src/share/classes/com/sun/tools/javac/code/Types.java

Tue, 05 Jul 2011 16:37:24 -0700

author
darcy
date
Tue, 05 Jul 2011 16:37:24 -0700
changeset 1054
111bbf1ad913
parent 1015
6bb526ccf5ff
child 1071
b86277584776
permissions
-rw-r--r--

7025809: Provided new utility visitors supporting SourceVersion.RELEASE_8
Reviewed-by: jjg, mcimadamore

duke@1 1 /*
jjg@816 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
mcimadamore@341 28 import java.lang.ref.SoftReference;
duke@1 29 import java.util.*;
duke@1 30
duke@1 31 import com.sun.tools.javac.util.*;
duke@1 32 import com.sun.tools.javac.util.List;
duke@1 33
duke@1 34 import com.sun.tools.javac.jvm.ClassReader;
jjg@657 35 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
mcimadamore@795 36 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 37 import com.sun.tools.javac.comp.Check;
duke@1 38
mcimadamore@858 39 import static com.sun.tools.javac.code.Scope.*;
duke@1 40 import static com.sun.tools.javac.code.Type.*;
duke@1 41 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 42 import static com.sun.tools.javac.code.Symbol.*;
duke@1 43 import static com.sun.tools.javac.code.Flags.*;
duke@1 44 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 45 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 46
duke@1 47 /**
duke@1 48 * Utility class containing various operations on types.
duke@1 49 *
duke@1 50 * <p>Unless other names are more illustrative, the following naming
duke@1 51 * conventions should be observed in this file:
duke@1 52 *
duke@1 53 * <dl>
duke@1 54 * <dt>t</dt>
duke@1 55 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 56 * <dt>s</dt>
duke@1 57 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 58 * <dt>ts</dt>
duke@1 59 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 60 * <dt>ss</dt>
duke@1 61 * <dd>A second list of types should be named ss.</dd>
duke@1 62 * </dl>
duke@1 63 *
jjg@581 64 * <p><b>This is NOT part of any supported API.
duke@1 65 * If you write code that depends on this, you do so at your own risk.
duke@1 66 * This code and its internal interfaces are subject to change or
duke@1 67 * deletion without notice.</b>
duke@1 68 */
duke@1 69 public class Types {
duke@1 70 protected static final Context.Key<Types> typesKey =
duke@1 71 new Context.Key<Types>();
duke@1 72
duke@1 73 final Symtab syms;
mcimadamore@136 74 final JavacMessages messages;
jjg@113 75 final Names names;
duke@1 76 final boolean allowBoxing;
jjg@984 77 final boolean allowCovariantReturns;
jjg@984 78 final boolean allowObjectToPrimitiveCast;
duke@1 79 final ClassReader reader;
duke@1 80 final Check chk;
duke@1 81 List<Warner> warnStack = List.nil();
duke@1 82 final Name capturedName;
duke@1 83
duke@1 84 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 85 public static Types instance(Context context) {
duke@1 86 Types instance = context.get(typesKey);
duke@1 87 if (instance == null)
duke@1 88 instance = new Types(context);
duke@1 89 return instance;
duke@1 90 }
duke@1 91
duke@1 92 protected Types(Context context) {
duke@1 93 context.put(typesKey, this);
duke@1 94 syms = Symtab.instance(context);
jjg@113 95 names = Names.instance(context);
jjg@984 96 Source source = Source.instance(context);
jjg@984 97 allowBoxing = source.allowBoxing();
jjg@984 98 allowCovariantReturns = source.allowCovariantReturns();
jjg@984 99 allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
duke@1 100 reader = ClassReader.instance(context);
duke@1 101 chk = Check.instance(context);
duke@1 102 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 103 messages = JavacMessages.instance(context);
duke@1 104 }
duke@1 105 // </editor-fold>
duke@1 106
duke@1 107 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 108 /**
duke@1 109 * The "rvalue conversion".<br>
duke@1 110 * The upper bound of most types is the type
duke@1 111 * itself. Wildcards, on the other hand have upper
duke@1 112 * and lower bounds.
duke@1 113 * @param t a type
duke@1 114 * @return the upper bound of the given type
duke@1 115 */
duke@1 116 public Type upperBound(Type t) {
duke@1 117 return upperBound.visit(t);
duke@1 118 }
duke@1 119 // where
duke@1 120 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 121
duke@1 122 @Override
duke@1 123 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 124 if (t.isSuperBound())
duke@1 125 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 126 else
duke@1 127 return visit(t.type);
duke@1 128 }
duke@1 129
duke@1 130 @Override
duke@1 131 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 132 return visit(t.bound);
duke@1 133 }
duke@1 134 };
duke@1 135 // </editor-fold>
duke@1 136
duke@1 137 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 138 /**
duke@1 139 * The "lvalue conversion".<br>
duke@1 140 * The lower bound of most types is the type
duke@1 141 * itself. Wildcards, on the other hand have upper
duke@1 142 * and lower bounds.
duke@1 143 * @param t a type
duke@1 144 * @return the lower bound of the given type
duke@1 145 */
duke@1 146 public Type lowerBound(Type t) {
duke@1 147 return lowerBound.visit(t);
duke@1 148 }
duke@1 149 // where
duke@1 150 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 151
duke@1 152 @Override
duke@1 153 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 154 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 155 }
duke@1 156
duke@1 157 @Override
duke@1 158 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 159 return visit(t.getLowerBound());
duke@1 160 }
duke@1 161 };
duke@1 162 // </editor-fold>
duke@1 163
duke@1 164 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 165 /**
duke@1 166 * Checks that all the arguments to a class are unbounded
duke@1 167 * wildcards or something else that doesn't make any restrictions
duke@1 168 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 169 * subclass can be cast to it without a warning.
duke@1 170 * @param t a type
duke@1 171 * @return true iff the given type is unbounded or raw
duke@1 172 */
duke@1 173 public boolean isUnbounded(Type t) {
duke@1 174 return isUnbounded.visit(t);
duke@1 175 }
duke@1 176 // where
duke@1 177 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 178
duke@1 179 public Boolean visitType(Type t, Void ignored) {
duke@1 180 return true;
duke@1 181 }
duke@1 182
duke@1 183 @Override
duke@1 184 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 185 List<Type> parms = t.tsym.type.allparams();
duke@1 186 List<Type> args = t.allparams();
duke@1 187 while (parms.nonEmpty()) {
duke@1 188 WildcardType unb = new WildcardType(syms.objectType,
duke@1 189 BoundKind.UNBOUND,
duke@1 190 syms.boundClass,
duke@1 191 (TypeVar)parms.head);
duke@1 192 if (!containsType(args.head, unb))
duke@1 193 return false;
duke@1 194 parms = parms.tail;
duke@1 195 args = args.tail;
duke@1 196 }
duke@1 197 return true;
duke@1 198 }
duke@1 199 };
duke@1 200 // </editor-fold>
duke@1 201
duke@1 202 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 203 /**
duke@1 204 * Return the least specific subtype of t that starts with symbol
duke@1 205 * sym. If none exists, return null. The least specific subtype
duke@1 206 * is determined as follows:
duke@1 207 *
duke@1 208 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 209 * subtype of t, that parameterized instance is returned.<br>
duke@1 210 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 211 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 212 * returned.
duke@1 213 */
duke@1 214 public Type asSub(Type t, Symbol sym) {
duke@1 215 return asSub.visit(t, sym);
duke@1 216 }
duke@1 217 // where
duke@1 218 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 219
duke@1 220 public Type visitType(Type t, Symbol sym) {
duke@1 221 return null;
duke@1 222 }
duke@1 223
duke@1 224 @Override
duke@1 225 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 226 if (t.tsym == sym)
duke@1 227 return t;
duke@1 228 Type base = asSuper(sym.type, t.tsym);
duke@1 229 if (base == null)
duke@1 230 return null;
duke@1 231 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 232 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 233 try {
duke@1 234 adapt(base, t, from, to);
duke@1 235 } catch (AdaptFailure ex) {
duke@1 236 return null;
duke@1 237 }
duke@1 238 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 239 if (!isSubtype(res, t))
duke@1 240 return null;
duke@1 241 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 242 for (List<Type> l = sym.type.allparams();
duke@1 243 l.nonEmpty(); l = l.tail)
duke@1 244 if (res.contains(l.head) && !t.contains(l.head))
duke@1 245 openVars.append(l.head);
duke@1 246 if (openVars.nonEmpty()) {
duke@1 247 if (t.isRaw()) {
duke@1 248 // The subtype of a raw type is raw
duke@1 249 res = erasure(res);
duke@1 250 } else {
duke@1 251 // Unbound type arguments default to ?
duke@1 252 List<Type> opens = openVars.toList();
duke@1 253 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 254 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 255 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 256 }
duke@1 257 res = subst(res, opens, qs.toList());
duke@1 258 }
duke@1 259 }
duke@1 260 return res;
duke@1 261 }
duke@1 262
duke@1 263 @Override
duke@1 264 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 265 return t;
duke@1 266 }
duke@1 267 };
duke@1 268 // </editor-fold>
duke@1 269
duke@1 270 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 271 /**
duke@1 272 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 273 * convertions to s?
duke@1 274 */
duke@1 275 public boolean isConvertible(Type t, Type s, Warner warn) {
duke@1 276 boolean tPrimitive = t.isPrimitive();
duke@1 277 boolean sPrimitive = s.isPrimitive();
mcimadamore@795 278 if (tPrimitive == sPrimitive) {
mcimadamore@795 279 checkUnsafeVarargsConversion(t, s, warn);
duke@1 280 return isSubtypeUnchecked(t, s, warn);
mcimadamore@795 281 }
duke@1 282 if (!allowBoxing) return false;
duke@1 283 return tPrimitive
duke@1 284 ? isSubtype(boxedClass(t).type, s)
duke@1 285 : isSubtype(unboxedType(t), s);
duke@1 286 }
mcimadamore@795 287 //where
mcimadamore@795 288 private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
mcimadamore@795 289 if (t.tag != ARRAY || isReifiable(t)) return;
mcimadamore@795 290 ArrayType from = (ArrayType)t;
mcimadamore@795 291 boolean shouldWarn = false;
mcimadamore@795 292 switch (s.tag) {
mcimadamore@795 293 case ARRAY:
mcimadamore@795 294 ArrayType to = (ArrayType)s;
mcimadamore@795 295 shouldWarn = from.isVarargs() &&
mcimadamore@795 296 !to.isVarargs() &&
mcimadamore@795 297 !isReifiable(from);
mcimadamore@795 298 break;
mcimadamore@795 299 case CLASS:
mcimadamore@795 300 shouldWarn = from.isVarargs() &&
mcimadamore@795 301 isSubtype(from, s);
mcimadamore@795 302 break;
mcimadamore@795 303 }
mcimadamore@795 304 if (shouldWarn) {
mcimadamore@795 305 warn.warn(LintCategory.VARARGS);
mcimadamore@795 306 }
mcimadamore@795 307 }
duke@1 308
duke@1 309 /**
duke@1 310 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 311 * convertions to s?
duke@1 312 */
duke@1 313 public boolean isConvertible(Type t, Type s) {
duke@1 314 return isConvertible(t, s, Warner.noWarnings);
duke@1 315 }
duke@1 316 // </editor-fold>
duke@1 317
duke@1 318 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 319 /**
duke@1 320 * Is t an unchecked subtype of s?
duke@1 321 */
duke@1 322 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 323 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 324 }
duke@1 325 /**
duke@1 326 * Is t an unchecked subtype of s?
duke@1 327 */
duke@1 328 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
duke@1 329 if (t.tag == ARRAY && s.tag == ARRAY) {
mcimadamore@795 330 if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
mcimadamore@795 331 return isSameType(elemtype(t), elemtype(s));
mcimadamore@795 332 } else {
mcimadamore@795 333 ArrayType from = (ArrayType)t;
mcimadamore@795 334 ArrayType to = (ArrayType)s;
mcimadamore@795 335 if (from.isVarargs() &&
mcimadamore@795 336 !to.isVarargs() &&
mcimadamore@795 337 !isReifiable(from)) {
mcimadamore@795 338 warn.warn(LintCategory.VARARGS);
mcimadamore@795 339 }
mcimadamore@795 340 return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
mcimadamore@795 341 }
duke@1 342 } else if (isSubtype(t, s)) {
duke@1 343 return true;
mcimadamore@41 344 }
mcimadamore@41 345 else if (t.tag == TYPEVAR) {
mcimadamore@41 346 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@41 347 }
mcimadamore@93 348 else if (s.tag == UNDETVAR) {
mcimadamore@93 349 UndetVar uv = (UndetVar)s;
mcimadamore@93 350 if (uv.inst != null)
mcimadamore@93 351 return isSubtypeUnchecked(t, uv.inst, warn);
mcimadamore@93 352 }
mcimadamore@41 353 else if (!s.isRaw()) {
duke@1 354 Type t2 = asSuper(t, s.tsym);
duke@1 355 if (t2 != null && t2.isRaw()) {
duke@1 356 if (isReifiable(s))
mcimadamore@795 357 warn.silentWarn(LintCategory.UNCHECKED);
duke@1 358 else
mcimadamore@795 359 warn.warn(LintCategory.UNCHECKED);
duke@1 360 return true;
duke@1 361 }
duke@1 362 }
duke@1 363 return false;
duke@1 364 }
duke@1 365
duke@1 366 /**
duke@1 367 * Is t a subtype of s?<br>
duke@1 368 * (not defined for Method and ForAll types)
duke@1 369 */
duke@1 370 final public boolean isSubtype(Type t, Type s) {
duke@1 371 return isSubtype(t, s, true);
duke@1 372 }
duke@1 373 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 374 return isSubtype(t, s, false);
duke@1 375 }
duke@1 376 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 377 if (t == s)
duke@1 378 return true;
duke@1 379
duke@1 380 if (s.tag >= firstPartialTag)
duke@1 381 return isSuperType(s, t);
duke@1 382
mcimadamore@299 383 if (s.isCompound()) {
mcimadamore@299 384 for (Type s2 : interfaces(s).prepend(supertype(s))) {
mcimadamore@299 385 if (!isSubtype(t, s2, capture))
mcimadamore@299 386 return false;
mcimadamore@299 387 }
mcimadamore@299 388 return true;
mcimadamore@299 389 }
mcimadamore@299 390
duke@1 391 Type lower = lowerBound(s);
duke@1 392 if (s != lower)
duke@1 393 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 394
duke@1 395 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 396 }
duke@1 397 // where
duke@1 398 private TypeRelation isSubtype = new TypeRelation()
duke@1 399 {
duke@1 400 public Boolean visitType(Type t, Type s) {
duke@1 401 switch (t.tag) {
duke@1 402 case BYTE: case CHAR:
duke@1 403 return (t.tag == s.tag ||
duke@1 404 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 405 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 406 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 407 case BOOLEAN: case VOID:
duke@1 408 return t.tag == s.tag;
duke@1 409 case TYPEVAR:
duke@1 410 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 411 case BOT:
duke@1 412 return
duke@1 413 s.tag == BOT || s.tag == CLASS ||
duke@1 414 s.tag == ARRAY || s.tag == TYPEVAR;
mcimadamore@991 415 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
duke@1 416 case NONE:
duke@1 417 return false;
duke@1 418 default:
duke@1 419 throw new AssertionError("isSubtype " + t.tag);
duke@1 420 }
duke@1 421 }
duke@1 422
duke@1 423 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 424
duke@1 425 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 426 TypePair pair = new TypePair(t, s);
duke@1 427 if (cache.add(pair)) {
duke@1 428 try {
duke@1 429 return containsType(t.getTypeArguments(),
duke@1 430 s.getTypeArguments());
duke@1 431 } finally {
duke@1 432 cache.remove(pair);
duke@1 433 }
duke@1 434 } else {
duke@1 435 return containsType(t.getTypeArguments(),
duke@1 436 rewriteSupers(s).getTypeArguments());
duke@1 437 }
duke@1 438 }
duke@1 439
duke@1 440 private Type rewriteSupers(Type t) {
duke@1 441 if (!t.isParameterized())
duke@1 442 return t;
duke@1 443 ListBuffer<Type> from = lb();
duke@1 444 ListBuffer<Type> to = lb();
duke@1 445 adaptSelf(t, from, to);
duke@1 446 if (from.isEmpty())
duke@1 447 return t;
duke@1 448 ListBuffer<Type> rewrite = lb();
duke@1 449 boolean changed = false;
duke@1 450 for (Type orig : to.toList()) {
duke@1 451 Type s = rewriteSupers(orig);
duke@1 452 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 453 s = new WildcardType(syms.objectType,
duke@1 454 BoundKind.UNBOUND,
duke@1 455 syms.boundClass);
duke@1 456 changed = true;
duke@1 457 } else if (s != orig) {
duke@1 458 s = new WildcardType(upperBound(s),
duke@1 459 BoundKind.EXTENDS,
duke@1 460 syms.boundClass);
duke@1 461 changed = true;
duke@1 462 }
duke@1 463 rewrite.append(s);
duke@1 464 }
duke@1 465 if (changed)
duke@1 466 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 467 else
duke@1 468 return t;
duke@1 469 }
duke@1 470
duke@1 471 @Override
duke@1 472 public Boolean visitClassType(ClassType t, Type s) {
duke@1 473 Type sup = asSuper(t, s.tsym);
duke@1 474 return sup != null
duke@1 475 && sup.tsym == s.tsym
duke@1 476 // You're not allowed to write
duke@1 477 // Vector<Object> vec = new Vector<String>();
duke@1 478 // But with wildcards you can write
duke@1 479 // Vector<? extends Object> vec = new Vector<String>();
duke@1 480 // which means that subtype checking must be done
duke@1 481 // here instead of same-type checking (via containsType).
duke@1 482 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 483 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 484 s.getEnclosingType());
duke@1 485 }
duke@1 486
duke@1 487 @Override
duke@1 488 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 489 if (s.tag == ARRAY) {
duke@1 490 if (t.elemtype.tag <= lastBaseTag)
duke@1 491 return isSameType(t.elemtype, elemtype(s));
duke@1 492 else
duke@1 493 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 494 }
duke@1 495
duke@1 496 if (s.tag == CLASS) {
duke@1 497 Name sname = s.tsym.getQualifiedName();
duke@1 498 return sname == names.java_lang_Object
duke@1 499 || sname == names.java_lang_Cloneable
duke@1 500 || sname == names.java_io_Serializable;
duke@1 501 }
duke@1 502
duke@1 503 return false;
duke@1 504 }
duke@1 505
duke@1 506 @Override
duke@1 507 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 508 //todo: test against origin needed? or replace with substitution?
