src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Mon, 19 Aug 2019 12:47:38 +0200

author
shade
date
Mon, 19 Aug 2019 12:47:38 +0200
changeset 9862
f162232da105
parent 9861
a248d0be1309
child 9931
fd44df5e3bc3
permissions
-rw-r--r--

8229873: 8229401 broke jdk8u-jfr-incubator
Reviewed-by: neugens

mgerdin@7208 1 /*
mlarsson@7686 2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
sjohanss@7118 28 #include "gc_implementation/g1/g1AllocationContext.hpp"
sjohanss@7118 29 #include "gc_implementation/g1/g1Allocator.hpp"
stefank@2314 30 #include "gc_implementation/g1/concurrentMark.hpp"
sla@5237 31 #include "gc_implementation/g1/evacuationInfo.hpp"
tonyp@2715 32 #include "gc_implementation/g1/g1AllocRegion.hpp"
tschatzl@6926 33 #include "gc_implementation/g1/g1BiasedArray.hpp"
tonyp@2975 34 #include "gc_implementation/g1/g1HRPrinter.hpp"
tschatzl@7651 35 #include "gc_implementation/g1/g1InCSetState.hpp"
sla@5237 36 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
mgerdin@5811 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
sla@5237 38 #include "gc_implementation/g1/g1YCTypes.hpp"
tschatzl@7091 39 #include "gc_implementation/g1/heapRegionManager.hpp"
brutisso@6385 40 #include "gc_implementation/g1/heapRegionSet.hpp"
shade@9862 41 #include "gc_implementation/shared/gcHeapSummary.hpp"
jmasa@2821 42 #include "gc_implementation/shared/hSpaceCounters.hpp"
johnc@3982 43 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
stefank@2314 44 #include "memory/barrierSet.hpp"
stefank@2314 45 #include "memory/memRegion.hpp"
stefank@2314 46 #include "memory/sharedHeap.hpp"
brutisso@4579 47 #include "utilities/stack.hpp"
stefank@2314 48
ysr@777 49 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 50 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 51 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 52 // heap subsets that will yield large amounts of garbage.
ysr@777 53
johnc@5548 54 // Forward declarations
ysr@777 55 class HeapRegion;
tonyp@2493 56 class HRRSCleanupTask;
ysr@777 57 class GenerationSpec;
ysr@777 58 class OopsInHeapRegionClosure;
coleenp@4037 59 class G1KlassScanClosure;
ysr@777 60 class G1ScanHeapEvacClosure;
ysr@777 61 class ObjectClosure;
ysr@777 62 class SpaceClosure;
ysr@777 63 class CompactibleSpaceClosure;
ysr@777 64 class Space;
ysr@777 65 class G1CollectorPolicy;
ysr@777 66 class GenRemSet;
ysr@777 67 class G1RemSet;
ysr@777 68 class HeapRegionRemSetIterator;
ysr@777 69 class ConcurrentMark;
ysr@777 70 class ConcurrentMarkThread;
ysr@777 71 class ConcurrentG1Refine;
sla@5237 72 class ConcurrentGCTimer;
jmasa@2821 73 class GenerationCounters;
sla@5237 74 class STWGCTimer;
sla@5237 75 class G1NewTracer;
sla@5237 76 class G1OldTracer;
sla@5237 77 class EvacuationFailedInfo;
johnc@5548 78 class nmethod;
ysr@777 79
zgu@3900 80 typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
zgu@3900 81 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
ysr@777 82
johnc@1242 83 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 84 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 85
zgu@3900 86 class YoungList : public CHeapObj<mtGC> {
ysr@777 87 private:
ysr@777 88 G1CollectedHeap* _g1h;
ysr@777 89
ysr@777 90 HeapRegion* _head;
ysr@777 91
johnc@1829 92 HeapRegion* _survivor_head;
johnc@1829 93 HeapRegion* _survivor_tail;
johnc@1829 94
johnc@1829 95 HeapRegion* _curr;
johnc@1829 96
tonyp@3713 97 uint _length;
tonyp@3713 98 uint _survivor_length;
ysr@777 99
ysr@777 100 size_t _last_sampled_rs_lengths;
ysr@777 101 size_t _sampled_rs_lengths;
ysr@777 102
johnc@1829 103 void empty_list(HeapRegion* list);
ysr@777 104
ysr@777 105 public:
ysr@777 106 YoungList(G1CollectedHeap* g1h);
ysr@777 107
johnc@1829 108 void push_region(HeapRegion* hr);
johnc@1829 109 void add_survivor_region(HeapRegion* hr);
johnc@1829 110
johnc@1829 111 void empty_list();
johnc@1829 112 bool is_empty() { return _length == 0; }
tonyp@3713 113 uint length() { return _length; }
tonyp@3713 114 uint survivor_length() { return _survivor_length; }
ysr@777 115
tonyp@2961 116 // Currently we do not keep track of the used byte sum for the
tonyp@2961 117 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 118 // do so. When we'll eventually replace the young list with
tonyp@2961 119 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 120 // we'll report the more accurate information then.
tonyp@2961 121 size_t eden_used_bytes() {
tonyp@2961 122 assert(length() >= survivor_length(), "invariant");
tonyp@3713 123 return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 124 }
tonyp@2961 125 size_t survivor_used_bytes() {
tonyp@3713 126 return (size_t) survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 127 }
tonyp@2961 128
ysr@777 129 void rs_length_sampling_init();
ysr@777 130 bool rs_length_sampling_more();
ysr@777 131 void rs_length_sampling_next();
ysr@777 132
ysr@777 133 void reset_sampled_info() {
ysr@777 134 _last_sampled_rs_lengths = 0;
ysr@777 135 }
ysr@777 136 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 137
ysr@777 138 // for development purposes
ysr@777 139 void reset_auxilary_lists();
johnc@1829 140 void clear() { _head = NULL; _length = 0; }
johnc@1829 141
johnc@1829 142 void clear_survivors() {
johnc@1829 143 _survivor_head = NULL;
johnc@1829 144 _survivor_tail = NULL;
johnc@1829 145 _survivor_length = 0;
johnc@1829 146 }
johnc@1829 147
ysr@777 148 HeapRegion* first_region() { return _head; }
ysr@777 149 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 150 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 151
ysr@777 152 // debugging
ysr@777 153 bool check_list_well_formed();
johnc@1829 154 bool check_list_empty(bool check_sample = true);
ysr@777 155 void print();
ysr@777 156 };
ysr@777 157
johnc@5548 158 // The G1 STW is alive closure.
johnc@5548 159 // An instance is embedded into the G1CH and used as the
johnc@5548 160 // (optional) _is_alive_non_header closure in the STW
johnc@5548 161 // reference processor. It is also extensively used during
johnc@5548 162 // reference processing during STW evacuation pauses.
johnc@5548 163 class G1STWIsAliveClosure: public BoolObjectClosure {
johnc@5548 164 G1CollectedHeap* _g1;
johnc@5548 165 public:
johnc@5548 166 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
johnc@5548 167 bool do_object_b(oop p);
johnc@5548 168 };
johnc@5548 169
ysr@777 170 class RefineCardTableEntryClosure;
johnc@3175 171
tschatzl@7051 172 class G1RegionMappingChangedListener : public G1MappingChangedListener {
tschatzl@7051 173 private:
tschatzl@7051 174 void reset_from_card_cache(uint start_idx, size_t num_regions);
tschatzl@7051 175 public:
tschatzl@7257 176 virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
tschatzl@7051 177 };
tschatzl@7051 178
ysr@777 179 class G1CollectedHeap : public SharedHeap {
stefank@6992 180 friend class VM_CollectForMetadataAllocation;
ysr@777 181 friend class VM_G1CollectForAllocation;
ysr@777 182 friend class VM_G1CollectFull;
ysr@777 183 friend class VM_G1IncCollectionPause;
ysr@777 184 friend class VMStructs;
tonyp@2715 185 friend class MutatorAllocRegion;
tonyp@3028 186 friend class SurvivorGCAllocRegion;
tonyp@3028 187 friend class OldGCAllocRegion;
sjohanss@7118 188 friend class G1Allocator;
sjohanss@7118 189 friend class G1DefaultAllocator;
sjohanss@7118 190 friend class G1ResManAllocator;
ysr@777 191
ysr@777 192 // Closures used in implementation.
stefank@6992 193 template <G1Barrier barrier, G1Mark do_mark_object>
brutisso@3690 194 friend class G1ParCopyClosure;
ysr@777 195 friend class G1IsAliveClosure;
ysr@777 196 friend class G1EvacuateFollowersClosure;
ysr@777 197 friend class G1ParScanThreadState;
ysr@777 198 friend class G1ParScanClosureSuper;
ysr@777 199 friend class G1ParEvacuateFollowersClosure;
ysr@777 200 friend class G1ParTask;
sjohanss@7118 201 friend class G1ParGCAllocator;
sjohanss@7118 202 friend class G1DefaultParGCAllocator;
ysr@777 203 friend class G1FreeGarbageRegionClosure;
ysr@777 204 friend class RefineCardTableEntryClosure;
ysr@777 205 friend class G1PrepareCompactClosure;
ysr@777 206 friend class RegionSorter;
tonyp@2472 207 friend class RegionResetter;
ysr@777 208 friend class CountRCClosure;
ysr@777 209 friend class EvacPopObjClosure;
apetrusenko@1231 210 friend class G1ParCleanupCTTask;
ysr@777 211
tschatzl@7019 212 friend class G1FreeHumongousRegionClosure;
ysr@777 213 // Other related classes.
ysr@777 214 friend class G1MarkSweep;
ysr@777 215
tschatzl@7673 216 // Testing classes.
