src/share/classes/com/sun/tools/javac/comp/Check.java

Mon, 12 Jul 2010 16:37:46 -0700

author
jjg
date
Mon, 12 Jul 2010 16:37:46 -0700
changeset 598
064468702a8d
parent 582
366a7b9b5627
child 608
472e74211e11
permissions
-rw-r--r--

6968497: localized text appears in raw diagnostic
Reviewed-by: darcy

     1 /*
     2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 /** Type checking helper class for the attribution phase.
    49  *
    50  *  <p><b>This is NOT part of any supported API.
    51  *  If you write code that depends on this, you do so at your own risk.
    52  *  This code and its internal interfaces are subject to change or
    53  *  deletion without notice.</b>
    54  */
    55 public class Check {
    56     protected static final Context.Key<Check> checkKey =
    57         new Context.Key<Check>();
    59     private final Names names;
    60     private final Log log;
    61     private final Symtab syms;
    62     private final Infer infer;
    63     private final Types types;
    64     private final JCDiagnostic.Factory diags;
    65     private final boolean skipAnnotations;
    66     private boolean warnOnSyntheticConflicts;
    67     private boolean suppressAbortOnBadClassFile;
    68     private final TreeInfo treeinfo;
    70     // The set of lint options currently in effect. It is initialized
    71     // from the context, and then is set/reset as needed by Attr as it
    72     // visits all the various parts of the trees during attribution.
    73     private Lint lint;
    75     public static Check instance(Context context) {
    76         Check instance = context.get(checkKey);
    77         if (instance == null)
    78             instance = new Check(context);
    79         return instance;
    80     }
    82     protected Check(Context context) {
    83         context.put(checkKey, this);
    85         names = Names.instance(context);
    86         log = Log.instance(context);
    87         syms = Symtab.instance(context);
    88         infer = Infer.instance(context);
    89         this.types = Types.instance(context);
    90         diags = JCDiagnostic.Factory.instance(context);
    91         Options options = Options.instance(context);
    92         lint = Lint.instance(context);
    93         treeinfo = TreeInfo.instance(context);
    95         Source source = Source.instance(context);
    96         allowGenerics = source.allowGenerics();
    97         allowAnnotations = source.allowAnnotations();
    98         allowCovariantReturns = source.allowCovariantReturns();
    99         complexInference = options.get("-complexinference") != null;
   100         skipAnnotations = options.get("skipAnnotations") != null;
   101         warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
   102         suppressAbortOnBadClassFile = options.get("suppressAbortOnBadClassFile") != null;
   104         Target target = Target.instance(context);
   105         syntheticNameChar = target.syntheticNameChar();
   107         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   108         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   109         boolean verboseVarargs = lint.isEnabled(LintCategory.VARARGS);
   110         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   111         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   113         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   114                 enforceMandatoryWarnings, "deprecated");
   115         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   116                 enforceMandatoryWarnings, "unchecked");
   117         unsafeVarargsHandler = new MandatoryWarningHandler(log, verboseVarargs,
   118                 enforceMandatoryWarnings, "varargs");
   119         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   120                 enforceMandatoryWarnings, "sunapi");
   121     }
   123     /** Switch: generics enabled?
   124      */
   125     boolean allowGenerics;
   127     /** Switch: annotations enabled?
   128      */
   129     boolean allowAnnotations;
   131     /** Switch: covariant returns enabled?
   132      */
   133     boolean allowCovariantReturns;
   135     /** Switch: -complexinference option set?
   136      */
   137     boolean complexInference;
   139     /** Character for synthetic names
   140      */
   141     char syntheticNameChar;
   143     /** A table mapping flat names of all compiled classes in this run to their
   144      *  symbols; maintained from outside.
   145      */
   146     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   148     /** A handler for messages about deprecated usage.
   149      */
   150     private MandatoryWarningHandler deprecationHandler;
   152     /** A handler for messages about unchecked or unsafe usage.
   153      */
   154     private MandatoryWarningHandler uncheckedHandler;
   156     /** A handler for messages about unchecked or unsafe vararg method decl.
   157      */
   158     private MandatoryWarningHandler unsafeVarargsHandler;
   160     /** A handler for messages about using proprietary API.
   161      */
   162     private MandatoryWarningHandler sunApiHandler;
   164 /* *************************************************************************
   165  * Errors and Warnings
   166  **************************************************************************/
   168     Lint setLint(Lint newLint) {
   169         Lint prev = lint;
   170         lint = newLint;
   171         return prev;
   172     }
   174     /** Warn about deprecated symbol.
   175      *  @param pos        Position to be used for error reporting.
   176      *  @param sym        The deprecated symbol.
   177      */
   178     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   179         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   180             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   181     }
   183     /** Warn about unchecked operation.
   184      *  @param pos        Position to be used for error reporting.
   185      *  @param msg        A string describing the problem.
   186      */
   187     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   188         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   189             uncheckedHandler.report(pos, msg, args);
   190     }
   192     /** Warn about unsafe vararg method decl.
   193      *  @param pos        Position to be used for error reporting.
   194      *  @param sym        The deprecated symbol.
   195      */
   196     void warnUnsafeVararg(DiagnosticPosition pos, Type elemType) {
   197         if (!lint.isSuppressed(LintCategory.VARARGS))
   198             unsafeVarargsHandler.report(pos, "varargs.non.reifiable.type", elemType);
   199     }
   201     /** Warn about using proprietary API.
   202      *  @param pos        Position to be used for error reporting.
   203      *  @param msg        A string describing the problem.
   204      */
   205     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   206         if (!lint.isSuppressed(LintCategory.SUNAPI))
   207             sunApiHandler.report(pos, msg, args);
   208     }
   210     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   211         if (lint.isEnabled(LintCategory.STATIC))
   212             log.warning(pos, msg, args);
   213     }
   215     /**
   216      * Report any deferred diagnostics.
   217      */
   218     public void reportDeferredDiagnostics() {
   219         deprecationHandler.reportDeferredDiagnostic();
   220         uncheckedHandler.reportDeferredDiagnostic();
   221         unsafeVarargsHandler.reportDeferredDiagnostic();
   222         sunApiHandler.reportDeferredDiagnostic();
   223     }
   226     /** Report a failure to complete a class.
   227      *  @param pos        Position to be used for error reporting.
   228      *  @param ex         The failure to report.
   229      */
   230     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   231         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   232         if (ex instanceof ClassReader.BadClassFile
   233                 && !suppressAbortOnBadClassFile) throw new Abort();
   234         else return syms.errType;
   235     }
   237     /** Report a type error.
   238      *  @param pos        Position to be used for error reporting.
   239      *  @param problem    A string describing the error.
   240      *  @param found      The type that was found.
   241      *  @param req        The type that was required.
   242      */
   243     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   244         log.error(pos, "prob.found.req",
   245                   problem, found, req);
   246         return types.createErrorType(found);
   247     }
   249     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   250         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   251         return types.createErrorType(found);
   252     }
   254     /** Report an error that wrong type tag was found.
   255      *  @param pos        Position to be used for error reporting.
   256      *  @param required   An internationalized string describing the type tag
   257      *                    required.
   258      *  @param found      The type that was found.
   259      */
   260     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   261         // this error used to be raised by the parser,
   262         // but has been delayed to this point:
   263         if (found instanceof Type && ((Type)found).tag == VOID) {
   264             log.error(pos, "illegal.start.of.type");
   265             return syms.errType;
   266         }
   267         log.error(pos, "type.found.req", found, required);
   268         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   269     }
   271     /** Report an error that symbol cannot be referenced before super
   272      *  has been called.
   273      *  @param pos        Position to be used for error reporting.
   274      *  @param sym        The referenced symbol.
   275      */
   276     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   277         log.error(pos, "cant.ref.before.ctor.called", sym);
   278     }
   280     /** Report duplicate declaration error.
   281      */
   282     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   283         if (!sym.type.isErroneous()) {
   284             log.error(pos, "already.defined", sym, sym.location());
   285         }
   286     }
   288     /** Report array/varargs duplicate declaration
   289      */
   290     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   291         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   292             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   293         }
   294     }
   296 /* ************************************************************************
   297  * duplicate declaration checking
   298  *************************************************************************/
   300     /** Check that variable does not hide variable with same name in
   301      *  immediately enclosing local scope.
   302      *  @param pos           Position for error reporting.
   303      *  @param v             The symbol.
   304      *  @param s             The scope.
   305      */
   306     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   307         if (s.next != null) {
   308             for (Scope.Entry e = s.next.lookup(v.name);
   309                  e.scope != null && e.sym.owner == v.owner;
   310                  e = e.next()) {
   311                 if (e.sym.kind == VAR &&
   312                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   313                     v.name != names.error) {
   314                     duplicateError(pos, e.sym);
   315                     return;
   316                 }
   317             }
   318         }
   319     }
   321     /** Check that a class or interface does not hide a class or
   322      *  interface with same name in immediately enclosing local scope.
   323      *  @param pos           Position for error reporting.
   324      *  @param c             The symbol.
   325      *  @param s             The scope.
   326      */
   327     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   328         if (s.next != null) {
   329             for (Scope.Entry e = s.next.lookup(c.name);
   330                  e.scope != null && e.sym.owner == c.owner;
   331                  e = e.next()) {
   332                 if (e.sym.kind == TYP &&
   333                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   334                     c.name != names.error) {
   335                     duplicateError(pos, e.sym);
   336                     return;
   337                 }
   338             }
   339         }
   340     }
   342     /** Check that class does not have the same name as one of
   343      *  its enclosing classes, or as a class defined in its enclosing scope.