duke@1 509 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 510 return true;
duke@1 511
duke@1 512 if (t.inst != null)
duke@1 513 return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
duke@1 514
duke@1 515 t.hibounds = t.hibounds.prepend(s);
duke@1 516 return true;
duke@1 517 }
duke@1 518
duke@1 519 @Override
duke@1 520 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 521 return true;
duke@1 522 }
duke@1 523 };
duke@1 524
duke@1 525 /**
duke@1 526 * Is t a subtype of every type in given list `ts'?<br>
duke@1 527 * (not defined for Method and ForAll types)<br>
duke@1 528 * Allows unchecked conversions.
duke@1 529 */
duke@1 530 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 531 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 532 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 533 return false;
duke@1 534 return true;
duke@1 535 }
duke@1 536
duke@1 537 /**
duke@1 538 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 539 * of different length, return false.
duke@1 540 */
duke@1 541 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 542 while (ts.tail != null && ss.tail != null
duke@1 543 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 544 isSubtype(ts.head, ss.head)) {
duke@1 545 ts = ts.tail;
duke@1 546 ss = ss.tail;
duke@1 547 }
duke@1 548 return ts.tail == null && ss.tail == null;
duke@1 549 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 550 }
duke@1 551
duke@1 552 /**
duke@1 553 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 554 * unchecked conversions? If lists are of different length,
duke@1 555 * return false.
duke@1 556 **/
duke@1 557 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 558 while (ts.tail != null && ss.tail != null
duke@1 559 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 560 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 561 ts = ts.tail;
duke@1 562 ss = ss.tail;
duke@1 563 }
duke@1 564 return ts.tail == null && ss.tail == null;
duke@1 565 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 566 }
duke@1 567 // </editor-fold>
duke@1 568
duke@1 569 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 570 /**
duke@1 571 * Is t a supertype of s?
duke@1 572 */
duke@1 573 public boolean isSuperType(Type t, Type s) {
duke@1 574 switch (t.tag) {
duke@1 575 case ERROR:
duke@1 576 return true;
duke@1 577 case UNDETVAR: {
duke@1 578 UndetVar undet = (UndetVar)t;
duke@1 579 if (t == s ||
duke@1 580 undet.qtype == s ||
duke@1 581 s.tag == ERROR ||
duke@1 582 s.tag == BOT) return true;
duke@1 583 if (undet.inst != null)
duke@1 584 return isSubtype(s, undet.inst);
duke@1 585 undet.lobounds = undet.lobounds.prepend(s);
duke@1 586 return true;
duke@1 587 }
duke@1 588 default:
duke@1 589 return isSubtype(s, t);
duke@1 590 }
duke@1 591 }
duke@1 592 // </editor-fold>
duke@1 593
duke@1 594 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 595 /**
duke@1 596 * Are corresponding elements of the lists the same type? If
duke@1 597 * lists are of different length, return false.
duke@1 598 */
duke@1 599 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 600 while (ts.tail != null && ss.tail != null
duke@1 601 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 602 isSameType(ts.head, ss.head)) {
duke@1 603 ts = ts.tail;
duke@1 604 ss = ss.tail;
duke@1 605 }
duke@1 606 return ts.tail == null && ss.tail == null;
duke@1 607 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 608 }
duke@1 609
duke@1 610 /**
duke@1 611 * Is t the same type as s?
duke@1 612 */
duke@1 613 public boolean isSameType(Type t, Type s) {
duke@1 614 return isSameType.visit(t, s);
duke@1 615 }
duke@1 616 // where
duke@1 617 private TypeRelation isSameType = new TypeRelation() {
duke@1 618
duke@1 619 public Boolean visitType(Type t, Type s) {
duke@1 620 if (t == s)
duke@1 621 return true;
duke@1 622
duke@1 623 if (s.tag >= firstPartialTag)
duke@1 624 return visit(s, t);
duke@1 625
duke@1 626 switch (t.tag) {
duke@1 627 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 628 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 629 return t.tag == s.tag;
mcimadamore@561 630 case TYPEVAR: {
mcimadamore@561 631 if (s.tag == TYPEVAR) {
mcimadamore@561 632 //type-substitution does not preserve type-var types
mcimadamore@561 633 //check that type var symbols and bounds are indeed the same
mcimadamore@561 634 return t.tsym == s.tsym &&
mcimadamore@561 635 visit(t.getUpperBound(), s.getUpperBound());
mcimadamore@561 636 }
mcimadamore@561 637 else {
mcimadamore@561 638 //special case for s == ? super X, where upper(s) = u
mcimadamore@561 639 //check that u == t, where u has been set by Type.withTypeVar
mcimadamore@561 640 return s.isSuperBound() &&
mcimadamore@561 641 !s.isExtendsBound() &&
mcimadamore@561 642 visit(t, upperBound(s));
mcimadamore@561 643 }
mcimadamore@561 644 }
duke@1 645 default:
duke@1 646 throw new AssertionError("isSameType " + t.tag);
duke@1 647 }
duke@1 648 }
duke@1 649
duke@1 650 @Override
duke@1 651 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 652 if (s.tag >= firstPartialTag)
duke@1 653 return visit(s, t);
duke@1 654 else
duke@1 655 return false;
duke@1 656 }
duke@1 657
duke@1 658 @Override
duke@1 659 public Boolean visitClassType(ClassType t, Type s) {
duke@1 660 if (t == s)
duke@1 661 return true;
duke@1 662
duke@1 663 if (s.tag >= firstPartialTag)
duke@1 664 return visit(s, t);
duke@1 665
duke@1 666 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 667 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 668
duke@1 669 if (t.isCompound() && s.isCompound()) {
duke@1 670 if (!visit(supertype(t), supertype(s)))
duke@1 671 return false;
duke@1 672
duke@1 673 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 674 for (Type x : interfaces(t))
duke@1 675 set.add(new SingletonType(x));
duke@1 676 for (Type x : interfaces(s)) {
duke@1 677 if (!set.remove(new SingletonType(x)))
duke@1 678 return false;
duke@1 679 }
jjg@789 680 return (set.isEmpty());
duke@1 681 }
duke@1 682 return t.tsym == s.tsym
duke@1 683 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 684 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 685 }
duke@1 686
duke@1 687 @Override
duke@1 688 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 689 if (t == s)
duke@1 690 return true;
duke@1 691
duke@1 692 if (s.tag >= firstPartialTag)
duke@1 693 return visit(s, t);
duke@1 694
duke@1 695 return s.tag == ARRAY
duke@1 696 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 697 }
duke@1 698
duke@1 699 @Override
duke@1 700 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 701 // isSameType for methods does not take thrown
duke@1 702 // exceptions into account!
duke@1 703 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 704 }
duke@1 705
duke@1 706 @Override
duke@1 707 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 708 return t == s;
duke@1 709 }
duke@1 710
duke@1 711 @Override
duke@1 712 public Boolean visitForAll(ForAll t, Type s) {
duke@1 713 if (s.tag != FORALL)
duke@1 714 return false;
duke@1 715
duke@1 716 ForAll forAll = (ForAll)s;
duke@1 717 return hasSameBounds(t, forAll)
duke@1 718 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 719 }
duke@1 720
duke@1 721 @Override
duke@1 722 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 723 if (s.tag == WILDCARD)
duke@1 724 // FIXME, this might be leftovers from before capture conversion
duke@1 725 return false;
duke@1 726
duke@1 727 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 728 return true;
duke@1 729
duke@1 730 if (t.inst != null)
duke@1 731 return visit(t.inst, s);
duke@1 732
duke@1 733 t.inst = fromUnknownFun.apply(s);
duke@1 734 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
duke@1 735 if (!isSubtype(l.head, t.inst))
duke@1 736 return false;
duke@1 737 }
duke@1 738 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
duke@1 739 if (!isSubtype(t.inst, l.head))
duke@1 740 return false;
duke@1 741 }
duke@1 742 return true;
duke@1 743 }
duke@1 744
duke@1 745 @Override
duke@1 746 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 747 return true;
duke@1 748 }
duke@1 749 };
duke@1 750 // </editor-fold>
duke@1 751
duke@1 752 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 753 /**
duke@1 754 * A mapping that turns all unknown types in this type to fresh
duke@1 755 * unknown variables.
duke@1 756 */
duke@1 757 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 758 public Type apply(Type t) {
duke@1 759 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 760 else return t.map(this);
duke@1 761 }
duke@1 762 };
duke@1 763 // </editor-fold>
duke@1 764
duke@1 765 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 766 public boolean containedBy(Type t, Type s) {
duke@1 767 switch (t.tag) {
duke@1 768 case UNDETVAR:
duke@1 769 if (s.tag == WILDCARD) {
duke@1 770 UndetVar undetvar = (UndetVar)t;
mcimadamore@210 771 WildcardType wt = (WildcardType)s;
mcimadamore@210 772 switch(wt.kind) {
mcimadamore@210 773 case UNBOUND: //similar to ? extends Object
mcimadamore@210 774 case EXTENDS: {
mcimadamore@210 775 Type bound = upperBound(s);
mcimadamore@210 776 // We should check the new upper bound against any of the
mcimadamore@210 777 // undetvar's lower bounds.
mcimadamore@210 778 for (Type t2 : undetvar.lobounds) {
mcimadamore@210 779 if (!isSubtype(t2, bound))
mcimadamore@210 780 return false;
mcimadamore@210 781 }
mcimadamore@210 782 undetvar.hibounds = undetvar.hibounds.prepend(bound);
mcimadamore@210 783 break;
mcimadamore@210 784 }
mcimadamore@210 785 case SUPER: {
mcimadamore@210 786 Type bound = lowerBound(s);
mcimadamore@210 787 // We should check the new lower bound against any of the
mcimadamore@210 788 // undetvar's lower bounds.
mcimadamore@210 789 for (Type t2 : undetvar.hibounds) {
mcimadamore@210 790 if (!isSubtype(bound, t2))
mcimadamore@210 791 return false;
mcimadamore@210 792 }
mcimadamore@210 793 undetvar.lobounds = undetvar.lobounds.prepend(bound);
mcimadamore@210 794 break;
mcimadamore@210 795 }
mcimadamore@162 796 }
duke@1 797 return true;
duke@1 798 } else {
duke@1 799 return isSameType(t, s);
duke@1 800 }
duke@1 801 case ERROR:
duke@1 802 return true;
duke@1 803 default:
duke@1 804 return containsType(s, t);
duke@1 805 }
duke@1 806 }
duke@1 807
duke@1 808 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 809 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 810 && containsType(ts.head, ss.head)) {
duke@1 811 ts = ts.tail;
duke@1 812 ss = ss.tail;
duke@1 813 }
duke@1 814 return ts.isEmpty() && ss.isEmpty();
duke@1 815 }
duke@1 816
duke@1 817 /**
duke@1 818 * Check if t contains s.
duke@1 819 *
duke@1 820 * <p>T contains S if:
duke@1 821 *
duke@1 822 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 823 *
duke@1 824 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 825 * is,
duke@1 826 *
duke@1 827 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 828 *
duke@1 829 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 830 * recursion. Thus we must somehow break that recursion. Notice
duke@1 831 * that containsType() is only called from ClassType.isSubtype().
duke@1 832 * Since the arguments have already been checked against their
duke@1 833 * bounds, we know:
duke@1 834 *
duke@1 835 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 836 *
duke@1 837 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 838 *
duke@1 839 * @param t a type
duke@1 840 * @param s a type
duke@1 841 */
duke@1 842 public boolean containsType(Type t, Type s) {
duke@1 843 return containsType.visit(t, s);
duke@1 844 }
duke@1 845 // where
duke@1 846 private TypeRelation containsType = new TypeRelation() {
duke@1 847
duke@1 848 private Type U(Type t) {
duke@1 849 while (t.tag == WILDCARD) {
duke@1 850 WildcardType w = (WildcardType)t;
duke@1 851 if (w.isSuperBound())
duke@1 852 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 853 else
duke@1 854 t = w.type;
duke@1 855 }
duke@1 856 return t;
duke@1 857 }
duke@1 858
duke@1 859 private Type L(Type t) {
duke@1 860 while (t.tag == WILDCARD) {
duke@1 861 WildcardType w = (WildcardType)t;
duke@1 862 if (w.isExtendsBound())
duke@1 863 return syms.botType;
duke@1 864 else
duke@1 865 t = w.type;
duke@1 866 }
duke@1 867 return t;
duke@1 868 }
duke@1 869
duke@1 870 public Boolean visitType(Type t, Type s) {
duke@1 871 if (s.tag >= firstPartialTag)
duke@1 872 return containedBy(s, t);
duke@1 873 else
duke@1 874 return isSameType(t, s);
duke@1 875 }
duke@1 876
jjg@789 877 // void debugContainsType(WildcardType t, Type s) {
jjg@789 878 // System.err.println();
jjg@789 879 // System.err.format(" does %s contain %s?%n", t, s);
jjg@789 880 // System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
jjg@789 881 // upperBound(s), s, t, U(t),
jjg@789 882 // t.isSuperBound()
jjg@789 883 // || isSubtypeNoCapture(upperBound(s), U(t)));
jjg@789 884 // System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
jjg@789 885 // L(t), t, s, lowerBound(s),
jjg@789 886 // t.isExtendsBound()
jjg@789 887 // || isSubtypeNoCapture(L(t), lowerBound(s)));
jjg@789 888 // System.err.println();
jjg@789 889 // }
duke@1 890
duke@1 891 @Override
duke@1 892 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 893 if (s.tag >= firstPartialTag)
duke@1 894 return containedBy(s, t);
duke@1 895 else {
jjg@789 896 // debugContainsType(t, s);
duke@1 897 return isSameWildcard(t, s)
duke@1 898 || isCaptureOf(s, t)
duke@1 899 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 900 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 901 }
duke@1 902 }
duke@1 903
duke@1 904 @Override
duke@1 905 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 906 if (s.tag != WILDCARD)
duke@1 907 return isSameType(t, s);
duke@1 908 else
duke@1 909 return false;
duke@1 910 }
duke@1 911
duke@1 912 @Override
duke@1 913 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 914 return true;
duke@1 915 }
duke@1 916 };
duke@1 917
duke@1 918 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 919 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 920 return false;
duke@1 921 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 922 }
duke@1 923
duke@1 924 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 925 if (s.tag != WILDCARD)
duke@1 926 return false;
duke@1 927 WildcardType w = (WildcardType)s;
duke@1 928 return w.kind == t.kind && w.type == t.type;
duke@1 929 }
duke@1 930
duke@1 931 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 932 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 933 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 934 ts = ts.tail;
duke@1 935 ss = ss.tail;
duke@1 936 }
duke@1 937 return ts.isEmpty() && ss.isEmpty();
duke@1 938 }
duke@1 939 // </editor-fold>
duke@1 940
duke@1 941 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 942 public boolean isCastable(Type t, Type s) {
duke@1 943 return isCastable(t, s, Warner.noWarnings);
duke@1 944 }
duke@1 945
duke@1 946 /**
duke@1 947 * Is t is castable to s?<br>
duke@1 948 * s is assumed to be an erased type.<br>
duke@1 949 * (not defined for Method and ForAll types).