tschatzl@7673 217 friend class G1CheckCSetFastTableClosure;
tschatzl@7673 218
ysr@777 219 private:
ysr@777 220 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 221 static G1CollectedHeap* _g1h;
ysr@777 222
tonyp@1377 223 static size_t _humongous_object_threshold_in_words;
tonyp@1377 224
tonyp@2472 225 // The secondary free list which contains regions that have been
tschatzl@7050 226 // freed up during the cleanup process. This will be appended to
tschatzl@7050 227 // the master free list when appropriate.
brutisso@6385 228 FreeRegionList _secondary_free_list;
tonyp@2472 229
tonyp@3268 230 // It keeps track of the old regions.
brutisso@6385 231 HeapRegionSet _old_set;
tonyp@3268 232
tonyp@2472 233 // It keeps track of the humongous regions.
brutisso@6385 234 HeapRegionSet _humongous_set;
ysr@777 235
tschatzl@7019 236 void eagerly_reclaim_humongous_regions();
tschatzl@7019 237
ysr@777 238 // The number of regions we could create by expansion.
tonyp@3713 239 uint _expansion_regions;
ysr@777 240
ysr@777 241 // The block offset table for the G1 heap.
ysr@777 242 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 243
tonyp@3268 244 // Tears down the region sets / lists so that they are empty and the
tonyp@3268 245 // regions on the heap do not belong to a region set / list. The
tonyp@3268 246 // only exception is the humongous set which we leave unaltered. If
tonyp@3268 247 // free_list_only is true, it will only tear down the master free
tonyp@3268 248 // list. It is called before a Full GC (free_list_only == false) or
tonyp@3268 249 // before heap shrinking (free_list_only == true).
tonyp@3268 250 void tear_down_region_sets(bool free_list_only);
tonyp@3268 251
tonyp@3268 252 // Rebuilds the region sets / lists so that they are repopulated to
tonyp@3268 253 // reflect the contents of the heap. The only exception is the
tonyp@3268 254 // humongous set which was not torn down in the first place. If
tonyp@3268 255 // free_list_only is true, it will only rebuild the master free
tonyp@3268 256 // list. It is called after a Full GC (free_list_only == false) or
tonyp@3268 257 // after heap shrinking (free_list_only == true).
tonyp@3268 258 void rebuild_region_sets(bool free_list_only);
ysr@777 259
tschatzl@7051 260 // Callback for region mapping changed events.
tschatzl@7051 261 G1RegionMappingChangedListener _listener;
tschatzl@7051 262
ysr@777 263 // The sequence of all heap regions in the heap.
tschatzl@7091 264 HeapRegionManager _hrm;
ysr@777 265
sjohanss@7118 266 // Class that handles the different kinds of allocations.
sjohanss@7118 267 G1Allocator* _allocator;
tonyp@3028 268
jcoomes@7159 269 // Statistics for each allocation context
jcoomes@7159 270 AllocationContextStats _allocation_context_stats;
jcoomes@7159 271
johnc@3982 272 // PLAB sizing policy for survivors.
johnc@3982 273 PLABStats _survivor_plab_stats;
johnc@3982 274
johnc@3982 275 // PLAB sizing policy for tenured objects.
johnc@3982 276 PLABStats _old_plab_stats;
johnc@3982 277
tonyp@3410 278 // It specifies whether we should attempt to expand the heap after a
tonyp@3410 279 // region allocation failure. If heap expansion fails we set this to
tonyp@3410 280 // false so that we don't re-attempt the heap expansion (it's likely
tonyp@3410 281 // that subsequent expansion attempts will also fail if one fails).
tonyp@3410 282 // Currently, it is only consulted during GC and it's reset at the
tonyp@3410 283 // start of each GC.
tonyp@3410 284 bool _expand_heap_after_alloc_failure;
tonyp@3410 285
tonyp@2715 286 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 287 void init_mutator_alloc_region();
tonyp@2715 288
tonyp@2715 289 // It releases the mutator alloc region.
tonyp@2715 290 void release_mutator_alloc_region();
tonyp@2715 291
tonyp@3028 292 // It initializes the GC alloc regions at the start of a GC.
sla@5237 293 void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
tonyp@3028 294
tonyp@3028 295 // It releases the GC alloc regions at the end of a GC.
sla@5237 296 void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
tonyp@3028 297
tonyp@3028 298 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 299 // before a Full GC.
tonyp@1071 300 void abandon_gc_alloc_regions();
ysr@777 301
jmasa@2821 302 // Helper for monitoring and management support.
jmasa@2821 303 G1MonitoringSupport* _g1mm;
jmasa@2821 304
kbarrett@7830 305 // Records whether the region at the given index is (still) a
kbarrett@7830 306 // candidate for eager reclaim. Only valid for humongous start
kbarrett@7830 307 // regions; other regions have unspecified values. Humongous start
kbarrett@7830 308 // regions are initialized at start of collection pause, with
kbarrett@7830 309 // candidates removed from the set as they are found reachable from
kbarrett@7830 310 // roots or the young generation.
kbarrett@7830 311 class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
tschatzl@7019 312 protected:
tschatzl@7019 313 bool default_value() const { return false; }
tschatzl@7019 314 public:
tschatzl@7019 315 void clear() { G1BiasedMappedArray<bool>::clear(); }
kbarrett@7830 316 void set_candidate(uint region, bool value) {
kbarrett@7830 317 set_by_index(region, value);
tschatzl@7019 318 }
kbarrett@7830 319 bool is_candidate(uint region) {
tschatzl@7019 320 return get_by_index(region);
tschatzl@7019 321 }
tschatzl@7019 322 };
tschatzl@7019 323
kbarrett@7830 324 HumongousReclaimCandidates _humongous_reclaim_candidates;
tschatzl@7019 325 // Stores whether during humongous object registration we found candidate regions.
tschatzl@7019 326 // If not, we can skip a few steps.
tschatzl@7019 327 bool _has_humongous_reclaim_candidates;
tonyp@961 328
iveresov@788 329 volatile unsigned _gc_time_stamp;
ysr@777 330
ysr@777 331 size_t* _surviving_young_words;
ysr@777 332
tonyp@2975 333 G1HRPrinter _hr_printer;
tonyp@2975 334
ysr@777 335 void setup_surviving_young_words();
ysr@777 336 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 337 void cleanup_surviving_young_words();
ysr@777 338
tonyp@2011 339 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 340 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 341 // explicitly started if:
tonyp@2011 342 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 343 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
brutisso@3456 344 // (c) cause == _g1_humongous_allocation
tonyp@2011 345 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 346
brutisso@3823 347 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 348 // concurrent cycles) we have started.
mlarsson@7686 349 volatile uint _old_marking_cycles_started;
brutisso@3823 350
brutisso@3823 351 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 352 // concurrent cycles) we have completed.
mlarsson@7686 353 volatile uint _old_marking_cycles_completed;
tonyp@2011 354
sla@5237 355 bool _concurrent_cycle_started;
stefank@7648 356 bool _heap_summary_sent;
sla@5237 357
tonyp@2817 358 // This is a non-product method that is helpful for testing. It is
tonyp@2817 359 // called at the end of a GC and artificially expands the heap by
tonyp@2817 360 // allocating a number of dead regions. This way we can induce very
tonyp@2817 361 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 362 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 363 // this method will be found dead by the marking cycle).
tonyp@2817 364 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 365
tonyp@3957 366 // Clear RSets after a compaction. It also resets the GC time stamps.
tonyp@3957 367 void clear_rsets_post_compaction();
tonyp@3957 368
tonyp@3957 369 // If the HR printer is active, dump the state of the regions in the
tonyp@3957 370 // heap after a compaction.
tschatzl@7091 371 void print_hrm_post_compaction();
tonyp@3957 372
tschatzl@7781 373 // Create a memory mapper for auxiliary data structures of the given size and
tschatzl@7781 374 // translation factor.
tschatzl@7781 375 static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
tschatzl@7781 376 size_t size,
tschatzl@7781 377 size_t translation_factor);
tschatzl@7781 378
neugens@9861 379 void trace_heap(GCWhen::Type when, GCTracer* tracer);
neugens@9861 380
brutisso@4015 381 double verify(bool guard, const char* msg);
brutisso@4015 382 void verify_before_gc();
brutisso@4015 383 void verify_after_gc();
brutisso@4015 384
brutisso@4063 385 void log_gc_header();
brutisso@4063 386 void log_gc_footer(double pause_time_sec);
brutisso@4063 387
tonyp@2315 388 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 389 // line number, file, etc.
tonyp@2315 390
tonyp@2643 391 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 392 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 393 (_extra_message_), \
tonyp@2472 394 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 395 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 396 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 397
tonyp@2315 398 #define assert_heap_locked() \
tonyp@2315 399 do { \
tonyp@2315 400 assert(Heap_lock->owned_by_self(), \
tonyp@2315 401 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 402 } while (0)
tonyp@2315 403
tonyp@2643 404 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 405 do { \
tonyp@2315 406 assert(Heap_lock->owned_by_self() || \
tonyp@2472 407 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 408 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 409 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 410 "should be at a safepoint")); \
tonyp@2315 411 } while (0)
tonyp@2315 412
tonyp@2315 413 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 414 do { \
tonyp@2315 415 assert(Heap_lock->owned_by_self() && \
tonyp@2315 416 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 417 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 418 "should not be at a safepoint")); \
tonyp@2315 419 } while (0)
tonyp@2315 420
tonyp@2315 421 #define assert_heap_not_locked() \
tonyp@2315 422 do { \
tonyp@2315 423 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 424 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 425 } while (0)
tonyp@2315 426
tonyp@2315 427 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 428 do { \
tonyp@2315 429 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 430 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 431 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 432 "should not be at a safepoint")); \
tonyp@2315 433 } while (0)
tonyp@2315 434
tonyp@2643 435 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 436 do { \
tonyp@2472 437 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 438 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 439 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 440 } while (0)
tonyp@2315 441
tonyp@2315 442 #define assert_not_at_safepoint() \
tonyp@2315 443 do { \
tonyp@2315 444 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 445 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 446 } while (0)
tonyp@2315 447
ysr@777 448 protected:
ysr@777 449
johnc@3021 450 // The young region list.