   344      *  return true if class is unique in its enclosing scope.
   345      *  @param pos           Position for error reporting.
   346      *  @param name          The class name.
   347      *  @param s             The enclosing scope.
   348      */
   349     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   350         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   351             if (e.sym.kind == TYP && e.sym.name != names.error) {
   352                 duplicateError(pos, e.sym);
   353                 return false;
   354             }
   355         }
   356         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   357             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   358                 duplicateError(pos, sym);
   359                 return true;
   360             }
   361         }
   362         return true;
   363     }
   365 /* *************************************************************************
   366  * Class name generation
   367  **************************************************************************/
   369     /** Return name of local class.
   370      *  This is of the form    <enclClass> $ n <classname>
   371      *  where
   372      *    enclClass is the flat name of the enclosing class,
   373      *    classname is the simple name of the local class
   374      */
   375     Name localClassName(ClassSymbol c) {
   376         for (int i=1; ; i++) {
   377             Name flatname = names.
   378                 fromString("" + c.owner.enclClass().flatname +
   379                            syntheticNameChar + i +
   380                            c.name);
   381             if (compiled.get(flatname) == null) return flatname;
   382         }
   383     }
   385 /* *************************************************************************
   386  * Type Checking
   387  **************************************************************************/
   389     /** Check that a given type is assignable to a given proto-type.
   390      *  If it is, return the type, otherwise return errType.
   391      *  @param pos        Position to be used for error reporting.
   392      *  @param found      The type that was found.
   393      *  @param req        The type that was required.
   394      */
   395     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   396         if (req.tag == ERROR)
   397             return req;
   398         if (found.tag == FORALL)
   399             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   400         if (req.tag == NONE)
   401             return found;
   402         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   403             return found;
   404         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   405             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   406         if (found.isSuperBound()) {
   407             log.error(pos, "assignment.from.super-bound", found);
   408             return types.createErrorType(found);
   409         }
   410         if (req.isExtendsBound()) {
   411             log.error(pos, "assignment.to.extends-bound", req);
   412             return types.createErrorType(found);
   413         }
   414         return typeError(pos, diags.fragment("incompatible.types"), found, req);
   415     }
   417     /** Instantiate polymorphic type to some prototype, unless
   418      *  prototype is `anyPoly' in which case polymorphic type
   419      *  is returned unchanged.
   420      */
   421     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   422         if (pt == Infer.anyPoly && complexInference) {
   423             return t;
   424         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   425             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   426             return instantiatePoly(pos, t, newpt, warn);
   427         } else if (pt.tag == ERROR) {
   428             return pt;
   429         } else {
   430             try {
   431                 return infer.instantiateExpr(t, pt, warn);
   432             } catch (Infer.NoInstanceException ex) {
   433                 if (ex.isAmbiguous) {
   434                     JCDiagnostic d = ex.getDiagnostic();
   435                     log.error(pos,
   436                               "undetermined.type" + (d!=null ? ".1" : ""),
   437                               t, d);
   438                     return types.createErrorType(pt);
   439                 } else {
   440                     JCDiagnostic d = ex.getDiagnostic();
   441                     return typeError(pos,
   442                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   443                                      t, pt);
   444                 }
   445             } catch (Infer.InvalidInstanceException ex) {
   446                 JCDiagnostic d = ex.getDiagnostic();
   447                 log.error(pos, "invalid.inferred.types", t.tvars, d);
   448                 return types.createErrorType(pt);
   449             }
   450         }
   451     }
   453     /** Check that a given type can be cast to a given target type.
   454      *  Return the result of the cast.
   455      *  @param pos        Position to be used for error reporting.
   456      *  @param found      The type that is being cast.
   457      *  @param req        The target type of the cast.
   458      */
   459     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   460         if (found.tag == FORALL) {
   461             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   462             return req;
   463         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   464             return req;
   465         } else {
   466             return typeError(pos,
   467                              diags.fragment("inconvertible.types"),
   468                              found, req);
   469         }
   470     }
   471 //where
   472         /** Is type a type variable, or a (possibly multi-dimensional) array of
   473          *  type variables?
   474          */
   475         boolean isTypeVar(Type t) {
   476             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   477         }
   479     /** Check that a type is within some bounds.
   480      *
   481      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   482      *  type argument.
   483      *  @param pos           Position to be used for error reporting.
   484      *  @param a             The type that should be bounded by bs.
   485      *  @param bs            The bound.
   486      */
   487     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   488          if (a.isUnbound()) {
   489              return;
   490          } else if (a.tag != WILDCARD) {
   491              a = types.upperBound(a);
   492              for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   493                  if (!types.isSubtype(a, l.head)) {
   494                      log.error(pos, "not.within.bounds", a);
   495                      return;
   496                  }
   497              }
   498          } else if (a.isExtendsBound()) {
   499              if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
   500                  log.error(pos, "not.within.bounds", a);
   501          } else if (a.isSuperBound()) {
   502              if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
   503                  log.error(pos, "not.within.bounds", a);
   504          }
   505      }
   507     /** Check that a type is within some bounds.
   508      *
   509      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   510      *  type argument.
   511      *  @param pos           Position to be used for error reporting.
   512      *  @param a             The type that should be bounded by bs.
   513      *  @param bs            The bound.
   514      */
   515     private void checkCapture(JCTypeApply tree) {
   516         List<JCExpression> args = tree.getTypeArguments();
   517         for (Type arg : types.capture(tree.type).getTypeArguments()) {
   518             if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
   519                 log.error(args.head.pos, "not.within.bounds", args.head.type);
   520                 break;
   521             }
   522             args = args.tail;
   523         }
   524      }
   526     /** Check that type is different from 'void'.
   527      *  @param pos           Position to be used for error reporting.
   528      *  @param t             The type to be checked.
   529      */
   530     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   531         if (t.tag == VOID) {
   532             log.error(pos, "void.not.allowed.here");
   533             return types.createErrorType(t);
   534         } else {
   535             return t;
   536         }
   537     }
   539     /** Check that type is a class or interface type.
   540      *  @param pos           Position to be used for error reporting.
   541      *  @param t             The type to be checked.
   542      */
   543     Type checkClassType(DiagnosticPosition pos, Type t) {
   544         if (t.tag != CLASS && t.tag != ERROR)
   545             return typeTagError(pos,
   546                                 diags.fragment("type.req.class"),
   547                                 (t.tag == TYPEVAR)
   548                                 ? diags.fragment("type.parameter", t)
   549                                 : t);
   550         else
   551             return t;
   552     }
   554     /** Check that type is a class or interface type.
   555      *  @param pos           Position to be used for error reporting.
   556      *  @param t             The type to be checked.
   557      *  @param noBounds    True if type bounds are illegal here.
   558      */
   559     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   560         t = checkClassType(pos, t);
   561         if (noBounds && t.isParameterized()) {
   562             List<Type> args = t.getTypeArguments();
   563             while (args.nonEmpty()) {
   564                 if (args.head.tag == WILDCARD)
   565                     return typeTagError(pos,
   566                                         diags.fragment("type.req.exact"),
   567                                         args.head);
   568                 args = args.tail;
   569             }
   570         }
   571         return t;
   572     }
   574     /** Check that type is a reifiable class, interface or array type.
   575      *  @param pos           Position to be used for error reporting.
   576      *  @param t             The type to be checked.
   577      */
   578     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   579         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   580             return typeTagError(pos,
   581                                 diags.fragment("type.req.class.array"),
   582                                 t);
   583         } else if (!types.isReifiable(t)) {
   584             log.error(pos, "illegal.generic.type.for.instof");
   585             return types.createErrorType(t);
   586         } else {
   587             return t;
   588         }
   589     }
   591     /** Check that type is a reference type, i.e. a class, interface or array type
   592      *  or a type variable.
   593      *  @param pos           Position to be used for error reporting.
   594      *  @param t             The type to be checked.
   595      */
   596     Type checkRefType(DiagnosticPosition pos, Type t) {
   597         switch (t.tag) {
   598         case CLASS:
   599         case ARRAY:
   600         case TYPEVAR:
   601         case WILDCARD:
   602         case ERROR:
   603             return t;
   604         default:
   605             return typeTagError(pos,
   606                                 diags.fragment("type.req.ref"),
   607                                 t);
   608         }
   609     }
   611     /** Check that each type is a reference type, i.e. a class, interface or array type
   612      *  or a type variable.
   613      *  @param trees         Original trees, used for error reporting.
   614      *  @param types         The types to be checked.
   615      */
   616     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   617         List<JCExpression> tl = trees;
   618         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   619             l.head = checkRefType(tl.head.pos(), l.head);
   620             tl = tl.tail;
   621         }
   622         return types;
   623     }
   625     /** Check that type is a null or reference type.
   626      *  @param pos           Position to be used for error reporting.
   627      *  @param t             The type to be checked.
   628      */
   629     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   630         switch (t.tag) {
   631         case CLASS:
   632         case ARRAY:
   633         case TYPEVAR:
   634         case WILDCARD:
   635         case BOT:
   636         case ERROR:
   637             return t;
   638         default:
   639             return typeTagError(pos,
   640                                 diags.fragment("type.req.ref"),
   641                                 t);
   642         }
   643     }
   645     /** Check that flag set does not contain elements of two conflicting sets. s
   646      *  Return true if it doesn't.
   647      *  @param pos           Position to be used for error reporting.
   648      *  @param flags         The set of flags to be checked.
   649      *  @param set1          Conflicting flags set #1.
   650      *  @param set2          Conflicting flags set #2.