duke@1 950 */
duke@1 951 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 952 if (t == s)
duke@1 953 return true;
duke@1 954
duke@1 955 if (t.isPrimitive() != s.isPrimitive())
jjg@984 956 return allowBoxing && (
jjg@984 957 isConvertible(t, s, warn)
mcimadamore@1007 958 || (allowObjectToPrimitiveCast &&
mcimadamore@1007 959 s.isPrimitive() &&
mcimadamore@1007 960 isSubtype(boxedClass(s).type, t)));
duke@1 961 if (warn != warnStack.head) {
duke@1 962 try {
duke@1 963 warnStack = warnStack.prepend(warn);
mcimadamore@795 964 checkUnsafeVarargsConversion(t, s, warn);
mcimadamore@185 965 return isCastable.visit(t,s);
duke@1 966 } finally {
duke@1 967 warnStack = warnStack.tail;
duke@1 968 }
duke@1 969 } else {
mcimadamore@185 970 return isCastable.visit(t,s);
duke@1 971 }
duke@1 972 }
duke@1 973 // where
duke@1 974 private TypeRelation isCastable = new TypeRelation() {
duke@1 975
duke@1 976 public Boolean visitType(Type t, Type s) {
duke@1 977 if (s.tag == ERROR)
duke@1 978 return true;
duke@1 979
duke@1 980 switch (t.tag) {
duke@1 981 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 982 case DOUBLE:
duke@1 983 return s.tag <= DOUBLE;
duke@1 984 case BOOLEAN:
duke@1 985 return s.tag == BOOLEAN;
duke@1 986 case VOID:
duke@1 987 return false;
duke@1 988 case BOT:
duke@1 989 return isSubtype(t, s);
duke@1 990 default:
duke@1 991 throw new AssertionError();
duke@1 992 }
duke@1 993 }
duke@1 994
duke@1 995 @Override
duke@1 996 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 997 return isCastable(upperBound(t), s, warnStack.head);
duke@1 998 }
duke@1 999
duke@1 1000 @Override
duke@1 1001 public Boolean visitClassType(ClassType t, Type s) {
duke@1 1002 if (s.tag == ERROR || s.tag == BOT)
duke@1 1003 return true;
duke@1 1004
duke@1 1005 if (s.tag == TYPEVAR) {
mcimadamore@640 1006 if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
mcimadamore@795 1007 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1008 return true;
duke@1 1009 } else {
duke@1 1010 return false;
duke@1 1011 }
duke@1 1012 }
duke@1 1013
duke@1 1014 if (t.isCompound()) {
mcimadamore@211 1015 Warner oldWarner = warnStack.head;
mcimadamore@211 1016 warnStack.head = Warner.noWarnings;
duke@1 1017 if (!visit(supertype(t), s))
duke@1 1018 return false;
duke@1 1019 for (Type intf : interfaces(t)) {
duke@1 1020 if (!visit(intf, s))
duke@1 1021 return false;
duke@1 1022 }
mcimadamore@795 1023 if (warnStack.head.hasLint(LintCategory.UNCHECKED))
mcimadamore@795 1024 oldWarner.warn(LintCategory.UNCHECKED);
duke@1 1025 return true;
duke@1 1026 }
duke@1 1027
duke@1 1028 if (s.isCompound()) {
duke@1 1029 // call recursively to reuse the above code
duke@1 1030 return visitClassType((ClassType)s, t);
duke@1 1031 }
duke@1 1032
duke@1 1033 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 1034 boolean upcast;
duke@1 1035 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 1036 || isSubtype(erasure(s), erasure(t))) {
duke@1 1037 if (!upcast && s.tag == ARRAY) {
duke@1 1038 if (!isReifiable(s))
mcimadamore@795 1039 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1040 return true;
duke@1 1041 } else if (s.isRaw()) {
duke@1 1042 return true;
duke@1 1043 } else if (t.isRaw()) {
duke@1 1044 if (!isUnbounded(s))
mcimadamore@795 1045 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1046 return true;
duke@1 1047 }
duke@1 1048 // Assume |a| <: |b|
duke@1 1049 final Type a = upcast ? t : s;
duke@1 1050 final Type b = upcast ? s : t;
duke@1 1051 final boolean HIGH = true;
duke@1 1052 final boolean LOW = false;
duke@1 1053 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 1054 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1055 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1056 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1057 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1058 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 1059 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1060 if (highSub == null) {
duke@1 1061 final boolean REWRITE_TYPEVARS = true;
duke@1 1062 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 1063 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 1064 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 1065 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 1066 lowSub = asSub(bLow, aLow.tsym);
duke@1 1067 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1068 }
duke@1 1069 if (highSub != null) {
jjg@816 1070 if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
jjg@816 1071 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
jjg@816 1072 }
mcimadamore@185 1073 if (!disjointTypes(aHigh.allparams(), highSub.allparams())
mcimadamore@185 1074 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
mcimadamore@185 1075 && !disjointTypes(aLow.allparams(), highSub.allparams())
mcimadamore@185 1076 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
mcimadamore@779 1077 if (upcast ? giveWarning(a, b) :
mcimadamore@235 1078 giveWarning(b, a))
mcimadamore@795 1079 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1080 return true;
duke@1 1081 }
duke@1 1082 }
duke@1 1083 if (isReifiable(s))
duke@1 1084 return isSubtypeUnchecked(a, b);
duke@1 1085 else
duke@1 1086 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1087 }
duke@1 1088
duke@1 1089 // Sidecast
duke@1 1090 if (s.tag == CLASS) {
duke@1 1091 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1092 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1093 ? sideCast(t, s, warnStack.head)
duke@1 1094 : sideCastFinal(t, s, warnStack.head);
duke@1 1095 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1096 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1097 ? sideCast(t, s, warnStack.head)
duke@1 1098 : sideCastFinal(t, s, warnStack.head);
duke@1 1099 } else {
duke@1 1100 // unrelated class types
duke@1 1101 return false;
duke@1 1102 }
duke@1 1103 }
duke@1 1104 }
duke@1 1105 return false;
duke@1 1106 }
duke@1 1107
duke@1 1108 @Override
duke@1 1109 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1110 switch (s.tag) {
duke@1 1111 case ERROR:
duke@1 1112 case BOT:
duke@1 1113 return true;
duke@1 1114 case TYPEVAR:
duke@1 1115 if (isCastable(s, t, Warner.noWarnings)) {
mcimadamore@795 1116 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1117 return true;
duke@1 1118 } else {
duke@1 1119 return false;
duke@1 1120 }
duke@1 1121 case CLASS:
duke@1 1122 return isSubtype(t, s);
duke@1 1123 case ARRAY:
mcimadamore@786 1124 if (elemtype(t).tag <= lastBaseTag ||
mcimadamore@786 1125 elemtype(s).tag <= lastBaseTag) {
duke@1 1126 return elemtype(t).tag == elemtype(s).tag;
duke@1 1127 } else {
duke@1 1128 return visit(elemtype(t), elemtype(s));
duke@1 1129 }
duke@1 1130 default:
duke@1 1131 return false;
duke@1 1132 }
duke@1 1133 }
duke@1 1134
duke@1 1135 @Override
duke@1 1136 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1137 switch (s.tag) {
duke@1 1138 case ERROR:
duke@1 1139 case BOT:
duke@1 1140 return true;
duke@1 1141 case TYPEVAR:
duke@1 1142 if (isSubtype(t, s)) {
duke@1 1143 return true;
duke@1 1144 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
mcimadamore@795 1145 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1146 return true;
duke@1 1147 } else {
duke@1 1148 return false;
duke@1 1149 }
duke@1 1150 default:
duke@1 1151 return isCastable(t.bound, s, warnStack.head);
duke@1 1152 }
duke@1 1153 }
duke@1 1154
duke@1 1155 @Override
duke@1 1156 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1157 return true;
duke@1 1158 }
duke@1 1159 };
duke@1 1160 // </editor-fold>
duke@1 1161
duke@1 1162 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1163 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1164 while (ts.tail != null && ss.tail != null) {
duke@1 1165 if (disjointType(ts.head, ss.head)) return true;
duke@1 1166 ts = ts.tail;
duke@1 1167 ss = ss.tail;
duke@1 1168 }
duke@1 1169 return false;
duke@1 1170 }
duke@1 1171
duke@1 1172 /**
duke@1 1173 * Two types or wildcards are considered disjoint if it can be
duke@1 1174 * proven that no type can be contained in both. It is
duke@1 1175 * conservative in that it is allowed to say that two types are
duke@1 1176 * not disjoint, even though they actually are.
duke@1 1177 *
duke@1 1178 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1179 * disjoint.
duke@1 1180 */
duke@1 1181 public boolean disjointType(Type t, Type s) {
duke@1 1182 return disjointType.visit(t, s);
duke@1 1183 }
duke@1 1184 // where
duke@1 1185 private TypeRelation disjointType = new TypeRelation() {
duke@1 1186
duke@1 1187 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1188
duke@1 1189 public Boolean visitType(Type t, Type s) {
duke@1 1190 if (s.tag == WILDCARD)
duke@1 1191 return visit(s, t);
duke@1 1192 else
duke@1 1193 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1194 }
duke@1 1195
duke@1 1196 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1197 TypePair pair = new TypePair(t, s);
duke@1 1198 if (cache.add(pair)) {
duke@1 1199 try {
duke@1 1200 return Types.this.isCastable(t, s);
duke@1 1201 } finally {
duke@1 1202 cache.remove(pair);
duke@1 1203 }
duke@1 1204 } else {
duke@1 1205 return true;
duke@1 1206 }
duke@1 1207 }
duke@1 1208
duke@1 1209 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1210 TypePair pair = new TypePair(t, s);
duke@1 1211 if (cache.add(pair)) {
duke@1 1212 try {
duke@1 1213 return Types.this.notSoftSubtype(t, s);
duke@1 1214 } finally {
duke@1 1215 cache.remove(pair);
duke@1 1216 }
duke@1 1217 } else {
duke@1 1218 return false;
duke@1 1219 }
duke@1 1220 }
duke@1 1221
duke@1 1222 @Override
duke@1 1223 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1224 if (t.isUnbound())
duke@1 1225 return false;
duke@1 1226
duke@1 1227 if (s.tag != WILDCARD) {
duke@1 1228 if (t.isExtendsBound())
duke@1 1229 return notSoftSubtypeRecursive(s, t.type);
duke@1 1230 else // isSuperBound()
duke@1 1231 return notSoftSubtypeRecursive(t.type, s);
duke@1 1232 }
duke@1 1233
duke@1 1234 if (s.isUnbound())
duke@1 1235 return false;
duke@1 1236
duke@1 1237 if (t.isExtendsBound()) {
duke@1 1238 if (s.isExtendsBound())
duke@1 1239 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1240 else if (s.isSuperBound())
duke@1 1241 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1242 } else if (t.isSuperBound()) {
duke@1 1243 if (s.isExtendsBound())
duke@1 1244 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1245 }
duke@1 1246 return false;
duke@1 1247 }
duke@1 1248 };
duke@1 1249 // </editor-fold>
duke@1 1250
duke@1 1251 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1252 /**
duke@1 1253 * Returns the lower bounds of the formals of a method.
duke@1 1254 */
duke@1 1255 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1256 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1257 }
duke@1 1258 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1259 public Type apply(Type t) {
duke@1 1260 return lowerBound(t);
duke@1 1261 }
duke@1 1262 };
duke@1 1263 // </editor-fold>
duke@1 1264
duke@1 1265 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1266 /**
duke@1 1267 * This relation answers the question: is impossible that
duke@1 1268 * something of type `t' can be a subtype of `s'? This is
duke@1 1269 * different from the question "is `t' not a subtype of `s'?"
duke@1 1270 * when type variables are involved: Integer is not a subtype of T
duke@1 1271 * where <T extends Number> but it is not true that Integer cannot
duke@1 1272 * possibly be a subtype of T.
duke@1 1273 */
duke@1 1274 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1275 if (t == s) return false;
duke@1 1276 if (t.tag == TYPEVAR) {
duke@1 1277 TypeVar tv = (TypeVar) t;
duke@1 1278 return !isCastable(tv.bound,
mcimadamore@640 1279 relaxBound(s),
duke@1 1280 Warner.noWarnings);
duke@1 1281 }
duke@1 1282 if (s.tag != WILDCARD)
duke@1 1283 s = upperBound(s);
mcimadamore@640 1284
mcimadamore@640 1285 return !isSubtype(t, relaxBound(s));
mcimadamore@640 1286 }
mcimadamore@640 1287
mcimadamore@640 1288 private Type relaxBound(Type t) {
mcimadamore@640 1289 if (t.tag == TYPEVAR) {
mcimadamore@640 1290 while (t.tag == TYPEVAR)
mcimadamore@640 1291 t = t.getUpperBound();
mcimadamore@640 1292 t = rewriteQuantifiers(t, true, true);
mcimadamore@640 1293 }
mcimadamore@640 1294 return t;
duke@1 1295 }
duke@1 1296 // </editor-fold>
duke@1 1297
duke@1 1298 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1299 public boolean isReifiable(Type t) {
duke@1 1300 return isReifiable.visit(t);
duke@1 1301 }
duke@1 1302 // where
duke@1 1303 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1304
duke@1 1305 public Boolean visitType(Type t, Void ignored) {
duke@1 1306 return true;
duke@1 1307 }
duke@1 1308
duke@1 1309 @Override
duke@1 1310 public Boolean visitClassType(ClassType t, Void ignored) {
mcimadamore@356 1311 if (t.isCompound())
mcimadamore@356 1312 return false;
mcimadamore@356 1313 else {
mcimadamore@356 1314 if (!t.isParameterized())
mcimadamore@356 1315 return true;
mcimadamore@356 1316
mcimadamore@356 1317 for (Type param : t.allparams()) {
mcimadamore@356 1318 if (!param.isUnbound())
mcimadamore@356 1319 return false;
mcimadamore@356 1320 }
duke@1 1321 return true;
duke@1 1322 }
duke@1 1323 }
duke@1 1324
duke@1 1325 @Override
duke@1 1326 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1327 return visit(t.elemtype);
duke@1 1328 }
duke@1 1329
duke@1 1330 @Override
duke@1 1331 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1332 return false;
duke@1 1333 }
duke@1 1334 };
duke@1 1335 // </editor-fold>
duke@1 1336
duke@1 1337 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1338 public boolean isArray(Type t) {
duke@1 1339 while (t.tag == WILDCARD)
duke@1 1340 t = upperBound(t);
duke@1 1341 return t.tag == ARRAY;
duke@1 1342 }
duke@1 1343
duke@1 1344 /**
duke@1 1345 * The element type of an array.
duke@1 1346 */
duke@1 1347 public Type elemtype(Type t) {
duke@1 1348 switch (t.tag) {
duke@1 1349 case WILDCARD:
duke@1 1350 return elemtype(upperBound(t));
duke@1 1351 case ARRAY:
duke@1 1352 return ((ArrayType)t).elemtype;
duke@1 1353 case FORALL:
duke@1 1354 return elemtype(((ForAll)t).qtype);
duke@1 1355 case ERROR:
duke@1 1356 return t;
duke@1 1357 default:
duke@1 1358 return null;
duke@1 1359 }
duke@1 1360 }
duke@1 1361
mcimadamore@787 1362 public Type elemtypeOrType(Type t) {
mcimadamore@787 1363 Type elemtype = elemtype(t);
mcimadamore@787 1364 return elemtype != null ?
mcimadamore@787 1365 elemtype :
mcimadamore@787 1366 t;
mcimadamore@787 1367 }
mcimadamore@787 1368
duke@1 1369 /**
duke@1 1370 * Mapping to take element type of an arraytype
duke@1 1371 */
duke@1 1372 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1373 public Type apply(Type t) { return elemtype(t); }
duke@1 1374 };
duke@1 1375
duke@1 1376 /**
duke@1 1377 * The number of dimensions of an array type.
duke@1 1378 */
duke@1 1379 public int dimensions(Type t) {
duke@1 1380 int result = 0;
duke@1 1381 while (t.tag == ARRAY) {
duke@1 1382 result++;
duke@1 1383 t = elemtype(t);
duke@1 1384 }
duke@1 1385 return result;
duke@1 1386 }
duke@1 1387 // </editor-fold>
duke@1 1388
duke@1 1389 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1390 /**
duke@1 1391 * Return the (most specific) base type of t that starts with the
duke@1 1392 * given symbol. If none exists, return null.
duke@1 1393 *
duke@1 1394 * @param t a type
duke@1 1395 * @param sym a symbol
duke@1 1396 */
duke@1 1397 public Type asSuper(Type t, Symbol sym) {
duke@1 1398 return asSuper.visit(t, sym);
duke@1 1399 }
duke@1 1400 // where
duke@1 1401 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1402
duke@1 1403 public Type visitType(Type t, Symbol sym) {
duke@1 1404 return null;
duke@1 1405 }
duke@1 1406
duke@1 1407 @Override
duke@1 1408 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1409 if (t.tsym == sym)
duke@1 1410 return t;
duke@1 1411
duke@1 1412 Type st = supertype(t);
mcimadamore@19 1413 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1414 Type x = asSuper(st, sym);
duke@1 1415 if (x != null)
duke@1 1416 return x;
duke@1 1417 }
duke@1 1418 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1419 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1420 Type x = asSuper(l.head, sym);
duke@1 1421 if (x != null)
duke@1 1422 return x;
duke@1 1423 }
duke@1 1424 }
duke@1 1425 return null;
duke@1 1426 }
duke@1 1427
duke@1 1428 @Override
duke@1 1429 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1430 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1431 }
duke@1 1432
duke@1 1433 @Override
duke@1 1434 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1435 if (t.tsym == sym)
mcimadamore@19 1436 return t;
mcimadamore@19 1437 else
mcimadamore@19 1438 return asSuper(t.bound, sym);
duke@1 1439 }
duke@1 1440
duke@1 1441 @Override
duke@1 1442 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1443 return t;
duke@1 1444 }
duke@1 1445 };
duke@1 1446
duke@1 1447 /**
duke@1 1448 * Return the base type of t or any of its outer types that starts
duke@1 1449 * with the given symbol. If none exists, return null.
duke@1 1450 *
duke@1 1451 * @param t a type
duke@1 1452 * @param sym a symbol
duke@1 1453 */
duke@1 1454 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1455 switch (t.tag) {
duke@1 1456 case CLASS:
duke@1 1457 do {
duke@1 1458 Type s = asSuper(t, sym);
duke@1 1459 if (s != null) return s;
duke@1 1460 t = t.getEnclosingType();
duke@1 1461 } while (t.tag == CLASS);
duke@1 1462 return null;
duke@1 1463 case ARRAY:
duke@1 1464 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1465 case TYPEVAR:
duke@1 1466 return asSuper(t, sym);
duke@1 1467 case ERROR:
duke@1 1468 return t;
duke@1 1469 default:
duke@1 1470 return null;
duke@1 1471 }
duke@1 1472 }
duke@1 1473
duke@1 1474 /**
duke@1 1475 * Return the base type of t or any of its enclosing types that
duke@1 1476 * starts with the given symbol. If none exists, return null.
duke@1 1477 *
duke@1 1478 * @param t a type
duke@1 1479 * @param sym a symbol
duke@1 1480 */
duke@1 1481 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1482 switch (t.tag) {
duke@1 1483 case CLASS:
duke@1 1484 do {
duke@1 1485 Type s = asSuper(t, sym);
duke@1 1486 if (s != null) return s;
duke@1 1487 Type outer = t.getEnclosingType();
duke@1 1488 t = (outer.tag == CLASS) ? outer :
duke@1 1489 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1490 Type.noType;
duke@1 1491 } while (t.tag == CLASS);
duke@1 1492 return null;
duke@1 1493 case ARRAY:
duke@1 1494 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1495 case TYPEVAR:
duke@1 1496 return asSuper(t, sym);
duke@1 1497 case ERROR:
duke@1 1498 return t;
duke@1 1499 default:
duke@1 1500 return null;
duke@1 1501 }
duke@1 1502 }
duke@1 1503 // </editor-fold>
duke@1 1504
duke@1 1505 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1506 /**
duke@1 1507 * The type of given symbol, seen as a member of t.
