src/share/classes/com/sun/tools/javac/code/Types.java

Wed, 21 Sep 2011 21:56:53 -0700

author
jjg
date
Wed, 21 Sep 2011 21:56:53 -0700
changeset 1096
b0d5f00e69f7
parent 1093
c0835c8489b0
child 1108
b5d0b8effc85
permissions
-rw-r--r--

7092965: javac should not close processorClassLoader before end of compilation
Reviewed-by: darcy

duke@1 1 /*
jjg@816 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
mcimadamore@341 28 import java.lang.ref.SoftReference;
duke@1 29 import java.util.*;
duke@1 30
duke@1 31 import com.sun.tools.javac.util.*;
duke@1 32 import com.sun.tools.javac.util.List;
duke@1 33
duke@1 34 import com.sun.tools.javac.jvm.ClassReader;
jjg@657 35 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
mcimadamore@795 36 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 37 import com.sun.tools.javac.comp.Check;
duke@1 38
mcimadamore@858 39 import static com.sun.tools.javac.code.Scope.*;
duke@1 40 import static com.sun.tools.javac.code.Type.*;
duke@1 41 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 42 import static com.sun.tools.javac.code.Symbol.*;
duke@1 43 import static com.sun.tools.javac.code.Flags.*;
duke@1 44 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 45 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 46
duke@1 47 /**
duke@1 48 * Utility class containing various operations on types.
duke@1 49 *
duke@1 50 * <p>Unless other names are more illustrative, the following naming
duke@1 51 * conventions should be observed in this file:
duke@1 52 *
duke@1 53 * <dl>
duke@1 54 * <dt>t</dt>
duke@1 55 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 56 * <dt>s</dt>
duke@1 57 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 58 * <dt>ts</dt>
duke@1 59 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 60 * <dt>ss</dt>
duke@1 61 * <dd>A second list of types should be named ss.</dd>
duke@1 62 * </dl>
duke@1 63 *
jjg@581 64 * <p><b>This is NOT part of any supported API.
duke@1 65 * If you write code that depends on this, you do so at your own risk.
duke@1 66 * This code and its internal interfaces are subject to change or
duke@1 67 * deletion without notice.</b>
duke@1 68 */
duke@1 69 public class Types {
duke@1 70 protected static final Context.Key<Types> typesKey =
duke@1 71 new Context.Key<Types>();
duke@1 72
duke@1 73 final Symtab syms;
mcimadamore@136 74 final JavacMessages messages;
jjg@113 75 final Names names;
duke@1 76 final boolean allowBoxing;
jjg@984 77 final boolean allowCovariantReturns;
jjg@984 78 final boolean allowObjectToPrimitiveCast;
duke@1 79 final ClassReader reader;
duke@1 80 final Check chk;
duke@1 81 List<Warner> warnStack = List.nil();
duke@1 82 final Name capturedName;
duke@1 83
duke@1 84 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 85 public static Types instance(Context context) {
duke@1 86 Types instance = context.get(typesKey);
duke@1 87 if (instance == null)
duke@1 88 instance = new Types(context);
duke@1 89 return instance;
duke@1 90 }
duke@1 91
duke@1 92 protected Types(Context context) {
duke@1 93 context.put(typesKey, this);
duke@1 94 syms = Symtab.instance(context);
jjg@113 95 names = Names.instance(context);
jjg@984 96 Source source = Source.instance(context);
jjg@984 97 allowBoxing = source.allowBoxing();
jjg@984 98 allowCovariantReturns = source.allowCovariantReturns();
jjg@984 99 allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
duke@1 100 reader = ClassReader.instance(context);
duke@1 101 chk = Check.instance(context);
duke@1 102 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 103 messages = JavacMessages.instance(context);
duke@1 104 }
duke@1 105 // </editor-fold>
duke@1 106
duke@1 107 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 108 /**
duke@1 109 * The "rvalue conversion".<br>
duke@1 110 * The upper bound of most types is the type
duke@1 111 * itself. Wildcards, on the other hand have upper
duke@1 112 * and lower bounds.
duke@1 113 * @param t a type
duke@1 114 * @return the upper bound of the given type
duke@1 115 */
duke@1 116 public Type upperBound(Type t) {
duke@1 117 return upperBound.visit(t);
duke@1 118 }
duke@1 119 // where
duke@1 120 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 121
duke@1 122 @Override
duke@1 123 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 124 if (t.isSuperBound())
duke@1 125 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 126 else
duke@1 127 return visit(t.type);
duke@1 128 }
duke@1 129
duke@1 130 @Override
duke@1 131 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 132 return visit(t.bound);
duke@1 133 }
duke@1 134 };
duke@1 135 // </editor-fold>
duke@1 136
duke@1 137 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 138 /**
duke@1 139 * The "lvalue conversion".<br>
duke@1 140 * The lower bound of most types is the type
duke@1 141 * itself. Wildcards, on the other hand have upper
duke@1 142 * and lower bounds.
duke@1 143 * @param t a type
duke@1 144 * @return the lower bound of the given type
duke@1 145 */
duke@1 146 public Type lowerBound(Type t) {
duke@1 147 return lowerBound.visit(t);
duke@1 148 }
duke@1 149 // where
duke@1 150 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 151
duke@1 152 @Override
duke@1 153 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 154 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 155 }
duke@1 156
duke@1 157 @Override
duke@1 158 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 159 return visit(t.getLowerBound());
duke@1 160 }
duke@1 161 };
duke@1 162 // </editor-fold>
duke@1 163
duke@1 164 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 165 /**
duke@1 166 * Checks that all the arguments to a class are unbounded
duke@1 167 * wildcards or something else that doesn't make any restrictions
duke@1 168 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 169 * subclass can be cast to it without a warning.
duke@1 170 * @param t a type
duke@1 171 * @return true iff the given type is unbounded or raw
duke@1 172 */
duke@1 173 public boolean isUnbounded(Type t) {
duke@1 174 return isUnbounded.visit(t);
duke@1 175 }
duke@1 176 // where
duke@1 177 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 178
duke@1 179 public Boolean visitType(Type t, Void ignored) {
duke@1 180 return true;
duke@1 181 }
duke@1 182
duke@1 183 @Override
duke@1 184 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 185 List<Type> parms = t.tsym.type.allparams();
duke@1 186 List<Type> args = t.allparams();
duke@1 187 while (parms.nonEmpty()) {
duke@1 188 WildcardType unb = new WildcardType(syms.objectType,
duke@1 189 BoundKind.UNBOUND,
duke@1 190 syms.boundClass,
duke@1 191 (TypeVar)parms.head);
duke@1 192 if (!containsType(args.head, unb))
duke@1 193 return false;
duke@1 194 parms = parms.tail;
duke@1 195 args = args.tail;
duke@1 196 }
duke@1 197 return true;
duke@1 198 }
duke@1 199 };
duke@1 200 // </editor-fold>
duke@1 201
duke@1 202 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 203 /**
duke@1 204 * Return the least specific subtype of t that starts with symbol
duke@1 205 * sym. If none exists, return null. The least specific subtype
duke@1 206 * is determined as follows:
duke@1 207 *
duke@1 208 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 209 * subtype of t, that parameterized instance is returned.<br>
duke@1 210 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 211 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 212 * returned.
duke@1 213 */
duke@1 214 public Type asSub(Type t, Symbol sym) {
duke@1 215 return asSub.visit(t, sym);
duke@1 216 }
duke@1 217 // where
duke@1 218 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 219
duke@1 220 public Type visitType(Type t, Symbol sym) {
duke@1 221 return null;
duke@1 222 }
duke@1 223
duke@1 224 @Override
duke@1 225 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 226 if (t.tsym == sym)
duke@1 227 return t;
duke@1 228 Type base = asSuper(sym.type, t.tsym);
duke@1 229 if (base == null)
duke@1 230 return null;
duke@1 231 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 232 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 233 try {
duke@1 234 adapt(base, t, from, to);
duke@1 235 } catch (AdaptFailure ex) {
duke@1 236 return null;
duke@1 237 }
duke@1 238 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 239 if (!isSubtype(res, t))
duke@1 240 return null;
duke@1 241 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 242 for (List<Type> l = sym.type.allparams();
duke@1 243 l.nonEmpty(); l = l.tail)
duke@1 244 if (res.contains(l.head) && !t.contains(l.head))
duke@1 245 openVars.append(l.head);
duke@1 246 if (openVars.nonEmpty()) {
duke@1 247 if (t.isRaw()) {
duke@1 248 // The subtype of a raw type is raw
duke@1 249 res = erasure(res);
duke@1 250 } else {
duke@1 251 // Unbound type arguments default to ?
duke@1 252 List<Type> opens = openVars.toList();
duke@1 253 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 254 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 255 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 256 }
duke@1 257 res = subst(res, opens, qs.toList());
duke@1 258 }
duke@1 259 }
duke@1 260 return res;
duke@1 261 }
duke@1 262
duke@1 263 @Override
duke@1 264 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 265 return t;
duke@1 266 }
duke@1 267 };
duke@1 268 // </editor-fold>
duke@1 269
duke@1 270 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 271 /**
mcimadamore@1071 272 * Is t a subtype of or convertible via boxing/unboxing
mcimadamore@1071 273 * conversion to s?
duke@1 274 */
duke@1 275 public boolean isConvertible(Type t, Type s, Warner warn) {
mcimadamore@1071 276 if (t.tag == ERROR)
mcimadamore@1071 277 return true;
duke@1 278 boolean tPrimitive = t.isPrimitive();
duke@1 279 boolean sPrimitive = s.isPrimitive();
mcimadamore@795 280 if (tPrimitive == sPrimitive) {
mcimadamore@795 281 checkUnsafeVarargsConversion(t, s, warn);
duke@1 282 return isSubtypeUnchecked(t, s, warn);
mcimadamore@795 283 }
duke@1 284 if (!allowBoxing) return false;
duke@1 285 return tPrimitive
duke@1 286 ? isSubtype(boxedClass(t).type, s)
duke@1 287 : isSubtype(unboxedType(t), s);
duke@1 288 }
mcimadamore@795 289 //where
mcimadamore@795 290 private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
mcimadamore@795 291 if (t.tag != ARRAY || isReifiable(t)) return;
mcimadamore@795 292 ArrayType from = (ArrayType)t;
mcimadamore@795 293 boolean shouldWarn = false;
mcimadamore@795 294 switch (s.tag) {
mcimadamore@795 295 case ARRAY:
mcimadamore@795 296 ArrayType to = (ArrayType)s;
mcimadamore@795 297 shouldWarn = from.isVarargs() &&
mcimadamore@795 298 !to.isVarargs() &&
mcimadamore@795 299 !isReifiable(from);
mcimadamore@795 300 break;
mcimadamore@795 301 case CLASS:
mcimadamore@795 302 shouldWarn = from.isVarargs() &&
mcimadamore@795 303 isSubtype(from, s);
mcimadamore@795 304 break;
mcimadamore@795 305 }
mcimadamore@795 306 if (shouldWarn) {
mcimadamore@795 307 warn.warn(LintCategory.VARARGS);
mcimadamore@795 308 }
mcimadamore@795 309 }
duke@1 310
duke@1 311 /**
duke@1 312 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 313 * convertions to s?
duke@1 314 */
duke@1 315 public boolean isConvertible(Type t, Type s) {
duke@1 316 return isConvertible(t, s, Warner.noWarnings);
duke@1 317 }
duke@1 318 // </editor-fold>
duke@1 319
duke@1 320 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 321 /**
duke@1 322 * Is t an unchecked subtype of s?
duke@1 323 */
duke@1 324 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 325 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 326 }
duke@1 327 /**
duke@1 328 * Is t an unchecked subtype of s?
duke@1 329 */
duke@1 330 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
duke@1 331 if (t.tag == ARRAY && s.tag == ARRAY) {
mcimadamore@795 332 if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
mcimadamore@795 333 return isSameType(elemtype(t), elemtype(s));
mcimadamore@795 334 } else {
mcimadamore@795 335 ArrayType from = (ArrayType)t;
mcimadamore@795 336 ArrayType to = (ArrayType)s;
mcimadamore@795 337 if (from.isVarargs() &&
mcimadamore@795 338 !to.isVarargs() &&
mcimadamore@795 339 !isReifiable(from)) {
mcimadamore@795 340 warn.warn(LintCategory.VARARGS);
mcimadamore@795 341 }
mcimadamore@795 342 return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
mcimadamore@795 343 }
duke@1 344 } else if (isSubtype(t, s)) {
duke@1 345 return true;
mcimadamore@41 346 }
mcimadamore@41 347 else if (t.tag == TYPEVAR) {
mcimadamore@41 348 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@41 349 }
mcimadamore@93 350 else if (s.tag == UNDETVAR) {
mcimadamore@93 351 UndetVar uv = (UndetVar)s;
mcimadamore@93 352 if (uv.inst != null)
mcimadamore@93 353 return isSubtypeUnchecked(t, uv.inst, warn);
mcimadamore@93 354 }
mcimadamore@41 355 else if (!s.isRaw()) {
duke@1 356 Type t2 = asSuper(t, s.tsym);
duke@1 357 if (t2 != null && t2.isRaw()) {
duke@1 358 if (isReifiable(s))
mcimadamore@795 359 warn.silentWarn(LintCategory.UNCHECKED);
duke@1 360 else
mcimadamore@795 361 warn.warn(LintCategory.UNCHECKED);
duke@1 362 return true;
duke@1 363 }
duke@1 364 }
duke@1 365 return false;
duke@1 366 }
duke@1 367
duke@1 368 /**
duke@1 369 * Is t a subtype of s?<br>
duke@1 370 * (not defined for Method and ForAll types)
duke@1 371 */
duke@1 372 final public boolean isSubtype(Type t, Type s) {
duke@1 373 return isSubtype(t, s, true);
duke@1 374 }
duke@1 375 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 376 return isSubtype(t, s, false);
duke@1 377 }
duke@1 378 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 379 if (t == s)
duke@1 380 return true;
duke@1 381
duke@1 382 if (s.tag >= firstPartialTag)
duke@1 383 return isSuperType(s, t);
duke@1 384
mcimadamore@299 385 if (s.isCompound()) {
mcimadamore@299 386 for (Type s2 : interfaces(s).prepend(supertype(s))) {
mcimadamore@299 387 if (!isSubtype(t, s2, capture))
mcimadamore@299 388 return false;
mcimadamore@299 389 }
mcimadamore@299 390 return true;
mcimadamore@299 391 }
mcimadamore@299 392
duke@1 393 Type lower = lowerBound(s);
duke@1 394 if (s != lower)
duke@1 395 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 396
duke@1 397 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 398 }
duke@1 399 // where
duke@1 400 private TypeRelation isSubtype = new TypeRelation()
duke@1 401 {
duke@1 402 public Boolean visitType(Type t, Type s) {
duke@1 403 switch (t.tag) {
duke@1 404 case BYTE: case CHAR:
duke@1 405 return (t.tag == s.tag ||
duke@1 406 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 407 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 408 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 409 case BOOLEAN: case VOID:
duke@1 410 return t.tag == s.tag;
duke@1 411 case TYPEVAR:
duke@1 412 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 413 case BOT:
duke@1 414 return
duke@1 415 s.tag == BOT || s.tag == CLASS ||
duke@1 416 s.tag == ARRAY || s.tag == TYPEVAR;
mcimadamore@991 417 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
duke@1 418 case NONE:
duke@1 419 return false;
duke@1 420 default:
duke@1 421 throw new AssertionError("isSubtype " + t.tag);
duke@1 422 }
duke@1 423 }
duke@1 424
duke@1 425 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 426
duke@1 427 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 428 TypePair pair = new TypePair(t, s);
duke@1 429 if (cache.add(pair)) {
duke@1 430 try {
duke@1 431 return containsType(t.getTypeArguments(),
duke@1 432 s.getTypeArguments());
duke@1 433 } finally {
duke@1 434 cache.remove(pair);
duke@1 435 }
duke@1 436 } else {
duke@1 437 return containsType(t.getTypeArguments(),
duke@1 438 rewriteSupers(s).getTypeArguments());
duke@1 439 }
duke@1 440 }
duke@1 441
duke@1 442 private Type rewriteSupers(Type t) {
duke@1 443 if (!t.isParameterized())
duke@1 444 return t;
duke@1 445 ListBuffer<Type> from = lb();
duke@1 446 ListBuffer<Type> to = lb();
duke@1 447 adaptSelf(t, from, to);
duke@1 448 if (from.isEmpty())
duke@1 449 return t;
duke@1 450 ListBuffer<Type> rewrite = lb();
duke@1 451 boolean changed = false;
duke@1 452 for (Type orig : to.toList()) {
duke@1 453 Type s = rewriteSupers(orig);
duke@1 454 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 455 s = new WildcardType(syms.objectType,
duke@1 456 BoundKind.UNBOUND,
duke@1 457 syms.boundClass);
duke@1 458 changed = true;
duke@1 459 } else if (s != orig) {
duke@1 460 s = new WildcardType(upperBound(s),
duke@1 461 BoundKind.EXTENDS,
duke@1 462 syms.boundClass);
duke@1 463 changed = true;
duke@1 464 }
duke@1 465 rewrite.append(s);
duke@1 466 }
duke@1 467 if (changed)
duke@1 468 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 469 else
duke@1 470 return t;
duke@1 471 }
duke@1 472
duke@1 473 @Override
duke@1 474 public Boolean visitClassType(ClassType t, Type s) {
duke@1 475 Type sup = asSuper(t, s.tsym);
duke@1 476 return sup != null
duke@1 477 && sup.tsym == s.tsym
duke@1 478 // You're not allowed to write
duke@1 479 // Vector<Object> vec = new Vector<String>();
duke@1 480 // But with wildcards you can write
duke@1 481 // Vector<? extends Object> vec = new Vector<String>();
duke@1 482 // which means that subtype checking must be done
duke@1 483 // here instead of same-type checking (via containsType).
duke@1 484 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 485 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 486 s.getEnclosingType());
duke@1 487 }
duke@1 488
duke@1 489 @Override
duke@1 490 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 491 if (s.tag == ARRAY) {
duke@1 492 if (t.elemtype.tag <= lastBaseTag)
duke@1 493 return isSameType(t.elemtype, elemtype(s));
duke@1 494 else
duke@1 495 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 496 }
duke@1 497
duke@1 498 if (s.tag == CLASS) {
duke@1 499 Name sname = s.tsym.getQualifiedName();
duke@1 500 return sname == names.java_lang_Object
duke@1 501 || sname == names.java_lang_Cloneable
duke@1 502 || sname == names.java_io_Serializable;
duke@1 503 }
duke@1 504
duke@1 505 return false;
duke@1 506 }
duke@1 507
duke@1 508 @Override
duke@1 509 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 510 //todo: test against origin needed? or replace with substitution?