ysr@777 451 YoungList* _young_list;
ysr@777 452
ysr@777 453 // The current policy object for the collector.
ysr@777 454 G1CollectorPolicy* _g1_policy;
ysr@777 455
tonyp@2472 456 // This is the second level of trying to allocate a new region. If
tonyp@2715 457 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 458 // check whether there's anything available on the
tonyp@2715 459 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 460 // that list, if _free_regions_coming is set.
jwilhelm@6422 461 HeapRegion* new_region_try_secondary_free_list(bool is_old);
ysr@777 462
tonyp@2643 463 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 464 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 465 // attempt to expand the heap if necessary to satisfy the allocation
jwilhelm@6422 466 // request. If the region is to be used as an old region or for a
jwilhelm@6422 467 // humongous object, set is_old to true. If not, to false.
jwilhelm@6422 468 HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
ysr@777 469
tonyp@2643 470 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 471 // and starting at index first so that they appear as a single
tonyp@2643 472 // humongous region.
tonyp@3713 473 HeapWord* humongous_obj_allocate_initialize_regions(uint first,
tonyp@3713 474 uint num_regions,
sjohanss@7118 475 size_t word_size,
sjohanss@7118 476 AllocationContext_t context);
tonyp@2643 477
tonyp@2643 478 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 479 // NULL if unsuccessful.
sjohanss@7118 480 HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
ysr@777 481
tonyp@2315 482 // The following two methods, allocate_new_tlab() and
tonyp@2315 483 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 484 // into the G1's allocation routines. They have the following
tonyp@2315 485 // assumptions:
tonyp@2315 486 //
tonyp@2315 487 // * They should both be called outside safepoints.
tonyp@2315 488 //
tonyp@2315 489 // * They should both be called without holding the Heap_lock.
tonyp@2315 490 //
tonyp@2315 491 // * All allocation requests for new TLABs should go to
tonyp@2315 492 // allocate_new_tlab().
tonyp@2315 493 //
tonyp@2971 494 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 495 //
tonyp@2315 496 // * If either call cannot satisfy the allocation request using the
tonyp@2315 497 // current allocating region, they will try to get a new one. If
tonyp@2315 498 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 499 // retry the allocation.
tonyp@2315 500 //
tonyp@2315 501 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 502 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 503 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 504 // schedule a Full GC.
tonyp@2315 505 //
tonyp@2315 506 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 507 // should never be called with word_size being humongous. All
tonyp@2315 508 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 509 // will satisfy them with a special path.
ysr@777 510
tonyp@2315 511 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 512
tonyp@2315 513 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 514 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 515
tonyp@2715 516 // The following three methods take a gc_count_before_ret
tonyp@2715 517 // parameter which is used to return the GC count if the method
tonyp@2715 518 // returns NULL. Given that we are required to read the GC count
tonyp@2715 519 // while holding the Heap_lock, and these paths will take the
tonyp@2715 520 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 521 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 522 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 523 // Heap_lock just to read the GC count.
tonyp@2315 524
tonyp@2715 525 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 526 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 527 // should only be used for non-humongous allocations.
tonyp@2715 528 inline HeapWord* attempt_allocation(size_t word_size,
mlarsson@7686 529 uint* gc_count_before_ret,
mlarsson@7686 530 uint* gclocker_retry_count_ret);
tonyp@2315 531
tonyp@2715 532 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 533 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 534 // pause. This should only be used for non-humongous allocations.
tonyp@2715 535 HeapWord* attempt_allocation_slow(size_t word_size,
sjohanss@7118 536 AllocationContext_t context,
mlarsson@7686 537 uint* gc_count_before_ret,
mlarsson@7686 538 uint* gclocker_retry_count_ret);
tonyp@2315 539
tonyp@2715 540 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 541 // potentially schedule a GC pause.
tonyp@2715 542 HeapWord* attempt_allocation_humongous(size_t word_size,
mlarsson@7686 543 uint* gc_count_before_ret,
mlarsson@7686 544 uint* gclocker_retry_count_ret);
tonyp@2454 545
tonyp@2715 546 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 547 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 548 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 549 // or not.
tonyp@2315 550 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
sjohanss@7118 551 AllocationContext_t context,
sjohanss@7118 552 bool expect_null_mutator_alloc_region);
tonyp@2315 553
tonyp@2315 554 // It dirties the cards that cover the block so that so that the post
tonyp@2315 555 // write barrier never queues anything when updating objects on this
tonyp@2315 556 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 557 // belongs to a young region.
tonyp@2315 558 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 559
ysr@777 560 // Allocate blocks during garbage collection. Will ensure an
ysr@777 561 // allocation region, either by picking one or expanding the
ysr@777 562 // heap, and then allocate a block of the given size. The block
ysr@777 563 // may not be a humongous - it must fit into a single heap region.
tschatzl@7651 564 inline HeapWord* par_allocate_during_gc(InCSetState dest,
tschatzl@7651 565 size_t word_size,
tschatzl@7651 566 AllocationContext_t context);
ysr@777 567 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 568 // that parallel threads might be attempting allocations.
ysr@777 569 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 570
tonyp@3028 571 // Allocation attempt during GC for a survivor object / PLAB.
sjohanss@7118 572 inline HeapWord* survivor_attempt_allocation(size_t word_size,
sjohanss@7118 573 AllocationContext_t context);
apetrusenko@980 574
tonyp@3028 575 // Allocation attempt during GC for an old object / PLAB.
sjohanss@7118 576 inline HeapWord* old_attempt_allocation(size_t word_size,
sjohanss@7118 577 AllocationContext_t context);
tonyp@2715 578
tonyp@3028 579 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 580
tonyp@3028 581 // For mutator alloc regions.
tonyp@2715 582 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 583 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 584 size_t allocated_bytes);
tonyp@2715 585
tonyp@3028 586 // For GC alloc regions.
tonyp@3713 587 HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
tschatzl@7651 588 InCSetState dest);
tonyp@3028 589 void retire_gc_alloc_region(HeapRegion* alloc_region,
tschatzl@7651 590 size_t allocated_bytes, InCSetState dest);
tonyp@3028 591
tonyp@2011 592 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 593 // inspection request and should collect the entire heap
tonyp@2315 594 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 595 // cleared during the GC
tonyp@2011 596 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 597 // the GC should attempt (at least) to satisfy
tonyp@2315 598 // - it returns false if it is unable to do the collection due to the
tonyp@2315 599 // GC locker being active, true otherwise
tonyp@2315 600 bool do_collection(bool explicit_gc,
tonyp@2011 601 bool clear_all_soft_refs,
ysr@777 602 size_t word_size);
ysr@777 603
ysr@777 604 // Callback from VM_G1CollectFull operation.
ysr@777 605 // Perform a full collection.
coleenp@4037 606 virtual void do_full_collection(bool clear_all_soft_refs);
ysr@777 607
ysr@777 608 // Resize the heap if necessary after a full collection. If this is
ysr@777 609 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 610 // and will be considered part of the used portion of the heap.
ysr@777 611 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 612
ysr@777 613 // Callback from VM_G1CollectForAllocation operation.
ysr@777 614 // This function does everything necessary/possible to satisfy a
ysr@777 615 // failed allocation request (including collection, expansion, etc.)
sjohanss@7118 616 HeapWord* satisfy_failed_allocation(size_t word_size,
sjohanss@7118 617 AllocationContext_t context,
sjohanss@7118 618 bool* succeeded);
ysr@777 619
ysr@777 620 // Attempting to expand the heap sufficiently
ysr@777 621 // to support an allocation of the given "word_size". If
ysr@777 622 // successful, perform the allocation and return the address of the
ysr@777 623 // allocated block, or else "NULL".
sjohanss@7118 624 HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
ysr@777 625
johnc@3175 626 // Process any reference objects discovered during
johnc@3175 627 // an incremental evacuation pause.
johnc@4130 628 void process_discovered_references(uint no_of_gc_workers);
johnc@3175 629
johnc@3175 630 // Enqueue any remaining discovered references
johnc@3175 631 // after processing.
johnc@4130 632 void enqueue_discovered_references(uint no_of_gc_workers);
johnc@3175 633
ysr@777 634 public:
jmasa@2821 635
sjohanss@7131 636 G1Allocator* allocator() {
sjohanss@7131 637 return _allocator;
sjohanss@7131 638 }
sjohanss@7131 639
tonyp@3176 640 G1MonitoringSupport* g1mm() {
tonyp@3176 641 assert(_g1mm != NULL, "should have been initialized");
tonyp@3176 642 return _g1mm;
tonyp@3176 643 }
jmasa@2821 644
ysr@777 645 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 646 // Returns true if the heap was expanded by the requested amount;
johnc@2504 647 // false otherwise.
ysr@777 648 // (Rounds up to a HeapRegion boundary.)
johnc@2504 649 bool expand(size_t expand_bytes);
ysr@777 650
tschatzl@7651 651 // Returns the PLAB statistics for a given destination.
tschatzl@7651 652 inline PLABStats* alloc_buffer_stats(InCSetState dest);
sjohanss@7118 653
tschatzl@7651 654 // Determines PLAB size for a given destination.