   651      */
   652     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   653         if ((flags & set1) != 0 && (flags & set2) != 0) {
   654             log.error(pos,
   655                       "illegal.combination.of.modifiers",
   656                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   657                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   658             return false;
   659         } else
   660             return true;
   661     }
   663     /** Check that the type inferred using the diamond operator does not contain
   664      *  non-denotable types such as captured types or intersection types.
   665      *  @param t the type inferred using the diamond operator
   666      */
   667     List<Type> checkDiamond(ClassType t) {
   668         DiamondTypeChecker dtc = new DiamondTypeChecker();
   669         ListBuffer<Type> buf = ListBuffer.lb();
   670         for (Type arg : t.getTypeArguments()) {
   671             if (!dtc.visit(arg, null)) {
   672                 buf.append(arg);
   673             }
   674         }
   675         return buf.toList();
   676     }
   678     static class DiamondTypeChecker extends Types.SimpleVisitor<Boolean, Void> {
   679         public Boolean visitType(Type t, Void s) {
   680             return true;
   681         }
   682         @Override
   683         public Boolean visitClassType(ClassType t, Void s) {
   684             if (t.isCompound()) {
   685                 return false;
   686             }
   687             for (Type targ : t.getTypeArguments()) {
   688                 if (!visit(targ, s)) {
   689                     return false;
   690                 }
   691             }
   692             return true;
   693         }
   694         @Override
   695         public Boolean visitCapturedType(CapturedType t, Void s) {
   696             return false;
   697         }
   698     }
   700     void checkVarargMethodDecl(JCMethodDecl tree) {
   701         MethodSymbol m = tree.sym;
   702         //check the element type of the vararg
   703         if (m.isVarArgs()) {
   704             Type varargElemType = types.elemtype(tree.params.last().type);
   705             if (!types.isReifiable(varargElemType)) {
   706                 warnUnsafeVararg(tree.params.head.pos(), varargElemType);
   707             }
   708         }
   709     }
   711     /**
   712      * Check that vararg method call is sound
   713      * @param pos Position to be used for error reporting.
   714      * @param argtypes Actual arguments supplied to vararg method.
   715      */
   716     void checkVararg(DiagnosticPosition pos, List<Type> argtypes, Symbol msym, Env<AttrContext> env) {
   717         Env<AttrContext> calleeLintEnv = env;
   718         while (calleeLintEnv.info.lint == null)
   719             calleeLintEnv = calleeLintEnv.next;
   720         Lint calleeLint = calleeLintEnv.info.lint.augment(msym.attributes_field, msym.flags());
   721         Type argtype = argtypes.last();
   722         if (!types.isReifiable(argtype) && !calleeLint.isSuppressed(Lint.LintCategory.VARARGS)) {
   723             warnUnchecked(pos,
   724                               "unchecked.generic.array.creation",
   725                               argtype);
   726         }
   727     }
   729     /** Check that given modifiers are legal for given symbol and
   730      *  return modifiers together with any implicit modififiers for that symbol.
   731      *  Warning: we can't use flags() here since this method
   732      *  is called during class enter, when flags() would cause a premature
   733      *  completion.
   734      *  @param pos           Position to be used for error reporting.
   735      *  @param flags         The set of modifiers given in a definition.
   736      *  @param sym           The defined symbol.
   737      */
   738     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   739         long mask;
   740         long implicit = 0;
   741         switch (sym.kind) {
   742         case VAR:
   743             if (sym.owner.kind != TYP)
   744                 mask = LocalVarFlags;
   745             else if ((sym.owner.flags_field & INTERFACE) != 0)
   746                 mask = implicit = InterfaceVarFlags;
   747             else
   748                 mask = VarFlags;
   749             break;
   750         case MTH:
   751             if (sym.name == names.init) {
   752                 if ((sym.owner.flags_field & ENUM) != 0) {
   753                     // enum constructors cannot be declared public or
   754                     // protected and must be implicitly or explicitly
   755                     // private
   756                     implicit = PRIVATE;
   757                     mask = PRIVATE;
   758                 } else
   759                     mask = ConstructorFlags;
   760             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   761                 mask = implicit = InterfaceMethodFlags;
   762             else {
   763                 mask = MethodFlags;
   764             }
   765             // Imply STRICTFP if owner has STRICTFP set.
   766             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   767               implicit |= sym.owner.flags_field & STRICTFP;
   768             break;
   769         case TYP:
   770             if (sym.isLocal()) {
   771                 mask = LocalClassFlags;
   772                 if (sym.name.isEmpty()) { // Anonymous class
   773                     // Anonymous classes in static methods are themselves static;
   774                     // that's why we admit STATIC here.
   775                     mask |= STATIC;
   776                     // JLS: Anonymous classes are final.
   777                     implicit |= FINAL;
   778                 }
   779                 if ((sym.owner.flags_field & STATIC) == 0 &&
   780                     (flags & ENUM) != 0)
   781                     log.error(pos, "enums.must.be.static");
   782             } else if (sym.owner.kind == TYP) {
   783                 mask = MemberClassFlags;
   784                 if (sym.owner.owner.kind == PCK ||
   785                     (sym.owner.flags_field & STATIC) != 0)
   786                     mask |= STATIC;
   787                 else if ((flags & ENUM) != 0)
   788                     log.error(pos, "enums.must.be.static");
   789                 // Nested interfaces and enums are always STATIC (Spec ???)
   790                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   791             } else {
   792                 mask = ClassFlags;
   793             }
   794             // Interfaces are always ABSTRACT
   795             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   797             if ((flags & ENUM) != 0) {
   798                 // enums can't be declared abstract or final
   799                 mask &= ~(ABSTRACT | FINAL);
   800                 implicit |= implicitEnumFinalFlag(tree);
   801             }
   802             // Imply STRICTFP if owner has STRICTFP set.
   803             implicit |= sym.owner.flags_field & STRICTFP;
   804             break;
   805         default:
   806             throw new AssertionError();
   807         }
   808         long illegal = flags & StandardFlags & ~mask;
   809         if (illegal != 0) {
   810             if ((illegal & INTERFACE) != 0) {
   811                 log.error(pos, "intf.not.allowed.here");
   812                 mask |= INTERFACE;
   813             }
   814             else {
   815                 log.error(pos,
   816                           "mod.not.allowed.here", asFlagSet(illegal));
   817             }
   818         }
   819         else if ((sym.kind == TYP ||
   820                   // ISSUE: Disallowing abstract&private is no longer appropriate
   821                   // in the presence of inner classes. Should it be deleted here?
   822                   checkDisjoint(pos, flags,
   823                                 ABSTRACT,
   824                                 PRIVATE | STATIC))
   825                  &&
   826                  checkDisjoint(pos, flags,
   827                                ABSTRACT | INTERFACE,
   828                                FINAL | NATIVE | SYNCHRONIZED)
   829                  &&
   830                  checkDisjoint(pos, flags,
   831                                PUBLIC,
   832                                PRIVATE | PROTECTED)
   833                  &&
   834                  checkDisjoint(pos, flags,
   835                                PRIVATE,
   836                                PUBLIC | PROTECTED)
   837                  &&
   838                  checkDisjoint(pos, flags,
   839                                FINAL,
   840                                VOLATILE)
   841                  &&
   842                  (sym.kind == TYP ||
   843                   checkDisjoint(pos, flags,
   844                                 ABSTRACT | NATIVE,
   845                                 STRICTFP))) {
   846             // skip
   847         }
   848         return flags & (mask | ~StandardFlags) | implicit;
   849     }
   852     /** Determine if this enum should be implicitly final.
   853      *
   854      *  If the enum has no specialized enum contants, it is final.
   855      *
   856      *  If the enum does have specialized enum contants, it is
   857      *  <i>not</i> final.
   858      */
   859     private long implicitEnumFinalFlag(JCTree tree) {
   860         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   861         class SpecialTreeVisitor extends JCTree.Visitor {
   862             boolean specialized;
   863             SpecialTreeVisitor() {
   864                 this.specialized = false;
   865             };
   867             @Override
   868             public void visitTree(JCTree tree) { /* no-op */ }
   870             @Override
   871             public void visitVarDef(JCVariableDecl tree) {
   872                 if ((tree.mods.flags & ENUM) != 0) {
   873                     if (tree.init instanceof JCNewClass &&
   874                         ((JCNewClass) tree.init).def != null) {
   875                         specialized = true;
   876                     }
   877                 }
   878             }
   879         }
   881         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   882         JCClassDecl cdef = (JCClassDecl) tree;
   883         for (JCTree defs: cdef.defs) {
   884             defs.accept(sts);
   885             if (sts.specialized) return 0;
   886         }
   887         return FINAL;
   888     }
   890 /* *************************************************************************
   891  * Type Validation
   892  **************************************************************************/
   894     /** Validate a type expression. That is,
   895      *  check that all type arguments of a parametric type are within
   896      *  their bounds. This must be done in a second phase after type attributon
   897      *  since a class might have a subclass as type parameter bound. E.g:
   898      *
   899      *  class B<A extends C> { ... }
   900      *  class C extends B<C> { ... }
   901      *
   902      *  and we can't make sure that the bound is already attributed because
   903      *  of possible cycles.
   904      */
   905     private Validator validator = new Validator();
   907     /** Visitor method: Validate a type expression, if it is not null, catching
   908      *  and reporting any completion failures.
