src/share/vm/opto/type.cpp

Sat, 19 Oct 2013 12:16:43 +0200

author
roland
date
Sat, 19 Oct 2013 12:16:43 +0200
changeset 5981
3213ba4d3dff
parent 5791
c9ccd7b85f20
child 5991
b2ee5dc63353
permissions
-rw-r--r--

8024069: replace_in_map() should operate on parent maps
Summary: type information gets lost because replace_in_map() doesn't update parent maps
Reviewed-by: kvn, twisti

duke@435 1 /*
hseigel@4465 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@4037 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "ci/ciTypeFlow.hpp"
stefank@2314 28 #include "classfile/symbolTable.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "libadt/dict.hpp"
stefank@2314 32 #include "memory/gcLocker.hpp"
stefank@2314 33 #include "memory/oopFactory.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "oops/instanceKlass.hpp"
never@2658 36 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
duke@435 44 // Portions of code courtesy of Clifford Click
duke@435 45
duke@435 46 // Optimization - Graph Style
duke@435 47
duke@435 48 // Dictionary of types shared among compilations.
duke@435 49 Dict* Type::_shared_type_dict = NULL;
duke@435 50
duke@435 51 // Array which maps compiler types to Basic Types
coleenp@4037 52 Type::TypeInfo Type::_type_info[Type::lastype] = {
coleenp@4037 53 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
coleenp@4037 54 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
coleenp@4037 55 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
coleenp@4037 56 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
coleenp@4037 57 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
coleenp@4037 58 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
coleenp@4037 59 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
roland@4159 60 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
coleenp@4037 61 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
coleenp@4037 62 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
coleenp@4037 63
dlong@4201 64 #ifndef SPARC
coleenp@4037 65 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
coleenp@4037 66 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
coleenp@4037 67 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
coleenp@4037 68 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
coleenp@4037 69 #else
coleenp@4037 70 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
coleenp@4037 71 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
coleenp@4037 72 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
coleenp@4037 73 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
coleenp@4037 74 #endif // IA32 || AMD64
coleenp@4037 75 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
coleenp@4037 76 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
coleenp@4037 77 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
coleenp@4037 78 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
coleenp@4037 79 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
coleenp@4037 80 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
coleenp@4037 81 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
coleenp@4037 82 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
coleenp@4037 83 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
coleenp@4037 84 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
coleenp@4037 85 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
coleenp@4037 86 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
coleenp@4037 87 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
coleenp@4037 88 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
coleenp@4037 89 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
coleenp@4037 90 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
coleenp@4037 91 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
coleenp@4037 92 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
duke@435 93 };
duke@435 94
duke@435 95 // Map ideal registers (machine types) to ideal types
duke@435 96 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 97
duke@435 98 // Map basic types to canonical Type* pointers.
duke@435 99 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 100
duke@435 101 // Map basic types to constant-zero Types.
duke@435 102 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 103
duke@435 104 // Map basic types to array-body alias types.
duke@435 105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 106
duke@435 107 //=============================================================================
duke@435 108 // Convenience common pre-built types.
duke@435 109 const Type *Type::ABIO; // State-of-machine only
duke@435 110 const Type *Type::BOTTOM; // All values
duke@435 111 const Type *Type::CONTROL; // Control only
duke@435 112 const Type *Type::DOUBLE; // All doubles
duke@435 113 const Type *Type::FLOAT; // All floats
duke@435 114 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 115 const Type *Type::MEMORY; // Abstract store only
duke@435 116 const Type *Type::RETURN_ADDRESS;
duke@435 117 const Type *Type::TOP; // No values in set
duke@435 118
duke@435 119 //------------------------------get_const_type---------------------------
duke@435 120 const Type* Type::get_const_type(ciType* type) {
duke@435 121 if (type == NULL) {
duke@435 122 return NULL;
duke@435 123 } else if (type->is_primitive_type()) {
duke@435 124 return get_const_basic_type(type->basic_type());
duke@435 125 } else {
duke@435 126 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 127 }
duke@435 128 }
duke@435 129
duke@435 130 //---------------------------array_element_basic_type---------------------------------
duke@435 131 // Mapping to the array element's basic type.
duke@435 132 BasicType Type::array_element_basic_type() const {
duke@435 133 BasicType bt = basic_type();
duke@435 134 if (bt == T_INT) {
duke@435 135 if (this == TypeInt::INT) return T_INT;
duke@435 136 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 137 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 138 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 139 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 140 return T_VOID;
duke@435 141 }
duke@435 142 return bt;
duke@435 143 }
duke@435 144
duke@435 145 //---------------------------get_typeflow_type---------------------------------
duke@435 146 // Import a type produced by ciTypeFlow.
duke@435 147 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 148 switch (type->basic_type()) {
duke@435 149
duke@435 150 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 151 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 152 return Type::BOTTOM;
duke@435 153
duke@435 154 case ciTypeFlow::StateVector::T_TOP:
duke@435 155 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 156 return Type::TOP;
duke@435 157
duke@435 158 case ciTypeFlow::StateVector::T_NULL:
duke@435 159 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 160 return TypePtr::NULL_PTR;
duke@435 161
duke@435 162 case ciTypeFlow::StateVector::T_LONG2:
duke@435 163 // The ciTypeFlow pass pushes a long, then the half.
duke@435 164 // We do the same.
duke@435 165 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 166 return TypeInt::TOP;
duke@435 167
duke@435 168 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 169 // The ciTypeFlow pass pushes double, then the half.
duke@435 170 // Our convention is the same.
duke@435 171 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 172 return Type::TOP;
duke@435 173
duke@435 174 case T_ADDRESS:
duke@435 175 assert(type->is_return_address(), "");
duke@435 176 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 177
duke@435 178 default:
duke@435 179 // make sure we did not mix up the cases:
duke@435 180 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 181 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 182 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 183 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 184 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 185 assert(!type->is_return_address(), "");
duke@435 186
duke@435 187 return Type::get_const_type(type);
duke@435 188 }
duke@435 189 }
duke@435 190
duke@435 191
vlivanov@5658 192 //-----------------------make_from_constant------------------------------------
vlivanov@5658 193 const Type* Type::make_from_constant(ciConstant constant,
vlivanov@5658 194 bool require_constant, bool is_autobox_cache) {
vlivanov@5658 195 switch (constant.basic_type()) {
vlivanov@5658 196 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
vlivanov@5658 197 case T_CHAR: return TypeInt::make(constant.as_char());
vlivanov@5658 198 case T_BYTE: return TypeInt::make(constant.as_byte());
vlivanov@5658 199 case T_SHORT: return TypeInt::make(constant.as_short());
vlivanov@5658 200 case T_INT: return TypeInt::make(constant.as_int());
vlivanov@5658 201 case T_LONG: return TypeLong::make(constant.as_long());
vlivanov@5658 202 case T_FLOAT: return TypeF::make(constant.as_float());
vlivanov@5658 203 case T_DOUBLE: return TypeD::make(constant.as_double());
vlivanov@5658 204 case T_ARRAY:
vlivanov@5658 205 case T_OBJECT:
vlivanov@5658 206 {
vlivanov@5658 207 // cases:
vlivanov@5658 208 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
vlivanov@5658 209 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
vlivanov@5658 210 // An oop is not scavengable if it is in the perm gen.
vlivanov@5658 211 ciObject* oop_constant = constant.as_object();
vlivanov@5658 212 if (oop_constant->is_null_object()) {
vlivanov@5658 213 return Type::get_zero_type(T_OBJECT);
vlivanov@5658 214 } else if (require_constant || oop_constant->should_be_constant()) {
vlivanov@5658 215 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
vlivanov@5658 216 }
vlivanov@5658 217 }
vlivanov@5658 218 }
vlivanov@5658 219 // Fall through to failure
vlivanov@5658 220 return NULL;
vlivanov@5658 221 }
vlivanov@5658 222
vlivanov@5658 223
duke@435 224 //------------------------------make-------------------------------------------
duke@435 225 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 226 // and look for an existing copy in the type dictionary.
duke@435 227 const Type *Type::make( enum TYPES t ) {
duke@435 228 return (new Type(t))->hashcons();
duke@435 229 }
kvn@658 230
duke@435 231 //------------------------------cmp--------------------------------------------
duke@435 232 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 233 if( t1->_base != t2->_base )
duke@435 234 return 1; // Missed badly
duke@435 235 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 236 return !t1->eq(t2); // Return ZERO if equal
duke@435 237 }
duke@435 238
duke@435 239 //------------------------------hash-------------------------------------------
duke@435 240 int Type::uhash( const Type *const t ) {
duke@435 241 return t->hash();
duke@435 242 }
duke@435 243
kvn@1975 244 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 245
duke@435 246 //--------------------------Initialize_shared----------------------------------
duke@435 247 void Type::Initialize_shared(Compile* current) {
duke@435 248 // This method does not need to be locked because the first system
duke@435 249 // compilations (stub compilations) occur serially. If they are
duke@435 250 // changed to proceed in parallel, then this section will need
duke@435 251 // locking.
duke@435 252
duke@435 253 Arena* save = current->type_arena();
zgu@3900 254 Arena* shared_type_arena = new (mtCompiler)Arena();
duke@435 255
duke@435 256 current->set_type_arena(shared_type_arena);
duke@435 257 _shared_type_dict =
duke@435 258 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 259 shared_type_arena, 128 );
duke@435 260 current->set_type_dict(_shared_type_dict);
duke@435 261
duke@435 262 // Make shared pre-built types.
duke@435 263 CONTROL = make(Control); // Control only
duke@435 264 TOP = make(Top); // No values in set
duke@435 265 MEMORY = make(Memory); // Abstract store only
duke@435 266 ABIO = make(Abio); // State-of-machine only
duke@435 267 RETURN_ADDRESS=make(Return_Address);
duke@435 268 FLOAT = make(FloatBot); // All floats
duke@435 269 DOUBLE = make(DoubleBot); // All doubles
duke@435 270 BOTTOM = make(Bottom); // Everything
duke@435 271 HALF = make(Half); // Placeholder half of doublewide type
duke@435 272
duke@435 273 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 274 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 275
duke@435 276 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 277 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 278
duke@435 279 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 280 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 281 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 282 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 283 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 284 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 285 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 286 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 287 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 288 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 289 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 290 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 291 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 292 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 293 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 294 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 295 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 296 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 297 // CmpL is overloaded both as the bytecode computation returning
duke@435 298 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 299 // compare returning optimizer ideal-type flags.
duke@435 300 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 301 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 302 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 303 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 304 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 305
duke@435 306 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 307 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 308 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 309 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 310 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 311 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 312 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 313
duke@435 314 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 315 fboth[0] = Type::CONTROL;
duke@435 316 fboth[1] = Type::CONTROL;
duke@435 317 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 318
duke@435 319 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 320 ffalse[0] = Type::CONTROL;
duke@435 321 ffalse[1] = Type::TOP;
duke@435 322 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 323
duke@435 324 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 325 fneither[0] = Type::TOP;
duke@435 326 fneither[1] = Type::TOP;
duke@435 327 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 328
duke@435 329 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 330 ftrue[0] = Type::TOP;
duke@435 331 ftrue[1] = Type::CONTROL;
duke@435 332 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 333
duke@435 334 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 335 floop[0] = Type::CONTROL;
duke@435 336 floop[1] = TypeInt::INT;
duke@435 337 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 338
duke@435 339 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 340 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 341 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 342
duke@435 343 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 344 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 345
duke@435 346 const Type **fmembar = TypeTuple::fields(0);
duke@435 347 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 348
duke@435 349 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 350 fsc[0] = TypeInt::CC;
duke@435 351 fsc[1] = Type::MEMORY;
duke@435 352 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 353
duke@435 354 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 355 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 356 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 357 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 358 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 359 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 360 false, 0, oopDesc::klass_offset_in_bytes());
kvn@1427 361 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
duke@435 362
coleenp@4037 363 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
coleenp@4037 364
coleenp@548 365 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 366 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 367
roland@4159 368 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
roland@4159 369
coleenp@548 370 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 371 mreg2type[Op_Set ] = 0;
coleenp@548 372 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 373 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 374 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 375 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 376 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 377 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 378 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 379
kvn@2116 380 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 381
kvn@598 382 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 383
kvn@598 384 #ifdef _LP64
kvn@598 385 if (UseCompressedOops) {
coleenp@4037 386 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
kvn@598 387 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 388 } else
kvn@598 389 #endif
kvn@598 390 {
kvn@598 391 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 392 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 393 }
duke@435 394 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 395 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 396 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 397 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 398 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 399 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 400 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 401
kvn@598 402 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 403 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 404 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 405 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 406 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 407 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 408 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 409 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 410 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 411 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 412 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 413 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 414
duke@435 415 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 416 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 417
duke@435 418 const Type **fi2c = TypeTuple::fields(2);
coleenp@4037 419 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
duke@435 420 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 421 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 422
duke@435 423 const Type **intpair = TypeTuple::fields(2);
duke@435 424 intpair[0] = TypeInt::INT;
duke@435 425 intpair[1] = TypeInt::INT;
duke@435 426 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 427
duke@435 428 const Type **longpair = TypeTuple::fields(2);
duke@435 429 longpair[0] = TypeLong::LONG;
duke@435 430 longpair[1] = TypeLong::LONG;
duke@435 431 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 432
rbackman@5791 433 const Type **intccpair = TypeTuple::fields(2);
rbackman@5791 434 intccpair[0] = TypeInt::INT;
rbackman@5791 435 intccpair[1] = TypeInt::CC;
rbackman@5791 436 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
rbackman@5791 437
roland@4159 438 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
roland@4159 439 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
roland@4159 440 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
roland@4159 441 _const_basic_type[T_CHAR] = TypeInt::CHAR;
roland@4159 442 _const_basic_type[T_BYTE] = TypeInt::BYTE;
roland@4159 443 _const_basic_type[T_SHORT] = TypeInt::SHORT;
roland@4159 444 _const_basic_type[T_INT] = TypeInt::INT;
roland@4159 445 _const_basic_type[T_LONG] = TypeLong::LONG;
roland@4159 446 _const_basic_type[T_FLOAT] = Type::FLOAT;
roland@4159 447 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
roland@4159 448 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
roland@4159 449 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
roland@4159 450 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
roland@4159 451 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
roland@4159 452 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
roland@4159 453
roland@4159 454 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
roland@4159 455 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
roland@4159 456 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
roland@4159 457 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
roland@4159 458 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
roland@4159 459 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
roland@4159 460 _zero_type[T_INT] = TypeInt::ZERO;
roland@4159 461 _zero_type[T_LONG] = TypeLong::ZERO;
roland@4159 462 _zero_type[T_FLOAT] = TypeF::ZERO;
roland@4159 463 _zero_type[T_DOUBLE] = TypeD::ZERO;
roland@4159 464 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
roland@4159 465 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
roland@4159 466 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
roland@4159 467 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 468
duke@435 469 // get_zero_type() should not happen for T_CONFLICT
duke@435 470 _zero_type[T_CONFLICT]= NULL;
duke@435 471
kvn@3882 472 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 473 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 474 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 475 }
kvn@3882 476 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 477 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 478 }
kvn@3882 479 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 480 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 481 }
kvn@3882 482 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 483 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 484 }
kvn@3882 485 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 486 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 487 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 488 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 489
duke@435 490 // Restore working type arena.
duke@435 491 current->set_type_arena(save);
duke@435 492 current->set_type_dict(NULL);
duke@435 493 }
duke@435 494
duke@435 495 //------------------------------Initialize-------------------------------------
duke@435 496 void Type::Initialize(Compile* current) {
duke@435 497 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 498
duke@435 499 if (_shared_type_dict == NULL) {
duke@435 500 Initialize_shared(current);
duke@435 501 }
duke@435 502
duke@435 503 Arena* type_arena = current->type_arena();
duke@435 504
duke@435 505 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 506 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 507 current->set_type_dict(tdic);
duke@435 508
duke@435 509 // Transfer the shared types.
duke@435 510 DictI i(_shared_type_dict);
duke@435 511 for( ; i.test(); ++i ) {
duke@435 512 Type* t = (Type*)i._value;
duke@435 513 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 514 }
duke@435 515 }
duke@435 516
duke@435 517 //------------------------------hashcons---------------------------------------
duke@435 518 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 519 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 520 // current Type in the Type table.
duke@435 521 const Type *Type::hashcons(void) {
duke@435 522 debug_only(base()); // Check the assertion in Type::base().
duke@435 523 // Look up the Type in the Type dictionary
duke@435 524 Dict *tdic = type_dict();
duke@435 525 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 526 if( old ) { // Pre-existing Type?
duke@435 527 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 528 delete this; // Yes, Nuke this guy
duke@435 529 assert( old->_dual, "" );
duke@435 530 return old; // Return pre-existing
duke@435 531 }
duke@435 532
duke@435 533 // Every type has a dual (to make my lattice symmetric).
duke@435 534 // Since we just discovered a new Type, compute its dual right now.
duke@435 535 assert( !_dual, "" ); // No dual yet
duke@435 536 _dual = xdual(); // Compute the dual
duke@435 537 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 538 _dual = this;
duke@435 539 return this;
duke@435 540 }
duke@435 541 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 542 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 543 // New Type, insert into Type table
duke@435 544 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 545 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 546 #ifdef ASSERT
duke@435 547 Type *dual_dual = (Type*)_dual->xdual();
duke@435 548 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 549 delete dual_dual;
duke@435 550 #endif
duke@435 551 return this; // Return new Type
duke@435 552 }
duke@435 553
duke@435 554 //------------------------------eq---------------------------------------------
duke@435 555 // Structural equality check for Type representations
duke@435 556 bool Type::eq( const Type * ) const {
duke@435 557 return true; // Nothing else can go wrong
duke@435 558 }
duke@435 559
duke@435 560 //------------------------------hash-------------------------------------------
duke@435 561 // Type-specific hashing function.
duke@435 562 int Type::hash(void) const {
duke@435 563 return _base;
duke@435 564 }
duke@435 565
duke@435 566 //------------------------------is_finite--------------------------------------
duke@435 567 // Has a finite value
duke@435 568 bool Type::is_finite() const {
duke@435 569 return false;
duke@435 570 }
duke@435 571
duke@435 572 //------------------------------is_nan-----------------------------------------
duke@435 573 // Is not a number (NaN)
duke@435 574 bool Type::is_nan() const {
duke@435 575 return false;
duke@435 576 }
duke@435 577
kvn@1255 578 //----------------------interface_vs_oop---------------------------------------
kvn@1255 579 #ifdef ASSERT
kvn@1255 580 bool Type::interface_vs_oop(const Type *t) const {
kvn@1255 581 bool result = false;
kvn@1255 582
kvn@1427 583 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 584 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 585 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 586 return result;
kvn@1427 587
kvn@1427 588 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 589 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 590 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 591 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 592 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 593 result = this_interface ^ t_interface;
kvn@1255 594 }
kvn@1255 595
kvn@1255 596 return result;
kvn@1255 597 }
kvn@1255 598 #endif
kvn@1255 599
duke@435 600 //------------------------------meet-------------------------------------------
duke@435 601 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 602 // commutative and the lattice is symmetric.
duke@435 603 const Type *Type::meet( const Type *t ) const {
coleenp@548 604 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 605 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 606 return result->make_narrowoop();
coleenp@548 607 }
roland@4159 608 if (isa_narrowklass() && t->isa_narrowklass()) {
roland@4159 609 const Type* result = make_ptr()->meet(t->make_ptr());
roland@4159 610 return result->make_narrowklass();
roland@4159 611 }
coleenp@548 612
duke@435 613 const Type *mt = xmeet(t);
coleenp@548 614 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
roland@4159 615 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
duke@435 616 #ifdef ASSERT
duke@435 617 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 618 const Type* dual_join = mt->_dual;
duke@435 619 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 620 const Type *t2this = dual_join->xmeet( _dual);
duke@435 621
duke@435 622 // Interface meet Oop is Not Symmetric:
duke@435 623 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 624 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 625
kvn@1255 626 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
duke@435 627 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 628 tty->print("t = "); t->dump(); tty->cr();
duke@435 629 tty->print("this= "); dump(); tty->cr();
duke@435 630 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 631
duke@435 632 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 633 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 634 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 635
duke@435 636 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 637 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 638
duke@435 639 fatal("meet not symmetric" );
duke@435 640 }
duke@435 641 #endif
duke@435 642 return mt;
duke@435 643 }
duke@435 644
duke@435 645 //------------------------------xmeet------------------------------------------
duke@435 646 // Compute the MEET of two types. It returns a new Type object.
duke@435 647 const Type *Type::xmeet( const Type *t ) const {
duke@435 648 // Perform a fast test for common case; meeting the same types together.
duke@435 649 if( this == t ) return this; // Meeting same type-rep?
duke@435 650
duke@435 651 // Meeting TOP with anything?
duke@435 652 if( _base == Top ) return t;
duke@435 653
duke@435 654 // Meeting BOTTOM with anything?