tschatzl@7651 655 inline size_t desired_plab_sz(InCSetState dest);
sjohanss@7118 656
jcoomes@7159 657 inline AllocationContextStats& allocation_context_stats();
jcoomes@7159 658
ysr@777 659 // Do anything common to GC's.
ysr@777 660 virtual void gc_prologue(bool full);
ysr@777 661 virtual void gc_epilogue(bool full);
ysr@777 662
kbarrett@7830 663 // Modify the reclaim candidate set and test for presence.
kbarrett@7830 664 // These are only valid for starts_humongous regions.
kbarrett@7830 665 inline void set_humongous_reclaim_candidate(uint region, bool value);
kbarrett@7830 666 inline bool is_humongous_reclaim_candidate(uint region);
kbarrett@7830 667
kbarrett@7830 668 // Remove from the reclaim candidate set. Also remove from the
kbarrett@7830 669 // collection set so that later encounters avoid the slow path.
tschatzl@7019 670 inline void set_humongous_is_live(oop obj);
tschatzl@7019 671
tschatzl@7019 672 // Register the given region to be part of the collection set.
tschatzl@7019 673 inline void register_humongous_region_with_in_cset_fast_test(uint index);
tschatzl@7019 674 // Register regions with humongous objects (actually on the start region) in
tschatzl@7019 675 // the in_cset_fast_test table.
tschatzl@7019 676 void register_humongous_regions_with_in_cset_fast_test();
tonyp@961 677 // We register a region with the fast "in collection set" test. We
tonyp@961 678 // simply set to true the array slot corresponding to this region.
tschatzl@7651 679 void register_young_region_with_in_cset_fast_test(HeapRegion* r) {
tschatzl@7651 680 _in_cset_fast_test.set_in_young(r->hrm_index());
tschatzl@7651 681 }
tschatzl@7651 682 void register_old_region_with_in_cset_fast_test(HeapRegion* r) {
tschatzl@7651 683 _in_cset_fast_test.set_in_old(r->hrm_index());
tonyp@961 684 }
tonyp@961 685
tonyp@961 686 // This is a fast test on whether a reference points into the
tschatzl@6330 687 // collection set or not. Assume that the reference
tschatzl@6330 688 // points into the heap.
tschatzl@6541 689 inline bool in_cset_fast_test(oop obj);
tonyp@961 690
johnc@1829 691 void clear_cset_fast_test() {
tschatzl@6926 692 _in_cset_fast_test.clear();
johnc@1829 693 }
johnc@1829 694
brutisso@3823 695 // This is called at the start of either a concurrent cycle or a Full
brutisso@3823 696 // GC to update the number of old marking cycles started.
brutisso@3823 697 void increment_old_marking_cycles_started();
brutisso@3823 698
tonyp@2011 699 // This is called at the end of either a concurrent cycle or a Full
brutisso@3823 700 // GC to update the number of old marking cycles completed. Those two
tonyp@2011 701 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 702 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 703 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 704 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 705 // tighter consistency checking in the method. If concurrent is
tonyp@2372 706 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 707 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 708 // in this nesting (i.e., the concurrent cycle). Further nesting is
brutisso@3823 709 // not currently supported. The end of this call also notifies
tonyp@2372 710 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 711 // GC to happen (e.g., it called System.gc() with
tonyp@2011 712 // +ExplicitGCInvokesConcurrent).
brutisso@3823 713 void increment_old_marking_cycles_completed(bool concurrent);
tonyp@2011 714
mlarsson@7686 715 uint old_marking_cycles_completed() {
brutisso@3823 716 return _old_marking_cycles_completed;
tonyp@2011 717 }
tonyp@2011 718
mgronlun@6131 719 void register_concurrent_cycle_start(const Ticks& start_time);
sla@5237 720 void register_concurrent_cycle_end();
sla@5237 721 void trace_heap_after_concurrent_cycle();
sla@5237 722
sla@5237 723 G1YCType yc_type();
sla@5237 724
tonyp@2975 725 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 726
brutisso@6385 727 // Frees a non-humongous region by initializing its contents and
brutisso@6385 728 // adding it to the free list that's passed as a parameter (this is
brutisso@6385 729 // usually a local list which will be appended to the master free
brutisso@6385 730 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 731 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 732 // up. The assumption is that this will be done later.
tschatzl@6404 733 // The locked parameter indicates if the caller has already taken
tschatzl@6404 734 // care of proper synchronization. This may allow some optimizations.
brutisso@6385 735 void free_region(HeapRegion* hr,
brutisso@6385 736 FreeRegionList* free_list,
tschatzl@6404 737 bool par,
tschatzl@6404 738 bool locked = false);
brutisso@6385 739
brutisso@6385 740 // Frees a humongous region by collapsing it into individual regions
brutisso@6385 741 // and calling free_region() for each of them. The freed regions
brutisso@6385 742 // will be added to the free list that's passed as a parameter (this
brutisso@6385 743 // is usually a local list which will be appended to the master free
brutisso@6385 744 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 745 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 746 // up. The assumption is that this will be done later.
brutisso@6385 747 void free_humongous_region(HeapRegion* hr,
brutisso@6385 748 FreeRegionList* free_list,
brutisso@6385 749 bool par);
ysr@777 750 protected:
ysr@777 751
ysr@777 752 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 753 // (Rounds down to a HeapRegion boundary.)
ysr@777 754 virtual void shrink(size_t expand_bytes);
ysr@777 755 void shrink_helper(size_t expand_bytes);
ysr@777 756
jcoomes@2064 757 #if TASKQUEUE_STATS
jcoomes@2064 758 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 759 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 760 void reset_taskqueue_stats();
jcoomes@2064 761 #endif // TASKQUEUE_STATS
jcoomes@2064 762
tonyp@2315 763 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 764 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 765 // return whether the VM operation was successful (it did do an
tonyp@2315 766 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 767 // locker was active). Given that we should not be holding the
tonyp@2315 768 // Heap_lock when we enter this method, we will pass the
tonyp@2315 769 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 770 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 771 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 772 // before the call, so it's easy to read gc_count_before just before.
brutisso@5581 773 HeapWord* do_collection_pause(size_t word_size,
mlarsson@7686 774 uint gc_count_before,
brutisso@5581 775 bool* succeeded,
brutisso@5581 776 GCCause::Cause gc_cause);
ysr@777 777
ysr@777 778 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 779 // thread. It returns false if it is unable to do the collection due
tonyp@2315 780 // to the GC locker being active, true otherwise
tonyp@2315 781 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 782
ysr@777 783 // Actually do the work of evacuating the collection set.
sla@5237 784 void evacuate_collection_set(EvacuationInfo& evacuation_info);
ysr@777 785
ysr@777 786 // The g1 remembered set of the heap.
ysr@777 787 G1RemSet* _g1_rem_set;
ysr@777 788
iveresov@1051 789 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 790 // concurrently after the collection.
iveresov@1051 791 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 792
ysr@777 793 // The closure used to refine a single card.
ysr@777 794 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 795
ysr@777 796 // A function to check the consistency of dirty card logs.
ysr@777 797 void check_ct_logs_at_safepoint();
ysr@777 798
johnc@2060 799 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 800 // references into the current collection set. This is used to
johnc@2060 801 // update the remembered sets of the regions in the collection
johnc@2060 802 // set in the event of an evacuation failure.
johnc@2060 803 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 804
ysr@777 805 // After a collection pause, make the regions in the CS into free
ysr@777 806 // regions.
sla@5237 807 void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
ysr@777 808
johnc@1829 809 // Abandon the current collection set without recording policy
johnc@1829 810 // statistics or updating free lists.
johnc@1829 811 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 812
ysr@777 813 // The concurrent marker (and the thread it runs in.)
ysr@777 814 ConcurrentMark* _cm;
ysr@777 815 ConcurrentMarkThread* _cmThread;
ysr@777 816 bool _mark_in_progress;
ysr@777 817
ysr@777 818 // The concurrent refiner.
ysr@777 819 ConcurrentG1Refine* _cg1r;
ysr@777 820
ysr@777 821 // The parallel task queues
ysr@777 822 RefToScanQueueSet *_task_queues;
ysr@777 823
ysr@777 824 // True iff a evacuation has failed in the current collection.
ysr@777 825 bool _evacuation_failed;
ysr@777 826
sla@5237 827 EvacuationFailedInfo* _evacuation_failed_info_array;
ysr@777 828
ysr@777 829 // Failed evacuations cause some logical from-space objects to have
ysr@777 830 // forwarding pointers to themselves. Reset them.
ysr@777 831 void remove_self_forwarding_pointers();
ysr@777 832
brutisso@4579 833 // Together, these store an object with a preserved mark, and its mark value.
brutisso@4579 834 Stack<oop, mtGC> _objs_with_preserved_marks;
brutisso@4579 835 Stack<markOop, mtGC> _preserved_marks_of_objs;
ysr@777 836
ysr@777 837 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 838 // word being overwritten with a self-forwarding-pointer.
ysr@777 839 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 840
ysr@777 841 // The stack of evac-failure objects left to be scanned.
ysr@777 842 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 843 // The closure to apply to evac-failure objects.
ysr@777 844
ysr@777 845 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 846 // Set the field above.
ysr@777 847 void
ysr@777 848 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 849 _evac_failure_closure = evac_failure_closure;
ysr@777 850 }
ysr@777 851
ysr@777 852 // Push "obj" on the scan stack.
ysr@777 853 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 854 // Process scan stack entries until the stack is empty.
ysr@777 855 void drain_evac_failure_scan_stack();
ysr@777 856 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 857 // prevent unnecessary recursion.
ysr@777 858 bool _drain_in_progress;
ysr@777 859
ysr@777 860 // Do any necessary initialization for evacuation-failure handling.