mcimadamore@1093 511 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
duke@1 512 return true;
mcimadamore@1093 513 } else if (s.tag == BOT) {
mcimadamore@1093 514 //if 's' is 'null' there's no instantiated type U for which
mcimadamore@1093 515 //U <: s (but 'null' itself, which is not a valid type)
mcimadamore@1093 516 return false;
mcimadamore@1093 517 }
duke@1 518
duke@1 519 if (t.inst != null)
duke@1 520 return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
duke@1 521
duke@1 522 t.hibounds = t.hibounds.prepend(s);
duke@1 523 return true;
duke@1 524 }
duke@1 525
duke@1 526 @Override
duke@1 527 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 528 return true;
duke@1 529 }
duke@1 530 };
duke@1 531
duke@1 532 /**
duke@1 533 * Is t a subtype of every type in given list `ts'?<br>
duke@1 534 * (not defined for Method and ForAll types)<br>
duke@1 535 * Allows unchecked conversions.
duke@1 536 */
duke@1 537 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 538 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 539 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 540 return false;
duke@1 541 return true;
duke@1 542 }
duke@1 543
duke@1 544 /**
duke@1 545 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 546 * of different length, return false.
duke@1 547 */
duke@1 548 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 549 while (ts.tail != null && ss.tail != null
duke@1 550 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 551 isSubtype(ts.head, ss.head)) {
duke@1 552 ts = ts.tail;
duke@1 553 ss = ss.tail;
duke@1 554 }
duke@1 555 return ts.tail == null && ss.tail == null;
duke@1 556 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 557 }
duke@1 558
duke@1 559 /**
duke@1 560 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 561 * unchecked conversions? If lists are of different length,
duke@1 562 * return false.
duke@1 563 **/
duke@1 564 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 565 while (ts.tail != null && ss.tail != null
duke@1 566 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 567 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 568 ts = ts.tail;
duke@1 569 ss = ss.tail;
duke@1 570 }
duke@1 571 return ts.tail == null && ss.tail == null;
duke@1 572 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 573 }
duke@1 574 // </editor-fold>
duke@1 575
duke@1 576 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 577 /**
duke@1 578 * Is t a supertype of s?
duke@1 579 */
duke@1 580 public boolean isSuperType(Type t, Type s) {
duke@1 581 switch (t.tag) {
duke@1 582 case ERROR:
duke@1 583 return true;
duke@1 584 case UNDETVAR: {
duke@1 585 UndetVar undet = (UndetVar)t;
duke@1 586 if (t == s ||
duke@1 587 undet.qtype == s ||
duke@1 588 s.tag == ERROR ||
duke@1 589 s.tag == BOT) return true;
duke@1 590 if (undet.inst != null)
duke@1 591 return isSubtype(s, undet.inst);
duke@1 592 undet.lobounds = undet.lobounds.prepend(s);
duke@1 593 return true;
duke@1 594 }
duke@1 595 default:
duke@1 596 return isSubtype(s, t);
duke@1 597 }
duke@1 598 }
duke@1 599 // </editor-fold>
duke@1 600
duke@1 601 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 602 /**
duke@1 603 * Are corresponding elements of the lists the same type? If
duke@1 604 * lists are of different length, return false.
duke@1 605 */
duke@1 606 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 607 while (ts.tail != null && ss.tail != null
duke@1 608 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 609 isSameType(ts.head, ss.head)) {
duke@1 610 ts = ts.tail;
duke@1 611 ss = ss.tail;
duke@1 612 }
duke@1 613 return ts.tail == null && ss.tail == null;
duke@1 614 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 615 }
duke@1 616
duke@1 617 /**
duke@1 618 * Is t the same type as s?
duke@1 619 */
duke@1 620 public boolean isSameType(Type t, Type s) {
duke@1 621 return isSameType.visit(t, s);
duke@1 622 }
duke@1 623 // where
duke@1 624 private TypeRelation isSameType = new TypeRelation() {
duke@1 625
duke@1 626 public Boolean visitType(Type t, Type s) {
duke@1 627 if (t == s)
duke@1 628 return true;
duke@1 629
duke@1 630 if (s.tag >= firstPartialTag)
duke@1 631 return visit(s, t);
duke@1 632
duke@1 633 switch (t.tag) {
duke@1 634 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 635 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 636 return t.tag == s.tag;
mcimadamore@561 637 case TYPEVAR: {
mcimadamore@561 638 if (s.tag == TYPEVAR) {
mcimadamore@561 639 //type-substitution does not preserve type-var types
mcimadamore@561 640 //check that type var symbols and bounds are indeed the same
mcimadamore@561 641 return t.tsym == s.tsym &&
mcimadamore@561 642 visit(t.getUpperBound(), s.getUpperBound());
mcimadamore@561 643 }
mcimadamore@561 644 else {
mcimadamore@561 645 //special case for s == ? super X, where upper(s) = u
mcimadamore@561 646 //check that u == t, where u has been set by Type.withTypeVar
mcimadamore@561 647 return s.isSuperBound() &&
mcimadamore@561 648 !s.isExtendsBound() &&
mcimadamore@561 649 visit(t, upperBound(s));
mcimadamore@561 650 }
mcimadamore@561 651 }
duke@1 652 default:
duke@1 653 throw new AssertionError("isSameType " + t.tag);
duke@1 654 }
duke@1 655 }
duke@1 656
duke@1 657 @Override
duke@1 658 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 659 if (s.tag >= firstPartialTag)
duke@1 660 return visit(s, t);
duke@1 661 else
duke@1 662 return false;
duke@1 663 }
duke@1 664
duke@1 665 @Override
duke@1 666 public Boolean visitClassType(ClassType t, Type s) {
duke@1 667 if (t == s)
duke@1 668 return true;
duke@1 669
duke@1 670 if (s.tag >= firstPartialTag)
duke@1 671 return visit(s, t);
duke@1 672
duke@1 673 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 674 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 675
duke@1 676 if (t.isCompound() && s.isCompound()) {
duke@1 677 if (!visit(supertype(t), supertype(s)))
duke@1 678 return false;
duke@1 679
duke@1 680 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 681 for (Type x : interfaces(t))
duke@1 682 set.add(new SingletonType(x));
duke@1 683 for (Type x : interfaces(s)) {
duke@1 684 if (!set.remove(new SingletonType(x)))
duke@1 685 return false;
duke@1 686 }
jjg@789 687 return (set.isEmpty());
duke@1 688 }
duke@1 689 return t.tsym == s.tsym
duke@1 690 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 691 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 692 }
duke@1 693
duke@1 694 @Override
duke@1 695 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 696 if (t == s)
duke@1 697 return true;
duke@1 698
duke@1 699 if (s.tag >= firstPartialTag)
duke@1 700 return visit(s, t);
duke@1 701
duke@1 702 return s.tag == ARRAY
duke@1 703 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 704 }
duke@1 705
duke@1 706 @Override
duke@1 707 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 708 // isSameType for methods does not take thrown
duke@1 709 // exceptions into account!
duke@1 710 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 711 }
duke@1 712
duke@1 713 @Override
duke@1 714 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 715 return t == s;
duke@1 716 }
duke@1 717
duke@1 718 @Override
duke@1 719 public Boolean visitForAll(ForAll t, Type s) {
duke@1 720 if (s.tag != FORALL)
duke@1 721 return false;
duke@1 722
duke@1 723 ForAll forAll = (ForAll)s;
duke@1 724 return hasSameBounds(t, forAll)
duke@1 725 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 726 }
duke@1 727
duke@1 728 @Override
duke@1 729 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 730 if (s.tag == WILDCARD)
duke@1 731 // FIXME, this might be leftovers from before capture conversion
duke@1 732 return false;
duke@1 733
duke@1 734 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 735 return true;
duke@1 736
duke@1 737 if (t.inst != null)
duke@1 738 return visit(t.inst, s);
duke@1 739
duke@1 740 t.inst = fromUnknownFun.apply(s);
duke@1 741 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
duke@1 742 if (!isSubtype(l.head, t.inst))
duke@1 743 return false;
duke@1 744 }
duke@1 745 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
duke@1 746 if (!isSubtype(t.inst, l.head))
duke@1 747 return false;
duke@1 748 }
duke@1 749 return true;
duke@1 750 }
duke@1 751
duke@1 752 @Override
duke@1 753 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 754 return true;
duke@1 755 }
duke@1 756 };
duke@1 757 // </editor-fold>
duke@1 758
duke@1 759 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 760 /**
duke@1 761 * A mapping that turns all unknown types in this type to fresh
duke@1 762 * unknown variables.
duke@1 763 */
duke@1 764 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 765 public Type apply(Type t) {
duke@1 766 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 767 else return t.map(this);
duke@1 768 }
duke@1 769 };
duke@1 770 // </editor-fold>
duke@1 771
duke@1 772 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 773 public boolean containedBy(Type t, Type s) {
duke@1 774 switch (t.tag) {
duke@1 775 case UNDETVAR:
duke@1 776 if (s.tag == WILDCARD) {
duke@1 777 UndetVar undetvar = (UndetVar)t;
mcimadamore@210 778 WildcardType wt = (WildcardType)s;
mcimadamore@210 779 switch(wt.kind) {
mcimadamore@210 780 case UNBOUND: //similar to ? extends Object
mcimadamore@210 781 case EXTENDS: {
mcimadamore@210 782 Type bound = upperBound(s);
mcimadamore@210 783 // We should check the new upper bound against any of the
mcimadamore@210 784 // undetvar's lower bounds.
mcimadamore@210 785 for (Type t2 : undetvar.lobounds) {
mcimadamore@210 786 if (!isSubtype(t2, bound))
mcimadamore@210 787 return false;
mcimadamore@210 788 }
mcimadamore@210 789 undetvar.hibounds = undetvar.hibounds.prepend(bound);
mcimadamore@210 790 break;
mcimadamore@210 791 }
mcimadamore@210 792 case SUPER: {
mcimadamore@210 793 Type bound = lowerBound(s);
mcimadamore@210 794 // We should check the new lower bound against any of the
mcimadamore@210 795 // undetvar's lower bounds.
mcimadamore@210 796 for (Type t2 : undetvar.hibounds) {
mcimadamore@210 797 if (!isSubtype(bound, t2))
mcimadamore@210 798 return false;
mcimadamore@210 799 }
mcimadamore@210 800 undetvar.lobounds = undetvar.lobounds.prepend(bound);
mcimadamore@210 801 break;
mcimadamore@210 802 }
mcimadamore@162 803 }
duke@1 804 return true;
duke@1 805 } else {
duke@1 806 return isSameType(t, s);
duke@1 807 }
duke@1 808 case ERROR:
duke@1 809 return true;
duke@1 810 default:
duke@1 811 return containsType(s, t);
duke@1 812 }
duke@1 813 }
duke@1 814
duke@1 815 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 816 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 817 && containsType(ts.head, ss.head)) {
duke@1 818 ts = ts.tail;
duke@1 819 ss = ss.tail;
duke@1 820 }
duke@1 821 return ts.isEmpty() && ss.isEmpty();
duke@1 822 }
duke@1 823
duke@1 824 /**
duke@1 825 * Check if t contains s.
duke@1 826 *
duke@1 827 * <p>T contains S if:
duke@1 828 *
duke@1 829 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 830 *
duke@1 831 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 832 * is,
duke@1 833 *
duke@1 834 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 835 *
duke@1 836 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 837 * recursion. Thus we must somehow break that recursion. Notice
duke@1 838 * that containsType() is only called from ClassType.isSubtype().
duke@1 839 * Since the arguments have already been checked against their
duke@1 840 * bounds, we know:
duke@1 841 *
duke@1 842 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 843 *
duke@1 844 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 845 *
duke@1 846 * @param t a type
duke@1 847 * @param s a type
duke@1 848 */
duke@1 849 public boolean containsType(Type t, Type s) {
duke@1 850 return containsType.visit(t, s);
duke@1 851 }
duke@1 852 // where
duke@1 853 private TypeRelation containsType = new TypeRelation() {
duke@1 854
duke@1 855 private Type U(Type t) {
duke@1 856 while (t.tag == WILDCARD) {
duke@1 857 WildcardType w = (WildcardType)t;
duke@1 858 if (w.isSuperBound())
duke@1 859 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 860 else
duke@1 861 t = w.type;
duke@1 862 }
duke@1 863 return t;
duke@1 864 }
duke@1 865
duke@1 866 private Type L(Type t) {
duke@1 867 while (t.tag == WILDCARD) {
duke@1 868 WildcardType w = (WildcardType)t;
duke@1 869 if (w.isExtendsBound())
duke@1 870 return syms.botType;
duke@1 871 else
duke@1 872 t = w.type;
duke@1 873 }
duke@1 874 return t;
duke@1 875 }
duke@1 876
duke@1 877 public Boolean visitType(Type t, Type s) {
duke@1 878 if (s.tag >= firstPartialTag)
duke@1 879 return containedBy(s, t);
duke@1 880 else
duke@1 881 return isSameType(t, s);
duke@1 882 }
duke@1 883
jjg@789 884 // void debugContainsType(WildcardType t, Type s) {
jjg@789 885 // System.err.println();
jjg@789 886 // System.err.format(" does %s contain %s?%n", t, s);
jjg@789 887 // System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
jjg@789 888 // upperBound(s), s, t, U(t),
jjg@789 889 // t.isSuperBound()
jjg@789 890 // || isSubtypeNoCapture(upperBound(s), U(t)));
jjg@789 891 // System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
jjg@789 892 // L(t), t, s, lowerBound(s),
jjg@789 893 // t.isExtendsBound()
jjg@789 894 // || isSubtypeNoCapture(L(t), lowerBound(s)));
jjg@789 895 // System.err.println();
jjg@789 896 // }
duke@1 897
duke@1 898 @Override
duke@1 899 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 900 if (s.tag >= firstPartialTag)
duke@1 901 return containedBy(s, t);
duke@1 902 else {
jjg@789 903 // debugContainsType(t, s);
duke@1 904 return isSameWildcard(t, s)
duke@1 905 || isCaptureOf(s, t)
duke@1 906 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 907 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 908 }
duke@1 909 }
duke@1 910
duke@1 911 @Override
duke@1 912 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 913 if (s.tag != WILDCARD)
duke@1 914 return isSameType(t, s);
duke@1 915 else
duke@1 916 return false;
duke@1 917 }
duke@1 918
duke@1 919 @Override
duke@1 920 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 921 return true;
duke@1 922 }
duke@1 923 };
duke@1 924
duke@1 925 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 926 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 927 return false;
duke@1 928 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 929 }
duke@1 930
duke@1 931 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 932 if (s.tag != WILDCARD)
duke@1 933 return false;
duke@1 934 WildcardType w = (WildcardType)s;
duke@1 935 return w.kind == t.kind && w.type == t.type;
duke@1 936 }
duke@1 937
duke@1 938 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 939 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 940 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 941 ts = ts.tail;
duke@1 942 ss = ss.tail;
duke@1 943 }
duke@1 944 return ts.isEmpty() && ss.isEmpty();
duke@1 945 }
duke@1 946 // </editor-fold>
duke@1 947
duke@1 948 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 949 public boolean isCastable(Type t, Type s) {
duke@1 950 return isCastable(t, s, Warner.noWarnings);
duke@1 951 }
duke@1 952
duke@1 953 /**
duke@1 954 * Is t is castable to s?<br>
duke@1 955 * s is assumed to be an erased type.<br>
duke@1 956 * (not defined for Method and ForAll types).
duke@1 957 */
duke@1 958 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 959 if (t == s)
duke@1 960 return true;
duke@1 961
duke@1 962 if (t.isPrimitive() != s.isPrimitive())
jjg@984 963 return allowBoxing && (
jjg@984 964 isConvertible(t, s, warn)
mcimadamore@1007 965 || (allowObjectToPrimitiveCast &&
mcimadamore@1007 966 s.isPrimitive() &&
mcimadamore@1007 967 isSubtype(boxedClass(s).type, t)));
duke@1 968 if (warn != warnStack.head) {
duke@1 969 try {
duke@1 970 warnStack = warnStack.prepend(warn);
mcimadamore@795 971 checkUnsafeVarargsConversion(t, s, warn);
mcimadamore@185 972 return isCastable.visit(t,s);
duke@1 973 } finally {
duke@1 974 warnStack = warnStack.tail;
duke@1 975 }
duke@1 976 } else {
mcimadamore@185 977 return isCastable.visit(t,s);
duke@1 978 }
duke@1 979 }
duke@1 980 // where
duke@1 981 private TypeRelation isCastable = new TypeRelation() {
duke@1 982
duke@1 983 public Boolean visitType(Type t, Type s) {
duke@1 984 if (s.tag == ERROR)
duke@1 985 return true;
duke@1 986
duke@1 987 switch (t.tag) {
duke@1 988 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 989 case DOUBLE:
duke@1 990 return s.tag <= DOUBLE;
duke@1 991 case BOOLEAN:
duke@1 992 return s.tag == BOOLEAN;
duke@1 993 case VOID:
duke@1 994 return false;
duke@1 995 case BOT:
duke@1 996 return isSubtype(t, s);
duke@1 997 default:
duke@1 998 throw new AssertionError();
duke@1 999 }
duke@1 1000 }
duke@1 1001
duke@1 1002 @Override
duke@1 1003 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1004 return isCastable(upperBound(t), s, warnStack.head);
duke@1 1005 }
duke@1 1006
duke@1 1007 @Override
duke@1 1008 public Boolean visitClassType(ClassType t, Type s) {
duke@1 1009 if (s.tag == ERROR || s.tag == BOT)
duke@1 1010 return true;
duke@1 1011
duke@1 1012 if (s.tag == TYPEVAR) {
mcimadamore@640 1013 if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
mcimadamore@795 1014 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1015 return true;
duke@1 1016 } else {
duke@1 1017 return false;
duke@1 1018 }
duke@1 1019 }
duke@1 1020
duke@1 1021 if (t.isCompound()) {
mcimadamore@211 1022 Warner oldWarner = warnStack.head;
mcimadamore@211 1023 warnStack.head = Warner.noWarnings;
duke@1 1024 if (!visit(supertype(t), s))
duke@1 1025 return false;
duke@1 1026 for (Type intf : interfaces(t)) {
duke@1 1027 if (!visit(intf, s))
duke@1 1028 return false;
duke@1 1029 }
mcimadamore@795 1030 if (warnStack.head.hasLint(LintCategory.UNCHECKED))
mcimadamore@795 1031 oldWarner.warn(LintCategory.UNCHECKED);
duke@1 1032 return true;
duke@1 1033 }
duke@1 1034
duke@1 1035 if (s.isCompound()) {
duke@1 1036 // call recursively to reuse the above code
duke@1 1037 return visitClassType((ClassType)s, t);
duke@1 1038 }
duke@1 1039
duke@1 1040 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 1041 boolean upcast;
duke@1 1042 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 1043 || isSubtype(erasure(s), erasure(t))) {
duke@1 1044 if (!upcast && s.tag == ARRAY) {
duke@1 1045 if (!isReifiable(s))
mcimadamore@795 1046 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1047 return true;
duke@1 1048 } else if (s.isRaw()) {
duke@1 1049 return true;
duke@1 1050 } else if (t.isRaw()) {
duke@1 1051 if (!isUnbounded(s))
mcimadamore@795 1052 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1053 return true;
duke@1 1054 }
duke@1 1055 // Assume |a| <: |b|
duke@1 1056 final Type a = upcast ? t : s;
duke@1 1057 final Type b = upcast ? s : t;
duke@1 1058 final boolean HIGH = true;
duke@1 1059 final boolean LOW = false;
duke@1 1060 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 1061 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1062 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1063 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1064 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1065 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 1066 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1067 if (highSub == null) {
duke@1 1068 final boolean REWRITE_TYPEVARS = true;
duke@1 1069 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 1070 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 1071 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 1072 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 1073 lowSub = asSub(bLow, aLow.tsym);
duke@1 1074 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1075 }
duke@1 1076 if (highSub != null) {
jjg@816 1077 if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
jjg@816 1078 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
jjg@816 1079 }
mcimadamore@185 1080 if (!disjointTypes(aHigh.allparams(), highSub.allparams())
mcimadamore@185 1081 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
mcimadamore@185 1082 && !disjointTypes(aLow.allparams(), highSub.allparams())
mcimadamore@185 1083 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
mcimadamore@779 1084 if (upcast ? giveWarning(a, b) :
mcimadamore@235 1085 giveWarning(b, a))
mcimadamore@795 1086 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1087 return true;
duke@1 1088 }
duke@1 1089 }
duke@1 1090 if (isReifiable(s))
duke@1 1091 return isSubtypeUnchecked(a, b);
duke@1 1092 else
duke@1 1093 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1094 }
duke@1 1095
duke@1 1096 // Sidecast
duke@1 1097 if (s.tag == CLASS) {
duke@1 1098 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1099 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1100 ? sideCast(t, s, warnStack.head)
duke@1 1101 : sideCastFinal(t, s, warnStack.head);
duke@1 1102 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1103 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1104 ? sideCast(t, s, warnStack.head)
duke@1 1105 : sideCastFinal(t, s, warnStack.head);
duke@1 1106 } else {
duke@1 1107 // unrelated class types
duke@1 1108 return false;
duke@1 1109 }
duke@1 1110 }
duke@1 1111 }
duke@1 1112 return false;
duke@1 1113 }
duke@1 1114
duke@1 1115 @Override
duke@1 1116 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1117 switch (s.tag) {
duke@1 1118 case ERROR:
duke@1 1119 case BOT:
duke@1 1120 return true;
duke@1 1121 case TYPEVAR:
duke@1 1122 if (isCastable(s, t, Warner.noWarnings)) {
mcimadamore@795 1123 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1124 return true;
duke@1 1125 } else {
duke@1 1126 return false;
duke@1 1127 }
duke@1 1128 case CLASS:
duke@1 1129 return isSubtype(t, s);
duke@1 1130 case ARRAY:
mcimadamore@786 1131 if (elemtype(t).tag <= lastBaseTag ||
mcimadamore@786 1132 elemtype(s).tag <= lastBaseTag) {
duke@1 1133 return elemtype(t).tag == elemtype(s).tag;
duke@1 1134 } else {
duke@1 1135 return visit(elemtype(t), elemtype(s));
duke@1 1136 }
duke@1 1137 default:
duke@1 1138 return false;
duke@1 1139 }
duke@1 1140 }
duke@1 1141
duke@1 1142 @Override
duke@1 1143 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1144 switch (s.tag) {
duke@1 1145 case ERROR:
duke@1 1146 case BOT:
duke@1 1147 return true;
duke@1 1148 case TYPEVAR:
duke@1 1149 if (isSubtype(t, s)) {
duke@1 1150 return true;
duke@1 1151 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
mcimadamore@795 1152 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1153 return true;
duke@1 1154 } else {
duke@1 1155 return false;
duke@1 1156 }
duke@1 1157 default:
duke@1 1158 return isCastable(t.bound, s, warnStack.head);
duke@1 1159 }
duke@1 1160 }
duke@1 1161
duke@1 1162 @Override
duke@1 1163 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1164 return true;
duke@1 1165 }
duke@1 1166 };
duke@1 1167 // </editor-fold>
duke@1 1168
duke@1 1169 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1170 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1171 while (ts.tail != null && ss.tail != null) {
duke@1 1172 if (disjointType(ts.head, ss.head)) return true;
duke@1 1173 ts = ts.tail;
duke@1 1174 ss = ss.tail;
duke@1 1175 }
duke@1 1176 return false;
duke@1 1177 }
duke@1 1178
duke@1 1179 /**
duke@1 1180 * Two types or wildcards are considered disjoint if it can be
duke@1 1181 * proven that no type can be contained in both. It is
duke@1 1182 * conservative in that it is allowed to say that two types are
duke@1 1183 * not disjoint, even though they actually are.
duke@1 1184 *
duke@1 1185 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1186 * disjoint.
duke@1 1187 */
duke@1 1188 public boolean disjointType(Type t, Type s) {
duke@1 1189 return disjointType.visit(t, s);
duke@1 1190 }
duke@1 1191 // where
duke@1 1192 private TypeRelation disjointType = new TypeRelation() {
duke@1 1193
duke@1 1194 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1195
duke@1 1196 public Boolean visitType(Type t, Type s) {
duke@1 1197 if (s.tag == WILDCARD)
duke@1 1198 return visit(s, t);
duke@1 1199 else
duke@1 1200 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1201 }
duke@1 1202
duke@1 1203 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1204 TypePair pair = new TypePair(t, s);
duke@1 1205 if (cache.add(pair)) {
duke@1 1206 try {
duke@1 1207 return Types.this.isCastable(t, s);
duke@1 1208 } finally {
duke@1 1209 cache.remove(pair);
duke@1 1210 }
duke@1 1211 } else {
duke@1 1212 return true;
duke@1 1213 }
duke@1 1214 }
duke@1 1215
duke@1 1216 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1217 TypePair pair = new TypePair(t, s);
duke@1 1218 if (cache.add(pair)) {
duke@1 1219 try {
duke@1 1220 return Types.this.notSoftSubtype(t, s);
duke@1 1221 } finally {
duke@1 1222 cache.remove(pair);
duke@1 1223 }
duke@1 1224 } else {
duke@1 1225 return false;
duke@1 1226 }
duke@1 1227 }
duke@1 1228
duke@1 1229 @Override
duke@1 1230 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1231 if (t.isUnbound())
duke@1 1232 return false;
duke@1 1233
duke@1 1234 if (s.tag != WILDCARD) {
duke@1 1235 if (t.isExtendsBound())
duke@1 1236 return notSoftSubtypeRecursive(s, t.type);
duke@1 1237 else // isSuperBound()
duke@1 1238 return notSoftSubtypeRecursive(t.type, s);
duke@1 1239 }
duke@1 1240
duke@1 1241 if (s.isUnbound())
duke@1 1242 return false;
duke@1 1243
duke@1 1244 if (t.isExtendsBound()) {
duke@1 1245 if (s.isExtendsBound())
duke@1 1246 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1247 else if (s.isSuperBound())
duke@1 1248 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1249 } else if (t.isSuperBound()) {
duke@1 1250 if (s.isExtendsBound())
duke@1 1251 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1252 }
duke@1 1253 return false;
duke@1 1254 }
duke@1 1255 };
duke@1 1256 // </editor-fold>
duke@1 1257
duke@1 1258 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1259 /**
duke@1 1260 * Returns the lower bounds of the formals of a method.
duke@1 1261 */
duke@1 1262 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1263 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1264 }
duke@1 1265 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1266 public Type apply(Type t) {
duke@1 1267 return lowerBound(t);
duke@1 1268 }
duke@1 1269 };
duke@1 1270 // </editor-fold>
duke@1 1271
duke@1 1272 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1273 /**
duke@1 1274 * This relation answers the question: is impossible that
duke@1 1275 * something of type `t' can be a subtype of `s'? This is
duke@1 1276 * different from the question "is `t' not a subtype of `s'?"
duke@1 1277 * when type variables are involved: Integer is not a subtype of T
duke@1 1278 * where <T extends Number> but it is not true that Integer cannot
duke@1 1279 * possibly be a subtype of T.
duke@1 1280 */
duke@1 1281 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1282 if (t == s) return false;
duke@1 1283 if (t.tag == TYPEVAR) {
duke@1 1284 TypeVar tv = (TypeVar) t;
duke@1 1285 return !isCastable(tv.bound,
mcimadamore@640 1286 relaxBound(s),
duke@1 1287 Warner.noWarnings);
duke@1 1288 }
duke@1 1289 if (s.tag != WILDCARD)
duke@1 1290 s = upperBound(s);
mcimadamore@640 1291
mcimadamore@640 1292 return !isSubtype(t, relaxBound(s));
mcimadamore@640 1293 }
mcimadamore@640 1294
mcimadamore@640 1295 private Type relaxBound(Type t) {
mcimadamore@640 1296 if (t.tag == TYPEVAR) {
mcimadamore@640 1297 while (t.tag == TYPEVAR)
mcimadamore@640 1298 t = t.getUpperBound();
mcimadamore@640 1299 t = rewriteQuantifiers(t, true, true);
mcimadamore@640 1300 }
mcimadamore@640 1301 return t;
duke@1 1302 }
duke@1 1303 // </editor-fold>
duke@1 1304
duke@1 1305 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1306 public boolean isReifiable(Type t) {
duke@1 1307 return isReifiable.visit(t);
duke@1 1308 }
duke@1 1309 // where
duke@1 1310 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1311
duke@1 1312 public Boolean visitType(Type t, Void ignored) {
duke@1 1313 return true;
duke@1 1314 }
duke@1 1315
duke@1 1316 @Override
duke@1 1317 public Boolean visitClassType(ClassType t, Void ignored) {
mcimadamore@356 1318 if (t.isCompound())
mcimadamore@356 1319 return false;
mcimadamore@356 1320 else {
mcimadamore@356 1321 if (!t.isParameterized())
mcimadamore@356 1322 return true;
mcimadamore@356 1323
mcimadamore@356 1324 for (Type param : t.allparams()) {
mcimadamore@356 1325 if (!param.isUnbound())
mcimadamore@356 1326 return false;
mcimadamore@356 1327 }
duke@1 1328 return true;
duke@1 1329 }
duke@1 1330 }
duke@1 1331
duke@1 1332 @Override
duke@1 1333 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1334 return visit(t.elemtype);
duke@1 1335 }
duke@1 1336
duke@1 1337 @Override
duke@1 1338 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1339 return false;
duke@1 1340 }
duke@1 1341 };
duke@1 1342 // </editor-fold>
duke@1 1343
duke@1 1344 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1345 public boolean isArray(Type t) {
duke@1 1346 while (t.tag == WILDCARD)
duke@1 1347 t = upperBound(t);
duke@1 1348 return t.tag == ARRAY;
duke@1 1349 }
duke@1 1350
duke@1 1351 /**
duke@1 1352 * The element type of an array.
duke@1 1353 */
duke@1 1354 public Type elemtype(Type t) {
duke@1 1355 switch (t.tag) {
duke@1 1356 case WILDCARD:
duke@1 1357 return elemtype(upperBound(t));
duke@1 1358 case ARRAY:
duke@1 1359 return ((ArrayType)t).elemtype;
duke@1 1360 case FORALL:
duke@1 1361 return elemtype(((ForAll)t).qtype);
duke@1 1362 case ERROR:
duke@1 1363 return t;
duke@1 1364 default:
duke@1 1365 return null;
duke@1 1366 }
duke@1 1367 }
duke@1 1368
mcimadamore@787 1369 public Type elemtypeOrType(Type t) {
mcimadamore@787 1370 Type elemtype = elemtype(t);
mcimadamore@787 1371 return elemtype != null ?
mcimadamore@787 1372 elemtype :
mcimadamore@787 1373 t;
mcimadamore@787 1374 }
mcimadamore@787 1375
duke@1 1376 /**
duke@1 1377 * Mapping to take element type of an arraytype
duke@1 1378 */
duke@1 1379 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1380 public Type apply(Type t) { return elemtype(t); }
duke@1 1381 };
duke@1 1382
duke@1 1383 /**
duke@1 1384 * The number of dimensions of an array type.
duke@1 1385 */
duke@1 1386 public int dimensions(Type t) {
duke@1 1387 int result = 0;
duke@1 1388 while (t.tag == ARRAY) {
duke@1 1389 result++;
duke@1 1390 t = elemtype(t);
duke@1 1391 }
duke@1 1392 return result;
duke@1 1393 }
duke@1 1394 // </editor-fold>
duke@1 1395
duke@1 1396 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1397 /**
duke@1 1398 * Return the (most specific) base type of t that starts with the
duke@1 1399 * given symbol. If none exists, return null.
duke@1 1400 *
duke@1 1401 * @param t a type
duke@1 1402 * @param sym a symbol
duke@1 1403 */
duke@1 1404 public Type asSuper(Type t, Symbol sym) {
duke@1 1405 return asSuper.visit(t, sym);
duke@1 1406 }
duke@1 1407 // where
duke@1 1408 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1409
duke@1 1410 public Type visitType(Type t, Symbol sym) {
duke@1 1411 return null;
duke@1 1412 }
duke@1 1413
duke@1 1414 @Override
duke@1 1415 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1416 if (t.tsym == sym)
duke@1 1417 return t;
duke@1 1418
duke@1 1419 Type st = supertype(t);
mcimadamore@19 1420 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1421 Type x = asSuper(st, sym);
duke@1 1422 if (x != null)
duke@1 1423 return x;
duke@1 1424 }
duke@1 1425 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1426 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1427 Type x = asSuper(l.head, sym);
duke@1 1428 if (x != null)
duke@1 1429 return x;
duke@1 1430 }
duke@1 1431 }
duke@1 1432 return null;
duke@1 1433 }
duke@1 1434
duke@1 1435 @Override
duke@1 1436 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1437 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1438 }
duke@1 1439
duke@1 1440 @Override
duke@1 1441 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1442 if (t.tsym == sym)
mcimadamore@19 1443 return t;
mcimadamore@19 1444 else
mcimadamore@19 1445 return asSuper(t.bound, sym);
duke@1 1446 }
duke@1 1447
duke@1 1448 @Override
duke@1 1449 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1450 return t;
duke@1 1451 }
duke@1 1452 };
duke@1 1453
duke@1 1454 /**
duke@1 1455 * Return the base type of t or any of its outer types that starts
duke@1 1456 * with the given symbol. If none exists, return null.
duke@1 1457 *
duke@1 1458 * @param t a type
duke@1 1459 * @param sym a symbol
duke@1 1460 */
duke@1 1461 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1462 switch (t.tag) {
duke@1 1463 case CLASS:
duke@1 1464 do {
duke@1 1465 Type s = asSuper(t, sym);
duke@1 1466 if (s != null) return s;
duke@1 1467 t = t.getEnclosingType();
duke@1 1468 } while (t.tag == CLASS);
duke@1 1469 return null;
duke@1 1470 case ARRAY:
duke@1 1471 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1472 case TYPEVAR:
duke@1 1473 return asSuper(t, sym);
duke@1 1474 case ERROR:
duke@1 1475 return t;
duke@1 1476 default:
duke@1 1477 return null;
duke@1 1478 }
duke@1 1479 }
duke@1 1480
duke@1 1481 /**
duke@1 1482 * Return the base type of t or any of its enclosing types that
duke@1 1483 * starts with the given symbol. If none exists, return null.
duke@1 1484 *
duke@1 1485 * @param t a type
duke@1 1486 * @param sym a symbol
duke@1 1487 */
duke@1 1488 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1489 switch (t.tag) {
duke@1 1490 case CLASS:
duke@1 1491 do {
duke@1 1492 Type s = asSuper(t, sym);
duke@1 1493 if (s != null) return s;
duke@1 1494 Type outer = t.getEnclosingType();
duke@1 1495 t = (outer.tag == CLASS) ? outer :
duke@1 1496 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1497 Type.noType;
duke@1 1498 } while (t.tag == CLASS);
duke@1 1499 return null;
duke@1 1500 case ARRAY:
duke@1 1501 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1502 case TYPEVAR:
duke@1 1503 return asSuper(t, sym);
duke@1 1504 case ERROR:
duke@1 1505 return t;
duke@1 1506 default:
duke@1 1507 return null;
duke@1 1508 }
duke@1 1509 }
duke@1 1510 // </editor-fold>
duke@1 1511
duke@1 1512 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1513 /**
duke@1 1514 * The type of given symbol, seen as a member of t.