duke@435 655 if( _base == Bottom ) return BOTTOM;
duke@435 656
duke@435 657 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 658 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 659 switch (t->base()) { // Switch on original type
duke@435 660
duke@435 661 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 662 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 663 case FloatCon:
duke@435 664 case DoubleCon:
duke@435 665 case Int:
duke@435 666 case Long:
duke@435 667 return t->xmeet(this);
duke@435 668
duke@435 669 case OopPtr:
duke@435 670 return t->xmeet(this);
duke@435 671
duke@435 672 case InstPtr:
duke@435 673 return t->xmeet(this);
duke@435 674
coleenp@4037 675 case MetadataPtr:
duke@435 676 case KlassPtr:
duke@435 677 return t->xmeet(this);
duke@435 678
duke@435 679 case AryPtr:
duke@435 680 return t->xmeet(this);
duke@435 681
coleenp@548 682 case NarrowOop:
coleenp@548 683 return t->xmeet(this);
coleenp@548 684
roland@4159 685 case NarrowKlass:
roland@4159 686 return t->xmeet(this);
roland@4159 687
duke@435 688 case Bad: // Type check
duke@435 689 default: // Bogus type not in lattice
duke@435 690 typerr(t);
duke@435 691 return Type::BOTTOM;
duke@435 692
duke@435 693 case Bottom: // Ye Olde Default
duke@435 694 return t;
duke@435 695
duke@435 696 case FloatTop:
duke@435 697 if( _base == FloatTop ) return this;
duke@435 698 case FloatBot: // Float
duke@435 699 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 700 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 701 typerr(t);
duke@435 702 return Type::BOTTOM;
duke@435 703
duke@435 704 case DoubleTop:
duke@435 705 if( _base == DoubleTop ) return this;
duke@435 706 case DoubleBot: // Double
duke@435 707 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 708 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 709 typerr(t);
duke@435 710 return Type::BOTTOM;
duke@435 711
duke@435 712 // These next few cases must match exactly or it is a compile-time error.
duke@435 713 case Control: // Control of code
duke@435 714 case Abio: // State of world outside of program
duke@435 715 case Memory:
duke@435 716 if( _base == t->_base ) return this;
duke@435 717 typerr(t);
duke@435 718 return Type::BOTTOM;
duke@435 719
duke@435 720 case Top: // Top of the lattice
duke@435 721 return this;
duke@435 722 }
duke@435 723
duke@435 724 // The type is unchanged
duke@435 725 return this;
duke@435 726 }
duke@435 727
duke@435 728 //-----------------------------filter------------------------------------------
duke@435 729 const Type *Type::filter( const Type *kills ) const {
duke@435 730 const Type* ft = join(kills);
duke@435 731 if (ft->empty())
duke@435 732 return Type::TOP; // Canonical empty value
duke@435 733 return ft;
duke@435 734 }
duke@435 735
duke@435 736 //------------------------------xdual------------------------------------------
duke@435 737 // Compute dual right now.
duke@435 738 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 739 Bad, // Bad
duke@435 740 Control, // Control
duke@435 741 Bottom, // Top
duke@435 742 Bad, // Int - handled in v-call
duke@435 743 Bad, // Long - handled in v-call
duke@435 744 Half, // Half
coleenp@548 745 Bad, // NarrowOop - handled in v-call
roland@4159 746 Bad, // NarrowKlass - handled in v-call
duke@435 747
duke@435 748 Bad, // Tuple - handled in v-call
duke@435 749 Bad, // Array - handled in v-call
kvn@3882 750 Bad, // VectorS - handled in v-call
kvn@3882 751 Bad, // VectorD - handled in v-call
kvn@3882 752 Bad, // VectorX - handled in v-call
kvn@3882 753 Bad, // VectorY - handled in v-call
duke@435 754
duke@435 755 Bad, // AnyPtr - handled in v-call
duke@435 756 Bad, // RawPtr - handled in v-call
duke@435 757 Bad, // OopPtr - handled in v-call
duke@435 758 Bad, // InstPtr - handled in v-call
duke@435 759 Bad, // AryPtr - handled in v-call
coleenp@4037 760
coleenp@4037 761 Bad, // MetadataPtr - handled in v-call
duke@435 762 Bad, // KlassPtr - handled in v-call
duke@435 763
duke@435 764 Bad, // Function - handled in v-call
duke@435 765 Abio, // Abio
duke@435 766 Return_Address,// Return_Address
duke@435 767 Memory, // Memory
duke@435 768 FloatBot, // FloatTop
duke@435 769 FloatCon, // FloatCon
duke@435 770 FloatTop, // FloatBot
duke@435 771 DoubleBot, // DoubleTop
duke@435 772 DoubleCon, // DoubleCon
duke@435 773 DoubleTop, // DoubleBot
duke@435 774 Top // Bottom
duke@435 775 };
duke@435 776
duke@435 777 const Type *Type::xdual() const {
duke@435 778 // Note: the base() accessor asserts the sanity of _base.
coleenp@4037 779 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
coleenp@4037 780 return new Type(_type_info[_base].dual_type);
duke@435 781 }
duke@435 782
duke@435 783 //------------------------------has_memory-------------------------------------
duke@435 784 bool Type::has_memory() const {
duke@435 785 Type::TYPES tx = base();
duke@435 786 if (tx == Memory) return true;
duke@435 787 if (tx == Tuple) {
duke@435 788 const TypeTuple *t = is_tuple();
duke@435 789 for (uint i=0; i < t->cnt(); i++) {
duke@435 790 tx = t->field_at(i)->base();
duke@435 791 if (tx == Memory) return true;
duke@435 792 }
duke@435 793 }
duke@435 794 return false;
duke@435 795 }
duke@435 796
duke@435 797 #ifndef PRODUCT
duke@435 798 //------------------------------dump2------------------------------------------
duke@435 799 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 800 st->print(_type_info[_base].msg);
duke@435 801 }
duke@435 802
duke@435 803 //------------------------------dump-------------------------------------------
duke@435 804 void Type::dump_on(outputStream *st) const {
duke@435 805 ResourceMark rm;
duke@435 806 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 807 dump2(d,1, st);
kvn@598 808 if (is_ptr_to_narrowoop()) {
coleenp@548 809 st->print(" [narrow]");
roland@4159 810 } else if (is_ptr_to_narrowklass()) {
roland@4159 811 st->print(" [narrowklass]");
coleenp@548 812 }
duke@435 813 }
duke@435 814 #endif
duke@435 815
duke@435 816 //------------------------------singleton--------------------------------------
duke@435 817 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 818 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 819 bool Type::singleton(void) const {
duke@435 820 return _base == Top || _base == Half;
duke@435 821 }
duke@435 822
duke@435 823 //------------------------------empty------------------------------------------
duke@435 824 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 825 bool Type::empty(void) const {
duke@435 826 switch (_base) {
duke@435 827 case DoubleTop:
duke@435 828 case FloatTop:
duke@435 829 case Top:
duke@435 830 return true;
duke@435 831
duke@435 832 case Half:
duke@435 833 case Abio:
duke@435 834 case Return_Address:
duke@435 835 case Memory:
duke@435 836 case Bottom:
duke@435 837 case FloatBot:
duke@435 838 case DoubleBot:
duke@435 839 return false; // never a singleton, therefore never empty
duke@435 840 }
duke@435 841
duke@435 842 ShouldNotReachHere();
duke@435 843 return false;
duke@435 844 }
duke@435 845
duke@435 846 //------------------------------dump_stats-------------------------------------
duke@435 847 // Dump collected statistics to stderr
duke@435 848 #ifndef PRODUCT
duke@435 849 void Type::dump_stats() {
duke@435 850 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 851 }
duke@435 852 #endif
duke@435 853
duke@435 854 //------------------------------typerr-----------------------------------------
duke@435 855 void Type::typerr( const Type *t ) const {
duke@435 856 #ifndef PRODUCT
duke@435 857 tty->print("\nError mixing types: ");
duke@435 858 dump();
duke@435 859 tty->print(" and ");
duke@435 860 t->dump();
duke@435 861 tty->print("\n");
duke@435 862 #endif
duke@435 863 ShouldNotReachHere();
duke@435 864 }
duke@435 865
duke@435 866
duke@435 867 //=============================================================================
duke@435 868 // Convenience common pre-built types.
duke@435 869 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 870 const TypeF *TypeF::ONE; // Floating point one
duke@435 871
duke@435 872 //------------------------------make-------------------------------------------
duke@435 873 // Create a float constant
duke@435 874 const TypeF *TypeF::make(float f) {
duke@435 875 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 876 }
duke@435 877
duke@435 878 //------------------------------meet-------------------------------------------
duke@435 879 // Compute the MEET of two types. It returns a new Type object.
duke@435 880 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 881 // Perform a fast test for common case; meeting the same types together.
duke@435 882 if( this == t ) return this; // Meeting same type-rep?
duke@435 883
duke@435 884 // Current "this->_base" is FloatCon
duke@435 885 switch (t->base()) { // Switch on original type
duke@435 886 case AnyPtr: // Mixing with oops happens when javac
duke@435 887 case RawPtr: // reuses local variables
duke@435 888 case OopPtr:
duke@435 889 case InstPtr:
coleenp@4037 890 case AryPtr:
coleenp@4037 891 case MetadataPtr:
duke@435 892 case KlassPtr:
kvn@728 893 case NarrowOop:
roland@4159 894 case NarrowKlass:
duke@435 895 case Int:
duke@435 896 case Long:
duke@435 897 case DoubleTop:
duke@435 898 case DoubleCon:
duke@435 899 case DoubleBot:
duke@435 900 case Bottom: // Ye Olde Default
duke@435 901 return Type::BOTTOM;
duke@435 902
duke@435 903 case FloatBot:
duke@435 904 return t;
duke@435 905
duke@435 906 default: // All else is a mistake
duke@435 907 typerr(t);
duke@435 908
duke@435 909 case FloatCon: // Float-constant vs Float-constant?
duke@435 910 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 911 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 912 // all the same representation in C++
duke@435 913 return FLOAT; // Return generic float
duke@435 914 // Equal constants
duke@435 915 case Top:
duke@435 916 case FloatTop:
duke@435 917 break; // Return the float constant
duke@435 918 }
duke@435 919 return this; // Return the float constant
duke@435 920 }
duke@435 921
duke@435 922 //------------------------------xdual------------------------------------------
duke@435 923 // Dual: symmetric
duke@435 924 const Type *TypeF::xdual() const {
duke@435 925 return this;
duke@435 926 }
duke@435 927
duke@435 928 //------------------------------eq---------------------------------------------
duke@435 929 // Structural equality check for Type representations
duke@435 930 bool TypeF::eq( const Type *t ) const {
duke@435 931 if( g_isnan(_f) ||
duke@435 932 g_isnan(t->getf()) ) {
duke@435 933 // One or both are NANs. If both are NANs return true, else false.
duke@435 934 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 935 }
duke@435 936 if (_f == t->getf()) {
duke@435 937 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 938 if (_f == 0.0) {
duke@435 939 // difference between positive and negative zero
duke@435 940 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 941 }
duke@435 942 return true;
duke@435 943 }
duke@435 944 return false;
duke@435 945 }
duke@435 946
duke@435 947 //------------------------------hash-------------------------------------------
duke@435 948 // Type-specific hashing function.
duke@435 949 int TypeF::hash(void) const {
duke@435 950 return *(int*)(&_f);
duke@435 951 }
duke@435 952
duke@435 953 //------------------------------is_finite--------------------------------------
duke@435 954 // Has a finite value
duke@435 955 bool TypeF::is_finite() const {
duke@435 956 return g_isfinite(getf()) != 0;
duke@435 957 }
duke@435 958
duke@435 959 //------------------------------is_nan-----------------------------------------
duke@435 960 // Is not a number (NaN)
duke@435 961 bool TypeF::is_nan() const {
duke@435 962 return g_isnan(getf()) != 0;
duke@435 963 }
duke@435 964
duke@435 965 //------------------------------dump2------------------------------------------
duke@435 966 // Dump float constant Type
duke@435 967 #ifndef PRODUCT
duke@435 968 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 969 Type::dump2(d,depth, st);
duke@435 970 st->print("%f", _f);
duke@435 971 }
duke@435 972 #endif
duke@435 973
duke@435 974 //------------------------------singleton--------------------------------------
duke@435 975 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 976 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 977 // or a single symbol.
duke@435 978 bool TypeF::singleton(void) const {
duke@435 979 return true; // Always a singleton
duke@435 980 }
duke@435 981
duke@435 982 bool TypeF::empty(void) const {
duke@435 983 return false; // always exactly a singleton
duke@435 984 }
duke@435 985
duke@435 986 //=============================================================================
duke@435 987 // Convenience common pre-built types.
duke@435 988 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 989 const TypeD *TypeD::ONE; // Floating point one
duke@435 990
duke@435 991 //------------------------------make-------------------------------------------
duke@435 992 const TypeD *TypeD::make(double d) {
duke@435 993 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 994 }
duke@435 995
duke@435 996 //------------------------------meet-------------------------------------------
duke@435 997 // Compute the MEET of two types. It returns a new Type object.
duke@435 998 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 999 // Perform a fast test for common case; meeting the same types together.
duke@435 1000 if( this == t ) return this; // Meeting same type-rep?
duke@435 1001
duke@435 1002 // Current "this->_base" is DoubleCon
duke@435 1003 switch (t->base()) { // Switch on original type
duke@435 1004 case AnyPtr: // Mixing with oops happens when javac
duke@435 1005 case RawPtr: // reuses local variables
duke@435 1006 case OopPtr:
duke@435 1007 case InstPtr:
coleenp@4037 1008 case AryPtr:
coleenp@4037 1009 case MetadataPtr:
duke@435 1010 case KlassPtr:
never@618 1011 case NarrowOop:
roland@4159 1012 case NarrowKlass:
duke@435 1013 case Int:
duke@435 1014 case Long:
duke@435 1015 case FloatTop:
duke@435 1016 case FloatCon:
duke@435 1017 case FloatBot:
duke@435 1018 case Bottom: // Ye Olde Default
duke@435 1019 return Type::BOTTOM;
duke@435 1020
duke@435 1021 case DoubleBot:
duke@435 1022 return t;
duke@435 1023
duke@435 1024 default: // All else is a mistake
duke@435 1025 typerr(t);
duke@435 1026
duke@435 1027 case DoubleCon: // Double-constant vs Double-constant?
duke@435 1028 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 1029 return DOUBLE; // Return generic double
duke@435 1030 case Top:
duke@435 1031 case DoubleTop:
duke@435 1032 break;
duke@435 1033 }
duke@435 1034 return this; // Return the double constant
duke@435 1035 }
duke@435 1036
duke@435 1037 //------------------------------xdual------------------------------------------
duke@435 1038 // Dual: symmetric
duke@435 1039 const Type *TypeD::xdual() const {
duke@435 1040 return this;
duke@435 1041 }
duke@435 1042
duke@435 1043 //------------------------------eq---------------------------------------------
duke@435 1044 // Structural equality check for Type representations
duke@435 1045 bool TypeD::eq( const Type *t ) const {
duke@435 1046 if( g_isnan(_d) ||
duke@435 1047 g_isnan(t->getd()) ) {
duke@435 1048 // One or both are NANs. If both are NANs return true, else false.
duke@435 1049 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 1050 }
duke@435 1051 if (_d == t->getd()) {
duke@435 1052 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 1053 if (_d == 0.0) {
duke@435 1054 // difference between positive and negative zero
duke@435 1055 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1056 }
duke@435 1057 return true;
duke@435 1058 }
duke@435 1059 return false;
duke@435 1060 }
duke@435 1061
duke@435 1062 //------------------------------hash-------------------------------------------
duke@435 1063 // Type-specific hashing function.
duke@435 1064 int TypeD::hash(void) const {
duke@435 1065 return *(int*)(&_d);
duke@435 1066 }
duke@435 1067
duke@435 1068 //------------------------------is_finite--------------------------------------
duke@435 1069 // Has a finite value
duke@435 1070 bool TypeD::is_finite() const {
duke@435 1071 return g_isfinite(getd()) != 0;
duke@435 1072 }
duke@435 1073
duke@435 1074 //------------------------------is_nan-----------------------------------------
duke@435 1075 // Is not a number (NaN)
duke@435 1076 bool TypeD::is_nan() const {
duke@435 1077 return g_isnan(getd()) != 0;
duke@435 1078 }
duke@435 1079
duke@435 1080 //------------------------------dump2------------------------------------------
duke@435 1081 // Dump double constant Type
duke@435 1082 #ifndef PRODUCT
duke@435 1083 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1084 Type::dump2(d,depth,st);
duke@435 1085 st->print("%f", _d);
duke@435 1086 }
duke@435 1087 #endif
duke@435 1088
duke@435 1089 //------------------------------singleton--------------------------------------
duke@435 1090 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1091 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1092 // or a single symbol.
duke@435 1093 bool TypeD::singleton(void) const {
duke@435 1094 return true; // Always a singleton
duke@435 1095 }
duke@435 1096
duke@435 1097 bool TypeD::empty(void) const {
duke@435 1098 return false; // always exactly a singleton
duke@435 1099 }
duke@435 1100
duke@435 1101 //=============================================================================
duke@435 1102 // Convience common pre-built types.
duke@435 1103 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1104 const TypeInt *TypeInt::ZERO; // 0
duke@435 1105 const TypeInt *TypeInt::ONE; // 1
duke@435 1106 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1107 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1108 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1109 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1110 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1111 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1112 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1113 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1114 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1115 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1116 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1117 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1118 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1119 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1120 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1121
duke@435 1122 //------------------------------TypeInt----------------------------------------
duke@435 1123 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1124 }
duke@435 1125
duke@435 1126 //------------------------------make-------------------------------------------
duke@435 1127 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1128 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1129 }
duke@435 1130
kvn@1975 1131 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1132 // Certain normalizations keep us sane when comparing types.
duke@435 1133 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1134 if (lo <= hi) {
kvn@1975 1135 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1136 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1137 } else {
kvn@1975 1138 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1139 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1140 }
kvn@1975 1141 return w;
kvn@1975 1142 }
kvn@1975 1143
kvn@1975 1144 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1145 w = normalize_int_widen(lo, hi, w);
duke@435 1146 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1147 }
duke@435 1148
duke@435 1149 //------------------------------meet-------------------------------------------
duke@435 1150 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1151 // with reference count equal to the number of Types pointing at it.
duke@435 1152 // Caller should wrap a Types around it.
duke@435 1153 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1154 // Perform a fast test for common case; meeting the same types together.
duke@435 1155 if( this == t ) return this; // Meeting same type?
duke@435 1156
duke@435 1157 // Currently "this->_base" is a TypeInt
duke@435 1158 switch (t->base()) { // Switch on original type
duke@435 1159 case AnyPtr: // Mixing with oops happens when javac
duke@435 1160 case RawPtr: // reuses local variables
duke@435 1161 case OopPtr:
duke@435 1162 case InstPtr:
coleenp@4037 1163 case AryPtr:
coleenp@4037 1164 case MetadataPtr:
duke@435 1165 case KlassPtr:
never@618 1166 case NarrowOop:
roland@4159 1167 case NarrowKlass:
duke@435 1168 case Long:
duke@435 1169 case FloatTop:
duke@435 1170 case FloatCon:
duke@435 1171 case FloatBot:
duke@435 1172 case DoubleTop:
duke@435 1173 case DoubleCon:
duke@435 1174 case DoubleBot:
duke@435 1175 case Bottom: // Ye Olde Default
duke@435 1176 return Type::BOTTOM;
duke@435 1177 default: // All else is a mistake
duke@435 1178 typerr(t);
duke@435 1179 case Top: // No change
duke@435 1180 return this;
duke@435 1181 case Int: // Int vs Int?
duke@435 1182 break;
duke@435 1183 }
duke@435 1184
duke@435 1185 // Expand covered set
duke@435 1186 const TypeInt *r = t->is_int();
kvn@1975 1187 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1188 }
duke@435 1189
duke@435 1190 //------------------------------xdual------------------------------------------
duke@435 1191 // Dual: reverse hi & lo; flip widen
duke@435 1192 const Type *TypeInt::xdual() const {
kvn@1975 1193 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1194 return new TypeInt(_hi,_lo,w);
duke@435 1195 }
duke@435 1196
duke@435 1197 //------------------------------widen------------------------------------------
duke@435 1198 // Only happens for optimistic top-down optimizations.
never@1444 1199 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1200 // Coming from TOP or such; no widening
duke@435 1201 if( old->base() != Int ) return this;
duke@435 1202 const TypeInt *ot = old->is_int();
duke@435 1203
duke@435 1204 // If new guy is equal to old guy, no widening
duke@435 1205 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1206 return old;
duke@435 1207
duke@435 1208 // If new guy contains old, then we widened
duke@435 1209 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1210 // New contains old
duke@435 1211 // If new guy is already wider than old, no widening
duke@435 1212 if( _widen > ot->_widen ) return this;
duke@435 1213 // If old guy was a constant, do not bother
duke@435 1214 if (ot->_lo == ot->_hi) return this;
duke@435 1215 // Now widen new guy.
duke@435 1216 // Check for widening too far
duke@435 1217 if (_widen == WidenMax) {
never@1444 1218 int max = max_jint;
never@1444 1219 int min = min_jint;
never@1444 1220 if (limit->isa_int()) {
never@1444 1221 max = limit->is_int()->_hi;
never@1444 1222 min = limit->is_int()->_lo;
never@1444 1223 }
never@1444 1224 if (min < _lo && _hi < max) {
duke@435 1225 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1226 // which is closer to its respective limit.
duke@435 1227 if (_lo >= 0 || // easy common case
never@1444 1228 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1229 // Try to widen to an unsigned range type of 31 bits:
never@1444 1230 return make(_lo, max, WidenMax);
duke@435 1231 } else {
never@1444 1232 return make(min, _hi, WidenMax);
duke@435 1233 }
duke@435 1234 }
duke@435 1235 return TypeInt::INT;
duke@435 1236 }
duke@435 1237 // Returned widened new guy
duke@435 1238 return make(_lo,_hi,_widen+1);
duke@435 1239 }
duke@435 1240
duke@435 1241 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1242 // bottom. Return the wider fellow.
duke@435 1243 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1244 return old;
duke@435 1245
duke@435 1246 //fatal("Integer value range is not subset");
duke@435 1247 //return this;
duke@435 1248 return TypeInt::INT;
duke@435 1249 }
duke@435 1250
duke@435 1251 //------------------------------narrow---------------------------------------
duke@435 1252 // Only happens for pessimistic optimizations.