ysr@777 861 // "cl" is the closure that will be used to process evac-failure
ysr@777 862 // objects.
ysr@777 863 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 864 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 865 // structures.
ysr@777 866 void finalize_for_evac_failure();
ysr@777 867
ysr@777 868 // An attempt to evacuate "obj" has failed; take necessary steps.
sla@5237 869 oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
ysr@777 870 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 871
johnc@4016 872 #ifndef PRODUCT
johnc@4016 873 // Support for forcing evacuation failures. Analogous to
johnc@4016 874 // PromotionFailureALot for the other collectors.
johnc@4016 875
johnc@4016 876 // Records whether G1EvacuationFailureALot should be in effect
johnc@4016 877 // for the current GC
johnc@4016 878 bool _evacuation_failure_alot_for_current_gc;
johnc@4016 879
johnc@4016 880 // Used to record the GC number for interval checking when
johnc@4016 881 // determining whether G1EvaucationFailureALot is in effect
johnc@4016 882 // for the current GC.
johnc@4016 883 size_t _evacuation_failure_alot_gc_number;
johnc@4016 884
johnc@4016 885 // Count of the number of evacuations between failures.
johnc@4016 886 volatile size_t _evacuation_failure_alot_count;
johnc@4016 887
johnc@4016 888 // Set whether G1EvacuationFailureALot should be in effect
johnc@4016 889 // for the current GC (based upon the type of GC and which
johnc@4016 890 // command line flags are set);
johnc@4016 891 inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
johnc@4016 892 bool during_initial_mark,
johnc@4016 893 bool during_marking);
johnc@4016 894
johnc@4016 895 inline void set_evacuation_failure_alot_for_current_gc();
johnc@4016 896
johnc@4016 897 // Return true if it's time to cause an evacuation failure.
johnc@4016 898 inline bool evacuation_should_fail();
johnc@4016 899
johnc@4016 900 // Reset the G1EvacuationFailureALot counters. Should be called at
sla@5237 901 // the end of an evacuation pause in which an evacuation failure occurred.
johnc@4016 902 inline void reset_evacuation_should_fail();
johnc@4016 903 #endif // !PRODUCT
johnc@4016 904
johnc@3175 905 // ("Weak") Reference processing support.
johnc@3175 906 //
sla@5237 907 // G1 has 2 instances of the reference processor class. One
johnc@3175 908 // (_ref_processor_cm) handles reference object discovery
johnc@3175 909 // and subsequent processing during concurrent marking cycles.
johnc@3175 910 //
johnc@3175 911 // The other (_ref_processor_stw) handles reference object
johnc@3175 912 // discovery and processing during full GCs and incremental
johnc@3175 913 // evacuation pauses.
johnc@3175 914 //
johnc@3175 915 // During an incremental pause, reference discovery will be
johnc@3175 916 // temporarily disabled for _ref_processor_cm and will be
johnc@3175 917 // enabled for _ref_processor_stw. At the end of the evacuation
johnc@3175 918 // pause references discovered by _ref_processor_stw will be
johnc@3175 919 // processed and discovery will be disabled. The previous
johnc@3175 920 // setting for reference object discovery for _ref_processor_cm
johnc@3175 921 // will be re-instated.
johnc@3175 922 //
johnc@3175 923 // At the start of marking:
johnc@3175 924 // * Discovery by the CM ref processor is verified to be inactive
johnc@3175 925 // and it's discovered lists are empty.
johnc@3175 926 // * Discovery by the CM ref processor is then enabled.
johnc@3175 927 //
johnc@3175 928 // At the end of marking:
johnc@3175 929 // * Any references on the CM ref processor's discovered
johnc@3175 930 // lists are processed (possibly MT).
johnc@3175 931 //
johnc@3175 932 // At the start of full GC we:
johnc@3175 933 // * Disable discovery by the CM ref processor and
johnc@3175 934 // empty CM ref processor's discovered lists
johnc@3175 935 // (without processing any entries).
johnc@3175 936 // * Verify that the STW ref processor is inactive and it's
johnc@3175 937 // discovered lists are empty.
johnc@3175 938 // * Temporarily set STW ref processor discovery as single threaded.
johnc@3175 939 // * Temporarily clear the STW ref processor's _is_alive_non_header
johnc@3175 940 // field.
johnc@3175 941 // * Finally enable discovery by the STW ref processor.
johnc@3175 942 //
johnc@3175 943 // The STW ref processor is used to record any discovered
johnc@3175 944 // references during the full GC.
johnc@3175 945 //
johnc@3175 946 // At the end of a full GC we:
johnc@3175 947 // * Enqueue any reference objects discovered by the STW ref processor
johnc@3175 948 // that have non-live referents. This has the side-effect of
johnc@3175 949 // making the STW ref processor inactive by disabling discovery.
johnc@3175 950 // * Verify that the CM ref processor is still inactive
johnc@3175 951 // and no references have been placed on it's discovered
johnc@3175 952 // lists (also checked as a precondition during initial marking).
johnc@3175 953
johnc@3175 954 // The (stw) reference processor...
johnc@3175 955 ReferenceProcessor* _ref_processor_stw;
johnc@3175 956
sla@5237 957 STWGCTimer* _gc_timer_stw;
sla@5237 958 ConcurrentGCTimer* _gc_timer_cm;
sla@5237 959
sla@5237 960 G1OldTracer* _gc_tracer_cm;
sla@5237 961 G1NewTracer* _gc_tracer_stw;
sla@5237 962
johnc@3175 963 // During reference object discovery, the _is_alive_non_header
johnc@3175 964 // closure (if non-null) is applied to the referent object to
johnc@3175 965 // determine whether the referent is live. If so then the
johnc@3175 966 // reference object does not need to be 'discovered' and can
johnc@3175 967 // be treated as a regular oop. This has the benefit of reducing
johnc@3175 968 // the number of 'discovered' reference objects that need to
johnc@3175 969 // be processed.
johnc@3175 970 //
johnc@3175 971 // Instance of the is_alive closure for embedding into the
johnc@3175 972 // STW reference processor as the _is_alive_non_header field.
johnc@3175 973 // Supplying a value for the _is_alive_non_header field is
johnc@3175 974 // optional but doing so prevents unnecessary additions to
johnc@3175 975 // the discovered lists during reference discovery.
johnc@3175 976 G1STWIsAliveClosure _is_alive_closure_stw;
johnc@3175 977
johnc@3175 978 // The (concurrent marking) reference processor...
johnc@3175 979 ReferenceProcessor* _ref_processor_cm;
johnc@3175 980
johnc@2379 981 // Instance of the concurrent mark is_alive closure for embedding
johnc@3175 982 // into the Concurrent Marking reference processor as the
johnc@3175 983 // _is_alive_non_header field. Supplying a value for the
johnc@3175 984 // _is_alive_non_header field is optional but doing so prevents
johnc@3175 985 // unnecessary additions to the discovered lists during reference
johnc@3175 986 // discovery.
johnc@3175 987 G1CMIsAliveClosure _is_alive_closure_cm;
ysr@777 988
johnc@3336 989 // Cache used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 990 HeapRegion** _worker_cset_start_region;
johnc@3336 991
johnc@3336 992 // Time stamp to validate the regions recorded in the cache
johnc@3336 993 // used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 994 // The heap region entry for a given worker is valid iff
johnc@3336 995 // the associated time stamp value matches the current value
johnc@3336 996 // of G1CollectedHeap::_gc_time_stamp.
mlarsson@7686 997 uint* _worker_cset_start_region_time_stamp;
johnc@3336 998
tonyp@2472 999 volatile bool _free_regions_coming;
ysr@777 1000
ysr@777 1001 public:
jmasa@2188 1002
ysr@777 1003 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 1004
jcoomes@2064 1005 RefToScanQueue *task_queue(int i) const;
ysr@777 1006
iveresov@1051 1007 // A set of cards where updates happened during the GC
iveresov@1051 1008 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 1009
johnc@2060 1010 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 1011 // references into the current collection set. This is used to
johnc@2060 1012 // update the remembered sets of the regions in the collection
johnc@2060 1013 // set in the event of an evacuation failure.
johnc@2060 1014 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 1015 { return _into_cset_dirty_card_queue_set; }
johnc@2060 1016
ysr@777 1017 // Create a G1CollectedHeap with the specified policy.
ysr@777 1018 // Must call the initialize method afterwards.
ysr@777 1019 // May not return if something goes wrong.
ysr@777 1020 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 1021
ysr@777 1022 // Initialize the G1CollectedHeap to have the initial and
coleenp@4037 1023 // maximum sizes and remembered and barrier sets
ysr@777 1024 // specified by the policy object.
ysr@777 1025 jint initialize();
ysr@777 1026
pliden@6690 1027 virtual void stop();
pliden@6690 1028
tschatzl@5701 1029 // Return the (conservative) maximum heap alignment for any G1 heap
tschatzl@5701 1030 static size_t conservative_max_heap_alignment();
tschatzl@5701 1031
johnc@3175 1032 // Initialize weak reference processing.
johnc@2379 1033 virtual void ref_processing_init();
ysr@777 1034
mgerdin@7975 1035 // Explicitly import set_par_threads into this scope
mgerdin@7975 1036 using SharedHeap::set_par_threads;
jmasa@3294 1037 // Set _n_par_threads according to a policy TBD.
jmasa@3294 1038 void set_par_threads();
jmasa@3294 1039
ysr@777 1040 virtual CollectedHeap::Name kind() const {
ysr@777 1041 return CollectedHeap::G1CollectedHeap;
ysr@777 1042 }
ysr@777 1043
ysr@777 1044 // The current policy object for the collector.