   909      */
   910     void validate(JCTree tree, Env<AttrContext> env) {
   911         try {
   912             if (tree != null) {
   913                 validator.env = env;
   914                 tree.accept(validator);
   915                 checkRaw(tree, env);
   916             }
   917         } catch (CompletionFailure ex) {
   918             completionError(tree.pos(), ex);
   919         }
   920     }
   921     //where
   922     void checkRaw(JCTree tree, Env<AttrContext> env) {
   923         if (lint.isEnabled(Lint.LintCategory.RAW) &&
   924             tree.type.tag == CLASS &&
   925             !TreeInfo.isDiamond(tree) &&
   926             !env.enclClass.name.isEmpty() &&  //anonymous or intersection
   927             tree.type.isRaw()) {
   928             log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
   929         }
   930     }
   932     /** Visitor method: Validate a list of type expressions.
   933      */
   934     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
   935         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   936             validate(l.head, env);
   937     }
   939     /** A visitor class for type validation.
   940      */
   941     class Validator extends JCTree.Visitor {
   943         @Override
   944         public void visitTypeArray(JCArrayTypeTree tree) {
   945             validate(tree.elemtype, env);
   946         }
   948         @Override
   949         public void visitTypeApply(JCTypeApply tree) {
   950             if (tree.type.tag == CLASS) {
   951                 List<Type> formals = tree.type.tsym.type.allparams();
   952                 List<Type> actuals = tree.type.allparams();
   953                 List<JCExpression> args = tree.arguments;
   954                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
   955                 ListBuffer<Type> tvars_buf = new ListBuffer<Type>();
   957                 // For matching pairs of actual argument types `a' and
   958                 // formal type parameters with declared bound `b' ...
   959                 while (args.nonEmpty() && forms.nonEmpty()) {
   960                     validate(args.head, env);
   962                     // exact type arguments needs to know their
   963                     // bounds (for upper and lower bound
   964                     // calculations).  So we create new TypeVars with
   965                     // bounds substed with actuals.
   966                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
   967                                                       formals,
   968                                                       actuals));
   970                     args = args.tail;
   971                     forms = forms.tail;
   972                 }
   974                 args = tree.arguments;
   975                 List<Type> tvars_cap = types.substBounds(formals,
   976                                           formals,
   977                                           types.capture(tree.type).allparams());
   978                 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   979                     // Let the actual arguments know their bound
   980                     args.head.type.withTypeVar((TypeVar)tvars_cap.head);
   981                     args = args.tail;
   982                     tvars_cap = tvars_cap.tail;
   983                 }
   985                 args = tree.arguments;
   986                 List<Type> tvars = tvars_buf.toList();
   988                 while (args.nonEmpty() && tvars.nonEmpty()) {
   989                     Type actual = types.subst(args.head.type,
   990                         tree.type.tsym.type.getTypeArguments(),
   991                         tvars_buf.toList());
   992                     checkExtends(args.head.pos(),
   993                                  actual,
   994                                  (TypeVar)tvars.head);
   995                     args = args.tail;
   996                     tvars = tvars.tail;
   997                 }
   999                 checkCapture(tree);
  1001                 // Check that this type is either fully parameterized, or
  1002                 // not parameterized at all.
  1003                 if (tree.type.getEnclosingType().isRaw())
  1004                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1005                 if (tree.clazz.getTag() == JCTree.SELECT)
  1006                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1010         @Override
  1011         public void visitTypeParameter(JCTypeParameter tree) {
  1012             validate(tree.bounds, env);
  1013             checkClassBounds(tree.pos(), tree.type);
  1016         @Override
  1017         public void visitWildcard(JCWildcard tree) {
  1018             if (tree.inner != null)
  1019                 validate(tree.inner, env);
  1022         @Override
  1023         public void visitSelect(JCFieldAccess tree) {
  1024             if (tree.type.tag == CLASS) {
  1025                 visitSelectInternal(tree);
  1027                 // Check that this type is either fully parameterized, or
  1028                 // not parameterized at all.
  1029                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1030                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1033         public void visitSelectInternal(JCFieldAccess tree) {
  1034             if (tree.type.tsym.isStatic() &&
  1035                 tree.selected.type.isParameterized()) {
  1036                 // The enclosing type is not a class, so we are
  1037                 // looking at a static member type.  However, the
  1038                 // qualifying expression is parameterized.
  1039                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1040             } else {
  1041                 // otherwise validate the rest of the expression
  1042                 tree.selected.accept(this);
  1046         @Override
  1047         public void visitAnnotatedType(JCAnnotatedType tree) {
  1048             tree.underlyingType.accept(this);
  1051         /** Default visitor method: do nothing.
  1052          */
  1053         @Override
  1054         public void visitTree(JCTree tree) {
  1057         Env<AttrContext> env;
  1060 /* *************************************************************************
  1061  * Exception checking
  1062  **************************************************************************/
  1064     /* The following methods treat classes as sets that contain
  1065      * the class itself and all their subclasses
  1066      */
  1068     /** Is given type a subtype of some of the types in given list?
  1069      */
  1070     boolean subset(Type t, List<Type> ts) {
  1071         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1072             if (types.isSubtype(t, l.head)) return true;
  1073         return false;
  1076     /** Is given type a subtype or supertype of
  1077      *  some of the types in given list?
  1078      */
  1079     boolean intersects(Type t, List<Type> ts) {
  1080         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1081             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1082         return false;
  1085     /** Add type set to given type list, unless it is a subclass of some class
  1086      *  in the list.
  1087      */
  1088     List<Type> incl(Type t, List<Type> ts) {
  1089         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1092     /** Remove type set from type set list.
  1093      */
  1094     List<Type> excl(Type t, List<Type> ts) {
  1095         if (ts.isEmpty()) {
  1096             return ts;
  1097         } else {
  1098             List<Type> ts1 = excl(t, ts.tail);
  1099             if (types.isSubtype(ts.head, t)) return ts1;
  1100             else if (ts1 == ts.tail) return ts;
  1101             else return ts1.prepend(ts.head);
  1105     /** Form the union of two type set lists.
  1106      */
  1107     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1108         List<Type> ts = ts1;
  1109         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1110             ts = incl(l.head, ts);
  1111         return ts;
  1114     /** Form the difference of two type lists.
  1115      */
  1116     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1117         List<Type> ts = ts1;
  1118         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1119             ts = excl(l.head, ts);
  1120         return ts;
  1123     /** Form the intersection of two type lists.
  1124      */
  1125     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1126         List<Type> ts = List.nil();
  1127         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1128             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1129         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1130             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1131         return ts;
  1134     /** Is exc an exception symbol that need not be declared?
  1135      */
  1136     boolean isUnchecked(ClassSymbol exc) {
  1137         return
  1138             exc.kind == ERR ||
  1139             exc.isSubClass(syms.errorType.tsym, types) ||
  1140             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1143     /** Is exc an exception type that need not be declared?
  1144      */
  1145     boolean isUnchecked(Type exc) {
  1146         return
  1147             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1148             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1149             exc.tag == BOT;
  1152     /** Same, but handling completion failures.
  1153      */
  1154     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1155         try {
  1156             return isUnchecked(exc);
  1157         } catch (CompletionFailure ex) {
  1158             completionError(pos, ex);
  1159             return true;
  1163     /** Is exc handled by given exception list?
  1164      */
  1165     boolean isHandled(Type exc, List<Type> handled) {
  1166         return isUnchecked(exc) || subset(exc, handled);
  1169     /** Return all exceptions in thrown list that are not in handled list.
  1170      *  @param thrown     The list of thrown exceptions.
  1171      *  @param handled    The list of handled exceptions.
  1172      */
  1173     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1174         List<Type> unhandled = List.nil();
  1175         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1176             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1177         return unhandled;
  1180 /* *************************************************************************
  1181  * Overriding/Implementation checking
  1182  **************************************************************************/
  1184     /** The level of access protection given by a flag set,
  1185      *  where PRIVATE is highest and PUBLIC is lowest.
  1186      */
  1187     static int protection(long flags) {
  1188         switch ((short)(flags & AccessFlags)) {
  1189         case PRIVATE: return 3;
  1190         case PROTECTED: return 1;
  1191         default:
  1192         case PUBLIC: return 0;
  1193         case 0: return 2;
  1197     /** A customized "cannot override" error message.
  1198      *  @param m      The overriding method.
  1199      *  @param other  The overridden method.
  1200      *  @return       An internationalized string.
  1201      */
  1202     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1203         String key;
  1204         if ((other.owner.flags() & INTERFACE) == 0)
  1205             key = "cant.override";
  1206         else if ((m.owner.flags() & INTERFACE) == 0)
  1207             key = "cant.implement";
  1208         else
  1209             key = "clashes.with";
  1210         return diags.fragment(key, m, m.location(), other, other.location());
  1213     /** A customized "override" warning message.
  1214      *  @param m      The overriding method.
  1215      *  @param other  The overridden method.
  1216      *  @return       An internationalized string.
  1217      */
  1218     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1219         String key;
  1220         if ((other.owner.flags() & INTERFACE) == 0)
  1221             key = "unchecked.override";
  1222         else if ((m.owner.flags() & INTERFACE) == 0)
  1223             key = "unchecked.implement";
  1224         else
  1225             key = "unchecked.clash.with";
  1226         return diags.fragment(key, m, m.location(), other, other.location());
  1229     /** A customized "override" warning message.
  1230      *  @param m      The overriding method.
  1231      *  @param other  The overridden method.
  1232      *  @return       An internationalized string.
  1233      */
  1234     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1235         String key;
  1236         if ((other.owner.flags() & INTERFACE) == 0)
  1237             key = "varargs.override";
  1238         else  if ((m.owner.flags() & INTERFACE) == 0)
  1239             key = "varargs.implement";
  1240         else
  1241             key = "varargs.clash.with";
  1242         return diags.fragment(key, m, m.location(), other, other.location());
  1245     /** Check that this method conforms with overridden method 'other'.
