn@501 1659 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
kvn@501 1660
kvn@501 1661 if (!alock->is_eliminated()) {
kvn@501 1662 return false;
kvn@501 1663 }
kvn@895 1664 if (alock->is_Lock() && !alock->is_coarsened()) {
kvn@895 1665 // Create new "eliminated" BoxLock node and use it
kvn@895 1666 // in monitor debug info for the same object.
kvn@895 1667 BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
kvn@895 1668 Node* obj = alock->obj_node();
kvn@895 1669 if (!oldbox->is_eliminated()) {
kvn@895 1670 BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
kvn@895 1671 newbox->set_eliminated();
kvn@895 1672 transform_later(newbox);
kvn@895 1673 // Replace old box node with new box for all users
kvn@895 1674 // of the same object.
kvn@895 1675 for (uint i = 0; i < oldbox->outcnt();) {
kvn@895 1676
kvn@895 1677 bool next_edge = true;
kvn@895 1678 Node* u = oldbox->raw_out(i);
kvn@895 1679 if (u == alock) {
kvn@895 1680 i++;
kvn@895 1681 continue; // It will be removed below
kvn@895 1682 }
kvn@895 1683 if (u->is_Lock() &&
kvn@895 1684 u->as_Lock()->obj_node() == obj &&
kvn@895 1685 // oldbox could be referenced in debug info also
kvn@895 1686 u->as_Lock()->box_node() == oldbox) {
kvn@895 1687 assert(u->as_Lock()->is_eliminated(), "sanity");
kvn@895 1688 _igvn.hash_delete(u);
kvn@895 1689 u->set_req(TypeFunc::Parms + 1, newbox);
kvn@895 1690 next_edge = false;
kvn@895 1691 #ifdef ASSERT
kvn@895 1692 } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
kvn@895 1693 assert(u->as_Unlock()->is_eliminated(), "sanity");
kvn@895 1694 #endif
kvn@895 1695 }
kvn@895 1696 // Replace old box in monitor debug info.
kvn@895 1697 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
kvn@895 1698 SafePointNode* sfn = u->as_SafePoint();
kvn@895 1699 JVMState* youngest_jvms = sfn->jvms();
kvn@895 1700 int max_depth = youngest_jvms->depth();
kvn@895 1701 for (int depth = 1; depth <= max_depth; depth++) {
kvn@895 1702 JVMState* jvms = youngest_jvms->of_depth(depth);
kvn@895 1703 int num_mon = jvms->nof_monitors();
kvn@895 1704 // Loop over monitors
kvn@895 1705 for (int idx = 0; idx < num_mon; idx++) {
kvn@895 1706 Node* obj_node = sfn->monitor_obj(jvms, idx);
kvn@895 1707 Node* box_node = sfn->monitor_box(jvms, idx);
kvn@895 1708 if (box_node == oldbox && obj_node == obj) {
kvn@895 1709 int j = jvms->monitor_box_offset(idx);
kvn@895 1710 _igvn.hash_delete(u);
kvn@895 1711 u->set_req(j, newbox);
kvn@895 1712 next_edge = false;
kvn@895 1713 }
kvn@895 1714 } // for (int idx = 0;
kvn@895 1715 } // for (int depth = 1;
kvn@895 1716 } // if (u->is_SafePoint()
kvn@895 1717 if (next_edge) i++;
kvn@895 1718 } // for (uint i = 0; i < oldbox->outcnt();)
kvn@895 1719 } // if (!oldbox->is_eliminated())
kvn@895 1720 } // if (alock->is_Lock() && !lock->is_coarsened())
kvn@501 1721
never@1515 1722 CompileLog* log = C->log();
never@1515 1723 if (log != NULL) {
never@1515 1724 log->head("eliminate_lock lock='%d'",
never@1515 1725 alock->is_Lock());
never@1515 1726 JVMState* p = alock->jvms();
never@1515 1727 while (p != NULL) {
never@1515 1728 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 1729 p = p->caller();
never@1515 1730 }
never@1515 1731 log->tail("eliminate_lock");
never@1515 1732 }
never@1515 1733
kvn@501 1734 #ifndef PRODUCT
kvn@501 1735 if (PrintEliminateLocks) {
kvn@501 1736 if (alock->is_Lock()) {
kvn@501 1737 tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
kvn@501 1738 } else {
kvn@501 1739 tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
kvn@501 1740 }
kvn@501 1741 }
kvn@501 1742 #endif
kvn@501 1743
kvn@501 1744 Node* mem = alock->in(TypeFunc::Memory);
kvn@501 1745 Node* ctrl = alock->in(TypeFunc::Control);
kvn@501 1746
kvn@501 1747 extract_call_projections(alock);
kvn@501 1748 // There are 2 projections from the lock. The lock node will
kvn@501 1749 // be deleted when its last use is subsumed below.