ysr@777 1045 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 1046
coleenp@4037 1047 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
coleenp@4037 1048
ysr@777 1049 // Adaptive size policy. No such thing for g1.
ysr@777 1050 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 1051
ysr@777 1052 // The rem set and barrier set.
ysr@777 1053 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 1054
ysr@777 1055 unsigned get_gc_time_stamp() {
ysr@777 1056 return _gc_time_stamp;
ysr@777 1057 }
ysr@777 1058
goetz@6911 1059 inline void reset_gc_time_stamp();
iveresov@788 1060
tonyp@3957 1061 void check_gc_time_stamps() PRODUCT_RETURN;
tonyp@3957 1062
goetz@6911 1063 inline void increment_gc_time_stamp();
ysr@777 1064
tonyp@3957 1065 // Reset the given region's GC timestamp. If it's starts humongous,
tonyp@3957 1066 // also reset the GC timestamp of its corresponding
tonyp@3957 1067 // continues humongous regions too.
tonyp@3957 1068 void reset_gc_time_stamps(HeapRegion* hr);
tonyp@3957 1069
johnc@2060 1070 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 1071 DirtyCardQueue* into_cset_dcq,
vkempik@6552 1072 bool concurrent, uint worker_i);
ysr@777 1073
ysr@777 1074 // The shared block offset table array.
ysr@777 1075 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 1076
johnc@3175 1077 // Reference Processing accessors
johnc@3175 1078
johnc@3175 1079 // The STW reference processor....
johnc@3175 1080 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
johnc@3175 1081
sla@5237 1082 // The Concurrent Marking reference processor...
johnc@3175 1083 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
ysr@777 1084
sla@5237 1085 ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
sla@5237 1086 G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
sla@5237 1087
ysr@777 1088 virtual size_t capacity() const;
ysr@777 1089 virtual size_t used() const;
tonyp@1281 1090 // This should be called when we're not holding the heap lock. The
tonyp@1281 1091 // result might be a bit inaccurate.
tonyp@1281 1092 size_t used_unlocked() const;
ysr@777 1093 size_t recalculate_used() const;
ysr@777 1094
ysr@777 1095 // These virtual functions do the actual allocation.
ysr@777 1096 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 1097 // allocation, via inlined code (by exporting the address of the top and
ysr@777 1098 // end fields defining the extent of the contiguous allocation region.)
ysr@777 1099 // But G1CollectedHeap doesn't yet support this.
ysr@777 1100
ysr@777 1101 virtual bool is_maximal_no_gc() const {
tschatzl@7091 1102 return _hrm.available() == 0;
ysr@777 1103 }
ysr@777 1104
tschatzl@7050 1105 // The current number of regions in the heap.
tschatzl@7091 1106 uint num_regions() const { return _hrm.length(); }
tonyp@2963 1107
tonyp@2963 1108 // The max number of regions in the heap.
tschatzl@7091 1109 uint max_regions() const { return _hrm.max_length(); }
ysr@777 1110
ysr@777 1111 // The number of regions that are completely free.
tschatzl@7091 1112 uint num_free_regions() const { return _hrm.num_free_regions(); }
ysr@777 1113
azakharov@7835 1114 MemoryUsage get_auxiliary_data_memory_usage() const {
azakharov@7835 1115 return _hrm.get_auxiliary_data_memory_usage();
azakharov@7835 1116 }
azakharov@7835 1117
ysr@777 1118 // The number of regions that are not completely free.
tschatzl@7050 1119 uint num_used_regions() const { return num_regions() - num_free_regions(); }
tonyp@2963 1120
tonyp@2849 1121 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 1122 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 1123 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 1124 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 1125
brutisso@7005 1126 #ifndef PRODUCT
brutisso@7005 1127 // Make sure that the given bitmap has no marked objects in the
brutisso@7005 1128 // range [from,limit). If it does, print an error message and return
brutisso@7005 1129 // false. Otherwise, just return true. bitmap_name should be "prev"
brutisso@7005 1130 // or "next".
brutisso@7005 1131 bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
brutisso@7005 1132 HeapWord* from, HeapWord* limit);
brutisso@7005 1133
brutisso@7005 1134 // Verify that the prev / next bitmap range [tams,end) for the given
brutisso@7005 1135 // region has no marks. Return true if all is well, false if errors
brutisso@7005 1136 // are detected.
brutisso@7005 1137 bool verify_bitmaps(const char* caller, HeapRegion* hr);
brutisso@7005 1138 #endif // PRODUCT
brutisso@7005 1139
brutisso@7005 1140 // If G1VerifyBitmaps is set, verify that the marking bitmaps for
brutisso@7005 1141 // the given region do not have any spurious marks. If errors are
brutisso@7005 1142 // detected, print appropriate error messages and crash.
brutisso@7005 1143 void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
brutisso@7005 1144
brutisso@7005 1145 // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
brutisso@7005 1146 // have any spurious marks. If errors are detected, print
brutisso@7005 1147 // appropriate error messages and crash.
brutisso@7005 1148 void check_bitmaps(const char* caller) PRODUCT_RETURN;
brutisso@7005 1149
tschatzl@7651 1150 // Do sanity check on the contents of the in-cset fast test table.
tschatzl@7651 1151 bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
tschatzl@7651 1152
tonyp@2472 1153 // verify_region_sets() performs verification over the region
tonyp@2472 1154 // lists. It will be compiled in the product code to be used when
tonyp@2472 1155 // necessary (i.e., during heap verification).
tonyp@2472 1156 void verify_region_sets();
ysr@777 1157
tonyp@2472 1158 // verify_region_sets_optional() is planted in the code for
tonyp@2472 1159 // list verification in non-product builds (and it can be enabled in
sla@5237 1160 // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 1161 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1162 void verify_region_sets_optional() {
tonyp@2472 1163 verify_region_sets();
tonyp@2472 1164 }
tonyp@2472 1165 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1166 void verify_region_sets_optional() { }
tonyp@2472 1167 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 1168
tonyp@2472 1169 #ifdef ASSERT
tonyp@2643 1170 bool is_on_master_free_list(HeapRegion* hr) {
tschatzl@7091 1171 return _hrm.is_free(hr);
tonyp@2472 1172 }
tonyp@2472 1173 #endif // ASSERT
ysr@777 1174
tonyp@2472 1175 // Wrapper for the region list operations that can be called from
tonyp@2472 1176 // methods outside this class.
ysr@777 1177
jwilhelm@6422 1178 void secondary_free_list_add(FreeRegionList* list) {
jwilhelm@6422 1179 _secondary_free_list.add_ordered(list);
tonyp@2472 1180 }
ysr@777 1181
tonyp@2472 1182 void append_secondary_free_list() {
tschatzl@7091 1183 _hrm.insert_list_into_free_list(&_secondary_free_list);
tonyp@2472 1184 }
ysr@777 1185
tonyp@2643 1186 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1187 // If the secondary free list looks empty there's no reason to
tonyp@2643 1188 // take the lock and then try to append it.
tonyp@2472 1189 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1190 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1191 append_secondary_free_list();
tonyp@2472 1192 }
tonyp@2472 1193 }
ysr@777 1194
tschatzl@6541 1195 inline void old_set_remove(HeapRegion* hr);
tonyp@3268 1196
brutisso@3456 1197 size_t non_young_capacity_bytes() {
brutisso@3456 1198 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
brutisso@3456 1199 }
brutisso@3456 1200
tonyp@2472 1201 void set_free_regions_coming();
tonyp@2472 1202 void reset_free_regions_coming();
tonyp@2472 1203 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1204 void wait_while_free_regions_coming();
ysr@777 1205
tonyp@3539 1206 // Determine whether the given region is one that we are using as an
tonyp@3539 1207 // old GC alloc region.
tonyp@3539 1208 bool is_old_gc_alloc_region(HeapRegion* hr) {
sjohanss@7118 1209 return _allocator->is_retained_old_region(hr);
tonyp@3539 1210 }
tonyp@3539 1211
ysr@777 1212 // Perform a collection of the heap; intended for use in implementing
ysr@777 1213 // "System.gc". This probably implies as full a collection as the
ysr@777 1214 // "CollectedHeap" supports.
ysr@777 1215 virtual void collect(GCCause::Cause cause);
ysr@777 1216
ysr@777 1217 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1218 void collect_locked(GCCause::Cause cause);
ysr@777 1219
sjohanss@7298 1220 virtual bool copy_allocation_context_stats(const jint* contexts,
jcoomes@7160 1221 jlong* totals,
jcoomes@7160 1222 jbyte* accuracy,
jcoomes@7160 1223 jint len);
jcoomes@7160 1224
sla@5237 1225 // True iff an evacuation has failed in the most-recent collection.
ysr@777 1226 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1227
brutisso@6385 1228 void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
brutisso@6385 1229 void prepend_to_freelist(FreeRegionList* list);
brutisso@6385 1230 void decrement_summary_bytes(size_t bytes);
ysr@777 1231
stefank@3335 1232 // Returns "TRUE" iff "p" points into the committed areas of the heap.
ysr@777 1233 virtual bool is_in(const void* p) const;
tschatzl@7051 1234 #ifdef ASSERT
tschatzl@7051 1235 // Returns whether p is in one of the available areas of the heap. Slow but
tschatzl@7051 1236 // extensive version.
tschatzl@7051 1237 bool is_in_exact(const void* p) const;
tschatzl@7051 1238 #endif
ysr@777 1239
ysr@777 1240 // Return "TRUE" iff the given object address is within the collection
tschatzl@7019 1241 // set. Slow implementation.