duke@435 1253 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1254 if (_lo >= _hi) return this; // already narrow enough
duke@435 1255 if (old == NULL) return this;
duke@435 1256 const TypeInt* ot = old->isa_int();
duke@435 1257 if (ot == NULL) return this;
duke@435 1258 jint olo = ot->_lo;
duke@435 1259 jint ohi = ot->_hi;
duke@435 1260
duke@435 1261 // If new guy is equal to old guy, no narrowing
duke@435 1262 if (_lo == olo && _hi == ohi) return old;
duke@435 1263
duke@435 1264 // If old guy was maximum range, allow the narrowing
duke@435 1265 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1266
duke@435 1267 if (_lo < olo || _hi > ohi)
duke@435 1268 return this; // doesn't narrow; pretty wierd
duke@435 1269
duke@435 1270 // The new type narrows the old type, so look for a "death march".
duke@435 1271 // See comments on PhaseTransform::saturate.
duke@435 1272 juint nrange = _hi - _lo;
duke@435 1273 juint orange = ohi - olo;
duke@435 1274 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1275 // Use the new type only if the range shrinks a lot.
duke@435 1276 // We do not want the optimizer computing 2^31 point by point.
duke@435 1277 return old;
duke@435 1278 }
duke@435 1279
duke@435 1280 return this;
duke@435 1281 }
duke@435 1282
duke@435 1283 //-----------------------------filter------------------------------------------
duke@435 1284 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1285 const TypeInt* ft = join(kills)->isa_int();
kvn@1975 1286 if (ft == NULL || ft->empty())
duke@435 1287 return Type::TOP; // Canonical empty value
duke@435 1288 if (ft->_widen < this->_widen) {
duke@435 1289 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1290 // The widen bits must be allowed to run freely through the graph.
duke@435 1291 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1292 }
duke@435 1293 return ft;
duke@435 1294 }
duke@435 1295
duke@435 1296 //------------------------------eq---------------------------------------------
duke@435 1297 // Structural equality check for Type representations
duke@435 1298 bool TypeInt::eq( const Type *t ) const {
duke@435 1299 const TypeInt *r = t->is_int(); // Handy access
duke@435 1300 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1301 }
duke@435 1302
duke@435 1303 //------------------------------hash-------------------------------------------
duke@435 1304 // Type-specific hashing function.
duke@435 1305 int TypeInt::hash(void) const {
duke@435 1306 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1307 }
duke@435 1308
duke@435 1309 //------------------------------is_finite--------------------------------------
duke@435 1310 // Has a finite value
duke@435 1311 bool TypeInt::is_finite() const {
duke@435 1312 return true;
duke@435 1313 }
duke@435 1314
duke@435 1315 //------------------------------dump2------------------------------------------
duke@435 1316 // Dump TypeInt
duke@435 1317 #ifndef PRODUCT
duke@435 1318 static const char* intname(char* buf, jint n) {
duke@435 1319 if (n == min_jint)
duke@435 1320 return "min";
duke@435 1321 else if (n < min_jint + 10000)
duke@435 1322 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1323 else if (n == max_jint)
duke@435 1324 return "max";
duke@435 1325 else if (n > max_jint - 10000)
duke@435 1326 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1327 else
duke@435 1328 sprintf(buf, INT32_FORMAT, n);
duke@435 1329 return buf;
duke@435 1330 }
duke@435 1331
duke@435 1332 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1333 char buf[40], buf2[40];
duke@435 1334 if (_lo == min_jint && _hi == max_jint)
duke@435 1335 st->print("int");
duke@435 1336 else if (is_con())
duke@435 1337 st->print("int:%s", intname(buf, get_con()));
duke@435 1338 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1339 st->print("bool");
duke@435 1340 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1341 st->print("byte");
duke@435 1342 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1343 st->print("char");
duke@435 1344 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1345 st->print("short");
duke@435 1346 else if (_hi == max_jint)
duke@435 1347 st->print("int:>=%s", intname(buf, _lo));
duke@435 1348 else if (_lo == min_jint)
duke@435 1349 st->print("int:<=%s", intname(buf, _hi));
duke@435 1350 else
duke@435 1351 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1352
duke@435 1353 if (_widen != 0 && this != TypeInt::INT)
duke@435 1354 st->print(":%.*s", _widen, "wwww");
duke@435 1355 }
duke@435 1356 #endif
duke@435 1357
duke@435 1358 //------------------------------singleton--------------------------------------
duke@435 1359 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1360 // constants.
duke@435 1361 bool TypeInt::singleton(void) const {
duke@435 1362 return _lo >= _hi;
duke@435 1363 }
duke@435 1364
duke@435 1365 bool TypeInt::empty(void) const {
duke@435 1366 return _lo > _hi;
duke@435 1367 }
duke@435 1368
duke@435 1369 //=============================================================================
duke@435 1370 // Convenience common pre-built types.
duke@435 1371 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1372 const TypeLong *TypeLong::ZERO; // 0
duke@435 1373 const TypeLong *TypeLong::ONE; // 1
duke@435 1374 const TypeLong *TypeLong::POS; // >=0
duke@435 1375 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1376 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1377 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1378
duke@435 1379 //------------------------------TypeLong---------------------------------------
duke@435 1380 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1381 }
duke@435 1382
duke@435 1383 //------------------------------make-------------------------------------------
duke@435 1384 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1385 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1386 }
duke@435 1387
kvn@1975 1388 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1389 // Certain normalizations keep us sane when comparing types.
kvn@1975 1390 // The 'SMALLINT' covers constants.
kvn@1975 1391 if (lo <= hi) {
kvn@1975 1392 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1393 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1394 } else {
kvn@1975 1395 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1396 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1397 }
kvn@1975 1398 return w;
kvn@1975 1399 }
kvn@1975 1400
duke@435 1401 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1402 w = normalize_long_widen(lo, hi, w);
duke@435 1403 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1404 }
duke@435 1405
duke@435 1406
duke@435 1407 //------------------------------meet-------------------------------------------
duke@435 1408 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1409 // with reference count equal to the number of Types pointing at it.
duke@435 1410 // Caller should wrap a Types around it.
duke@435 1411 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1412 // Perform a fast test for common case; meeting the same types together.
duke@435 1413 if( this == t ) return this; // Meeting same type?
duke@435 1414
duke@435 1415 // Currently "this->_base" is a TypeLong
duke@435 1416 switch (t->base()) { // Switch on original type
duke@435 1417 case AnyPtr: // Mixing with oops happens when javac
duke@435 1418 case RawPtr: // reuses local variables
duke@435 1419 case OopPtr:
duke@435 1420 case InstPtr:
coleenp@4037 1421 case AryPtr:
coleenp@4037 1422 case MetadataPtr:
duke@435 1423 case KlassPtr:
never@618 1424 case NarrowOop:
roland@4159 1425 case NarrowKlass:
duke@435 1426 case Int:
duke@435 1427 case FloatTop:
duke@435 1428 case FloatCon:
duke@435 1429 case FloatBot:
duke@435 1430 case DoubleTop:
duke@435 1431 case DoubleCon:
duke@435 1432 case DoubleBot:
duke@435 1433 case Bottom: // Ye Olde Default
duke@435 1434 return Type::BOTTOM;
duke@435 1435 default: // All else is a mistake
duke@435 1436 typerr(t);
duke@435 1437 case Top: // No change
duke@435 1438 return this;
duke@435 1439 case Long: // Long vs Long?
duke@435 1440 break;
duke@435 1441 }
duke@435 1442
duke@435 1443 // Expand covered set
duke@435 1444 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1445 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1446 }
duke@435 1447
duke@435 1448 //------------------------------xdual------------------------------------------
duke@435 1449 // Dual: reverse hi & lo; flip widen
duke@435 1450 const Type *TypeLong::xdual() const {
kvn@1975 1451 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1452 return new TypeLong(_hi,_lo,w);
duke@435 1453 }
duke@435 1454
duke@435 1455 //------------------------------widen------------------------------------------
duke@435 1456 // Only happens for optimistic top-down optimizations.
never@1444 1457 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1458 // Coming from TOP or such; no widening
duke@435 1459 if( old->base() != Long ) return this;
duke@435 1460 const TypeLong *ot = old->is_long();
duke@435 1461
duke@435 1462 // If new guy is equal to old guy, no widening
duke@435 1463 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1464 return old;
duke@435 1465
duke@435 1466 // If new guy contains old, then we widened
duke@435 1467 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1468 // New contains old
duke@435 1469 // If new guy is already wider than old, no widening
duke@435 1470 if( _widen > ot->_widen ) return this;
duke@435 1471 // If old guy was a constant, do not bother
duke@435 1472 if (ot->_lo == ot->_hi) return this;
duke@435 1473 // Now widen new guy.
duke@435 1474 // Check for widening too far
duke@435 1475 if (_widen == WidenMax) {
never@1444 1476 jlong max = max_jlong;
never@1444 1477 jlong min = min_jlong;
never@1444 1478 if (limit->isa_long()) {
never@1444 1479 max = limit->is_long()->_hi;
never@1444 1480 min = limit->is_long()->_lo;
never@1444 1481 }
never@1444 1482 if (min < _lo && _hi < max) {
duke@435 1483 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1484 // which is closer to its respective limit.
duke@435 1485 if (_lo >= 0 || // easy common case
never@1444 1486 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1487 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1488 if (max >= max_juint && _hi < max_juint)
duke@435 1489 return make(_lo, max_juint, WidenMax);
duke@435 1490 else
never@1444 1491 return make(_lo, max, WidenMax);
duke@435 1492 } else {
never@1444 1493 return make(min, _hi, WidenMax);
duke@435 1494 }
duke@435 1495 }
duke@435 1496 return TypeLong::LONG;
duke@435 1497 }
duke@435 1498 // Returned widened new guy
duke@435 1499 return make(_lo,_hi,_widen+1);
duke@435 1500 }
duke@435 1501
duke@435 1502 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1503 // bottom. Return the wider fellow.
duke@435 1504 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1505 return old;
duke@435 1506
duke@435 1507 // fatal("Long value range is not subset");
duke@435 1508 // return this;
duke@435 1509 return TypeLong::LONG;
duke@435 1510 }
duke@435 1511
duke@435 1512 //------------------------------narrow----------------------------------------
duke@435 1513 // Only happens for pessimistic optimizations.
duke@435 1514 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1515 if (_lo >= _hi) return this; // already narrow enough
duke@435 1516 if (old == NULL) return this;
duke@435 1517 const TypeLong* ot = old->isa_long();
duke@435 1518 if (ot == NULL) return this;
duke@435 1519 jlong olo = ot->_lo;
duke@435 1520 jlong ohi = ot->_hi;
duke@435 1521
duke@435 1522 // If new guy is equal to old guy, no narrowing
duke@435 1523 if (_lo == olo && _hi == ohi) return old;
duke@435 1524
duke@435 1525 // If old guy was maximum range, allow the narrowing
duke@435 1526 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1527
duke@435 1528 if (_lo < olo || _hi > ohi)
duke@435 1529 return this; // doesn't narrow; pretty wierd
duke@435 1530
duke@435 1531 // The new type narrows the old type, so look for a "death march".
duke@435 1532 // See comments on PhaseTransform::saturate.
duke@435 1533 julong nrange = _hi - _lo;
duke@435 1534 julong orange = ohi - olo;
duke@435 1535 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1536 // Use the new type only if the range shrinks a lot.
duke@435 1537 // We do not want the optimizer computing 2^31 point by point.
duke@435 1538 return old;
duke@435 1539 }
duke@435 1540
duke@435 1541 return this;
duke@435 1542 }
duke@435 1543
duke@435 1544 //-----------------------------filter------------------------------------------
duke@435 1545 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1546 const TypeLong* ft = join(kills)->isa_long();
kvn@1975 1547 if (ft == NULL || ft->empty())
duke@435 1548 return Type::TOP; // Canonical empty value
duke@435 1549 if (ft->_widen < this->_widen) {
duke@435 1550 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1551 // The widen bits must be allowed to run freely through the graph.
duke@435 1552 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1553 }
duke@435 1554 return ft;
duke@435 1555 }
duke@435 1556
duke@435 1557 //------------------------------eq---------------------------------------------
duke@435 1558 // Structural equality check for Type representations
duke@435 1559 bool TypeLong::eq( const Type *t ) const {
duke@435 1560 const TypeLong *r = t->is_long(); // Handy access
duke@435 1561 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1562 }
duke@435 1563
duke@435 1564 //------------------------------hash-------------------------------------------
duke@435 1565 // Type-specific hashing function.
duke@435 1566 int TypeLong::hash(void) const {
duke@435 1567 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1568 }
duke@435 1569
duke@435 1570 //------------------------------is_finite--------------------------------------
duke@435 1571 // Has a finite value
duke@435 1572 bool TypeLong::is_finite() const {
duke@435 1573 return true;
duke@435 1574 }
duke@435 1575
duke@435 1576 //------------------------------dump2------------------------------------------
duke@435 1577 // Dump TypeLong
duke@435 1578 #ifndef PRODUCT
duke@435 1579 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1580 if (n > x) {
duke@435 1581 if (n >= x + 10000) return NULL;
hseigel@4465 1582 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
duke@435 1583 } else if (n < x) {
duke@435 1584 if (n <= x - 10000) return NULL;
hseigel@4465 1585 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
duke@435 1586 } else {
duke@435 1587 return xname;
duke@435 1588 }
duke@435 1589 return buf;
duke@435 1590 }
duke@435 1591
duke@435 1592 static const char* longname(char* buf, jlong n) {
duke@435 1593 const char* str;
duke@435 1594 if (n == min_jlong)
duke@435 1595 return "min";
duke@435 1596 else if (n < min_jlong + 10000)
hseigel@4465 1597 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
duke@435 1598 else if (n == max_jlong)
duke@435 1599 return "max";
duke@435 1600 else if (n > max_jlong - 10000)
hseigel@4465 1601 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
duke@435 1602 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1603 return str;
duke@435 1604 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1605 return str;
duke@435 1606 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1607 return str;
duke@435 1608 else
hseigel@4465 1609 sprintf(buf, JLONG_FORMAT, n);
duke@435 1610 return buf;
duke@435 1611 }
duke@435 1612
duke@435 1613 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1614 char buf[80], buf2[80];
duke@435 1615 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1616 st->print("long");
duke@435 1617 else if (is_con())
duke@435 1618 st->print("long:%s", longname(buf, get_con()));
duke@435 1619 else if (_hi == max_jlong)
duke@435 1620 st->print("long:>=%s", longname(buf, _lo));
duke@435 1621 else if (_lo == min_jlong)
duke@435 1622 st->print("long:<=%s", longname(buf, _hi));
duke@435 1623 else
duke@435 1624 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1625
duke@435 1626 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1627 st->print(":%.*s", _widen, "wwww");
duke@435 1628 }
duke@435 1629 #endif
duke@435 1630
duke@435 1631 //------------------------------singleton--------------------------------------
duke@435 1632 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1633 // constants
duke@435 1634 bool TypeLong::singleton(void) const {
duke@435 1635 return _lo >= _hi;
duke@435 1636 }
duke@435 1637
duke@435 1638 bool TypeLong::empty(void) const {
duke@435 1639 return _lo > _hi;
duke@435 1640 }
duke@435 1641
duke@435 1642 //=============================================================================
duke@435 1643 // Convenience common pre-built types.
duke@435 1644 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1645 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1646 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1647 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1648 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1649 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1650 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1651 const TypeTuple *TypeTuple::START_I2C;
duke@435 1652 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1653 const TypeTuple *TypeTuple::LONG_PAIR;
rbackman@5791 1654 const TypeTuple *TypeTuple::INT_CC_PAIR;
duke@435 1655
duke@435 1656
duke@435 1657 //------------------------------make-------------------------------------------
duke@435 1658 // Make a TypeTuple from the range of a method signature
duke@435 1659 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1660 ciType* return_type = sig->return_type();
duke@435 1661 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1662 const Type **field_array = fields(total_fields);
duke@435 1663 switch (return_type->basic_type()) {
duke@435 1664 case T_LONG:
duke@435 1665 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1666 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1667 break;
duke@435 1668 case T_DOUBLE:
duke@435 1669 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1670 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1671 break;
duke@435 1672 case T_OBJECT:
duke@435 1673 case T_ARRAY:
duke@435 1674 case T_BOOLEAN:
duke@435 1675 case T_CHAR:
duke@435 1676 case T_FLOAT:
duke@435 1677 case T_BYTE:
duke@435 1678 case T_SHORT:
duke@435 1679 case T_INT:
duke@435 1680 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1681 break;
duke@435 1682 case T_VOID:
duke@435 1683 break;
duke@435 1684 default:
duke@435 1685 ShouldNotReachHere();
duke@435 1686 }
duke@435 1687 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1688 }
duke@435 1689
duke@435 1690 // Make a TypeTuple from the domain of a method signature
duke@435 1691 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1692 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1693
duke@435 1694 uint pos = TypeFunc::Parms;
duke@435 1695 const Type **field_array;
duke@435 1696 if (recv != NULL) {
duke@435 1697 total_fields++;
duke@435 1698 field_array = fields(total_fields);
duke@435 1699 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1700 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1701 } else {
duke@435 1702 field_array = fields(total_fields);
duke@435 1703 }
duke@435 1704
duke@435 1705 int i = 0;
duke@435 1706 while (pos < total_fields) {
duke@435 1707 ciType* type = sig->type_at(i);
duke@435 1708
duke@435 1709 switch (type->basic_type()) {
duke@435 1710 case T_LONG:
duke@435 1711 field_array[pos++] = TypeLong::LONG;
duke@435 1712 field_array[pos++] = Type::HALF;
duke@435 1713 break;
duke@435 1714 case T_DOUBLE:
duke@435 1715 field_array[pos++] = Type::DOUBLE;
duke@435 1716 field_array[pos++] = Type::HALF;
duke@435 1717 break;
duke@435 1718 case T_OBJECT:
duke@435 1719 case T_ARRAY:
duke@435 1720 case T_BOOLEAN:
duke@435 1721 case T_CHAR:
duke@435 1722 case T_FLOAT:
duke@435 1723 case T_BYTE:
duke@435 1724 case T_SHORT:
duke@435 1725 case T_INT:
duke@435 1726 field_array[pos++] = get_const_type(type);
duke@435 1727 break;
duke@435 1728 default:
duke@435 1729 ShouldNotReachHere();
duke@435 1730 }
duke@435 1731 i++;
duke@435 1732 }
duke@435 1733 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1734 }
duke@435 1735
duke@435 1736 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1737 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1738 }
duke@435 1739
duke@435 1740 //------------------------------fields-----------------------------------------
duke@435 1741 // Subroutine call type with space allocated for argument types
duke@435 1742 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1743 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1744 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1745 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1746 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1747 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1748 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1749
duke@435 1750 return flds;
duke@435 1751 }
duke@435 1752
duke@435 1753 //------------------------------meet-------------------------------------------
duke@435 1754 // Compute the MEET of two types. It returns a new Type object.
duke@435 1755 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1756 // Perform a fast test for common case; meeting the same types together.
duke@435 1757 if( this == t ) return this; // Meeting same type-rep?
duke@435 1758
duke@435 1759 // Current "this->_base" is Tuple
duke@435 1760 switch (t->base()) { // switch on original type
duke@435 1761
duke@435 1762 case Bottom: // Ye Olde Default
duke@435 1763 return t;
duke@435 1764
duke@435 1765 default: // All else is a mistake
duke@435 1766 typerr(t);
duke@435 1767
duke@435 1768 case Tuple: { // Meeting 2 signatures?
duke@435 1769 const TypeTuple *x = t->is_tuple();
duke@435 1770 assert( _cnt == x->_cnt, "" );
duke@435 1771 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1772 for( uint i=0; i<_cnt; i++ )
duke@435 1773 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1774 return TypeTuple::make(_cnt,fields);
duke@435 1775 }
duke@435 1776 case Top:
duke@435 1777 break;
duke@435 1778 }
duke@435 1779 return this; // Return the double constant
duke@435 1780 }
duke@435 1781
duke@435 1782 //------------------------------xdual------------------------------------------
duke@435 1783 // Dual: compute field-by-field dual
duke@435 1784 const Type *TypeTuple::xdual() const {
duke@435 1785 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1786 for( uint i=0; i<_cnt; i++ )
duke@435 1787 fields[i] = _fields[i]->dual();
duke@435 1788 return new TypeTuple(_cnt,fields);
duke@435 1789 }
duke@435 1790
duke@435 1791 //------------------------------eq---------------------------------------------
duke@435 1792 // Structural equality check for Type representations
duke@435 1793 bool TypeTuple::eq( const Type *t ) const {
duke@435 1794 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1795 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1796 for (uint i = 0; i < _cnt; i++)
duke@435 1797 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1798 return false; // Missed
duke@435 1799 return true;
duke@435 1800 }
duke@435 1801
duke@435 1802 //------------------------------hash-------------------------------------------
duke@435 1803 // Type-specific hashing function.