  1246      *  where `origin' is the class where checking started.
  1247      *  Complications:
  1248      *  (1) Do not check overriding of synthetic methods
  1249      *      (reason: they might be final).
  1250      *      todo: check whether this is still necessary.
  1251      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1252      *      than the method it implements. Augment the proxy methods with the
  1253      *      undeclared exceptions in this case.
  1254      *  (3) When generics are enabled, admit the case where an interface proxy
  1255      *      has a result type
  1256      *      extended by the result type of the method it implements.
  1257      *      Change the proxies result type to the smaller type in this case.
  1259      *  @param tree         The tree from which positions
  1260      *                      are extracted for errors.
  1261      *  @param m            The overriding method.
  1262      *  @param other        The overridden method.
  1263      *  @param origin       The class of which the overriding method
  1264      *                      is a member.
  1265      */
  1266     void checkOverride(JCTree tree,
  1267                        MethodSymbol m,
  1268                        MethodSymbol other,
  1269                        ClassSymbol origin) {
  1270         // Don't check overriding of synthetic methods or by bridge methods.
  1271         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1272             return;
  1275         // Error if static method overrides instance method (JLS 8.4.6.2).
  1276         if ((m.flags() & STATIC) != 0 &&
  1277                    (other.flags() & STATIC) == 0) {
  1278             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1279                       cannotOverride(m, other));
  1280             return;
  1283         // Error if instance method overrides static or final
  1284         // method (JLS 8.4.6.1).
  1285         if ((other.flags() & FINAL) != 0 ||
  1286                  (m.flags() & STATIC) == 0 &&
  1287                  (other.flags() & STATIC) != 0) {
  1288             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1289                       cannotOverride(m, other),
  1290                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1291             return;
  1294         if ((m.owner.flags() & ANNOTATION) != 0) {
  1295             // handled in validateAnnotationMethod
  1296             return;
  1299         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1300         if ((origin.flags() & INTERFACE) == 0 &&
  1301                  protection(m.flags()) > protection(other.flags())) {
  1302             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1303                       cannotOverride(m, other),
  1304                       other.flags() == 0 ?
  1305                           Flag.PACKAGE :
  1306                           asFlagSet(other.flags() & AccessFlags));
  1307             return;
  1310         Type mt = types.memberType(origin.type, m);
  1311         Type ot = types.memberType(origin.type, other);
  1312         // Error if overriding result type is different
  1313         // (or, in the case of generics mode, not a subtype) of
  1314         // overridden result type. We have to rename any type parameters
  1315         // before comparing types.
  1316         List<Type> mtvars = mt.getTypeArguments();
  1317         List<Type> otvars = ot.getTypeArguments();
  1318         Type mtres = mt.getReturnType();
  1319         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1321         overrideWarner.warned = false;
  1322         boolean resultTypesOK =
  1323             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1324         if (!resultTypesOK) {
  1325             if (!allowCovariantReturns &&
  1326                 m.owner != origin &&
  1327                 m.owner.isSubClass(other.owner, types)) {
  1328                 // allow limited interoperability with covariant returns
  1329             } else {
  1330                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1331                           "override.incompatible.ret",
  1332                           cannotOverride(m, other),
  1333                           mtres, otres);
  1334                 return;
  1336         } else if (overrideWarner.warned) {
  1337             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1338                     "override.unchecked.ret",
  1339                     uncheckedOverrides(m, other),
  1340                     mtres, otres);
  1343         // Error if overriding method throws an exception not reported
  1344         // by overridden method.
  1345         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1346         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1347         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1348         if (unhandledErased.nonEmpty()) {
  1349             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1350                       "override.meth.doesnt.throw",
  1351                       cannotOverride(m, other),
  1352                       unhandledUnerased.head);
  1353             return;
  1355         else if (unhandledUnerased.nonEmpty()) {
  1356             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1357                           "override.unchecked.thrown",
  1358                          cannotOverride(m, other),
  1359                          unhandledUnerased.head);
  1360             return;
  1363         // Optional warning if varargs don't agree
  1364         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1365             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1366             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1367                         ((m.flags() & Flags.VARARGS) != 0)
  1368                         ? "override.varargs.missing"
  1369                         : "override.varargs.extra",
  1370                         varargsOverrides(m, other));
  1373         // Warn if instance method overrides bridge method (compiler spec ??)
  1374         if ((other.flags() & BRIDGE) != 0) {
  1375             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1376                         uncheckedOverrides(m, other));
  1379         // Warn if a deprecated method overridden by a non-deprecated one.
  1380         if ((other.flags() & DEPRECATED) != 0
  1381             && (m.flags() & DEPRECATED) == 0
  1382             && m.outermostClass() != other.outermostClass()
  1383             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1384             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1387     // where
  1388         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1389             // If the method, m, is defined in an interface, then ignore the issue if the method
  1390             // is only inherited via a supertype and also implemented in the supertype,
  1391             // because in that case, we will rediscover the issue when examining the method
  1392             // in the supertype.
  1393             // If the method, m, is not defined in an interface, then the only time we need to
  1394             // address the issue is when the method is the supertype implemementation: any other
  1395             // case, we will have dealt with when examining the supertype classes
  1396             ClassSymbol mc = m.enclClass();
  1397             Type st = types.supertype(origin.type);
  1398             if (st.tag != CLASS)
  1399                 return true;
  1400             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1402             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1403                 List<Type> intfs = types.interfaces(origin.type);
  1404                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1406             else
  1407                 return (stimpl != m);
  1411     // used to check if there were any unchecked conversions
  1412     Warner overrideWarner = new Warner();
  1414     /** Check that a class does not inherit two concrete methods
  1415      *  with the same signature.
  1416      *  @param pos          Position to be used for error reporting.
  1417      *  @param site         The class type to be checked.
  1418      */
  1419     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1420         Type sup = types.supertype(site);
  1421         if (sup.tag != CLASS) return;
  1423         for (Type t1 = sup;
  1424              t1.tsym.type.isParameterized();
  1425              t1 = types.supertype(t1)) {
  1426             for (Scope.Entry e1 = t1.tsym.members().elems;
  1427                  e1 != null;
  1428                  e1 = e1.sibling) {
  1429                 Symbol s1 = e1.sym;
  1430                 if (s1.kind != MTH ||
  1431                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1432                     !s1.isInheritedIn(site.tsym, types) ||
  1433                     ((MethodSymbol)s1).implementation(site.tsym,
  1434                                                       types,
  1435                                                       true) != s1)
  1436                     continue;
  1437                 Type st1 = types.memberType(t1, s1);
  1438                 int s1ArgsLength = st1.getParameterTypes().length();
  1439                 if (st1 == s1.type) continue;
  1441                 for (Type t2 = sup;
  1442                      t2.tag == CLASS;
  1443                      t2 = types.supertype(t2)) {
  1444                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1445                          e2.scope != null;
  1446                          e2 = e2.next()) {
  1447                         Symbol s2 = e2.sym;
  1448                         if (s2 == s1 ||
  1449                             s2.kind != MTH ||
  1450                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1451                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1452                             !s2.isInheritedIn(site.tsym, types) ||
  1453                             ((MethodSymbol)s2).implementation(site.tsym,
  1454                                                               types,
  1455                                                               true) != s2)
  1456                             continue;
  1457                         Type st2 = types.memberType(t2, s2);
  1458                         if (types.overrideEquivalent(st1, st2))
  1459                             log.error(pos, "concrete.inheritance.conflict",
  1460                                       s1, t1, s2, t2, sup);
  1467     /** Check that classes (or interfaces) do not each define an abstract
  1468      *  method with same name and arguments but incompatible return types.
  1469      *  @param pos          Position to be used for error reporting.
  1470      *  @param t1           The first argument type.
  1471      *  @param t2           The second argument type.
  1472      */
  1473     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1474                                             Type t1,
  1475                                             Type t2) {
  1476         return checkCompatibleAbstracts(pos, t1, t2,
  1477                                         types.makeCompoundType(t1, t2));
  1480     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1481                                             Type t1,
  1482                                             Type t2,
  1483                                             Type site) {
  1484         Symbol sym = firstIncompatibility(t1, t2, site);
  1485         if (sym != null) {
  1486             log.error(pos, "types.incompatible.diff.ret",
  1487                       t1, t2, sym.name +
  1488                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1489             return false;
  1491         return true;
  1494     /** Return the first method which is defined with same args
  1495      *  but different return types in two given interfaces, or null if none
  1496      *  exists.
  1497      *  @param t1     The first type.
  1498      *  @param t2     The second type.
  1499      *  @param site   The most derived type.
  1500      *  @returns symbol from t2 that conflicts with one in t1.