ysr@777 1242 inline bool obj_in_cs(oop obj);
ysr@777 1243
tschatzl@7019 1244 inline bool is_in_cset(oop obj);
tschatzl@7019 1245
tschatzl@7019 1246 inline bool is_in_cset_or_humongous(const oop obj);
tschatzl@7019 1247
tschatzl@7019 1248 private:
tschatzl@7019 1249 // This array is used for a quick test on whether a reference points into
tschatzl@7019 1250 // the collection set or not. Each of the array's elements denotes whether the
tschatzl@7019 1251 // corresponding region is in the collection set or not.
tschatzl@7651 1252 G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
tschatzl@7019 1253
tschatzl@7019 1254 public:
tschatzl@7019 1255
tschatzl@7651 1256 inline InCSetState in_cset_state(const oop obj);
tschatzl@7019 1257
ysr@777 1258 // Return "TRUE" iff the given object address is in the reserved
coleenp@4037 1259 // region of g1.
ysr@777 1260 bool is_in_g1_reserved(const void* p) const {
tschatzl@7091 1261 return _hrm.reserved().contains(p);
ysr@777 1262 }
ysr@777 1263
tonyp@2717 1264 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1265 // reserved for the heap
tschatzl@7050 1266 MemRegion g1_reserved() const {
tschatzl@7091 1267 return _hrm.reserved();
tonyp@2717 1268 }
tonyp@2717 1269
johnc@2593 1270 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1271
tschatzl@7051 1272 G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
tschatzl@7051 1273 return (G1SATBCardTableLoggingModRefBS*) barrier_set();
mgerdin@5811 1274 }
mgerdin@5811 1275
ysr@777 1276 // This resets the card table to all zeros. It is used after
ysr@777 1277 // a collection pause which used the card table to claim cards.
ysr@777 1278 void cleanUpCardTable();
ysr@777 1279
ysr@777 1280 // Iteration functions.
ysr@777 1281
ysr@777 1282 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1283 // "cl.do_oop" on each.
coleenp@4037 1284 virtual void oop_iterate(ExtendedOopClosure* cl);
ysr@777 1285
ysr@777 1286 // Iterate over all objects, calling "cl.do_object" on each.
coleenp@4037 1287 virtual void object_iterate(ObjectClosure* cl);
coleenp@4037 1288
coleenp@4037 1289 virtual void safe_object_iterate(ObjectClosure* cl) {
coleenp@4037 1290 object_iterate(cl);
iveresov@1113 1291 }
ysr@777 1292
ysr@777 1293 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1294 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1295
ysr@777 1296 // Iterate over heap regions, in address order, terminating the
ysr@777 1297 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1298 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1299
tonyp@2963 1300 // Return the region with the given index. It assumes the index is valid.
tschatzl@6541 1301 inline HeapRegion* region_at(uint index) const;
ysr@777 1302
tschatzl@7019 1303 // Calculate the region index of the given address. Given address must be
tschatzl@7019 1304 // within the heap.
tschatzl@7019 1305 inline uint addr_to_region(HeapWord* addr) const;
tschatzl@7019 1306
tschatzl@7050 1307 inline HeapWord* bottom_addr_for_region(uint index) const;
tschatzl@7050 1308
ysr@777 1309 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1310 // of regions divided by the number of parallel threads times some
ysr@777 1311 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1312 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1313 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1314 // calls will use the same "claim_value", and that that claim value is
ysr@777 1315 // different from the claim_value of any heap region before the start of
ysr@777 1316 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1317 // attempting to claim the first region in each chunk, and, if
ysr@777 1318 // successful, applying the closure to each region in the chunk (and
ysr@777 1319 // setting the claim value of the second and subsequent regions of the
ysr@777 1320 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1321 // i.e., that a closure never attempt to abort a traversal.
tschatzl@7050 1322 void heap_region_par_iterate_chunked(HeapRegionClosure* cl,
tschatzl@7050 1323 uint worker_id,
tschatzl@7050 1324 uint num_workers,
tschatzl@7050 1325 jint claim_value) const;
ysr@777 1326
tonyp@825 1327 // It resets all the region claim values to the default.
tonyp@825 1328 void reset_heap_region_claim_values();
tonyp@825 1329
johnc@3412 1330 // Resets the claim values of regions in the current
johnc@3412 1331 // collection set to the default.
johnc@3412 1332 void reset_cset_heap_region_claim_values();
johnc@3412 1333
tonyp@790 1334 #ifdef ASSERT
tonyp@790 1335 bool check_heap_region_claim_values(jint claim_value);
johnc@3296 1336
johnc@3296 1337 // Same as the routine above but only checks regions in the
johnc@3296 1338 // current collection set.
johnc@3296 1339 bool check_cset_heap_region_claim_values(jint claim_value);
tonyp@790 1340 #endif // ASSERT
tonyp@790 1341
johnc@3336 1342 // Clear the cached cset start regions and (more importantly)
johnc@3336 1343 // the time stamps. Called when we reset the GC time stamp.
johnc@3336 1344 void clear_cset_start_regions();
johnc@3336 1345
johnc@3336 1346 // Given the id of a worker, obtain or calculate a suitable
johnc@3336 1347 // starting region for iterating over the current collection set.
vkempik@6552 1348 HeapRegion* start_cset_region_for_worker(uint worker_i);
johnc@3296 1349
ysr@777 1350 // Iterate over the regions (if any) in the current collection set.
ysr@777 1351 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1352
ysr@777 1353 // As above but starting from region r
ysr@777 1354 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1355
tschatzl@7018 1356 HeapRegion* next_compaction_region(const HeapRegion* from) const;
ysr@777 1357
ysr@777 1358 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1359 // space containing a given address, or else returns NULL.
ysr@777 1360 virtual Space* space_containing(const void* addr) const;
ysr@777 1361
brutisso@7049 1362 // Returns the HeapRegion that contains addr. addr must not be NULL.
brutisso@7049 1363 template <class T>
brutisso@7049 1364 inline HeapRegion* heap_region_containing_raw(const T addr) const;
brutisso@7049 1365
brutisso@7049 1366 // Returns the HeapRegion that contains addr. addr must not be NULL.
brutisso@7049 1367 // If addr is within a humongous continues region, it returns its humongous start region.
tonyp@2963 1368 template <class T>
tonyp@2963 1369 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1370
ysr@777 1371 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1372 // each address in the (reserved) heap is a member of exactly
ysr@777 1373 // one block. The defining characteristic of a block is that it is
ysr@777 1374 // possible to find its size, and thus to progress forward to the next
ysr@777 1375 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1376 // represent Java objects, or they might be free blocks in a
ysr@777 1377 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1378 // distinguishable and the size of each is determinable.
ysr@777 1379
ysr@777 1380 // Returns the address of the start of the "block" that contains the
ysr@777 1381 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1382 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1383 // non-object.
ysr@777 1384 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1385
ysr@777 1386 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1387 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1388 // of the active area of the heap.
ysr@777 1389 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1390
ysr@777 1391 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1392 // the block is an object.
ysr@777 1393 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1394
ysr@777 1395 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1396 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1397
ysr@777 1398 // Section on thread-local allocation buffers (TLABs)
ysr@777 1399 // See CollectedHeap for semantics.
ysr@777 1400
brutisso@6376 1401 bool supports_tlab_allocation() const;
brutisso@6376 1402 size_t tlab_capacity(Thread* ignored) const;
brutisso@6376 1403 size_t tlab_used(Thread* ignored) const;
brutisso@6376 1404 size_t max_tlab_size() const;
brutisso@6376 1405 size_t unsafe_max_tlab_alloc(Thread* ignored) const;
ysr@777 1406
ysr@777 1407 // Can a compiler initialize a new object without store barriers?
ysr@777 1408 // This permission only extends from the creation of a new object
ysr@1462 1409 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1410 // is granted for this heap type, the compiler promises to call
ysr@1462 1411 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1412 // a new object for which such initializing store barriers will
ysr@1462 1413 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1414 // ready to provide a compensating write barrier as necessary
ysr@1462 1415 // if that storage came out of a non-young region. The efficiency
ysr@1462 1416 // of this implementation depends crucially on being able to
ysr@1462 1417 // answer very efficiently in constant time whether a piece of
ysr@1462 1418 // storage in the heap comes from a young region or not.
ysr@1462 1419 // See ReduceInitialCardMarks.
ysr@777 1420 virtual bool can_elide_tlab_store_barriers() const {
brutisso@3184 1421 return true;
ysr@1462 1422 }
ysr@1462 1423
ysr@1601 1424 virtual bool card_mark_must_follow_store() const {
ysr@1601 1425 return true;
ysr@1601 1426 }
ysr@1601 1427
tschatzl@6541 1428 inline bool is_in_young(const oop obj);
ysr@1462 1429
jmasa@2909 1430 #ifdef ASSERT
jmasa@2909 1431 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1432 #endif
jmasa@2909 1433
jmasa@2909 1434 virtual bool is_scavengable(const void* addr);
jmasa@2909 1435
ysr@1462 1436 // We don't need barriers for initializing stores to objects
ysr@1462 1437 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1438 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1439 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1440 // information for young gen objects.
tschatzl@6541 1441 virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
ysr@777 1442
ysr@777 1443 // Returns "true" iff the given word_size is "very large".
ysr@777 1444 static bool isHumongous(size_t word_size) {
johnc@1748 1445 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1446 // are capped at the humongous thresold and we want to
johnc@1748 1447 // ensure that we don't try to allocate a TLAB as
johnc@1748 1448 // humongous and that we don't allocate a humongous
johnc@1748 1449 // object in a TLAB.
johnc@1748 1450 return word_size > _humongous_object_threshold_in_words;
ysr@777 1451 }
ysr@777 1452
ysr@777 1453 // Update mod union table with the set of dirty cards.