kvn@501 1750 assert(alock->outcnt() == 2 &&
kvn@501 1751 _fallthroughproj != NULL &&
kvn@501 1752 _memproj_fallthrough != NULL,
kvn@501 1753 "Unexpected projections from Lock/Unlock");
kvn@501 1754
kvn@501 1755 Node* fallthroughproj = _fallthroughproj;
kvn@501 1756 Node* memproj_fallthrough = _memproj_fallthrough;
duke@435 1757
duke@435 1758 // The memory projection from a lock/unlock is RawMem
duke@435 1759 // The input to a Lock is merged memory, so extract its RawMem input
duke@435 1760 // (unless the MergeMem has been optimized away.)
duke@435 1761 if (alock->is_Lock()) {
kvn@501 1762 // Seach for MemBarAcquire node and delete it also.
kvn@501 1763 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
kvn@501 1764 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
kvn@501 1765 Node* ctrlproj = membar->proj_out(TypeFunc::Control);
kvn@501 1766 Node* memproj = membar->proj_out(TypeFunc::Memory);
kvn@1143 1767 _igvn.replace_node(ctrlproj, fallthroughproj);
kvn@1143 1768 _igvn.replace_node(memproj, memproj_fallthrough);
kvn@895 1769
kvn@895 1770 // Delete FastLock node also if this Lock node is unique user
kvn@895 1771 // (a loop peeling may clone a Lock node).
kvn@895 1772 Node* flock = alock->as_Lock()->fastlock_node();
kvn@895 1773 if (flock->outcnt() == 1) {
kvn@895 1774 assert(flock->unique_out() == alock, "sanity");
kvn@1143 1775 _igvn.replace_node(flock, top());
kvn@895 1776 }
duke@435 1777 }
duke@435 1778
kvn@501 1779 // Seach for MemBarRelease node and delete it also.
kvn@501 1780 if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
kvn@501 1781 ctrl->in(0)->is_MemBar()) {
kvn@501 1782 MemBarNode* membar = ctrl->in(0)->as_MemBar();
kvn@501 1783 assert(membar->Opcode() == Op_MemBarRelease &&
kvn@501 1784 mem->is_Proj() && membar == mem->in(0), "");
kvn@1143 1785 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 1786 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 1787 fallthroughproj = ctrl;
kvn@501 1788 memproj_fallthrough = mem;
kvn@501 1789 ctrl = membar->in(TypeFunc::Control);
kvn@501 1790 mem = membar->in(TypeFunc::Memory);
kvn@501 1791 }
kvn@501 1792
kvn@1143 1793 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 1794 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 1795 return true;
duke@435 1796 }
duke@435 1797
duke@435 1798
duke@435 1799 //------------------------------expand_lock_node----------------------
duke@435 1800 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
duke@435 1801
duke@435 1802 Node* ctrl = lock->in(TypeFunc::Control);
duke@435 1803 Node* mem = lock->in(TypeFunc::Memory);
duke@435 1804 Node* obj = lock->obj_node();
duke@435 1805 Node* box = lock->box_node();
kvn@501 1806 Node* flock = lock->fastlock_node();
duke@435 1807
duke@435 1808 // Make the merge point
kvn@855 1809 Node *region;
kvn@855 1810 Node *mem_phi;
kvn@855 1811 Node *slow_path;
duke@435 1812
kvn@855 1813 if (UseOptoBiasInlining) {
kvn@855 1814 /*
twisti@1040 1815 * See the full description in MacroAssembler::biased_locking_enter().
kvn@855 1816 *
kvn@855 1817 * if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
kvn@855 1818 * // The object is biased.
kvn@855 1819 * proto_node = klass->prototype_header;
kvn@855 1820 * o_node = thread | proto_node;
kvn@855 1821 * x_node = o_node ^ mark_word;
kvn@855 1822 * if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
kvn@855 1823 * // Done.