duke@1 1515 *
duke@1 1516 * @param t a type
duke@1 1517 * @param sym a symbol
duke@1 1518 */
duke@1 1519 public Type memberType(Type t, Symbol sym) {
duke@1 1520 return (sym.flags() & STATIC) != 0
duke@1 1521 ? sym.type
duke@1 1522 : memberType.visit(t, sym);
mcimadamore@341 1523 }
duke@1 1524 // where
duke@1 1525 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1526
duke@1 1527 public Type visitType(Type t, Symbol sym) {
duke@1 1528 return sym.type;
duke@1 1529 }
duke@1 1530
duke@1 1531 @Override
duke@1 1532 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1533 return memberType(upperBound(t), sym);
duke@1 1534 }
duke@1 1535
duke@1 1536 @Override
duke@1 1537 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1538 Symbol owner = sym.owner;
duke@1 1539 long flags = sym.flags();
duke@1 1540 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1541 Type base = asOuterSuper(t, owner);
mcimadamore@134 1542 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1543 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1544 //so we need to go through capture conversion
mcimadamore@134 1545 base = t.isCompound() ? capture(base) : base;
duke@1 1546 if (base != null) {
duke@1 1547 List<Type> ownerParams = owner.type.allparams();
duke@1 1548 List<Type> baseParams = base.allparams();
duke@1 1549 if (ownerParams.nonEmpty()) {
duke@1 1550 if (baseParams.isEmpty()) {
duke@1 1551 // then base is a raw type
duke@1 1552 return erasure(sym.type);
duke@1 1553 } else {
duke@1 1554 return subst(sym.type, ownerParams, baseParams);
duke@1 1555 }
duke@1 1556 }
duke@1 1557 }
duke@1 1558 }
duke@1 1559 return sym.type;
duke@1 1560 }
duke@1 1561
duke@1 1562 @Override
duke@1 1563 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1564 return memberType(t.bound, sym);
duke@1 1565 }
duke@1 1566
duke@1 1567 @Override
duke@1 1568 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1569 return t;
duke@1 1570 }
duke@1 1571 };
duke@1 1572 // </editor-fold>
duke@1 1573
duke@1 1574 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1575 public boolean isAssignable(Type t, Type s) {
duke@1 1576 return isAssignable(t, s, Warner.noWarnings);
duke@1 1577 }
duke@1 1578
duke@1 1579 /**
duke@1 1580 * Is t assignable to s?<br>
duke@1 1581 * Equivalent to subtype except for constant values and raw
duke@1 1582 * types.<br>
duke@1 1583 * (not defined for Method and ForAll types)
duke@1 1584 */
duke@1 1585 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1586 if (t.tag == ERROR)
duke@1 1587 return true;
duke@1 1588 if (t.tag <= INT && t.constValue() != null) {
duke@1 1589 int value = ((Number)t.constValue()).intValue();
duke@1 1590 switch (s.tag) {
duke@1 1591 case BYTE:
duke@1 1592 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1593 return true;
duke@1 1594 break;
duke@1 1595 case CHAR:
duke@1 1596 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1597 return true;
duke@1 1598 break;
duke@1 1599 case SHORT:
duke@1 1600 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1601 return true;
duke@1 1602 break;
duke@1 1603 case INT:
duke@1 1604 return true;
duke@1 1605 case CLASS:
duke@1 1606 switch (unboxedType(s).tag) {
duke@1 1607 case BYTE:
duke@1 1608 case CHAR:
duke@1 1609 case SHORT:
duke@1 1610 return isAssignable(t, unboxedType(s), warn);
duke@1 1611 }
duke@1 1612 break;
duke@1 1613 }
duke@1 1614 }
duke@1 1615 return isConvertible(t, s, warn);
duke@1 1616 }
duke@1 1617 // </editor-fold>
duke@1 1618
duke@1 1619 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1620 /**
duke@1 1621 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1622 * type parameters in t are deleted.
duke@1 1623 */
duke@1 1624 public Type erasure(Type t) {
mcimadamore@30 1625 return erasure(t, false);
mcimadamore@30 1626 }
mcimadamore@30 1627 //where
mcimadamore@30 1628 private Type erasure(Type t, boolean recurse) {
duke@1 1629 if (t.tag <= lastBaseTag)
duke@1 1630 return t; /* fast special case */
duke@1 1631 else
mcimadamore@30 1632 return erasure.visit(t, recurse);
mcimadamore@341 1633 }
duke@1 1634 // where
mcimadamore@30 1635 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1636 public Type visitType(Type t, Boolean recurse) {
duke@1 1637 if (t.tag <= lastBaseTag)
duke@1 1638 return t; /*fast special case*/
duke@1 1639 else
mcimadamore@30 1640 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1641 }
duke@1 1642
duke@1 1643 @Override
mcimadamore@30 1644 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1645 return erasure(upperBound(t), recurse);
duke@1 1646 }
duke@1 1647
duke@1 1648 @Override
mcimadamore@30 1649 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1650 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1651 if (recurse) {
mcimadamore@30 1652 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1653 }
mcimadamore@30 1654 return erased;
duke@1 1655 }
duke@1 1656
duke@1 1657 @Override
mcimadamore@30 1658 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1659 return erasure(t.bound, recurse);
duke@1 1660 }
duke@1 1661
duke@1 1662 @Override
mcimadamore@30 1663 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1664 return t;
duke@1 1665 }
duke@1 1666 };
mcimadamore@30 1667
duke@1 1668 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1669 public Type apply(Type t) { return erasure(t); }
duke@1 1670 };
duke@1 1671
mcimadamore@30 1672 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1673 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1674 };
mcimadamore@30 1675
duke@1 1676 public List<Type> erasure(List<Type> ts) {
duke@1 1677 return Type.map(ts, erasureFun);
duke@1 1678 }
mcimadamore@30 1679
mcimadamore@30 1680 public Type erasureRecursive(Type t) {
mcimadamore@30 1681 return erasure(t, true);
mcimadamore@30 1682 }
mcimadamore@30 1683
mcimadamore@30 1684 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1685 return Type.map(ts, erasureRecFun);
mcimadamore@30 1686 }
duke@1 1687 // </editor-fold>
duke@1 1688
duke@1 1689 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1690 /**
duke@1 1691 * Make a compound type from non-empty list of types
duke@1 1692 *
duke@1 1693 * @param bounds the types from which the compound type is formed
duke@1 1694 * @param supertype is objectType if all bounds are interfaces,
duke@1 1695 * null otherwise.
duke@1 1696 */
duke@1 1697 public Type makeCompoundType(List<Type> bounds,
duke@1 1698 Type supertype) {
duke@1 1699 ClassSymbol bc =
duke@1 1700 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1701 Type.moreInfo
duke@1 1702 ? names.fromString(bounds.toString())
duke@1 1703 : names.empty,
duke@1 1704 syms.noSymbol);
duke@1 1705 if (bounds.head.tag == TYPEVAR)
duke@1 1706 // error condition, recover
mcimadamore@121 1707 bc.erasure_field = syms.objectType;
mcimadamore@121 1708 else
mcimadamore@121 1709 bc.erasure_field = erasure(bounds.head);
mcimadamore@121 1710 bc.members_field = new Scope(bc);
duke@1 1711 ClassType bt = (ClassType)bc.type;
duke@1 1712 bt.allparams_field = List.nil();
duke@1 1713 if (supertype != null) {
duke@1 1714 bt.supertype_field = supertype;
duke@1 1715 bt.interfaces_field = bounds;
duke@1 1716 } else {
duke@1 1717 bt.supertype_field = bounds.head;
duke@1 1718 bt.interfaces_field = bounds.tail;
duke@1 1719 }
jjg@816 1720 Assert.check(bt.supertype_field.tsym.completer != null
jjg@816 1721 || !bt.supertype_field.isInterface(),
jjg@816 1722 bt.supertype_field);
duke@1 1723 return bt;
duke@1 1724 }
duke@1 1725
duke@1 1726 /**
duke@1 1727 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1728 * second parameter is computed directly. Note that this might
duke@1 1729 * cause a symbol completion. Hence, this version of
duke@1 1730 * makeCompoundType may not be called during a classfile read.
duke@1 1731 */
duke@1 1732 public Type makeCompoundType(List<Type> bounds) {
duke@1 1733 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1734 supertype(bounds.head) : null;
duke@1 1735 return makeCompoundType(bounds, supertype);
duke@1 1736 }
duke@1 1737
duke@1 1738 /**
duke@1 1739 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1740 * arguments are converted to a list and passed to the other
duke@1 1741 * method. Note that this might cause a symbol completion.
duke@1 1742 * Hence, this version of makeCompoundType may not be called
duke@1 1743 * during a classfile read.
duke@1 1744 */
duke@1 1745 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1746 return makeCompoundType(List.of(bound1, bound2));
duke@1 1747 }
duke@1 1748 // </editor-fold>
duke@1 1749
duke@1 1750 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1751 public Type supertype(Type t) {
duke@1 1752 return supertype.visit(t);
duke@1 1753 }
duke@1 1754 // where
duke@1 1755 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1756
duke@1 1757 public Type visitType(Type t, Void ignored) {
duke@1 1758 // A note on wildcards: there is no good way to
duke@1 1759 // determine a supertype for a super bounded wildcard.
duke@1 1760 return null;
duke@1 1761 }
duke@1 1762
duke@1 1763 @Override
duke@1 1764 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1765 if (t.supertype_field == null) {
duke@1 1766 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1767 // An interface has no superclass; its supertype is Object.
duke@1 1768 if (t.isInterface())
duke@1 1769 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1770 if (t.supertype_field == null) {
duke@1 1771 List<Type> actuals = classBound(t).allparams();
duke@1 1772 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1773 if (t.hasErasedSupertypes()) {
mcimadamore@30 1774 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 1775 } else if (formals.nonEmpty()) {
duke@1 1776 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1777 }
mcimadamore@30 1778 else {
mcimadamore@30 1779 t.supertype_field = supertype;
mcimadamore@30 1780 }
duke@1 1781 }
duke@1 1782 }
duke@1 1783 return t.supertype_field;
duke@1 1784 }
duke@1 1785
duke@1 1786 /**
duke@1 1787 * The supertype is always a class type. If the type
duke@1 1788 * variable's bounds start with a class type, this is also
duke@1 1789 * the supertype. Otherwise, the supertype is
duke@1 1790 * java.lang.Object.
duke@1 1791 */
duke@1 1792 @Override
duke@1 1793 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1794 if (t.bound.tag == TYPEVAR ||
duke@1 1795 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1796 return t.bound;
duke@1 1797 } else {
duke@1 1798 return supertype(t.bound);
duke@1 1799 }
duke@1 1800 }
duke@1 1801
duke@1 1802 @Override
duke@1 1803 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1804 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1805 return arraySuperType();
duke@1 1806 else
duke@1 1807 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1808 }
duke@1 1809
duke@1 1810 @Override
duke@1 1811 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1812 return t;
duke@1 1813 }
duke@1 1814 };
duke@1 1815 // </editor-fold>
duke@1 1816
duke@1 1817 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1818 /**
duke@1 1819 * Return the interfaces implemented by this class.
duke@1 1820 */
duke@1 1821 public List<Type> interfaces(Type t) {
duke@1 1822 return interfaces.visit(t);
duke@1 1823 }
duke@1 1824 // where
duke@1 1825 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1826
duke@1 1827 public List<Type> visitType(Type t, Void ignored) {
duke@1 1828 return List.nil();
duke@1 1829 }
duke@1 1830
duke@1 1831 @Override
duke@1 1832 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1833 if (t.interfaces_field == null) {
duke@1 1834 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1835 if (t.interfaces_field == null) {
duke@1 1836 // If t.interfaces_field is null, then t must
duke@1 1837 // be a parameterized type (not to be confused
duke@1 1838 // with a generic type declaration).
duke@1 1839 // Terminology:
duke@1 1840 // Parameterized type: List<String>
duke@1 1841 // Generic type declaration: class List<E> { ... }
duke@1 1842 // So t corresponds to List<String> and
duke@1 1843 // t.tsym.type corresponds to List<E>.
duke@1 1844 // The reason t must be parameterized type is
duke@1 1845 // that completion will happen as a side
duke@1 1846 // effect of calling
duke@1 1847 // ClassSymbol.getInterfaces. Since
duke@1 1848 // t.interfaces_field is null after
duke@1 1849 // completion, we can assume that t is not the
duke@1 1850 // type of a class/interface declaration.
jjg@816 1851 Assert.check(t != t.tsym.type, t);
duke@1 1852 List<Type> actuals = t.allparams();
duke@1 1853 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1854 if (t.hasErasedSupertypes()) {
mcimadamore@30 1855 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 1856 } else if (formals.nonEmpty()) {
duke@1 1857 t.interfaces_field =
duke@1 1858 upperBounds(subst(interfaces, formals, actuals));
duke@1 1859 }
mcimadamore@30 1860 else {
mcimadamore@30 1861 t.interfaces_field = interfaces;
mcimadamore@30 1862 }
duke@1 1863 }
duke@1 1864 }
duke@1 1865 return t.interfaces_field;
duke@1 1866 }
duke@1 1867
duke@1 1868 @Override
duke@1 1869 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1870 if (t.bound.isCompound())
duke@1 1871 return interfaces(t.bound);
duke@1 1872
duke@1 1873 if (t.bound.isInterface())
duke@1 1874 return List.of(t.bound);
duke@1 1875
duke@1 1876 return List.nil();
duke@1 1877 }
duke@1 1878 };
duke@1 1879 // </editor-fold>
duke@1 1880
duke@1 1881 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1882 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1883
duke@1 1884 public boolean isDerivedRaw(Type t) {
duke@1 1885 Boolean result = isDerivedRawCache.get(t);
duke@1 1886 if (result == null) {
duke@1 1887 result = isDerivedRawInternal(t);
duke@1 1888 isDerivedRawCache.put(t, result);
duke@1 1889 }
duke@1 1890 return result;
duke@1 1891 }
duke@1 1892
duke@1 1893 public boolean isDerivedRawInternal(Type t) {
duke@1 1894 if (t.isErroneous())
duke@1 1895 return false;
duke@1 1896 return
duke@1 1897 t.isRaw() ||
duke@1 1898 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1899 isDerivedRaw(interfaces(t));
duke@1 1900 }
duke@1 1901
duke@1 1902 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1903 List<Type> l = ts;
duke@1 1904 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1905 return l.nonEmpty();
duke@1 1906 }
duke@1 1907 // </editor-fold>
duke@1 1908
duke@1 1909 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1910 /**
duke@1 1911 * Set the bounds field of the given type variable to reflect a
duke@1 1912 * (possibly multiple) list of bounds.
duke@1 1913 * @param t a type variable
duke@1 1914 * @param bounds the bounds, must be nonempty
duke@1 1915 * @param supertype is objectType if all bounds are interfaces,
duke@1 1916 * null otherwise.
duke@1 1917 */
duke@1 1918 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1919 if (bounds.tail.isEmpty())
duke@1 1920 t.bound = bounds.head;
duke@1 1921 else
duke@1 1922 t.bound = makeCompoundType(bounds, supertype);
duke@1 1923 t.rank_field = -1;
duke@1 1924 }
duke@1 1925
duke@1 1926 /**
duke@1 1927 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
mcimadamore@563 1928 * third parameter is computed directly, as follows: if all
mcimadamore@563 1929 * all bounds are interface types, the computed supertype is Object,
mcimadamore@563 1930 * otherwise the supertype is simply left null (in this case, the supertype
mcimadamore@563 1931 * is assumed to be the head of the bound list passed as second argument).
mcimadamore@563 1932 * Note that this check might cause a symbol completion. Hence, this version of
duke@1 1933 * setBounds may not be called during a classfile read.
duke@1 1934 */
duke@1 1935 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1936 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
mcimadamore@563 1937 syms.objectType : null;
duke@1 1938 setBounds(t, bounds, supertype);
duke@1 1939 t.rank_field = -1;
duke@1 1940 }
duke@1 1941 // </editor-fold>
duke@1 1942
duke@1 1943 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1944 /**
duke@1 1945 * Return list of bounds of the given type variable.
duke@1 1946 */
duke@1 1947 public List<Type> getBounds(TypeVar t) {
duke@1 1948 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1949 return List.of(t.bound);
duke@1 1950 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1951 return interfaces(t).prepend(supertype(t));
duke@1 1952 else
duke@1 1953 // No superclass was given in bounds.
duke@1 1954 // In this case, supertype is Object, erasure is first interface.
duke@1 1955 return interfaces(t);
duke@1 1956 }
duke@1 1957 // </editor-fold>
duke@1 1958
duke@1 1959 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1960 /**
duke@1 1961 * If the given type is a (possibly selected) type variable,
duke@1 1962 * return the bounding class of this type, otherwise return the
duke@1 1963 * type itself.
duke@1 1964 */
duke@1 1965 public Type classBound(Type t) {
duke@1 1966 return classBound.visit(t);
duke@1 1967 }
duke@1 1968 // where
duke@1 1969 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1970
duke@1 1971 public Type visitType(Type t, Void ignored) {
duke@1 1972 return t;
duke@1 1973 }
duke@1 1974
duke@1 1975 @Override
duke@1 1976 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1977 Type outer1 = classBound(t.getEnclosingType());
duke@1 1978 if (outer1 != t.getEnclosingType())
duke@1 1979 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1980 else
duke@1 1981 return t;
duke@1 1982 }
duke@1 1983
duke@1 1984 @Override
duke@1 1985 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1986 return classBound(supertype(t));
duke@1 1987 }
duke@1 1988
duke@1 1989 @Override
duke@1 1990 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1991 return t;
duke@1 1992 }
duke@1 1993 };
duke@1 1994 // </editor-fold>
duke@1 1995
duke@1 1996 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1997 /**
duke@1 1998 * Returns true iff the first signature is a <em>sub
duke@1 1999 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 2000 * relation.
duke@1 2001 *
jjh@972 2002 * @jls section 8.4.2.
duke@1 2003 * @see #overrideEquivalent(Type t, Type s)
duke@1 2004 * @param t first signature (possibly raw).
duke@1 2005 * @param s second signature (could be subjected to erasure).
duke@1 2006 * @return true if t is a sub signature of s.
duke@1 2007 */
duke@1 2008 public boolean isSubSignature(Type t, Type s) {
mcimadamore@907 2009 return isSubSignature(t, s, true);
mcimadamore@907 2010 }
mcimadamore@907 2011
mcimadamore@907 2012 public boolean isSubSignature(Type t, Type s, boolean strict) {
mcimadamore@907 2013 return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
duke@1 2014 }
duke@1 2015
duke@1 2016 /**
duke@1 2017 * Returns true iff these signatures are related by <em>override
duke@1 2018 * equivalence</em>. This is the natural extension of
duke@1 2019 * isSubSignature to an equivalence relation.
duke@1 2020 *
jjh@972 2021 * @jls section 8.4.2.
duke@1 2022 * @see #isSubSignature(Type t, Type s)
duke@1 2023 * @param t a signature (possible raw, could be subjected to
duke@1 2024 * erasure).
duke@1 2025 * @param s a signature (possible raw, could be subjected to
duke@1 2026 * erasure).
duke@1 2027 * @return true if either argument is a sub signature of the other.
duke@1 2028 */
duke@1 2029 public boolean overrideEquivalent(Type t, Type s) {
duke@1 2030 return hasSameArgs(t, s) ||
duke@1 2031 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 2032 }
duke@1 2033
mcimadamore@673 2034 // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
mcimadamore@673 2035 class ImplementationCache {
mcimadamore@673 2036
mcimadamore@673 2037 private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
mcimadamore@673 2038 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
mcimadamore@673 2039
mcimadamore@673 2040 class Entry {
mcimadamore@673 2041 final MethodSymbol cachedImpl;
mcimadamore@673 2042 final Filter<Symbol> implFilter;
mcimadamore@673 2043 final boolean checkResult;
mcimadamore@877 2044 final int prevMark;
mcimadamore@673 2045
mcimadamore@673 2046 public Entry(MethodSymbol cachedImpl,
mcimadamore@673 2047 Filter<Symbol> scopeFilter,
mcimadamore@877 2048 boolean checkResult,
mcimadamore@877 2049 int prevMark) {
mcimadamore@673 2050 this.cachedImpl = cachedImpl;
mcimadamore@673 2051 this.implFilter = scopeFilter;
mcimadamore@673 2052 this.checkResult = checkResult;
mcimadamore@877 2053 this.prevMark = prevMark;
mcimadamore@673 2054 }
mcimadamore@673 2055
mcimadamore@877 2056 boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
mcimadamore@673 2057 return this.implFilter == scopeFilter &&
mcimadamore@877 2058 this.checkResult == checkResult &&
mcimadamore@877 2059 this.prevMark == mark;
mcimadamore@673 2060 }
mcimadamore@341 2061 }
mcimadamore@673 2062
mcimadamore@858 2063 MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@673 2064 SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
mcimadamore@673 2065 Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
mcimadamore@673 2066 if (cache == null) {
mcimadamore@673 2067 cache = new HashMap<TypeSymbol, Entry>();
mcimadamore@673 2068 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
mcimadamore@673 2069 }
mcimadamore@673 2070 Entry e = cache.get(origin);
mcimadamore@1015 2071 CompoundScope members = membersClosure(origin.type, true);
mcimadamore@673 2072 if (e == null ||
mcimadamore@877 2073 !e.matches(implFilter, checkResult, members.getMark())) {
mcimadamore@877 2074 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
mcimadamore@877 2075 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
mcimadamore@673 2076 return impl;
mcimadamore@673 2077 }
mcimadamore@673 2078 else {
mcimadamore@673 2079 return e.cachedImpl;
mcimadamore@673 2080 }
mcimadamore@673 2081 }
mcimadamore@673 2082
mcimadamore@877 2083 private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@877 2084 for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
mcimadamore@341 2085 while (t.tag == TYPEVAR)
mcimadamore@341 2086 t = t.getUpperBound();
mcimadamore@341 2087 TypeSymbol c = t.tsym;
mcimadamore@673 2088 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
mcimadamore@341 2089 e.scope != null;
mcimadamore@780 2090 e = e.next(implFilter)) {
mcimadamore@673 2091 if (e.sym != null &&
mcimadamore@877 2092 e.sym.overrides(ms, origin, Types.this, checkResult))
mcimadamore@673 2093 return (MethodSymbol)e.sym;
mcimadamore@341 2094 }
mcimadamore@341 2095 }
mcimadamore@673 2096 return null;
mcimadamore@341 2097 }
mcimadamore@341 2098 }
mcimadamore@341 2099
mcimadamore@673 2100 private ImplementationCache implCache = new ImplementationCache();
mcimadamore@673 2101
mcimadamore@858 2102 public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@858 2103 return implCache.get(ms, origin, checkResult, implFilter);
mcimadamore@673 2104 }
mcimadamore@673 2105 // </editor-fold>
mcimadamore@673 2106
mcimadamore@858 2107 // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
mcimadamore@1015 2108 class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
mcimadamore@1015 2109
mcimadamore@1015 2110 private WeakHashMap<TypeSymbol, Entry> _map =
mcimadamore@1015 2111 new WeakHashMap<TypeSymbol, Entry>();
mcimadamore@1015 2112
mcimadamore@1015 2113 class Entry {
mcimadamore@1015 2114 final boolean skipInterfaces;
mcimadamore@1015 2115 final CompoundScope compoundScope;
mcimadamore@1015 2116
mcimadamore@1015 2117 public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
mcimadamore@1015 2118 this.skipInterfaces = skipInterfaces;
mcimadamore@1015 2119 this.compoundScope = compoundScope;
mcimadamore@1015 2120 }
mcimadamore@1015 2121
mcimadamore@1015 2122 boolean matches(boolean skipInterfaces) {
mcimadamore@1015 2123 return this.skipInterfaces == skipInterfaces;
mcimadamore@1015 2124 }
mcimadamore@1015 2125 }
mcimadamore@1015 2126
mcimadamore@1072 2127 List<TypeSymbol> seenTypes = List.nil();
mcimadamore@1072 2128
mcimadamore@1015 2129 /** members closure visitor methods **/
mcimadamore@1015 2130
mcimadamore@1015 2131 public CompoundScope visitType(Type t, Boolean skipInterface) {
mcimadamore@858 2132 return null;
mcimadamore@858 2133 }
mcimadamore@858 2134
mcimadamore@858 2135 @Override
mcimadamore@1015 2136 public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
mcimadamore@1072 2137 if (seenTypes.contains(t.tsym)) {
mcimadamore@1072 2138 //this is possible when an interface is implemented in multiple
mcimadamore@1072 2139 //superclasses, or when a classs hierarchy is circular - in such
mcimadamore@1072 2140 //cases we don't need to recurse (empty scope is returned)
mcimadamore@1072 2141 return new CompoundScope(t.tsym);
mcimadamore@1072 2142 }
mcimadamore@1072 2143 try {
mcimadamore@1072 2144 seenTypes = seenTypes.prepend(t.tsym);
mcimadamore@1072 2145 ClassSymbol csym = (ClassSymbol)t.tsym;
mcimadamore@1072 2146 Entry e = _map.get(csym);
mcimadamore@1072 2147 if (e == null || !e.matches(skipInterface)) {
mcimadamore@1072 2148 CompoundScope membersClosure = new CompoundScope(csym);
mcimadamore@1072 2149 if (!skipInterface) {
mcimadamore@1072 2150 for (Type i : interfaces(t)) {
mcimadamore@1072 2151 membersClosure.addSubScope(visit(i, skipInterface));
mcimadamore@1072 2152 }
mcimadamore@1015 2153 }
mcimadamore@1072 2154 membersClosure.addSubScope(visit(supertype(t), skipInterface));
mcimadamore@1072 2155 membersClosure.addSubScope(csym.members());
mcimadamore@1072 2156 e = new Entry(skipInterface, membersClosure);
mcimadamore@1072 2157 _map.put(csym, e);
mcimadamore@858 2158 }
mcimadamore@1072 2159 return e.compoundScope;
mcimadamore@858 2160 }
mcimadamore@1072 2161 finally {
mcimadamore@1072 2162 seenTypes = seenTypes.tail;
mcimadamore@1072 2163 }
mcimadamore@858 2164 }
mcimadamore@858 2165
mcimadamore@858 2166 @Override
mcimadamore@1015 2167 public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
mcimadamore@1015 2168 return visit(t.getUpperBound(), skipInterface);
mcimadamore@858 2169 }
mcimadamore@1015 2170 }
mcimadamore@1015 2171
mcimadamore@1015 2172 private MembersClosureCache membersCache = new MembersClosureCache();
mcimadamore@1015 2173
mcimadamore@1015 2174 public CompoundScope membersClosure(Type site, boolean skipInterface) {
mcimadamore@1015 2175 return membersCache.visit(site, skipInterface);
mcimadamore@1015 2176 }
mcimadamore@858 2177 // </editor-fold>
mcimadamore@858 2178
duke@1 2179 /**
duke@1 2180 * Does t have the same arguments as s? It is assumed that both
duke@1 2181 * types are (possibly polymorphic) method types. Monomorphic
duke@1 2182 * method types "have the same arguments", if their argument lists
duke@1 2183 * are equal. Polymorphic method types "have the same arguments",
duke@1 2184 * if they have the same arguments after renaming all type
duke@1 2185 * variables of one to corresponding type variables in the other,
duke@1 2186 * where correspondence is by position in the type parameter list.
duke@1 2187 */
duke@1 2188 public boolean hasSameArgs(Type t, Type s) {
mcimadamore@907 2189 return hasSameArgs(t, s, true);
mcimadamore@907 2190 }
mcimadamore@907 2191
mcimadamore@907 2192 public boolean hasSameArgs(Type t, Type s, boolean strict) {
mcimadamore@907 2193 return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
mcimadamore@907 2194 }
mcimadamore@907 2195
mcimadamore@907 2196 private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
duke@1 2197 return hasSameArgs.visit(t, s);
duke@1 2198 }
duke@1 2199 // where
mcimadamore@907 2200 private class HasSameArgs extends TypeRelation {
mcimadamore@907 2201
mcimadamore@907 2202 boolean strict;
mcimadamore@907 2203
mcimadamore@907 2204 public HasSameArgs(boolean strict) {
mcimadamore@907 2205 this.strict = strict;
mcimadamore@907 2206 }
duke@1 2207
duke@1 2208 public Boolean visitType(Type t, Type s) {
duke@1 2209 throw new AssertionError();
duke@1 2210 }
duke@1 2211
duke@1 2212 @Override
duke@1 2213 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 2214 return s.tag == METHOD
duke@1 2215 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 2216 }
duke@1 2217
duke@1 2218 @Override
duke@1 2219 public Boolean visitForAll(ForAll t, Type s) {
duke@1 2220 if (s.tag != FORALL)
mcimadamore@907 2221 return strict ? false : visitMethodType(t.asMethodType(), s);
duke@1 2222
duke@1 2223 ForAll forAll = (ForAll)s;
duke@1 2224 return hasSameBounds(t, forAll)
duke@1 2225 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 2226 }
duke@1 2227
duke@1 2228 @Override
duke@1 2229 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 2230 return false;
duke@1 2231 }
duke@1 2232 };
mcimadamore@907 2233
mcimadamore@907 2234 TypeRelation hasSameArgs_strict = new HasSameArgs(true);
mcimadamore@907 2235 TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
mcimadamore@907 2236
duke@1 2237 // </editor-fold>
duke@1 2238
duke@1 2239 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 2240 public List<Type> subst(List<Type> ts,
duke@1 2241 List<Type> from,
duke@1 2242 List<Type> to) {
duke@1 2243 return new Subst(from, to).subst(ts);
duke@1 2244 }
duke@1 2245
duke@1 2246 /**
duke@1 2247 * Substitute all occurrences of a type in `from' with the
duke@1 2248 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 2249 * from the right: If lists have different length, discard leading
duke@1 2250 * elements of the longer list.
duke@1 2251 */
duke@1 2252 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 2253 return new Subst(from, to).subst(t);
duke@1 2254 }
duke@1 2255
duke@1 2256 private class Subst extends UnaryVisitor<Type> {
duke@1 2257 List<Type> from;
duke@1 2258 List<Type> to;
duke@1 2259
duke@1 2260 public Subst(List<Type> from, List<Type> to) {
duke@1 2261 int fromLength = from.length();
duke@1 2262 int toLength = to.length();
duke@1 2263 while (fromLength > toLength) {
duke@1 2264 fromLength--;
duke@1 2265 from = from.tail;
duke@1 2266 }
duke@1 2267 while (fromLength < toLength) {
duke@1 2268 toLength--;
duke@1 2269 to = to.tail;
duke@1 2270 }
duke@1 2271 this.from = from;
duke@1 2272 this.to = to;
duke@1 2273 }
duke@1 2274
duke@1 2275 Type subst(Type t) {
duke@1 2276 if (from.tail == null)
duke@1 2277 return t;
duke@1 2278 else
duke@1 2279 return visit(t);
mcimadamore@238 2280 }
duke@1 2281
duke@1 2282 List<Type> subst(List<Type> ts) {
duke@1 2283 if (from.tail == null)
duke@1 2284 return ts;
duke@1 2285 boolean wild = false;
duke@1 2286 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2287 Type head1 = subst(ts.head);
duke@1 2288 List<Type> tail1 = subst(ts.tail);
duke@1 2289 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2290 return tail1.prepend(head1);
duke@1 2291 }
duke@1 2292 return ts;
duke@1 2293 }
duke@1 2294
duke@1 2295 public Type visitType(Type t, Void ignored) {
duke@1 2296 return t;
duke@1 2297 }
duke@1 2298
duke@1 2299 @Override
duke@1 2300 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2301 List<Type> argtypes = subst(t.argtypes);
duke@1 2302 Type restype = subst(t.restype);
duke@1 2303 List<Type> thrown = subst(t.thrown);
duke@1 2304 if (argtypes == t.argtypes &&
duke@1 2305 restype == t.restype &&
duke@1 2306 thrown == t.thrown)
duke@1 2307 return t;
duke@1 2308 else
duke@1 2309 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2310 }
duke@1 2311
duke@1 2312 @Override
duke@1 2313 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2314 for (List<Type> from = this.from, to = this.to;
duke@1 2315 from.nonEmpty();
duke@1 2316 from = from.tail, to = to.tail) {
duke@1 2317 if (t == from.head) {
duke@1 2318 return to.head.withTypeVar(t);
duke@1 2319 }
duke@1 2320 }
duke@1 2321 return t;
duke@1 2322 }
duke@1 2323
duke@1 2324 @Override
duke@1 2325 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2326 if (!t.isCompound()) {
duke@1 2327 List<Type> typarams = t.getTypeArguments();
duke@1 2328 List<Type> typarams1 = subst(typarams);
duke@1 2329 Type outer = t.getEnclosingType();
duke@1 2330 Type outer1 = subst(outer);
duke@1 2331 if (typarams1 == typarams && outer1 == outer)
duke@1 2332 return t;
duke@1 2333 else
duke@1 2334 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2335 } else {
duke@1 2336 Type st = subst(supertype(t));
duke@1 2337 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2338 if (st == supertype(t) && is == interfaces(t))
duke@1 2339 return t;
duke@1 2340 else
duke@1 2341 return makeCompoundType(is.prepend(st));
duke@1 2342 }
duke@1 2343 }
duke@1 2344
duke@1 2345 @Override
duke@1 2346 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2347 Type bound = t.type;
duke@1 2348 if (t.kind != BoundKind.UNBOUND)
duke@1 2349 bound = subst(bound);
duke@1 2350 if (bound == t.type) {
duke@1 2351 return t;
duke@1 2352 } else {
duke@1 2353 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2354 bound = upperBound(bound);
duke@1 2355 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2356 }
duke@1 2357 }
duke@1 2358
duke@1 2359 @Override
duke@1 2360 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2361 Type elemtype = subst(t.elemtype);
duke@1 2362 if (elemtype == t.elemtype)
duke@1 2363 return t;
duke@1 2364 else
mcimadamore@996 2365 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2366 }
duke@1 2367
duke@1 2368 @Override
duke@1 2369 public Type visitForAll(ForAll t, Void ignored) {
mcimadamore@846 2370 if (Type.containsAny(to, t.tvars)) {
mcimadamore@846 2371 //perform alpha-renaming of free-variables in 't'
mcimadamore@846 2372 //if 'to' types contain variables that are free in 't'
mcimadamore@846 2373 List<Type> freevars = newInstances(t.tvars);
mcimadamore@846 2374 t = new ForAll(freevars,
mcimadamore@846 2375 Types.this.subst(t.qtype, t.tvars, freevars));
mcimadamore@846 2376 }
duke@1 2377 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2378 Type qtype1 = subst(t.qtype);
duke@1 2379 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2380 return t;
duke@1 2381 } else if (tvars1 == t.tvars) {
duke@1 2382 return new ForAll(tvars1, qtype1);
duke@1 2383 } else {
duke@1 2384 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2385 }
duke@1 2386 }
duke@1 2387
duke@1 2388 @Override
duke@1 2389 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2390 return t;
duke@1 2391 }
duke@1 2392 }
duke@1 2393
duke@1 2394 public List<Type> substBounds(List<Type> tvars,
duke@1 2395 List<Type> from,
duke@1 2396 List<Type> to) {
duke@1 2397 if (tvars.isEmpty())
duke@1 2398 return tvars;
duke@1 2399 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2400 boolean changed = false;
duke@1 2401 // calculate new bounds
duke@1 2402 for (Type t : tvars) {
duke@1 2403 TypeVar tv = (TypeVar) t;
duke@1 2404 Type bound = subst(tv.bound, from, to);
duke@1 2405 if (bound != tv.bound)
duke@1 2406 changed = true;
duke@1 2407 newBoundsBuf.append(bound);
duke@1 2408 }
duke@1 2409 if (!changed)
duke@1 2410 return tvars;
duke@1 2411 ListBuffer<Type> newTvars = lb();
duke@1 2412 // create new type variables without bounds
duke@1 2413 for (Type t : tvars) {
duke@1 2414 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2415 }
duke@1 2416 // the new bounds should use the new type variables in place
duke@1 2417 // of the old
duke@1 2418 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2419 from = tvars;
duke@1 2420 to = newTvars.toList();
duke@1 2421 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2422 newBounds.head = subst(newBounds.head, from, to);
duke@1 2423 }
duke@1 2424 newBounds = newBoundsBuf.toList();
duke@1 2425 // set the bounds of new type variables to the new bounds
duke@1 2426 for (Type t : newTvars.toList()) {
duke@1 2427 TypeVar tv = (TypeVar) t;
duke@1 2428 tv.bound = newBounds.head;
duke@1 2429 newBounds = newBounds.tail;
duke@1 2430 }
duke@1 2431 return newTvars.toList();
duke@1 2432 }
duke@1 2433
duke@1 2434 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2435 Type bound1 = subst(t.bound, from, to);
duke@1 2436 if (bound1 == t.bound)
duke@1 2437 return t;
mcimadamore@212 2438 else {
mcimadamore@212 2439 // create new type variable without bounds
mcimadamore@212 2440 TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
mcimadamore@212 2441 // the new bound should use the new type variable in place
mcimadamore@212 2442 // of the old
mcimadamore@212 2443 tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
mcimadamore@212 2444 return tv;
mcimadamore@212 2445 }
duke@1 2446 }
duke@1 2447 // </editor-fold>
duke@1 2448
duke@1 2449 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2450 /**
duke@1 2451 * Does t have the same bounds for quantified variables as s?
duke@1 2452 */
duke@1 2453 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2454 List<Type> l1 = t.tvars;
duke@1 2455 List<Type> l2 = s.tvars;
duke@1 2456 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2457 isSameType(l1.head.getUpperBound(),
duke@1 2458 subst(l2.head.getUpperBound(),
duke@1 2459 s.tvars,
duke@1 2460 t.tvars))) {
duke@1 2461 l1 = l1.tail;
duke@1 2462 l2 = l2.tail;
duke@1 2463 }
duke@1 2464 return l1.isEmpty() && l2.isEmpty();
duke@1 2465 }
duke@1 2466 // </editor-fold>
duke@1 2467
duke@1 2468 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2469 /** Create new vector of type variables from list of variables
duke@1 2470 * changing all recursive bounds from old to new list.
duke@1 2471 */
duke@1 2472 public List<Type> newInstances(List<Type> tvars) {
duke@1 2473 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2474 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2475 TypeVar tv = (TypeVar) l.head;
duke@1 2476 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2477 }
duke@1 2478 return tvars1;
duke@1 2479 }
duke@1 2480 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2481 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2482 };
duke@1 2483 // </editor-fold>
duke@1 2484
dlsmith@880 2485 public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
dlsmith@880 2486 return original.accept(methodWithParameters, newParams);
dlsmith@880 2487 }
dlsmith@880 2488 // where
dlsmith@880 2489 private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
dlsmith@880 2490 public Type visitType(Type t, List<Type> newParams) {
dlsmith@880 2491 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2492 }
dlsmith@880 2493 public Type visitMethodType(MethodType t, List<Type> newParams) {
dlsmith@880 2494 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
dlsmith@880 2495 }
dlsmith@880 2496 public Type visitForAll(ForAll t, List<Type> newParams) {
dlsmith@880 2497 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
dlsmith@880 2498 }
dlsmith@880 2499 };
dlsmith@880 2500
dlsmith@880 2501 public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
dlsmith@880 2502 return original.accept(methodWithThrown, newThrown);
dlsmith@880 2503 }
dlsmith@880 2504 // where
dlsmith@880 2505 private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
dlsmith@880 2506 public Type visitType(Type t, List<Type> newThrown) {
dlsmith@880 2507 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2508 }
dlsmith@880 2509 public Type visitMethodType(MethodType t, List<Type> newThrown) {
dlsmith@880 2510 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
dlsmith@880 2511 }
dlsmith@880 2512 public Type visitForAll(ForAll t, List<Type> newThrown) {
dlsmith@880 2513 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
dlsmith@880 2514 }
dlsmith@880 2515 };
dlsmith@880 2516
mcimadamore@950 2517 public Type createMethodTypeWithReturn(Type original, Type newReturn) {
mcimadamore@950 2518 return original.accept(methodWithReturn, newReturn);
mcimadamore@950 2519 }
mcimadamore@950 2520 // where
mcimadamore@950 2521 private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
mcimadamore@950 2522 public Type visitType(Type t, Type newReturn) {
mcimadamore@950 2523 throw new IllegalArgumentException("Not a method type: " + t);
mcimadamore@950 2524 }
mcimadamore@950 2525 public Type visitMethodType(MethodType t, Type newReturn) {
mcimadamore@950 2526 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
mcimadamore@950 2527 }
mcimadamore@950 2528 public Type visitForAll(ForAll t, Type newReturn) {
mcimadamore@950 2529 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
mcimadamore@950 2530 }
mcimadamore@950 2531 };
mcimadamore@950 2532
jjg@110 2533 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2534 public Type createErrorType(Type originalType) {
jjg@110 2535 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2536 }
jjg@110 2537
jjg@110 2538 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2539 return new ErrorType(c, originalType);
jjg@110 2540 }
jjg@110 2541
jjg@110 2542 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2543 return new ErrorType(name, container, originalType);
jjg@110 2544 }
jjg@110 2545 // </editor-fold>
jjg@110 2546
duke@1 2547 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2548 /**
duke@1 2549 * The rank of a class is the length of the longest path between
duke@1 2550 * the class and java.lang.Object in the class inheritance
duke@1 2551 * graph. Undefined for all but reference types.
duke@1 2552 */
duke@1 2553 public int rank(Type t) {
duke@1 2554 switch(t.tag) {
duke@1 2555 case CLASS: {
duke@1 2556 ClassType cls = (ClassType)t;
duke@1 2557 if (cls.rank_field < 0) {
duke@1 2558 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2559 if (fullname == names.java_lang_Object)
duke@1 2560 cls.rank_field = 0;
duke@1 2561 else {
duke@1 2562 int r = rank(supertype(cls));
duke@1 2563 for (List<Type> l = interfaces(cls);
duke@1 2564 l.nonEmpty();
duke@1 2565 l = l.tail) {
duke@1 2566 if (rank(l.head) > r)
duke@1 2567 r = rank(l.head);
duke@1 2568 }
duke@1 2569 cls.rank_field = r + 1;
duke@1 2570 }
duke@1 2571 }
duke@1 2572 return cls.rank_field;
duke@1 2573 }
duke@1 2574 case TYPEVAR: {
duke@1 2575 TypeVar tvar = (TypeVar)t;
duke@1 2576 if (tvar.rank_field < 0) {
duke@1 2577 int r = rank(supertype(tvar));
duke@1 2578 for (List<Type> l = interfaces(tvar);
duke@1 2579 l.nonEmpty();
duke@1 2580 l = l.tail) {
duke@1 2581 if (rank(l.head) > r) r = rank(l.head);
duke@1 2582 }
duke@1 2583 tvar.rank_field = r + 1;
duke@1 2584 }
duke@1 2585 return tvar.rank_field;
duke@1 2586 }
duke@1 2587 case ERROR:
duke@1 2588 return 0;
duke@1 2589 default:
duke@1 2590 throw new AssertionError();
duke@1 2591 }
duke@1 2592 }
duke@1 2593 // </editor-fold>
duke@1 2594
mcimadamore@121 2595 /**
mcimadamore@238 2596 * Helper method for generating a string representation of a given type
mcimadamore@121 2597 * accordingly to a given locale
mcimadamore@121 2598 */
mcimadamore@121 2599 public String toString(Type t, Locale locale) {
mcimadamore@238 2600 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2601 }
mcimadamore@121 2602
mcimadamore@121 2603 /**
mcimadamore@238 2604 * Helper method for generating a string representation of a given type
mcimadamore@121 2605 * accordingly to a given locale
mcimadamore@121 2606 */
mcimadamore@121 2607 public String toString(Symbol t, Locale locale) {
mcimadamore@238 2608 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2609 }
mcimadamore@121 2610
duke@1 2611 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2612 /**
duke@1 2613 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2614 *
mcimadamore@121 2615 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2616 * for localization
duke@1 2617 */
mcimadamore@121 2618 @Deprecated
duke@1 2619 public String toString(Type t) {
duke@1 2620 if (t.tag == FORALL) {
duke@1 2621 ForAll forAll = (ForAll)t;
duke@1 2622 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2623 }
duke@1 2624 return "" + t;
duke@1 2625 }
duke@1 2626 // where
duke@1 2627 private String typaramsString(List<Type> tvars) {
jjg@904 2628 StringBuilder s = new StringBuilder();
duke@1 2629 s.append('<');
duke@1 2630 boolean first = true;
duke@1 2631 for (Type t : tvars) {
duke@1 2632 if (!first) s.append(", ");
duke@1 2633 first = false;
duke@1 2634 appendTyparamString(((TypeVar)t), s);
duke@1 2635 }
duke@1 2636 s.append('>');
duke@1 2637 return s.toString();
duke@1 2638 }
jjg@904 2639 private void appendTyparamString(TypeVar t, StringBuilder buf) {
duke@1 2640 buf.append(t);
duke@1 2641 if (t.bound == null ||
duke@1 2642 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2643 return;
duke@1 2644 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2645 Type bound = t.bound;
duke@1 2646 if (!bound.isCompound()) {
duke@1 2647 buf.append(bound);
duke@1 2648 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2649 buf.append(supertype(t));
duke@1 2650 for (Type intf : interfaces(t)) {
duke@1 2651 buf.append('&');
duke@1 2652 buf.append(intf);
duke@1 2653 }
duke@1 2654 } else {
duke@1 2655 // No superclass was given in bounds.
duke@1 2656 // In this case, supertype is Object, erasure is first interface.
duke@1 2657 boolean first = true;
duke@1 2658 for (Type intf : interfaces(t)) {
duke@1 2659 if (!first) buf.append('&');
duke@1 2660 first = false;
duke@1 2661 buf.append(intf);
duke@1 2662 }
duke@1 2663 }
duke@1 2664 }
duke@1 2665 // </editor-fold>
duke@1 2666
duke@1 2667 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2668 /**
duke@1 2669 * A cache for closures.
duke@1 2670 *
duke@1 2671 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2672 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2673 * (that is, subclasses come first, arbitrary but fixed
duke@1 2674 * otherwise).
duke@1 2675 */
duke@1 2676 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2677
duke@1 2678 /**
duke@1 2679 * Returns the closure of a class or interface type.
duke@1 2680 */
duke@1 2681 public List<Type> closure(Type t) {
duke@1 2682 List<Type> cl = closureCache.get(t);
duke@1 2683 if (cl == null) {
duke@1 2684 Type st = supertype(t);
duke@1 2685 if (!t.isCompound()) {
duke@1 2686 if (st.tag == CLASS) {
duke@1 2687 cl = insert(closure(st), t);
duke@1 2688 } else if (st.tag == TYPEVAR) {
duke@1 2689 cl = closure(st).prepend(t);
duke@1 2690 } else {
duke@1 2691 cl = List.of(t);
duke@1 2692 }
duke@1 2693 } else {
duke@1 2694 cl = closure(supertype(t));
duke@1 2695 }
duke@1 2696 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2697 cl = union(cl, closure(l.head));
duke@1 2698 closureCache.put(t, cl);
duke@1 2699 }
duke@1 2700 return cl;
duke@1 2701 }
duke@1 2702
duke@1 2703 /**
duke@1 2704 * Insert a type in a closure
duke@1 2705 */
duke@1 2706 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2707 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2708 return cl.prepend(t);
duke@1 2709 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2710 return insert(cl.tail, t).prepend(cl.head);
duke@1 2711 } else {
duke@1 2712 return cl;
duke@1 2713 }
duke@1 2714 }
duke@1 2715
duke@1 2716 /**
duke@1 2717 * Form the union of two closures
duke@1 2718 */
duke@1 2719 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2720 if (cl1.isEmpty()) {
duke@1 2721 return cl2;
duke@1 2722 } else if (cl2.isEmpty()) {
duke@1 2723 return cl1;
duke@1 2724 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2725 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2726 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2727 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2728 } else {
duke@1 2729 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2730 }
duke@1 2731 }
duke@1 2732
duke@1 2733 /**
duke@1 2734 * Intersect two closures
duke@1 2735 */
duke@1 2736 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2737 if (cl1 == cl2)
duke@1 2738 return cl1;
duke@1 2739 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2740 return List.nil();
duke@1 2741 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2742 return intersect(cl1.tail, cl2);
duke@1 2743 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2744 return intersect(cl1, cl2.tail);
duke@1 2745 if (isSameType(cl1.head, cl2.head))
duke@1 2746 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2747 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2748 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2749 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2750 Type merge = merge(cl1.head,cl2.head);
duke@1 2751 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2752 }
duke@1 2753 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2754 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2755 }
duke@1 2756 return intersect(cl1.tail, cl2.tail);
duke@1 2757 }
duke@1 2758 // where
duke@1 2759 class TypePair {
duke@1 2760 final Type t1;
duke@1 2761 final Type t2;
duke@1 2762 TypePair(Type t1, Type t2) {
duke@1 2763 this.t1 = t1;
duke@1 2764 this.t2 = t2;
duke@1 2765 }
duke@1 2766 @Override
duke@1 2767 public int hashCode() {
jjg@507 2768 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
duke@1 2769 }
duke@1 2770 @Override
duke@1 2771 public boolean equals(Object obj) {
duke@1 2772 if (!(obj instanceof TypePair))
duke@1 2773 return false;
duke@1 2774 TypePair typePair = (TypePair)obj;
duke@1 2775 return isSameType(t1, typePair.t1)
duke@1 2776 && isSameType(t2, typePair.t2);
duke@1 2777 }
duke@1 2778 }
duke@1 2779 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2780 private Type merge(Type c1, Type c2) {
duke@1 2781 ClassType class1 = (ClassType) c1;
duke@1 2782 List<Type> act1 = class1.getTypeArguments();
duke@1 2783 ClassType class2 = (ClassType) c2;
duke@1 2784 List<Type> act2 = class2.getTypeArguments();
duke@1 2785 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2786 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2787
duke@1 2788 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2789 if (containsType(act1.head, act2.head)) {
duke@1 2790 merged.append(act1.head);
duke@1 2791 } else if (containsType(act2.head, act1.head)) {
duke@1 2792 merged.append(act2.head);
duke@1 2793 } else {
duke@1 2794 TypePair pair = new TypePair(c1, c2);
duke@1 2795 Type m;
duke@1 2796 if (mergeCache.add(pair)) {
duke@1 2797 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2798 upperBound(act2.head)),
duke@1 2799 BoundKind.EXTENDS,
duke@1 2800 syms.boundClass);
duke@1 2801 mergeCache.remove(pair);
duke@1 2802 } else {
duke@1 2803 m = new WildcardType(syms.objectType,
duke@1 2804 BoundKind.UNBOUND,
duke@1 2805 syms.boundClass);
duke@1 2806 }
duke@1 2807 merged.append(m.withTypeVar(typarams.head));
duke@1 2808 }
duke@1 2809 act1 = act1.tail;
duke@1 2810 act2 = act2.tail;
duke@1 2811 typarams = typarams.tail;
duke@1 2812 }
jjg@816 2813 Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2814 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2815 }
duke@1 2816
duke@1 2817 /**
duke@1 2818 * Return the minimum type of a closure, a compound type if no
duke@1 2819 * unique minimum exists.
duke@1 2820 */
duke@1 2821 private Type compoundMin(List<Type> cl) {
duke@1 2822 if (cl.isEmpty()) return syms.objectType;
duke@1 2823 List<Type> compound = closureMin(cl);
duke@1 2824 if (compound.isEmpty())
duke@1 2825 return null;
duke@1 2826 else if (compound.tail.isEmpty())
duke@1 2827 return compound.head;
duke@1 2828 else
duke@1 2829 return makeCompoundType(compound);
duke@1 2830 }
duke@1 2831
duke@1 2832 /**
duke@1 2833 * Return the minimum types of a closure, suitable for computing
duke@1 2834 * compoundMin or glb.
duke@1 2835 */
duke@1 2836 private List<Type> closureMin(List<Type> cl) {
duke@1 2837 ListBuffer<Type> classes = lb();
duke@1 2838 ListBuffer<Type> interfaces = lb();
duke@1 2839 while (!cl.isEmpty()) {
duke@1 2840 Type current = cl.head;
duke@1 2841 if (current.isInterface())
duke@1 2842 interfaces.append(current);
duke@1 2843 else
duke@1 2844 classes.append(current);
duke@1 2845 ListBuffer<Type> candidates = lb();
duke@1 2846 for (Type t : cl.tail) {
duke@1 2847 if (!isSubtypeNoCapture(current, t))
duke@1 2848 candidates.append(t);
duke@1 2849 }
duke@1 2850 cl = candidates.toList();
duke@1 2851 }
duke@1 2852 return classes.appendList(interfaces).toList();
duke@1 2853 }
duke@1 2854
duke@1 2855 /**
duke@1 2856 * Return the least upper bound of pair of types. if the lub does
duke@1 2857 * not exist return null.
duke@1 2858 */
duke@1 2859 public Type lub(Type t1, Type t2) {
duke@1 2860 return lub(List.of(t1, t2));
duke@1 2861 }
duke@1 2862
duke@1 2863 /**
duke@1 2864 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2865 * does not exist return the type of null (bottom).
duke@1 2866 */
duke@1 2867 public Type lub(List<Type> ts) {
duke@1 2868 final int ARRAY_BOUND = 1;
duke@1 2869 final int CLASS_BOUND = 2;
duke@1 2870 int boundkind = 0;
duke@1 2871 for (Type t : ts) {
duke@1 2872 switch (t.tag) {
duke@1 2873 case CLASS:
duke@1 2874 boundkind |= CLASS_BOUND;
duke@1 2875 break;
duke@1 2876 case ARRAY:
duke@1 2877 boundkind |= ARRAY_BOUND;
duke@1 2878 break;
duke@1 2879 case TYPEVAR:
duke@1 2880 do {
duke@1 2881 t = t.getUpperBound();
duke@1 2882 } while (t.tag == TYPEVAR);
duke@1 2883 if (t.tag == ARRAY) {
duke@1 2884 boundkind |= ARRAY_BOUND;
duke@1 2885 } else {
duke@1 2886 boundkind |= CLASS_BOUND;
duke@1 2887 }
duke@1 2888 break;
duke@1 2889 default:
duke@1 2890 if (t.isPrimitive())
mcimadamore@5 2891 return syms.errType;
duke@1 2892 }
duke@1 2893 }
duke@1 2894 switch (boundkind) {
duke@1 2895 case 0:
duke@1 2896 return syms.botType;
duke@1 2897
duke@1 2898 case ARRAY_BOUND:
duke@1 2899 // calculate lub(A[], B[])
duke@1 2900 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2901 for (Type t : elements) {
duke@1 2902 if (t.isPrimitive()) {
duke@1 2903 // if a primitive type is found, then return
duke@1 2904 // arraySuperType unless all the types are the
duke@1 2905 // same
duke@1 2906 Type first = ts.head;
duke@1 2907 for (Type s : ts.tail) {
duke@1 2908 if (!isSameType(first, s)) {
duke@1 2909 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2910 return arraySuperType();
duke@1 2911 }
duke@1 2912 }
duke@1 2913 // all the array types are the same, return one
duke@1 2914 // lub(int[], int[]) is int[]
duke@1 2915 return first;
duke@1 2916 }
duke@1 2917 }
duke@1 2918 // lub(A[], B[]) is lub(A, B)[]
duke@1 2919 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2920
duke@1 2921 case CLASS_BOUND:
duke@1 2922 // calculate lub(A, B)
duke@1 2923 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2924 ts = ts.tail;
jjg@816 2925 Assert.check(!ts.isEmpty());
mcimadamore@896 2926 //step 1 - compute erased candidate set (EC)
mcimadamore@896 2927 List<Type> cl = erasedSupertypes(ts.head);
duke@1 2928 for (Type t : ts.tail) {
duke@1 2929 if (t.tag == CLASS || t.tag == TYPEVAR)
mcimadamore@896 2930 cl = intersect(cl, erasedSupertypes(t));
duke@1 2931 }
mcimadamore@896 2932 //step 2 - compute minimal erased candidate set (MEC)
mcimadamore@896 2933 List<Type> mec = closureMin(cl);
mcimadamore@896 2934 //step 3 - for each element G in MEC, compute lci(Inv(G))
mcimadamore@896 2935 List<Type> candidates = List.nil();
mcimadamore@896 2936 for (Type erasedSupertype : mec) {
mcimadamore@896 2937 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
mcimadamore@896 2938 for (Type t : ts) {
mcimadamore@896 2939 lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
mcimadamore@896 2940 }
mcimadamore@896 2941 candidates = candidates.appendList(lci);
mcimadamore@896 2942 }
mcimadamore@896 2943 //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
mcimadamore@896 2944 //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
mcimadamore@896 2945 return compoundMin(candidates);
duke@1 2946
duke@1 2947 default:
duke@1 2948 // calculate lub(A, B[])
duke@1 2949 List<Type> classes = List.of(arraySuperType());
duke@1 2950 for (Type t : ts) {
duke@1 2951 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2952 classes = classes.prepend(t);
duke@1 2953 }
duke@1 2954 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2955 return lub(classes);
duke@1 2956 }
duke@1 2957 }
duke@1 2958 // where
mcimadamore@896 2959 List<Type> erasedSupertypes(Type t) {
mcimadamore@896 2960 ListBuffer<Type> buf = lb();
mcimadamore@896 2961 for (Type sup : closure(t)) {
mcimadamore@896 2962 if (sup.tag == TYPEVAR) {
mcimadamore@896 2963 buf.append(sup);
mcimadamore@896 2964 } else {
mcimadamore@896 2965 buf.append(erasure(sup));
mcimadamore@896 2966 }
mcimadamore@896 2967 }
mcimadamore@896 2968 return buf.toList();
mcimadamore@896 2969 }
mcimadamore@896 2970
duke@1 2971 private Type arraySuperType = null;
duke@1 2972 private Type arraySuperType() {
duke@1 2973 // initialized lazily to avoid problems during compiler startup
duke@1 2974 if (arraySuperType == null) {
duke@1 2975 synchronized (this) {
duke@1 2976 if (arraySuperType == null) {
duke@1 2977 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2978 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2979 syms.cloneableType),
duke@1 2980 syms.objectType);
duke@1 2981 }
duke@1 2982 }
duke@1 2983 }
duke@1 2984 return arraySuperType;
duke@1 2985 }
duke@1 2986 // </editor-fold>
duke@1 2987
duke@1 2988 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
mcimadamore@210 2989 public Type glb(List<Type> ts) {
mcimadamore@210 2990 Type t1 = ts.head;
mcimadamore@210 2991 for (Type t2 : ts.tail) {
mcimadamore@210 2992 if (t1.isErroneous())
mcimadamore@210 2993 return t1;
mcimadamore@210 2994 t1 = glb(t1, t2);
mcimadamore@210 2995 }
mcimadamore@210 2996 return t1;
mcimadamore@210 2997 }
mcimadamore@210 2998 //where
duke@1 2999 public Type glb(Type t, Type s) {
duke@1 3000 if (s == null)
duke@1 3001 return t;
mcimadamore@753 3002 else if (t.isPrimitive() || s.isPrimitive())
mcimadamore@753 3003 return syms.errType;
duke@1 3004 else if (isSubtypeNoCapture(t, s))
duke@1 3005 return t;
duke@1 3006 else if (isSubtypeNoCapture(s, t))
duke@1 3007 return s;
duke@1 3008
duke@1 3009 List<Type> closure = union(closure(t), closure(s));
duke@1 3010 List<Type> bounds = closureMin(closure);
duke@1 3011
duke@1 3012 if (bounds.isEmpty()) { // length == 0
duke@1 3013 return syms.objectType;
duke@1 3014 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 3015 return bounds.head;
duke@1 3016 } else { // length > 1
duke@1 3017 int classCount = 0;
duke@1 3018 for (Type bound : bounds)
duke@1 3019 if (!bound.isInterface())
duke@1 3020 classCount++;
duke@1 3021 if (classCount > 1)
jjg@110 3022 return createErrorType(t);
duke@1 3023 }
duke@1 3024 return makeCompoundType(bounds);
duke@1 3025 }
duke@1 3026 // </editor-fold>
duke@1 3027
duke@1 3028 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 3029 /**
duke@1 3030 * Compute a hash code on a type.
duke@1 3031 */
duke@1 3032 public static int hashCode(Type t) {
duke@1 3033 return hashCode.visit(t);
duke@1 3034 }
duke@1 3035 // where
duke@1 3036 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 3037
duke@1 3038 public Integer visitType(Type t, Void ignored) {
duke@1 3039 return t.tag;
duke@1 3040 }
duke@1 3041
duke@1 3042 @Override
duke@1 3043 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 3044 int result = visit(t.getEnclosingType());
duke@1 3045 result *= 127;
duke@1 3046 result += t.tsym.flatName().hashCode();
duke@1 3047 for (Type s : t.getTypeArguments()) {
duke@1 3048 result *= 127;
duke@1 3049 result += visit(s);
duke@1 3050 }
duke@1 3051 return result;
duke@1 3052 }
duke@1 3053
duke@1 3054 @Override
duke@1 3055 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 3056 int result = t.kind.hashCode();
duke@1 3057 if (t.type != null) {
duke@1 3058 result *= 127;
duke@1 3059 result += visit(t.type);
duke@1 3060 }
duke@1 3061 return result;
duke@1 3062 }
duke@1 3063
duke@1 3064 @Override
duke@1 3065 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 3066 return visit(t.elemtype) + 12;
duke@1 3067 }
duke@1 3068
duke@1 3069 @Override
duke@1 3070 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 3071 return System.identityHashCode(t.tsym);
duke@1 3072 }
duke@1 3073
duke@1 3074 @Override
duke@1 3075 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 3076 return System.identityHashCode(t);
duke@1 3077 }
duke@1 3078
duke@1 3079 @Override
duke@1 3080 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 3081 return 0;
duke@1 3082 }
duke@1 3083 };
duke@1 3084 // </editor-fold>
duke@1 3085
duke@1 3086 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 3087 /**
duke@1 3088 * Does t have a result that is a subtype of the result type of s,
duke@1 3089 * suitable for covariant returns? It is assumed that both types
duke@1 3090 * are (possibly polymorphic) method types. Monomorphic method
duke@1 3091 * types are handled in the obvious way. Polymorphic method types
duke@1 3092 * require renaming all type variables of one to corresponding
duke@1 3093 * type variables in the other, where correspondence is by
duke@1 3094 * position in the type parameter list. */
duke@1 3095 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 3096 List<Type> tvars = t.getTypeArguments();
duke@1 3097 List<Type> svars = s.getTypeArguments();
duke@1 3098 Type tres = t.getReturnType();
duke@1 3099 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 3100 return covariantReturnType(tres, sres, warner);
duke@1 3101 }
duke@1 3102
duke@1 3103 /**
duke@1 3104 * Return-Type-Substitutable.
jjh@972 3105 * @jls section 8.4.5
duke@1 3106 */
duke@1 3107 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 3108 if (hasSameArgs(r1, r2))
tbell@202 3109 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 3110 else
duke@1 3111 return covariantReturnType(r1.getReturnType(),
tbell@202 3112 erasure(r2.getReturnType()),
tbell@202 3113 Warner.noWarnings);
tbell@202 3114 }
tbell@202 3115
tbell@202 3116 public boolean returnTypeSubstitutable(Type r1,
tbell@202 3117 Type r2, Type r2res,
tbell@202 3118 Warner warner) {
tbell@202 3119 if (isSameType(r1.getReturnType(), r2res))
tbell@202 3120 return true;
tbell@202 3121 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
tbell@202 3122 return false;
tbell@202 3123
tbell@202 3124 if (hasSameArgs(r1, r2))
tbell@202 3125 return covariantReturnType(r1.getReturnType(), r2res, warner);
jjg@984 3126 if (!allowCovariantReturns)
tbell@202 3127 return false;
tbell@202 3128 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
tbell@202 3129 return true;
tbell@202 3130 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
tbell@202 3131 return false;
mcimadamore@795 3132 warner.warn(LintCategory.UNCHECKED);
tbell@202 3133 return true;
duke@1 3134 }
duke@1 3135
duke@1 3136 /**
duke@1 3137 * Is t an appropriate return type in an overrider for a
duke@1 3138 * method that returns s?
duke@1 3139 */
duke@1 3140 public boolean covariantReturnType(Type t, Type s, Warner warner) {
tbell@202 3141 return
tbell@202 3142 isSameType(t, s) ||
jjg@984 3143 allowCovariantReturns &&
duke@1 3144 !t.isPrimitive() &&
tbell@202 3145 !s.isPrimitive() &&
tbell@202 3146 isAssignable(t, s, warner);
duke@1 3147 }
duke@1 3148 // </editor-fold>
duke@1 3149
duke@1 3150 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 3151 /**
duke@1 3152 * Return the class that boxes the given primitive.
duke@1 3153 */
duke@1 3154 public ClassSymbol boxedClass(Type t) {
duke@1 3155 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 3156 }
duke@1 3157
duke@1 3158 /**
mcimadamore@753 3159 * Return the boxed type if 't' is primitive, otherwise return 't' itself.
mcimadamore@753 3160 */
mcimadamore@753 3161 public Type boxedTypeOrType(Type t) {
mcimadamore@753 3162 return t.isPrimitive() ?
mcimadamore@753 3163 boxedClass(t).type :
mcimadamore@753 3164 t;
mcimadamore@753 3165 }
mcimadamore@753 3166
mcimadamore@753 3167 /**
duke@1 3168 * Return the primitive type corresponding to a boxed type.
duke@1 3169 */
duke@1 3170 public Type unboxedType(Type t) {
duke@1 3171 if (allowBoxing) {
duke@1 3172 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 3173 Name box = syms.boxedName[i];
duke@1 3174 if (box != null &&
duke@1 3175 asSuper(t, reader.enterClass(box)) != null)
duke@1 3176 return syms.typeOfTag[i];
duke@1 3177 }
duke@1 3178 }
duke@1 3179 return Type.noType;
duke@1 3180 }
duke@1 3181 // </editor-fold>
duke@1 3182
duke@1 3183 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 3184 /*
jjh@972 3185 * JLS 5.1.10 Capture Conversion:
duke@1 3186 *
duke@1 3187 * Let G name a generic type declaration with n formal type
duke@1 3188 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 3189 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 3190 * where, for 1 <= i <= n:
duke@1 3191 *
duke@1 3192 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 3193 * Si is a fresh type variable whose upper bound is
duke@1 3194 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 3195 * type.
duke@1 3196 *
duke@1 3197 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 3198 * then Si is a fresh type variable whose upper bound is
duke@1 3199 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 3200 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 3201 * a compile-time error if for any two classes (not interfaces)
duke@1 3202 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 3203 *
duke@1 3204 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 3205 * then Si is a fresh type variable whose upper bound is
duke@1 3206 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 3207 *
duke@1 3208 * + Otherwise, Si = Ti.
duke@1 3209 *
duke@1 3210 * Capture conversion on any type other than a parameterized type
duke@1 3211 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 3212 * conversions never require a special action at run time and
duke@1 3213 * therefore never throw an exception at run time.
duke@1 3214 *
duke@1 3215 * Capture conversion is not applied recursively.
duke@1 3216 */
duke@1 3217 /**
jjh@972 3218 * Capture conversion as specified by the JLS.
duke@1 3219 */
mcimadamore@299 3220
mcimadamore@299 3221 public List<Type> capture(List<Type> ts) {
mcimadamore@299 3222 List<Type> buf = List.nil();
mcimadamore@299 3223 for (Type t : ts) {
mcimadamore@299 3224 buf = buf.prepend(capture(t));
mcimadamore@299 3225 }
mcimadamore@299 3226 return buf.reverse();
mcimadamore@299 3227 }
duke@1 3228 public Type capture(Type t) {
duke@1 3229 if (t.tag != CLASS)
duke@1 3230 return t;
mcimadamore@637 3231 if (t.getEnclosingType() != Type.noType) {
mcimadamore@637 3232 Type capturedEncl = capture(t.getEnclosingType());
mcimadamore@637 3233 if (capturedEncl != t.getEnclosingType()) {
mcimadamore@637 3234 Type type1 = memberType(capturedEncl, t.tsym);
mcimadamore@637 3235 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
mcimadamore@637 3236 }
mcimadamore@637 3237 }
duke@1 3238 ClassType cls = (ClassType)t;
duke@1 3239 if (cls.isRaw() || !cls.isParameterized())
duke@1 3240 return cls;
duke@1 3241
duke@1 3242 ClassType G = (ClassType)cls.asElement().asType();
duke@1 3243 List<Type> A = G.getTypeArguments();
duke@1 3244 List<Type> T = cls.getTypeArguments();
duke@1 3245 List<Type> S = freshTypeVariables(T);
duke@1 3246
duke@1 3247 List<Type> currentA = A;
duke@1 3248 List<Type> currentT = T;
duke@1 3249 List<Type> currentS = S;
duke@1 3250 boolean captured = false;
duke@1 3251 while (!currentA.isEmpty() &&
duke@1 3252 !currentT.isEmpty() &&
duke@1 3253 !currentS.isEmpty()) {
duke@1 3254 if (currentS.head != currentT.head) {
duke@1 3255 captured = true;
duke@1 3256 WildcardType Ti = (WildcardType)currentT.head;
duke@1 3257 Type Ui = currentA.head.getUpperBound();
duke@1 3258 CapturedType Si = (CapturedType)currentS.head;
duke@1 3259 if (Ui == null)
duke@1 3260 Ui = syms.objectType;
duke@1 3261 switch (Ti.kind) {
duke@1 3262 case UNBOUND:
duke@1 3263 Si.bound = subst(Ui, A, S);
duke@1 3264 Si.lower = syms.botType;
duke@1 3265 break;
duke@1 3266 case EXTENDS:
duke@1 3267 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 3268 Si.lower = syms.botType;
duke@1 3269 break;
duke@1 3270 case SUPER:
duke@1 3271 Si.bound = subst(Ui, A, S);
duke@1 3272 Si.lower = Ti.getSuperBound();
duke@1 3273 break;
duke@1 3274 }
duke@1 3275 if (Si.bound == Si.lower)
duke@1 3276 currentS.head = Si.bound;
duke@1 3277 }
duke@1 3278 currentA = currentA.tail;
duke@1 3279 currentT = currentT.tail;
duke@1 3280 currentS = currentS.tail;
duke@1 3281 }
duke@1 3282 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 3283 return erasure(t); // some "rare" type involved
duke@1 3284
duke@1 3285 if (captured)
duke@1 3286 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 3287 else
duke@1 3288 return t;
duke@1 3289 }
duke@1 3290 // where
mcimadamore@238 3291 public List<Type> freshTypeVariables(List<Type> types) {
duke@1 3292 ListBuffer<Type> result = lb();
duke@1 3293 for (Type t : types) {
duke@1 3294 if (t.tag == WILDCARD) {
duke@1 3295 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 3296 if (bound == null)
duke@1 3297 bound = syms.objectType;
duke@1 3298 result.append(new CapturedType(capturedName,
duke@1 3299 syms.noSymbol,
duke@1 3300 bound,
duke@1 3301 syms.botType,
duke@1 3302 (WildcardType)t));
duke@1 3303 } else {
duke@1 3304 result.append(t);
duke@1 3305 }
duke@1 3306 }
duke@1 3307 return result.toList();
duke@1 3308 }
duke@1 3309 // </editor-fold>
duke@1 3310
duke@1 3311 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 3312 private List<Type> upperBounds(List<Type> ss) {
duke@1 3313 if (ss.isEmpty()) return ss;
duke@1 3314 Type head = upperBound(ss.head);
duke@1 3315 List<Type> tail = upperBounds(ss.tail);
duke@1 3316 if (head != ss.head || tail != ss.tail)
duke@1 3317 return tail.prepend(head);
duke@1 3318 else
duke@1 3319 return ss;
duke@1 3320 }
duke@1 3321
duke@1 3322 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 3323 // We are casting from type $from$ to type $to$, which are
duke@1 3324 // non-final unrelated types. This method
duke@1 3325 // tries to reject a cast by transferring type parameters
duke@1 3326 // from $to$ to $from$ by common superinterfaces.
duke@1 3327 boolean reverse = false;
duke@1 3328 Type target = to;
duke@1 3329 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3330 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3331 reverse = true;
duke@1 3332 to = from;
duke@1 3333 from = target;
duke@1 3334 }
duke@1 3335 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 3336 boolean giveWarning = commonSupers.isEmpty();
duke@1 3337 // The arguments to the supers could be unified here to
duke@1 3338 // get a more accurate analysis
duke@1 3339 while (commonSupers.nonEmpty()) {
duke@1 3340 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 3341 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 3342 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3343 return false;
duke@1 3344 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 3345 commonSupers = commonSupers.tail;
duke@1 3346 }
mcimadamore@187 3347 if (giveWarning && !isReifiable(reverse ? from : to))
mcimadamore@795 3348 warn.warn(LintCategory.UNCHECKED);
jjg@984 3349 if (!allowCovariantReturns)
duke@1 3350 // reject if there is a common method signature with
duke@1 3351 // incompatible return types.
duke@1 3352 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3353 return true;
duke@1 3354 }
duke@1 3355
duke@1 3356 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3357 // We are casting from type $from$ to type $to$, which are
duke@1 3358 // unrelated types one of which is final and the other of
duke@1 3359 // which is an interface. This method
duke@1 3360 // tries to reject a cast by transferring type parameters
duke@1 3361 // from the final class to the interface.
duke@1 3362 boolean reverse = false;
duke@1 3363 Type target = to;
duke@1 3364 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3365 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3366 reverse = true;
duke@1 3367 to = from;
duke@1 3368 from = target;
duke@1 3369 }
jjg@816 3370 Assert.check((from.tsym.flags() & FINAL) != 0);
duke@1 3371 Type t1 = asSuper(from, to.tsym);
duke@1 3372 if (t1 == null) return false;
duke@1 3373 Type t2 = to;
duke@1 3374 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3375 return false;
jjg@984 3376 if (!allowCovariantReturns)
duke@1 3377 // reject if there is a common method signature with
duke@1 3378 // incompatible return types.
duke@1 3379 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3380 if (!isReifiable(target) &&
duke@1 3381 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
mcimadamore@795 3382 warn.warn(LintCategory.UNCHECKED);
duke@1 3383 return true;
duke@1 3384 }
duke@1 3385
duke@1 3386 private boolean giveWarning(Type from, Type to) {
mcimadamore@235 3387 Type subFrom = asSub(from, to.tsym);
mcimadamore@235 3388 return to.isParameterized() &&
mcimadamore@235 3389 (!(isUnbounded(to) ||
mcimadamore@235 3390 isSubtype(from, to) ||
mcimadamore@736 3391 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
duke@1 3392 }
duke@1 3393
duke@1 3394 private List<Type> superClosure(Type t, Type s) {
duke@1 3395 List<Type> cl = List.nil();
duke@1 3396 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3397 if (isSubtype(s, erasure(l.head))) {
duke@1 3398 cl = insert(cl, l.head);
duke@1 3399 } else {
duke@1 3400 cl = union(cl, superClosure(l.head, s));
duke@1 3401 }
duke@1 3402 }
duke@1 3403 return cl;
duke@1 3404 }
duke@1 3405
duke@1 3406 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3407 return
duke@1 3408 isSameType(t, s) || // shortcut
duke@1 3409 containsType(t, s) && containsType(s, t);
duke@1 3410 }
duke@1 3411
mcimadamore@138 3412 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3413 /**
duke@1 3414 * Adapt a type by computing a substitution which maps a source
duke@1 3415 * type to a target type.
duke@1 3416 *
duke@1 3417 * @param source the source type
duke@1 3418 * @param target the target type
duke@1 3419 * @param from the type variables of the computed substitution
duke@1 3420 * @param to the types of the computed substitution.
duke@1 3421 */
duke@1 3422 public void adapt(Type source,
duke@1 3423 Type target,
duke@1 3424 ListBuffer<Type> from,
duke@1 3425 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3426 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3427 }
mcimadamore@138 3428
mcimadamore@138 3429 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3430
mcimadamore@138 3431 ListBuffer<Type> from;
mcimadamore@138 3432 ListBuffer<Type> to;
mcimadamore@138 3433 Map<Symbol,Type> mapping;
mcimadamore@138 3434
mcimadamore@138 3435 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3436 this.from = from;
mcimadamore@138 3437 this.to = to;
mcimadamore@138 3438 mapping = new HashMap<Symbol,Type>();
duke@1 3439 }
mcimadamore@138 3440
mcimadamore@138 3441 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3442 visit(source, target);
mcimadamore@138 3443 List<Type> fromList = from.toList();
mcimadamore@138 3444 List<Type> toList = to.toList();
mcimadamore@138 3445 while (!fromList.isEmpty()) {
mcimadamore@138 3446 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3447 if (toList.head != val)
mcimadamore@138 3448 toList.head = val;
mcimadamore@138 3449 fromList = fromList.tail;
mcimadamore@138 3450 toList = toList.tail;
mcimadamore@138 3451 }
mcimadamore@138 3452 }
mcimadamore@138 3453
mcimadamore@138 3454 @Override
mcimadamore@138 3455 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3456 if (target.tag == CLASS)
mcimadamore@138 3457 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3458 return null;
mcimadamore@138 3459 }
mcimadamore@138 3460
mcimadamore@138 3461 @Override
mcimadamore@138 3462 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3463 if (target.tag == ARRAY)
mcimadamore@138 3464 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3465 return null;
mcimadamore@138 3466 }
mcimadamore@138 3467
mcimadamore@138 3468 @Override
mcimadamore@138 3469 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3470 if (source.isExtendsBound())
mcimadamore@138 3471 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3472 else if (source.isSuperBound())
mcimadamore@138 3473 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3474 return null;
mcimadamore@138 3475 }
mcimadamore@138 3476
mcimadamore@138 3477 @Override
mcimadamore@138 3478 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3479 // Check to see if there is
mcimadamore@138 3480 // already a mapping for $source$, in which case
mcimadamore@138 3481 // the old mapping will be merged with the new
mcimadamore@138 3482 Type val = mapping.get(source.tsym);
mcimadamore@138 3483 if (val != null) {
mcimadamore@138 3484 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3485 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3486 ? target : val;
mcimadamore@138 3487 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3488 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3489 ? val : target;
mcimadamore@138 3490 } else if (!isSameType(val, target)) {
mcimadamore@138 3491 throw new AdaptFailure();
duke@1 3492 }
mcimadamore@138 3493 } else {
mcimadamore@138 3494 val = target;
mcimadamore@138 3495 from.append(source);
mcimadamore@138 3496 to.append(target);
mcimadamore@138 3497 }
mcimadamore@138 3498 mapping.put(source.tsym, val);
mcimadamore@138 3499 return null;
mcimadamore@138 3500 }
mcimadamore@138 3501
mcimadamore@138 3502 @Override
mcimadamore@138 3503 public Void visitType(Type source, Type target) {
mcimadamore@138 3504 return null;
mcimadamore@138 3505 }
mcimadamore@138 3506
mcimadamore@138 3507 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3508
mcimadamore@138 3509 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3510 TypePair pair = new TypePair(source, target);
mcimadamore@138 3511 if (cache.add(pair)) {
mcimadamore@138 3512 try {
mcimadamore@138 3513 visit(source, target);
mcimadamore@138 3514 } finally {
mcimadamore@138 3515 cache.remove(pair);
duke@1 3516 }
duke@1 3517 }
duke@1 3518 }
mcimadamore@138 3519
mcimadamore@138 3520 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3521 if (source.length() == target.length()) {
mcimadamore@138 3522 while (source.nonEmpty()) {
mcimadamore@138 3523 adaptRecursive(source.head, target.head);
mcimadamore@138 3524 source = source.tail;
mcimadamore@138 3525 target = target.tail;
mcimadamore@138 3526 }
duke@1 3527 }
duke@1 3528 }
duke@1 3529 }
duke@1 3530
mcimadamore@138 3531 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3532 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3533 }
mcimadamore@138 3534
duke@1 3535 private void adaptSelf(Type t,
duke@1 3536 ListBuffer<Type> from,
duke@1 3537 ListBuffer<Type> to) {
duke@1 3538 try {
duke@1 3539 //if (t.tsym.type != t)
duke@1 3540 adapt(t.tsym.type, t, from, to);
duke@1 3541 } catch (AdaptFailure ex) {
duke@1 3542 // Adapt should never fail calculating a mapping from
duke@1 3543 // t.tsym.type to t as there can be no merge problem.
duke@1 3544 throw new AssertionError(ex);
duke@1 3545 }
duke@1 3546 }
mcimadamore@138 3547 // </editor-fold>
duke@1 3548
duke@1 3549 /**
duke@1 3550 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3551 * type to wildcards (existential quantifiers). This is used to
duke@1 3552 * determine if a cast is allowed. For example, if high is true
duke@1 3553 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3554 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3555 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3556 * List<Integer>} with a warning.
duke@1 3557 * @param t a type
duke@1 3558 * @param high if true return an upper bound; otherwise a lower
duke@1 3559 * bound
duke@1 3560 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3561 * otherwise rewrite all type variables
duke@1 3562 * @return the type rewritten with wildcards (existential
duke@1 3563 * quantifiers) only
duke@1 3564 */
duke@1 3565 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
mcimadamore@640 3566 return new Rewriter(high, rewriteTypeVars).visit(t);
mcimadamore@157 3567 }
mcimadamore@157 3568
mcimadamore@157 3569 class Rewriter extends UnaryVisitor<Type> {
mcimadamore@157 3570
mcimadamore@157 3571 boolean high;
mcimadamore@157 3572 boolean rewriteTypeVars;
mcimadamore@157 3573
mcimadamore@157 3574 Rewriter(boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3575 this.high = high;
mcimadamore@157 3576 this.rewriteTypeVars = rewriteTypeVars;
mcimadamore@157 3577 }
mcimadamore@157 3578
mcimadamore@640 3579 @Override
mcimadamore@640 3580 public Type visitClassType(ClassType t, Void s) {
mcimadamore@157 3581 ListBuffer<Type> rewritten = new ListBuffer<Type>();
mcimadamore@157 3582 boolean changed = false;
mcimadamore@640 3583 for (Type arg : t.allparams()) {
mcimadamore@157 3584 Type bound = visit(arg);
mcimadamore@157 3585 if (arg != bound) {
mcimadamore@157 3586 changed = true;
mcimadamore@157 3587 }
mcimadamore@157 3588 rewritten.append(bound);
duke@1 3589 }
mcimadamore@157 3590 if (changed)
mcimadamore@640 3591 return subst(t.tsym.type,
mcimadamore@640 3592 t.tsym.type.allparams(),
mcimadamore@640 3593 rewritten.toList());
mcimadamore@157 3594 else
mcimadamore@157 3595 return t;
duke@1 3596 }
mcimadamore@157 3597
mcimadamore@157 3598 public Type visitType(Type t, Void s) {
mcimadamore@157 3599 return high ? upperBound(t) : lowerBound(t);
mcimadamore@157 3600 }
mcimadamore@157 3601
mcimadamore@157 3602 @Override
mcimadamore@157 3603 public Type visitCapturedType(CapturedType t, Void s) {
mcimadamore@640 3604 Type bound = visitWildcardType(t.wildcard, null);
mcimadamore@640 3605 return (bound.contains(t)) ?
mcimadamore@779 3606 erasure(bound) :
mcimadamore@779 3607 bound;
mcimadamore@157 3608 }
mcimadamore@157 3609
mcimadamore@157 3610 @Override
mcimadamore@157 3611 public Type visitTypeVar(TypeVar t, Void s) {
mcimadamore@640 3612 if (rewriteTypeVars) {
mcimadamore@640 3613 Type bound = high ?
mcimadamore@640 3614 (t.bound.contains(t) ?
mcimadamore@779 3615 erasure(t.bound) :
mcimadamore@640 3616 visit(t.bound)) :
mcimadamore@640 3617 syms.botType;
mcimadamore@640 3618 return rewriteAsWildcardType(bound, t);
mcimadamore@640 3619 }
mcimadamore@157 3620 else
mcimadamore@157 3621 return t;
mcimadamore@157 3622 }
mcimadamore@157 3623
mcimadamore@157 3624 @Override
mcimadamore@157 3625 public Type visitWildcardType(WildcardType t, Void s) {
mcimadamore@157 3626 Type bound = high ? t.getExtendsBound() :
mcimadamore@157 3627 t.getSuperBound();
mcimadamore@157 3628 if (bound == null)
mcimadamore@640 3629 bound = high ? syms.objectType : syms.botType;
mcimadamore@640 3630 return rewriteAsWildcardType(visit(bound), t.bound);
mcimadamore@640 3631 }
mcimadamore@640 3632
mcimadamore@640 3633 private Type rewriteAsWildcardType(Type bound, TypeVar formal) {
mcimadamore@640 3634 return high ?
mcimadamore@640 3635 makeExtendsWildcard(B(bound), formal) :
mcimadamore@640 3636 makeSuperWildcard(B(bound), formal);
mcimadamore@640 3637 }
mcimadamore@640 3638
mcimadamore@640 3639 Type B(Type t) {
mcimadamore@640 3640 while (t.tag == WILDCARD) {
mcimadamore@640 3641 WildcardType w = (WildcardType)t;
mcimadamore@640 3642 t = high ?
mcimadamore@640 3643 w.getExtendsBound() :
mcimadamore@640 3644 w.getSuperBound();
mcimadamore@640 3645 if (t == null) {
mcimadamore@640 3646 t = high ? syms.objectType : syms.botType;
mcimadamore@640 3647 }
mcimadamore@640 3648 }
mcimadamore@640 3649 return t;
mcimadamore@157 3650 }
duke@1 3651 }
duke@1 3652
mcimadamore@640 3653
duke@1 3654 /**
duke@1 3655 * Create a wildcard with the given upper (extends) bound; create
duke@1 3656 * an unbounded wildcard if bound is Object.
duke@1 3657 *
duke@1 3658 * @param bound the upper bound
duke@1 3659 * @param formal the formal type parameter that will be
duke@1 3660 * substituted by the wildcard
duke@1 3661 */
duke@1 3662 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3663 if (bound == syms.objectType) {
duke@1 3664 return new WildcardType(syms.objectType,
duke@1 3665 BoundKind.UNBOUND,
duke@1 3666 syms.boundClass,
duke@1 3667 formal);
duke@1 3668 } else {
duke@1 3669 return new WildcardType(bound,
duke@1 3670 BoundKind.EXTENDS,
duke@1 3671 syms.boundClass,
duke@1 3672 formal);
duke@1 3673 }
duke@1 3674 }
duke@1 3675
duke@1 3676 /**
duke@1 3677 * Create a wildcard with the given lower (super) bound; create an
duke@1 3678 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3679 *
duke@1 3680 * @param bound the lower bound
duke@1 3681 * @param formal the formal type parameter that will be
duke@1 3682 * substituted by the wildcard
duke@1 3683 */
duke@1 3684 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3685 if (bound.tag == BOT) {
duke@1 3686 return new WildcardType(syms.objectType,
duke@1 3687 BoundKind.UNBOUND,
duke@1 3688 syms.boundClass,
duke@1 3689 formal);
duke@1 3690 } else {
duke@1 3691 return new WildcardType(bound,
duke@1 3692 BoundKind.SUPER,
duke@1 3693 syms.boundClass,
duke@1 3694 formal);
duke@1 3695 }
duke@1 3696 }
duke@1 3697
duke@1 3698 /**
duke@1 3699 * A wrapper for a type that allows use in sets.
duke@1 3700 */
duke@1 3701 class SingletonType {
duke@1 3702 final Type t;
duke@1 3703 SingletonType(Type t) {
duke@1 3704 this.t = t;
duke@1 3705 }
duke@1 3706 public int hashCode() {
jjg@507 3707 return Types.hashCode(t);
duke@1 3708 }
duke@1 3709 public boolean equals(Object obj) {
duke@1 3710 return (obj instanceof SingletonType) &&
duke@1 3711 isSameType(t, ((SingletonType)obj).t);
duke@1 3712 }
duke@1 3713 public String toString() {
duke@1 3714 return t.toString();
duke@1 3715 }
duke@1 3716 }
duke@1 3717 // </editor-fold>
duke@1 3718
duke@1 3719 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3720 /**
duke@1 3721 * A default visitor for types. All visitor methods except
duke@1 3722 * visitType are implemented by delegating to visitType. Concrete
duke@1 3723 * subclasses must provide an implementation of visitType and can
duke@1 3724 * override other methods as needed.
duke@1 3725 *
duke@1 3726 * @param <R> the return type of the operation implemented by this
duke@1 3727 * visitor; use Void if no return type is needed.
duke@1 3728 * @param <S> the type of the second argument (the first being the
duke@1 3729 * type itself) of the operation implemented by this visitor; use
duke@1 3730 * Void if a second argument is not needed.
duke@1 3731 */
duke@1 3732 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3733 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3734 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3735 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3736 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3737 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3738 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3739 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3740 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3741 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3742 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3743 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3744 }
duke@1 3745
duke@1 3746 /**
mcimadamore@121 3747 * A default visitor for symbols. All visitor methods except
mcimadamore@121 3748 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 3749 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 3750 * override other methods as needed.
mcimadamore@121 3751 *
mcimadamore@121 3752 * @param <R> the return type of the operation implemented by this
mcimadamore@121 3753 * visitor; use Void if no return type is needed.
mcimadamore@121 3754 * @param <S> the type of the second argument (the first being the
mcimadamore@121 3755 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 3756 * Void if a second argument is not needed.
mcimadamore@121 3757 */
mcimadamore@121 3758 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 3759 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 3760 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3761 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3762 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3763 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3764 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3765 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3766 }
mcimadamore@121 3767
mcimadamore@121 3768 /**
duke@1 3769 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3770 * captured wildcards, for-all types (generic methods), and
duke@1 3771 * undetermined type variables (part of inference) are hidden.
duke@1 3772 * Captured wildcards are hidden by treating them as type
duke@1 3773 * variables and the rest are hidden by visiting their qtypes.
duke@1 3774 *
duke@1 3775 * @param <R> the return type of the operation implemented by this
duke@1 3776 * visitor; use Void if no return type is needed.
duke@1 3777 * @param <S> the type of the second argument (the first being the
duke@1 3778 * type itself) of the operation implemented by this visitor; use
duke@1 3779 * Void if a second argument is not needed.
duke@1 3780 */
duke@1 3781 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3782 @Override
duke@1 3783 public R visitCapturedType(CapturedType t, S s) {
duke@1 3784 return visitTypeVar(t, s);
duke@1 3785 }
duke@1 3786 @Override
duke@1 3787 public R visitForAll(ForAll t, S s) {
duke@1 3788 return visit(t.qtype, s);
duke@1 3789 }
duke@1 3790 @Override
duke@1 3791 public R visitUndetVar(UndetVar t, S s) {
duke@1 3792 return visit(t.qtype, s);
duke@1 3793 }
duke@1 3794 }
duke@1 3795
duke@1 3796 /**
duke@1 3797 * A plain relation on types. That is a 2-ary function on the
duke@1 3798 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3799 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3800 */
duke@1 3801 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3802
duke@1 3803 /**
duke@1 3804 * A convenience visitor for implementing operations that only
duke@1 3805 * require one argument (the type itself), that is, unary
duke@1 3806 * operations.
duke@1 3807 *
duke@1 3808 * @param <R> the return type of the operation implemented by this
duke@1 3809 * visitor; use Void if no return type is needed.
duke@1 3810 */
duke@1 3811 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3812 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3813 }
duke@1 3814
duke@1 3815 /**
duke@1 3816 * A visitor for implementing a mapping from types to types. The
duke@1 3817 * default behavior of this class is to implement the identity
duke@1 3818 * mapping (mapping a type to itself). This can be overridden in
duke@1 3819 * subclasses.
duke@1 3820 *
duke@1 3821 * @param <S> the type of the second argument (the first being the
duke@1 3822 * type itself) of this mapping; use Void if a second argument is
duke@1 3823 * not needed.
duke@1 3824 */
duke@1 3825 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3826 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3827 public Type visitType(Type t, S s) { return t; }
duke@1 3828 }
duke@1 3829 // </editor-fold>
jjg@657 3830
jjg@657 3831
jjg@657 3832 // <editor-fold defaultstate="collapsed" desc="Annotation support">
jjg@657 3833
jjg@657 3834 public RetentionPolicy getRetention(Attribute.Compound a) {
jjg@657 3835 RetentionPolicy vis = RetentionPolicy.CLASS; // the default
jjg@657 3836 Attribute.Compound c = a.type.tsym.attribute(syms.retentionType.tsym);
jjg@657 3837 if (c != null) {
jjg@657 3838 Attribute value = c.member(names.value);
jjg@657 3839 if (value != null && value instanceof Attribute.Enum) {
jjg@657 3840 Name levelName = ((Attribute.Enum)value).value.name;
jjg@657 3841 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
jjg@657 3842 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
jjg@657 3843 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
jjg@657 3844 else ;// /* fail soft */ throw new AssertionError(levelName);
jjg@657 3845 }
jjg@657 3846 }
jjg@657 3847 return vis;
jjg@657 3848 }
jjg@657 3849 // </editor-fold>
duke@1 3850 }

mercurial