duke@1 1508 *
duke@1 1509 * @param t a type
duke@1 1510 * @param sym a symbol
duke@1 1511 */
duke@1 1512 public Type memberType(Type t, Symbol sym) {
duke@1 1513 return (sym.flags() & STATIC) != 0
duke@1 1514 ? sym.type
duke@1 1515 : memberType.visit(t, sym);
mcimadamore@341 1516 }
duke@1 1517 // where
duke@1 1518 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1519
duke@1 1520 public Type visitType(Type t, Symbol sym) {
duke@1 1521 return sym.type;
duke@1 1522 }
duke@1 1523
duke@1 1524 @Override
duke@1 1525 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1526 return memberType(upperBound(t), sym);
duke@1 1527 }
duke@1 1528
duke@1 1529 @Override
duke@1 1530 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1531 Symbol owner = sym.owner;
duke@1 1532 long flags = sym.flags();
duke@1 1533 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1534 Type base = asOuterSuper(t, owner);
mcimadamore@134 1535 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1536 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1537 //so we need to go through capture conversion
mcimadamore@134 1538 base = t.isCompound() ? capture(base) : base;
duke@1 1539 if (base != null) {
duke@1 1540 List<Type> ownerParams = owner.type.allparams();
duke@1 1541 List<Type> baseParams = base.allparams();
duke@1 1542 if (ownerParams.nonEmpty()) {
duke@1 1543 if (baseParams.isEmpty()) {
duke@1 1544 // then base is a raw type
duke@1 1545 return erasure(sym.type);
duke@1 1546 } else {
duke@1 1547 return subst(sym.type, ownerParams, baseParams);
duke@1 1548 }
duke@1 1549 }
duke@1 1550 }
duke@1 1551 }
duke@1 1552 return sym.type;
duke@1 1553 }
duke@1 1554
duke@1 1555 @Override
duke@1 1556 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1557 return memberType(t.bound, sym);
duke@1 1558 }
duke@1 1559
duke@1 1560 @Override
duke@1 1561 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1562 return t;
duke@1 1563 }
duke@1 1564 };
duke@1 1565 // </editor-fold>
duke@1 1566
duke@1 1567 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1568 public boolean isAssignable(Type t, Type s) {
duke@1 1569 return isAssignable(t, s, Warner.noWarnings);
duke@1 1570 }
duke@1 1571
duke@1 1572 /**
duke@1 1573 * Is t assignable to s?<br>
duke@1 1574 * Equivalent to subtype except for constant values and raw
duke@1 1575 * types.<br>
duke@1 1576 * (not defined for Method and ForAll types)
duke@1 1577 */
duke@1 1578 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1579 if (t.tag == ERROR)
duke@1 1580 return true;
duke@1 1581 if (t.tag <= INT && t.constValue() != null) {
duke@1 1582 int value = ((Number)t.constValue()).intValue();
duke@1 1583 switch (s.tag) {
duke@1 1584 case BYTE:
duke@1 1585 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1586 return true;
duke@1 1587 break;
duke@1 1588 case CHAR:
duke@1 1589 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1590 return true;
duke@1 1591 break;
duke@1 1592 case SHORT:
duke@1 1593 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1594 return true;
duke@1 1595 break;
duke@1 1596 case INT:
duke@1 1597 return true;
duke@1 1598 case CLASS:
duke@1 1599 switch (unboxedType(s).tag) {
duke@1 1600 case BYTE:
duke@1 1601 case CHAR:
duke@1 1602 case SHORT:
duke@1 1603 return isAssignable(t, unboxedType(s), warn);
duke@1 1604 }
duke@1 1605 break;
duke@1 1606 }
duke@1 1607 }
duke@1 1608 return isConvertible(t, s, warn);
duke@1 1609 }
duke@1 1610 // </editor-fold>
duke@1 1611
duke@1 1612 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1613 /**
duke@1 1614 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1615 * type parameters in t are deleted.
duke@1 1616 */
duke@1 1617 public Type erasure(Type t) {
mcimadamore@30 1618 return erasure(t, false);
mcimadamore@30 1619 }
mcimadamore@30 1620 //where
mcimadamore@30 1621 private Type erasure(Type t, boolean recurse) {
duke@1 1622 if (t.tag <= lastBaseTag)
duke@1 1623 return t; /* fast special case */
duke@1 1624 else
mcimadamore@30 1625 return erasure.visit(t, recurse);
mcimadamore@341 1626 }
duke@1 1627 // where
mcimadamore@30 1628 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1629 public Type visitType(Type t, Boolean recurse) {
duke@1 1630 if (t.tag <= lastBaseTag)
duke@1 1631 return t; /*fast special case*/
duke@1 1632 else
mcimadamore@30 1633 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1634 }
duke@1 1635
duke@1 1636 @Override
mcimadamore@30 1637 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1638 return erasure(upperBound(t), recurse);
duke@1 1639 }
duke@1 1640
duke@1 1641 @Override
mcimadamore@30 1642 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1643 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1644 if (recurse) {
mcimadamore@30 1645 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1646 }
mcimadamore@30 1647 return erased;
duke@1 1648 }
duke@1 1649
duke@1 1650 @Override
mcimadamore@30 1651 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1652 return erasure(t.bound, recurse);
duke@1 1653 }
duke@1 1654
duke@1 1655 @Override
mcimadamore@30 1656 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1657 return t;
duke@1 1658 }
duke@1 1659 };
mcimadamore@30 1660
duke@1 1661 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1662 public Type apply(Type t) { return erasure(t); }
duke@1 1663 };
duke@1 1664
mcimadamore@30 1665 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1666 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1667 };
mcimadamore@30 1668
duke@1 1669 public List<Type> erasure(List<Type> ts) {
duke@1 1670 return Type.map(ts, erasureFun);
duke@1 1671 }
mcimadamore@30 1672
mcimadamore@30 1673 public Type erasureRecursive(Type t) {
mcimadamore@30 1674 return erasure(t, true);
mcimadamore@30 1675 }
mcimadamore@30 1676
mcimadamore@30 1677 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1678 return Type.map(ts, erasureRecFun);
mcimadamore@30 1679 }
duke@1 1680 // </editor-fold>
duke@1 1681
duke@1 1682 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1683 /**
duke@1 1684 * Make a compound type from non-empty list of types
duke@1 1685 *
duke@1 1686 * @param bounds the types from which the compound type is formed
duke@1 1687 * @param supertype is objectType if all bounds are interfaces,
duke@1 1688 * null otherwise.
duke@1 1689 */
duke@1 1690 public Type makeCompoundType(List<Type> bounds,
duke@1 1691 Type supertype) {
duke@1 1692 ClassSymbol bc =
duke@1 1693 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1694 Type.moreInfo
duke@1 1695 ? names.fromString(bounds.toString())
duke@1 1696 : names.empty,
duke@1 1697 syms.noSymbol);
duke@1 1698 if (bounds.head.tag == TYPEVAR)
duke@1 1699 // error condition, recover
mcimadamore@121 1700 bc.erasure_field = syms.objectType;
mcimadamore@121 1701 else
mcimadamore@121 1702 bc.erasure_field = erasure(bounds.head);
mcimadamore@121 1703 bc.members_field = new Scope(bc);
duke@1 1704 ClassType bt = (ClassType)bc.type;
duke@1 1705 bt.allparams_field = List.nil();
duke@1 1706 if (supertype != null) {
duke@1 1707 bt.supertype_field = supertype;
duke@1 1708 bt.interfaces_field = bounds;
duke@1 1709 } else {
duke@1 1710 bt.supertype_field = bounds.head;
duke@1 1711 bt.interfaces_field = bounds.tail;
duke@1 1712 }
jjg@816 1713 Assert.check(bt.supertype_field.tsym.completer != null
jjg@816 1714 || !bt.supertype_field.isInterface(),
jjg@816 1715 bt.supertype_field);
duke@1 1716 return bt;
duke@1 1717 }
duke@1 1718
duke@1 1719 /**
duke@1 1720 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1721 * second parameter is computed directly. Note that this might
duke@1 1722 * cause a symbol completion. Hence, this version of
duke@1 1723 * makeCompoundType may not be called during a classfile read.
duke@1 1724 */
duke@1 1725 public Type makeCompoundType(List<Type> bounds) {
duke@1 1726 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1727 supertype(bounds.head) : null;
duke@1 1728 return makeCompoundType(bounds, supertype);
duke@1 1729 }
duke@1 1730
duke@1 1731 /**
duke@1 1732 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1733 * arguments are converted to a list and passed to the other
duke@1 1734 * method. Note that this might cause a symbol completion.
duke@1 1735 * Hence, this version of makeCompoundType may not be called
duke@1 1736 * during a classfile read.
duke@1 1737 */
duke@1 1738 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1739 return makeCompoundType(List.of(bound1, bound2));
duke@1 1740 }
duke@1 1741 // </editor-fold>
duke@1 1742
duke@1 1743 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1744 public Type supertype(Type t) {
duke@1 1745 return supertype.visit(t);
duke@1 1746 }
duke@1 1747 // where
duke@1 1748 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1749
duke@1 1750 public Type visitType(Type t, Void ignored) {
duke@1 1751 // A note on wildcards: there is no good way to
duke@1 1752 // determine a supertype for a super bounded wildcard.
duke@1 1753 return null;
duke@1 1754 }
duke@1 1755
duke@1 1756 @Override
duke@1 1757 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1758 if (t.supertype_field == null) {
duke@1 1759 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1760 // An interface has no superclass; its supertype is Object.
duke@1 1761 if (t.isInterface())
duke@1 1762 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1763 if (t.supertype_field == null) {
duke@1 1764 List<Type> actuals = classBound(t).allparams();
duke@1 1765 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1766 if (t.hasErasedSupertypes()) {
mcimadamore@30 1767 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 1768 } else if (formals.nonEmpty()) {
duke@1 1769 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1770 }
mcimadamore@30 1771 else {
mcimadamore@30 1772 t.supertype_field = supertype;
mcimadamore@30 1773 }
duke@1 1774 }
duke@1 1775 }
duke@1 1776 return t.supertype_field;
duke@1 1777 }
duke@1 1778
duke@1 1779 /**
duke@1 1780 * The supertype is always a class type. If the type
duke@1 1781 * variable's bounds start with a class type, this is also
duke@1 1782 * the supertype. Otherwise, the supertype is
duke@1 1783 * java.lang.Object.
duke@1 1784 */
duke@1 1785 @Override
duke@1 1786 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1787 if (t.bound.tag == TYPEVAR ||
duke@1 1788 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1789 return t.bound;
duke@1 1790 } else {
duke@1 1791 return supertype(t.bound);
duke@1 1792 }
duke@1 1793 }
duke@1 1794
duke@1 1795 @Override
duke@1 1796 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1797 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1798 return arraySuperType();
duke@1 1799 else
duke@1 1800 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1801 }
duke@1 1802
duke@1 1803 @Override
duke@1 1804 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1805 return t;
duke@1 1806 }
duke@1 1807 };
duke@1 1808 // </editor-fold>
duke@1 1809
duke@1 1810 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1811 /**
duke@1 1812 * Return the interfaces implemented by this class.
duke@1 1813 */
duke@1 1814 public List<Type> interfaces(Type t) {
duke@1 1815 return interfaces.visit(t);
duke@1 1816 }
duke@1 1817 // where
duke@1 1818 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1819
duke@1 1820 public List<Type> visitType(Type t, Void ignored) {
duke@1 1821 return List.nil();
duke@1 1822 }
duke@1 1823
duke@1 1824 @Override
duke@1 1825 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1826 if (t.interfaces_field == null) {
duke@1 1827 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1828 if (t.interfaces_field == null) {
duke@1 1829 // If t.interfaces_field is null, then t must
duke@1 1830 // be a parameterized type (not to be confused
duke@1 1831 // with a generic type declaration).
duke@1 1832 // Terminology:
duke@1 1833 // Parameterized type: List<String>
duke@1 1834 // Generic type declaration: class List<E> { ... }
duke@1 1835 // So t corresponds to List<String> and
duke@1 1836 // t.tsym.type corresponds to List<E>.
duke@1 1837 // The reason t must be parameterized type is
duke@1 1838 // that completion will happen as a side
duke@1 1839 // effect of calling
duke@1 1840 // ClassSymbol.getInterfaces. Since
duke@1 1841 // t.interfaces_field is null after
duke@1 1842 // completion, we can assume that t is not the
duke@1 1843 // type of a class/interface declaration.
jjg@816 1844 Assert.check(t != t.tsym.type, t);
duke@1 1845 List<Type> actuals = t.allparams();
duke@1 1846 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1847 if (t.hasErasedSupertypes()) {
mcimadamore@30 1848 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 1849 } else if (formals.nonEmpty()) {
duke@1 1850 t.interfaces_field =
duke@1 1851 upperBounds(subst(interfaces, formals, actuals));
duke@1 1852 }
mcimadamore@30 1853 else {
mcimadamore@30 1854 t.interfaces_field = interfaces;
mcimadamore@30 1855 }
duke@1 1856 }
duke@1 1857 }
duke@1 1858 return t.interfaces_field;
duke@1 1859 }
duke@1 1860
duke@1 1861 @Override
duke@1 1862 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1863 if (t.bound.isCompound())
duke@1 1864 return interfaces(t.bound);
duke@1 1865
duke@1 1866 if (t.bound.isInterface())
duke@1 1867 return List.of(t.bound);
duke@1 1868
duke@1 1869 return List.nil();
duke@1 1870 }
duke@1 1871 };
duke@1 1872 // </editor-fold>
duke@1 1873
duke@1 1874 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1875 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1876
duke@1 1877 public boolean isDerivedRaw(Type t) {
duke@1 1878 Boolean result = isDerivedRawCache.get(t);
duke@1 1879 if (result == null) {
duke@1 1880 result = isDerivedRawInternal(t);
duke@1 1881 isDerivedRawCache.put(t, result);
duke@1 1882 }
duke@1 1883 return result;
duke@1 1884 }
duke@1 1885
duke@1 1886 public boolean isDerivedRawInternal(Type t) {
duke@1 1887 if (t.isErroneous())
duke@1 1888 return false;
duke@1 1889 return
duke@1 1890 t.isRaw() ||
duke@1 1891 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1892 isDerivedRaw(interfaces(t));
duke@1 1893 }
duke@1 1894
duke@1 1895 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1896 List<Type> l = ts;
duke@1 1897 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1898 return l.nonEmpty();
duke@1 1899 }
duke@1 1900 // </editor-fold>
duke@1 1901
duke@1 1902 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1903 /**
duke@1 1904 * Set the bounds field of the given type variable to reflect a
duke@1 1905 * (possibly multiple) list of bounds.
duke@1 1906 * @param t a type variable
duke@1 1907 * @param bounds the bounds, must be nonempty
duke@1 1908 * @param supertype is objectType if all bounds are interfaces,
duke@1 1909 * null otherwise.
duke@1 1910 */
duke@1 1911 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1912 if (bounds.tail.isEmpty())
duke@1 1913 t.bound = bounds.head;
duke@1 1914 else
duke@1 1915 t.bound = makeCompoundType(bounds, supertype);
duke@1 1916 t.rank_field = -1;
duke@1 1917 }
duke@1 1918
duke@1 1919 /**
duke@1 1920 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
mcimadamore@563 1921 * third parameter is computed directly, as follows: if all
mcimadamore@563 1922 * all bounds are interface types, the computed supertype is Object,
mcimadamore@563 1923 * otherwise the supertype is simply left null (in this case, the supertype
mcimadamore@563 1924 * is assumed to be the head of the bound list passed as second argument).
mcimadamore@563 1925 * Note that this check might cause a symbol completion. Hence, this version of
duke@1 1926 * setBounds may not be called during a classfile read.
duke@1 1927 */
duke@1 1928 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1929 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
mcimadamore@563 1930 syms.objectType : null;
duke@1 1931 setBounds(t, bounds, supertype);
duke@1 1932 t.rank_field = -1;
duke@1 1933 }
duke@1 1934 // </editor-fold>
duke@1 1935
duke@1 1936 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1937 /**
duke@1 1938 * Return list of bounds of the given type variable.
duke@1 1939 */
duke@1 1940 public List<Type> getBounds(TypeVar t) {
duke@1 1941 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1942 return List.of(t.bound);
duke@1 1943 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1944 return interfaces(t).prepend(supertype(t));
duke@1 1945 else
duke@1 1946 // No superclass was given in bounds.
duke@1 1947 // In this case, supertype is Object, erasure is first interface.
duke@1 1948 return interfaces(t);
duke@1 1949 }
duke@1 1950 // </editor-fold>
duke@1 1951
duke@1 1952 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1953 /**
duke@1 1954 * If the given type is a (possibly selected) type variable,
duke@1 1955 * return the bounding class of this type, otherwise return the
duke@1 1956 * type itself.
duke@1 1957 */
duke@1 1958 public Type classBound(Type t) {
duke@1 1959 return classBound.visit(t);
duke@1 1960 }
duke@1 1961 // where
duke@1 1962 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1963
duke@1 1964 public Type visitType(Type t, Void ignored) {
duke@1 1965 return t;
duke@1 1966 }
duke@1 1967
duke@1 1968 @Override
duke@1 1969 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1970 Type outer1 = classBound(t.getEnclosingType());
duke@1 1971 if (outer1 != t.getEnclosingType())
duke@1 1972 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1973 else
duke@1 1974 return t;
duke@1 1975 }
duke@1 1976
duke@1 1977 @Override
duke@1 1978 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1979 return classBound(supertype(t));
duke@1 1980 }
duke@1 1981
duke@1 1982 @Override
duke@1 1983 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1984 return t;
duke@1 1985 }
duke@1 1986 };
duke@1 1987 // </editor-fold>
duke@1 1988
duke@1 1989 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1990 /**
duke@1 1991 * Returns true iff the first signature is a <em>sub
duke@1 1992 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 1993 * relation.
duke@1 1994 *
jjh@972 1995 * @jls section 8.4.2.
duke@1 1996 * @see #overrideEquivalent(Type t, Type s)
duke@1 1997 * @param t first signature (possibly raw).
duke@1 1998 * @param s second signature (could be subjected to erasure).
duke@1 1999 * @return true if t is a sub signature of s.
duke@1 2000 */
duke@1 2001 public boolean isSubSignature(Type t, Type s) {
mcimadamore@907 2002 return isSubSignature(t, s, true);
mcimadamore@907 2003 }
mcimadamore@907 2004
mcimadamore@907 2005 public boolean isSubSignature(Type t, Type s, boolean strict) {
mcimadamore@907 2006 return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
duke@1 2007 }
duke@1 2008
duke@1 2009 /**
duke@1 2010 * Returns true iff these signatures are related by <em>override
duke@1 2011 * equivalence</em>. This is the natural extension of
duke@1 2012 * isSubSignature to an equivalence relation.
duke@1 2013 *
jjh@972 2014 * @jls section 8.4.2.
duke@1 2015 * @see #isSubSignature(Type t, Type s)
duke@1 2016 * @param t a signature (possible raw, could be subjected to
duke@1 2017 * erasure).
duke@1 2018 * @param s a signature (possible raw, could be subjected to
duke@1 2019 * erasure).
duke@1 2020 * @return true if either argument is a sub signature of the other.