kvn@855 1824 * } else {
kvn@855 1825 * if( (x_node & biased_lock_mask) != 0 ) {
kvn@855 1826 * // The klass's prototype header is no longer biased.
kvn@855 1827 * cas(&mark_word, mark_word, proto_node)
kvn@855 1828 * goto cas_lock;
kvn@855 1829 * } else {
kvn@855 1830 * // The klass's prototype header is still biased.
kvn@855 1831 * if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
kvn@855 1832 * old = mark_word;
kvn@855 1833 * new = o_node;
kvn@855 1834 * } else {
kvn@855 1835 * // Different thread or anonymous biased.
kvn@855 1836 * old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
kvn@855 1837 * new = thread | old;
kvn@855 1838 * }
kvn@855 1839 * // Try to rebias.
kvn@855 1840 * if( cas(&mark_word, old, new) == 0 ) {
kvn@855 1841 * // Done.
kvn@855 1842 * } else {
kvn@855 1843 * goto slow_path; // Failed.
kvn@855 1844 * }
kvn@855 1845 * }
kvn@855 1846 * }
kvn@855 1847 * } else {
kvn@855 1848 * // The object is not biased.
kvn@855 1849 * cas_lock:
kvn@855 1850 * if( FastLock(obj) == 0 ) {
kvn@855 1851 * // Done.
kvn@855 1852 * } else {
kvn@855 1853 * slow_path:
kvn@855 1854 * OptoRuntime::complete_monitor_locking_Java(obj);
kvn@855 1855 * }
kvn@855 1856 * }
kvn@855 1857 */
kvn@855 1858
kvn@855 1859 region = new (C, 5) RegionNode(5);
kvn@855 1860 // create a Phi for the memory state
kvn@855 1861 mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1862
kvn@855 1863 Node* fast_lock_region = new (C, 3) RegionNode(3);
kvn@855 1864 Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1865
kvn@855 1866 // First, check mark word for the biased lock pattern.
kvn@855 1867 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 1868
kvn@855 1869 // Get fast path - mark word has the biased lock pattern.
kvn@855 1870 ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
kvn@855 1871 markOopDesc::biased_lock_mask_in_place,
kvn@855 1872 markOopDesc::biased_lock_pattern, true);
kvn@855 1873 // fast_lock_region->in(1) is set to slow path.
kvn@855 1874 fast_lock_mem_phi->init_req(1, mem);
kvn@855 1875
kvn@855 1876 // Now check that the lock is biased to the current thread and has
kvn@855 1877 // the same epoch and bias as Klass::_prototype_header.
kvn@855 1878
kvn@855 1879 // Special-case a fresh allocation to avoid building nodes:
kvn@855 1880 Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
kvn@855 1881 if (klass_node == NULL) {
kvn@855 1882 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
kvn@855 1883 klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
kvn@925 1884 #ifdef _LP64
kvn@925 1885 if (UseCompressedOops && klass_node->is_DecodeN()) {
kvn@925 1886 assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
kvn@925 1887 klass_node->in(1)->init_req(0, ctrl);
kvn@925 1888 } else
kvn@925 1889 #endif
kvn@925 1890 klass_node->init_req(0, ctrl);
kvn@855 1891 }
kvn@855 1892 Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
kvn@855 1893
kvn@855 1894 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
kvn@855 1895 Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
kvn@855 1896 Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
kvn@855 1897 Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
kvn@855 1898
kvn@855 1899 // Get slow path - mark word does NOT match the value.
kvn@855 1900 Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node,
kvn@855 1901 (~markOopDesc::age_mask_in_place), 0);
kvn@855 1902 // region->in(3) is set to fast path - the object is biased to the current thread.
kvn@855 1903 mem_phi->init_req(3, mem);
kvn@855 1904
kvn@855 1905
kvn@855 1906 // Mark word does NOT match the value (thread | Klass::_prototype_header).
kvn@855 1907
kvn@855 1908
kvn@855 1909 // First, check biased pattern.
kvn@855 1910 // Get fast path - _prototype_header has the same biased lock pattern.
kvn@855 1911 ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
kvn@855 1912 markOopDesc::biased_lock_mask_in_place, 0, true);
kvn@855 1913
kvn@855 1914 not_biased_ctrl = fast_lock_region->in(2); // Slow path
kvn@855 1915 // fast_lock_region->in(2) - the prototype header is no longer biased
kvn@855 1916 // and we have to revoke the bias on this object.
kvn@855 1917 // We are going to try to reset the mark of this object to the prototype
kvn@855 1918 // value and fall through to the CAS-based locking scheme.
kvn@855 1919 Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@855 1920 Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
kvn@855 1921 proto_node, mark_node);
kvn@855 1922 transform_later(cas);
kvn@855 1923 Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
kvn@855 1924 fast_lock_mem_phi->init_req(2, proj);
kvn@855 1925
kvn@855 1926
kvn@855 1927 // Second, check epoch bits.
kvn@855 1928 Node* rebiased_region = new (C, 3) RegionNode(3);
kvn@855 1929 Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
kvn@855 1930 Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
kvn@855 1931
kvn@855 1932 // Get slow path - mark word does NOT match epoch bits.
kvn@855 1933 Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node,
kvn@855 1934 markOopDesc::epoch_mask_in_place, 0);
kvn@855 1935 // The epoch of the current bias is not valid, attempt to rebias the object
kvn@855 1936 // toward the current thread.
kvn@855 1937 rebiased_region->init_req(2, epoch_ctrl);
kvn@855 1938 old_phi->init_req(2, mark_node);
kvn@855 1939 new_phi->init_req(2, o_node);
kvn@855 1940
kvn@855 1941 // rebiased_region->in(1) is set to fast path.
kvn@855 1942 // The epoch of the current bias is still valid but we know
kvn@855 1943 // nothing about the owner; it might be set or it might be clear.
kvn@855 1944 Node* cmask = MakeConX(markOopDesc::biased_lock_mask_in_place |
kvn@855 1945 markOopDesc::age_mask_in_place |
kvn@855 1946 markOopDesc::epoch_mask_in_place);
kvn@855 1947 Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
kvn@855 1948 cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
kvn@855 1949 Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
kvn@855 1950 old_phi->init_req(1, old);
kvn@855 1951 new_phi->init_req(1, new_mark);
kvn@855 1952
kvn@855 1953 transform_later(rebiased_region);
kvn@855 1954 transform_later(old_phi);
kvn@855 1955 transform_later(new_phi);
kvn@855 1956
kvn@855 1957 // Try to acquire the bias of the object using an atomic operation.
kvn@855 1958 // If this fails we will go in to the runtime to revoke the object's bias.
kvn@855 1959 cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
kvn@855 1960 new_phi, old_phi);
kvn@855 1961 transform_later(cas);
kvn@855 1962 proj = transform_later( new (C, 1) SCMemProjNode(cas));
kvn@855 1963
kvn@855 1964 // Get slow path - Failed to CAS.
kvn@855 1965 not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
kvn@855 1966 mem_phi->init_req(4, proj);
kvn@855 1967 // region->in(4) is set to fast path - the object is rebiased to the current thread.
kvn@855 1968
kvn@855 1969 // Failed to CAS.
kvn@855 1970 slow_path = new (C, 3) RegionNode(3);
kvn@855 1971 Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1972
kvn@855 1973 slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
kvn@855 1974 slow_mem->init_req(1, proj);
kvn@855 1975
kvn@855 1976 // Call CAS-based locking scheme (FastLock node).
kvn@855 1977
kvn@855 1978 transform_later(fast_lock_region);
kvn@855 1979 transform_later(fast_lock_mem_phi);
kvn@855 1980
kvn@855 1981 // Get slow path - FastLock failed to lock the object.
kvn@855 1982 ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
kvn@855 1983 mem_phi->init_req(2, fast_lock_mem_phi);
kvn@855 1984 // region->in(2) is set to fast path - the object is locked to the current thread.
kvn@855 1985
kvn@855 1986 slow_path->init_req(2, ctrl); // Capture slow-control
kvn@855 1987 slow_mem->init_req(2, fast_lock_mem_phi);
kvn@855 1988
kvn@855 1989 transform_later(slow_path);
kvn@855 1990 transform_later(slow_mem);
kvn@855 1991 // Reset lock's memory edge.
kvn@855 1992 lock->set_req(TypeFunc::Memory, slow_mem);
kvn@855 1993
kvn@855 1994 } else {
kvn@855 1995 region = new (C, 3) RegionNode(3);
kvn@855 1996 // create a Phi for the memory state
kvn@855 1997 mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 1998
kvn@855 1999 // Optimize test; set region slot 2
kvn@855 2000 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
kvn@855 2001 mem_phi->init_req(2, mem);
kvn@855 2002 }
duke@435 2003
duke@435 2004 // Make slow path call
duke@435 2005 CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
duke@435 2006
duke@435 2007 extract_call_projections(call);
duke@435 2008
duke@435 2009 // Slow path can only throw asynchronous exceptions, which are always
duke@435 2010 // de-opted. So the compiler thinks the slow-call can never throw an
duke@435 2011 // exception. If it DOES throw an exception we would need the debug
duke@435 2012 // info removed first (since if it throws there is no monitor).
duke@435 2013 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2014 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2015
duke@435 2016 // Capture slow path
duke@435 2017 // disconnect fall-through projection from call and create a new one
duke@435 2018 // hook up users of fall-through projection to region
duke@435 2019 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2020 transform_later(slow_ctrl);
duke@435 2021 _igvn.hash_delete(_fallthroughproj);
duke@435 2022 _fallthroughproj->disconnect_inputs(NULL);
duke@435 2023 region->init_req(1, slow_ctrl);
duke@435 2024 // region inputs are now complete
duke@435 2025 transform_later(region);
kvn@1143 2026 _igvn.replace_node(_fallthroughproj, region);
duke@435 2027
kvn@855 2028 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 2029 mem_phi->init_req(1, memproj );
duke@435 2030 transform_later(mem_phi);
kvn@1143 2031 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2032 }
duke@435 2033
duke@435 2034 //------------------------------expand_unlock_node----------------------
duke@435 2035 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
duke@435 2036
kvn@501 2037 Node* ctrl = unlock->in(TypeFunc::Control);
duke@435 2038 Node* mem = unlock->in(TypeFunc::Memory);
duke@435 2039 Node* obj = unlock->obj_node();
duke@435 2040 Node* box = unlock->box_node();
duke@435 2041
duke@435 2042 // No need for a null check on unlock
duke@435 2043
duke@435 2044 // Make the merge point
kvn@855 2045 Node *region;
kvn@855 2046 Node *mem_phi;
kvn@855 2047
kvn@855 2048 if (UseOptoBiasInlining) {
kvn@855 2049 // Check for biased locking unlock case, which is a no-op.
twisti@1040 2050 // See the full description in MacroAssembler::biased_locking_exit().
kvn@855 2051 region = new (C, 4) RegionNode(4);
kvn@855 2052 // create a Phi for the memory state
kvn@855 2053 mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2054 mem_phi->init_req(3, mem);
kvn@855 2055
kvn@855 2056 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 2057 ctrl = opt_bits_test(ctrl, region, 3, mark_node,
kvn@855 2058 markOopDesc::biased_lock_mask_in_place,
kvn@855 2059 markOopDesc::biased_lock_pattern);
kvn@855 2060 } else {
kvn@855 2061 region = new (C, 3) RegionNode(3);
kvn@855 2062 // create a Phi for the memory state
kvn@855 2063 mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2064 }
duke@435 2065
duke@435 2066 FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
duke@435 2067 funlock = transform_later( funlock )->as_FastUnlock();
duke@435 2068 // Optimize test; set region slot 2
kvn@855 2069 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
duke@435 2070
duke@435 2071 CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
duke@435 2072
duke@435 2073 extract_call_projections(call);
duke@435 2074
duke@435 2075 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2076 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2077
duke@435 2078 // No exceptions for unlocking
duke@435 2079 // Capture slow path
duke@435 2080 // disconnect fall-through projection from call and create a new one
duke@435 2081 // hook up users of fall-through projection to region
duke@435 2082 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2083 transform_later(slow_ctrl);
duke@435 2084 _igvn.hash_delete(_fallthroughproj);
duke@435 2085 _fallthroughproj->disconnect_inputs(NULL);
duke@435 2086 region->init_req(1, slow_ctrl);
duke@435 2087 // region inputs are now complete
duke@435 2088 transform_later(region);
kvn@1143 2089 _igvn.replace_node(_fallthroughproj, region);
duke@435 2090
duke@435 2091 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 2092 mem_phi->init_req(1, memproj );
duke@435 2093 mem_phi->init_req(2, mem);
duke@435 2094 transform_later(mem_phi);
kvn@1143 2095 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2096 }
duke@435 2097
duke@435 2098 //------------------------------expand_macro_nodes----------------------
duke@435 2099 // Returns true if a failure occurred.
duke@435 2100 bool PhaseMacroExpand::expand_macro_nodes() {
duke@435 2101 if (C->macro_count() == 0)
duke@435 2102 return false;
kvn@895 2103 // First, attempt to eliminate locks
kvn@508 2104 bool progress = true;
kvn@508 2105 while (progress) {
kvn@508 2106 progress = false;
kvn@508 2107 for (int i = C->macro_count(); i > 0; i--) {
kvn@508 2108 Node * n = C->macro_node(i-1);
kvn@508 2109 bool success = false;
kvn@508 2110 debug_only(int old_macro_count = C->macro_count(););
kvn@895 2111 if (n->is_AbstractLock()) {
kvn@895 2112 success = eliminate_locking_node(n->as_AbstractLock());
kvn@895 2113 } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
kvn@1143 2114 _igvn.replace_node(n, n->in(1));
kvn@895 2115 success = true;
kvn@895 2116 }
kvn@895 2117 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@895 2118 progress = progress || success;
kvn@895 2119 }
kvn@895 2120 }
kvn@895 2121 // Next, attempt to eliminate allocations
kvn@895 2122 progress = true;
kvn@895 2123 while (progress) {
kvn@895 2124 progress = false;
kvn@895 2125 for (int i = C->macro_count(); i > 0; i--) {
kvn@895 2126 Node * n = C->macro_node(i-1);
kvn@895 2127 bool success = false;
kvn@895 2128 debug_only(int old_macro_count = C->macro_count(););
kvn@508 2129 switch (n->class_id()) {
kvn@508 2130 case Node::Class_Allocate:
kvn@508 2131 case Node::Class_AllocateArray:
kvn@508 2132 success = eliminate_allocate_node(n->as_Allocate());
kvn@508 2133 break;
kvn@508 2134 case Node::Class_Lock:
kvn@508 2135 case Node::Class_Unlock:
kvn@895 2136 assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
kvn@508 2137 break;
kvn@508 2138 default:
kvn@895 2139 assert(false, "unknown node type in macro list");
kvn@508 2140 }
kvn@508 2141 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@508 2142 progress = progress || success;
kvn@508 2143 }
kvn@508 2144 }
kvn@508 2145 // Make sure expansion will not cause node limit to be exceeded.
kvn@508 2146 // Worst case is a macro node gets expanded into about 50 nodes.
kvn@508 2147 // Allow 50% more for optimization.
duke@435 2148 if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
duke@435 2149 return true;
kvn@508 2150
duke@435 2151 // expand "macro" nodes
duke@435 2152 // nodes are removed from the macro list as they are processed
duke@435 2153 while (C->macro_count() > 0) {
kvn@508 2154 int macro_count = C->macro_count();
kvn@508 2155 Node * n = C->macro_node(macro_count-1);
duke@435 2156 assert(n->is_macro(), "only macro nodes expected here");
duke@435 2157 if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
duke@435 2158 // node is unreachable, so don't try to expand it
duke@435 2159 C->remove_macro_node(n);
duke@435 2160 continue;
duke@435 2161 }
duke@435 2162 switch (n->class_id()) {
duke@435 2163 case Node::Class_Allocate:
duke@435 2164 expand_allocate(n->as_Allocate());
duke@435 2165 break;
duke@435 2166 case Node::Class_AllocateArray:
duke@435 2167 expand_allocate_array(n->as_AllocateArray());
duke@435 2168 break;
duke@435 2169 case Node::Class_Lock:
duke@435 2170 expand_lock_node(n->as_Lock());
duke@435 2171 break;
duke@435 2172 case Node::Class_Unlock:
duke@435 2173 expand_unlock_node(n->as_Unlock());
duke@435 2174 break;
duke@435 2175 default:
duke@435 2176 assert(false, "unknown node type in macro list");
duke@435 2177 }
kvn@508 2178 assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
duke@435 2179 if (C->failing()) return true;
duke@435 2180 }
coleenp@548 2181
coleenp@548 2182 _igvn.set_delay_transform(false);
duke@435 2183 _igvn.optimize();
duke@435 2184 return false;
duke@435 2185 }

mercurial