ysr@777 1454 void updateModUnion();
ysr@777 1455
ysr@777 1456 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1457 // that this is always a safe operation, since it doesn't clear any
ysr@777 1458 // bits.
ysr@777 1459 void markModUnionRange(MemRegion mr);
ysr@777 1460
ysr@777 1461 // Records the fact that a marking phase is no longer in progress.
ysr@777 1462 void set_marking_complete() {
ysr@777 1463 _mark_in_progress = false;
ysr@777 1464 }
ysr@777 1465 void set_marking_started() {
ysr@777 1466 _mark_in_progress = true;
ysr@777 1467 }
ysr@777 1468 bool mark_in_progress() {
ysr@777 1469 return _mark_in_progress;
ysr@777 1470 }
ysr@777 1471
ysr@777 1472 // Print the maximum heap capacity.
ysr@777 1473 virtual size_t max_capacity() const;
ysr@777 1474
ysr@777 1475 virtual jlong millis_since_last_gc();
ysr@777 1476
tonyp@2974 1477
ysr@777 1478 // Convenience function to be used in situations where the heap type can be
ysr@777 1479 // asserted to be this type.
ysr@777 1480 static G1CollectedHeap* heap();
ysr@777 1481
ysr@777 1482 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1483 // add appropriate methods for any other surv rate groups
ysr@777 1484
brutisso@6376 1485 YoungList* young_list() const { return _young_list; }
ysr@777 1486
ysr@777 1487 // debugging
ysr@777 1488 bool check_young_list_well_formed() {
ysr@777 1489 return _young_list->check_list_well_formed();
ysr@777 1490 }
johnc@1829 1491
johnc@1829 1492 bool check_young_list_empty(bool check_heap,
ysr@777 1493 bool check_sample = true);
ysr@777 1494
ysr@777 1495 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1496 // many of these need to be public.
ysr@777 1497
ysr@777 1498 // The functions below are helper functions that a subclass of
ysr@777 1499 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1500 // functions.
ysr@777 1501 // This performs a concurrent marking of the live objects in a
ysr@777 1502 // bitmap off to the side.
ysr@777 1503 void doConcurrentMark();
ysr@777 1504
ysr@777 1505 bool isMarkedPrev(oop obj) const;
ysr@777 1506 bool isMarkedNext(oop obj) const;
ysr@777 1507
ysr@777 1508 // Determine if an object is dead, given the object and also
ysr@777 1509 // the region to which the object belongs. An object is dead
ysr@777 1510 // iff a) it was not allocated since the last mark and b) it
ysr@777 1511 // is not marked.
ysr@777 1512 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1513 return
ysr@777 1514 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1515 !isMarkedPrev(obj);
ysr@777 1516 }
ysr@777 1517
ysr@777 1518 // This function returns true when an object has been
ysr@777 1519 // around since the previous marking and hasn't yet
ysr@777 1520 // been marked during this marking.
ysr@777 1521 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1522 return
ysr@777 1523 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1524 !isMarkedNext(obj);
ysr@777 1525 }
ysr@777 1526
ysr@777 1527 // Determine if an object is dead, given only the object itself.
ysr@777 1528 // This will find the region to which the object belongs and
ysr@777 1529 // then call the region version of the same function.
ysr@777 1530
ysr@777 1531 // Added if it is NULL it isn't dead.
ysr@777 1532
tschatzl@6541 1533 inline bool is_obj_dead(const oop obj) const;
ysr@777 1534
tschatzl@6541 1535 inline bool is_obj_ill(const oop obj) const;
ysr@777 1536
johnc@5548 1537 bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
johnc@5548 1538 HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
johnc@5548 1539 bool is_marked(oop obj, VerifyOption vo);
johnc@5548 1540 const char* top_at_mark_start_str(VerifyOption vo);
johnc@5548 1541
johnc@5548 1542 ConcurrentMark* concurrent_mark() const { return _cm; }
johnc@5548 1543
johnc@5548 1544 // Refinement
johnc@5548 1545
johnc@5548 1546 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
johnc@5548 1547
johnc@5548 1548 // The dirty cards region list is used to record a subset of regions
johnc@5548 1549 // whose cards need clearing. The list if populated during the
johnc@5548 1550 // remembered set scanning and drained during the card table
johnc@5548 1551 // cleanup. Although the methods are reentrant, population/draining
johnc@5548 1552 // phases must not overlap. For synchronization purposes the last
johnc@5548 1553 // element on the list points to itself.
johnc@5548 1554 HeapRegion* _dirty_cards_region_list;
johnc@5548 1555 void push_dirty_cards_region(HeapRegion* hr);
johnc@5548 1556 HeapRegion* pop_dirty_cards_region();
johnc@5548 1557
johnc@5548 1558 // Optimized nmethod scanning support routines
johnc@5548 1559
johnc@5548 1560 // Register the given nmethod with the G1 heap
johnc@5548 1561 virtual void register_nmethod(nmethod* nm);
johnc@5548 1562
johnc@5548 1563 // Unregister the given nmethod from the G1 heap
johnc@5548 1564 virtual void unregister_nmethod(nmethod* nm);
johnc@5548 1565
tschatzl@6402 1566 // Free up superfluous code root memory.
tschatzl@6402 1567 void purge_code_root_memory();
tschatzl@6402 1568
johnc@5548 1569 // Rebuild the stong code root lists for each region
johnc@5548 1570 // after a full GC
johnc@5548 1571 void rebuild_strong_code_roots();
johnc@5548 1572
tschatzl@6229 1573 // Delete entries for dead interned string and clean up unreferenced symbols
tschatzl@6229 1574 // in symbol table, possibly in parallel.
tschatzl@6229 1575 void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
tschatzl@6229 1576
stefank@6992 1577 // Parallel phase of unloading/cleaning after G1 concurrent mark.
stefank@6992 1578 void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
stefank@6992 1579
tschatzl@6405 1580 // Redirty logged cards in the refinement queue.
tschatzl@6405 1581 void redirty_logged_cards();
johnc@5548 1582 // Verification
johnc@5548 1583
johnc@5548 1584 // The following is just to alert the verification code
johnc@5548 1585 // that a full collection has occurred and that the
johnc@5548 1586 // remembered sets are no longer up to date.
johnc@5548 1587 bool _full_collection;
johnc@5548 1588 void set_full_collection() { _full_collection = true;}
johnc@5548 1589 void clear_full_collection() {_full_collection = false;}
johnc@5548 1590 bool full_collection() {return _full_collection;}
johnc@5548 1591
johnc@5548 1592 // Perform any cleanup actions necessary before allowing a verification.
johnc@5548 1593 virtual void prepare_for_verify();
johnc@5548 1594
johnc@5548 1595 // Perform verification.
johnc@5548 1596
johnc@5548 1597 // vo == UsePrevMarking -> use "prev" marking information,
johnc@5548 1598 // vo == UseNextMarking -> use "next" marking information
johnc@5548 1599 // vo == UseMarkWord -> use the mark word in the object header
johnc@5548 1600 //
johnc@5548 1601 // NOTE: Only the "prev" marking information is guaranteed to be
johnc@5548 1602 // consistent most of the time, so most calls to this should use
johnc@5548 1603 // vo == UsePrevMarking.
johnc@5548 1604 // Currently, there is only one case where this is called with
johnc@5548 1605 // vo == UseNextMarking, which is to verify the "next" marking
johnc@5548 1606 // information at the end of remark.
johnc@5548 1607 // Currently there is only one place where this is called with
johnc@5548 1608 // vo == UseMarkWord, which is to verify the marking during a
johnc@5548 1609 // full GC.
johnc@5548 1610 void verify(bool silent, VerifyOption vo);
johnc@5548 1611
johnc@5548 1612 // Override; it uses the "prev" marking information
johnc@5548 1613 virtual void verify(bool silent);
johnc@5548 1614
tonyp@3957 1615 // The methods below are here for convenience and dispatch the
tonyp@3957 1616 // appropriate method depending on value of the given VerifyOption
johnc@5548 1617 // parameter. The values for that parameter, and their meanings,
johnc@5548 1618 // are the same as those above.
tonyp@3957 1619
tonyp@3957 1620 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1621 const HeapRegion* hr,
tschatzl@6541 1622 const VerifyOption vo) const;
tonyp@3957 1623
tonyp@3957 1624 bool is_obj_dead_cond(const oop obj,
tschatzl@6541 1625 const VerifyOption vo) const;
tonyp@3957 1626
neugens@9861 1627 G1HeapSummary create_g1_heap_summary();
neugens@9861 1628
johnc@5548 1629 // Printing
tonyp@3957 1630
johnc@5548 1631 virtual void print_on(outputStream* st) const;
johnc@5548 1632 virtual void print_extended_on(outputStream* st) const;
johnc@5548 1633 virtual void print_on_error(outputStream* st) const;
ysr@777 1634
johnc@5548 1635 virtual void print_gc_threads_on(outputStream* st) const;
johnc@5548 1636 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1637
johnc@5548 1638 // Override
johnc@5548 1639 void print_tracing_info() const;
johnc@5548 1640
johnc@5548 1641 // The following two methods are helpful for debugging RSet issues.
johnc@5548 1642 void print_cset_rsets() PRODUCT_RETURN;
johnc@5548 1643 void print_all_rsets() PRODUCT_RETURN;
apetrusenko@1231 1644
ysr@777 1645 public:
ysr@777 1646 size_t pending_card_num();
ysr@777 1647 size_t cards_scanned();
ysr@777 1648
ysr@777 1649 protected:
ysr@777 1650 size_t _max_heap_capacity;
ysr@777 1651 };
ysr@777 1652
stefank@2314 1653 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial