src/share/classes/com/sun/tools/javac/code/Types.java

Wed, 21 Sep 2011 21:56:53 -0700

author
jjg
date
Wed, 21 Sep 2011 21:56:53 -0700
changeset 1096
b0d5f00e69f7
parent 1093
c0835c8489b0
child 1108
b5d0b8effc85
permissions
-rw-r--r--

7092965: javac should not close processorClassLoader before end of compilation
Reviewed-by: darcy

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.*;
    31 import com.sun.tools.javac.util.*;
    32 import com.sun.tools.javac.util.List;
    34 import com.sun.tools.javac.jvm.ClassReader;
    35 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    36 import com.sun.tools.javac.code.Lint.LintCategory;
    37 import com.sun.tools.javac.comp.Check;
    39 import static com.sun.tools.javac.code.Scope.*;
    40 import static com.sun.tools.javac.code.Type.*;
    41 import static com.sun.tools.javac.code.TypeTags.*;
    42 import static com.sun.tools.javac.code.Symbol.*;
    43 import static com.sun.tools.javac.code.Flags.*;
    44 import static com.sun.tools.javac.code.BoundKind.*;
    45 import static com.sun.tools.javac.util.ListBuffer.lb;
    47 /**
    48  * Utility class containing various operations on types.
    49  *
    50  * <p>Unless other names are more illustrative, the following naming
    51  * conventions should be observed in this file:
    52  *
    53  * <dl>
    54  * <dt>t</dt>
    55  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    56  * <dt>s</dt>
    57  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    58  * <dt>ts</dt>
    59  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    60  * <dt>ss</dt>
    61  * <dd>A second list of types should be named ss.</dd>
    62  * </dl>
    63  *
    64  * <p><b>This is NOT part of any supported API.
    65  * If you write code that depends on this, you do so at your own risk.
    66  * This code and its internal interfaces are subject to change or
    67  * deletion without notice.</b>
    68  */
    69 public class Types {
    70     protected static final Context.Key<Types> typesKey =
    71         new Context.Key<Types>();
    73     final Symtab syms;
    74     final JavacMessages messages;
    75     final Names names;
    76     final boolean allowBoxing;
    77     final boolean allowCovariantReturns;
    78     final boolean allowObjectToPrimitiveCast;
    79     final ClassReader reader;
    80     final Check chk;
    81     List<Warner> warnStack = List.nil();
    82     final Name capturedName;
    84     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    85     public static Types instance(Context context) {
    86         Types instance = context.get(typesKey);
    87         if (instance == null)
    88             instance = new Types(context);
    89         return instance;
    90     }
    92     protected Types(Context context) {
    93         context.put(typesKey, this);
    94         syms = Symtab.instance(context);
    95         names = Names.instance(context);
    96         Source source = Source.instance(context);
    97         allowBoxing = source.allowBoxing();
    98         allowCovariantReturns = source.allowCovariantReturns();
    99         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   100         reader = ClassReader.instance(context);
   101         chk = Check.instance(context);
   102         capturedName = names.fromString("<captured wildcard>");
   103         messages = JavacMessages.instance(context);
   104     }
   105     // </editor-fold>
   107     // <editor-fold defaultstate="collapsed" desc="upperBound">
   108     /**
   109      * The "rvalue conversion".<br>
   110      * The upper bound of most types is the type
   111      * itself.  Wildcards, on the other hand have upper
   112      * and lower bounds.
   113      * @param t a type
   114      * @return the upper bound of the given type
   115      */
   116     public Type upperBound(Type t) {
   117         return upperBound.visit(t);
   118     }
   119     // where
   120         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   122             @Override
   123             public Type visitWildcardType(WildcardType t, Void ignored) {
   124                 if (t.isSuperBound())
   125                     return t.bound == null ? syms.objectType : t.bound.bound;
   126                 else
   127                     return visit(t.type);
   128             }
   130             @Override
   131             public Type visitCapturedType(CapturedType t, Void ignored) {
   132                 return visit(t.bound);
   133             }
   134         };
   135     // </editor-fold>
   137     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   138     /**
   139      * The "lvalue conversion".<br>
   140      * The lower bound of most types is the type
   141      * itself.  Wildcards, on the other hand have upper
   142      * and lower bounds.
   143      * @param t a type
   144      * @return the lower bound of the given type
   145      */
   146     public Type lowerBound(Type t) {
   147         return lowerBound.visit(t);
   148     }
   149     // where
   150         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   152             @Override
   153             public Type visitWildcardType(WildcardType t, Void ignored) {
   154                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   155             }
   157             @Override
   158             public Type visitCapturedType(CapturedType t, Void ignored) {
   159                 return visit(t.getLowerBound());
   160             }
   161         };
   162     // </editor-fold>
   164     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   165     /**
   166      * Checks that all the arguments to a class are unbounded
   167      * wildcards or something else that doesn't make any restrictions
   168      * on the arguments. If a class isUnbounded, a raw super- or
   169      * subclass can be cast to it without a warning.
   170      * @param t a type
   171      * @return true iff the given type is unbounded or raw
   172      */
   173     public boolean isUnbounded(Type t) {
   174         return isUnbounded.visit(t);
   175     }
   176     // where
   177         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   179             public Boolean visitType(Type t, Void ignored) {
   180                 return true;
   181             }
   183             @Override
   184             public Boolean visitClassType(ClassType t, Void ignored) {
   185                 List<Type> parms = t.tsym.type.allparams();
   186                 List<Type> args = t.allparams();
   187                 while (parms.nonEmpty()) {
   188                     WildcardType unb = new WildcardType(syms.objectType,
   189                                                         BoundKind.UNBOUND,
   190                                                         syms.boundClass,
   191                                                         (TypeVar)parms.head);
   192                     if (!containsType(args.head, unb))
   193                         return false;
   194                     parms = parms.tail;
   195                     args = args.tail;
   196                 }
   197                 return true;
   198             }
   199         };
   200     // </editor-fold>
   202     // <editor-fold defaultstate="collapsed" desc="asSub">
   203     /**
   204      * Return the least specific subtype of t that starts with symbol
   205      * sym.  If none exists, return null.  The least specific subtype
   206      * is determined as follows:
   207      *
   208      * <p>If there is exactly one parameterized instance of sym that is a
   209      * subtype of t, that parameterized instance is returned.<br>
   210      * Otherwise, if the plain type or raw type `sym' is a subtype of
   211      * type t, the type `sym' itself is returned.  Otherwise, null is
   212      * returned.
   213      */
   214     public Type asSub(Type t, Symbol sym) {
   215         return asSub.visit(t, sym);
   216     }
   217     // where
   218         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   220             public Type visitType(Type t, Symbol sym) {
   221                 return null;
   222             }
   224             @Override
   225             public Type visitClassType(ClassType t, Symbol sym) {
   226                 if (t.tsym == sym)
   227                     return t;
   228                 Type base = asSuper(sym.type, t.tsym);
   229                 if (base == null)
   230                     return null;
   231                 ListBuffer<Type> from = new ListBuffer<Type>();
   232                 ListBuffer<Type> to = new ListBuffer<Type>();
   233                 try {
   234                     adapt(base, t, from, to);
   235                 } catch (AdaptFailure ex) {
   236                     return null;
   237                 }
   238                 Type res = subst(sym.type, from.toList(), to.toList());
   239                 if (!isSubtype(res, t))
   240                     return null;
   241                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   242                 for (List<Type> l = sym.type.allparams();
   243                      l.nonEmpty(); l = l.tail)
   244                     if (res.contains(l.head) && !t.contains(l.head))
   245                         openVars.append(l.head);
   246                 if (openVars.nonEmpty()) {
   247                     if (t.isRaw()) {
   248                         // The subtype of a raw type is raw
   249                         res = erasure(res);
   250                     } else {
   251                         // Unbound type arguments default to ?
   252                         List<Type> opens = openVars.toList();
   253                         ListBuffer<Type> qs = new ListBuffer<Type>();
   254                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   255                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   256                         }
   257                         res = subst(res, opens, qs.toList());
   258                     }
   259                 }
   260                 return res;
   261             }
   263             @Override
   264             public Type visitErrorType(ErrorType t, Symbol sym) {
   265                 return t;
   266             }
   267         };
   268     // </editor-fold>
   270     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   271     /**
   272      * Is t a subtype of or convertible via boxing/unboxing
   273      * conversion to s?
   274      */
   275     public boolean isConvertible(Type t, Type s, Warner warn) {
   276         if (t.tag == ERROR)
   277             return true;
   278         boolean tPrimitive = t.isPrimitive();
   279         boolean sPrimitive = s.isPrimitive();
   280         if (tPrimitive == sPrimitive) {
   281             checkUnsafeVarargsConversion(t, s, warn);
   282             return isSubtypeUnchecked(t, s, warn);
   283         }
   284         if (!allowBoxing) return false;
   285         return tPrimitive
   286             ? isSubtype(boxedClass(t).type, s)
   287             : isSubtype(unboxedType(t), s);
   288     }
   289     //where
   290     private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   291         if (t.tag != ARRAY || isReifiable(t)) return;
   292         ArrayType from = (ArrayType)t;
   293         boolean shouldWarn = false;
   294         switch (s.tag) {
   295             case ARRAY:
   296                 ArrayType to = (ArrayType)s;
   297                 shouldWarn = from.isVarargs() &&
   298                         !to.isVarargs() &&
   299                         !isReifiable(from);
   300                 break;
   301             case CLASS:
   302                 shouldWarn = from.isVarargs() &&
   303                         isSubtype(from, s);
   304                 break;
   305         }
   306         if (shouldWarn) {
   307             warn.warn(LintCategory.VARARGS);
   308         }
   309     }
   311     /**
   312      * Is t a subtype of or convertiable via boxing/unboxing
   313      * convertions to s?
   314      */
   315     public boolean isConvertible(Type t, Type s) {
   316         return isConvertible(t, s, Warner.noWarnings);
   317     }
   318     // </editor-fold>
   320     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   321     /**
   322      * Is t an unchecked subtype of s?
   323      */
   324     public boolean isSubtypeUnchecked(Type t, Type s) {
   325         return isSubtypeUnchecked(t, s, Warner.noWarnings);
   326     }
   327     /**
   328      * Is t an unchecked subtype of s?
   329      */
   330     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   331         if (t.tag == ARRAY && s.tag == ARRAY) {
   332             if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
   333                 return isSameType(elemtype(t), elemtype(s));
   334             } else {
   335                 ArrayType from = (ArrayType)t;
   336                 ArrayType to = (ArrayType)s;
   337                 if (from.isVarargs() &&
   338                         !to.isVarargs() &&
   339                         !isReifiable(from)) {
   340                     warn.warn(LintCategory.VARARGS);
   341                 }
   342                 return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   343             }
   344         } else if (isSubtype(t, s)) {
   345             return true;
   346         }
   347         else if (t.tag == TYPEVAR) {
   348             return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   349         }
   350         else if (s.tag == UNDETVAR) {
   351             UndetVar uv = (UndetVar)s;
   352             if (uv.inst != null)
   353                 return isSubtypeUnchecked(t, uv.inst, warn);
   354         }
   355         else if (!s.isRaw()) {
   356             Type t2 = asSuper(t, s.tsym);
   357             if (t2 != null && t2.isRaw()) {
   358                 if (isReifiable(s))
   359                     warn.silentWarn(LintCategory.UNCHECKED);
   360                 else
   361                     warn.warn(LintCategory.UNCHECKED);
   362                 return true;
   363             }
   364         }
   365         return false;
   366     }
   368     /**
   369      * Is t a subtype of s?<br>
   370      * (not defined for Method and ForAll types)
   371      */
   372     final public boolean isSubtype(Type t, Type s) {
   373         return isSubtype(t, s, true);
   374     }
   375     final public boolean isSubtypeNoCapture(Type t, Type s) {
   376         return isSubtype(t, s, false);
   377     }
   378     public boolean isSubtype(Type t, Type s, boolean capture) {
   379         if (t == s)
   380             return true;
   382         if (s.tag >= firstPartialTag)
   383             return isSuperType(s, t);
   385         if (s.isCompound()) {
   386             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   387                 if (!isSubtype(t, s2, capture))
   388                     return false;
   389             }
   390             return true;
   391         }
   393         Type lower = lowerBound(s);
   394         if (s != lower)
   395             return isSubtype(capture ? capture(t) : t, lower, false);
   397         return isSubtype.visit(capture ? capture(t) : t, s);
   398     }
   399     // where
   400         private TypeRelation isSubtype = new TypeRelation()
   401         {
   402             public Boolean visitType(Type t, Type s) {
   403                 switch (t.tag) {
   404                 case BYTE: case CHAR:
   405                     return (t.tag == s.tag ||
   406                               t.tag + 2 <= s.tag && s.tag <= DOUBLE);
   407                 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
   408                     return t.tag <= s.tag && s.tag <= DOUBLE;
   409                 case BOOLEAN: case VOID:
   410                     return t.tag == s.tag;
   411                 case TYPEVAR:
   412                     return isSubtypeNoCapture(t.getUpperBound(), s);
   413                 case BOT:
   414                     return
   415                         s.tag == BOT || s.tag == CLASS ||
   416                         s.tag == ARRAY || s.tag == TYPEVAR;
   417                 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   418                 case NONE:
   419                     return false;
   420                 default:
   421                     throw new AssertionError("isSubtype " + t.tag);
   422                 }
   423             }
   425             private Set<TypePair> cache = new HashSet<TypePair>();
   427             private boolean containsTypeRecursive(Type t, Type s) {
   428                 TypePair pair = new TypePair(t, s);
   429                 if (cache.add(pair)) {
   430                     try {
   431                         return containsType(t.getTypeArguments(),
   432                                             s.getTypeArguments());
   433                     } finally {
   434                         cache.remove(pair);
   435                     }
   436                 } else {
   437                     return containsType(t.getTypeArguments(),
   438                                         rewriteSupers(s).getTypeArguments());
   439                 }
   440             }
   442             private Type rewriteSupers(Type t) {
   443                 if (!t.isParameterized())
   444                     return t;
   445                 ListBuffer<Type> from = lb();
   446                 ListBuffer<Type> to = lb();
   447                 adaptSelf(t, from, to);
   448                 if (from.isEmpty())
   449                     return t;
   450                 ListBuffer<Type> rewrite = lb();
   451                 boolean changed = false;
   452                 for (Type orig : to.toList()) {
   453                     Type s = rewriteSupers(orig);
   454                     if (s.isSuperBound() && !s.isExtendsBound()) {
   455                         s = new WildcardType(syms.objectType,
   456                                              BoundKind.UNBOUND,
   457                                              syms.boundClass);
   458                         changed = true;
   459                     } else if (s != orig) {
   460                         s = new WildcardType(upperBound(s),
   461                                              BoundKind.EXTENDS,
   462                                              syms.boundClass);
   463                         changed = true;
   464                     }
   465                     rewrite.append(s);
   466                 }
   467                 if (changed)
   468                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   469                 else
   470                     return t;
   471             }
   473             @Override
   474             public Boolean visitClassType(ClassType t, Type s) {
   475                 Type sup = asSuper(t, s.tsym);
   476                 return sup != null
   477                     && sup.tsym == s.tsym
   478                     // You're not allowed to write
   479                     //     Vector<Object> vec = new Vector<String>();
   480                     // But with wildcards you can write
   481                     //     Vector<? extends Object> vec = new Vector<String>();
   482                     // which means that subtype checking must be done
   483                     // here instead of same-type checking (via containsType).
   484                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   485                     && isSubtypeNoCapture(sup.getEnclosingType(),
   486                                           s.getEnclosingType());
   487             }
   489             @Override
   490             public Boolean visitArrayType(ArrayType t, Type s) {
   491                 if (s.tag == ARRAY) {
   492                     if (t.elemtype.tag <= lastBaseTag)
   493                         return isSameType(t.elemtype, elemtype(s));
   494                     else
   495                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   496                 }
   498                 if (s.tag == CLASS) {
   499                     Name sname = s.tsym.getQualifiedName();
   500                     return sname == names.java_lang_Object
   501                         || sname == names.java_lang_Cloneable
   502                         || sname == names.java_io_Serializable;
   503                 }
   505                 return false;
   506             }
   508             @Override
   509             public Boolean visitUndetVar(UndetVar t, Type s) {
   510                 //todo: test against origin needed? or replace with substitution?
   511                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
   512                     return true;
   513                 } else if (s.tag == BOT) {
   514                     //if 's' is 'null' there's no instantiated type U for which
   515                     //U <: s (but 'null' itself, which is not a valid type)
   516                     return false;
   517                 }
   519                 if (t.inst != null)
   520                     return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
   522                 t.hibounds = t.hibounds.prepend(s);
   523                 return true;
   524             }
   526             @Override
   527             public Boolean visitErrorType(ErrorType t, Type s) {
   528                 return true;
   529             }
   530         };
   532     /**
   533      * Is t a subtype of every type in given list `ts'?<br>
   534      * (not defined for Method and ForAll types)<br>
   535      * Allows unchecked conversions.
   536      */
   537     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   538         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   539             if (!isSubtypeUnchecked(t, l.head, warn))
   540                 return false;
   541         return true;
   542     }
   544     /**
   545      * Are corresponding elements of ts subtypes of ss?  If lists are
   546      * of different length, return false.
   547      */
   548     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   549         while (ts.tail != null && ss.tail != null
   550                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   551                isSubtype(ts.head, ss.head)) {
   552             ts = ts.tail;
   553             ss = ss.tail;
   554         }
   555         return ts.tail == null && ss.tail == null;
   556         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   557     }
   559     /**
   560      * Are corresponding elements of ts subtypes of ss, allowing
   561      * unchecked conversions?  If lists are of different length,
   562      * return false.
   563      **/
   564     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   565         while (ts.tail != null && ss.tail != null
   566                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   567                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   568             ts = ts.tail;
   569             ss = ss.tail;
   570         }
   571         return ts.tail == null && ss.tail == null;
   572         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   573     }
   574     // </editor-fold>
   576     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   577     /**
   578      * Is t a supertype of s?
   579      */
   580     public boolean isSuperType(Type t, Type s) {
   581         switch (t.tag) {
   582         case ERROR:
   583             return true;
   584         case UNDETVAR: {
   585             UndetVar undet = (UndetVar)t;
   586             if (t == s ||
   587                 undet.qtype == s ||
   588                 s.tag == ERROR ||
   589                 s.tag == BOT) return true;
   590             if (undet.inst != null)
   591                 return isSubtype(s, undet.inst);
   592             undet.lobounds = undet.lobounds.prepend(s);
   593             return true;
   594         }
   595         default:
   596             return isSubtype(s, t);
   597         }
   598     }
   599     // </editor-fold>
   601     // <editor-fold defaultstate="collapsed" desc="isSameType">
   602     /**
   603      * Are corresponding elements of the lists the same type?  If
   604      * lists are of different length, return false.
   605      */
   606     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   607         while (ts.tail != null && ss.tail != null
   608                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   609                isSameType(ts.head, ss.head)) {
   610             ts = ts.tail;
   611             ss = ss.tail;
   612         }
   613         return ts.tail == null && ss.tail == null;
   614         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   615     }
   617     /**
   618      * Is t the same type as s?
   619      */
   620     public boolean isSameType(Type t, Type s) {
   621         return isSameType.visit(t, s);
   622     }
   623     // where
   624         private TypeRelation isSameType = new TypeRelation() {
   626             public Boolean visitType(Type t, Type s) {
   627                 if (t == s)
   628                     return true;
   630                 if (s.tag >= firstPartialTag)
   631                     return visit(s, t);
   633                 switch (t.tag) {
   634                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   635                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
   636                     return t.tag == s.tag;
   637                 case TYPEVAR: {
   638                     if (s.tag == TYPEVAR) {
   639                         //type-substitution does not preserve type-var types
   640                         //check that type var symbols and bounds are indeed the same
   641                         return t.tsym == s.tsym &&
   642                                 visit(t.getUpperBound(), s.getUpperBound());
   643                     }
   644                     else {
   645                         //special case for s == ? super X, where upper(s) = u
   646                         //check that u == t, where u has been set by Type.withTypeVar
   647                         return s.isSuperBound() &&
   648                                 !s.isExtendsBound() &&
   649                                 visit(t, upperBound(s));
   650                     }
   651                 }
   652                 default:
   653                     throw new AssertionError("isSameType " + t.tag);
   654                 }
   655             }
   657             @Override
   658             public Boolean visitWildcardType(WildcardType t, Type s) {
   659                 if (s.tag >= firstPartialTag)
   660                     return visit(s, t);
   661                 else
   662                     return false;
   663             }
   665             @Override
   666             public Boolean visitClassType(ClassType t, Type s) {
   667                 if (t == s)
   668                     return true;
   670                 if (s.tag >= firstPartialTag)
   671                     return visit(s, t);
   673                 if (s.isSuperBound() && !s.isExtendsBound())
   674                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
   676                 if (t.isCompound() && s.isCompound()) {
   677                     if (!visit(supertype(t), supertype(s)))
   678                         return false;
   680                     HashSet<SingletonType> set = new HashSet<SingletonType>();
   681                     for (Type x : interfaces(t))
   682                         set.add(new SingletonType(x));
   683                     for (Type x : interfaces(s)) {
   684                         if (!set.remove(new SingletonType(x)))
   685                             return false;
   686                     }
   687                     return (set.isEmpty());
   688                 }
   689                 return t.tsym == s.tsym
   690                     && visit(t.getEnclosingType(), s.getEnclosingType())
   691                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
   692             }
   694             @Override
   695             public Boolean visitArrayType(ArrayType t, Type s) {
   696                 if (t == s)
   697                     return true;
   699                 if (s.tag >= firstPartialTag)
   700                     return visit(s, t);
   702                 return s.tag == ARRAY
   703                     && containsTypeEquivalent(t.elemtype, elemtype(s));
   704             }
   706             @Override
   707             public Boolean visitMethodType(MethodType t, Type s) {
   708                 // isSameType for methods does not take thrown
   709                 // exceptions into account!
   710                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
   711             }
   713             @Override
   714             public Boolean visitPackageType(PackageType t, Type s) {
   715                 return t == s;
   716             }
   718             @Override
   719             public Boolean visitForAll(ForAll t, Type s) {
   720                 if (s.tag != FORALL)
   721                     return false;
   723                 ForAll forAll = (ForAll)s;
   724                 return hasSameBounds(t, forAll)
   725                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
   726             }
   728             @Override
   729             public Boolean visitUndetVar(UndetVar t, Type s) {
   730                 if (s.tag == WILDCARD)
   731                     // FIXME, this might be leftovers from before capture conversion
   732                     return false;
   734                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
   735                     return true;
   737                 if (t.inst != null)
   738                     return visit(t.inst, s);
   740                 t.inst = fromUnknownFun.apply(s);
   741                 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
   742                     if (!isSubtype(l.head, t.inst))
   743                         return false;
   744                 }
   745                 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
   746                     if (!isSubtype(t.inst, l.head))
   747                         return false;
   748                 }
   749                 return true;
   750             }
   752             @Override
   753             public Boolean visitErrorType(ErrorType t, Type s) {
   754                 return true;
   755             }
   756         };
   757     // </editor-fold>
   759     // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
   760     /**
   761      * A mapping that turns all unknown types in this type to fresh
   762      * unknown variables.
   763      */
   764     public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
   765             public Type apply(Type t) {
   766                 if (t.tag == UNKNOWN) return new UndetVar(t);
   767                 else return t.map(this);
   768             }
   769         };
   770     // </editor-fold>
   772     // <editor-fold defaultstate="collapsed" desc="Contains Type">
   773     public boolean containedBy(Type t, Type s) {
   774         switch (t.tag) {
   775         case UNDETVAR:
   776             if (s.tag == WILDCARD) {
   777                 UndetVar undetvar = (UndetVar)t;
   778                 WildcardType wt = (WildcardType)s;
   779                 switch(wt.kind) {
   780                     case UNBOUND: //similar to ? extends Object
   781                     case EXTENDS: {
   782                         Type bound = upperBound(s);
   783                         // We should check the new upper bound against any of the
   784                         // undetvar's lower bounds.
   785                         for (Type t2 : undetvar.lobounds) {
   786                             if (!isSubtype(t2, bound))
   787                                 return false;
   788                         }
   789                         undetvar.hibounds = undetvar.hibounds.prepend(bound);
   790                         break;
   791                     }
   792                     case SUPER: {
   793                         Type bound = lowerBound(s);
   794                         // We should check the new lower bound against any of the
   795                         // undetvar's lower bounds.
   796                         for (Type t2 : undetvar.hibounds) {
   797                             if (!isSubtype(bound, t2))
   798                                 return false;
   799                         }
   800                         undetvar.lobounds = undetvar.lobounds.prepend(bound);
   801                         break;
   802                     }
   803                 }
   804                 return true;
   805             } else {
   806                 return isSameType(t, s);
   807             }
   808         case ERROR:
   809             return true;
   810         default:
   811             return containsType(s, t);
   812         }
   813     }
   815     boolean containsType(List<Type> ts, List<Type> ss) {
   816         while (ts.nonEmpty() && ss.nonEmpty()
   817                && containsType(ts.head, ss.head)) {
   818             ts = ts.tail;
   819             ss = ss.tail;
   820         }
   821         return ts.isEmpty() && ss.isEmpty();
   822     }
   824     /**
   825      * Check if t contains s.
   826      *
   827      * <p>T contains S if:
   828      *
   829      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
   830      *
   831      * <p>This relation is only used by ClassType.isSubtype(), that
   832      * is,
   833      *
   834      * <p>{@code C<S> <: C<T> if T contains S.}
   835      *
   836      * <p>Because of F-bounds, this relation can lead to infinite
   837      * recursion.  Thus we must somehow break that recursion.  Notice
   838      * that containsType() is only called from ClassType.isSubtype().
   839      * Since the arguments have already been checked against their
   840      * bounds, we know:
   841      *
   842      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
   843      *
   844      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
   845      *
   846      * @param t a type
   847      * @param s a type
   848      */
   849     public boolean containsType(Type t, Type s) {
   850         return containsType.visit(t, s);
   851     }
   852     // where
   853         private TypeRelation containsType = new TypeRelation() {
   855             private Type U(Type t) {
   856                 while (t.tag == WILDCARD) {
   857                     WildcardType w = (WildcardType)t;
   858                     if (w.isSuperBound())
   859                         return w.bound == null ? syms.objectType : w.bound.bound;
   860                     else
   861                         t = w.type;
   862                 }
   863                 return t;
   864             }
   866             private Type L(Type t) {
   867                 while (t.tag == WILDCARD) {
   868                     WildcardType w = (WildcardType)t;
   869                     if (w.isExtendsBound())
   870                         return syms.botType;
   871                     else
   872                         t = w.type;
   873                 }
   874                 return t;
   875             }
   877             public Boolean visitType(Type t, Type s) {
   878                 if (s.tag >= firstPartialTag)
   879                     return containedBy(s, t);
   880                 else
   881                     return isSameType(t, s);
   882             }
   884 //            void debugContainsType(WildcardType t, Type s) {
   885 //                System.err.println();
   886 //                System.err.format(" does %s contain %s?%n", t, s);
   887 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
   888 //                                  upperBound(s), s, t, U(t),
   889 //                                  t.isSuperBound()
   890 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
   891 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
   892 //                                  L(t), t, s, lowerBound(s),
   893 //                                  t.isExtendsBound()
   894 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
   895 //                System.err.println();
   896 //            }
   898             @Override
   899             public Boolean visitWildcardType(WildcardType t, Type s) {
   900                 if (s.tag >= firstPartialTag)
   901                     return containedBy(s, t);
   902                 else {
   903 //                    debugContainsType(t, s);
   904                     return isSameWildcard(t, s)
   905                         || isCaptureOf(s, t)
   906                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
   907                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
   908                 }
   909             }
   911             @Override
   912             public Boolean visitUndetVar(UndetVar t, Type s) {
   913                 if (s.tag != WILDCARD)
   914                     return isSameType(t, s);
   915                 else
   916                     return false;
   917             }
   919             @Override
   920             public Boolean visitErrorType(ErrorType t, Type s) {
   921                 return true;
   922             }
   923         };
   925     public boolean isCaptureOf(Type s, WildcardType t) {
   926         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
   927             return false;
   928         return isSameWildcard(t, ((CapturedType)s).wildcard);
   929     }
   931     public boolean isSameWildcard(WildcardType t, Type s) {
   932         if (s.tag != WILDCARD)
   933             return false;
   934         WildcardType w = (WildcardType)s;
   935         return w.kind == t.kind && w.type == t.type;
   936     }
   938     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
   939         while (ts.nonEmpty() && ss.nonEmpty()
   940                && containsTypeEquivalent(ts.head, ss.head)) {
   941             ts = ts.tail;
   942             ss = ss.tail;
   943         }
   944         return ts.isEmpty() && ss.isEmpty();
   945     }
   946     // </editor-fold>
   948     // <editor-fold defaultstate="collapsed" desc="isCastable">
   949     public boolean isCastable(Type t, Type s) {
   950         return isCastable(t, s, Warner.noWarnings);
   951     }
   953     /**
   954      * Is t is castable to s?<br>
   955      * s is assumed to be an erased type.<br>
   956      * (not defined for Method and ForAll types).
   957      */
   958     public boolean isCastable(Type t, Type s, Warner warn) {
   959         if (t == s)
   960             return true;
   962         if (t.isPrimitive() != s.isPrimitive())
   963             return allowBoxing && (
   964                     isConvertible(t, s, warn)
   965                     || (allowObjectToPrimitiveCast &&
   966                         s.isPrimitive() &&
   967                         isSubtype(boxedClass(s).type, t)));
   968         if (warn != warnStack.head) {
   969             try {
   970                 warnStack = warnStack.prepend(warn);
   971                 checkUnsafeVarargsConversion(t, s, warn);
   972                 return isCastable.visit(t,s);
   973             } finally {
   974                 warnStack = warnStack.tail;
   975             }
   976         } else {
   977             return isCastable.visit(t,s);
   978         }
   979     }
   980     // where
   981         private TypeRelation isCastable = new TypeRelation() {
   983             public Boolean visitType(Type t, Type s) {
   984                 if (s.tag == ERROR)
   985                     return true;
   987                 switch (t.tag) {
   988                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   989                 case DOUBLE:
   990                     return s.tag <= DOUBLE;
   991                 case BOOLEAN:
   992                     return s.tag == BOOLEAN;
   993                 case VOID:
   994                     return false;
   995                 case BOT:
   996                     return isSubtype(t, s);
   997                 default:
   998                     throw new AssertionError();
   999                 }
  1002             @Override
  1003             public Boolean visitWildcardType(WildcardType t, Type s) {
  1004                 return isCastable(upperBound(t), s, warnStack.head);
  1007             @Override
  1008             public Boolean visitClassType(ClassType t, Type s) {
  1009                 if (s.tag == ERROR || s.tag == BOT)
  1010                     return true;
  1012                 if (s.tag == TYPEVAR) {
  1013                     if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
  1014                         warnStack.head.warn(LintCategory.UNCHECKED);
  1015                         return true;
  1016                     } else {
  1017                         return false;
  1021                 if (t.isCompound()) {
  1022                     Warner oldWarner = warnStack.head;
  1023                     warnStack.head = Warner.noWarnings;
  1024                     if (!visit(supertype(t), s))
  1025                         return false;
  1026                     for (Type intf : interfaces(t)) {
  1027                         if (!visit(intf, s))
  1028                             return false;
  1030                     if (warnStack.head.hasLint(LintCategory.UNCHECKED))
  1031                         oldWarner.warn(LintCategory.UNCHECKED);
  1032                     return true;
  1035                 if (s.isCompound()) {
  1036                     // call recursively to reuse the above code
  1037                     return visitClassType((ClassType)s, t);
  1040                 if (s.tag == CLASS || s.tag == ARRAY) {
  1041                     boolean upcast;
  1042                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1043                         || isSubtype(erasure(s), erasure(t))) {
  1044                         if (!upcast && s.tag == ARRAY) {
  1045                             if (!isReifiable(s))
  1046                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1047                             return true;
  1048                         } else if (s.isRaw()) {
  1049                             return true;
  1050                         } else if (t.isRaw()) {
  1051                             if (!isUnbounded(s))
  1052                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1053                             return true;
  1055                         // Assume |a| <: |b|
  1056                         final Type a = upcast ? t : s;
  1057                         final Type b = upcast ? s : t;
  1058                         final boolean HIGH = true;
  1059                         final boolean LOW = false;
  1060                         final boolean DONT_REWRITE_TYPEVARS = false;
  1061                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1062                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1063                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1064                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1065                         Type lowSub = asSub(bLow, aLow.tsym);
  1066                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1067                         if (highSub == null) {
  1068                             final boolean REWRITE_TYPEVARS = true;
  1069                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1070                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1071                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1072                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1073                             lowSub = asSub(bLow, aLow.tsym);
  1074                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1076                         if (highSub != null) {
  1077                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1078                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1080                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1081                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1082                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1083                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1084                                 if (upcast ? giveWarning(a, b) :
  1085                                     giveWarning(b, a))
  1086                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1087                                 return true;
  1090                         if (isReifiable(s))
  1091                             return isSubtypeUnchecked(a, b);
  1092                         else
  1093                             return isSubtypeUnchecked(a, b, warnStack.head);
  1096                     // Sidecast
  1097                     if (s.tag == CLASS) {
  1098                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1099                             return ((t.tsym.flags() & FINAL) == 0)
  1100                                 ? sideCast(t, s, warnStack.head)
  1101                                 : sideCastFinal(t, s, warnStack.head);
  1102                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1103                             return ((s.tsym.flags() & FINAL) == 0)
  1104                                 ? sideCast(t, s, warnStack.head)
  1105                                 : sideCastFinal(t, s, warnStack.head);
  1106                         } else {
  1107                             // unrelated class types
  1108                             return false;
  1112                 return false;
  1115             @Override
  1116             public Boolean visitArrayType(ArrayType t, Type s) {
  1117                 switch (s.tag) {
  1118                 case ERROR:
  1119                 case BOT:
  1120                     return true;
  1121                 case TYPEVAR:
  1122                     if (isCastable(s, t, Warner.noWarnings)) {
  1123                         warnStack.head.warn(LintCategory.UNCHECKED);
  1124                         return true;
  1125                     } else {
  1126                         return false;
  1128                 case CLASS:
  1129                     return isSubtype(t, s);
  1130                 case ARRAY:
  1131                     if (elemtype(t).tag <= lastBaseTag ||
  1132                             elemtype(s).tag <= lastBaseTag) {
  1133                         return elemtype(t).tag == elemtype(s).tag;
  1134                     } else {
  1135                         return visit(elemtype(t), elemtype(s));
  1137                 default:
  1138                     return false;
  1142             @Override
  1143             public Boolean visitTypeVar(TypeVar t, Type s) {
  1144                 switch (s.tag) {
  1145                 case ERROR:
  1146                 case BOT:
  1147                     return true;
  1148                 case TYPEVAR:
  1149                     if (isSubtype(t, s)) {
  1150                         return true;
  1151                     } else if (isCastable(t.bound, s, Warner.noWarnings)) {
  1152                         warnStack.head.warn(LintCategory.UNCHECKED);
  1153                         return true;
  1154                     } else {
  1155                         return false;
  1157                 default:
  1158                     return isCastable(t.bound, s, warnStack.head);
  1162             @Override
  1163             public Boolean visitErrorType(ErrorType t, Type s) {
  1164                 return true;
  1166         };
  1167     // </editor-fold>
  1169     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1170     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1171         while (ts.tail != null && ss.tail != null) {
  1172             if (disjointType(ts.head, ss.head)) return true;
  1173             ts = ts.tail;
  1174             ss = ss.tail;
  1176         return false;
  1179     /**
  1180      * Two types or wildcards are considered disjoint if it can be
  1181      * proven that no type can be contained in both. It is
  1182      * conservative in that it is allowed to say that two types are
  1183      * not disjoint, even though they actually are.
  1185      * The type C<X> is castable to C<Y> exactly if X and Y are not
  1186      * disjoint.
  1187      */
  1188     public boolean disjointType(Type t, Type s) {
  1189         return disjointType.visit(t, s);
  1191     // where
  1192         private TypeRelation disjointType = new TypeRelation() {
  1194             private Set<TypePair> cache = new HashSet<TypePair>();
  1196             public Boolean visitType(Type t, Type s) {
  1197                 if (s.tag == WILDCARD)
  1198                     return visit(s, t);
  1199                 else
  1200                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1203             private boolean isCastableRecursive(Type t, Type s) {
  1204                 TypePair pair = new TypePair(t, s);
  1205                 if (cache.add(pair)) {
  1206                     try {
  1207                         return Types.this.isCastable(t, s);
  1208                     } finally {
  1209                         cache.remove(pair);
  1211                 } else {
  1212                     return true;
  1216             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1217                 TypePair pair = new TypePair(t, s);
  1218                 if (cache.add(pair)) {
  1219                     try {
  1220                         return Types.this.notSoftSubtype(t, s);
  1221                     } finally {
  1222                         cache.remove(pair);
  1224                 } else {
  1225                     return false;
  1229             @Override
  1230             public Boolean visitWildcardType(WildcardType t, Type s) {
  1231                 if (t.isUnbound())
  1232                     return false;
  1234                 if (s.tag != WILDCARD) {
  1235                     if (t.isExtendsBound())
  1236                         return notSoftSubtypeRecursive(s, t.type);
  1237                     else // isSuperBound()
  1238                         return notSoftSubtypeRecursive(t.type, s);
  1241                 if (s.isUnbound())
  1242                     return false;
  1244                 if (t.isExtendsBound()) {
  1245                     if (s.isExtendsBound())
  1246                         return !isCastableRecursive(t.type, upperBound(s));
  1247                     else if (s.isSuperBound())
  1248                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1249                 } else if (t.isSuperBound()) {
  1250                     if (s.isExtendsBound())
  1251                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1253                 return false;
  1255         };
  1256     // </editor-fold>
  1258     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1259     /**
  1260      * Returns the lower bounds of the formals of a method.
  1261      */
  1262     public List<Type> lowerBoundArgtypes(Type t) {
  1263         return map(t.getParameterTypes(), lowerBoundMapping);
  1265     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1266             public Type apply(Type t) {
  1267                 return lowerBound(t);
  1269         };
  1270     // </editor-fold>
  1272     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1273     /**
  1274      * This relation answers the question: is impossible that
  1275      * something of type `t' can be a subtype of `s'? This is
  1276      * different from the question "is `t' not a subtype of `s'?"
  1277      * when type variables are involved: Integer is not a subtype of T
  1278      * where <T extends Number> but it is not true that Integer cannot
  1279      * possibly be a subtype of T.
  1280      */
  1281     public boolean notSoftSubtype(Type t, Type s) {
  1282         if (t == s) return false;
  1283         if (t.tag == TYPEVAR) {
  1284             TypeVar tv = (TypeVar) t;
  1285             return !isCastable(tv.bound,
  1286                                relaxBound(s),
  1287                                Warner.noWarnings);
  1289         if (s.tag != WILDCARD)
  1290             s = upperBound(s);
  1292         return !isSubtype(t, relaxBound(s));
  1295     private Type relaxBound(Type t) {
  1296         if (t.tag == TYPEVAR) {
  1297             while (t.tag == TYPEVAR)
  1298                 t = t.getUpperBound();
  1299             t = rewriteQuantifiers(t, true, true);
  1301         return t;
  1303     // </editor-fold>
  1305     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1306     public boolean isReifiable(Type t) {
  1307         return isReifiable.visit(t);
  1309     // where
  1310         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1312             public Boolean visitType(Type t, Void ignored) {
  1313                 return true;
  1316             @Override
  1317             public Boolean visitClassType(ClassType t, Void ignored) {
  1318                 if (t.isCompound())
  1319                     return false;
  1320                 else {
  1321                     if (!t.isParameterized())
  1322                         return true;
  1324                     for (Type param : t.allparams()) {
  1325                         if (!param.isUnbound())
  1326                             return false;
  1328                     return true;
  1332             @Override
  1333             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1334                 return visit(t.elemtype);
  1337             @Override
  1338             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1339                 return false;
  1341         };
  1342     // </editor-fold>
  1344     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1345     public boolean isArray(Type t) {
  1346         while (t.tag == WILDCARD)
  1347             t = upperBound(t);
  1348         return t.tag == ARRAY;
  1351     /**
  1352      * The element type of an array.
  1353      */
  1354     public Type elemtype(Type t) {
  1355         switch (t.tag) {
  1356         case WILDCARD:
  1357             return elemtype(upperBound(t));
  1358         case ARRAY:
  1359             return ((ArrayType)t).elemtype;
  1360         case FORALL:
  1361             return elemtype(((ForAll)t).qtype);
  1362         case ERROR:
  1363             return t;
  1364         default:
  1365             return null;
  1369     public Type elemtypeOrType(Type t) {
  1370         Type elemtype = elemtype(t);
  1371         return elemtype != null ?
  1372             elemtype :
  1373             t;
  1376     /**
  1377      * Mapping to take element type of an arraytype
  1378      */
  1379     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1380         public Type apply(Type t) { return elemtype(t); }
  1381     };
  1383     /**
  1384      * The number of dimensions of an array type.
  1385      */
  1386     public int dimensions(Type t) {
  1387         int result = 0;
  1388         while (t.tag == ARRAY) {
  1389             result++;
  1390             t = elemtype(t);
  1392         return result;
  1394     // </editor-fold>
  1396     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1397     /**
  1398      * Return the (most specific) base type of t that starts with the
  1399      * given symbol.  If none exists, return null.
  1401      * @param t a type
  1402      * @param sym a symbol
  1403      */
  1404     public Type asSuper(Type t, Symbol sym) {
  1405         return asSuper.visit(t, sym);
  1407     // where
  1408         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1410             public Type visitType(Type t, Symbol sym) {
  1411                 return null;
  1414             @Override
  1415             public Type visitClassType(ClassType t, Symbol sym) {
  1416                 if (t.tsym == sym)
  1417                     return t;
  1419                 Type st = supertype(t);
  1420                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1421                     Type x = asSuper(st, sym);
  1422                     if (x != null)
  1423                         return x;
  1425                 if ((sym.flags() & INTERFACE) != 0) {
  1426                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1427                         Type x = asSuper(l.head, sym);
  1428                         if (x != null)
  1429                             return x;
  1432                 return null;
  1435             @Override
  1436             public Type visitArrayType(ArrayType t, Symbol sym) {
  1437                 return isSubtype(t, sym.type) ? sym.type : null;
  1440             @Override
  1441             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1442                 if (t.tsym == sym)
  1443                     return t;
  1444                 else
  1445                     return asSuper(t.bound, sym);
  1448             @Override
  1449             public Type visitErrorType(ErrorType t, Symbol sym) {
  1450                 return t;
  1452         };
  1454     /**
  1455      * Return the base type of t or any of its outer types that starts
  1456      * with the given symbol.  If none exists, return null.