  1501      */
  1502     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1503         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1504         closure(t1, interfaces1);
  1505         Map<TypeSymbol,Type> interfaces2;
  1506         if (t1 == t2)
  1507             interfaces2 = interfaces1;
  1508         else
  1509             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1511         for (Type t3 : interfaces1.values()) {
  1512             for (Type t4 : interfaces2.values()) {
  1513                 Symbol s = firstDirectIncompatibility(t3, t4, site);
  1514                 if (s != null) return s;
  1517         return null;
  1520     /** Compute all the supertypes of t, indexed by type symbol. */
  1521     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1522         if (t.tag != CLASS) return;
  1523         if (typeMap.put(t.tsym, t) == null) {
  1524             closure(types.supertype(t), typeMap);
  1525             for (Type i : types.interfaces(t))
  1526                 closure(i, typeMap);
  1530     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1531     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1532         if (t.tag != CLASS) return;
  1533         if (typesSkip.get(t.tsym) != null) return;
  1534         if (typeMap.put(t.tsym, t) == null) {
  1535             closure(types.supertype(t), typesSkip, typeMap);
  1536             for (Type i : types.interfaces(t))
  1537                 closure(i, typesSkip, typeMap);
  1541     /** Return the first method in t2 that conflicts with a method from t1. */
  1542     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1543         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1544             Symbol s1 = e1.sym;
  1545             Type st1 = null;
  1546             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1547             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1548             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1549             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1550                 Symbol s2 = e2.sym;
  1551                 if (s1 == s2) continue;
  1552                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1553                 if (st1 == null) st1 = types.memberType(t1, s1);
  1554                 Type st2 = types.memberType(t2, s2);
  1555                 if (types.overrideEquivalent(st1, st2)) {
  1556                     List<Type> tvars1 = st1.getTypeArguments();
  1557                     List<Type> tvars2 = st2.getTypeArguments();
  1558                     Type rt1 = st1.getReturnType();
  1559                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1560                     boolean compat =
  1561                         types.isSameType(rt1, rt2) ||
  1562                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1563                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1564                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1565                          checkCommonOverriderIn(s1,s2,site);
  1566                     if (!compat) return s2;
  1570         return null;
  1572     //WHERE
  1573     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1574         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1575         Type st1 = types.memberType(site, s1);
  1576         Type st2 = types.memberType(site, s2);
  1577         closure(site, supertypes);
  1578         for (Type t : supertypes.values()) {
  1579             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1580                 Symbol s3 = e.sym;
  1581                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1582                 Type st3 = types.memberType(site,s3);
  1583                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1584                     if (s3.owner == site.tsym) {
  1585                         return true;
  1587                     List<Type> tvars1 = st1.getTypeArguments();
  1588                     List<Type> tvars2 = st2.getTypeArguments();
  1589                     List<Type> tvars3 = st3.getTypeArguments();
  1590                     Type rt1 = st1.getReturnType();
  1591                     Type rt2 = st2.getReturnType();
  1592                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1593                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1594                     boolean compat =
  1595                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1596                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1597                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1598                     if (compat)
  1599                         return true;
  1603         return false;
  1606     /** Check that a given method conforms with any method it overrides.
  1607      *  @param tree         The tree from which positions are extracted
  1608      *                      for errors.
  1609      *  @param m            The overriding method.
  1610      */
  1611     void checkOverride(JCTree tree, MethodSymbol m) {
  1612         ClassSymbol origin = (ClassSymbol)m.owner;
  1613         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1614             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1615                 log.error(tree.pos(), "enum.no.finalize");
  1616                 return;
  1618         for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1619              t = types.supertype(t)) {
  1620             TypeSymbol c = t.tsym;
  1621             Scope.Entry e = c.members().lookup(m.name);
  1622             while (e.scope != null) {
  1623                 if (m.overrides(e.sym, origin, types, false))
  1624                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1625                 else if (e.sym.kind == MTH &&
  1626                         e.sym.isInheritedIn(origin, types) &&
  1627                         (e.sym.flags() & SYNTHETIC) == 0 &&
  1628                         !m.isConstructor()) {
  1629                     Type er1 = m.erasure(types);
  1630                     Type er2 = e.sym.erasure(types);
  1631                     if (types.isSameTypes(er1.getParameterTypes(),
  1632                             er2.getParameterTypes())) {
  1633                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1634                                     "name.clash.same.erasure.no.override",
  1635                                     m, m.location(),
  1636                                     e.sym, e.sym.location());
  1639                 e = e.next();
  1644     /** Check that all abstract members of given class have definitions.
  1645      *  @param pos          Position to be used for error reporting.
  1646      *  @param c            The class.
  1647      */
  1648     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1649         try {
  1650             MethodSymbol undef = firstUndef(c, c);
  1651             if (undef != null) {
  1652                 if ((c.flags() & ENUM) != 0 &&
  1653                     types.supertype(c.type).tsym == syms.enumSym &&
  1654                     (c.flags() & FINAL) == 0) {
  1655                     // add the ABSTRACT flag to an enum
  1656                     c.flags_field |= ABSTRACT;
  1657                 } else {
  1658                     MethodSymbol undef1 =
  1659                         new MethodSymbol(undef.flags(), undef.name,
  1660                                          types.memberType(c.type, undef), undef.owner);
  1661                     log.error(pos, "does.not.override.abstract",
  1662                               c, undef1, undef1.location());
  1665         } catch (CompletionFailure ex) {
  1666             completionError(pos, ex);
  1669 //where
  1670         /** Return first abstract member of class `c' that is not defined
  1671          *  in `impl', null if there is none.
  1672          */
  1673         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1674             MethodSymbol undef = null;
  1675             // Do not bother to search in classes that are not abstract,
  1676             // since they cannot have abstract members.
  1677             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1678                 Scope s = c.members();
  1679                 for (Scope.Entry e = s.elems;
  1680                      undef == null && e != null;
  1681                      e = e.sibling) {
  1682                     if (e.sym.kind == MTH &&
  1683                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1684                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1685                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1686                         if (implmeth == null || implmeth == absmeth)
  1687                             undef = absmeth;
  1690                 if (undef == null) {
  1691                     Type st = types.supertype(c.type);
  1692                     if (st.tag == CLASS)
  1693                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1695                 for (List<Type> l = types.interfaces(c.type);
  1696                      undef == null && l.nonEmpty();
  1697                      l = l.tail) {
  1698                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1701             return undef;
  1704     /** Check for cyclic references. Issue an error if the
  1705      *  symbol of the type referred to has a LOCKED flag set.
  1707      *  @param pos      Position to be used for error reporting.
  1708      *  @param t        The type referred to.
  1709      */
  1710     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1711         checkNonCyclicInternal(pos, t);
  1715     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1716         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  1719     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  1720         final TypeVar tv;
  1721         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1722             return;
  1723         if (seen.contains(t)) {
  1724             tv = (TypeVar)t;
  1725             tv.bound = types.createErrorType(t);
  1726             log.error(pos, "cyclic.inheritance", t);
  1727         } else if (t.tag == TYPEVAR) {
  1728             tv = (TypeVar)t;
  1729             seen = seen.prepend(tv);
  1730             for (Type b : types.getBounds(tv))
  1731                 checkNonCyclic1(pos, b, seen);
  1735     /** Check for cyclic references. Issue an error if the
  1736      *  symbol of the type referred to has a LOCKED flag set.
  1738      *  @param pos      Position to be used for error reporting.
  1739      *  @param t        The type referred to.
  1740      *  @returns        True if the check completed on all attributed classes
  1741      */
  1742     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1743         boolean complete = true; // was the check complete?
  1744         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1745         Symbol c = t.tsym;
  1746         if ((c.flags_field & ACYCLIC) != 0) return true;
  1748         if ((c.flags_field & LOCKED) != 0) {
  1749             noteCyclic(pos, (ClassSymbol)c);
  1750         } else if (!c.type.isErroneous()) {
  1751             try {
  1752                 c.flags_field |= LOCKED;
  1753                 if (c.type.tag == CLASS) {
  1754                     ClassType clazz = (ClassType)c.type;
  1755                     if (clazz.interfaces_field != null)
  1756                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1757                             complete &= checkNonCyclicInternal(pos, l.head);
  1758                     if (clazz.supertype_field != null) {
  1759                         Type st = clazz.supertype_field;
  1760                         if (st != null && st.tag == CLASS)
  1761                             complete &= checkNonCyclicInternal(pos, st);
  1763                     if (c.owner.kind == TYP)
  1764                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1766             } finally {
  1767                 c.flags_field &= ~LOCKED;
  1770         if (complete)
  1771             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1772         if (complete) c.flags_field |= ACYCLIC;
  1773         return complete;
  1776     /** Note that we found an inheritance cycle. */
  1777     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1778         log.error(pos, "cyclic.inheritance", c);
  1779         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1780             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  1781         Type st = types.supertype(c.type);
  1782         if (st.tag == CLASS)
  1783             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  1784         c.type = types.createErrorType(c, c.type);
  1785         c.flags_field |= ACYCLIC;
  1788     /** Check that all methods which implement some
  1789      *  method conform to the method they implement.
  1790      *  @param tree         The class definition whose members are checked.
  1791      */
  1792     void checkImplementations(JCClassDecl tree) {
  1793         checkImplementations(tree, tree.sym);
  1795 //where
  1796         /** Check that all methods which implement some
  1797          *  method in `ic' conform to the method they implement.
  1798          */
  1799         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1800             ClassSymbol origin = tree.sym;
  1801             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1802                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1803                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1804                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1805                         if (e.sym.kind == MTH &&
  1806                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1807                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  1808                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1809                             if (implmeth != null && implmeth != absmeth &&
  1810                                 (implmeth.owner.flags() & INTERFACE) ==
  1811                                 (origin.flags() & INTERFACE)) {
  1812                                 // don't check if implmeth is in a class, yet
  1813                                 // origin is an interface. This case arises only
  1814                                 // if implmeth is declared in Object. The reason is
  1815                                 // that interfaces really don't inherit from
  1816                                 // Object it's just that the compiler represents
  1817                                 // things that way.
  1818                                 checkOverride(tree, implmeth, absmeth, origin);
  1826     /** Check that all abstract methods implemented by a class are
  1827      *  mutually compatible.