duke@435 1804 int TypeTuple::hash(void) const {
duke@435 1805 intptr_t sum = _cnt;
duke@435 1806 for( uint i=0; i<_cnt; i++ )
duke@435 1807 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1808 return sum;
duke@435 1809 }
duke@435 1810
duke@435 1811 //------------------------------dump2------------------------------------------
duke@435 1812 // Dump signature Type
duke@435 1813 #ifndef PRODUCT
duke@435 1814 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1815 st->print("{");
duke@435 1816 if( !depth || d[this] ) { // Check for recursive print
duke@435 1817 st->print("...}");
duke@435 1818 return;
duke@435 1819 }
duke@435 1820 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1821 if( _cnt ) {
duke@435 1822 uint i;
duke@435 1823 for( i=0; i<_cnt-1; i++ ) {
duke@435 1824 st->print("%d:", i);
duke@435 1825 _fields[i]->dump2(d, depth-1, st);
duke@435 1826 st->print(", ");
duke@435 1827 }
duke@435 1828 st->print("%d:", i);
duke@435 1829 _fields[i]->dump2(d, depth-1, st);
duke@435 1830 }
duke@435 1831 st->print("}");
duke@435 1832 }
duke@435 1833 #endif
duke@435 1834
duke@435 1835 //------------------------------singleton--------------------------------------
duke@435 1836 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1837 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1838 // or a single symbol.
duke@435 1839 bool TypeTuple::singleton(void) const {
duke@435 1840 return false; // Never a singleton
duke@435 1841 }
duke@435 1842
duke@435 1843 bool TypeTuple::empty(void) const {
duke@435 1844 for( uint i=0; i<_cnt; i++ ) {
duke@435 1845 if (_fields[i]->empty()) return true;
duke@435 1846 }
duke@435 1847 return false;
duke@435 1848 }
duke@435 1849
duke@435 1850 //=============================================================================
duke@435 1851 // Convenience common pre-built types.
duke@435 1852
duke@435 1853 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1854 // Certain normalizations keep us sane when comparing types.
duke@435 1855 // We do not want arrayOop variables to differ only by the wideness
duke@435 1856 // of their index types. Pick minimum wideness, since that is the
duke@435 1857 // forced wideness of small ranges anyway.
duke@435 1858 if (size->_widen != Type::WidenMin)
duke@435 1859 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1860 else
duke@435 1861 return size;
duke@435 1862 }
duke@435 1863
duke@435 1864 //------------------------------make-------------------------------------------
vlivanov@5658 1865 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
coleenp@548 1866 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1867 elem = elem->make_narrowoop();
coleenp@548 1868 }
duke@435 1869 size = normalize_array_size(size);
vlivanov@5658 1870 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
duke@435 1871 }
duke@435 1872
duke@435 1873 //------------------------------meet-------------------------------------------
duke@435 1874 // Compute the MEET of two types. It returns a new Type object.
duke@435 1875 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1876 // Perform a fast test for common case; meeting the same types together.
duke@435 1877 if( this == t ) return this; // Meeting same type-rep?
duke@435 1878
duke@435 1879 // Current "this->_base" is Ary
duke@435 1880 switch (t->base()) { // switch on original type
duke@435 1881
duke@435 1882 case Bottom: // Ye Olde Default
duke@435 1883 return t;
duke@435 1884
duke@435 1885 default: // All else is a mistake
duke@435 1886 typerr(t);
duke@435 1887
duke@435 1888 case Array: { // Meeting 2 arrays?
duke@435 1889 const TypeAry *a = t->is_ary();
duke@435 1890 return TypeAry::make(_elem->meet(a->_elem),
vlivanov@5658 1891 _size->xmeet(a->_size)->is_int(),
vlivanov@5658 1892 _stable & a->_stable);
duke@435 1893 }
duke@435 1894 case Top:
duke@435 1895 break;
duke@435 1896 }
duke@435 1897 return this; // Return the double constant
duke@435 1898 }
duke@435 1899
duke@435 1900 //------------------------------xdual------------------------------------------
duke@435 1901 // Dual: compute field-by-field dual
duke@435 1902 const Type *TypeAry::xdual() const {
duke@435 1903 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1904 size_dual = normalize_array_size(size_dual);
vlivanov@5658 1905 return new TypeAry(_elem->dual(), size_dual, !_stable);
duke@435 1906 }
duke@435 1907
duke@435 1908 //------------------------------eq---------------------------------------------
duke@435 1909 // Structural equality check for Type representations
duke@435 1910 bool TypeAry::eq( const Type *t ) const {
duke@435 1911 const TypeAry *a = (const TypeAry*)t;
duke@435 1912 return _elem == a->_elem &&
vlivanov@5658 1913 _stable == a->_stable &&
duke@435 1914 _size == a->_size;
duke@435 1915 }
duke@435 1916
duke@435 1917 //------------------------------hash-------------------------------------------
duke@435 1918 // Type-specific hashing function.
duke@435 1919 int TypeAry::hash(void) const {
vlivanov@5658 1920 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
duke@435 1921 }
duke@435 1922
kvn@1255 1923 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1924 #ifdef ASSERT
kvn@1255 1925 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1926 const TypeAry* t_ary = t->is_ary();
kvn@1255 1927 if (t_ary) {
kvn@1255 1928 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1929 }
kvn@1255 1930 return false;
kvn@1255 1931 }
kvn@1255 1932 #endif
kvn@1255 1933
duke@435 1934 //------------------------------dump2------------------------------------------
duke@435 1935 #ifndef PRODUCT
duke@435 1936 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
vlivanov@5658 1937 if (_stable) st->print("stable:");
duke@435 1938 _elem->dump2(d, depth, st);
duke@435 1939 st->print("[");
duke@435 1940 _size->dump2(d, depth, st);
duke@435 1941 st->print("]");
duke@435 1942 }
duke@435 1943 #endif
duke@435 1944
duke@435 1945 //------------------------------singleton--------------------------------------
duke@435 1946 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1947 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1948 // or a single symbol.
duke@435 1949 bool TypeAry::singleton(void) const {
duke@435 1950 return false; // Never a singleton
duke@435 1951 }
duke@435 1952
duke@435 1953 bool TypeAry::empty(void) const {
duke@435 1954 return _elem->empty() || _size->empty();
duke@435 1955 }
duke@435 1956
duke@435 1957 //--------------------------ary_must_be_exact----------------------------------
duke@435 1958 bool TypeAry::ary_must_be_exact() const {
duke@435 1959 if (!UseExactTypes) return false;
duke@435 1960 // This logic looks at the element type of an array, and returns true
duke@435 1961 // if the element type is either a primitive or a final instance class.
duke@435 1962 // In such cases, an array built on this ary must have no subclasses.
duke@435 1963 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1964 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1965 const TypeOopPtr* toop = NULL;
kvn@656 1966 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1967 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1968 } else {
coleenp@548 1969 toop = _elem->isa_oopptr();
coleenp@548 1970 }
duke@435 1971 if (!toop) return true; // a primitive type, like int
duke@435 1972 ciKlass* tklass = toop->klass();
duke@435 1973 if (tklass == NULL) return false; // unloaded class
duke@435 1974 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1975 const TypeInstPtr* tinst;
coleenp@548 1976 if (_elem->isa_narrowoop())
kvn@656 1977 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1978 else
coleenp@548 1979 tinst = _elem->isa_instptr();
kvn@656 1980 if (tinst)
kvn@656 1981 return tklass->as_instance_klass()->is_final();
coleenp@548 1982 const TypeAryPtr* tap;
coleenp@548 1983 if (_elem->isa_narrowoop())
kvn@656 1984 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1985 else
coleenp@548 1986 tap = _elem->isa_aryptr();
kvn@656 1987 if (tap)
kvn@656 1988 return tap->ary()->ary_must_be_exact();
duke@435 1989 return false;
duke@435 1990 }
duke@435 1991
kvn@3882 1992 //==============================TypeVect=======================================
kvn@3882 1993 // Convenience common pre-built types.
kvn@3882 1994 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 1995 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 1996 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 1997 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 1998
kvn@3882 1999 //------------------------------make-------------------------------------------
kvn@3882 2000 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 2001 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 2002 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 2003 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 2004 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 2005 int size = length * type2aelembytes(elem_bt);
kvn@3882 2006 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 2007 case Op_VecS:
kvn@3882 2008 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
kvn@3882 2009 case Op_VecD:
kvn@3882 2010 case Op_RegD:
kvn@3882 2011 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 2012 case Op_VecX:
kvn@3882 2013 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 2014 case Op_VecY:
kvn@3882 2015 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 2016 }
kvn@3882 2017 ShouldNotReachHere();
kvn@3882 2018 return NULL;
kvn@3882 2019 }
kvn@3882 2020
kvn@3882 2021 //------------------------------meet-------------------------------------------
kvn@3882 2022 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 2023 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 2024 // Perform a fast test for common case; meeting the same types together.
kvn@3882 2025 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 2026
kvn@3882 2027 // Current "this->_base" is Vector
kvn@3882 2028 switch (t->base()) { // switch on original type
kvn@3882 2029
kvn@3882 2030 case Bottom: // Ye Olde Default
kvn@3882 2031 return t;
kvn@3882 2032
kvn@3882 2033 default: // All else is a mistake
kvn@3882 2034 typerr(t);
kvn@3882 2035
kvn@3882 2036 case VectorS:
kvn@3882 2037 case VectorD:
kvn@3882 2038 case VectorX:
kvn@3882 2039 case VectorY: { // Meeting 2 vectors?
kvn@3882 2040 const TypeVect* v = t->is_vect();
kvn@3882 2041 assert( base() == v->base(), "");
kvn@3882 2042 assert(length() == v->length(), "");
kvn@3882 2043 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 2044 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 2045 }
kvn@3882 2046 case Top:
kvn@3882 2047 break;
kvn@3882 2048 }
kvn@3882 2049 return this;
kvn@3882 2050 }
kvn@3882 2051
kvn@3882 2052 //------------------------------xdual------------------------------------------
kvn@3882 2053 // Dual: compute field-by-field dual
kvn@3882 2054 const Type *TypeVect::xdual() const {
kvn@3882 2055 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 2056 }
kvn@3882 2057
kvn@3882 2058 //------------------------------eq---------------------------------------------
kvn@3882 2059 // Structural equality check for Type representations
kvn@3882 2060 bool TypeVect::eq(const Type *t) const {
kvn@3882 2061 const TypeVect *v = t->is_vect();
kvn@3882 2062 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2063 }
kvn@3882 2064
kvn@3882 2065 //------------------------------hash-------------------------------------------
kvn@3882 2066 // Type-specific hashing function.
kvn@3882 2067 int TypeVect::hash(void) const {
kvn@3882 2068 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2069 }
kvn@3882 2070
kvn@3882 2071 //------------------------------singleton--------------------------------------
kvn@3882 2072 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2073 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2074 // constant value (when vector is created with Replicate code).
kvn@3882 2075 bool TypeVect::singleton(void) const {
kvn@3882 2076 // There is no Con node for vectors yet.
kvn@3882 2077 // return _elem->singleton();
kvn@3882 2078 return false;
kvn@3882 2079 }
kvn@3882 2080
kvn@3882 2081 bool TypeVect::empty(void) const {
kvn@3882 2082 return _elem->empty();
kvn@3882 2083 }
kvn@3882 2084
kvn@3882 2085 //------------------------------dump2------------------------------------------
kvn@3882 2086 #ifndef PRODUCT
kvn@3882 2087 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2088 switch (base()) {
kvn@3882 2089 case VectorS:
kvn@3882 2090 st->print("vectors["); break;
kvn@3882 2091 case VectorD:
kvn@3882 2092 st->print("vectord["); break;
kvn@3882 2093 case VectorX:
kvn@3882 2094 st->print("vectorx["); break;
kvn@3882 2095 case VectorY:
kvn@3882 2096 st->print("vectory["); break;
kvn@3882 2097 default:
kvn@3882 2098 ShouldNotReachHere();
kvn@3882 2099 }
kvn@3882 2100 st->print("%d]:{", _length);
kvn@3882 2101 _elem->dump2(d, depth, st);
kvn@3882 2102 st->print("}");
kvn@3882 2103 }
kvn@3882 2104 #endif
kvn@3882 2105
kvn@3882 2106
duke@435 2107 //=============================================================================
duke@435 2108 // Convenience common pre-built types.
duke@435 2109 const TypePtr *TypePtr::NULL_PTR;
duke@435 2110 const TypePtr *TypePtr::NOTNULL;
duke@435 2111 const TypePtr *TypePtr::BOTTOM;
duke@435 2112
duke@435 2113 //------------------------------meet-------------------------------------------
duke@435 2114 // Meet over the PTR enum
duke@435 2115 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2116 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2117 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2118 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2119 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2120 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2121 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2122 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2123 };
duke@435 2124
duke@435 2125 //------------------------------make-------------------------------------------
duke@435 2126 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2127 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2128 }
duke@435 2129
duke@435 2130 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2131 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2132 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2133 if( ptr == _ptr ) return this;
duke@435 2134 return make(_base, ptr, _offset);
duke@435 2135 }
duke@435 2136
duke@435 2137 //------------------------------get_con----------------------------------------
duke@435 2138 intptr_t TypePtr::get_con() const {
duke@435 2139 assert( _ptr == Null, "" );
duke@435 2140 return _offset;
duke@435 2141 }
duke@435 2142
duke@435 2143 //------------------------------meet-------------------------------------------
duke@435 2144 // Compute the MEET of two types. It returns a new Type object.
duke@435 2145 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2146 // Perform a fast test for common case; meeting the same types together.
duke@435 2147 if( this == t ) return this; // Meeting same type-rep?
duke@435 2148
duke@435 2149 // Current "this->_base" is AnyPtr
duke@435 2150 switch (t->base()) { // switch on original type
duke@435 2151 case Int: // Mixing ints & oops happens when javac
duke@435 2152 case Long: // reuses local variables
duke@435 2153 case FloatTop:
duke@435 2154 case FloatCon:
duke@435 2155 case FloatBot:
duke@435 2156 case DoubleTop:
duke@435 2157 case DoubleCon:
duke@435 2158 case DoubleBot:
coleenp@548 2159 case NarrowOop:
roland@4159 2160 case NarrowKlass:
duke@435 2161 case Bottom: // Ye Olde Default
duke@435 2162 return Type::BOTTOM;
duke@435 2163 case Top:
duke@435 2164 return this;
duke@435 2165
duke@435 2166 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2167 const TypePtr *tp = t->is_ptr();
duke@435 2168 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2169 }
duke@435 2170 case RawPtr: // For these, flip the call around to cut down
duke@435 2171 case OopPtr:
duke@435 2172 case InstPtr: // on the cases I have to handle.
coleenp@4037 2173 case AryPtr:
coleenp@4037 2174 case MetadataPtr:
duke@435 2175 case KlassPtr:
duke@435 2176 return t->xmeet(this); // Call in reverse direction
duke@435 2177 default: // All else is a mistake
duke@435 2178 typerr(t);
duke@435 2179
duke@435 2180 }
duke@435 2181 return this;
duke@435 2182 }
duke@435 2183
duke@435 2184 //------------------------------meet_offset------------------------------------
duke@435 2185 int TypePtr::meet_offset( int offset ) const {
duke@435 2186 // Either is 'TOP' offset? Return the other offset!
duke@435 2187 if( _offset == OffsetTop ) return offset;
duke@435 2188 if( offset == OffsetTop ) return _offset;
duke@435 2189 // If either is different, return 'BOTTOM' offset
duke@435 2190 if( _offset != offset ) return OffsetBot;
duke@435 2191 return _offset;
duke@435 2192 }
duke@435 2193
duke@435 2194 //------------------------------dual_offset------------------------------------
duke@435 2195 int TypePtr::dual_offset( ) const {
duke@435 2196 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2197 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2198 return _offset; // Map everything else into self
duke@435 2199 }
duke@435 2200
duke@435 2201 //------------------------------xdual------------------------------------------
duke@435 2202 // Dual: compute field-by-field dual
duke@435 2203 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2204 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2205 };
duke@435 2206 const Type *TypePtr::xdual() const {
duke@435 2207 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2208 }
duke@435 2209
kvn@741 2210 //------------------------------xadd_offset------------------------------------
kvn@741 2211 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2212 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2213 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2214 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2215 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2216 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2217 offset += (intptr_t)_offset;
kvn@741 2218 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2219
kvn@741 2220 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2221 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2222
kvn@741 2223 return (int)offset; // Sum valid offsets
kvn@741 2224 }
kvn@741 2225
duke@435 2226 //------------------------------add_offset-------------------------------------
kvn@741 2227 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2228 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2229 }
duke@435 2230
duke@435 2231 //------------------------------eq---------------------------------------------
duke@435 2232 // Structural equality check for Type representations
duke@435 2233 bool TypePtr::eq( const Type *t ) const {
duke@435 2234 const TypePtr *a = (const TypePtr*)t;
duke@435 2235 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2236 }
duke@435 2237
duke@435 2238 //------------------------------hash-------------------------------------------
duke@435 2239 // Type-specific hashing function.
duke@435 2240 int TypePtr::hash(void) const {
duke@435 2241 return _ptr + _offset;
duke@435 2242 }
duke@435 2243
duke@435 2244 //------------------------------dump2------------------------------------------
duke@435 2245 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2246 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2247 };
duke@435 2248
duke@435 2249 #ifndef PRODUCT
duke@435 2250 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2251 if( _ptr == Null ) st->print("NULL");
duke@435 2252 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2253 if( _offset == OffsetTop ) st->print("+top");
duke@435 2254 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2255 else if( _offset ) st->print("+%d", _offset);
duke@435 2256 }
duke@435 2257 #endif
duke@435 2258
duke@435 2259 //------------------------------singleton--------------------------------------
duke@435 2260 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2261 // constants
duke@435 2262 bool TypePtr::singleton(void) const {
duke@435 2263 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2264 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2265 }
duke@435 2266
duke@435 2267 bool TypePtr::empty(void) const {
duke@435 2268 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2269 }
duke@435 2270
duke@435 2271 //=============================================================================
duke@435 2272 // Convenience common pre-built types.
duke@435 2273 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2274 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2275
duke@435 2276 //------------------------------make-------------------------------------------
duke@435 2277 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2278 assert( ptr != Constant, "what is the constant?" );
duke@435 2279 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2280 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2281 }
duke@435 2282
duke@435 2283 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2284 assert( bits, "Use TypePtr for NULL" );
duke@435 2285 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2286 }
duke@435 2287
duke@435 2288 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2289 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2290 assert( ptr != Constant, "what is the constant?" );
duke@435 2291 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2292 assert( _bits==0, "Why cast a constant address?");
duke@435 2293 if( ptr == _ptr ) return this;
duke@435 2294 return make(ptr);
duke@435 2295 }
duke@435 2296
duke@435 2297 //------------------------------get_con----------------------------------------
duke@435 2298 intptr_t TypeRawPtr::get_con() const {
duke@435 2299 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2300 return (intptr_t)_bits;
duke@435 2301 }
duke@435 2302
duke@435 2303 //------------------------------meet-------------------------------------------
duke@435 2304 // Compute the MEET of two types. It returns a new Type object.
duke@435 2305 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2306 // Perform a fast test for common case; meeting the same types together.
duke@435 2307 if( this == t ) return this; // Meeting same type-rep?
duke@435 2308
duke@435 2309 // Current "this->_base" is RawPtr
duke@435 2310 switch( t->base() ) { // switch on original type
duke@435 2311 case Bottom: // Ye Olde Default
duke@435 2312 return t;
duke@435 2313 case Top:
duke@435 2314 return this;
duke@435 2315 case AnyPtr: // Meeting to AnyPtrs
duke@435 2316 break;
duke@435 2317 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2318 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2319 enum PTR ptr = meet_ptr( tptr );
duke@435 2320 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2321 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2322 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2323 ptr = NotNull; // Fall down in lattice
duke@435 2324 }
duke@435 2325 return make( ptr );
duke@435 2326 }
duke@435 2327
duke@435 2328 case OopPtr:
duke@435 2329 case InstPtr:
coleenp@4037 2330 case AryPtr:
coleenp@4037 2331 case MetadataPtr:
duke@435 2332 case KlassPtr:
duke@435 2333 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2334 default: // All else is a mistake
duke@435 2335 typerr(t);
duke@435 2336 }
duke@435 2337
duke@435 2338 // Found an AnyPtr type vs self-RawPtr type
duke@435 2339 const TypePtr *tp = t->is_ptr();
duke@435 2340 switch (tp->ptr()) {
duke@435 2341 case TypePtr::TopPTR: return this;
duke@435 2342 case TypePtr::BotPTR: return t;
duke@435 2343 case TypePtr::Null:
duke@435 2344 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2345 return TypeRawPtr::BOTTOM;
duke@435 2346 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2347 case TypePtr::AnyNull:
duke@435 2348 if( _ptr == TypePtr::Constant) return this;
duke@435 2349 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2350 default: ShouldNotReachHere();
duke@435 2351 }
duke@435 2352 return this;
duke@435 2353 }
duke@435 2354
duke@435 2355 //------------------------------xdual------------------------------------------
duke@435 2356 // Dual: compute field-by-field dual
duke@435 2357 const Type *TypeRawPtr::xdual() const {
duke@435 2358 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2359 }
duke@435 2360
duke@435 2361 //------------------------------add_offset-------------------------------------
kvn@741 2362 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2363 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2364 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2365 if( offset == 0 ) return this; // No change
duke@435 2366 switch (_ptr) {
duke@435 2367 case TypePtr::TopPTR:
duke@435 2368 case TypePtr::BotPTR:
duke@435 2369 case TypePtr::NotNull:
duke@435 2370 return this;
duke@435 2371 case TypePtr::Null:
kvn@2435 2372 case TypePtr::Constant: {
kvn@2435 2373 address bits = _bits+offset;
kvn@2435 2374 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2375 return make( bits );
kvn@2435 2376 }
duke@435 2377 default: ShouldNotReachHere();
duke@435 2378 }
duke@435 2379 return NULL; // Lint noise
duke@435 2380 }
duke@435 2381
duke@435 2382 //------------------------------eq---------------------------------------------
duke@435 2383 // Structural equality check for Type representations
duke@435 2384 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2385 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2386 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2387 }
duke@435 2388
duke@435 2389 //------------------------------hash-------------------------------------------
duke@435 2390 // Type-specific hashing function.
duke@435 2391 int TypeRawPtr::hash(void) const {
duke@435 2392 return (intptr_t)_bits + TypePtr::hash();
duke@435 2393 }
duke@435 2394
duke@435 2395 //------------------------------dump2------------------------------------------
duke@435 2396 #ifndef PRODUCT
duke@435 2397 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2398 if( _ptr == Constant )
duke@435 2399 st->print(INTPTR_FORMAT, _bits);
duke@435 2400 else
duke@435 2401 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2402 }
duke@435 2403 #endif
duke@435 2404
duke@435 2405 //=============================================================================
duke@435 2406 // Convenience common pre-built type.
duke@435 2407 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2408
kvn@598 2409 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2410 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2411 : TypePtr(t, ptr, offset),
kvn@598 2412 _const_oop(o), _klass(k),
kvn@598 2413 _klass_is_exact(xk),
kvn@598 2414 _is_ptr_to_narrowoop(false),
roland@4159 2415 _is_ptr_to_narrowklass(false),
kvn@5110 2416 _is_ptr_to_boxed_value(false),
kvn@598 2417 _instance_id(instance_id) {
kvn@5110 2418 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
kvn@5110 2419 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
kvn@5110 2420 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
kvn@5110 2421 }
kvn@598 2422 #ifdef _LP64
roland@4159 2423 if (_offset != 0) {
coleenp@4037 2424 if (_offset == oopDesc::klass_offset_in_bytes()) {
ehelin@5694 2425 _is_ptr_to_narrowklass = UseCompressedClassPointers;
coleenp@4037 2426 } else if (klass() == NULL) {
coleenp@4037 2427 // Array with unknown body type
kvn@598 2428 assert(this->isa_aryptr(), "only arrays without klass");
roland@4159 2429 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2430 } else if (this->isa_aryptr()) {
roland@4159 2431 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
kvn@598 2432 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2433 } else if (klass()->is_instance_klass()) {
kvn@598 2434 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2435 ciField* field = NULL;
kvn@598 2436 if (this->isa_klassptr()) {
never@2658 2437 // Perm objects don't use compressed references
kvn@598 2438 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2439 // unsafe access
roland@4159 2440 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2441 } else { // exclude unsafe ops
kvn@598 2442 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2443
never@2658 2444 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2445 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2446 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2447 // Special hidden fields from the Class.
never@2658 2448 assert(this->isa_instptr(), "must be an instance ptr.");
coleenp@4037 2449 _is_ptr_to_narrowoop = false;
never@2658 2450 } else if (klass() == ciEnv::current()->Class_klass() &&
coleenp@4047 2451 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
never@2658 2452 // Static fields
never@2658 2453 assert(o != NULL, "must be constant");
never@2658 2454 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2455 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2456 assert(field != NULL, "missing field");
kvn@598 2457 BasicType basic_elem_type = field->layout_type();
roland@4159 2458 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2459 basic_elem_type == T_ARRAY);
kvn@598 2460 } else {
never@2658 2461 // Instance fields which contains a compressed oop references.
never@2658 2462 field = ik->get_field_by_offset(_offset, false);
never@2658 2463 if (field != NULL) {
never@2658 2464 BasicType basic_elem_type = field->layout_type();
roland@4159 2465 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2466 basic_elem_type == T_ARRAY);
never@2658 2467 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2468 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2469 // that it does not affect alias type.
roland@4159 2470 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2471 } else {
never@2658 2472 // Type for the copy start in LibraryCallKit::inline_native_clone().
roland@4159 2473 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2474 }
kvn@598 2475 }
kvn@598 2476 }
kvn@598 2477 }
kvn@598 2478 }
kvn@598 2479 #endif
kvn@598 2480 }
kvn@598 2481
duke@435 2482 //------------------------------make-------------------------------------------
duke@435 2483 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
kvn@1393 2484 int offset, int instance_id) {
duke@435 2485 assert(ptr != Constant, "no constant generic pointers");
coleenp@4037 2486 ciKlass* k = Compile::current()->env()->Object_klass();
duke@435 2487 bool xk = false;
duke@435 2488 ciObject* o = NULL;
kvn@1393 2489 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
duke@435 2490 }
duke@435 2491
duke@435 2492
duke@435 2493 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2494 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2495 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2496 if( ptr == _ptr ) return this;
kvn@1427 2497 return make(ptr, _offset, _instance_id);
duke@435 2498 }
duke@435 2499
kvn@682 2500 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2501 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2502 // There are no instances of a general oop.
duke@435 2503 // Return self unchanged.
duke@435 2504 return this;
duke@435 2505 }
duke@435 2506
duke@435 2507 //-----------------------------cast_to_exactness-------------------------------
duke@435 2508 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2509 // There is no such thing as an exact general oop.
duke@435 2510 // Return self unchanged.
duke@435 2511 return this;
duke@435 2512 }
duke@435 2513
duke@435 2514
duke@435 2515 //------------------------------as_klass_type----------------------------------
duke@435 2516 // Return the klass type corresponding to this instance or array type.
duke@435 2517 // It is the type that is loaded from an object of this type.
duke@435 2518 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2519 ciKlass* k = klass();
duke@435 2520 bool xk = klass_is_exact();
coleenp@4037 2521 if (k == NULL)
duke@435 2522 return TypeKlassPtr::OBJECT;
duke@435 2523 else
duke@435 2524 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2525 }
duke@435 2526
duke@435 2527
duke@435 2528 //------------------------------meet-------------------------------------------
duke@435 2529 // Compute the MEET of two types. It returns a new Type object.
duke@435 2530 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2531 // Perform a fast test for common case; meeting the same types together.
duke@435 2532 if( this == t ) return this; // Meeting same type-rep?
duke@435 2533
duke@435 2534 // Current "this->_base" is OopPtr
duke@435 2535 switch (t->base()) { // switch on original type
duke@435 2536
duke@435 2537 case Int: // Mixing ints & oops happens when javac
duke@435 2538 case Long: // reuses local variables
duke@435 2539 case FloatTop:
duke@435 2540 case FloatCon:
duke@435 2541 case FloatBot:
duke@435 2542 case DoubleTop:
duke@435 2543 case DoubleCon:
duke@435 2544 case DoubleBot:
kvn@728 2545 case NarrowOop:
roland@4159 2546 case NarrowKlass:
duke@435 2547 case Bottom: // Ye Olde Default
duke@435 2548 return Type::BOTTOM;
duke@435 2549 case Top:
duke@435 2550 return this;
duke@435 2551
duke@435 2552 default: // All else is a mistake
duke@435 2553 typerr(t);
duke@435 2554
duke@435 2555 case RawPtr:
coleenp@4037 2556 case MetadataPtr:
coleenp@4037 2557 case KlassPtr:
duke@435 2558 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2559
duke@435 2560 case AnyPtr: {
duke@435 2561 // Found an AnyPtr type vs self-OopPtr type
duke@435 2562 const TypePtr *tp = t->is_ptr();
duke@435 2563 int offset = meet_offset(tp->offset());
duke@435 2564 PTR ptr = meet_ptr(tp->ptr());
duke@435 2565 switch (tp->ptr()) {
duke@435 2566 case Null:
duke@435 2567 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2568 // else fall through:
duke@435 2569 case TopPTR:
kvn@1427 2570 case AnyNull: {
kvn@1427 2571 int instance_id = meet_instance_id(InstanceTop);
kvn@1427 2572 return make(ptr, offset, instance_id);
kvn@1427 2573 }
duke@435 2574 case BotPTR:
duke@435 2575 case NotNull:
duke@435 2576 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2577 default: typerr(t);
duke@435 2578 }
duke@435 2579 }
duke@435 2580
duke@435 2581 case OopPtr: { // Meeting to other OopPtrs
duke@435 2582 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2583 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2584 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
duke@435 2585 }
duke@435 2586
duke@435 2587 case InstPtr: // For these, flip the call around to cut down
duke@435 2588 case AryPtr:
duke@435 2589 return t->xmeet(this); // Call in reverse direction
duke@435 2590
duke@435 2591 } // End of switch
duke@435 2592 return this; // Return the double constant
duke@435 2593 }
duke@435 2594
duke@435 2595
duke@435 2596 //------------------------------xdual------------------------------------------
duke@435 2597 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2598 const Type *TypeOopPtr::xdual() const {
coleenp@4037 2599 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
duke@435 2600 assert(const_oop() == NULL, "no constants here");
kvn@658 2601 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2602 }
duke@435 2603
duke@435 2604 //--------------------------make_from_klass_common-----------------------------
duke@435 2605 // Computes the element-type given a klass.
duke@435 2606 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2607 if (klass->is_instance_klass()) {
duke@435 2608 Compile* C = Compile::current();
duke@435 2609 Dependencies* deps = C->dependencies();
duke@435 2610 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2611 // Element is an instance
duke@435 2612 bool klass_is_exact = false;
duke@435 2613 if (klass->is_loaded()) {
duke@435 2614 // Try to set klass_is_exact.
duke@435 2615 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2616 klass_is_exact = ik->is_final();
duke@435 2617 if (!klass_is_exact && klass_change
duke@435 2618 && deps != NULL && UseUniqueSubclasses) {
duke@435 2619 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2620 if (sub != NULL) {
duke@435 2621 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2622 klass = ik = sub;
duke@435 2623 klass_is_exact = sub->is_final();
duke@435 2624 }
duke@435 2625 }
duke@435 2626 if (!klass_is_exact && try_for_exact
duke@435 2627 && deps != NULL && UseExactTypes) {
duke@435 2628 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2629 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2630 deps->assert_leaf_type(ik);
duke@435 2631 klass_is_exact = true;
duke@435 2632 }
duke@435 2633 }
duke@435 2634 }
duke@435 2635 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2636 } else if (klass->is_obj_array_klass()) {
duke@435 2637 // Element is an object array. Recursively call ourself.
duke@435 2638 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2639 bool xk = etype->klass_is_exact();
duke@435 2640 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2641 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2642 // are all not-null. This is not true in generally, as code can
duke@435 2643 // slam NULLs down in the subarrays.
duke@435 2644 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2645 return arr;
duke@435 2646 } else if (klass->is_type_array_klass()) {
duke@435 2647 // Element is an typeArray
duke@435 2648 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2649 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2650 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2651 // is not-null. That was not true in general.
duke@435 2652 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2653 return arr;
duke@435 2654 } else {
duke@435 2655 ShouldNotReachHere();
duke@435 2656 return NULL;
duke@435 2657 }
duke@435 2658 }
duke@435 2659
duke@435 2660 //------------------------------make_from_constant-----------------------------
duke@435 2661 // Make a java pointer from an oop constant
kvn@5110 2662 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
kvn@5110 2663 bool require_constant,
kvn@5110 2664 bool is_autobox_cache) {
kvn@5110 2665 assert(!o->is_null_object(), "null object not yet handled here.");
kvn@5110 2666 ciKlass* klass = o->klass();
kvn@5110 2667 if (klass->is_instance_klass()) {
kvn@5110 2668 // Element is an instance
kvn@5110 2669 if (require_constant) {
kvn@5110 2670 if (!o->can_be_constant()) return NULL;
kvn@5110 2671 } else if (!o->should_be_constant()) {
kvn@5110 2672 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
kvn@5110 2673 }
kvn@5110 2674 return TypeInstPtr::make(o);
kvn@5110 2675 } else if (klass->is_obj_array_klass()) {
kvn@5110 2676 // Element is an object array. Recursively call ourself.
kvn@5110 2677 const TypeOopPtr *etype =
coleenp@4037 2678 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
kvn@5110 2679 if (is_autobox_cache) {
kvn@5110 2680 // The pointers in the autobox arrays are always non-null.
kvn@5110 2681 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
kvn@5110 2682 }
kvn@5110 2683 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2684 // We used to pass NotNull in here, asserting that the sub-arrays
kvn@5110 2685 // are all not-null. This is not true in generally, as code can
kvn@5110 2686 // slam NULLs down in the subarrays.
kvn@5110 2687 if (require_constant) {
kvn@5110 2688 if (!o->can_be_constant()) return NULL;
kvn@5110 2689 } else if (!o->should_be_constant()) {
kvn@5110 2690 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2691 }
kvn@5110 2692 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, is_autobox_cache);
coleenp@4037 2693 return arr;
kvn@5110 2694 } else if (klass->is_type_array_klass()) {
kvn@5110 2695 // Element is an typeArray
coleenp@4037 2696 const Type* etype =
coleenp@4037 2697 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
kvn@5110 2698 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2699 // We used to pass NotNull in here, asserting that the array pointer
kvn@5110 2700 // is not-null. That was not true in general.
kvn@5110 2701 if (require_constant) {
kvn@5110 2702 if (!o->can_be_constant()) return NULL;
kvn@5110 2703 } else if (!o->should_be_constant()) {
kvn@5110 2704 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2705 }
coleenp@4037 2706 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2707 return arr;
duke@435 2708 }
duke@435 2709
twisti@3885 2710 fatal("unhandled object type");
duke@435 2711 return NULL;
duke@435 2712 }
duke@435 2713
duke@435 2714 //------------------------------get_con----------------------------------------
duke@435 2715 intptr_t TypeOopPtr::get_con() const {
duke@435 2716 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2717 assert( _offset >= 0, "" );
duke@435 2718
duke@435 2719 if (_offset != 0) {
duke@435 2720 // After being ported to the compiler interface, the compiler no longer
duke@435 2721 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2722 // to a handle at compile time. This handle is embedded in the generated
duke@435 2723 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2724 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2725 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2726 // but this assertion here is to help prevent its occurence.
duke@435 2727 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2728 ShouldNotReachHere();
duke@435 2729 }
duke@435 2730
jrose@1424 2731 return (intptr_t)const_oop()->constant_encoding();
duke@435 2732 }
duke@435 2733
duke@435 2734
duke@435 2735 //-----------------------------filter------------------------------------------
duke@435 2736 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2737 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2738
duke@435 2739 const Type* ft = join(kills);
duke@435 2740 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2741 const TypeInstPtr* ktip = kills->isa_instptr();
never@990 2742 const TypeKlassPtr* ftkp = ft->isa_klassptr();
never@990 2743 const TypeKlassPtr* ktkp = kills->isa_klassptr();
duke@435 2744
duke@435 2745 if (ft->empty()) {
duke@435 2746 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2747 // interface. This can happen because the bytecodes do not contain
duke@435 2748 // enough type info to distinguish a Java-level interface variable
duke@435 2749 // from a Java-level object variable. If we meet 2 classes which
duke@435 2750 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2751 // doesn't implement I, we have no way to tell if the result should
duke@435 2752 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2753 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2754 // uplift the type.
duke@435 2755 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2756 return kills; // Uplift to interface
never@990 2757 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
never@990 2758 return kills; // Uplift to interface
duke@435 2759
duke@435 2760 return Type::TOP; // Canonical empty value
duke@435 2761 }
duke@435 2762
duke@435 2763 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2764 // the join should report back the class. However, if we have a J/L/Object
duke@435 2765 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2766 // join report an interface back out. This isn't possible but happens
duke@435 2767 // because the type system doesn't interact well with interfaces.
duke@435 2768 if (ftip != NULL && ktip != NULL &&
duke@435 2769 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2770 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2771 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2772 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2773 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2774 }
kvn@1770 2775 // Interface klass type could be exact in opposite to interface type,
kvn@1770 2776 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
never@990 2777 if (ftkp != NULL && ktkp != NULL &&
never@990 2778 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
kvn@1770 2779 !ftkp->klass_is_exact() && // Keep exact interface klass
never@990 2780 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
never@990 2781 return ktkp->cast_to_ptr_type(ftkp->ptr());
never@990 2782 }
duke@435 2783
duke@435 2784 return ft;
duke@435 2785 }
duke@435 2786
duke@435 2787 //------------------------------eq---------------------------------------------
duke@435 2788 // Structural equality check for Type representations
duke@435 2789 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2790 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2791 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2792 _instance_id != a->_instance_id) return false;
duke@435 2793 ciObject* one = const_oop();
duke@435 2794 ciObject* two = a->const_oop();
duke@435 2795 if (one == NULL || two == NULL) {
duke@435 2796 return (one == two) && TypePtr::eq(t);
duke@435 2797 } else {
duke@435 2798 return one->equals(two) && TypePtr::eq(t);
duke@435 2799 }
duke@435 2800 }
duke@435 2801
duke@435 2802 //------------------------------hash-------------------------------------------
duke@435 2803 // Type-specific hashing function.
duke@435 2804 int TypeOopPtr::hash(void) const {
duke@435 2805 return
duke@435 2806 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2807 _klass_is_exact +
duke@435 2808 _instance_id +
duke@435 2809 TypePtr::hash();
duke@435 2810 }
duke@435 2811
duke@435 2812 //------------------------------dump2------------------------------------------
duke@435 2813 #ifndef PRODUCT
duke@435 2814 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2815 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2816 if( _klass_is_exact ) st->print(":exact");
duke@435 2817 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2818 switch( _offset ) {
duke@435 2819 case OffsetTop: st->print("+top"); break;
duke@435 2820 case OffsetBot: st->print("+any"); break;
duke@435 2821 case 0: break;
duke@435 2822 default: st->print("+%d",_offset); break;
duke@435 2823 }
kvn@658 2824 if (_instance_id == InstanceTop)
kvn@658 2825 st->print(",iid=top");
kvn@658 2826 else if (_instance_id != InstanceBot)
duke@435 2827 st->print(",iid=%d",_instance_id);
duke@435 2828 }
duke@435 2829 #endif
duke@435 2830
duke@435 2831 //------------------------------singleton--------------------------------------
duke@435 2832 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2833 // constants
duke@435 2834 bool TypeOopPtr::singleton(void) const {
duke@435 2835 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2836 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2837 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2838 }
duke@435 2839
duke@435 2840 //------------------------------add_offset-------------------------------------
kvn@741 2841 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
kvn@1427 2842 return make( _ptr, xadd_offset(offset), _instance_id);
duke@435 2843 }
duke@435 2844
kvn@658 2845 //------------------------------meet_instance_id--------------------------------
kvn@658 2846 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2847 // Either is 'TOP' instance? Return the other instance!
kvn@658 2848 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2849 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2850 // If either is different, return 'BOTTOM' instance
kvn@658 2851 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2852 return _instance_id;
duke@435 2853 }
duke@435 2854
kvn@658 2855 //------------------------------dual_instance_id--------------------------------
kvn@658 2856 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2857 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2858 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2859 return _instance_id; // Map everything else into self
kvn@658 2860 }
kvn@658 2861
kvn@658 2862
duke@435 2863 //=============================================================================
duke@435 2864 // Convenience common pre-built types.
duke@435 2865 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2866 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2867 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2868 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2869 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2870
duke@435 2871 //------------------------------TypeInstPtr-------------------------------------
duke@435 2872 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2873 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2874 assert(k != NULL &&
duke@435 2875 (k->is_loaded() || o == NULL),
duke@435 2876 "cannot have constants with non-loaded klass");
duke@435 2877 };
duke@435 2878
duke@435 2879 //------------------------------make-------------------------------------------
duke@435 2880 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2881 ciKlass* k,
duke@435 2882 bool xk,
duke@435 2883 ciObject* o,
duke@435 2884 int offset,
duke@435 2885 int instance_id) {
coleenp@4037 2886 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
duke@435 2887 // Either const_oop() is NULL or else ptr is Constant
duke@435 2888 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2889 "constant pointers must have a value supplied" );
duke@435 2890 // Ptr is never Null
duke@435 2891 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2892
kvn@682 2893 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2894 if (!UseExactTypes) xk = false;
duke@435 2895 if (ptr == Constant) {
duke@435 2896 // Note: This case includes meta-object constants, such as methods.
duke@435 2897 xk = true;
duke@435 2898 } else if (k->is_loaded()) {
duke@435 2899 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2900 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2901 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2902 }
duke@435 2903
duke@435 2904 // Now hash this baby
duke@435 2905 TypeInstPtr *result =
duke@435 2906 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2907
duke@435 2908 return result;
duke@435 2909 }
duke@435 2910
kvn@5110 2911 /**
kvn@5110 2912 * Create constant type for a constant boxed value
kvn@5110 2913 */
kvn@5110 2914 const Type* TypeInstPtr::get_const_boxed_value() const {
kvn@5110 2915 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
kvn@5110 2916 assert((const_oop() != NULL), "should be called only for constant object");
kvn@5110 2917 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
kvn@5110 2918 BasicType bt = constant.basic_type();
kvn@5110 2919 switch (bt) {
kvn@5110 2920 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
kvn@5110 2921 case T_INT: return TypeInt::make(constant.as_int());
kvn@5110 2922 case T_CHAR: return TypeInt::make(constant.as_char());
kvn@5110 2923 case T_BYTE: return TypeInt::make(constant.as_byte());
kvn@5110 2924 case T_SHORT: return TypeInt::make(constant.as_short());
kvn@5110 2925 case T_FLOAT: return TypeF::make(constant.as_float());
kvn@5110 2926 case T_DOUBLE: return TypeD::make(constant.as_double());
kvn@5110 2927 case T_LONG: return TypeLong::make(constant.as_long());
kvn@5110 2928 default: break;
kvn@5110 2929 }
kvn@5110 2930 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
kvn@5110 2931 return NULL;
kvn@5110 2932 }
duke@435 2933
duke@435 2934 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2935 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2936 if( ptr == _ptr ) return this;
duke@435 2937 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2938 // construction, _sig will show up on demand.