  1458      * @param t a type
  1459      * @param sym a symbol
  1460      */
  1461     public Type asOuterSuper(Type t, Symbol sym) {
  1462         switch (t.tag) {
  1463         case CLASS:
  1464             do {
  1465                 Type s = asSuper(t, sym);
  1466                 if (s != null) return s;
  1467                 t = t.getEnclosingType();
  1468             } while (t.tag == CLASS);
  1469             return null;
  1470         case ARRAY:
  1471             return isSubtype(t, sym.type) ? sym.type : null;
  1472         case TYPEVAR:
  1473             return asSuper(t, sym);
  1474         case ERROR:
  1475             return t;
  1476         default:
  1477             return null;
  1481     /**
  1482      * Return the base type of t or any of its enclosing types that
  1483      * starts with the given symbol.  If none exists, return null.
  1485      * @param t a type
  1486      * @param sym a symbol
  1487      */
  1488     public Type asEnclosingSuper(Type t, Symbol sym) {
  1489         switch (t.tag) {
  1490         case CLASS:
  1491             do {
  1492                 Type s = asSuper(t, sym);
  1493                 if (s != null) return s;
  1494                 Type outer = t.getEnclosingType();
  1495                 t = (outer.tag == CLASS) ? outer :
  1496                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1497                     Type.noType;
  1498             } while (t.tag == CLASS);
  1499             return null;
  1500         case ARRAY:
  1501             return isSubtype(t, sym.type) ? sym.type : null;
  1502         case TYPEVAR:
  1503             return asSuper(t, sym);
  1504         case ERROR:
  1505             return t;
  1506         default:
  1507             return null;
  1510     // </editor-fold>
  1512     // <editor-fold defaultstate="collapsed" desc="memberType">
  1513     /**
  1514      * The type of given symbol, seen as a member of t.
  1516      * @param t a type
  1517      * @param sym a symbol
  1518      */
  1519     public Type memberType(Type t, Symbol sym) {
  1520         return (sym.flags() & STATIC) != 0
  1521             ? sym.type
  1522             : memberType.visit(t, sym);
  1524     // where
  1525         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1527             public Type visitType(Type t, Symbol sym) {
  1528                 return sym.type;
  1531             @Override
  1532             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1533                 return memberType(upperBound(t), sym);
  1536             @Override
  1537             public Type visitClassType(ClassType t, Symbol sym) {
  1538                 Symbol owner = sym.owner;
  1539                 long flags = sym.flags();
  1540                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1541                     Type base = asOuterSuper(t, owner);
  1542                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1543                     //its supertypes CT, I1, ... In might contain wildcards
  1544                     //so we need to go through capture conversion
  1545                     base = t.isCompound() ? capture(base) : base;
  1546                     if (base != null) {
  1547                         List<Type> ownerParams = owner.type.allparams();
  1548                         List<Type> baseParams = base.allparams();
  1549                         if (ownerParams.nonEmpty()) {
  1550                             if (baseParams.isEmpty()) {
  1551                                 // then base is a raw type
  1552                                 return erasure(sym.type);
  1553                             } else {
  1554                                 return subst(sym.type, ownerParams, baseParams);
  1559                 return sym.type;
  1562             @Override
  1563             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1564                 return memberType(t.bound, sym);
  1567             @Override
  1568             public Type visitErrorType(ErrorType t, Symbol sym) {
  1569                 return t;
  1571         };
  1572     // </editor-fold>
  1574     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1575     public boolean isAssignable(Type t, Type s) {
  1576         return isAssignable(t, s, Warner.noWarnings);
  1579     /**
  1580      * Is t assignable to s?<br>
  1581      * Equivalent to subtype except for constant values and raw
  1582      * types.<br>
  1583      * (not defined for Method and ForAll types)
  1584      */
  1585     public boolean isAssignable(Type t, Type s, Warner warn) {
  1586         if (t.tag == ERROR)
  1587             return true;
  1588         if (t.tag <= INT && t.constValue() != null) {
  1589             int value = ((Number)t.constValue()).intValue();
  1590             switch (s.tag) {
  1591             case BYTE:
  1592                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1593                     return true;
  1594                 break;
  1595             case CHAR:
  1596                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  1597                     return true;
  1598                 break;
  1599             case SHORT:
  1600                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  1601                     return true;
  1602                 break;
  1603             case INT:
  1604                 return true;
  1605             case CLASS:
  1606                 switch (unboxedType(s).tag) {
  1607                 case BYTE:
  1608                 case CHAR:
  1609                 case SHORT:
  1610                     return isAssignable(t, unboxedType(s), warn);
  1612                 break;
  1615         return isConvertible(t, s, warn);
  1617     // </editor-fold>
  1619     // <editor-fold defaultstate="collapsed" desc="erasure">
  1620     /**
  1621      * The erasure of t {@code |t|} -- the type that results when all
  1622      * type parameters in t are deleted.
  1623      */
  1624     public Type erasure(Type t) {
  1625         return erasure(t, false);
  1627     //where
  1628     private Type erasure(Type t, boolean recurse) {
  1629         if (t.tag <= lastBaseTag)
  1630             return t; /* fast special case */
  1631         else
  1632             return erasure.visit(t, recurse);
  1634     // where
  1635         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  1636             public Type visitType(Type t, Boolean recurse) {
  1637                 if (t.tag <= lastBaseTag)
  1638                     return t; /*fast special case*/
  1639                 else
  1640                     return t.map(recurse ? erasureRecFun : erasureFun);
  1643             @Override
  1644             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  1645                 return erasure(upperBound(t), recurse);
  1648             @Override
  1649             public Type visitClassType(ClassType t, Boolean recurse) {
  1650                 Type erased = t.tsym.erasure(Types.this);
  1651                 if (recurse) {
  1652                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  1654                 return erased;
  1657             @Override
  1658             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  1659                 return erasure(t.bound, recurse);
  1662             @Override
  1663             public Type visitErrorType(ErrorType t, Boolean recurse) {
  1664                 return t;
  1666         };
  1668     private Mapping erasureFun = new Mapping ("erasure") {
  1669             public Type apply(Type t) { return erasure(t); }
  1670         };
  1672     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  1673         public Type apply(Type t) { return erasureRecursive(t); }
  1674     };
  1676     public List<Type> erasure(List<Type> ts) {
  1677         return Type.map(ts, erasureFun);
  1680     public Type erasureRecursive(Type t) {
  1681         return erasure(t, true);
  1684     public List<Type> erasureRecursive(List<Type> ts) {
  1685         return Type.map(ts, erasureRecFun);
  1687     // </editor-fold>
  1689     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  1690     /**
  1691      * Make a compound type from non-empty list of types
  1693      * @param bounds            the types from which the compound type is formed
  1694      * @param supertype         is objectType if all bounds are interfaces,
  1695      *                          null otherwise.
  1696      */
  1697     public Type makeCompoundType(List<Type> bounds,
  1698                                  Type supertype) {
  1699         ClassSymbol bc =
  1700             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  1701                             Type.moreInfo
  1702                                 ? names.fromString(bounds.toString())
  1703                                 : names.empty,
  1704                             syms.noSymbol);
  1705         if (bounds.head.tag == TYPEVAR)
  1706             // error condition, recover
  1707                 bc.erasure_field = syms.objectType;
  1708             else
  1709                 bc.erasure_field = erasure(bounds.head);
  1710             bc.members_field = new Scope(bc);
  1711         ClassType bt = (ClassType)bc.type;
  1712         bt.allparams_field = List.nil();
  1713         if (supertype != null) {
  1714             bt.supertype_field = supertype;
  1715             bt.interfaces_field = bounds;
  1716         } else {
  1717             bt.supertype_field = bounds.head;
  1718             bt.interfaces_field = bounds.tail;
  1720         Assert.check(bt.supertype_field.tsym.completer != null
  1721                 || !bt.supertype_field.isInterface(),
  1722             bt.supertype_field);
  1723         return bt;
  1726     /**
  1727      * Same as {@link #makeCompoundType(List,Type)}, except that the
  1728      * second parameter is computed directly. Note that this might
  1729      * cause a symbol completion.  Hence, this version of
  1730      * makeCompoundType may not be called during a classfile read.
  1731      */
  1732     public Type makeCompoundType(List<Type> bounds) {
  1733         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1734             supertype(bounds.head) : null;
  1735         return makeCompoundType(bounds, supertype);
  1738     /**
  1739      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  1740      * arguments are converted to a list and passed to the other
  1741      * method.  Note that this might cause a symbol completion.
  1742      * Hence, this version of makeCompoundType may not be called
  1743      * during a classfile read.
  1744      */
  1745     public Type makeCompoundType(Type bound1, Type bound2) {
  1746         return makeCompoundType(List.of(bound1, bound2));
  1748     // </editor-fold>
  1750     // <editor-fold defaultstate="collapsed" desc="supertype">
  1751     public Type supertype(Type t) {
  1752         return supertype.visit(t);
  1754     // where
  1755         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  1757             public Type visitType(Type t, Void ignored) {
  1758                 // A note on wildcards: there is no good way to
  1759                 // determine a supertype for a super bounded wildcard.
  1760                 return null;
  1763             @Override
  1764             public Type visitClassType(ClassType t, Void ignored) {
  1765                 if (t.supertype_field == null) {
  1766                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  1767                     // An interface has no superclass; its supertype is Object.
  1768                     if (t.isInterface())
  1769                         supertype = ((ClassType)t.tsym.type).supertype_field;
  1770                     if (t.supertype_field == null) {
  1771                         List<Type> actuals = classBound(t).allparams();
  1772                         List<Type> formals = t.tsym.type.allparams();
  1773                         if (t.hasErasedSupertypes()) {
  1774                             t.supertype_field = erasureRecursive(supertype);
  1775                         } else if (formals.nonEmpty()) {
  1776                             t.supertype_field = subst(supertype, formals, actuals);
  1778                         else {
  1779                             t.supertype_field = supertype;
  1783                 return t.supertype_field;
  1786             /**
  1787              * The supertype is always a class type. If the type
  1788              * variable's bounds start with a class type, this is also
  1789              * the supertype.  Otherwise, the supertype is
  1790              * java.lang.Object.
  1791              */
  1792             @Override
  1793             public Type visitTypeVar(TypeVar t, Void ignored) {
  1794                 if (t.bound.tag == TYPEVAR ||
  1795                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  1796                     return t.bound;
  1797                 } else {
  1798                     return supertype(t.bound);
  1802             @Override
  1803             public Type visitArrayType(ArrayType t, Void ignored) {
  1804                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  1805                     return arraySuperType();
  1806                 else
  1807                     return new ArrayType(supertype(t.elemtype), t.tsym);
  1810             @Override
  1811             public Type visitErrorType(ErrorType t, Void ignored) {
  1812                 return t;
  1814         };
  1815     // </editor-fold>
  1817     // <editor-fold defaultstate="collapsed" desc="interfaces">
  1818     /**
  1819      * Return the interfaces implemented by this class.
  1820      */
  1821     public List<Type> interfaces(Type t) {
  1822         return interfaces.visit(t);
  1824     // where
  1825         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  1827             public List<Type> visitType(Type t, Void ignored) {
  1828                 return List.nil();
  1831             @Override
  1832             public List<Type> visitClassType(ClassType t, Void ignored) {
  1833                 if (t.interfaces_field == null) {
  1834                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  1835                     if (t.interfaces_field == null) {
  1836                         // If t.interfaces_field is null, then t must
  1837                         // be a parameterized type (not to be confused
  1838                         // with a generic type declaration).
  1839                         // Terminology:
  1840                         //    Parameterized type: List<String>
  1841                         //    Generic type declaration: class List<E> { ... }
  1842                         // So t corresponds to List<String> and
  1843                         // t.tsym.type corresponds to List<E>.
  1844                         // The reason t must be parameterized type is
  1845                         // that completion will happen as a side
  1846                         // effect of calling
  1847                         // ClassSymbol.getInterfaces.  Since
  1848                         // t.interfaces_field is null after
  1849                         // completion, we can assume that t is not the
  1850                         // type of a class/interface declaration.
  1851                         Assert.check(t != t.tsym.type, t);
  1852                         List<Type> actuals = t.allparams();
  1853                         List<Type> formals = t.tsym.type.allparams();
  1854                         if (t.hasErasedSupertypes()) {
  1855                             t.interfaces_field = erasureRecursive(interfaces);
  1856                         } else if (formals.nonEmpty()) {
  1857                             t.interfaces_field =
  1858                                 upperBounds(subst(interfaces, formals, actuals));
  1860                         else {
  1861                             t.interfaces_field = interfaces;
  1865                 return t.interfaces_field;
  1868             @Override
  1869             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  1870                 if (t.bound.isCompound())
  1871                     return interfaces(t.bound);
  1873                 if (t.bound.isInterface())
  1874                     return List.of(t.bound);
  1876                 return List.nil();
  1878         };
  1879     // </editor-fold>
  1881     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  1882     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  1884     public boolean isDerivedRaw(Type t) {
  1885         Boolean result = isDerivedRawCache.get(t);
  1886         if (result == null) {
  1887             result = isDerivedRawInternal(t);
  1888             isDerivedRawCache.put(t, result);
  1890         return result;
  1893     public boolean isDerivedRawInternal(Type t) {
  1894         if (t.isErroneous())
  1895             return false;
  1896         return
  1897             t.isRaw() ||
  1898             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  1899             isDerivedRaw(interfaces(t));
  1902     public boolean isDerivedRaw(List<Type> ts) {
  1903         List<Type> l = ts;
  1904         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  1905         return l.nonEmpty();
  1907     // </editor-fold>
  1909     // <editor-fold defaultstate="collapsed" desc="setBounds">
  1910     /**
  1911      * Set the bounds field of the given type variable to reflect a
  1912      * (possibly multiple) list of bounds.
  1913      * @param t                 a type variable
  1914      * @param bounds            the bounds, must be nonempty
  1915      * @param supertype         is objectType if all bounds are interfaces,
  1916      *                          null otherwise.
  1917      */
  1918     public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
  1919         if (bounds.tail.isEmpty())
  1920             t.bound = bounds.head;
  1921         else
  1922             t.bound = makeCompoundType(bounds, supertype);
  1923         t.rank_field = -1;
  1926     /**
  1927      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  1928      * third parameter is computed directly, as follows: if all
  1929      * all bounds are interface types, the computed supertype is Object,
  1930      * otherwise the supertype is simply left null (in this case, the supertype
  1931      * is assumed to be the head of the bound list passed as second argument).
  1932      * Note that this check might cause a symbol completion. Hence, this version of
  1933      * setBounds may not be called during a classfile read.
  1934      */
  1935     public void setBounds(TypeVar t, List<Type> bounds) {
  1936         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1937             syms.objectType : null;
  1938         setBounds(t, bounds, supertype);
  1939         t.rank_field = -1;
  1941     // </editor-fold>
  1943     // <editor-fold defaultstate="collapsed" desc="getBounds">
  1944     /**
  1945      * Return list of bounds of the given type variable.
  1946      */
  1947     public List<Type> getBounds(TypeVar t) {
  1948         if (t.bound.isErroneous() || !t.bound.isCompound())
  1949             return List.of(t.bound);
  1950         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  1951             return interfaces(t).prepend(supertype(t));
  1952         else
  1953             // No superclass was given in bounds.
  1954             // In this case, supertype is Object, erasure is first interface.
  1955             return interfaces(t);
  1957     // </editor-fold>
  1959     // <editor-fold defaultstate="collapsed" desc="classBound">
  1960     /**
  1961      * If the given type is a (possibly selected) type variable,
  1962      * return the bounding class of this type, otherwise return the
  1963      * type itself.
  1964      */
  1965     public Type classBound(Type t) {
  1966         return classBound.visit(t);
  1968     // where
  1969         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  1971             public Type visitType(Type t, Void ignored) {
  1972                 return t;
  1975             @Override
  1976             public Type visitClassType(ClassType t, Void ignored) {
  1977                 Type outer1 = classBound(t.getEnclosingType());
  1978                 if (outer1 != t.getEnclosingType())
  1979                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  1980                 else
  1981                     return t;
  1984             @Override
  1985             public Type visitTypeVar(TypeVar t, Void ignored) {
  1986                 return classBound(supertype(t));
  1989             @Override
  1990             public Type visitErrorType(ErrorType t, Void ignored) {
  1991                 return t;
  1993         };
  1994     // </editor-fold>
  1996     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  1997     /**
  1998      * Returns true iff the first signature is a <em>sub
  1999      * signature</em> of the other.  This is <b>not</b> an equivalence
  2000      * relation.
  2002      * @jls section 8.4.2.
  2003      * @see #overrideEquivalent(Type t, Type s)
  2004      * @param t first signature (possibly raw).
  2005      * @param s second signature (could be subjected to erasure).
  2006      * @return true if t is a sub signature of s.
  2007      */
  2008     public boolean isSubSignature(Type t, Type s) {
  2009         return isSubSignature(t, s, true);
  2012     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2013         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2016     /**
  2017      * Returns true iff these signatures are related by <em>override
  2018      * equivalence</em>.  This is the natural extension of
  2019      * isSubSignature to an equivalence relation.
  2021      * @jls section 8.4.2.
  2022      * @see #isSubSignature(Type t, Type s)
  2023      * @param t a signature (possible raw, could be subjected to
  2024      * erasure).
  2025      * @param s a signature (possible raw, could be subjected to
  2026      * erasure).
  2027      * @return true if either argument is a sub signature of the other.
  2028      */
  2029     public boolean overrideEquivalent(Type t, Type s) {
  2030         return hasSameArgs(t, s) ||
  2031             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2034     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2035     class ImplementationCache {
  2037         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2038                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2040         class Entry {
  2041             final MethodSymbol cachedImpl;
  2042             final Filter<Symbol> implFilter;
  2043             final boolean checkResult;
  2044             final int prevMark;
  2046             public Entry(MethodSymbol cachedImpl,
  2047                     Filter<Symbol> scopeFilter,
  2048                     boolean checkResult,
  2049                     int prevMark) {
  2050                 this.cachedImpl = cachedImpl;
  2051                 this.implFilter = scopeFilter;
  2052                 this.checkResult = checkResult;
  2053                 this.prevMark = prevMark;
  2056             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2057                 return this.implFilter == scopeFilter &&
  2058                         this.checkResult == checkResult &&
  2059                         this.prevMark == mark;
  2063         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2064             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2065             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2066             if (cache == null) {
  2067                 cache = new HashMap<TypeSymbol, Entry>();
  2068                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2070             Entry e = cache.get(origin);
  2071             CompoundScope members = membersClosure(origin.type, true);
  2072             if (e == null ||
  2073                     !e.matches(implFilter, checkResult, members.getMark())) {
  2074                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2075                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2076                 return impl;
  2078             else {
  2079                 return e.cachedImpl;
  2083         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2084             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
  2085                 while (t.tag == TYPEVAR)
  2086                     t = t.getUpperBound();
  2087                 TypeSymbol c = t.tsym;
  2088                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2089                      e.scope != null;
  2090                      e = e.next(implFilter)) {
  2091                     if (e.sym != null &&
  2092                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2093                         return (MethodSymbol)e.sym;
  2096             return null;
  2100     private ImplementationCache implCache = new ImplementationCache();
  2102     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2103         return implCache.get(ms, origin, checkResult, implFilter);
  2105     // </editor-fold>
  2107     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2108     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2110         private WeakHashMap<TypeSymbol, Entry> _map =
  2111                 new WeakHashMap<TypeSymbol, Entry>();
  2113         class Entry {
  2114             final boolean skipInterfaces;
  2115             final CompoundScope compoundScope;
  2117             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2118                 this.skipInterfaces = skipInterfaces;
  2119                 this.compoundScope = compoundScope;
  2122             boolean matches(boolean skipInterfaces) {
  2123                 return this.skipInterfaces == skipInterfaces;
  2127         List<TypeSymbol> seenTypes = List.nil();
  2129         /** members closure visitor methods **/
  2131         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2132             return null;
  2135         @Override
  2136         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2137             if (seenTypes.contains(t.tsym)) {
  2138                 //this is possible when an interface is implemented in multiple
  2139                 //superclasses, or when a classs hierarchy is circular - in such
  2140                 //cases we don't need to recurse (empty scope is returned)
  2141                 return new CompoundScope(t.tsym);
  2143             try {
  2144                 seenTypes = seenTypes.prepend(t.tsym);
  2145                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2146                 Entry e = _map.get(csym);
  2147                 if (e == null || !e.matches(skipInterface)) {
  2148                     CompoundScope membersClosure = new CompoundScope(csym);
  2149                     if (!skipInterface) {
  2150                         for (Type i : interfaces(t)) {
  2151                             membersClosure.addSubScope(visit(i, skipInterface));
  2154                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2155                     membersClosure.addSubScope(csym.members());
  2156                     e = new Entry(skipInterface, membersClosure);
  2157                     _map.put(csym, e);
  2159                 return e.compoundScope;
  2161             finally {
  2162                 seenTypes = seenTypes.tail;
  2166         @Override
  2167         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2168             return visit(t.getUpperBound(), skipInterface);
  2172     private MembersClosureCache membersCache = new MembersClosureCache();
  2174     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2175         return membersCache.visit(site, skipInterface);
  2177     // </editor-fold>
  2179     /**
  2180      * Does t have the same arguments as s?  It is assumed that both
  2181      * types are (possibly polymorphic) method types.  Monomorphic
  2182      * method types "have the same arguments", if their argument lists
  2183      * are equal.  Polymorphic method types "have the same arguments",
  2184      * if they have the same arguments after renaming all type
  2185      * variables of one to corresponding type variables in the other,
  2186      * where correspondence is by position in the type parameter list.
  2187      */
  2188     public boolean hasSameArgs(Type t, Type s) {
  2189         return hasSameArgs(t, s, true);
  2192     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2193         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2196     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2197         return hasSameArgs.visit(t, s);
  2199     // where
  2200         private class HasSameArgs extends TypeRelation {
  2202             boolean strict;
  2204             public HasSameArgs(boolean strict) {
  2205                 this.strict = strict;
  2208             public Boolean visitType(Type t, Type s) {
  2209                 throw new AssertionError();
  2212             @Override
  2213             public Boolean visitMethodType(MethodType t, Type s) {
  2214                 return s.tag == METHOD
  2215                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2218             @Override
  2219             public Boolean visitForAll(ForAll t, Type s) {
  2220                 if (s.tag != FORALL)
  2221                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2223                 ForAll forAll = (ForAll)s;
  2224                 return hasSameBounds(t, forAll)
  2225                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2228             @Override
  2229             public Boolean visitErrorType(ErrorType t, Type s) {
  2230                 return false;
  2232         };
  2234         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2235         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2237     // </editor-fold>
  2239     // <editor-fold defaultstate="collapsed" desc="subst">
  2240     public List<Type> subst(List<Type> ts,
  2241                             List<Type> from,
  2242                             List<Type> to) {
  2243         return new Subst(from, to).subst(ts);
  2246     /**
  2247      * Substitute all occurrences of a type in `from' with the
  2248      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2249      * from the right: If lists have different length, discard leading
  2250      * elements of the longer list.
  2251      */
  2252     public Type subst(Type t, List<Type> from, List<Type> to) {
  2253         return new Subst(from, to).subst(t);
  2256     private class Subst extends UnaryVisitor<Type> {
  2257         List<Type> from;
  2258         List<Type> to;
  2260         public Subst(List<Type> from, List<Type> to) {
  2261             int fromLength = from.length();
  2262             int toLength = to.length();
  2263             while (fromLength > toLength) {
  2264                 fromLength--;
  2265                 from = from.tail;
  2267             while (fromLength < toLength) {
  2268                 toLength--;
  2269                 to = to.tail;
  2271             this.from = from;
  2272             this.to = to;
  2275         Type subst(Type t) {
  2276             if (from.tail == null)
  2277                 return t;
  2278             else
  2279                 return visit(t);
  2282         List<Type> subst(List<Type> ts) {
  2283             if (from.tail == null)
  2284                 return ts;
  2285             boolean wild = false;
  2286             if (ts.nonEmpty() && from.nonEmpty()) {
  2287                 Type head1 = subst(ts.head);
  2288                 List<Type> tail1 = subst(ts.tail);
  2289                 if (head1 != ts.head || tail1 != ts.tail)
  2290                     return tail1.prepend(head1);
  2292             return ts;
  2295         public Type visitType(Type t, Void ignored) {
  2296             return t;
  2299         @Override
  2300         public Type visitMethodType(MethodType t, Void ignored) {
  2301             List<Type> argtypes = subst(t.argtypes);
  2302             Type restype = subst(t.restype);
  2303             List<Type> thrown = subst(t.thrown);
  2304             if (argtypes == t.argtypes &&
  2305                 restype == t.restype &&
  2306                 thrown == t.thrown)
  2307                 return t;
  2308             else
  2309                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2312         @Override
  2313         public Type visitTypeVar(TypeVar t, Void ignored) {
  2314             for (List<Type> from = this.from, to = this.to;
  2315                  from.nonEmpty();
  2316                  from = from.tail, to = to.tail) {
  2317                 if (t == from.head) {
  2318                     return to.head.withTypeVar(t);
  2321             return t;
  2324         @Override
  2325         public Type visitClassType(ClassType t, Void ignored) {
  2326             if (!t.isCompound()) {
  2327                 List<Type> typarams = t.getTypeArguments();
  2328                 List<Type> typarams1 = subst(typarams);
  2329                 Type outer = t.getEnclosingType();
  2330                 Type outer1 = subst(outer);
  2331                 if (typarams1 == typarams && outer1 == outer)
  2332                     return t;
  2333                 else
  2334                     return new ClassType(outer1, typarams1, t.tsym);
  2335             } else {
  2336                 Type st = subst(supertype(t));
  2337                 List<Type> is = upperBounds(subst(interfaces(t)));
  2338                 if (st == supertype(t) && is == interfaces(t))
  2339                     return t;
  2340                 else
  2341                     return makeCompoundType(is.prepend(st));
  2345         @Override
  2346         public Type visitWildcardType(WildcardType t, Void ignored) {
  2347             Type bound = t.type;
  2348             if (t.kind != BoundKind.UNBOUND)
  2349                 bound = subst(bound);
  2350             if (bound == t.type) {
  2351                 return t;
  2352             } else {
  2353                 if (t.isExtendsBound() && bound.isExtendsBound())
  2354                     bound = upperBound(bound);
  2355                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2359         @Override
  2360         public Type visitArrayType(ArrayType t, Void ignored) {
  2361             Type elemtype = subst(t.elemtype);
  2362             if (elemtype == t.elemtype)
  2363                 return t;
  2364             else
  2365                 return new ArrayType(upperBound(elemtype), t.tsym);
  2368         @Override
  2369         public Type visitForAll(ForAll t, Void ignored) {
  2370             if (Type.containsAny(to, t.tvars)) {
  2371                 //perform alpha-renaming of free-variables in 't'
  2372                 //if 'to' types contain variables that are free in 't'
  2373                 List<Type> freevars = newInstances(t.tvars);
  2374                 t = new ForAll(freevars,
  2375                         Types.this.subst(t.qtype, t.tvars, freevars));
  2377             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2378             Type qtype1 = subst(t.qtype);
  2379             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2380                 return t;
  2381             } else if (tvars1 == t.tvars) {
  2382                 return new ForAll(tvars1, qtype1);
  2383             } else {
  2384                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2388         @Override
  2389         public Type visitErrorType(ErrorType t, Void ignored) {
  2390             return t;
  2394     public List<Type> substBounds(List<Type> tvars,
  2395                                   List<Type> from,
  2396                                   List<Type> to) {
  2397         if (tvars.isEmpty())
  2398             return tvars;
  2399         ListBuffer<Type> newBoundsBuf = lb();
  2400         boolean changed = false;
  2401         // calculate new bounds
  2402         for (Type t : tvars) {
  2403             TypeVar tv = (TypeVar) t;
  2404             Type bound = subst(tv.bound, from, to);
  2405             if (bound != tv.bound)
  2406                 changed = true;
  2407             newBoundsBuf.append(bound);
  2409         if (!changed)
  2410             return tvars;
  2411         ListBuffer<Type> newTvars = lb();
  2412         // create new type variables without bounds
  2413         for (Type t : tvars) {
  2414             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2416         // the new bounds should use the new type variables in place
  2417         // of the old
  2418         List<Type> newBounds = newBoundsBuf.toList();
  2419         from = tvars;
  2420         to = newTvars.toList();
  2421         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2422             newBounds.head = subst(newBounds.head, from, to);
  2424         newBounds = newBoundsBuf.toList();
  2425         // set the bounds of new type variables to the new bounds
  2426         for (Type t : newTvars.toList()) {
  2427             TypeVar tv = (TypeVar) t;
  2428             tv.bound = newBounds.head;
  2429             newBounds = newBounds.tail;
  2431         return newTvars.toList();
  2434     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2435         Type bound1 = subst(t.bound, from, to);
  2436         if (bound1 == t.bound)
  2437             return t;
  2438         else {
  2439             // create new type variable without bounds
  2440             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2441             // the new bound should use the new type variable in place
  2442             // of the old
  2443             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2444             return tv;
  2447     // </editor-fold>
  2449     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2450     /**
  2451      * Does t have the same bounds for quantified variables as s?
  2452      */
  2453     boolean hasSameBounds(ForAll t, ForAll s) {
  2454         List<Type> l1 = t.tvars;
  2455         List<Type> l2 = s.tvars;
  2456         while (l1.nonEmpty() && l2.nonEmpty() &&
  2457                isSameType(l1.head.getUpperBound(),
  2458                           subst(l2.head.getUpperBound(),
  2459                                 s.tvars,
  2460                                 t.tvars))) {
  2461             l1 = l1.tail;
  2462             l2 = l2.tail;
  2464         return l1.isEmpty() && l2.isEmpty();
  2466     // </editor-fold>
  2468     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2469     /** Create new vector of type variables from list of variables
  2470      *  changing all recursive bounds from old to new list.
  2471      */
  2472     public List<Type> newInstances(List<Type> tvars) {
  2473         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2474         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2475             TypeVar tv = (TypeVar) l.head;
  2476             tv.bound = subst(tv.bound, tvars, tvars1);
  2478         return tvars1;
  2480     static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2481             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2482         };
  2483     // </editor-fold>
  2485     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2486         return original.accept(methodWithParameters, newParams);
  2488     // where
  2489         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2490             public Type visitType(Type t, List<Type> newParams) {
  2491                 throw new IllegalArgumentException("Not a method type: " + t);
  2493             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2494                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2496             public Type visitForAll(ForAll t, List<Type> newParams) {
  2497                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  2499         };
  2501     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  2502         return original.accept(methodWithThrown, newThrown);
  2504     // where
  2505         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  2506             public Type visitType(Type t, List<Type> newThrown) {
  2507                 throw new IllegalArgumentException("Not a method type: " + t);
  2509             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  2510                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  2512             public Type visitForAll(ForAll t, List<Type> newThrown) {
  2513                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  2515         };
  2517     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  2518         return original.accept(methodWithReturn, newReturn);
  2520     // where
  2521         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  2522             public Type visitType(Type t, Type newReturn) {
  2523                 throw new IllegalArgumentException("Not a method type: " + t);
  2525             public Type visitMethodType(MethodType t, Type newReturn) {
  2526                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  2528             public Type visitForAll(ForAll t, Type newReturn) {
  2529                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  2531         };
  2533     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  2534     public Type createErrorType(Type originalType) {
  2535         return new ErrorType(originalType, syms.errSymbol);
  2538     public Type createErrorType(ClassSymbol c, Type originalType) {
  2539         return new ErrorType(c, originalType);
  2542     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  2543         return new ErrorType(name, container, originalType);
  2545     // </editor-fold>
  2547     // <editor-fold defaultstate="collapsed" desc="rank">
  2548     /**
  2549      * The rank of a class is the length of the longest path between
  2550      * the class and java.lang.Object in the class inheritance
  2551      * graph. Undefined for all but reference types.
  2552      */
  2553     public int rank(Type t) {
  2554         switch(t.tag) {
  2555         case CLASS: {
  2556             ClassType cls = (ClassType)t;
  2557             if (cls.rank_field < 0) {
  2558                 Name fullname = cls.tsym.getQualifiedName();
  2559                 if (fullname == names.java_lang_Object)
  2560                     cls.rank_field = 0;
  2561                 else {
  2562                     int r = rank(supertype(cls));
  2563                     for (List<Type> l = interfaces(cls);
  2564                          l.nonEmpty();
  2565                          l = l.tail) {
  2566                         if (rank(l.head) > r)
  2567                             r = rank(l.head);
  2569                     cls.rank_field = r + 1;
  2572             return cls.rank_field;
  2574         case TYPEVAR: {
  2575             TypeVar tvar = (TypeVar)t;
  2576             if (tvar.rank_field < 0) {
  2577                 int r = rank(supertype(tvar));
  2578                 for (List<Type> l = interfaces(tvar);
  2579                      l.nonEmpty();
  2580                      l = l.tail) {
  2581                     if (rank(l.head) > r) r = rank(l.head);
  2583                 tvar.rank_field = r + 1;
  2585             return tvar.rank_field;
  2587         case ERROR:
  2588             return 0;
  2589         default:
  2590             throw new AssertionError();
  2593     // </editor-fold>
  2595     /**
  2596      * Helper method for generating a string representation of a given type
  2597      * accordingly to a given locale
  2598      */
  2599     public String toString(Type t, Locale locale) {
  2600         return Printer.createStandardPrinter(messages).visit(t, locale);
  2603     /**
  2604      * Helper method for generating a string representation of a given type
  2605      * accordingly to a given locale
  2606      */
  2607     public String toString(Symbol t, Locale locale) {
  2608         return Printer.createStandardPrinter(messages).visit(t, locale);
  2611     // <editor-fold defaultstate="collapsed" desc="toString">
  2612     /**
  2613      * This toString is slightly more descriptive than the one on Type.
  2615      * @deprecated Types.toString(Type t, Locale l) provides better support
  2616      * for localization
  2617      */
  2618     @Deprecated
  2619     public String toString(Type t) {
  2620         if (t.tag == FORALL) {
  2621             ForAll forAll = (ForAll)t;
  2622             return typaramsString(forAll.tvars) + forAll.qtype;
  2624         return "" + t;
  2626     // where
  2627         private String typaramsString(List<Type> tvars) {
  2628             StringBuilder s = new StringBuilder();
  2629             s.append('<');
  2630             boolean first = true;
  2631             for (Type t : tvars) {
  2632                 if (!first) s.append(", ");
  2633                 first = false;
  2634                 appendTyparamString(((TypeVar)t), s);
  2636             s.append('>');
  2637             return s.toString();
  2639         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  2640             buf.append(t);
  2641             if (t.bound == null ||
  2642                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  2643                 return;
  2644             buf.append(" extends "); // Java syntax; no need for i18n
  2645             Type bound = t.bound;
  2646             if (!bound.isCompound()) {
  2647                 buf.append(bound);
  2648             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  2649                 buf.append(supertype(t));
  2650                 for (Type intf : interfaces(t)) {
  2651                     buf.append('&');
  2652                     buf.append(intf);
  2654             } else {
  2655                 // No superclass was given in bounds.
  2656                 // In this case, supertype is Object, erasure is first interface.
  2657                 boolean first = true;
  2658                 for (Type intf : interfaces(t)) {
  2659                     if (!first) buf.append('&');
  2660                     first = false;
  2661                     buf.append(intf);
  2665     // </editor-fold>
  2667     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  2668     /**
  2669      * A cache for closures.
  2671      * <p>A closure is a list of all the supertypes and interfaces of
  2672      * a class or interface type, ordered by ClassSymbol.precedes
  2673      * (that is, subclasses come first, arbitrary but fixed
  2674      * otherwise).
  2675      */
  2676     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  2678     /**
  2679      * Returns the closure of a class or interface type.
  2680      */
  2681     public List<Type> closure(Type t) {
  2682         List<Type> cl = closureCache.get(t);
  2683         if (cl == null) {
  2684             Type st = supertype(t);
  2685             if (!t.isCompound()) {
  2686                 if (st.tag == CLASS) {
  2687                     cl = insert(closure(st), t);
  2688                 } else if (st.tag == TYPEVAR) {
  2689                     cl = closure(st).prepend(t);
  2690                 } else {
  2691                     cl = List.of(t);
  2693             } else {
  2694                 cl = closure(supertype(t));
  2696             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  2697                 cl = union(cl, closure(l.head));
  2698             closureCache.put(t, cl);
  2700         return cl;
  2703     /**
  2704      * Insert a type in a closure
  2705      */
  2706     public List<Type> insert(List<Type> cl, Type t) {
  2707         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  2708             return cl.prepend(t);
  2709         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  2710             return insert(cl.tail, t).prepend(cl.head);
  2711         } else {
  2712             return cl;
  2716     /**
  2717      * Form the union of two closures
  2718      */
  2719     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  2720         if (cl1.isEmpty()) {
  2721             return cl2;
  2722         } else if (cl2.isEmpty()) {
  2723             return cl1;
  2724         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  2725             return union(cl1.tail, cl2).prepend(cl1.head);
  2726         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  2727             return union(cl1, cl2.tail).prepend(cl2.head);
  2728         } else {
  2729             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  2733     /**
  2734      * Intersect two closures
  2735      */
  2736     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  2737         if (cl1 == cl2)
  2738             return cl1;
  2739         if (cl1.isEmpty() || cl2.isEmpty())
  2740             return List.nil();
  2741         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  2742             return intersect(cl1.tail, cl2);
  2743         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  2744             return intersect(cl1, cl2.tail);
  2745         if (isSameType(cl1.head, cl2.head))
  2746             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  2747         if (cl1.head.tsym == cl2.head.tsym &&
  2748             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  2749             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  2750                 Type merge = merge(cl1.head,cl2.head);
  2751                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  2753             if (cl1.head.isRaw() || cl2.head.isRaw())
  2754                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  2756         return intersect(cl1.tail, cl2.tail);
  2758     // where
  2759         class TypePair {
  2760             final Type t1;
  2761             final Type t2;
  2762             TypePair(Type t1, Type t2) {
  2763                 this.t1 = t1;
  2764                 this.t2 = t2;
  2766             @Override
  2767             public int hashCode() {
  2768                 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
  2770             @Override
  2771             public boolean equals(Object obj) {
  2772                 if (!(obj instanceof TypePair))
  2773                     return false;
  2774                 TypePair typePair = (TypePair)obj;
  2775                 return isSameType(t1, typePair.t1)
  2776                     && isSameType(t2, typePair.t2);
  2779         Set<TypePair> mergeCache = new HashSet<TypePair>();
  2780         private Type merge(Type c1, Type c2) {
  2781             ClassType class1 = (ClassType) c1;
  2782             List<Type> act1 = class1.getTypeArguments();
  2783             ClassType class2 = (ClassType) c2;
  2784             List<Type> act2 = class2.getTypeArguments();
  2785             ListBuffer<Type> merged = new ListBuffer<Type>();
  2786             List<Type> typarams = class1.tsym.type.getTypeArguments();
  2788             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  2789                 if (containsType(act1.head, act2.head)) {
  2790                     merged.append(act1.head);
  2791                 } else if (containsType(act2.head, act1.head)) {
  2792                     merged.append(act2.head);
  2793                 } else {
  2794                     TypePair pair = new TypePair(c1, c2);
  2795                     Type m;
  2796                     if (mergeCache.add(pair)) {
  2797                         m = new WildcardType(lub(upperBound(act1.head),
  2798                                                  upperBound(act2.head)),
  2799                                              BoundKind.EXTENDS,
  2800                                              syms.boundClass);
  2801                         mergeCache.remove(pair);
  2802                     } else {
  2803                         m = new WildcardType(syms.objectType,
  2804                                              BoundKind.UNBOUND,
  2805                                              syms.boundClass);
  2807                     merged.append(m.withTypeVar(typarams.head));
  2809                 act1 = act1.tail;
  2810                 act2 = act2.tail;
  2811                 typarams = typarams.tail;
  2813             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  2814             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  2817     /**
  2818      * Return the minimum type of a closure, a compound type if no
  2819      * unique minimum exists.
  2820      */
  2821     private Type compoundMin(List<Type> cl) {
  2822         if (cl.isEmpty()) return syms.objectType;
  2823         List<Type> compound = closureMin(cl);
  2824         if (compound.isEmpty())
  2825             return null;
  2826         else if (compound.tail.isEmpty())
  2827             return compound.head;
  2828         else
  2829             return makeCompoundType(compound);
  2832     /**
  2833      * Return the minimum types of a closure, suitable for computing
  2834      * compoundMin or glb.
  2835      */
  2836     private List<Type> closureMin(List<Type> cl) {
  2837         ListBuffer<Type> classes = lb();
  2838         ListBuffer<Type> interfaces = lb();
  2839         while (!cl.isEmpty()) {
  2840             Type current = cl.head;
  2841             if (current.isInterface())
  2842                 interfaces.append(current);
  2843             else
  2844                 classes.append(current);
  2845             ListBuffer<Type> candidates = lb();
  2846             for (Type t : cl.tail) {
  2847                 if (!isSubtypeNoCapture(current, t))
  2848                     candidates.append(t);
  2850             cl = candidates.toList();
  2852         return classes.appendList(interfaces).toList();
  2855     /**
  2856      * Return the least upper bound of pair of types.  if the lub does
  2857      * not exist return null.
  2858      */
  2859     public Type lub(Type t1, Type t2) {
  2860         return lub(List.of(t1, t2));
  2863     /**
  2864      * Return the least upper bound (lub) of set of types.  If the lub
  2865      * does not exist return the type of null (bottom).
  2866      */
  2867     public Type lub(List<Type> ts) {
  2868         final int ARRAY_BOUND = 1;
  2869         final int CLASS_BOUND = 2;
  2870         int boundkind = 0;
  2871         for (Type t : ts) {
  2872             switch (t.tag) {
  2873             case CLASS:
  2874                 boundkind |= CLASS_BOUND;
  2875                 break;
  2876             case ARRAY:
  2877                 boundkind |= ARRAY_BOUND;
  2878                 break;
  2879             case  TYPEVAR:
  2880                 do {
  2881                     t = t.getUpperBound();
  2882                 } while (t.tag == TYPEVAR);
  2883                 if (t.tag == ARRAY) {
  2884                     boundkind |= ARRAY_BOUND;
  2885                 } else {
  2886                     boundkind |= CLASS_BOUND;
  2888                 break;
  2889             default:
  2890                 if (t.isPrimitive())
  2891                     return syms.errType;
  2894         switch (boundkind) {
  2895         case 0:
  2896             return syms.botType;
  2898         case ARRAY_BOUND:
  2899             // calculate lub(A[], B[])
  2900             List<Type> elements = Type.map(ts, elemTypeFun);
  2901             for (Type t : elements) {
  2902                 if (t.isPrimitive()) {
  2903                     // if a primitive type is found, then return
  2904                     // arraySuperType unless all the types are the
  2905                     // same
  2906                     Type first = ts.head;
  2907                     for (Type s : ts.tail) {
  2908                         if (!isSameType(first, s)) {
  2909                              // lub(int[], B[]) is Cloneable & Serializable
  2910                             return arraySuperType();
  2913                     // all the array types are the same, return one
  2914                     // lub(int[], int[]) is int[]
  2915                     return first;
  2918             // lub(A[], B[]) is lub(A, B)[]
  2919             return new ArrayType(lub(elements), syms.arrayClass);
  2921         case CLASS_BOUND:
  2922             // calculate lub(A, B)
  2923             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  2924                 ts = ts.tail;
  2925             Assert.check(!ts.isEmpty());
  2926             //step 1 - compute erased candidate set (EC)
  2927             List<Type> cl = erasedSupertypes(ts.head);
  2928             for (Type t : ts.tail) {
  2929                 if (t.tag == CLASS || t.tag == TYPEVAR)
  2930                     cl = intersect(cl, erasedSupertypes(t));
  2932             //step 2 - compute minimal erased candidate set (MEC)
  2933             List<Type> mec = closureMin(cl);
  2934             //step 3 - for each element G in MEC, compute lci(Inv(G))
  2935             List<Type> candidates = List.nil();
  2936             for (Type erasedSupertype : mec) {
  2937                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  2938                 for (Type t : ts) {
  2939                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  2941                 candidates = candidates.appendList(lci);
  2943             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  2944             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  2945             return compoundMin(candidates);
  2947         default:
  2948             // calculate lub(A, B[])
  2949             List<Type> classes = List.of(arraySuperType());
  2950             for (Type t : ts) {
  2951                 if (t.tag != ARRAY) // Filter out any arrays
  2952                     classes = classes.prepend(t);
  2954             // lub(A, B[]) is lub(A, arraySuperType)
  2955             return lub(classes);
  2958     // where
  2959         List<Type> erasedSupertypes(Type t) {
  2960             ListBuffer<Type> buf = lb();
  2961             for (Type sup : closure(t)) {
  2962                 if (sup.tag == TYPEVAR) {
  2963                     buf.append(sup);
  2964                 } else {
  2965                     buf.append(erasure(sup));
  2968             return buf.toList();
  2971         private Type arraySuperType = null;
  2972         private Type arraySuperType() {
  2973             // initialized lazily to avoid problems during compiler startup
  2974             if (arraySuperType == null) {
  2975                 synchronized (this) {
  2976                     if (arraySuperType == null) {
  2977                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  2978                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  2979                                                                   syms.cloneableType),
  2980                                                           syms.objectType);
  2984             return arraySuperType;
  2986     // </editor-fold>
  2988     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  2989     public Type glb(List<Type> ts) {
  2990         Type t1 = ts.head;
  2991         for (Type t2 : ts.tail) {
  2992             if (t1.isErroneous())
  2993                 return t1;
  2994             t1 = glb(t1, t2);
  2996         return t1;
  2998     //where
  2999     public Type glb(Type t, Type s) {
  3000         if (s == null)
  3001             return t;
  3002         else if (t.isPrimitive() || s.isPrimitive())
  3003             return syms.errType;
  3004         else if (isSubtypeNoCapture(t, s))
  3005             return t;
  3006         else if (isSubtypeNoCapture(s, t))
  3007             return s;
  3009         List<Type> closure = union(closure(t), closure(s));
  3010         List<Type> bounds = closureMin(closure);
  3012         if (bounds.isEmpty()) {             // length == 0
  3013             return syms.objectType;
  3014         } else if (bounds.tail.isEmpty()) { // length == 1
  3015             return bounds.head;
  3016         } else {                            // length > 1
  3017             int classCount = 0;
  3018             for (Type bound : bounds)
  3019                 if (!bound.isInterface())
  3020                     classCount++;
  3021             if (classCount > 1)
  3022                 return createErrorType(t);
  3024         return makeCompoundType(bounds);
  3026     // </editor-fold>
  3028     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3029     /**
  3030      * Compute a hash code on a type.
  3031      */
  3032     public static int hashCode(Type t) {
  3033         return hashCode.visit(t);
  3035     // where
  3036         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3038             public Integer visitType(Type t, Void ignored) {
  3039                 return t.tag;
  3042             @Override
  3043             public Integer visitClassType(ClassType t, Void ignored) {
  3044                 int result = visit(t.getEnclosingType());
  3045                 result *= 127;
  3046                 result += t.tsym.flatName().hashCode();
  3047                 for (Type s : t.getTypeArguments()) {
  3048                     result *= 127;
  3049                     result += visit(s);
  3051                 return result;
  3054             @Override
  3055             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3056                 int result = t.kind.hashCode();
  3057                 if (t.type != null) {
  3058                     result *= 127;
  3059                     result += visit(t.type);
  3061                 return result;
  3064             @Override
  3065             public Integer visitArrayType(ArrayType t, Void ignored) {
  3066                 return visit(t.elemtype) + 12;
  3069             @Override
  3070             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3071                 return System.identityHashCode(t.tsym);
  3074             @Override
  3075             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3076                 return System.identityHashCode(t);
  3079             @Override
  3080             public Integer visitErrorType(ErrorType t, Void ignored) {
  3081                 return 0;
  3083         };
  3084     // </editor-fold>
  3086     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3087     /**
  3088      * Does t have a result that is a subtype of the result type of s,
  3089      * suitable for covariant returns?  It is assumed that both types
  3090      * are (possibly polymorphic) method types.  Monomorphic method
  3091      * types are handled in the obvious way.  Polymorphic method types
  3092      * require renaming all type variables of one to corresponding
  3093      * type variables in the other, where correspondence is by
  3094      * position in the type parameter list. */
  3095     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3096         List<Type> tvars = t.getTypeArguments();
  3097         List<Type> svars = s.getTypeArguments();
  3098         Type tres = t.getReturnType();
  3099         Type sres = subst(s.getReturnType(), svars, tvars);
  3100         return covariantReturnType(tres, sres, warner);
  3103     /**
  3104      * Return-Type-Substitutable.
  3105      * @jls section 8.4.5
  3106      */
  3107     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3108         if (hasSameArgs(r1, r2))
  3109             return resultSubtype(r1, r2, Warner.noWarnings);
  3110         else
  3111             return covariantReturnType(r1.getReturnType(),
  3112                                        erasure(r2.getReturnType()),
  3113                                        Warner.noWarnings);
  3116     public boolean returnTypeSubstitutable(Type r1,
  3117                                            Type r2, Type r2res,
  3118                                            Warner warner) {
  3119         if (isSameType(r1.getReturnType(), r2res))
  3120             return true;
  3121         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3122             return false;
  3124         if (hasSameArgs(r1, r2))
  3125             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3126         if (!allowCovariantReturns)
  3127             return false;
  3128         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3129             return true;
  3130         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3131             return false;
  3132         warner.warn(LintCategory.UNCHECKED);
  3133         return true;
  3136     /**
  3137      * Is t an appropriate return type in an overrider for a
  3138      * method that returns s?
  3139      */
  3140     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3141         return
  3142             isSameType(t, s) ||
  3143             allowCovariantReturns &&
  3144             !t.isPrimitive() &&
  3145             !s.isPrimitive() &&
  3146             isAssignable(t, s, warner);
  3148     // </editor-fold>
  3150     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3151     /**
  3152      * Return the class that boxes the given primitive.
  3153      */
  3154     public ClassSymbol boxedClass(Type t) {
  3155         return reader.enterClass(syms.boxedName[t.tag]);
  3158     /**
  3159      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3160      */
  3161     public Type boxedTypeOrType(Type t) {
  3162         return t.isPrimitive() ?
  3163             boxedClass(t).type :
  3164             t;
  3167     /**
  3168      * Return the primitive type corresponding to a boxed type.
  3169      */
  3170     public Type unboxedType(Type t) {
  3171         if (allowBoxing) {
  3172             for (int i=0; i<syms.boxedName.length; i++) {
  3173                 Name box = syms.boxedName[i];
  3174                 if (box != null &&
  3175                     asSuper(t, reader.enterClass(box)) != null)
  3176                     return syms.typeOfTag[i];
  3179         return Type.noType;
  3181     // </editor-fold>
  3183     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3184     /*
  3185      * JLS 5.1.10 Capture Conversion:
  3187      * Let G name a generic type declaration with n formal type
  3188      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3189      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3190      * where, for 1 <= i <= n:
  3192      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3193      *   Si is a fresh type variable whose upper bound is
  3194      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3195      *   type.
  3197      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3198      *   then Si is a fresh type variable whose upper bound is
  3199      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3200      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3201      *   a compile-time error if for any two classes (not interfaces)
  3202      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3204      * + If Ti is a wildcard type argument of the form ? super Bi,
  3205      *   then Si is a fresh type variable whose upper bound is
  3206      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3208      * + Otherwise, Si = Ti.
  3210      * Capture conversion on any type other than a parameterized type
  3211      * (4.5) acts as an identity conversion (5.1.1). Capture
  3212      * conversions never require a special action at run time and
  3213      * therefore never throw an exception at run time.
  3215      * Capture conversion is not applied recursively.
  3216      */
  3217     /**
  3218      * Capture conversion as specified by the JLS.
  3219      */
  3221     public List<Type> capture(List<Type> ts) {
  3222         List<Type> buf = List.nil();
  3223         for (Type t : ts) {
  3224             buf = buf.prepend(capture(t));
  3226         return buf.reverse();
  3228     public Type capture(Type t) {
  3229         if (t.tag != CLASS)
  3230             return t;
  3231         if (t.getEnclosingType() != Type.noType) {
  3232             Type capturedEncl = capture(t.getEnclosingType());
  3233             if (capturedEncl != t.getEnclosingType()) {
  3234                 Type type1 = memberType(capturedEncl, t.tsym);
  3235                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3238         ClassType cls = (ClassType)t;
  3239         if (cls.isRaw() || !cls.isParameterized())
  3240             return cls;
  3242         ClassType G = (ClassType)cls.asElement().asType();
  3243         List<Type> A = G.getTypeArguments();
  3244         List<Type> T = cls.getTypeArguments();
  3245         List<Type> S = freshTypeVariables(T);
  3247         List<Type> currentA = A;
  3248         List<Type> currentT = T;
  3249         List<Type> currentS = S;
  3250         boolean captured = false;
  3251         while (!currentA.isEmpty() &&
  3252                !currentT.isEmpty() &&
  3253                !currentS.isEmpty()) {
  3254             if (currentS.head != currentT.head) {
  3255                 captured = true;
  3256                 WildcardType Ti = (WildcardType)currentT.head;
  3257                 Type Ui = currentA.head.getUpperBound();
  3258                 CapturedType Si = (CapturedType)currentS.head;
  3259                 if (Ui == null)
  3260                     Ui = syms.objectType;
  3261                 switch (Ti.kind) {
  3262                 case UNBOUND:
  3263                     Si.bound = subst(Ui, A, S);
  3264                     Si.lower = syms.botType;
  3265                     break;
  3266                 case EXTENDS:
  3267                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3268                     Si.lower = syms.botType;
  3269                     break;
  3270                 case SUPER:
  3271                     Si.bound = subst(Ui, A, S);
  3272                     Si.lower = Ti.getSuperBound();
  3273                     break;
  3275                 if (Si.bound == Si.lower)
  3276                     currentS.head = Si.bound;
  3278             currentA = currentA.tail;
  3279             currentT = currentT.tail;
  3280             currentS = currentS.tail;
  3282         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3283             return erasure(t); // some "rare" type involved
  3285         if (captured)
  3286             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3287         else
  3288             return t;
  3290     // where
  3291         public List<Type> freshTypeVariables(List<Type> types) {
  3292             ListBuffer<Type> result = lb();
  3293             for (Type t : types) {
  3294                 if (t.tag == WILDCARD) {
  3295                     Type bound = ((WildcardType)t).getExtendsBound();
  3296                     if (bound == null)
  3297                         bound = syms.objectType;
  3298                     result.append(new CapturedType(capturedName,
  3299                                                    syms.noSymbol,
  3300                                                    bound,
  3301                                                    syms.botType,
  3302                                                    (WildcardType)t));
  3303                 } else {
  3304                     result.append(t);
  3307             return result.toList();
  3309     // </editor-fold>
  3311     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3312     private List<Type> upperBounds(List<Type> ss) {
  3313         if (ss.isEmpty()) return ss;
  3314         Type head = upperBound(ss.head);
  3315         List<Type> tail = upperBounds(ss.tail);
  3316         if (head != ss.head || tail != ss.tail)
  3317             return tail.prepend(head);
  3318         else
  3319             return ss;
  3322     private boolean sideCast(Type from, Type to, Warner warn) {
  3323         // We are casting from type $from$ to type $to$, which are
  3324         // non-final unrelated types.  This method
  3325         // tries to reject a cast by transferring type parameters
  3326         // from $to$ to $from$ by common superinterfaces.
  3327         boolean reverse = false;
  3328         Type target = to;
  3329         if ((to.tsym.flags() & INTERFACE) == 0) {
  3330             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3331             reverse = true;
  3332             to = from;
  3333             from = target;
  3335         List<Type> commonSupers = superClosure(to, erasure(from));
  3336         boolean giveWarning = commonSupers.isEmpty();
  3337         // The arguments to the supers could be unified here to
  3338         // get a more accurate analysis
  3339         while (commonSupers.nonEmpty()) {
  3340             Type t1 = asSuper(from, commonSupers.head.tsym);
  3341             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3342             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3343                 return false;
  3344             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3345             commonSupers = commonSupers.tail;
  3347         if (giveWarning && !isReifiable(reverse ? from : to))
  3348             warn.warn(LintCategory.UNCHECKED);
  3349         if (!allowCovariantReturns)
  3350             // reject if there is a common method signature with
  3351             // incompatible return types.
  3352             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3353         return true;
  3356     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3357         // We are casting from type $from$ to type $to$, which are
  3358         // unrelated types one of which is final and the other of
  3359         // which is an interface.  This method
  3360         // tries to reject a cast by transferring type parameters
  3361         // from the final class to the interface.
  3362         boolean reverse = false;
  3363         Type target = to;
  3364         if ((to.tsym.flags() & INTERFACE) == 0) {
  3365             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3366             reverse = true;
  3367             to = from;
  3368             from = target;
  3370         Assert.check((from.tsym.flags() & FINAL) != 0);
  3371         Type t1 = asSuper(from, to.tsym);
  3372         if (t1 == null) return false;
  3373         Type t2 = to;
  3374         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3375             return false;
  3376         if (!allowCovariantReturns)
  3377             // reject if there is a common method signature with
  3378             // incompatible return types.
  3379             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3380         if (!isReifiable(target) &&
  3381             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3382             warn.warn(LintCategory.UNCHECKED);
  3383         return true;
  3386     private boolean giveWarning(Type from, Type to) {
  3387         Type subFrom = asSub(from, to.tsym);
  3388         return to.isParameterized() &&
  3389                 (!(isUnbounded(to) ||
  3390                 isSubtype(from, to) ||
  3391                 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
  3394     private List<Type> superClosure(Type t, Type s) {
  3395         List<Type> cl = List.nil();
  3396         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3397             if (isSubtype(s, erasure(l.head))) {
  3398                 cl = insert(cl, l.head);
  3399             } else {
  3400                 cl = union(cl, superClosure(l.head, s));
  3403         return cl;
  3406     private boolean containsTypeEquivalent(Type t, Type s) {
  3407         return
  3408             isSameType(t, s) || // shortcut
  3409             containsType(t, s) && containsType(s, t);
  3412     // <editor-fold defaultstate="collapsed" desc="adapt">
  3413     /**
  3414      * Adapt a type by computing a substitution which maps a source
  3415      * type to a target type.
  3417      * @param source    the source type
  3418      * @param target    the target type
  3419      * @param from      the type variables of the computed substitution
  3420      * @param to        the types of the computed substitution.
  3421      */
  3422     public void adapt(Type source,
  3423                        Type target,
  3424                        ListBuffer<Type> from,
  3425                        ListBuffer<Type> to) throws AdaptFailure {
  3426         new Adapter(from, to).adapt(source, target);
  3429     class Adapter extends SimpleVisitor<Void, Type> {
  3431         ListBuffer<Type> from;
  3432         ListBuffer<Type> to;
  3433         Map<Symbol,Type> mapping;
  3435         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3436             this.from = from;
  3437             this.to = to;
  3438             mapping = new HashMap<Symbol,Type>();
  3441         public void adapt(Type source, Type target) throws AdaptFailure {
  3442             visit(source, target);
  3443             List<Type> fromList = from.toList();
  3444             List<Type> toList = to.toList();
  3445             while (!fromList.isEmpty()) {
  3446                 Type val = mapping.get(fromList.head.tsym);
  3447                 if (toList.head != val)
  3448                     toList.head = val;
  3449                 fromList = fromList.tail;
  3450                 toList = toList.tail;
  3454         @Override
  3455         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3456             if (target.tag == CLASS)
  3457                 adaptRecursive(source.allparams(), target.allparams());
  3458             return null;
  3461         @Override
  3462         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3463             if (target.tag == ARRAY)
  3464                 adaptRecursive(elemtype(source), elemtype(target));
  3465             return null;
  3468         @Override
  3469         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3470             if (source.isExtendsBound())
  3471                 adaptRecursive(upperBound(source), upperBound(target));
  3472             else if (source.isSuperBound())
  3473                 adaptRecursive(lowerBound(source), lowerBound(target));
  3474             return null;
  3477         @Override
  3478         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3479             // Check to see if there is
  3480             // already a mapping for $source$, in which case
  3481             // the old mapping will be merged with the new
  3482             Type val = mapping.get(source.tsym);
  3483             if (val != null) {
  3484                 if (val.isSuperBound() && target.isSuperBound()) {
  3485                     val = isSubtype(lowerBound(val), lowerBound(target))
  3486                         ? target : val;
  3487                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3488                     val = isSubtype(upperBound(val), upperBound(target))
  3489                         ? val : target;
  3490                 } else if (!isSameType(val, target)) {
  3491                     throw new AdaptFailure();
  3493             } else {
  3494                 val = target;
  3495                 from.append(source);
  3496                 to.append(target);
  3498             mapping.put(source.tsym, val);
  3499             return null;
  3502         @Override
  3503         public Void visitType(Type source, Type target) {
  3504             return null;
  3507         private Set<TypePair> cache = new HashSet<TypePair>();
  3509         private void adaptRecursive(Type source, Type target) {
  3510             TypePair pair = new TypePair(source, target);
  3511             if (cache.add(pair)) {
  3512                 try {
  3513                     visit(source, target);
  3514                 } finally {
  3515                     cache.remove(pair);
  3520         private void adaptRecursive(List<Type> source, List<Type> target) {
  3521             if (source.length() == target.length()) {
  3522                 while (source.nonEmpty()) {
  3523                     adaptRecursive(source.head, target.head);
  3524                     source = source.tail;
  3525                     target = target.tail;
  3531     public static class AdaptFailure extends RuntimeException {
  3532         static final long serialVersionUID = -7490231548272701566L;
  3535     private void adaptSelf(Type t,
  3536                            ListBuffer<Type> from,
  3537                            ListBuffer<Type> to) {
  3538         try {
  3539             //if (t.tsym.type != t)
  3540                 adapt(t.tsym.type, t, from, to);
  3541         } catch (AdaptFailure ex) {
  3542             // Adapt should never fail calculating a mapping from
  3543             // t.tsym.type to t as there can be no merge problem.
  3544             throw new AssertionError(ex);
  3547     // </editor-fold>
  3549     /**
  3550      * Rewrite all type variables (universal quantifiers) in the given
  3551      * type to wildcards (existential quantifiers).  This is used to
  3552      * determine if a cast is allowed.  For example, if high is true
  3553      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  3554      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  3555      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  3556      * List<Integer>} with a warning.
  3557      * @param t a type
  3558      * @param high if true return an upper bound; otherwise a lower
  3559      * bound
  3560      * @param rewriteTypeVars only rewrite captured wildcards if false;
  3561      * otherwise rewrite all type variables
  3562      * @return the type rewritten with wildcards (existential
  3563      * quantifiers) only
  3564      */
  3565     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  3566         return new Rewriter(high, rewriteTypeVars).visit(t);
  3569     class Rewriter extends UnaryVisitor<Type> {
  3571         boolean high;
  3572         boolean rewriteTypeVars;
  3574         Rewriter(boolean high, boolean rewriteTypeVars) {
  3575             this.high = high;
  3576             this.rewriteTypeVars = rewriteTypeVars;
  3579         @Override
  3580         public Type visitClassType(ClassType t, Void s) {
  3581             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  3582             boolean changed = false;
  3583             for (Type arg : t.allparams()) {
  3584                 Type bound = visit(arg);
  3585                 if (arg != bound) {
  3586                     changed = true;
  3588                 rewritten.append(bound);
  3590             if (changed)
  3591                 return subst(t.tsym.type,
  3592                         t.tsym.type.allparams(),
  3593                         rewritten.toList());
  3594             else
  3595                 return t;
  3598         public Type visitType(Type t, Void s) {
  3599             return high ? upperBound(t) : lowerBound(t);
  3602         @Override
  3603         public Type visitCapturedType(CapturedType t, Void s) {
  3604             Type bound = visitWildcardType(t.wildcard, null);
  3605             return (bound.contains(t)) ?
  3606                     erasure(bound) :
  3607                     bound;
  3610         @Override
  3611         public Type visitTypeVar(TypeVar t, Void s) {
  3612             if (rewriteTypeVars) {
  3613                 Type bound = high ?
  3614                     (t.bound.contains(t) ?
  3615                         erasure(t.bound) :
  3616                         visit(t.bound)) :
  3617                     syms.botType;
  3618                 return rewriteAsWildcardType(bound, t);
  3620             else
  3621                 return t;
  3624         @Override
  3625         public Type visitWildcardType(WildcardType t, Void s) {
  3626             Type bound = high ? t.getExtendsBound() :
  3627                                 t.getSuperBound();
  3628             if (bound == null)
  3629             bound = high ? syms.objectType : syms.botType;
  3630             return rewriteAsWildcardType(visit(bound), t.bound);
  3633         private Type rewriteAsWildcardType(Type bound, TypeVar formal) {
  3634             return high ?
  3635                 makeExtendsWildcard(B(bound), formal) :
  3636                 makeSuperWildcard(B(bound), formal);
  3639         Type B(Type t) {
  3640             while (t.tag == WILDCARD) {
  3641                 WildcardType w = (WildcardType)t;
  3642                 t = high ?
  3643                     w.getExtendsBound() :
  3644                     w.getSuperBound();
  3645                 if (t == null) {
  3646                     t = high ? syms.objectType : syms.botType;
  3649             return t;
  3654     /**
  3655      * Create a wildcard with the given upper (extends) bound; create
  3656      * an unbounded wildcard if bound is Object.
  3658      * @param bound the upper bound
  3659      * @param formal the formal type parameter that will be
  3660      * substituted by the wildcard
  3661      */
  3662     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  3663         if (bound == syms.objectType) {
  3664             return new WildcardType(syms.objectType,
  3665                                     BoundKind.UNBOUND,
  3666                                     syms.boundClass,
  3667                                     formal);
  3668         } else {
  3669             return new WildcardType(bound,
  3670                                     BoundKind.EXTENDS,
  3671                                     syms.boundClass,
  3672                                     formal);
  3676     /**
  3677      * Create a wildcard with the given lower (super) bound; create an
  3678      * unbounded wildcard if bound is bottom (type of {@code null}).
  3680      * @param bound the lower bound
  3681      * @param formal the formal type parameter that will be
  3682      * substituted by the wildcard
  3683      */
  3684     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  3685         if (bound.tag == BOT) {
  3686             return new WildcardType(syms.objectType,
  3687                                     BoundKind.UNBOUND,
  3688                                     syms.boundClass,
  3689                                     formal);
  3690         } else {
  3691             return new WildcardType(bound,
  3692                                     BoundKind.SUPER,
  3693                                     syms.boundClass,
  3694                                     formal);
  3698     /**
  3699      * A wrapper for a type that allows use in sets.
  3700      */
  3701     class SingletonType {
  3702         final Type t;
  3703         SingletonType(Type t) {
  3704             this.t = t;
  3706         public int hashCode() {
  3707             return Types.hashCode(t);
  3709         public boolean equals(Object obj) {
  3710             return (obj instanceof SingletonType) &&
  3711                 isSameType(t, ((SingletonType)obj).t);
  3713         public String toString() {
  3714             return t.toString();
  3717     // </editor-fold>
  3719     // <editor-fold defaultstate="collapsed" desc="Visitors">
  3720     /**
  3721      * A default visitor for types.  All visitor methods except
  3722      * visitType are implemented by delegating to visitType.  Concrete
  3723      * subclasses must provide an implementation of visitType and can
  3724      * override other methods as needed.
  3726      * @param <R> the return type of the operation implemented by this
  3727      * visitor; use Void if no return type is needed.
  3728      * @param <S> the type of the second argument (the first being the
  3729      * type itself) of the operation implemented by this visitor; use
  3730      * Void if a second argument is not needed.
  3731      */
  3732     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  3733         final public R visit(Type t, S s)               { return t.accept(this, s); }
  3734         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  3735         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  3736         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  3737         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  3738         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  3739         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  3740         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  3741         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  3742         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  3743         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  3746     /**
  3747      * A default visitor for symbols.  All visitor methods except
  3748      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  3749      * subclasses must provide an implementation of visitSymbol and can
  3750      * override other methods as needed.
  3752      * @param <R> the return type of the operation implemented by this
  3753      * visitor; use Void if no return type is needed.
  3754      * @param <S> the type of the second argument (the first being the
  3755      * symbol itself) of the operation implemented by this visitor; use
  3756      * Void if a second argument is not needed.
  3757      */
  3758     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  3759         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  3760         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  3761         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  3762         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  3763         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  3764         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  3765         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  3768     /**
  3769      * A <em>simple</em> visitor for types.  This visitor is simple as
  3770      * captured wildcards, for-all types (generic methods), and
  3771      * undetermined type variables (part of inference) are hidden.
  3772      * Captured wildcards are hidden by treating them as type
  3773      * variables and the rest are hidden by visiting their qtypes.
  3775      * @param <R> the return type of the operation implemented by this
  3776      * visitor; use Void if no return type is needed.
  3777      * @param <S> the type of the second argument (the first being the
  3778      * type itself) of the operation implemented by this visitor; use
  3779      * Void if a second argument is not needed.
  3780      */
  3781     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  3782         @Override
  3783         public R visitCapturedType(CapturedType t, S s) {
  3784             return visitTypeVar(t, s);
  3786         @Override
  3787         public R visitForAll(ForAll t, S s) {
  3788             return visit(t.qtype, s);
  3790         @Override
  3791         public R visitUndetVar(UndetVar t, S s) {
  3792             return visit(t.qtype, s);
  3796     /**
  3797      * A plain relation on types.  That is a 2-ary function on the
  3798      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  3799      * <!-- In plain text: Type x Type -> Boolean -->
  3800      */
  3801     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  3803     /**
  3804      * A convenience visitor for implementing operations that only
  3805      * require one argument (the type itself), that is, unary
  3806      * operations.
  3808      * @param <R> the return type of the operation implemented by this
  3809      * visitor; use Void if no return type is needed.
  3810      */
  3811     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  3812         final public R visit(Type t) { return t.accept(this, null); }
  3815     /**
  3816      * A visitor for implementing a mapping from types to types.  The
  3817      * default behavior of this class is to implement the identity
  3818      * mapping (mapping a type to itself).  This can be overridden in
  3819      * subclasses.
  3821      * @param <S> the type of the second argument (the first being the
  3822      * type itself) of this mapping; use Void if a second argument is
  3823      * not needed.
  3824      */
  3825     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  3826         final public Type visit(Type t) { return t.accept(this, null); }
  3827         public Type visitType(Type t, S s) { return t; }
  3829     // </editor-fold>
  3832     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  3834     public RetentionPolicy getRetention(Attribute.Compound a) {
  3835         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  3836         Attribute.Compound c = a.type.tsym.attribute(syms.retentionType.tsym);
  3837         if (c != null) {
  3838             Attribute value = c.member(names.value);
  3839             if (value != null && value instanceof Attribute.Enum) {
  3840                 Name levelName = ((Attribute.Enum)value).value.name;
  3841                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  3842                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  3843                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  3844                 else ;// /* fail soft */ throw new AssertionError(levelName);
  3847         return vis;
  3849     // </editor-fold>

mercurial