  1828      *  @param pos          Position to be used for error reporting.
  1829      *  @param c            The class whose interfaces are checked.
  1830      */
  1831     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1832         List<Type> supertypes = types.interfaces(c);
  1833         Type supertype = types.supertype(c);
  1834         if (supertype.tag == CLASS &&
  1835             (supertype.tsym.flags() & ABSTRACT) != 0)
  1836             supertypes = supertypes.prepend(supertype);
  1837         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1838             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1839                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1840                 return;
  1841             for (List<Type> m = supertypes; m != l; m = m.tail)
  1842                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1843                     return;
  1845         checkCompatibleConcretes(pos, c);
  1848     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  1849         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  1850             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  1851                 // VM allows methods and variables with differing types
  1852                 if (sym.kind == e.sym.kind &&
  1853                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  1854                     sym != e.sym &&
  1855                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  1856                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  1857                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  1858                     return;
  1864     /** Report a conflict between a user symbol and a synthetic symbol.
  1865      */
  1866     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  1867         if (!sym.type.isErroneous()) {
  1868             if (warnOnSyntheticConflicts) {
  1869                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  1871             else {
  1872                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  1877     /** Check that class c does not implement directly or indirectly
  1878      *  the same parameterized interface with two different argument lists.
  1879      *  @param pos          Position to be used for error reporting.
  1880      *  @param type         The type whose interfaces are checked.
  1881      */
  1882     void checkClassBounds(DiagnosticPosition pos, Type type) {
  1883         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  1885 //where
  1886         /** Enter all interfaces of type `type' into the hash table `seensofar'
  1887          *  with their class symbol as key and their type as value. Make
  1888          *  sure no class is entered with two different types.
  1889          */
  1890         void checkClassBounds(DiagnosticPosition pos,
  1891                               Map<TypeSymbol,Type> seensofar,
  1892                               Type type) {
  1893             if (type.isErroneous()) return;
  1894             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  1895                 Type it = l.head;
  1896                 Type oldit = seensofar.put(it.tsym, it);
  1897                 if (oldit != null) {
  1898                     List<Type> oldparams = oldit.allparams();
  1899                     List<Type> newparams = it.allparams();
  1900                     if (!types.containsTypeEquivalent(oldparams, newparams))
  1901                         log.error(pos, "cant.inherit.diff.arg",
  1902                                   it.tsym, Type.toString(oldparams),
  1903                                   Type.toString(newparams));
  1905                 checkClassBounds(pos, seensofar, it);
  1907             Type st = types.supertype(type);
  1908             if (st != null) checkClassBounds(pos, seensofar, st);
  1911     /** Enter interface into into set.
  1912      *  If it existed already, issue a "repeated interface" error.
  1913      */
  1914     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  1915         if (its.contains(it))
  1916             log.error(pos, "repeated.interface");
  1917         else {
  1918             its.add(it);
  1922 /* *************************************************************************
  1923  * Check annotations
  1924  **************************************************************************/
  1926     /** Annotation types are restricted to primitives, String, an
  1927      *  enum, an annotation, Class, Class<?>, Class<? extends
  1928      *  Anything>, arrays of the preceding.
  1929      */
  1930     void validateAnnotationType(JCTree restype) {
  1931         // restype may be null if an error occurred, so don't bother validating it
  1932         if (restype != null) {
  1933             validateAnnotationType(restype.pos(), restype.type);
  1937     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  1938         if (type.isPrimitive()) return;
  1939         if (types.isSameType(type, syms.stringType)) return;
  1940         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  1941         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  1942         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  1943         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  1944             validateAnnotationType(pos, types.elemtype(type));
  1945             return;
  1947         log.error(pos, "invalid.annotation.member.type");
  1950     /**
  1951      * "It is also a compile-time error if any method declared in an
  1952      * annotation type has a signature that is override-equivalent to
  1953      * that of any public or protected method declared in class Object
  1954      * or in the interface annotation.Annotation."
  1956      * @jls3 9.6 Annotation Types
  1957      */
  1958     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  1959         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  1960             Scope s = sup.tsym.members();
  1961             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  1962                 if (e.sym.kind == MTH &&
  1963                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  1964                     types.overrideEquivalent(m.type, e.sym.type))
  1965                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  1970     /** Check the annotations of a symbol.
  1971      */
  1972     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  1973         if (skipAnnotations) return;
  1974         for (JCAnnotation a : annotations)
  1975             validateAnnotation(a, s);
  1978     /** Check the type annotations
  1979      */
  1980     public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
  1981         if (skipAnnotations) return;
  1982         for (JCTypeAnnotation a : annotations)
  1983             validateTypeAnnotation(a, isTypeParameter);
  1986     /** Check an annotation of a symbol.
  1987      */
  1988     public void validateAnnotation(JCAnnotation a, Symbol s) {
  1989         validateAnnotation(a);
  1991         if (!annotationApplicable(a, s))
  1992             log.error(a.pos(), "annotation.type.not.applicable");
  1994         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  1995             if (!isOverrider(s))
  1996                 log.error(a.pos(), "method.does.not.override.superclass");
  2000     public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  2001         if (a.type == null)
  2002             throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
  2003         validateAnnotation(a);
  2005         if (!isTypeAnnotation(a, isTypeParameter))
  2006             log.error(a.pos(), "annotation.type.not.applicable");
  2009     /** Is s a method symbol that overrides a method in a superclass? */
  2010     boolean isOverrider(Symbol s) {
  2011         if (s.kind != MTH || s.isStatic())
  2012             return false;
  2013         MethodSymbol m = (MethodSymbol)s;
  2014         TypeSymbol owner = (TypeSymbol)m.owner;
  2015         for (Type sup : types.closure(owner.type)) {
  2016             if (sup == owner.type)
  2017                 continue; // skip "this"
  2018             Scope scope = sup.tsym.members();
  2019             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2020                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2021                     return true;
  2024         return false;
  2027     /** Is the annotation applicable to type annotations */
  2028     boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  2029         Attribute.Compound atTarget =
  2030             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2031         if (atTarget == null) return true;
  2032         Attribute atValue = atTarget.member(names.value);
  2033         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2034         Attribute.Array arr = (Attribute.Array) atValue;
  2035         for (Attribute app : arr.values) {
  2036             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2037             Attribute.Enum e = (Attribute.Enum) app;
  2038             if (!isTypeParameter && e.value.name == names.TYPE_USE)
  2039                 return true;
  2040             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  2041                 return true;
  2043         return false;
  2046     /** Is the annotation applicable to the symbol? */
  2047     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2048         Attribute.Compound atTarget =
  2049             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2050         if (atTarget == null) return true;
  2051         Attribute atValue = atTarget.member(names.value);
  2052         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2053         Attribute.Array arr = (Attribute.Array) atValue;
  2054         for (Attribute app : arr.values) {
  2055             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2056             Attribute.Enum e = (Attribute.Enum) app;
  2057             if (e.value.name == names.TYPE)
  2058                 { if (s.kind == TYP) return true; }
  2059             else if (e.value.name == names.FIELD)
  2060                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2061             else if (e.value.name == names.METHOD)
  2062                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2063             else if (e.value.name == names.PARAMETER)
  2064                 { if (s.kind == VAR &&
  2065                       s.owner.kind == MTH &&
  2066                       (s.flags() & PARAMETER) != 0)
  2067                     return true;
  2069             else if (e.value.name == names.CONSTRUCTOR)
  2070                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2071             else if (e.value.name == names.LOCAL_VARIABLE)
  2072                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2073                       (s.flags() & PARAMETER) == 0)
  2074                     return true;
  2076             else if (e.value.name == names.ANNOTATION_TYPE)
  2077                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2078                     return true;
  2080             else if (e.value.name == names.PACKAGE)
  2081                 { if (s.kind == PCK) return true; }
  2082             else if (e.value.name == names.TYPE_USE)
  2083                 { if (s.kind == TYP ||
  2084                       s.kind == VAR ||
  2085                       (s.kind == MTH && !s.isConstructor() &&
  2086                        s.type.getReturnType().tag != VOID))
  2087                     return true;
  2089             else
  2090                 return true; // recovery
  2092         return false;
  2095     /** Check an annotation value.
  2096      */
  2097     public void validateAnnotation(JCAnnotation a) {
  2098         if (a.type.isErroneous()) return;
  2100         // collect an inventory of the members
  2101         Set<MethodSymbol> members = new HashSet<MethodSymbol>();
  2102         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2103              e != null;
  2104              e = e.sibling)
  2105             if (e.sym.kind == MTH)
  2106                 members.add((MethodSymbol) e.sym);
  2108         // count them off as they're annotated
  2109         for (JCTree arg : a.args) {
  2110             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  2111             JCAssign assign = (JCAssign) arg;
  2112             Symbol m = TreeInfo.symbol(assign.lhs);
  2113             if (m == null || m.type.isErroneous()) continue;
  2114             if (!members.remove(m))
  2115                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2116                           m.name, a.type);
  2117             if (assign.rhs.getTag() == ANNOTATION)
  2118                 validateAnnotation((JCAnnotation)assign.rhs);
  2121         // all the remaining ones better have default values
  2122         for (MethodSymbol m : members)
  2123             if (m.defaultValue == null && !m.type.isErroneous())
  2124                 log.error(a.pos(), "annotation.missing.default.value",
  2125                           a.type, m.name);
  2127         // special case: java.lang.annotation.Target must not have
  2128         // repeated values in its value member
  2129         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2130             a.args.tail == null)
  2131             return;
  2133         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  2134         JCAssign assign = (JCAssign) a.args.head;
  2135         Symbol m = TreeInfo.symbol(assign.lhs);
  2136         if (m.name != names.value) return;
  2137         JCTree rhs = assign.rhs;
  2138         if (rhs.getTag() != JCTree.NEWARRAY) return;
  2139         JCNewArray na = (JCNewArray) rhs;
  2140         Set<Symbol> targets = new HashSet<Symbol>();
  2141         for (JCTree elem : na.elems) {
  2142             if (!targets.add(TreeInfo.symbol(elem))) {
  2143                 log.error(elem.pos(), "repeated.annotation.target");
  2148     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2149         if (allowAnnotations &&
  2150             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  2151             (s.flags() & DEPRECATED) != 0 &&
  2152             !syms.deprecatedType.isErroneous() &&
  2153             s.attribute(syms.deprecatedType.tsym) == null) {
  2154             log.warning(pos, "missing.deprecated.annotation");
  2158 /* *************************************************************************
  2159  * Check for recursive annotation elements.