kvn@658 2939 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2940 }
duke@435 2941
duke@435 2942
duke@435 2943 //-----------------------------cast_to_exactness-------------------------------
duke@435 2944 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2945 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2946 if (!UseExactTypes) return this;
duke@435 2947 if (!_klass->is_loaded()) return this;
duke@435 2948 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2949 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2950 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2951 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2952 }
duke@435 2953
kvn@682 2954 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2955 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2956 if( instance_id == _instance_id ) return this;
kvn@682 2957 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2958 }
duke@435 2959
duke@435 2960 //------------------------------xmeet_unloaded---------------------------------
duke@435 2961 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2962 // Assume classes are different since called after check for same name/class-loader
duke@435 2963 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2964 int off = meet_offset(tinst->offset());
duke@435 2965 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 2966 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2967
duke@435 2968 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2969 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2970 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2971 //
duke@435 2972 // Meet unloaded class with java/lang/Object
duke@435 2973 //
duke@435 2974 // Meet
duke@435 2975 // | Unloaded Class
duke@435 2976 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2977 // ===================================================================
duke@435 2978 // TOP | ..........................Unloaded......................|
duke@435 2979 // AnyNull | U-AN |................Unloaded......................|
duke@435 2980 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2981 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2982 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2983 //
duke@435 2984 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2985 //
duke@435 2986 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
kvn@1427 2987 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
duke@435 2988 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2989 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2990 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2991 else { return TypeInstPtr::NOTNULL; }
duke@435 2992 }
duke@435 2993 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2994
duke@435 2995 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2996 }
duke@435 2997
duke@435 2998 // Both are unloaded, not the same class, not Object
duke@435 2999 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 3000 if( ptr != TypePtr::BotPTR ) {
duke@435 3001 return TypeInstPtr::NOTNULL;
duke@435 3002 }
duke@435 3003 return TypeInstPtr::BOTTOM;
duke@435 3004 }
duke@435 3005
duke@435 3006
duke@435 3007 //------------------------------meet-------------------------------------------
duke@435 3008 // Compute the MEET of two types. It returns a new Type object.
duke@435 3009 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 3010 // Perform a fast test for common case; meeting the same types together.
duke@435 3011 if( this == t ) return this; // Meeting same type-rep?
duke@435 3012
duke@435 3013 // Current "this->_base" is Pointer
duke@435 3014 switch (t->base()) { // switch on original type
duke@435 3015
duke@435 3016 case Int: // Mixing ints & oops happens when javac
duke@435 3017 case Long: // reuses local variables
duke@435 3018 case FloatTop:
duke@435 3019 case FloatCon:
duke@435 3020 case FloatBot:
duke@435 3021 case DoubleTop:
duke@435 3022 case DoubleCon:
duke@435 3023 case DoubleBot:
coleenp@548 3024 case NarrowOop:
roland@4159 3025 case NarrowKlass:
duke@435 3026 case Bottom: // Ye Olde Default
duke@435 3027 return Type::BOTTOM;
duke@435 3028 case Top:
duke@435 3029 return this;
duke@435 3030
duke@435 3031 default: // All else is a mistake
duke@435 3032 typerr(t);
duke@435 3033
coleenp@4037 3034 case MetadataPtr:
coleenp@4037 3035 case KlassPtr:
duke@435 3036 case RawPtr: return TypePtr::BOTTOM;
duke@435 3037
duke@435 3038 case AryPtr: { // All arrays inherit from Object class
duke@435 3039 const TypeAryPtr *tp = t->is_aryptr();
duke@435 3040 int offset = meet_offset(tp->offset());
duke@435 3041 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3042 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3043 switch (ptr) {
duke@435 3044 case TopPTR:
duke@435 3045 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3046 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 3047 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 3048 } else {
duke@435 3049 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3050 ptr = NotNull;
kvn@658 3051 instance_id = InstanceBot;
kvn@658 3052 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 3053 }
duke@435 3054 case Constant:
duke@435 3055 case NotNull:
duke@435 3056 case BotPTR: // Fall down to object klass
duke@435 3057 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3058 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 3059 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 3060 // then we can subclass in the Java class hierarchy.
duke@435 3061 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 3062 // that is, tp's array type is a subtype of my klass
kvn@1714 3063 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
kvn@1714 3064 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 3065 }
duke@435 3066 }
duke@435 3067 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 3068 // The meet falls down to Object class below centerline.
duke@435 3069 if( ptr == Constant )
duke@435 3070 ptr = NotNull;
kvn@658 3071 instance_id = InstanceBot;
kvn@658 3072 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 3073 default: typerr(t);
duke@435 3074 }
duke@435 3075 }
duke@435 3076
duke@435 3077 case OopPtr: { // Meeting to OopPtrs
duke@435 3078 // Found a OopPtr type vs self-InstPtr type
kvn@1393 3079 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3080 int offset = meet_offset(tp->offset());
duke@435 3081 PTR ptr = meet_ptr(tp->ptr());
duke@435 3082 switch (tp->ptr()) {
duke@435 3083 case TopPTR:
kvn@658 3084 case AnyNull: {
kvn@658 3085 int instance_id = meet_instance_id(InstanceTop);
duke@435 3086 return make(ptr, klass(), klass_is_exact(),
kvn@658 3087 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 3088 }
duke@435 3089 case NotNull:
kvn@1393 3090 case BotPTR: {
kvn@1393 3091 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3092 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3093 }
duke@435 3094 default: typerr(t);
duke@435 3095 }
duke@435 3096 }
duke@435 3097
duke@435 3098 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3099 // Found an AnyPtr type vs self-InstPtr type
duke@435 3100 const TypePtr *tp = t->is_ptr();
duke@435 3101 int offset = meet_offset(tp->offset());
duke@435 3102 PTR ptr = meet_ptr(tp->ptr());
duke@435 3103 switch (tp->ptr()) {
duke@435 3104 case Null:
duke@435 3105 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 3106 // else fall through to AnyNull
duke@435 3107 case TopPTR:
kvn@658 3108 case AnyNull: {
kvn@658 3109 int instance_id = meet_instance_id(InstanceTop);
duke@435 3110 return make( ptr, klass(), klass_is_exact(),
kvn@658 3111 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 3112 }
duke@435 3113 case NotNull:
duke@435 3114 case BotPTR:
duke@435 3115 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3116 default: typerr(t);
duke@435 3117 }
duke@435 3118 }
duke@435 3119
duke@435 3120 /*
duke@435 3121 A-top }
duke@435 3122 / | \ } Tops
duke@435 3123 B-top A-any C-top }
duke@435 3124 | / | \ | } Any-nulls
duke@435 3125 B-any | C-any }
duke@435 3126 | | |
duke@435 3127 B-con A-con C-con } constants; not comparable across classes
duke@435 3128 | | |
duke@435 3129 B-not | C-not }
duke@435 3130 | \ | / | } not-nulls
duke@435 3131 B-bot A-not C-bot }
duke@435 3132 \ | / } Bottoms
duke@435 3133 A-bot }
duke@435 3134 */
duke@435 3135
duke@435 3136 case InstPtr: { // Meeting 2 Oops?
duke@435 3137 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3138 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3139 int off = meet_offset( tinst->offset() );
duke@435 3140 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3141 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 3142
duke@435 3143 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3144 // If we have constants, then we created oops so classes are loaded
duke@435 3145 // and we can handle the constants further down. This case handles
duke@435 3146 // both-not-loaded or both-loaded classes
duke@435 3147 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 3148 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 3149 }
duke@435 3150
duke@435 3151 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3152 ciKlass* tinst_klass = tinst->klass();
duke@435 3153 ciKlass* this_klass = this->klass();
duke@435 3154 bool tinst_xk = tinst->klass_is_exact();
duke@435 3155 bool this_xk = this->klass_is_exact();
duke@435 3156 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3157 // One of these classes has not been loaded
duke@435 3158 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3159 #ifndef PRODUCT
duke@435 3160 if( PrintOpto && Verbose ) {
duke@435 3161 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3162 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3163 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3164 }
duke@435 3165 #endif
duke@435 3166 return unloaded_meet;
duke@435 3167 }
duke@435 3168
duke@435 3169 // Handle mixing oops and interfaces first.
duke@435 3170 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 3171 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3172 tinst_klass = this_klass;
duke@435 3173 this_klass = tmp;
duke@435 3174 bool tmp2 = tinst_xk;
duke@435 3175 tinst_xk = this_xk;
duke@435 3176 this_xk = tmp2;
duke@435 3177 }
duke@435 3178 if (tinst_klass->is_interface() &&
duke@435 3179 !(this_klass->is_interface() ||
duke@435 3180 // Treat java/lang/Object as an honorary interface,
duke@435 3181 // because we need a bottom for the interface hierarchy.
duke@435 3182 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3183 // Oop meets interface!
duke@435 3184
duke@435 3185 // See if the oop subtypes (implements) interface.
duke@435 3186 ciKlass *k;
duke@435 3187 bool xk;
duke@435 3188 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3189 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3190 // on whether we are both above the centerline or either is
duke@435 3191 // below the centerline. If we are on the centerline
duke@435 3192 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3193 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3194 // If we are keeping this_klass, keep its exactness too.
duke@435 3195 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3196 } else { // Does not implement, fall to Object
duke@435 3197 // Oop does not implement interface, so mixing falls to Object
duke@435 3198 // just like the verifier does (if both are above the
duke@435 3199 // centerline fall to interface)
duke@435 3200 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3201 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3202 // Watch out for Constant vs. AnyNull interface.
duke@435 3203 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3204 instance_id = InstanceBot;
duke@435 3205 }
duke@435 3206 ciObject* o = NULL; // the Constant value, if any
duke@435 3207 if (ptr == Constant) {
duke@435 3208 // Find out which constant.
duke@435 3209 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3210 }
kvn@658 3211 return make( ptr, k, xk, o, off, instance_id );
duke@435 3212 }
duke@435 3213
duke@435 3214 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3215
duke@435 3216 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3217 // If we split one up & one down AND they subtype, take the down man.
duke@435 3218 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3219 // If both are up and they subtype, take the subtype class.
duke@435 3220 // If both are up and they do NOT subtype, "fall hard".
duke@435 3221 // If both are down and they subtype, take the supertype class.
duke@435 3222 // If both are down and they do NOT subtype, "fall hard".
duke@435 3223 // Constants treated as down.
duke@435 3224
duke@435 3225 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3226 // "fall hard"; "fall hard" becomes the default case:
duke@435 3227 // If we split one up & one down AND they subtype, take the down man.
duke@435 3228 // If both are up and they subtype, take the subtype class.
duke@435 3229
duke@435 3230 // If both are down and they subtype, "fall hard".
duke@435 3231 // If both are down and they do NOT subtype, "fall hard".
duke@435 3232 // If both are up and they do NOT subtype, "fall hard".
duke@435 3233 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3234
duke@435 3235 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3236 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3237 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3238 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3239
duke@435 3240 // Check for subtyping:
duke@435 3241 ciKlass *subtype = NULL;
duke@435 3242 bool subtype_exact = false;
duke@435 3243 if( tinst_klass->equals(this_klass) ) {
duke@435 3244 subtype = this_klass;
duke@435 3245 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3246 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3247 subtype = this_klass; // Pick subtyping class
duke@435 3248 subtype_exact = this_xk;
duke@435 3249 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3250 subtype = tinst_klass; // Pick subtyping class
duke@435 3251 subtype_exact = tinst_xk;
duke@435 3252 }
duke@435 3253
duke@435 3254 if( subtype ) {
duke@435 3255 if( above_centerline(ptr) ) { // both are up?
duke@435 3256 this_klass = tinst_klass = subtype;
duke@435 3257 this_xk = tinst_xk = subtype_exact;
duke@435 3258 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3259 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3260 this_xk = tinst_xk;
duke@435 3261 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3262 tinst_klass = this_klass; // this is down; keep down man
duke@435 3263 tinst_xk = this_xk;
duke@435 3264 } else {
duke@435 3265 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3266 }
duke@435 3267 }
duke@435 3268
duke@435 3269 // Check for classes now being equal
duke@435 3270 if (tinst_klass->equals(this_klass)) {
duke@435 3271 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3272 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3273 // handled elsewhere).
duke@435 3274 ciObject* o = NULL; // Assume not constant when done
duke@435 3275 ciObject* this_oop = const_oop();
duke@435 3276 ciObject* tinst_oop = tinst->const_oop();
duke@435 3277 if( ptr == Constant ) {
duke@435 3278 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3279 this_oop->equals(tinst_oop) )
duke@435 3280 o = this_oop;
duke@435 3281 else if (above_centerline(this ->_ptr))
duke@435 3282 o = tinst_oop;
duke@435 3283 else if (above_centerline(tinst ->_ptr))
duke@435 3284 o = this_oop;
duke@435 3285 else
duke@435 3286 ptr = NotNull;
duke@435 3287 }
duke@435 3288 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 3289 } // Else classes are not equal
duke@435 3290
duke@435 3291 // Since klasses are different, we require a LCA in the Java
duke@435 3292 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3293 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3294 ptr = NotNull;
kvn@682 3295 instance_id = InstanceBot;
duke@435 3296
duke@435 3297 // Now we find the LCA of Java classes
duke@435 3298 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 3299 return make( ptr, k, false, NULL, off, instance_id );
duke@435 3300 } // End of case InstPtr
duke@435 3301
duke@435 3302 } // End of switch
duke@435 3303 return this; // Return the double constant
duke@435 3304 }
duke@435 3305
duke@435 3306
duke@435 3307 //------------------------java_mirror_type--------------------------------------
duke@435 3308 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3309 // must be a singleton type
duke@435 3310 if( const_oop() == NULL ) return NULL;
duke@435 3311
duke@435 3312 // must be of type java.lang.Class
duke@435 3313 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3314
duke@435 3315 return const_oop()->as_instance()->java_mirror_type();
duke@435 3316 }
duke@435 3317
duke@435 3318
duke@435 3319 //------------------------------xdual------------------------------------------
duke@435 3320 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3321 // inheritance mechanism.
duke@435 3322 const Type *TypeInstPtr::xdual() const {
kvn@658 3323 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3324 }
duke@435 3325
duke@435 3326 //------------------------------eq---------------------------------------------
duke@435 3327 // Structural equality check for Type representations
duke@435 3328 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3329 const TypeInstPtr *p = t->is_instptr();
duke@435 3330 return
duke@435 3331 klass()->equals(p->klass()) &&
duke@435 3332 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3333 }
duke@435 3334
duke@435 3335 //------------------------------hash-------------------------------------------
duke@435 3336 // Type-specific hashing function.
duke@435 3337 int TypeInstPtr::hash(void) const {
duke@435 3338 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3339 return hash;
duke@435 3340 }
duke@435 3341
duke@435 3342 //------------------------------dump2------------------------------------------
duke@435 3343 // Dump oop Type
duke@435 3344 #ifndef PRODUCT
duke@435 3345 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3346 // Print the name of the klass.
duke@435 3347 klass()->print_name_on(st);
duke@435 3348
duke@435 3349 switch( _ptr ) {
duke@435 3350 case Constant:
duke@435 3351 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3352 if (WizardMode || Verbose) {
duke@435 3353 const_oop()->print_oop(st);
duke@435 3354 }
duke@435 3355 case BotPTR:
duke@435 3356 if (!WizardMode && !Verbose) {
duke@435 3357 if( _klass_is_exact ) st->print(":exact");
duke@435 3358 break;
duke@435 3359 }
duke@435 3360 case TopPTR:
duke@435 3361 case AnyNull:
duke@435 3362 case NotNull:
duke@435 3363 st->print(":%s", ptr_msg[_ptr]);
duke@435 3364 if( _klass_is_exact ) st->print(":exact");
duke@435 3365 break;
duke@435 3366 }
duke@435 3367
duke@435 3368 if( _offset ) { // Dump offset, if any
duke@435 3369 if( _offset == OffsetBot ) st->print("+any");
duke@435 3370 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3371 else st->print("+%d", _offset);
duke@435 3372 }
duke@435 3373
duke@435 3374 st->print(" *");
kvn@658 3375 if (_instance_id == InstanceTop)
kvn@658 3376 st->print(",iid=top");
kvn@658 3377 else if (_instance_id != InstanceBot)
duke@435 3378 st->print(",iid=%d",_instance_id);
duke@435 3379 }
duke@435 3380 #endif
duke@435 3381
duke@435 3382 //------------------------------add_offset-------------------------------------
kvn@741 3383 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
duke@435 3384 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3385 }
duke@435 3386
duke@435 3387 //=============================================================================
duke@435 3388 // Convenience common pre-built types.
duke@435 3389 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3390 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3391 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3392 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3393 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3394 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3395 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3396 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3397 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3398 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3399
duke@435 3400 //------------------------------make-------------------------------------------
duke@435 3401 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3402 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3403 "integral arrays must be pre-equipped with a class");
duke@435 3404 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3405 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3406 if (!UseExactTypes) xk = (ptr == Constant);
kvn@5110 3407 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false))->hashcons();
duke@435 3408 }
duke@435 3409
duke@435 3410 //------------------------------make-------------------------------------------
kvn@5110 3411 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, bool is_autobox_cache) {
duke@435 3412 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3413 "integral arrays must be pre-equipped with a class");
duke@435 3414 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3415 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3416 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3417 if (!UseExactTypes) xk = (ptr == Constant);
kvn@5110 3418 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache))->hashcons();
duke@435 3419 }
duke@435 3420
duke@435 3421 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3422 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3423 if( ptr == _ptr ) return this;
kvn@658 3424 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3425 }
duke@435 3426
duke@435 3427
duke@435 3428 //-----------------------------cast_to_exactness-------------------------------
duke@435 3429 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3430 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3431 if (!UseExactTypes) return this;
duke@435 3432 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3433 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3434 }
duke@435 3435
kvn@682 3436 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3437 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3438 if( instance_id == _instance_id ) return this;
kvn@682 3439 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3440 }
duke@435 3441
duke@435 3442 //-----------------------------narrow_size_type-------------------------------
duke@435 3443 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3444 // which is kind of slow (and cached elsewhere by other users).
duke@435 3445 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3446 static jint max_array_length(BasicType etype) {
duke@435 3447 jint& cache = max_array_length_cache[etype];
duke@435 3448 jint res = cache;
duke@435 3449 if (res == 0) {
duke@435 3450 switch (etype) {
coleenp@548 3451 case T_NARROWOOP:
coleenp@548 3452 etype = T_OBJECT;
coleenp@548 3453 break;
roland@4159 3454 case T_NARROWKLASS:
duke@435 3455 case T_CONFLICT:
duke@435 3456 case T_ILLEGAL:
duke@435 3457 case T_VOID:
duke@435 3458 etype = T_BYTE; // will produce conservatively high value
duke@435 3459 }
duke@435 3460 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3461 }
duke@435 3462 return res;
duke@435 3463 }
duke@435 3464
duke@435 3465 // Narrow the given size type to the index range for the given array base type.
duke@435 3466 // Return NULL if the resulting int type becomes empty.
rasbold@801 3467 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3468 jint hi = size->_hi;
duke@435 3469 jint lo = size->_lo;
duke@435 3470 jint min_lo = 0;
rasbold@801 3471 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3472 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3473 bool chg = false;
kvn@5110 3474 if (lo < min_lo) {
kvn@5110 3475 lo = min_lo;
kvn@5110 3476 if (size->is_con()) {
kvn@5110 3477 hi = lo;
kvn@5110 3478 }
kvn@5110 3479 chg = true;
kvn@5110 3480 }
kvn@5110 3481 if (hi > max_hi) {
kvn@5110 3482 hi = max_hi;
kvn@5110 3483 if (size->is_con()) {
kvn@5110 3484 lo = hi;
kvn@5110 3485 }
kvn@5110 3486 chg = true;
kvn@5110 3487 }
twisti@1040 3488 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3489 if (lo > hi)
rasbold@801 3490 return TypeInt::ZERO;
duke@435 3491 if (!chg)
duke@435 3492 return size;
duke@435 3493 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3494 }
duke@435 3495
duke@435 3496 //-------------------------------cast_to_size----------------------------------
duke@435 3497 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3498 assert(new_size != NULL, "");
rasbold@801 3499 new_size = narrow_size_type(new_size);
duke@435 3500 if (new_size == size()) return this;
vlivanov@5658 3501 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
kvn@658 3502 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3503 }
duke@435 3504
duke@435 3505
vlivanov@5658 3506 //------------------------------cast_to_stable---------------------------------
vlivanov@5658 3507 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
vlivanov@5658 3508 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
vlivanov@5658 3509 return this;
vlivanov@5658 3510
vlivanov@5658 3511 const Type* elem = this->elem();
vlivanov@5658 3512 const TypePtr* elem_ptr = elem->make_ptr();
vlivanov@5658 3513
vlivanov@5658 3514 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
vlivanov@5658 3515 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
vlivanov@5658 3516 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
vlivanov@5658 3517 }
vlivanov@5658 3518
vlivanov@5658 3519 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
vlivanov@5658 3520
vlivanov@5658 3521 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
vlivanov@5658 3522 }
vlivanov@5658 3523
vlivanov@5658 3524 //-----------------------------stable_dimension--------------------------------
vlivanov@5658 3525 int TypeAryPtr::stable_dimension() const {
vlivanov@5658 3526 if (!is_stable()) return 0;
vlivanov@5658 3527 int dim = 1;
vlivanov@5658 3528 const TypePtr* elem_ptr = elem()->make_ptr();
vlivanov@5658 3529 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
vlivanov@5658 3530 dim += elem_ptr->is_aryptr()->stable_dimension();
vlivanov@5658 3531 return dim;
vlivanov@5658 3532 }
vlivanov@5658 3533
duke@435 3534 //------------------------------eq---------------------------------------------
duke@435 3535 // Structural equality check for Type representations
duke@435 3536 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3537 const TypeAryPtr *p = t->is_aryptr();
duke@435 3538 return
duke@435 3539 _ary == p->_ary && // Check array
duke@435 3540 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3541 }
duke@435 3542
duke@435 3543 //------------------------------hash-------------------------------------------
duke@435 3544 // Type-specific hashing function.
duke@435 3545 int TypeAryPtr::hash(void) const {
duke@435 3546 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3547 }
duke@435 3548
duke@435 3549 //------------------------------meet-------------------------------------------
duke@435 3550 // Compute the MEET of two types. It returns a new Type object.
duke@435 3551 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3552 // Perform a fast test for common case; meeting the same types together.
duke@435 3553 if( this == t ) return this; // Meeting same type-rep?
duke@435 3554 // Current "this->_base" is Pointer
duke@435 3555 switch (t->base()) { // switch on original type
duke@435 3556
duke@435 3557 // Mixing ints & oops happens when javac reuses local variables
duke@435 3558 case Int:
duke@435 3559 case Long:
duke@435 3560 case FloatTop:
duke@435 3561 case FloatCon:
duke@435 3562 case FloatBot:
duke@435 3563 case DoubleTop:
duke@435 3564 case DoubleCon:
duke@435 3565 case DoubleBot:
coleenp@548 3566 case NarrowOop:
roland@4159 3567 case NarrowKlass:
duke@435 3568 case Bottom: // Ye Olde Default
duke@435 3569 return Type::BOTTOM;
duke@435 3570 case Top:
duke@435 3571 return this;
duke@435 3572
duke@435 3573 default: // All else is a mistake
duke@435 3574 typerr(t);
duke@435 3575
duke@435 3576 case OopPtr: { // Meeting to OopPtrs
duke@435 3577 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3578 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3579 int offset = meet_offset(tp->offset());
duke@435 3580 PTR ptr = meet_ptr(tp->ptr());
duke@435 3581 switch (tp->ptr()) {
duke@435 3582 case TopPTR:
kvn@658 3583 case AnyNull: {
kvn@658 3584 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3585 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3586 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3587 }
duke@435 3588 case BotPTR:
kvn@1393 3589 case NotNull: {
kvn@1393 3590 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3591 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3592 }
duke@435 3593 default: ShouldNotReachHere();
duke@435 3594 }
duke@435 3595 }
duke@435 3596
duke@435 3597 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3598 // Found an AnyPtr type vs self-AryPtr type
duke@435 3599 const TypePtr *tp = t->is_ptr();
duke@435 3600 int offset = meet_offset(tp->offset());
duke@435 3601 PTR ptr = meet_ptr(tp->ptr());
duke@435 3602 switch (tp->ptr()) {
duke@435 3603 case TopPTR:
duke@435 3604 return this;
duke@435 3605 case BotPTR:
duke@435 3606 case NotNull:
duke@435 3607 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3608 case Null:
duke@435 3609 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3610 // else fall through to AnyNull
kvn@658 3611 case AnyNull: {
kvn@658 3612 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3613 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3614 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3615 }
duke@435 3616 default: ShouldNotReachHere();
duke@435 3617 }
duke@435 3618 }
duke@435 3619
coleenp@4037 3620 case MetadataPtr:
coleenp@4037 3621 case KlassPtr:
duke@435 3622 case RawPtr: return TypePtr::BOTTOM;
duke@435 3623
duke@435 3624 case AryPtr: { // Meeting 2 references?
duke@435 3625 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3626 int off = meet_offset(tap->offset());
duke@435 3627 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3628 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3629 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3630 ciKlass* lazy_klass = NULL;
duke@435 3631 if (tary->_elem->isa_int()) {
duke@435 3632 // Integral array element types have irrelevant lattice relations.
duke@435 3633 // It is the klass that determines array layout, not the element type.
duke@435 3634 if (_klass == NULL)
duke@435 3635 lazy_klass = tap->_klass;
duke@435 3636 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3637 lazy_klass = _klass;
duke@435 3638 } else {
duke@435 3639 // Something like byte[int+] meets char[int+].
duke@435 3640 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3641 instance_id = InstanceBot;
vlivanov@5658 3642 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
duke@435 3643 }
kvn@2633 3644 } else // Non integral arrays.
kvn@2633 3645 // Must fall to bottom if exact klasses in upper lattice
kvn@2633 3646 // are not equal or super klass is exact.
kvn@2633 3647 if ( above_centerline(ptr) && klass() != tap->klass() &&
kvn@2633 3648 // meet with top[] and bottom[] are processed further down:
kvn@2633 3649 tap ->_klass != NULL && this->_klass != NULL &&
kvn@2633 3650 // both are exact and not equal:
kvn@2633 3651 ((tap ->_klass_is_exact && this->_klass_is_exact) ||
kvn@2633 3652 // 'tap' is exact and super or unrelated:
kvn@2633 3653 (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
kvn@2633 3654 // 'this' is exact and super or unrelated:
kvn@2633 3655 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
vlivanov@5658 3656 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
kvn@2633 3657 return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
duke@435 3658 }
kvn@2633 3659
kvn@2120 3660 bool xk = false;
duke@435 3661 switch (tap->ptr()) {
duke@435 3662 case AnyNull:
duke@435 3663 case TopPTR:
duke@435 3664 // Compute new klass on demand, do not use tap->_klass
duke@435 3665 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3666 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3667 case Constant: {
duke@435 3668 ciObject* o = const_oop();
duke@435 3669 if( _ptr == Constant ) {
duke@435 3670 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3671 xk = (klass() == tap->klass());
duke@435 3672 ptr = NotNull;
duke@435 3673 o = NULL;
kvn@682 3674 instance_id = InstanceBot;
jrose@1424 3675 } else {
jrose@1424 3676 xk = true;
duke@435 3677 }
duke@435 3678 } else if( above_centerline(_ptr) ) {
duke@435 3679 o = tap->const_oop();
jrose@1424 3680 xk = true;
jrose@1424 3681 } else {
kvn@2120 3682 // Only precise for identical arrays
kvn@2120 3683 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 3684 }
kvn@2120 3685 return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
duke@435 3686 }
duke@435 3687 case NotNull:
duke@435 3688 case BotPTR:
duke@435 3689 // Compute new klass on demand, do not use tap->_klass
duke@435 3690 if (above_centerline(this->_ptr))
duke@435 3691 xk = tap->_klass_is_exact;
duke@435 3692 else if (above_centerline(tap->_ptr))
duke@435 3693 xk = this->_klass_is_exact;
duke@435 3694 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3695 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3696 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3697 default: ShouldNotReachHere();
duke@435 3698 }
duke@435 3699 }
duke@435 3700
duke@435 3701 // All arrays inherit from Object class
duke@435 3702 case InstPtr: {
duke@435 3703 const TypeInstPtr *tp = t->is_instptr();
duke@435 3704 int offset = meet_offset(tp->offset());
duke@435 3705 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3706 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3707 switch (ptr) {
duke@435 3708 case TopPTR:
duke@435 3709 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3710 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3711 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3712 } else {
duke@435 3713 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3714 ptr = NotNull;
kvn@658 3715 instance_id = InstanceBot;
kvn@658 3716 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3717 }
duke@435 3718 case Constant:
duke@435 3719 case NotNull:
duke@435 3720 case BotPTR: // Fall down to object klass
duke@435 3721 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3722 if (above_centerline(tp->ptr())) {
duke@435 3723 // If 'tp' is above the centerline and it is Object class
twisti@1040 3724 // then we can subclass in the Java class hierarchy.
duke@435 3725 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3726 // that is, my array type is a subtype of 'tp' klass
kvn@1714 3727 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@1714 3728 _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3729 }
duke@435 3730 }
duke@435 3731 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3732 // The meet falls down to Object class below centerline.
duke@435 3733 if( ptr == Constant )
duke@435 3734 ptr = NotNull;
kvn@658 3735 instance_id = InstanceBot;
kvn@658 3736 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3737 default: typerr(t);
duke@435 3738 }
duke@435 3739 }
duke@435 3740 }
duke@435 3741 return this; // Lint noise
duke@435 3742 }
duke@435 3743
duke@435 3744 //------------------------------xdual------------------------------------------
duke@435 3745 // Dual: compute field-by-field dual
duke@435 3746 const Type *TypeAryPtr::xdual() const {
kvn@5110 3747 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache() );
duke@435 3748 }
duke@435 3749
kvn@1255 3750 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3751 #ifdef ASSERT
kvn@1255 3752 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3753 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3754 if (t_aryptr) {
kvn@1255 3755 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3756 }
kvn@1255 3757 return false;
kvn@1255 3758 }
kvn@1255 3759 #endif
kvn@1255 3760
duke@435 3761 //------------------------------dump2------------------------------------------
duke@435 3762 #ifndef PRODUCT
duke@435 3763 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3764 _ary->dump2(d,depth,st);
duke@435 3765 switch( _ptr ) {
duke@435 3766 case Constant:
duke@435 3767 const_oop()->print(st);
duke@435 3768 break;
duke@435 3769 case BotPTR:
duke@435 3770 if (!WizardMode && !Verbose) {
duke@435 3771 if( _klass_is_exact ) st->print(":exact");
duke@435 3772 break;
duke@435 3773 }
duke@435 3774 case TopPTR:
duke@435 3775 case AnyNull:
duke@435 3776 case NotNull:
duke@435 3777 st->print(":%s", ptr_msg[_ptr]);
duke@435 3778 if( _klass_is_exact ) st->print(":exact");
duke@435 3779 break;
duke@435 3780 }
duke@435 3781
kvn@499 3782 if( _offset != 0 ) {
kvn@499 3783 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3784 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3785 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3786 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3787 else {
kvn@499 3788 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3789 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3790 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3791 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3792 }
kvn@499 3793 }
kvn@499 3794 st->print(" *");
kvn@658 3795 if (_instance_id == InstanceTop)
kvn@658 3796 st->print(",iid=top");
kvn@658 3797 else if (_instance_id != InstanceBot)
duke@435 3798 st->print(",iid=%d",_instance_id);
duke@435 3799 }
duke@435 3800 #endif
duke@435 3801
duke@435 3802 bool TypeAryPtr::empty(void) const {
duke@435 3803 if (_ary->empty()) return true;
duke@435 3804 return TypeOopPtr::empty();
duke@435 3805 }
duke@435 3806
duke@435 3807 //------------------------------add_offset-------------------------------------
kvn@741 3808 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
duke@435 3809 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3810 }
duke@435 3811
duke@435 3812
duke@435 3813 //=============================================================================
coleenp@548 3814
coleenp@548 3815 //------------------------------hash-------------------------------------------
coleenp@548 3816 // Type-specific hashing function.
roland@4159 3817 int TypeNarrowPtr::hash(void) const {
never@1262 3818 return _ptrtype->hash() + 7;
coleenp@548 3819 }
coleenp@548 3820
roland@4159 3821 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
roland@4159 3822 return _ptrtype->singleton();
roland@4159 3823 }
roland@4159 3824
roland@4159 3825 bool TypeNarrowPtr::empty(void) const {
roland@4159 3826 return _ptrtype->empty();
roland@4159 3827 }
roland@4159 3828
roland@4159 3829 intptr_t TypeNarrowPtr::get_con() const {
roland@4159 3830 return _ptrtype->get_con();
roland@4159 3831 }
roland@4159 3832
roland@4159 3833 bool TypeNarrowPtr::eq( const Type *t ) const {
roland@4159 3834 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
coleenp@548 3835 if (tc != NULL) {
never@1262 3836 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 3837 return false;
coleenp@548 3838 }
never@1262 3839 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 3840 }
coleenp@548 3841 return false;
coleenp@548 3842 }
coleenp@548 3843
roland@4159 3844 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
roland@4159 3845 const TypePtr* odual = _ptrtype->dual()->is_ptr();
roland@4159 3846 return make_same_narrowptr(odual);
roland@4159 3847 }
roland@4159 3848
roland@4159 3849
roland@4159 3850 const Type *TypeNarrowPtr::filter( const Type *kills ) const {
roland@4159 3851 if (isa_same_narrowptr(kills)) {
roland@4159 3852 const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype);
roland@4159 3853 if (ft->empty())
roland@4159 3854 return Type::TOP; // Canonical empty value
roland@4159 3855 if (ft->isa_ptr()) {
roland@4159 3856 return make_hash_same_narrowptr(ft->isa_ptr());
roland@4159 3857 }
roland@4159 3858 return ft;
roland@4159 3859 } else if (kills->isa_ptr()) {
roland@4159 3860 const Type* ft = _ptrtype->join(kills);
roland@4159 3861 if (ft->empty())
roland@4159 3862 return Type::TOP; // Canonical empty value
roland@4159 3863 return ft;
roland@4159 3864 } else {
roland@4159 3865 return Type::TOP;
roland@4159 3866 }
coleenp@548 3867 }
coleenp@548 3868
kvn@728 3869 //------------------------------xmeet------------------------------------------
coleenp@548 3870 // Compute the MEET of two types. It returns a new Type object.
roland@4159 3871 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
coleenp@548 3872 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3873 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3874
roland@4159 3875 if (t->base() == base()) {
roland@4159 3876 const Type* result = _ptrtype->xmeet(t->make_ptr());
roland@4159 3877 if (result->isa_ptr()) {
roland@4159 3878 return make_hash_same_narrowptr(result->is_ptr());
roland@4159 3879 }
roland@4159 3880 return result;
roland@4159 3881 }
roland@4159 3882
roland@4159 3883 // Current "this->_base" is NarrowKlass or NarrowOop
coleenp@548 3884 switch (t->base()) { // switch on original type
coleenp@548 3885
coleenp@548 3886 case Int: // Mixing ints & oops happens when javac
coleenp@548 3887 case Long: // reuses local variables
coleenp@548 3888 case FloatTop:
coleenp@548 3889 case FloatCon:
coleenp@548 3890 case FloatBot:
coleenp@548 3891 case DoubleTop:
coleenp@548 3892 case DoubleCon:
coleenp@548 3893 case DoubleBot:
kvn@728 3894 case AnyPtr:
kvn@728 3895 case RawPtr:
kvn@728 3896 case OopPtr:
kvn@728 3897 case InstPtr:
coleenp@4037 3898 case AryPtr:
coleenp@4037 3899 case MetadataPtr:
kvn@728 3900 case KlassPtr:
roland@4159 3901 case NarrowOop:
roland@4159 3902 case NarrowKlass:
kvn@728 3903
coleenp@548 3904 case Bottom: // Ye Olde Default
coleenp@548 3905 return Type::BOTTOM;
coleenp@548 3906 case Top:
coleenp@548 3907 return this;
coleenp@548 3908
coleenp@548 3909 default: // All else is a mistake
coleenp@548 3910 typerr(t);
coleenp@548 3911
coleenp@548 3912 } // End of switch
kvn@728 3913
kvn@728 3914 return this;
coleenp@548 3915 }
coleenp@548 3916
roland@4159 3917 #ifndef PRODUCT
roland@4159 3918 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 3919 _ptrtype->dump2(d, depth, st);
roland@4159 3920 }
roland@4159 3921 #endif
roland@4159 3922
roland@4159 3923 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
roland@4159 3924 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
roland@4159 3925
roland@4159 3926
roland@4159 3927 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
roland@4159 3928 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
roland@4159 3929 }
roland@4159 3930
coleenp@548 3931
coleenp@548 3932 #ifndef PRODUCT
coleenp@548 3933 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 3934 st->print("narrowoop: ");
roland@4159 3935 TypeNarrowPtr::dump2(d, depth, st);
coleenp@548 3936 }
coleenp@548 3937 #endif
coleenp@548 3938
roland@4159 3939 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
roland@4159 3940
roland@4159 3941 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
roland@4159 3942 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
roland@4159 3943 }
roland@4159 3944
roland@4159 3945 #ifndef PRODUCT
roland@4159 3946 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 3947 st->print("narrowklass: ");
roland@4159 3948 TypeNarrowPtr::dump2(d, depth, st);
roland@4159 3949 }
roland@4159 3950 #endif
coleenp@548 3951
coleenp@4037 3952
coleenp@4037 3953 //------------------------------eq---------------------------------------------
coleenp@4037 3954 // Structural equality check for Type representations
coleenp@4037 3955 bool TypeMetadataPtr::eq( const Type *t ) const {
coleenp@4037 3956 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
coleenp@4037 3957 ciMetadata* one = metadata();
coleenp@4037 3958 ciMetadata* two = a->metadata();
coleenp@4037 3959 if (one == NULL || two == NULL) {
coleenp@4037 3960 return (one == two) && TypePtr::eq(t);
coleenp@4037 3961 } else {
coleenp@4037 3962 return one->equals(two) && TypePtr::eq(t);
coleenp@4037 3963 }
coleenp@4037 3964 }
coleenp@4037 3965
coleenp@4037 3966 //------------------------------hash-------------------------------------------
coleenp@4037 3967 // Type-specific hashing function.
coleenp@4037 3968 int TypeMetadataPtr::hash(void) const {
coleenp@4037 3969 return
coleenp@4037 3970 (metadata() ? metadata()->hash() : 0) +
coleenp@4037 3971 TypePtr::hash();
coleenp@4037 3972 }
coleenp@4037 3973
coleenp@4037 3974 //------------------------------singleton--------------------------------------
coleenp@4037 3975 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 3976 // constants
coleenp@4037 3977 bool TypeMetadataPtr::singleton(void) const {
coleenp@4037 3978 // detune optimizer to not generate constant metadta + constant offset as a constant!
coleenp@4037 3979 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 3980 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 3981 }
coleenp@4037 3982
coleenp@4037 3983 //------------------------------add_offset-------------------------------------
coleenp@4037 3984 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
coleenp@4037 3985 return make( _ptr, _metadata, xadd_offset(offset));
coleenp@4037 3986 }
coleenp@4037 3987
coleenp@4037 3988 //-----------------------------filter------------------------------------------
coleenp@4037 3989 // Do not allow interface-vs.-noninterface joins to collapse to top.
coleenp@4037 3990 const Type *TypeMetadataPtr::filter( const Type *kills ) const {
coleenp@4037 3991 const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
coleenp@4037 3992 if (ft == NULL || ft->empty())
coleenp@4037 3993 return Type::TOP; // Canonical empty value
coleenp@4037 3994 return ft;
coleenp@4037 3995 }
coleenp@4037 3996
coleenp@4037 3997 //------------------------------get_con----------------------------------------
coleenp@4037 3998 intptr_t TypeMetadataPtr::get_con() const {
coleenp@4037 3999 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4000 assert( _offset >= 0, "" );
coleenp@4037 4001
coleenp@4037 4002 if (_offset != 0) {
coleenp@4037 4003 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4004 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4005 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4006 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4007 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4008 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4009 // but this assertion here is to help prevent its occurence.
coleenp@4037 4010 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4011 ShouldNotReachHere();
coleenp@4037 4012 }
coleenp@4037 4013
coleenp@4037 4014 return (intptr_t)metadata()->constant_encoding();
coleenp@4037 4015 }
coleenp@4037 4016
coleenp@4037 4017 //------------------------------cast_to_ptr_type-------------------------------
coleenp@4037 4018 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
coleenp@4037 4019 if( ptr == _ptr ) return this;
coleenp@4037 4020 return make(ptr, metadata(), _offset);
coleenp@4037 4021 }
coleenp@4037 4022
coleenp@4037 4023 //------------------------------meet-------------------------------------------
coleenp@4037 4024 // Compute the MEET of two types. It returns a new Type object.
coleenp@4037 4025 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
coleenp@4037 4026 // Perform a fast test for common case; meeting the same types together.
coleenp@4037 4027 if( this == t ) return this; // Meeting same type-rep?
coleenp@4037 4028
coleenp@4037 4029 // Current "this->_base" is OopPtr
coleenp@4037 4030 switch (t->base()) { // switch on original type
coleenp@4037 4031
coleenp@4037 4032 case Int: // Mixing ints & oops happens when javac
coleenp@4037 4033 case Long: // reuses local variables
coleenp@4037 4034 case FloatTop:
coleenp@4037 4035 case FloatCon:
coleenp@4037 4036 case FloatBot:
coleenp@4037 4037 case DoubleTop:
coleenp@4037 4038 case DoubleCon:
coleenp@4037 4039 case DoubleBot:
coleenp@4037 4040 case NarrowOop:
roland@4159 4041 case NarrowKlass:
coleenp@4037 4042 case Bottom: // Ye Olde Default
coleenp@4037 4043 return Type::BOTTOM;
coleenp@4037 4044 case Top:
coleenp@4037 4045 return this;
coleenp@4037 4046
coleenp@4037 4047 default: // All else is a mistake
coleenp@4037 4048 typerr(t);
coleenp@4037 4049
coleenp@4037 4050 case AnyPtr: {
coleenp@4037 4051 // Found an AnyPtr type vs self-OopPtr type
coleenp@4037 4052 const TypePtr *tp = t->is_ptr();
coleenp@4037 4053 int offset = meet_offset(tp->offset());
coleenp@4037 4054 PTR ptr = meet_ptr(tp->ptr());
coleenp@4037 4055 switch (tp->ptr()) {
coleenp@4037 4056 case Null:
coleenp@4037 4057 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4058 // else fall through:
coleenp@4037 4059 case TopPTR:
coleenp@4037 4060 case AnyNull: {
coleenp@4037 4061 return make(ptr, NULL, offset);
coleenp@4037 4062 }
coleenp@4037 4063 case BotPTR:
coleenp@4037 4064 case NotNull:
coleenp@4037 4065 return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4066 default: typerr(t);
coleenp@4037 4067 }
coleenp@4037 4068 }
coleenp@4037 4069
coleenp@4037 4070 case RawPtr:
coleenp@4037 4071 case KlassPtr:
coleenp@4037 4072 case OopPtr:
coleenp@4037 4073 case InstPtr:
coleenp@4037 4074 case AryPtr:
coleenp@4037 4075 return TypePtr::BOTTOM; // Oop meet raw is not well defined
coleenp@4037 4076
roland@4040 4077 case MetadataPtr: {
roland@4040 4078 const TypeMetadataPtr *tp = t->is_metadataptr();
roland@4040 4079 int offset = meet_offset(tp->offset());
roland@4040 4080 PTR tptr = tp->ptr();
roland@4040 4081 PTR ptr = meet_ptr(tptr);
roland@4040 4082 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
roland@4040 4083 if (tptr == TopPTR || _ptr == TopPTR ||
roland@4040 4084 metadata()->equals(tp->metadata())) {
roland@4040 4085 return make(ptr, md, offset);
roland@4040 4086 }
roland@4040 4087 // metadata is different
roland@4040 4088 if( ptr == Constant ) { // Cannot be equal constants, so...
roland@4040 4089 if( tptr == Constant && _ptr != Constant) return t;
roland@4040 4090 if( _ptr == Constant && tptr != Constant) return this;
roland@4040 4091 ptr = NotNull; // Fall down in lattice
roland@4040 4092 }
roland@4040 4093 return make(ptr, NULL, offset);
coleenp@4037 4094 break;
roland@4040 4095 }
coleenp@4037 4096 } // End of switch
coleenp@4037 4097 return this; // Return the double constant
coleenp@4037 4098 }
coleenp@4037 4099
coleenp@4037 4100
coleenp@4037 4101 //------------------------------xdual------------------------------------------
coleenp@4037 4102 // Dual of a pure metadata pointer.
coleenp@4037 4103 const Type *TypeMetadataPtr::xdual() const {
coleenp@4037 4104 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
coleenp@4037 4105 }
coleenp@4037 4106
coleenp@4037 4107 //------------------------------dump2------------------------------------------
coleenp@4037 4108 #ifndef PRODUCT
coleenp@4037 4109 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 4110 st->print("metadataptr:%s", ptr_msg[_ptr]);
coleenp@4037 4111 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
coleenp@4037 4112 switch( _offset ) {
coleenp@4037 4113 case OffsetTop: st->print("+top"); break;
coleenp@4037 4114 case OffsetBot: st->print("+any"); break;
coleenp@4037 4115 case 0: break;
coleenp@4037 4116 default: st->print("+%d",_offset); break;
coleenp@4037 4117 }
coleenp@4037 4118 }
coleenp@4037 4119 #endif
coleenp@4037 4120
coleenp@4037 4121
coleenp@4037 4122 //=============================================================================
coleenp@4037 4123 // Convenience common pre-built type.
coleenp@4037 4124 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
coleenp@4037 4125
coleenp@4037 4126 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
coleenp@4037 4127 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
coleenp@4037 4128 }
coleenp@4037 4129
coleenp@4037 4130 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
coleenp@4037 4131 return make(Constant, m, 0);
coleenp@4037 4132 }
coleenp@4037 4133 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
coleenp@4037 4134 return make(Constant, m, 0);
coleenp@4037 4135 }
coleenp@4037 4136
coleenp@4037 4137 //------------------------------make-------------------------------------------
coleenp@4037 4138 // Create a meta data constant
coleenp@4037 4139 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
coleenp@4037 4140 assert(m == NULL || !m->is_klass(), "wrong type");
coleenp@4037 4141 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
coleenp@4037 4142 }
coleenp@4037 4143
coleenp@4037 4144
coleenp@548 4145 //=============================================================================
duke@435 4146 // Convenience common pre-built types.
duke@435 4147
duke@435 4148 // Not-null object klass or below
duke@435 4149 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 4150 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 4151
coleenp@4037 4152 //------------------------------TypeKlassPtr-----------------------------------
duke@435 4153 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
coleenp@4037 4154 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
duke@435 4155 }
duke@435 4156
duke@435 4157 //------------------------------make-------------------------------------------
duke@435 4158 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 4159 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 4160 assert( k != NULL, "Expect a non-NULL klass");
coleenp@4037 4161 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
duke@435 4162 TypeKlassPtr *r =
duke@435 4163 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 4164
duke@435 4165 return r;
duke@435 4166 }
duke@435 4167
duke@435 4168 //------------------------------eq---------------------------------------------
duke@435 4169 // Structural equality check for Type representations
duke@435 4170 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 4171 const TypeKlassPtr *p = t->is_klassptr();
duke@435 4172 return
duke@435 4173 klass()->equals(p->klass()) &&
coleenp@4037 4174 TypePtr::eq(p);
duke@435 4175 }
duke@435 4176
duke@435 4177 //------------------------------hash-------------------------------------------
duke@435 4178 // Type-specific hashing function.
duke@435 4179 int TypeKlassPtr::hash(void) const {
coleenp@4037 4180 return klass()->hash() + TypePtr::hash();
coleenp@4037 4181 }
coleenp@4037 4182
coleenp@4037 4183 //------------------------------singleton--------------------------------------
coleenp@4037 4184 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4185 // constants
coleenp@4037 4186 bool TypeKlassPtr::singleton(void) const {
coleenp@4037 4187 // detune optimizer to not generate constant klass + constant offset as a constant!
coleenp@4037 4188 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4189 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4190 }
duke@435 4191
kvn@2116 4192 //----------------------compute_klass------------------------------------------
kvn@2116 4193 // Compute the defining klass for this class
kvn@2116 4194 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 4195 // Compute _klass based on element type.
duke@435 4196 ciKlass* k_ary = NULL;
duke@435 4197 const TypeInstPtr *tinst;
duke@435 4198 const TypeAryPtr *tary;
coleenp@548 4199 const Type* el = elem();
coleenp@548 4200 if (el->isa_narrowoop()) {
kvn@656 4201 el = el->make_ptr();
coleenp@548 4202 }
coleenp@548 4203
duke@435 4204 // Get element klass
coleenp@548 4205 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 4206 // Compute array klass from element klass
duke@435 4207 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 4208 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 4209 // Compute array klass from element klass
duke@435 4210 ciKlass* k_elem = tary->klass();
duke@435 4211 // If element type is something like bottom[], k_elem will be null.
duke@435 4212 if (k_elem != NULL)
duke@435 4213 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 4214 } else if ((el->base() == Type::Top) ||
coleenp@548 4215 (el->base() == Type::Bottom)) {
duke@435 4216 // element type of Bottom occurs from meet of basic type
duke@435 4217 // and object; Top occurs when doing join on Bottom.
duke@435 4218 // Leave k_ary at NULL.
duke@435 4219 } else {
duke@435 4220 // Cannot compute array klass directly from basic type,
duke@435 4221 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 4222 #ifdef ASSERT
kvn@2116 4223 if (verify && el->isa_int()) {
kvn@2116 4224 // Check simple cases when verifying klass.
kvn@2116 4225 BasicType bt = T_ILLEGAL;
kvn@2116 4226 if (el == TypeInt::BYTE) {
kvn@2116 4227 bt = T_BYTE;
kvn@2116 4228 } else if (el == TypeInt::SHORT) {
kvn@2116 4229 bt = T_SHORT;
kvn@2116 4230 } else if (el == TypeInt::CHAR) {
kvn@2116 4231 bt = T_CHAR;
kvn@2116 4232 } else if (el == TypeInt::INT) {
kvn@2116 4233 bt = T_INT;
kvn@2116 4234 } else {
kvn@2116 4235 return _klass; // just return specified klass
kvn@2116 4236 }
kvn@2116 4237 return ciTypeArrayKlass::make(bt);
kvn@2116 4238 }
kvn@2116 4239 #endif
coleenp@548 4240 assert(!el->isa_int(),
duke@435 4241 "integral arrays must be pre-equipped with a class");
duke@435 4242 // Compute array klass directly from basic type
coleenp@548 4243 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 4244 }
kvn@2116 4245 return k_ary;
kvn@2116 4246 }
kvn@2116 4247
kvn@2116 4248 //------------------------------klass------------------------------------------
kvn@2116 4249 // Return the defining klass for this class
kvn@2116 4250 ciKlass* TypeAryPtr::klass() const {
kvn@2116 4251 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 4252
kvn@2116 4253 // Oops, need to compute _klass and cache it
kvn@2116 4254 ciKlass* k_ary = compute_klass();
duke@435 4255
kvn@2636 4256 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 4257 // The _klass field acts as a cache of the underlying
duke@435 4258 // ciKlass for this array type. In order to set the field,
duke@435 4259 // we need to cast away const-ness.
duke@435 4260 //
duke@435 4261 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 4262 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 4263 // active compilations. However, the ciKlass which represents
duke@435 4264 // this Type is *not* shared between compilations, so caching
duke@435 4265 // this value would result in fetching a dangling pointer.
duke@435 4266 //
duke@435 4267 // Recomputing the underlying ciKlass for each request is
duke@435 4268 // a bit less efficient than caching, but calls to
duke@435 4269 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 4270 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 4271 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 4272 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 4273 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 4274 }
kvn@598 4275 }
duke@435 4276 return k_ary;
duke@435 4277 }
duke@435 4278
duke@435 4279
duke@435 4280 //------------------------------add_offset-------------------------------------
duke@435 4281 // Access internals of klass object
kvn@741 4282 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 4283 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 4284 }
duke@435 4285
duke@435 4286 //------------------------------cast_to_ptr_type-------------------------------
duke@435 4287 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 4288 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 4289 if( ptr == _ptr ) return this;
duke@435 4290 return make(ptr, _klass, _offset);
duke@435 4291 }
duke@435 4292
duke@435 4293
duke@435 4294 //-----------------------------cast_to_exactness-------------------------------
duke@435 4295 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 4296 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 4297 if (!UseExactTypes) return this;
duke@435 4298 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 4299 }
duke@435 4300
duke@435 4301
duke@435 4302 //-----------------------------as_instance_type--------------------------------
duke@435 4303 // Corresponding type for an instance of the given class.
duke@435 4304 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 4305 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 4306 ciKlass* k = klass();
duke@435 4307 bool xk = klass_is_exact();
duke@435 4308 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 4309 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
morris@4760 4310 guarantee(toop != NULL, "need type for given klass");
duke@435 4311 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 4312 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 4313 }
duke@435 4314
duke@435 4315
duke@435 4316 //------------------------------xmeet------------------------------------------
duke@435 4317 // Compute the MEET of two types, return a new Type object.
duke@435 4318 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 4319 // Perform a fast test for common case; meeting the same types together.
duke@435 4320 if( this == t ) return this; // Meeting same type-rep?
duke@435 4321
duke@435 4322 // Current "this->_base" is Pointer
duke@435 4323 switch (t->base()) { // switch on original type
duke@435 4324
duke@435 4325 case Int: // Mixing ints & oops happens when javac
duke@435 4326 case Long: // reuses local variables
duke@435 4327 case FloatTop:
duke@435 4328 case FloatCon:
duke@435 4329 case FloatBot:
duke@435 4330 case DoubleTop:
duke@435 4331 case DoubleCon:
duke@435 4332 case DoubleBot:
kvn@728 4333 case NarrowOop:
roland@4159 4334 case NarrowKlass:
duke@435 4335 case Bottom: // Ye Olde Default
duke@435 4336 return Type::BOTTOM;
duke@435 4337 case Top:
duke@435 4338 return this;
duke@435 4339
duke@435 4340 default: // All else is a mistake
duke@435 4341 typerr(t);
duke@435 4342
duke@435 4343 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4344 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4345 const TypePtr *tp = t->is_ptr();
duke@435 4346 int offset = meet_offset(tp->offset());
duke@435 4347 PTR ptr = meet_ptr(tp->ptr());
duke@435 4348 switch (tp->ptr()) {
duke@435 4349 case TopPTR:
duke@435 4350 return this;
duke@435 4351 case Null:
duke@435 4352 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4353 case AnyNull:
duke@435 4354 return make( ptr, klass(), offset );
duke@435 4355 case BotPTR:
duke@435 4356 case NotNull:
duke@435 4357 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4358 default: typerr(t);
duke@435 4359 }
duke@435 4360 }
duke@435 4361
coleenp@4037 4362 case RawPtr:
coleenp@4037 4363 case MetadataPtr:
coleenp@4037 4364 case OopPtr:
duke@435 4365 case AryPtr: // Meet with AryPtr
duke@435 4366 case InstPtr: // Meet with InstPtr
coleenp@4037 4367 return TypePtr::BOTTOM;
duke@435 4368
duke@435 4369 //
duke@435 4370 // A-top }
duke@435 4371 // / | \ } Tops
duke@435 4372 // B-top A-any C-top }
duke@435 4373 // | / | \ | } Any-nulls
duke@435 4374 // B-any | C-any }
duke@435 4375 // | | |
duke@435 4376 // B-con A-con C-con } constants; not comparable across classes
duke@435 4377 // | | |
duke@435 4378 // B-not | C-not }
duke@435 4379 // | \ | / | } not-nulls
duke@435 4380 // B-bot A-not C-bot }
duke@435 4381 // \ | / } Bottoms
duke@435 4382 // A-bot }
duke@435 4383 //
duke@435 4384
duke@435 4385 case KlassPtr: { // Meet two KlassPtr types
duke@435 4386 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4387 int off = meet_offset(tkls->offset());
duke@435 4388 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4389
duke@435 4390 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4391 // If we have constants, then we created oops so classes are loaded
duke@435 4392 // and we can handle the constants further down. This case handles
duke@435 4393 // not-loaded classes
duke@435 4394 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4395 return make( ptr, klass(), off );
duke@435 4396 }
duke@435 4397
duke@435 4398 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4399 ciKlass* tkls_klass = tkls->klass();
duke@435 4400 ciKlass* this_klass = this->klass();
duke@435 4401 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4402 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4403
duke@435 4404 // If 'this' type is above the centerline and is a superclass of the
duke@435 4405 // other, we can treat 'this' as having the same type as the other.
duke@435 4406 if ((above_centerline(this->ptr())) &&
duke@435 4407 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4408 this_klass = tkls_klass;
duke@435 4409 }
duke@435 4410 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4411 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4412 if ((above_centerline(tkls->ptr())) &&
duke@435 4413 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4414 tkls_klass = this_klass;
duke@435 4415 }
duke@435 4416
duke@435 4417 // Check for classes now being equal
duke@435 4418 if (tkls_klass->equals(this_klass)) {
duke@435 4419 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4420 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4421 // handled elsewhere).
duke@435 4422 if( ptr == Constant ) {
coleenp@4037 4423 if (this->_ptr == Constant && tkls->_ptr == Constant &&
coleenp@4037 4424 this->klass()->equals(tkls->klass()));
coleenp@4037 4425 else if (above_centerline(this->ptr()));
coleenp@4037 4426 else if (above_centerline(tkls->ptr()));
duke@435 4427 else
duke@435 4428 ptr = NotNull;
duke@435 4429 }
duke@435 4430 return make( ptr, this_klass, off );
duke@435 4431 } // Else classes are not equal
duke@435 4432
duke@435 4433 // Since klasses are different, we require the LCA in the Java
duke@435 4434 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4435 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4436 ptr = NotNull;
duke@435 4437 // Now we find the LCA of Java classes
duke@435 4438 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4439 return make( ptr, k, off );
duke@435 4440 } // End of case KlassPtr
duke@435 4441
duke@435 4442 } // End of switch
duke@435 4443 return this; // Return the double constant
duke@435 4444 }
duke@435 4445
duke@435 4446 //------------------------------xdual------------------------------------------
duke@435 4447 // Dual: compute field-by-field dual
duke@435 4448 const Type *TypeKlassPtr::xdual() const {
duke@435 4449 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4450 }
duke@435 4451
coleenp@4037 4452 //------------------------------get_con----------------------------------------
coleenp@4037 4453 intptr_t TypeKlassPtr::get_con() const {
coleenp@4037 4454 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4455 assert( _offset >= 0, "" );
coleenp@4037 4456
coleenp@4037 4457 if (_offset != 0) {
coleenp@4037 4458 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4459 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4460 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4461 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4462 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4463 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4464 // but this assertion here is to help prevent its occurence.
coleenp@4037 4465 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4466 ShouldNotReachHere();
coleenp@4037 4467 }
coleenp@4037 4468
coleenp@4037 4469 return (intptr_t)klass()->constant_encoding();
coleenp@4037 4470 }
duke@435 4471 //------------------------------dump2------------------------------------------
duke@435 4472 // Dump Klass Type
duke@435 4473 #ifndef PRODUCT
duke@435 4474 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4475 switch( _ptr ) {
duke@435 4476 case Constant:
duke@435 4477 st->print("precise ");
duke@435 4478 case NotNull:
duke@435 4479 {
duke@435 4480 const char *name = klass()->name()->as_utf8();
duke@435 4481 if( name ) {
duke@435 4482 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4483 } else {
duke@435 4484 ShouldNotReachHere();
duke@435 4485 }
duke@435 4486 }
duke@435 4487 case BotPTR:
duke@435 4488 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4489 case TopPTR:
duke@435 4490 case AnyNull:
duke@435 4491 st->print(":%s", ptr_msg[_ptr]);
duke@435 4492 if( _klass_is_exact ) st->print(":exact");
duke@435 4493 break;
duke@435 4494 }
duke@435 4495
duke@435 4496 if( _offset ) { // Dump offset, if any
duke@435 4497 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4498 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4499 else { st->print("+%d", _offset); }
duke@435 4500 }
duke@435 4501
duke@435 4502 st->print(" *");
duke@435 4503 }
duke@435 4504 #endif
duke@435 4505
duke@435 4506
duke@435 4507
duke@435 4508 //=============================================================================
duke@435 4509 // Convenience common pre-built types.
duke@435 4510
duke@435 4511 //------------------------------make-------------------------------------------
duke@435 4512 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4513 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4514 }
duke@435 4515
duke@435 4516 //------------------------------make-------------------------------------------
duke@435 4517 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4518 Compile* C = Compile::current();
duke@435 4519 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4520 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4521 const TypeTuple *domain;
twisti@1572 4522 if (method->is_static()) {
duke@435 4523 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4524 } else {
duke@435 4525 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4526 }
duke@435 4527 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4528 tf = TypeFunc::make(domain, range);
duke@435 4529 C->set_last_tf(method, tf); // fill cache
duke@435 4530 return tf;
duke@435 4531 }
duke@435 4532
duke@435 4533 //------------------------------meet-------------------------------------------
duke@435 4534 // Compute the MEET of two types. It returns a new Type object.
duke@435 4535 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4536 // Perform a fast test for common case; meeting the same types together.
duke@435 4537 if( this == t ) return this; // Meeting same type-rep?
duke@435 4538
duke@435 4539 // Current "this->_base" is Func
duke@435 4540 switch (t->base()) { // switch on original type
duke@435 4541
duke@435 4542 case Bottom: // Ye Olde Default
duke@435 4543 return t;
duke@435 4544
duke@435 4545 default: // All else is a mistake
duke@435 4546 typerr(t);
duke@435 4547
duke@435 4548 case Top:
duke@435 4549 break;
duke@435 4550 }
duke@435 4551 return this; // Return the double constant
duke@435 4552 }
duke@435 4553
duke@435 4554 //------------------------------xdual------------------------------------------
duke@435 4555 // Dual: compute field-by-field dual
duke@435 4556 const Type *TypeFunc::xdual() const {
duke@435 4557 return this;
duke@435 4558 }
duke@435 4559
duke@435 4560 //------------------------------eq---------------------------------------------
duke@435 4561 // Structural equality check for Type representations
duke@435 4562 bool TypeFunc::eq( const Type *t ) const {
duke@435 4563 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4564 return _domain == a->_domain &&
duke@435 4565 _range == a->_range;
duke@435 4566 }
duke@435 4567
duke@435 4568 //------------------------------hash-------------------------------------------
duke@435 4569 // Type-specific hashing function.
duke@435 4570 int TypeFunc::hash(void) const {
duke@435 4571 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4572 }
duke@435 4573
duke@435 4574 //------------------------------dump2------------------------------------------
duke@435 4575 // Dump Function Type
duke@435 4576 #ifndef PRODUCT
duke@435 4577 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4578 if( _range->_cnt <= Parms )
duke@435 4579 st->print("void");
duke@435 4580 else {
duke@435 4581 uint i;
duke@435 4582 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4583 _range->field_at(i)->dump2(d,depth,st);
duke@435 4584 st->print("/");
duke@435 4585 }
duke@435 4586 _range->field_at(i)->dump2(d,depth,st);
duke@435 4587 }
duke@435 4588 st->print(" ");
duke@435 4589 st->print("( ");
duke@435 4590 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4591 st->print("...)");
duke@435 4592 return;
duke@435 4593 }
duke@435 4594 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4595 if (Parms < _domain->_cnt)
duke@435 4596 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4597 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4598 st->print(", ");
duke@435 4599 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4600 }
duke@435 4601 st->print(" )");
duke@435 4602 }
duke@435 4603 #endif
duke@435 4604
duke@435 4605 //------------------------------singleton--------------------------------------
duke@435 4606 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4607 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4608 // or a single symbol.
duke@435 4609 bool TypeFunc::singleton(void) const {
duke@435 4610 return false; // Never a singleton
duke@435 4611 }
duke@435 4612
duke@435 4613 bool TypeFunc::empty(void) const {
duke@435 4614 return false; // Never empty
duke@435 4615 }
duke@435 4616
duke@435 4617
duke@435 4618 BasicType TypeFunc::return_type() const{
duke@435 4619 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4620 return T_VOID;
duke@435 4621 }
duke@435 4622 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4623 }

mercurial