duke@1 2021 */
duke@1 2022 public boolean overrideEquivalent(Type t, Type s) {
duke@1 2023 return hasSameArgs(t, s) ||
duke@1 2024 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 2025 }
duke@1 2026
mcimadamore@673 2027 // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
mcimadamore@673 2028 class ImplementationCache {
mcimadamore@673 2029
mcimadamore@673 2030 private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
mcimadamore@673 2031 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
mcimadamore@673 2032
mcimadamore@673 2033 class Entry {
mcimadamore@673 2034 final MethodSymbol cachedImpl;
mcimadamore@673 2035 final Filter<Symbol> implFilter;
mcimadamore@673 2036 final boolean checkResult;
mcimadamore@877 2037 final int prevMark;
mcimadamore@673 2038
mcimadamore@673 2039 public Entry(MethodSymbol cachedImpl,
mcimadamore@673 2040 Filter<Symbol> scopeFilter,
mcimadamore@877 2041 boolean checkResult,
mcimadamore@877 2042 int prevMark) {
mcimadamore@673 2043 this.cachedImpl = cachedImpl;
mcimadamore@673 2044 this.implFilter = scopeFilter;
mcimadamore@673 2045 this.checkResult = checkResult;
mcimadamore@877 2046 this.prevMark = prevMark;
mcimadamore@673 2047 }
mcimadamore@673 2048
mcimadamore@877 2049 boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
mcimadamore@673 2050 return this.implFilter == scopeFilter &&
mcimadamore@877 2051 this.checkResult == checkResult &&
mcimadamore@877 2052 this.prevMark == mark;
mcimadamore@673 2053 }
mcimadamore@341 2054 }
mcimadamore@673 2055
mcimadamore@858 2056 MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@673 2057 SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
mcimadamore@673 2058 Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
mcimadamore@673 2059 if (cache == null) {
mcimadamore@673 2060 cache = new HashMap<TypeSymbol, Entry>();
mcimadamore@673 2061 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
mcimadamore@673 2062 }
mcimadamore@673 2063 Entry e = cache.get(origin);
mcimadamore@1015 2064 CompoundScope members = membersClosure(origin.type, true);
mcimadamore@673 2065 if (e == null ||
mcimadamore@877 2066 !e.matches(implFilter, checkResult, members.getMark())) {
mcimadamore@877 2067 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
mcimadamore@877 2068 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
mcimadamore@673 2069 return impl;
mcimadamore@673 2070 }
mcimadamore@673 2071 else {
mcimadamore@673 2072 return e.cachedImpl;
mcimadamore@673 2073 }
mcimadamore@673 2074 }
mcimadamore@673 2075
mcimadamore@877 2076 private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@877 2077 for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
mcimadamore@341 2078 while (t.tag == TYPEVAR)
mcimadamore@341 2079 t = t.getUpperBound();
mcimadamore@341 2080 TypeSymbol c = t.tsym;
mcimadamore@673 2081 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
mcimadamore@341 2082 e.scope != null;
mcimadamore@780 2083 e = e.next(implFilter)) {
mcimadamore@673 2084 if (e.sym != null &&
mcimadamore@877 2085 e.sym.overrides(ms, origin, Types.this, checkResult))
mcimadamore@673 2086 return (MethodSymbol)e.sym;
mcimadamore@341 2087 }
mcimadamore@341 2088 }
mcimadamore@673 2089 return null;
mcimadamore@341 2090 }
mcimadamore@341 2091 }
mcimadamore@341 2092
mcimadamore@673 2093 private ImplementationCache implCache = new ImplementationCache();
mcimadamore@673 2094
mcimadamore@858 2095 public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@858 2096 return implCache.get(ms, origin, checkResult, implFilter);
mcimadamore@673 2097 }
mcimadamore@673 2098 // </editor-fold>
mcimadamore@673 2099
mcimadamore@858 2100 // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
mcimadamore@1015 2101 class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
mcimadamore@1015 2102
mcimadamore@1015 2103 private WeakHashMap<TypeSymbol, Entry> _map =
mcimadamore@1015 2104 new WeakHashMap<TypeSymbol, Entry>();
mcimadamore@1015 2105
mcimadamore@1015 2106 class Entry {
mcimadamore@1015 2107 final boolean skipInterfaces;
mcimadamore@1015 2108 final CompoundScope compoundScope;
mcimadamore@1015 2109
mcimadamore@1015 2110 public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
mcimadamore@1015 2111 this.skipInterfaces = skipInterfaces;
mcimadamore@1015 2112 this.compoundScope = compoundScope;
mcimadamore@1015 2113 }
mcimadamore@1015 2114
mcimadamore@1015 2115 boolean matches(boolean skipInterfaces) {
mcimadamore@1015 2116 return this.skipInterfaces == skipInterfaces;
mcimadamore@1015 2117 }
mcimadamore@1015 2118 }
mcimadamore@1015 2119
mcimadamore@1015 2120 /** members closure visitor methods **/
mcimadamore@1015 2121
mcimadamore@1015 2122 public CompoundScope visitType(Type t, Boolean skipInterface) {
mcimadamore@858 2123 return null;
mcimadamore@858 2124 }
mcimadamore@858 2125
mcimadamore@858 2126 @Override
mcimadamore@1015 2127 public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
mcimadamore@858 2128 ClassSymbol csym = (ClassSymbol)t.tsym;
mcimadamore@1015 2129 Entry e = _map.get(csym);
mcimadamore@1015 2130 if (e == null || !e.matches(skipInterface)) {
mcimadamore@877 2131 CompoundScope membersClosure = new CompoundScope(csym);
mcimadamore@1015 2132 if (!skipInterface) {
mcimadamore@1015 2133 for (Type i : interfaces(t)) {
mcimadamore@1015 2134 membersClosure.addSubScope(visit(i, skipInterface));
mcimadamore@1015 2135 }
mcimadamore@858 2136 }
mcimadamore@1015 2137 membersClosure.addSubScope(visit(supertype(t), skipInterface));
mcimadamore@877 2138 membersClosure.addSubScope(csym.members());
mcimadamore@1015 2139 e = new Entry(skipInterface, membersClosure);
mcimadamore@1015 2140 _map.put(csym, e);
mcimadamore@858 2141 }
mcimadamore@1015 2142 return e.compoundScope;
mcimadamore@858 2143 }
mcimadamore@858 2144
mcimadamore@858 2145 @Override
mcimadamore@1015 2146 public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
mcimadamore@1015 2147 return visit(t.getUpperBound(), skipInterface);
mcimadamore@858 2148 }
mcimadamore@1015 2149 }
mcimadamore@1015 2150
mcimadamore@1015 2151 private MembersClosureCache membersCache = new MembersClosureCache();
mcimadamore@1015 2152
mcimadamore@1015 2153 public CompoundScope membersClosure(Type site, boolean skipInterface) {
mcimadamore@1015 2154 return membersCache.visit(site, skipInterface);
mcimadamore@1015 2155 }
mcimadamore@858 2156 // </editor-fold>
mcimadamore@858 2157
duke@1 2158 /**
duke@1 2159 * Does t have the same arguments as s? It is assumed that both
duke@1 2160 * types are (possibly polymorphic) method types. Monomorphic
duke@1 2161 * method types "have the same arguments", if their argument lists
duke@1 2162 * are equal. Polymorphic method types "have the same arguments",
duke@1 2163 * if they have the same arguments after renaming all type
duke@1 2164 * variables of one to corresponding type variables in the other,
duke@1 2165 * where correspondence is by position in the type parameter list.
duke@1 2166 */
duke@1 2167 public boolean hasSameArgs(Type t, Type s) {
mcimadamore@907 2168 return hasSameArgs(t, s, true);
mcimadamore@907 2169 }
mcimadamore@907 2170
mcimadamore@907 2171 public boolean hasSameArgs(Type t, Type s, boolean strict) {
mcimadamore@907 2172 return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
mcimadamore@907 2173 }
mcimadamore@907 2174
mcimadamore@907 2175 private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
duke@1 2176 return hasSameArgs.visit(t, s);
duke@1 2177 }
duke@1 2178 // where
mcimadamore@907 2179 private class HasSameArgs extends TypeRelation {
mcimadamore@907 2180
mcimadamore@907 2181 boolean strict;
mcimadamore@907 2182
mcimadamore@907 2183 public HasSameArgs(boolean strict) {
mcimadamore@907 2184 this.strict = strict;
mcimadamore@907 2185 }
duke@1 2186
duke@1 2187 public Boolean visitType(Type t, Type s) {
duke@1 2188 throw new AssertionError();
duke@1 2189 }
duke@1 2190
duke@1 2191 @Override
duke@1 2192 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 2193 return s.tag == METHOD
duke@1 2194 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 2195 }
duke@1 2196
duke@1 2197 @Override
duke@1 2198 public Boolean visitForAll(ForAll t, Type s) {
duke@1 2199 if (s.tag != FORALL)
mcimadamore@907 2200 return strict ? false : visitMethodType(t.asMethodType(), s);
duke@1 2201
duke@1 2202 ForAll forAll = (ForAll)s;
duke@1 2203 return hasSameBounds(t, forAll)
duke@1 2204 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 2205 }
duke@1 2206
duke@1 2207 @Override
duke@1 2208 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 2209 return false;
duke@1 2210 }
duke@1 2211 };
mcimadamore@907 2212
mcimadamore@907 2213 TypeRelation hasSameArgs_strict = new HasSameArgs(true);
mcimadamore@907 2214 TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
mcimadamore@907 2215
duke@1 2216 // </editor-fold>
duke@1 2217
duke@1 2218 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 2219 public List<Type> subst(List<Type> ts,
duke@1 2220 List<Type> from,
duke@1 2221 List<Type> to) {
duke@1 2222 return new Subst(from, to).subst(ts);
duke@1 2223 }
duke@1 2224
duke@1 2225 /**
duke@1 2226 * Substitute all occurrences of a type in `from' with the
duke@1 2227 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 2228 * from the right: If lists have different length, discard leading
duke@1 2229 * elements of the longer list.
duke@1 2230 */
duke@1 2231 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 2232 return new Subst(from, to).subst(t);
duke@1 2233 }
duke@1 2234
duke@1 2235 private class Subst extends UnaryVisitor<Type> {
duke@1 2236 List<Type> from;
duke@1 2237 List<Type> to;
duke@1 2238
duke@1 2239 public Subst(List<Type> from, List<Type> to) {
duke@1 2240 int fromLength = from.length();
duke@1 2241 int toLength = to.length();
duke@1 2242 while (fromLength > toLength) {
duke@1 2243 fromLength--;
duke@1 2244 from = from.tail;
duke@1 2245 }
duke@1 2246 while (fromLength < toLength) {
duke@1 2247 toLength--;
duke@1 2248 to = to.tail;
duke@1 2249 }
duke@1 2250 this.from = from;
duke@1 2251 this.to = to;
duke@1 2252 }
duke@1 2253
duke@1 2254 Type subst(Type t) {
duke@1 2255 if (from.tail == null)
duke@1 2256 return t;
duke@1 2257 else
duke@1 2258 return visit(t);
mcimadamore@238 2259 }
duke@1 2260
duke@1 2261 List<Type> subst(List<Type> ts) {
duke@1 2262 if (from.tail == null)
duke@1 2263 return ts;
duke@1 2264 boolean wild = false;
duke@1 2265 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2266 Type head1 = subst(ts.head);
duke@1 2267 List<Type> tail1 = subst(ts.tail);
duke@1 2268 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2269 return tail1.prepend(head1);
duke@1 2270 }
duke@1 2271 return ts;
duke@1 2272 }
duke@1 2273
duke@1 2274 public Type visitType(Type t, Void ignored) {
duke@1 2275 return t;
duke@1 2276 }
duke@1 2277
duke@1 2278 @Override
duke@1 2279 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2280 List<Type> argtypes = subst(t.argtypes);
duke@1 2281 Type restype = subst(t.restype);
duke@1 2282 List<Type> thrown = subst(t.thrown);
duke@1 2283 if (argtypes == t.argtypes &&
duke@1 2284 restype == t.restype &&
duke@1 2285 thrown == t.thrown)
duke@1 2286 return t;
duke@1 2287 else
duke@1 2288 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2289 }
duke@1 2290
duke@1 2291 @Override
duke@1 2292 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2293 for (List<Type> from = this.from, to = this.to;
duke@1 2294 from.nonEmpty();
duke@1 2295 from = from.tail, to = to.tail) {
duke@1 2296 if (t == from.head) {
duke@1 2297 return to.head.withTypeVar(t);
duke@1 2298 }
duke@1 2299 }
duke@1 2300 return t;
duke@1 2301 }
duke@1 2302
duke@1 2303 @Override
duke@1 2304 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2305 if (!t.isCompound()) {
duke@1 2306 List<Type> typarams = t.getTypeArguments();
duke@1 2307 List<Type> typarams1 = subst(typarams);
duke@1 2308 Type outer = t.getEnclosingType();
duke@1 2309 Type outer1 = subst(outer);
duke@1 2310 if (typarams1 == typarams && outer1 == outer)
duke@1 2311 return t;
duke@1 2312 else
duke@1 2313 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2314 } else {
duke@1 2315 Type st = subst(supertype(t));
duke@1 2316 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2317 if (st == supertype(t) && is == interfaces(t))
duke@1 2318 return t;
duke@1 2319 else
duke@1 2320 return makeCompoundType(is.prepend(st));
duke@1 2321 }
duke@1 2322 }
duke@1 2323
duke@1 2324 @Override
duke@1 2325 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2326 Type bound = t.type;
duke@1 2327 if (t.kind != BoundKind.UNBOUND)
duke@1 2328 bound = subst(bound);
duke@1 2329 if (bound == t.type) {
duke@1 2330 return t;
duke@1 2331 } else {
duke@1 2332 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2333 bound = upperBound(bound);
duke@1 2334 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2335 }
duke@1 2336 }
duke@1 2337
duke@1 2338 @Override
duke@1 2339 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2340 Type elemtype = subst(t.elemtype);
duke@1 2341 if (elemtype == t.elemtype)
duke@1 2342 return t;
duke@1 2343 else
mcimadamore@996 2344 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2345 }
duke@1 2346
duke@1 2347 @Override
duke@1 2348 public Type visitForAll(ForAll t, Void ignored) {
mcimadamore@846 2349 if (Type.containsAny(to, t.tvars)) {
mcimadamore@846 2350 //perform alpha-renaming of free-variables in 't'
mcimadamore@846 2351 //if 'to' types contain variables that are free in 't'
mcimadamore@846 2352 List<Type> freevars = newInstances(t.tvars);
mcimadamore@846 2353 t = new ForAll(freevars,
mcimadamore@846 2354 Types.this.subst(t.qtype, t.tvars, freevars));
mcimadamore@846 2355 }
duke@1 2356 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2357 Type qtype1 = subst(t.qtype);
duke@1 2358 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2359 return t;
duke@1 2360 } else if (tvars1 == t.tvars) {
duke@1 2361 return new ForAll(tvars1, qtype1);
duke@1 2362 } else {
duke@1 2363 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2364 }
duke@1 2365 }
duke@1 2366
duke@1 2367 @Override
duke@1 2368 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2369 return t;
duke@1 2370 }
duke@1 2371 }
duke@1 2372
duke@1 2373 public List<Type> substBounds(List<Type> tvars,
duke@1 2374 List<Type> from,
duke@1 2375 List<Type> to) {
duke@1 2376 if (tvars.isEmpty())
duke@1 2377 return tvars;
duke@1 2378 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2379 boolean changed = false;
duke@1 2380 // calculate new bounds
duke@1 2381 for (Type t : tvars) {
duke@1 2382 TypeVar tv = (TypeVar) t;
duke@1 2383 Type bound = subst(tv.bound, from, to);
duke@1 2384 if (bound != tv.bound)
duke@1 2385 changed = true;
duke@1 2386 newBoundsBuf.append(bound);
duke@1 2387 }
duke@1 2388 if (!changed)
duke@1 2389 return tvars;
duke@1 2390 ListBuffer<Type> newTvars = lb();
duke@1 2391 // create new type variables without bounds
duke@1 2392 for (Type t : tvars) {
duke@1 2393 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2394 }
duke@1 2395 // the new bounds should use the new type variables in place
duke@1 2396 // of the old
duke@1 2397 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2398 from = tvars;
duke@1 2399 to = newTvars.toList();
duke@1 2400 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2401 newBounds.head = subst(newBounds.head, from, to);
duke@1 2402 }
duke@1 2403 newBounds = newBoundsBuf.toList();
duke@1 2404 // set the bounds of new type variables to the new bounds
duke@1 2405 for (Type t : newTvars.toList()) {
duke@1 2406 TypeVar tv = (TypeVar) t;
duke@1 2407 tv.bound = newBounds.head;
duke@1 2408 newBounds = newBounds.tail;
duke@1 2409 }
duke@1 2410 return newTvars.toList();
duke@1 2411 }
duke@1 2412
duke@1 2413 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2414 Type bound1 = subst(t.bound, from, to);
duke@1 2415 if (bound1 == t.bound)
duke@1 2416 return t;
mcimadamore@212 2417 else {
mcimadamore@212 2418 // create new type variable without bounds
mcimadamore@212 2419 TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
mcimadamore@212 2420 // the new bound should use the new type variable in place
mcimadamore@212 2421 // of the old
mcimadamore@212 2422 tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
mcimadamore@212 2423 return tv;
mcimadamore@212 2424 }
duke@1 2425 }
duke@1 2426 // </editor-fold>
duke@1 2427
duke@1 2428 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2429 /**
duke@1 2430 * Does t have the same bounds for quantified variables as s?
duke@1 2431 */
duke@1 2432 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2433 List<Type> l1 = t.tvars;
duke@1 2434 List<Type> l2 = s.tvars;
duke@1 2435 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2436 isSameType(l1.head.getUpperBound(),
duke@1 2437 subst(l2.head.getUpperBound(),
duke@1 2438 s.tvars,
duke@1 2439 t.tvars))) {
duke@1 2440 l1 = l1.tail;
duke@1 2441 l2 = l2.tail;
duke@1 2442 }
duke@1 2443 return l1.isEmpty() && l2.isEmpty();
duke@1 2444 }
duke@1 2445 // </editor-fold>
duke@1 2446
duke@1 2447 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2448 /** Create new vector of type variables from list of variables
duke@1 2449 * changing all recursive bounds from old to new list.
duke@1 2450 */
duke@1 2451 public List<Type> newInstances(List<Type> tvars) {
duke@1 2452 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2453 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2454 TypeVar tv = (TypeVar) l.head;
duke@1 2455 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2456 }
duke@1 2457 return tvars1;
duke@1 2458 }
duke@1 2459 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2460 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2461 };
duke@1 2462 // </editor-fold>
duke@1 2463
dlsmith@880 2464 public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
dlsmith@880 2465 return original.accept(methodWithParameters, newParams);
dlsmith@880 2466 }
dlsmith@880 2467 // where
dlsmith@880 2468 private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
dlsmith@880 2469 public Type visitType(Type t, List<Type> newParams) {
dlsmith@880 2470 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2471 }
dlsmith@880 2472 public Type visitMethodType(MethodType t, List<Type> newParams) {
dlsmith@880 2473 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
dlsmith@880 2474 }
dlsmith@880 2475 public Type visitForAll(ForAll t, List<Type> newParams) {
dlsmith@880 2476 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
dlsmith@880 2477 }
dlsmith@880 2478 };
dlsmith@880 2479
dlsmith@880 2480 public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
dlsmith@880 2481 return original.accept(methodWithThrown, newThrown);
dlsmith@880 2482 }
dlsmith@880 2483 // where
dlsmith@880 2484 private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
dlsmith@880 2485 public Type visitType(Type t, List<Type> newThrown) {
dlsmith@880 2486 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2487 }
dlsmith@880 2488 public Type visitMethodType(MethodType t, List<Type> newThrown) {
dlsmith@880 2489 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
dlsmith@880 2490 }
dlsmith@880 2491 public Type visitForAll(ForAll t, List<Type> newThrown) {
dlsmith@880 2492 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
dlsmith@880 2493 }
dlsmith@880 2494 };
dlsmith@880 2495
mcimadamore@950 2496 public Type createMethodTypeWithReturn(Type original, Type newReturn) {
mcimadamore@950 2497 return original.accept(methodWithReturn, newReturn);
mcimadamore@950 2498 }
mcimadamore@950 2499 // where
mcimadamore@950 2500 private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
mcimadamore@950 2501 public Type visitType(Type t, Type newReturn) {
mcimadamore@950 2502 throw new IllegalArgumentException("Not a method type: " + t);
mcimadamore@950 2503 }
mcimadamore@950 2504 public Type visitMethodType(MethodType t, Type newReturn) {
mcimadamore@950 2505 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
mcimadamore@950 2506 }
mcimadamore@950 2507 public Type visitForAll(ForAll t, Type newReturn) {
mcimadamore@950 2508 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
mcimadamore@950 2509 }
mcimadamore@950 2510 };
mcimadamore@950 2511
jjg@110 2512 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2513 public Type createErrorType(Type originalType) {
jjg@110 2514 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2515 }
jjg@110 2516
jjg@110 2517 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2518 return new ErrorType(c, originalType);
jjg@110 2519 }
jjg@110 2520
jjg@110 2521 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2522 return new ErrorType(name, container, originalType);
jjg@110 2523 }
jjg@110 2524 // </editor-fold>
jjg@110 2525
duke@1 2526 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2527 /**
duke@1 2528 * The rank of a class is the length of the longest path between
duke@1 2529 * the class and java.lang.Object in the class inheritance
duke@1 2530 * graph. Undefined for all but reference types.
duke@1 2531 */
duke@1 2532 public int rank(Type t) {
duke@1 2533 switch(t.tag) {
duke@1 2534 case CLASS: {
duke@1 2535 ClassType cls = (ClassType)t;
duke@1 2536 if (cls.rank_field < 0) {
duke@1 2537 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2538 if (fullname == names.java_lang_Object)
duke@1 2539 cls.rank_field = 0;
duke@1 2540 else {
duke@1 2541 int r = rank(supertype(cls));
duke@1 2542 for (List<Type> l = interfaces(cls);
duke@1 2543 l.nonEmpty();
duke@1 2544 l = l.tail) {
duke@1 2545 if (rank(l.head) > r)
duke@1 2546 r = rank(l.head);
duke@1 2547 }
duke@1 2548 cls.rank_field = r + 1;
duke@1 2549 }
duke@1 2550 }
duke@1 2551 return cls.rank_field;
duke@1 2552 }
duke@1 2553 case TYPEVAR: {
duke@1 2554 TypeVar tvar = (TypeVar)t;
duke@1 2555 if (tvar.rank_field < 0) {
duke@1 2556 int r = rank(supertype(tvar));
duke@1 2557 for (List<Type> l = interfaces(tvar);
duke@1 2558 l.nonEmpty();
duke@1 2559 l = l.tail) {
duke@1 2560 if (rank(l.head) > r) r = rank(l.head);
duke@1 2561 }
duke@1 2562 tvar.rank_field = r + 1;
duke@1 2563 }
duke@1 2564 return tvar.rank_field;
duke@1 2565 }
duke@1 2566 case ERROR:
duke@1 2567 return 0;
duke@1 2568 default:
duke@1 2569 throw new AssertionError();
duke@1 2570 }
duke@1 2571 }
duke@1 2572 // </editor-fold>
duke@1 2573
mcimadamore@121 2574 /**
mcimadamore@238 2575 * Helper method for generating a string representation of a given type
mcimadamore@121 2576 * accordingly to a given locale
mcimadamore@121 2577 */
mcimadamore@121 2578 public String toString(Type t, Locale locale) {
mcimadamore@238 2579 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2580 }
mcimadamore@121 2581
mcimadamore@121 2582 /**
mcimadamore@238 2583 * Helper method for generating a string representation of a given type
mcimadamore@121 2584 * accordingly to a given locale
mcimadamore@121 2585 */
mcimadamore@121 2586 public String toString(Symbol t, Locale locale) {
mcimadamore@238 2587 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2588 }
mcimadamore@121 2589
duke@1 2590 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2591 /**
duke@1 2592 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2593 *
mcimadamore@121 2594 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2595 * for localization
duke@1 2596 */
mcimadamore@121 2597 @Deprecated
duke@1 2598 public String toString(Type t) {
duke@1 2599 if (t.tag == FORALL) {
duke@1 2600 ForAll forAll = (ForAll)t;
duke@1 2601 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2602 }
duke@1 2603 return "" + t;
duke@1 2604 }
duke@1 2605 // where
duke@1 2606 private String typaramsString(List<Type> tvars) {
jjg@904 2607 StringBuilder s = new StringBuilder();
duke@1 2608 s.append('<');
duke@1 2609 boolean first = true;
duke@1 2610 for (Type t : tvars) {
duke@1 2611 if (!first) s.append(", ");
duke@1 2612 first = false;
duke@1 2613 appendTyparamString(((TypeVar)t), s);
duke@1 2614 }
duke@1 2615 s.append('>');
duke@1 2616 return s.toString();
duke@1 2617 }
jjg@904 2618 private void appendTyparamString(TypeVar t, StringBuilder buf) {
duke@1 2619 buf.append(t);
duke@1 2620 if (t.bound == null ||
duke@1 2621 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2622 return;
duke@1 2623 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2624 Type bound = t.bound;
duke@1 2625 if (!bound.isCompound()) {
duke@1 2626 buf.append(bound);
duke@1 2627 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2628 buf.append(supertype(t));
duke@1 2629 for (Type intf : interfaces(t)) {
duke@1 2630 buf.append('&');
duke@1 2631 buf.append(intf);
duke@1 2632 }
duke@1 2633 } else {
duke@1 2634 // No superclass was given in bounds.
duke@1 2635 // In this case, supertype is Object, erasure is first interface.
duke@1 2636 boolean first = true;
duke@1 2637 for (Type intf : interfaces(t)) {
duke@1 2638 if (!first) buf.append('&');
duke@1 2639 first = false;
duke@1 2640 buf.append(intf);
duke@1 2641 }
duke@1 2642 }
duke@1 2643 }
duke@1 2644 // </editor-fold>
duke@1 2645
duke@1 2646 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2647 /**
duke@1 2648 * A cache for closures.
duke@1 2649 *
duke@1 2650 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2651 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2652 * (that is, subclasses come first, arbitrary but fixed
duke@1 2653 * otherwise).
duke@1 2654 */
duke@1 2655 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2656
duke@1 2657 /**
duke@1 2658 * Returns the closure of a class or interface type.
duke@1 2659 */
duke@1 2660 public List<Type> closure(Type t) {
duke@1 2661 List<Type> cl = closureCache.get(t);
duke@1 2662 if (cl == null) {
duke@1 2663 Type st = supertype(t);
duke@1 2664 if (!t.isCompound()) {
duke@1 2665 if (st.tag == CLASS) {
duke@1 2666 cl = insert(closure(st), t);
duke@1 2667 } else if (st.tag == TYPEVAR) {
duke@1 2668 cl = closure(st).prepend(t);
duke@1 2669 } else {
duke@1 2670 cl = List.of(t);
duke@1 2671 }
duke@1 2672 } else {
duke@1 2673 cl = closure(supertype(t));
duke@1 2674 }
duke@1 2675 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2676 cl = union(cl, closure(l.head));
duke@1 2677 closureCache.put(t, cl);
duke@1 2678 }
duke@1 2679 return cl;
duke@1 2680 }
duke@1 2681
duke@1 2682 /**
duke@1 2683 * Insert a type in a closure
duke@1 2684 */
duke@1 2685 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2686 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2687 return cl.prepend(t);
duke@1 2688 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2689 return insert(cl.tail, t).prepend(cl.head);
duke@1 2690 } else {
duke@1 2691 return cl;
duke@1 2692 }
duke@1 2693 }
duke@1 2694
duke@1 2695 /**
duke@1 2696 * Form the union of two closures
duke@1 2697 */
duke@1 2698 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2699 if (cl1.isEmpty()) {
duke@1 2700 return cl2;
duke@1 2701 } else if (cl2.isEmpty()) {
duke@1 2702 return cl1;
duke@1 2703 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2704 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2705 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2706 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2707 } else {
duke@1 2708 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2709 }
duke@1 2710 }
duke@1 2711
duke@1 2712 /**
duke@1 2713 * Intersect two closures
duke@1 2714 */
duke@1 2715 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2716 if (cl1 == cl2)
duke@1 2717 return cl1;
duke@1 2718 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2719 return List.nil();
duke@1 2720 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2721 return intersect(cl1.tail, cl2);
duke@1 2722 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2723 return intersect(cl1, cl2.tail);
duke@1 2724 if (isSameType(cl1.head, cl2.head))
duke@1 2725 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2726 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2727 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2728 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2729 Type merge = merge(cl1.head,cl2.head);
duke@1 2730 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2731 }
duke@1 2732 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2733 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2734 }
duke@1 2735 return intersect(cl1.tail, cl2.tail);
duke@1 2736 }
duke@1 2737 // where
duke@1 2738 class TypePair {
duke@1 2739 final Type t1;
duke@1 2740 final Type t2;
duke@1 2741 TypePair(Type t1, Type t2) {
duke@1 2742 this.t1 = t1;
duke@1 2743 this.t2 = t2;
duke@1 2744 }
duke@1 2745 @Override
duke@1 2746 public int hashCode() {
jjg@507 2747 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
duke@1 2748 }
duke@1 2749 @Override
duke@1 2750 public boolean equals(Object obj) {
duke@1 2751 if (!(obj instanceof TypePair))
duke@1 2752 return false;
duke@1 2753 TypePair typePair = (TypePair)obj;
duke@1 2754 return isSameType(t1, typePair.t1)
duke@1 2755 && isSameType(t2, typePair.t2);
duke@1 2756 }
duke@1 2757 }
duke@1 2758 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2759 private Type merge(Type c1, Type c2) {
duke@1 2760 ClassType class1 = (ClassType) c1;
duke@1 2761 List<Type> act1 = class1.getTypeArguments();
duke@1 2762 ClassType class2 = (ClassType) c2;
duke@1 2763 List<Type> act2 = class2.getTypeArguments();
duke@1 2764 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2765 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2766
duke@1 2767 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2768 if (containsType(act1.head, act2.head)) {
duke@1 2769 merged.append(act1.head);
duke@1 2770 } else if (containsType(act2.head, act1.head)) {
duke@1 2771 merged.append(act2.head);
duke@1 2772 } else {
duke@1 2773 TypePair pair = new TypePair(c1, c2);
duke@1 2774 Type m;
duke@1 2775 if (mergeCache.add(pair)) {
duke@1 2776 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2777 upperBound(act2.head)),
duke@1 2778 BoundKind.EXTENDS,
duke@1 2779 syms.boundClass);
duke@1 2780 mergeCache.remove(pair);
duke@1 2781 } else {
duke@1 2782 m = new WildcardType(syms.objectType,
duke@1 2783 BoundKind.UNBOUND,
duke@1 2784 syms.boundClass);
duke@1 2785 }
duke@1 2786 merged.append(m.withTypeVar(typarams.head));
duke@1 2787 }
duke@1 2788 act1 = act1.tail;
duke@1 2789 act2 = act2.tail;
duke@1 2790 typarams = typarams.tail;
duke@1 2791 }
jjg@816 2792 Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2793 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2794 }
duke@1 2795
duke@1 2796 /**
duke@1 2797 * Return the minimum type of a closure, a compound type if no
duke@1 2798 * unique minimum exists.
duke@1 2799 */
duke@1 2800 private Type compoundMin(List<Type> cl) {
duke@1 2801 if (cl.isEmpty()) return syms.objectType;
duke@1 2802 List<Type> compound = closureMin(cl);
duke@1 2803 if (compound.isEmpty())
duke@1 2804 return null;
duke@1 2805 else if (compound.tail.isEmpty())
duke@1 2806 return compound.head;
duke@1 2807 else
duke@1 2808 return makeCompoundType(compound);
duke@1 2809 }
duke@1 2810
duke@1 2811 /**
duke@1 2812 * Return the minimum types of a closure, suitable for computing
duke@1 2813 * compoundMin or glb.
duke@1 2814 */
duke@1 2815 private List<Type> closureMin(List<Type> cl) {
duke@1 2816 ListBuffer<Type> classes = lb();
duke@1 2817 ListBuffer<Type> interfaces = lb();
duke@1 2818 while (!cl.isEmpty()) {
duke@1 2819 Type current = cl.head;
duke@1 2820 if (current.isInterface())
duke@1 2821 interfaces.append(current);
duke@1 2822 else
duke@1 2823 classes.append(current);
duke@1 2824 ListBuffer<Type> candidates = lb();
duke@1 2825 for (Type t : cl.tail) {
duke@1 2826 if (!isSubtypeNoCapture(current, t))
duke@1 2827 candidates.append(t);
duke@1 2828 }
duke@1 2829 cl = candidates.toList();
duke@1 2830 }
duke@1 2831 return classes.appendList(interfaces).toList();
duke@1 2832 }
duke@1 2833
duke@1 2834 /**
duke@1 2835 * Return the least upper bound of pair of types. if the lub does
duke@1 2836 * not exist return null.
duke@1 2837 */
duke@1 2838 public Type lub(Type t1, Type t2) {
duke@1 2839 return lub(List.of(t1, t2));
duke@1 2840 }
duke@1 2841
duke@1 2842 /**
duke@1 2843 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2844 * does not exist return the type of null (bottom).
duke@1 2845 */
duke@1 2846 public Type lub(List<Type> ts) {
duke@1 2847 final int ARRAY_BOUND = 1;
duke@1 2848 final int CLASS_BOUND = 2;
duke@1 2849 int boundkind = 0;
duke@1 2850 for (Type t : ts) {
duke@1 2851 switch (t.tag) {
duke@1 2852 case CLASS:
duke@1 2853 boundkind |= CLASS_BOUND;
duke@1 2854 break;
duke@1 2855 case ARRAY:
duke@1 2856 boundkind |= ARRAY_BOUND;
duke@1 2857 break;
duke@1 2858 case TYPEVAR:
duke@1 2859 do {
duke@1 2860 t = t.getUpperBound();
duke@1 2861 } while (t.tag == TYPEVAR);
duke@1 2862 if (t.tag == ARRAY) {
duke@1 2863 boundkind |= ARRAY_BOUND;
duke@1 2864 } else {
duke@1 2865 boundkind |= CLASS_BOUND;
duke@1 2866 }
duke@1 2867 break;
duke@1 2868 default:
duke@1 2869 if (t.isPrimitive())
mcimadamore@5 2870 return syms.errType;
duke@1 2871 }
duke@1 2872 }
duke@1 2873 switch (boundkind) {
duke@1 2874 case 0:
duke@1 2875 return syms.botType;
duke@1 2876
duke@1 2877 case ARRAY_BOUND:
duke@1 2878 // calculate lub(A[], B[])
duke@1 2879 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2880 for (Type t : elements) {
duke@1 2881 if (t.isPrimitive()) {
duke@1 2882 // if a primitive type is found, then return
duke@1 2883 // arraySuperType unless all the types are the
duke@1 2884 // same
duke@1 2885 Type first = ts.head;
duke@1 2886 for (Type s : ts.tail) {
duke@1 2887 if (!isSameType(first, s)) {
duke@1 2888 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2889 return arraySuperType();
duke@1 2890 }
duke@1 2891 }
duke@1 2892 // all the array types are the same, return one
duke@1 2893 // lub(int[], int[]) is int[]
duke@1 2894 return first;
duke@1 2895 }
duke@1 2896 }
duke@1 2897 // lub(A[], B[]) is lub(A, B)[]
duke@1 2898 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2899
duke@1 2900 case CLASS_BOUND:
duke@1 2901 // calculate lub(A, B)
duke@1 2902 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2903 ts = ts.tail;
jjg@816 2904 Assert.check(!ts.isEmpty());
mcimadamore@896 2905 //step 1 - compute erased candidate set (EC)
mcimadamore@896 2906 List<Type> cl = erasedSupertypes(ts.head);
duke@1 2907 for (Type t : ts.tail) {
duke@1 2908 if (t.tag == CLASS || t.tag == TYPEVAR)
mcimadamore@896 2909 cl = intersect(cl, erasedSupertypes(t));
duke@1 2910 }
mcimadamore@896 2911 //step 2 - compute minimal erased candidate set (MEC)
mcimadamore@896 2912 List<Type> mec = closureMin(cl);
mcimadamore@896 2913 //step 3 - for each element G in MEC, compute lci(Inv(G))
mcimadamore@896 2914 List<Type> candidates = List.nil();
mcimadamore@896 2915 for (Type erasedSupertype : mec) {
mcimadamore@896 2916 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
mcimadamore@896 2917 for (Type t : ts) {
mcimadamore@896 2918 lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
mcimadamore@896 2919 }
mcimadamore@896 2920 candidates = candidates.appendList(lci);
mcimadamore@896 2921 }
mcimadamore@896 2922 //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
mcimadamore@896 2923 //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
mcimadamore@896 2924 return compoundMin(candidates);
duke@1 2925
duke@1 2926 default:
duke@1 2927 // calculate lub(A, B[])
duke@1 2928 List<Type> classes = List.of(arraySuperType());
duke@1 2929 for (Type t : ts) {
duke@1 2930 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2931 classes = classes.prepend(t);
duke@1 2932 }
duke@1 2933 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2934 return lub(classes);
duke@1 2935 }
duke@1 2936 }
duke@1 2937 // where
mcimadamore@896 2938 List<Type> erasedSupertypes(Type t) {
mcimadamore@896 2939 ListBuffer<Type> buf = lb();
mcimadamore@896 2940 for (Type sup : closure(t)) {
mcimadamore@896 2941 if (sup.tag == TYPEVAR) {
mcimadamore@896 2942 buf.append(sup);
mcimadamore@896 2943 } else {
mcimadamore@896 2944 buf.append(erasure(sup));
mcimadamore@896 2945 }
mcimadamore@896 2946 }
mcimadamore@896 2947 return buf.toList();
mcimadamore@896 2948 }
mcimadamore@896 2949
duke@1 2950 private Type arraySuperType = null;
duke@1 2951 private Type arraySuperType() {
duke@1 2952 // initialized lazily to avoid problems during compiler startup
duke@1 2953 if (arraySuperType == null) {
duke@1 2954 synchronized (this) {
duke@1 2955 if (arraySuperType == null) {
duke@1 2956 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2957 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2958 syms.cloneableType),
duke@1 2959 syms.objectType);
duke@1 2960 }
duke@1 2961 }
duke@1 2962 }
duke@1 2963 return arraySuperType;
duke@1 2964 }
duke@1 2965 // </editor-fold>
duke@1 2966
duke@1 2967 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
mcimadamore@210 2968 public Type glb(List<Type> ts) {
mcimadamore@210 2969 Type t1 = ts.head;
mcimadamore@210 2970 for (Type t2 : ts.tail) {
mcimadamore@210 2971 if (t1.isErroneous())
mcimadamore@210 2972 return t1;
mcimadamore@210 2973 t1 = glb(t1, t2);
mcimadamore@210 2974 }
mcimadamore@210 2975 return t1;
mcimadamore@210 2976 }
mcimadamore@210 2977 //where
duke@1 2978 public Type glb(Type t, Type s) {
duke@1 2979 if (s == null)
duke@1 2980 return t;
mcimadamore@753 2981 else if (t.isPrimitive() || s.isPrimitive())
mcimadamore@753 2982 return syms.errType;
duke@1 2983 else if (isSubtypeNoCapture(t, s))
duke@1 2984 return t;
duke@1 2985 else if (isSubtypeNoCapture(s, t))
duke@1 2986 return s;
duke@1 2987
duke@1 2988 List<Type> closure = union(closure(t), closure(s));
duke@1 2989 List<Type> bounds = closureMin(closure);
duke@1 2990
duke@1 2991 if (bounds.isEmpty()) { // length == 0
duke@1 2992 return syms.objectType;
duke@1 2993 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 2994 return bounds.head;
duke@1 2995 } else { // length > 1
duke@1 2996 int classCount = 0;
duke@1 2997 for (Type bound : bounds)
duke@1 2998 if (!bound.isInterface())
duke@1 2999 classCount++;
duke@1 3000 if (classCount > 1)
jjg@110 3001 return createErrorType(t);
duke@1 3002 }
duke@1 3003 return makeCompoundType(bounds);
duke@1 3004 }
duke@1 3005 // </editor-fold>
duke@1 3006
duke@1 3007 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 3008 /**
duke@1 3009 * Compute a hash code on a type.
duke@1 3010 */
duke@1 3011 public static int hashCode(Type t) {
duke@1 3012 return hashCode.visit(t);
duke@1 3013 }
duke@1 3014 // where
duke@1 3015 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 3016
duke@1 3017 public Integer visitType(Type t, Void ignored) {
duke@1 3018 return t.tag;
duke@1 3019 }
duke@1 3020
duke@1 3021 @Override
duke@1 3022 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 3023 int result = visit(t.getEnclosingType());
duke@1 3024 result *= 127;
duke@1 3025 result += t.tsym.flatName().hashCode();
duke@1 3026 for (Type s : t.getTypeArguments()) {
duke@1 3027 result *= 127;
duke@1 3028 result += visit(s);
duke@1 3029 }
duke@1 3030 return result;
duke@1 3031 }
duke@1 3032
duke@1 3033 @Override
duke@1 3034 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 3035 int result = t.kind.hashCode();
duke@1 3036 if (t.type != null) {
duke@1 3037 result *= 127;
duke@1 3038 result += visit(t.type);
duke@1 3039 }
duke@1 3040 return result;
duke@1 3041 }
duke@1 3042
duke@1 3043 @Override
duke@1 3044 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 3045 return visit(t.elemtype) + 12;
duke@1 3046 }
duke@1 3047
duke@1 3048 @Override
duke@1 3049 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 3050 return System.identityHashCode(t.tsym);
duke@1 3051 }
duke@1 3052
duke@1 3053 @Override
duke@1 3054 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 3055 return System.identityHashCode(t);
duke@1 3056 }
duke@1 3057
duke@1 3058 @Override
duke@1 3059 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 3060 return 0;
duke@1 3061 }
duke@1 3062 };
duke@1 3063 // </editor-fold>
duke@1 3064
duke@1 3065 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 3066 /**
duke@1 3067 * Does t have a result that is a subtype of the result type of s,
duke@1 3068 * suitable for covariant returns? It is assumed that both types
duke@1 3069 * are (possibly polymorphic) method types. Monomorphic method
duke@1 3070 * types are handled in the obvious way. Polymorphic method types
duke@1 3071 * require renaming all type variables of one to corresponding
duke@1 3072 * type variables in the other, where correspondence is by
duke@1 3073 * position in the type parameter list. */
duke@1 3074 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 3075 List<Type> tvars = t.getTypeArguments();
duke@1 3076 List<Type> svars = s.getTypeArguments();
duke@1 3077 Type tres = t.getReturnType();
duke@1 3078 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 3079 return covariantReturnType(tres, sres, warner);
duke@1 3080 }
duke@1 3081
duke@1 3082 /**
duke@1 3083 * Return-Type-Substitutable.
jjh@972 3084 * @jls section 8.4.5
duke@1 3085 */
duke@1 3086 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 3087 if (hasSameArgs(r1, r2))
tbell@202 3088 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 3089 else
duke@1 3090 return covariantReturnType(r1.getReturnType(),
tbell@202 3091 erasure(r2.getReturnType()),
tbell@202 3092 Warner.noWarnings);
tbell@202 3093 }
tbell@202 3094
tbell@202 3095 public boolean returnTypeSubstitutable(Type r1,
tbell@202 3096 Type r2, Type r2res,
tbell@202 3097 Warner warner) {
tbell@202 3098 if (isSameType(r1.getReturnType(), r2res))
tbell@202 3099 return true;
tbell@202 3100 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
tbell@202 3101 return false;
tbell@202 3102
tbell@202 3103 if (hasSameArgs(r1, r2))
tbell@202 3104 return covariantReturnType(r1.getReturnType(), r2res, warner);
jjg@984 3105 if (!allowCovariantReturns)
tbell@202 3106 return false;
tbell@202 3107 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
tbell@202 3108 return true;
tbell@202 3109 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
tbell@202 3110 return false;
mcimadamore@795 3111 warner.warn(LintCategory.UNCHECKED);
tbell@202 3112 return true;
duke@1 3113 }
duke@1 3114
duke@1 3115 /**
duke@1 3116 * Is t an appropriate return type in an overrider for a
duke@1 3117 * method that returns s?
duke@1 3118 */
duke@1 3119 public boolean covariantReturnType(Type t, Type s, Warner warner) {
tbell@202 3120 return
tbell@202 3121 isSameType(t, s) ||
jjg@984 3122 allowCovariantReturns &&
duke@1 3123 !t.isPrimitive() &&
tbell@202 3124 !s.isPrimitive() &&
tbell@202 3125 isAssignable(t, s, warner);
duke@1 3126 }
duke@1 3127 // </editor-fold>
duke@1 3128
duke@1 3129 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 3130 /**
duke@1 3131 * Return the class that boxes the given primitive.
duke@1 3132 */
duke@1 3133 public ClassSymbol boxedClass(Type t) {
duke@1 3134 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 3135 }
duke@1 3136
duke@1 3137 /**
mcimadamore@753 3138 * Return the boxed type if 't' is primitive, otherwise return 't' itself.
mcimadamore@753 3139 */
mcimadamore@753 3140 public Type boxedTypeOrType(Type t) {
mcimadamore@753 3141 return t.isPrimitive() ?
mcimadamore@753 3142 boxedClass(t).type :
mcimadamore@753 3143 t;
mcimadamore@753 3144 }
mcimadamore@753 3145
mcimadamore@753 3146 /**
duke@1 3147 * Return the primitive type corresponding to a boxed type.
duke@1 3148 */
duke@1 3149 public Type unboxedType(Type t) {
duke@1 3150 if (allowBoxing) {
duke@1 3151 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 3152 Name box = syms.boxedName[i];
duke@1 3153 if (box != null &&
duke@1 3154 asSuper(t, reader.enterClass(box)) != null)
duke@1 3155 return syms.typeOfTag[i];
duke@1 3156 }
duke@1 3157 }
duke@1 3158 return Type.noType;
duke@1 3159 }
duke@1 3160 // </editor-fold>
duke@1 3161
duke@1 3162 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 3163 /*
jjh@972 3164 * JLS 5.1.10 Capture Conversion:
duke@1 3165 *
duke@1 3166 * Let G name a generic type declaration with n formal type
duke@1 3167 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 3168 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 3169 * where, for 1 <= i <= n:
duke@1 3170 *
duke@1 3171 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 3172 * Si is a fresh type variable whose upper bound is
duke@1 3173 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 3174 * type.
duke@1 3175 *
duke@1 3176 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 3177 * then Si is a fresh type variable whose upper bound is
duke@1 3178 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 3179 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 3180 * a compile-time error if for any two classes (not interfaces)
duke@1 3181 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 3182 *
duke@1 3183 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 3184 * then Si is a fresh type variable whose upper bound is
duke@1 3185 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 3186 *
duke@1 3187 * + Otherwise, Si = Ti.
duke@1 3188 *
duke@1 3189 * Capture conversion on any type other than a parameterized type
duke@1 3190 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 3191 * conversions never require a special action at run time and
duke@1 3192 * therefore never throw an exception at run time.
duke@1 3193 *
duke@1 3194 * Capture conversion is not applied recursively.
duke@1 3195 */
duke@1 3196 /**
jjh@972 3197 * Capture conversion as specified by the JLS.
duke@1 3198 */
mcimadamore@299 3199
mcimadamore@299 3200 public List<Type> capture(List<Type> ts) {
mcimadamore@299 3201 List<Type> buf = List.nil();
mcimadamore@299 3202 for (Type t : ts) {
mcimadamore@299 3203 buf = buf.prepend(capture(t));
mcimadamore@299 3204 }
mcimadamore@299 3205 return buf.reverse();
mcimadamore@299 3206 }
duke@1 3207 public Type capture(Type t) {
duke@1 3208 if (t.tag != CLASS)
duke@1 3209 return t;
mcimadamore@637 3210 if (t.getEnclosingType() != Type.noType) {
mcimadamore@637 3211 Type capturedEncl = capture(t.getEnclosingType());
mcimadamore@637 3212 if (capturedEncl != t.getEnclosingType()) {
mcimadamore@637 3213 Type type1 = memberType(capturedEncl, t.tsym);
mcimadamore@637 3214 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
mcimadamore@637 3215 }
mcimadamore@637 3216 }
duke@1 3217 ClassType cls = (ClassType)t;
duke@1 3218 if (cls.isRaw() || !cls.isParameterized())
duke@1 3219 return cls;
duke@1 3220
duke@1 3221 ClassType G = (ClassType)cls.asElement().asType();
duke@1 3222 List<Type> A = G.getTypeArguments();
duke@1 3223 List<Type> T = cls.getTypeArguments();
duke@1 3224 List<Type> S = freshTypeVariables(T);
duke@1 3225
duke@1 3226 List<Type> currentA = A;
duke@1 3227 List<Type> currentT = T;
duke@1 3228 List<Type> currentS = S;
duke@1 3229 boolean captured = false;
duke@1 3230 while (!currentA.isEmpty() &&
duke@1 3231 !currentT.isEmpty() &&
duke@1 3232 !currentS.isEmpty()) {
duke@1 3233 if (currentS.head != currentT.head) {
duke@1 3234 captured = true;
duke@1 3235 WildcardType Ti = (WildcardType)currentT.head;
duke@1 3236 Type Ui = currentA.head.getUpperBound();
duke@1 3237 CapturedType Si = (CapturedType)currentS.head;
duke@1 3238 if (Ui == null)
duke@1 3239 Ui = syms.objectType;
duke@1 3240 switch (Ti.kind) {
duke@1 3241 case UNBOUND:
duke@1 3242 Si.bound = subst(Ui, A, S);
duke@1 3243 Si.lower = syms.botType;
duke@1 3244 break;
duke@1 3245 case EXTENDS:
duke@1 3246 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 3247 Si.lower = syms.botType;
duke@1 3248 break;
duke@1 3249 case SUPER:
duke@1 3250 Si.bound = subst(Ui, A, S);
duke@1 3251 Si.lower = Ti.getSuperBound();
duke@1 3252 break;
duke@1 3253 }
duke@1 3254 if (Si.bound == Si.lower)
duke@1 3255 currentS.head = Si.bound;
duke@1 3256 }
duke@1 3257 currentA = currentA.tail;
duke@1 3258 currentT = currentT.tail;
duke@1 3259 currentS = currentS.tail;
duke@1 3260 }
duke@1 3261 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 3262 return erasure(t); // some "rare" type involved
duke@1 3263
duke@1 3264 if (captured)
duke@1 3265 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 3266 else
duke@1 3267 return t;
duke@1 3268 }
duke@1 3269 // where
mcimadamore@238 3270 public List<Type> freshTypeVariables(List<Type> types) {
duke@1 3271 ListBuffer<Type> result = lb();
duke@1 3272 for (Type t : types) {
duke@1 3273 if (t.tag == WILDCARD) {
duke@1 3274 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 3275 if (bound == null)
duke@1 3276 bound = syms.objectType;
duke@1 3277 result.append(new CapturedType(capturedName,
duke@1 3278 syms.noSymbol,
duke@1 3279 bound,
duke@1 3280 syms.botType,
duke@1 3281 (WildcardType)t));
duke@1 3282 } else {
duke@1 3283 result.append(t);
duke@1 3284 }
duke@1 3285 }
duke@1 3286 return result.toList();
duke@1 3287 }
duke@1 3288 // </editor-fold>
duke@1 3289
duke@1 3290 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 3291 private List<Type> upperBounds(List<Type> ss) {
duke@1 3292 if (ss.isEmpty()) return ss;
duke@1 3293 Type head = upperBound(ss.head);
duke@1 3294 List<Type> tail = upperBounds(ss.tail);
duke@1 3295 if (head != ss.head || tail != ss.tail)
duke@1 3296 return tail.prepend(head);
duke@1 3297 else
duke@1 3298 return ss;
duke@1 3299 }
duke@1 3300
duke@1 3301 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 3302 // We are casting from type $from$ to type $to$, which are
duke@1 3303 // non-final unrelated types. This method
duke@1 3304 // tries to reject a cast by transferring type parameters
duke@1 3305 // from $to$ to $from$ by common superinterfaces.
duke@1 3306 boolean reverse = false;
duke@1 3307 Type target = to;
duke@1 3308 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3309 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3310 reverse = true;
duke@1 3311 to = from;
duke@1 3312 from = target;
duke@1 3313 }
duke@1 3314 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 3315 boolean giveWarning = commonSupers.isEmpty();
duke@1 3316 // The arguments to the supers could be unified here to
duke@1 3317 // get a more accurate analysis
duke@1 3318 while (commonSupers.nonEmpty()) {
duke@1 3319 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 3320 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 3321 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3322 return false;
duke@1 3323 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 3324 commonSupers = commonSupers.tail;
duke@1 3325 }
mcimadamore@187 3326 if (giveWarning && !isReifiable(reverse ? from : to))
mcimadamore@795 3327 warn.warn(LintCategory.UNCHECKED);
jjg@984 3328 if (!allowCovariantReturns)
duke@1 3329 // reject if there is a common method signature with
duke@1 3330 // incompatible return types.
duke@1 3331 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3332 return true;
duke@1 3333 }
duke@1 3334
duke@1 3335 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3336 // We are casting from type $from$ to type $to$, which are
duke@1 3337 // unrelated types one of which is final and the other of
duke@1 3338 // which is an interface. This method
duke@1 3339 // tries to reject a cast by transferring type parameters
duke@1 3340 // from the final class to the interface.
duke@1 3341 boolean reverse = false;
duke@1 3342 Type target = to;
duke@1 3343 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3344 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3345 reverse = true;
duke@1 3346 to = from;
duke@1 3347 from = target;
duke@1 3348 }
jjg@816 3349 Assert.check((from.tsym.flags() & FINAL) != 0);
duke@1 3350 Type t1 = asSuper(from, to.tsym);
duke@1 3351 if (t1 == null) return false;
duke@1 3352 Type t2 = to;
duke@1 3353 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3354 return false;
jjg@984 3355 if (!allowCovariantReturns)
duke@1 3356 // reject if there is a common method signature with
duke@1 3357 // incompatible return types.
duke@1 3358 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3359 if (!isReifiable(target) &&
duke@1 3360 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
mcimadamore@795 3361 warn.warn(LintCategory.UNCHECKED);
duke@1 3362 return true;
duke@1 3363 }
duke@1 3364
duke@1 3365 private boolean giveWarning(Type from, Type to) {
mcimadamore@235 3366 Type subFrom = asSub(from, to.tsym);
mcimadamore@235 3367 return to.isParameterized() &&
mcimadamore@235 3368 (!(isUnbounded(to) ||
mcimadamore@235 3369 isSubtype(from, to) ||
mcimadamore@736 3370 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
duke@1 3371 }
duke@1 3372
duke@1 3373 private List<Type> superClosure(Type t, Type s) {
duke@1 3374 List<Type> cl = List.nil();
duke@1 3375 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3376 if (isSubtype(s, erasure(l.head))) {
duke@1 3377 cl = insert(cl, l.head);
duke@1 3378 } else {
duke@1 3379 cl = union(cl, superClosure(l.head, s));
duke@1 3380 }
duke@1 3381 }
duke@1 3382 return cl;
duke@1 3383 }
duke@1 3384
duke@1 3385 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3386 return
duke@1 3387 isSameType(t, s) || // shortcut
duke@1 3388 containsType(t, s) && containsType(s, t);
duke@1 3389 }
duke@1 3390
mcimadamore@138 3391 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3392 /**
duke@1 3393 * Adapt a type by computing a substitution which maps a source
duke@1 3394 * type to a target type.
duke@1 3395 *
duke@1 3396 * @param source the source type
duke@1 3397 * @param target the target type
duke@1 3398 * @param from the type variables of the computed substitution
duke@1 3399 * @param to the types of the computed substitution.
duke@1 3400 */
duke@1 3401 public void adapt(Type source,
duke@1 3402 Type target,
duke@1 3403 ListBuffer<Type> from,
duke@1 3404 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3405 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3406 }
mcimadamore@138 3407
mcimadamore@138 3408 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3409
mcimadamore@138 3410 ListBuffer<Type> from;
mcimadamore@138 3411 ListBuffer<Type> to;
mcimadamore@138 3412 Map<Symbol,Type> mapping;
mcimadamore@138 3413
mcimadamore@138 3414 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3415 this.from = from;
mcimadamore@138 3416 this.to = to;
mcimadamore@138 3417 mapping = new HashMap<Symbol,Type>();
duke@1 3418 }
mcimadamore@138 3419
mcimadamore@138 3420 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3421 visit(source, target);
mcimadamore@138 3422 List<Type> fromList = from.toList();
mcimadamore@138 3423 List<Type> toList = to.toList();
mcimadamore@138 3424 while (!fromList.isEmpty()) {
mcimadamore@138 3425 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3426 if (toList.head != val)
mcimadamore@138 3427 toList.head = val;
mcimadamore@138 3428 fromList = fromList.tail;
mcimadamore@138 3429 toList = toList.tail;
mcimadamore@138 3430 }
mcimadamore@138 3431 }
mcimadamore@138 3432
mcimadamore@138 3433 @Override
mcimadamore@138 3434 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3435 if (target.tag == CLASS)
mcimadamore@138 3436 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3437 return null;
mcimadamore@138 3438 }
mcimadamore@138 3439
mcimadamore@138 3440 @Override
mcimadamore@138 3441 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3442 if (target.tag == ARRAY)
mcimadamore@138 3443 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3444 return null;
mcimadamore@138 3445 }
mcimadamore@138 3446
mcimadamore@138 3447 @Override
mcimadamore@138 3448 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3449 if (source.isExtendsBound())
mcimadamore@138 3450 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3451 else if (source.isSuperBound())
mcimadamore@138 3452 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3453 return null;
mcimadamore@138 3454 }
mcimadamore@138 3455
mcimadamore@138 3456 @Override
mcimadamore@138 3457 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3458 // Check to see if there is
mcimadamore@138 3459 // already a mapping for $source$, in which case
mcimadamore@138 3460 // the old mapping will be merged with the new
mcimadamore@138 3461 Type val = mapping.get(source.tsym);
mcimadamore@138 3462 if (val != null) {
mcimadamore@138 3463 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3464 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3465 ? target : val;
mcimadamore@138 3466 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3467 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3468 ? val : target;
mcimadamore@138 3469 } else if (!isSameType(val, target)) {
mcimadamore@138 3470 throw new AdaptFailure();
duke@1 3471 }
mcimadamore@138 3472 } else {
mcimadamore@138 3473 val = target;
mcimadamore@138 3474 from.append(source);
mcimadamore@138 3475 to.append(target);
mcimadamore@138 3476 }
mcimadamore@138 3477 mapping.put(source.tsym, val);
mcimadamore@138 3478 return null;
mcimadamore@138 3479 }
mcimadamore@138 3480
mcimadamore@138 3481 @Override
mcimadamore@138 3482 public Void visitType(Type source, Type target) {
mcimadamore@138 3483 return null;
mcimadamore@138 3484 }
mcimadamore@138 3485
mcimadamore@138 3486 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3487
mcimadamore@138 3488 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3489 TypePair pair = new TypePair(source, target);
mcimadamore@138 3490 if (cache.add(pair)) {
mcimadamore@138 3491 try {
mcimadamore@138 3492 visit(source, target);
mcimadamore@138 3493 } finally {
mcimadamore@138 3494 cache.remove(pair);
duke@1 3495 }
duke@1 3496 }
duke@1 3497 }
mcimadamore@138 3498
mcimadamore@138 3499 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3500 if (source.length() == target.length()) {
mcimadamore@138 3501 while (source.nonEmpty()) {
mcimadamore@138 3502 adaptRecursive(source.head, target.head);
mcimadamore@138 3503 source = source.tail;
mcimadamore@138 3504 target = target.tail;
mcimadamore@138 3505 }
duke@1 3506 }
duke@1 3507 }
duke@1 3508 }
duke@1 3509
mcimadamore@138 3510 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3511 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3512 }
mcimadamore@138 3513
duke@1 3514 private void adaptSelf(Type t,
duke@1 3515 ListBuffer<Type> from,
duke@1 3516 ListBuffer<Type> to) {
duke@1 3517 try {
duke@1 3518 //if (t.tsym.type != t)
duke@1 3519 adapt(t.tsym.type, t, from, to);
duke@1 3520 } catch (AdaptFailure ex) {
duke@1 3521 // Adapt should never fail calculating a mapping from
duke@1 3522 // t.tsym.type to t as there can be no merge problem.
duke@1 3523 throw new AssertionError(ex);
duke@1 3524 }
duke@1 3525 }
mcimadamore@138 3526 // </editor-fold>
duke@1 3527
duke@1 3528 /**
duke@1 3529 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3530 * type to wildcards (existential quantifiers). This is used to
duke@1 3531 * determine if a cast is allowed. For example, if high is true
duke@1 3532 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3533 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3534 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3535 * List<Integer>} with a warning.
duke@1 3536 * @param t a type
duke@1 3537 * @param high if true return an upper bound; otherwise a lower
duke@1 3538 * bound
duke@1 3539 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3540 * otherwise rewrite all type variables
duke@1 3541 * @return the type rewritten with wildcards (existential
duke@1 3542 * quantifiers) only
duke@1 3543 */
duke@1 3544 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
mcimadamore@640 3545 return new Rewriter(high, rewriteTypeVars).visit(t);
mcimadamore@157 3546 }
mcimadamore@157 3547
mcimadamore@157 3548 class Rewriter extends UnaryVisitor<Type> {
mcimadamore@157 3549
mcimadamore@157 3550 boolean high;
mcimadamore@157 3551 boolean rewriteTypeVars;
mcimadamore@157 3552
mcimadamore@157 3553 Rewriter(boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3554 this.high = high;
mcimadamore@157 3555 this.rewriteTypeVars = rewriteTypeVars;
mcimadamore@157 3556 }
mcimadamore@157 3557
mcimadamore@640 3558 @Override
mcimadamore@640 3559 public Type visitClassType(ClassType t, Void s) {
mcimadamore@157 3560 ListBuffer<Type> rewritten = new ListBuffer<Type>();
mcimadamore@157 3561 boolean changed = false;
mcimadamore@640 3562 for (Type arg : t.allparams()) {
mcimadamore@157 3563 Type bound = visit(arg);
mcimadamore@157 3564 if (arg != bound) {
mcimadamore@157 3565 changed = true;
mcimadamore@157 3566 }
mcimadamore@157 3567 rewritten.append(bound);
duke@1 3568 }
mcimadamore@157 3569 if (changed)
mcimadamore@640 3570 return subst(t.tsym.type,
mcimadamore@640 3571 t.tsym.type.allparams(),
mcimadamore@640 3572 rewritten.toList());
mcimadamore@157 3573 else
mcimadamore@157 3574 return t;
duke@1 3575 }
mcimadamore@157 3576
mcimadamore@157 3577 public Type visitType(Type t, Void s) {
mcimadamore@157 3578 return high ? upperBound(t) : lowerBound(t);
mcimadamore@157 3579 }
mcimadamore@157 3580
mcimadamore@157 3581 @Override
mcimadamore@157 3582 public Type visitCapturedType(CapturedType t, Void s) {
mcimadamore@640 3583 Type bound = visitWildcardType(t.wildcard, null);
mcimadamore@640 3584 return (bound.contains(t)) ?
mcimadamore@779 3585 erasure(bound) :
mcimadamore@779 3586 bound;
mcimadamore@157 3587 }
mcimadamore@157 3588
mcimadamore@157 3589 @Override
mcimadamore@157 3590 public Type visitTypeVar(TypeVar t, Void s) {
mcimadamore@640 3591 if (rewriteTypeVars) {
mcimadamore@640 3592 Type bound = high ?
mcimadamore@640 3593 (t.bound.contains(t) ?
mcimadamore@779 3594 erasure(t.bound) :
mcimadamore@640 3595 visit(t.bound)) :
mcimadamore@640 3596 syms.botType;
mcimadamore@640 3597 return rewriteAsWildcardType(bound, t);
mcimadamore@640 3598 }
mcimadamore@157 3599 else
mcimadamore@157 3600 return t;
mcimadamore@157 3601 }
mcimadamore@157 3602
mcimadamore@157 3603 @Override
mcimadamore@157 3604 public Type visitWildcardType(WildcardType t, Void s) {
mcimadamore@157 3605 Type bound = high ? t.getExtendsBound() :
mcimadamore@157 3606 t.getSuperBound();
mcimadamore@157 3607 if (bound == null)
mcimadamore@640 3608 bound = high ? syms.objectType : syms.botType;
mcimadamore@640 3609 return rewriteAsWildcardType(visit(bound), t.bound);
mcimadamore@640 3610 }
mcimadamore@640 3611
mcimadamore@640 3612 private Type rewriteAsWildcardType(Type bound, TypeVar formal) {
mcimadamore@640 3613 return high ?
mcimadamore@640 3614 makeExtendsWildcard(B(bound), formal) :
mcimadamore@640 3615 makeSuperWildcard(B(bound), formal);
mcimadamore@640 3616 }
mcimadamore@640 3617
mcimadamore@640 3618 Type B(Type t) {
mcimadamore@640 3619 while (t.tag == WILDCARD) {
mcimadamore@640 3620 WildcardType w = (WildcardType)t;
mcimadamore@640 3621 t = high ?
mcimadamore@640 3622 w.getExtendsBound() :
mcimadamore@640 3623 w.getSuperBound();
mcimadamore@640 3624 if (t == null) {
mcimadamore@640 3625 t = high ? syms.objectType : syms.botType;
mcimadamore@640 3626 }
mcimadamore@640 3627 }
mcimadamore@640 3628 return t;
mcimadamore@157 3629 }
duke@1 3630 }
duke@1 3631
mcimadamore@640 3632
duke@1 3633 /**
duke@1 3634 * Create a wildcard with the given upper (extends) bound; create
duke@1 3635 * an unbounded wildcard if bound is Object.
duke@1 3636 *
duke@1 3637 * @param bound the upper bound
duke@1 3638 * @param formal the formal type parameter that will be
duke@1 3639 * substituted by the wildcard
duke@1 3640 */
duke@1 3641 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3642 if (bound == syms.objectType) {
duke@1 3643 return new WildcardType(syms.objectType,
duke@1 3644 BoundKind.UNBOUND,
duke@1 3645 syms.boundClass,
duke@1 3646 formal);
duke@1 3647 } else {
duke@1 3648 return new WildcardType(bound,
duke@1 3649 BoundKind.EXTENDS,
duke@1 3650 syms.boundClass,
duke@1 3651 formal);
duke@1 3652 }
duke@1 3653 }
duke@1 3654
duke@1 3655 /**
duke@1 3656 * Create a wildcard with the given lower (super) bound; create an
duke@1 3657 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3658 *
duke@1 3659 * @param bound the lower bound
duke@1 3660 * @param formal the formal type parameter that will be
duke@1 3661 * substituted by the wildcard
duke@1 3662 */
duke@1 3663 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3664 if (bound.tag == BOT) {
duke@1 3665 return new WildcardType(syms.objectType,
duke@1 3666 BoundKind.UNBOUND,
duke@1 3667 syms.boundClass,
duke@1 3668 formal);
duke@1 3669 } else {
duke@1 3670 return new WildcardType(bound,
duke@1 3671 BoundKind.SUPER,
duke@1 3672 syms.boundClass,
duke@1 3673 formal);
duke@1 3674 }
duke@1 3675 }
duke@1 3676
duke@1 3677 /**
duke@1 3678 * A wrapper for a type that allows use in sets.
duke@1 3679 */
duke@1 3680 class SingletonType {
duke@1 3681 final Type t;
duke@1 3682 SingletonType(Type t) {
duke@1 3683 this.t = t;
duke@1 3684 }
duke@1 3685 public int hashCode() {
jjg@507 3686 return Types.hashCode(t);
duke@1 3687 }
duke@1 3688 public boolean equals(Object obj) {
duke@1 3689 return (obj instanceof SingletonType) &&
duke@1 3690 isSameType(t, ((SingletonType)obj).t);
duke@1 3691 }
duke@1 3692 public String toString() {
duke@1 3693 return t.toString();
duke@1 3694 }
duke@1 3695 }
duke@1 3696 // </editor-fold>
duke@1 3697
duke@1 3698 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3699 /**
duke@1 3700 * A default visitor for types. All visitor methods except
duke@1 3701 * visitType are implemented by delegating to visitType. Concrete
duke@1 3702 * subclasses must provide an implementation of visitType and can
duke@1 3703 * override other methods as needed.
duke@1 3704 *
duke@1 3705 * @param <R> the return type of the operation implemented by this
duke@1 3706 * visitor; use Void if no return type is needed.
duke@1 3707 * @param <S> the type of the second argument (the first being the
duke@1 3708 * type itself) of the operation implemented by this visitor; use
duke@1 3709 * Void if a second argument is not needed.
duke@1 3710 */
duke@1 3711 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3712 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3713 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3714 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3715 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3716 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3717 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3718 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3719 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3720 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3721 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3722 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3723 }
duke@1 3724
duke@1 3725 /**
mcimadamore@121 3726 * A default visitor for symbols. All visitor methods except
mcimadamore@121 3727 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 3728 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 3729 * override other methods as needed.
mcimadamore@121 3730 *
mcimadamore@121 3731 * @param <R> the return type of the operation implemented by this
mcimadamore@121 3732 * visitor; use Void if no return type is needed.
mcimadamore@121 3733 * @param <S> the type of the second argument (the first being the
mcimadamore@121 3734 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 3735 * Void if a second argument is not needed.
mcimadamore@121 3736 */
mcimadamore@121 3737 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 3738 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 3739 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3740 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3741 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3742 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3743 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3744 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3745 }
mcimadamore@121 3746
mcimadamore@121 3747 /**
duke@1 3748 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3749 * captured wildcards, for-all types (generic methods), and
duke@1 3750 * undetermined type variables (part of inference) are hidden.
duke@1 3751 * Captured wildcards are hidden by treating them as type
duke@1 3752 * variables and the rest are hidden by visiting their qtypes.
duke@1 3753 *
duke@1 3754 * @param <R> the return type of the operation implemented by this
duke@1 3755 * visitor; use Void if no return type is needed.
duke@1 3756 * @param <S> the type of the second argument (the first being the
duke@1 3757 * type itself) of the operation implemented by this visitor; use
duke@1 3758 * Void if a second argument is not needed.
duke@1 3759 */
duke@1 3760 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3761 @Override
duke@1 3762 public R visitCapturedType(CapturedType t, S s) {
duke@1 3763 return visitTypeVar(t, s);
duke@1 3764 }
duke@1 3765 @Override
duke@1 3766 public R visitForAll(ForAll t, S s) {
duke@1 3767 return visit(t.qtype, s);
duke@1 3768 }
duke@1 3769 @Override
duke@1 3770 public R visitUndetVar(UndetVar t, S s) {
duke@1 3771 return visit(t.qtype, s);
duke@1 3772 }
duke@1 3773 }
duke@1 3774
duke@1 3775 /**
duke@1 3776 * A plain relation on types. That is a 2-ary function on the
duke@1 3777 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3778 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3779 */
duke@1 3780 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3781
duke@1 3782 /**
duke@1 3783 * A convenience visitor for implementing operations that only
duke@1 3784 * require one argument (the type itself), that is, unary
duke@1 3785 * operations.
duke@1 3786 *
duke@1 3787 * @param <R> the return type of the operation implemented by this
duke@1 3788 * visitor; use Void if no return type is needed.
duke@1 3789 */
duke@1 3790 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3791 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3792 }
duke@1 3793
duke@1 3794 /**
duke@1 3795 * A visitor for implementing a mapping from types to types. The
duke@1 3796 * default behavior of this class is to implement the identity
duke@1 3797 * mapping (mapping a type to itself). This can be overridden in
duke@1 3798 * subclasses.
duke@1 3799 *
duke@1 3800 * @param <S> the type of the second argument (the first being the
duke@1 3801 * type itself) of this mapping; use Void if a second argument is
duke@1 3802 * not needed.
duke@1 3803 */
duke@1 3804 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3805 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3806 public Type visitType(Type t, S s) { return t; }
duke@1 3807 }
duke@1 3808 // </editor-fold>
jjg@657 3809
jjg@657 3810
jjg@657 3811 // <editor-fold defaultstate="collapsed" desc="Annotation support">
jjg@657 3812
jjg@657 3813 public RetentionPolicy getRetention(Attribute.Compound a) {
jjg@657 3814 RetentionPolicy vis = RetentionPolicy.CLASS; // the default
jjg@657 3815 Attribute.Compound c = a.type.tsym.attribute(syms.retentionType.tsym);
jjg@657 3816 if (c != null) {
jjg@657 3817 Attribute value = c.member(names.value);
jjg@657 3818 if (value != null && value instanceof Attribute.Enum) {
jjg@657 3819 Name levelName = ((Attribute.Enum)value).value.name;
jjg@657 3820 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
jjg@657 3821 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
jjg@657 3822 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
jjg@657 3823 else ;// /* fail soft */ throw new AssertionError(levelName);
jjg@657 3824 }
jjg@657 3825 }
jjg@657 3826 return vis;
jjg@657 3827 }
jjg@657 3828 // </editor-fold>
duke@1 3829 }

mercurial