  2160  **************************************************************************/
  2162     /** Check for cycles in the graph of annotation elements.
  2163      */
  2164     void checkNonCyclicElements(JCClassDecl tree) {
  2165         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2166         assert (tree.sym.flags_field & LOCKED) == 0;
  2167         try {
  2168             tree.sym.flags_field |= LOCKED;
  2169             for (JCTree def : tree.defs) {
  2170                 if (def.getTag() != JCTree.METHODDEF) continue;
  2171                 JCMethodDecl meth = (JCMethodDecl)def;
  2172                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2174         } finally {
  2175             tree.sym.flags_field &= ~LOCKED;
  2176             tree.sym.flags_field |= ACYCLIC_ANN;
  2180     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2181         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2182             return;
  2183         if ((tsym.flags_field & LOCKED) != 0) {
  2184             log.error(pos, "cyclic.annotation.element");
  2185             return;
  2187         try {
  2188             tsym.flags_field |= LOCKED;
  2189             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2190                 Symbol s = e.sym;
  2191                 if (s.kind != Kinds.MTH)
  2192                     continue;
  2193                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2195         } finally {
  2196             tsym.flags_field &= ~LOCKED;
  2197             tsym.flags_field |= ACYCLIC_ANN;
  2201     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2202         switch (type.tag) {
  2203         case TypeTags.CLASS:
  2204             if ((type.tsym.flags() & ANNOTATION) != 0)
  2205                 checkNonCyclicElementsInternal(pos, type.tsym);
  2206             break;
  2207         case TypeTags.ARRAY:
  2208             checkAnnotationResType(pos, types.elemtype(type));
  2209             break;
  2210         default:
  2211             break; // int etc
  2215 /* *************************************************************************
  2216  * Check for cycles in the constructor call graph.
  2217  **************************************************************************/
  2219     /** Check for cycles in the graph of constructors calling other
  2220      *  constructors.
  2221      */
  2222     void checkCyclicConstructors(JCClassDecl tree) {
  2223         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2225         // enter each constructor this-call into the map
  2226         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2227             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2228             if (app == null) continue;
  2229             JCMethodDecl meth = (JCMethodDecl) l.head;
  2230             if (TreeInfo.name(app.meth) == names._this) {
  2231                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2232             } else {
  2233                 meth.sym.flags_field |= ACYCLIC;
  2237         // Check for cycles in the map
  2238         Symbol[] ctors = new Symbol[0];
  2239         ctors = callMap.keySet().toArray(ctors);
  2240         for (Symbol caller : ctors) {
  2241             checkCyclicConstructor(tree, caller, callMap);
  2245     /** Look in the map to see if the given constructor is part of a
  2246      *  call cycle.
  2247      */
  2248     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2249                                         Map<Symbol,Symbol> callMap) {
  2250         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2251             if ((ctor.flags_field & LOCKED) != 0) {
  2252                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2253                           "recursive.ctor.invocation");
  2254             } else {
  2255                 ctor.flags_field |= LOCKED;
  2256                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2257                 ctor.flags_field &= ~LOCKED;
  2259             ctor.flags_field |= ACYCLIC;
  2263 /* *************************************************************************
  2264  * Miscellaneous
  2265  **************************************************************************/
  2267     /**
  2268      * Return the opcode of the operator but emit an error if it is an
  2269      * error.
  2270      * @param pos        position for error reporting.
  2271      * @param operator   an operator
  2272      * @param tag        a tree tag
  2273      * @param left       type of left hand side
  2274      * @param right      type of right hand side
  2275      */
  2276     int checkOperator(DiagnosticPosition pos,
  2277                        OperatorSymbol operator,
  2278                        int tag,
  2279                        Type left,
  2280                        Type right) {
  2281         if (operator.opcode == ByteCodes.error) {
  2282             log.error(pos,
  2283                       "operator.cant.be.applied",
  2284                       treeinfo.operatorName(tag),
  2285                       List.of(left, right));
  2287         return operator.opcode;
  2291     /**
  2292      *  Check for division by integer constant zero
  2293      *  @param pos           Position for error reporting.
  2294      *  @param operator      The operator for the expression
  2295      *  @param operand       The right hand operand for the expression
  2296      */
  2297     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2298         if (operand.constValue() != null
  2299             && lint.isEnabled(Lint.LintCategory.DIVZERO)
  2300             && operand.tag <= LONG
  2301             && ((Number) (operand.constValue())).longValue() == 0) {
  2302             int opc = ((OperatorSymbol)operator).opcode;
  2303             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2304                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2305                 log.warning(pos, "div.zero");
  2310     /**
  2311      * Check for empty statements after if
  2312      */
  2313     void checkEmptyIf(JCIf tree) {
  2314         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  2315             log.warning(tree.thenpart.pos(), "empty.if");
  2318     /** Check that symbol is unique in given scope.
  2319      *  @param pos           Position for error reporting.
  2320      *  @param sym           The symbol.
  2321      *  @param s             The scope.
  2322      */
  2323     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2324         if (sym.type.isErroneous())
  2325             return true;
  2326         if (sym.owner.name == names.any) return false;
  2327         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2328             if (sym != e.sym &&
  2329                 sym.kind == e.sym.kind &&
  2330                 sym.name != names.error &&
  2331                 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2332                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  2333                     varargsDuplicateError(pos, sym, e.sym);
  2334                 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
  2335                     duplicateErasureError(pos, sym, e.sym);
  2336                 else
  2337                     duplicateError(pos, e.sym);
  2338                 return false;
  2341         return true;
  2343     //where
  2344     /** Report duplicate declaration error.
  2345      */
  2346     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2347         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2348             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2352     /** Check that single-type import is not already imported or top-level defined,
  2353      *  but make an exception for two single-type imports which denote the same type.
  2354      *  @param pos           Position for error reporting.
  2355      *  @param sym           The symbol.
  2356      *  @param s             The scope
  2357      */
  2358     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2359         return checkUniqueImport(pos, sym, s, false);
  2362     /** Check that static single-type import is not already imported or top-level defined,
  2363      *  but make an exception for two single-type imports which denote the same type.
  2364      *  @param pos           Position for error reporting.
  2365      *  @param sym           The symbol.
  2366      *  @param s             The scope
  2367      *  @param staticImport  Whether or not this was a static import
  2368      */
  2369     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2370         return checkUniqueImport(pos, sym, s, true);
  2373     /** Check that single-type import is not already imported or top-level defined,
  2374      *  but make an exception for two single-type imports which denote the same type.
  2375      *  @param pos           Position for error reporting.
  2376      *  @param sym           The symbol.
  2377      *  @param s             The scope.
  2378      *  @param staticImport  Whether or not this was a static import
  2379      */
  2380     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2381         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2382             // is encountered class entered via a class declaration?
  2383             boolean isClassDecl = e.scope == s;
  2384             if ((isClassDecl || sym != e.sym) &&
  2385                 sym.kind == e.sym.kind &&
  2386                 sym.name != names.error) {
  2387                 if (!e.sym.type.isErroneous()) {
  2388                     String what = e.sym.toString();
  2389                     if (!isClassDecl) {
  2390                         if (staticImport)
  2391                             log.error(pos, "already.defined.static.single.import", what);
  2392                         else
  2393                             log.error(pos, "already.defined.single.import", what);
  2395                     else if (sym != e.sym)
  2396                         log.error(pos, "already.defined.this.unit", what);
  2398                 return false;
  2401         return true;
  2404     /** Check that a qualified name is in canonical form (for import decls).
  2405      */
  2406     public void checkCanonical(JCTree tree) {
  2407         if (!isCanonical(tree))
  2408             log.error(tree.pos(), "import.requires.canonical",
  2409                       TreeInfo.symbol(tree));
  2411         // where
  2412         private boolean isCanonical(JCTree tree) {
  2413             while (tree.getTag() == JCTree.SELECT) {
  2414                 JCFieldAccess s = (JCFieldAccess) tree;
  2415                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2416                     return false;
  2417                 tree = s.selected;
  2419             return true;
  2422     private class ConversionWarner extends Warner {
  2423         final String key;
  2424         final Type found;
  2425         final Type expected;
  2426         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  2427             super(pos);
  2428             this.key = key;
  2429             this.found = found;
  2430             this.expected = expected;
  2433         @Override
  2434         public void warnUnchecked() {
  2435             boolean warned = this.warned;
  2436             super.warnUnchecked();
  2437             if (warned) return; // suppress redundant diagnostics
  2438             Object problem = diags.fragment(key);
  2439             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  2443     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2444         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2447     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2448         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial