src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6971
7426d8d76305
child 7005
e0954897238a
child 7018
a22acf6d7598
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

ysr@777 1 /*
tschatzl@6402 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/concurrentMark.hpp"
sla@5237 29 #include "gc_implementation/g1/evacuationInfo.hpp"
tonyp@2715 30 #include "gc_implementation/g1/g1AllocRegion.hpp"
tschatzl@6926 31 #include "gc_implementation/g1/g1BiasedArray.hpp"
tonyp@2975 32 #include "gc_implementation/g1/g1HRPrinter.hpp"
sla@5237 33 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
mgerdin@5811 34 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
sla@5237 35 #include "gc_implementation/g1/g1YCTypes.hpp"
tonyp@2963 36 #include "gc_implementation/g1/heapRegionSeq.hpp"
brutisso@6385 37 #include "gc_implementation/g1/heapRegionSet.hpp"
jmasa@2821 38 #include "gc_implementation/shared/hSpaceCounters.hpp"
johnc@3982 39 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
stefank@2314 40 #include "memory/barrierSet.hpp"
stefank@2314 41 #include "memory/memRegion.hpp"
stefank@2314 42 #include "memory/sharedHeap.hpp"
brutisso@4579 43 #include "utilities/stack.hpp"
stefank@2314 44
ysr@777 45 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 46 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 47 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 48 // heap subsets that will yield large amounts of garbage.
ysr@777 49
johnc@5548 50 // Forward declarations
ysr@777 51 class HeapRegion;
tonyp@2493 52 class HRRSCleanupTask;
ysr@777 53 class GenerationSpec;
ysr@777 54 class OopsInHeapRegionClosure;
coleenp@4037 55 class G1KlassScanClosure;
ysr@777 56 class G1ScanHeapEvacClosure;
ysr@777 57 class ObjectClosure;
ysr@777 58 class SpaceClosure;
ysr@777 59 class CompactibleSpaceClosure;
ysr@777 60 class Space;
ysr@777 61 class G1CollectorPolicy;
ysr@777 62 class GenRemSet;
ysr@777 63 class G1RemSet;
ysr@777 64 class HeapRegionRemSetIterator;
ysr@777 65 class ConcurrentMark;
ysr@777 66 class ConcurrentMarkThread;
ysr@777 67 class ConcurrentG1Refine;
sla@5237 68 class ConcurrentGCTimer;
jmasa@2821 69 class GenerationCounters;
sla@5237 70 class STWGCTimer;
sla@5237 71 class G1NewTracer;
sla@5237 72 class G1OldTracer;
sla@5237 73 class EvacuationFailedInfo;
johnc@5548 74 class nmethod;
mgronlun@6131 75 class Ticks;
ysr@777 76
zgu@3900 77 typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
zgu@3900 78 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
ysr@777 79
johnc@1242 80 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 81 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 82
ysr@777 83 enum GCAllocPurpose {
ysr@777 84 GCAllocForTenured,
ysr@777 85 GCAllocForSurvived,
ysr@777 86 GCAllocPurposeCount
ysr@777 87 };
ysr@777 88
zgu@3900 89 class YoungList : public CHeapObj<mtGC> {
ysr@777 90 private:
ysr@777 91 G1CollectedHeap* _g1h;
ysr@777 92
ysr@777 93 HeapRegion* _head;
ysr@777 94
johnc@1829 95 HeapRegion* _survivor_head;
johnc@1829 96 HeapRegion* _survivor_tail;
johnc@1829 97
johnc@1829 98 HeapRegion* _curr;
johnc@1829 99
tonyp@3713 100 uint _length;
tonyp@3713 101 uint _survivor_length;
ysr@777 102
ysr@777 103 size_t _last_sampled_rs_lengths;
ysr@777 104 size_t _sampled_rs_lengths;
ysr@777 105
johnc@1829 106 void empty_list(HeapRegion* list);
ysr@777 107
ysr@777 108 public:
ysr@777 109 YoungList(G1CollectedHeap* g1h);
ysr@777 110
johnc@1829 111 void push_region(HeapRegion* hr);
johnc@1829 112 void add_survivor_region(HeapRegion* hr);
johnc@1829 113
johnc@1829 114 void empty_list();
johnc@1829 115 bool is_empty() { return _length == 0; }
tonyp@3713 116 uint length() { return _length; }
tonyp@3713 117 uint survivor_length() { return _survivor_length; }
ysr@777 118
tonyp@2961 119 // Currently we do not keep track of the used byte sum for the
tonyp@2961 120 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 121 // do so. When we'll eventually replace the young list with
tonyp@2961 122 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 123 // we'll report the more accurate information then.
tonyp@2961 124 size_t eden_used_bytes() {
tonyp@2961 125 assert(length() >= survivor_length(), "invariant");
tonyp@3713 126 return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 127 }
tonyp@2961 128 size_t survivor_used_bytes() {
tonyp@3713 129 return (size_t) survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 130 }
tonyp@2961 131
ysr@777 132 void rs_length_sampling_init();
ysr@777 133 bool rs_length_sampling_more();
ysr@777 134 void rs_length_sampling_next();
ysr@777 135
ysr@777 136 void reset_sampled_info() {
ysr@777 137 _last_sampled_rs_lengths = 0;
ysr@777 138 }
ysr@777 139 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 140
ysr@777 141 // for development purposes
ysr@777 142 void reset_auxilary_lists();
johnc@1829 143 void clear() { _head = NULL; _length = 0; }
johnc@1829 144
johnc@1829 145 void clear_survivors() {
johnc@1829 146 _survivor_head = NULL;
johnc@1829 147 _survivor_tail = NULL;
johnc@1829 148 _survivor_length = 0;
johnc@1829 149 }
johnc@1829 150
ysr@777 151 HeapRegion* first_region() { return _head; }
ysr@777 152 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 153 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 154
ysr@777 155 // debugging
ysr@777 156 bool check_list_well_formed();
johnc@1829 157 bool check_list_empty(bool check_sample = true);
ysr@777 158 void print();
ysr@777 159 };
ysr@777 160
tonyp@2715 161 class MutatorAllocRegion : public G1AllocRegion {
tonyp@2715 162 protected:
tonyp@2715 163 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@2715 164 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@2715 165 public:
tonyp@2715 166 MutatorAllocRegion()
tonyp@2715 167 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
tonyp@2715 168 };
tonyp@2715 169
tonyp@3028 170 class SurvivorGCAllocRegion : public G1AllocRegion {
tonyp@3028 171 protected:
tonyp@3028 172 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 173 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 174 public:
tonyp@3028 175 SurvivorGCAllocRegion()
tonyp@3028 176 : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
tonyp@3028 177 };
tonyp@3028 178
tonyp@3028 179 class OldGCAllocRegion : public G1AllocRegion {
tonyp@3028 180 protected:
tonyp@3028 181 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 182 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 183 public:
tonyp@3028 184 OldGCAllocRegion()
tonyp@3028 185 : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
tonyp@3028 186 };
tonyp@3028 187
johnc@5548 188 // The G1 STW is alive closure.
johnc@5548 189 // An instance is embedded into the G1CH and used as the
johnc@5548 190 // (optional) _is_alive_non_header closure in the STW
johnc@5548 191 // reference processor. It is also extensively used during
johnc@5548 192 // reference processing during STW evacuation pauses.
johnc@5548 193 class G1STWIsAliveClosure: public BoolObjectClosure {
johnc@5548 194 G1CollectedHeap* _g1;
johnc@5548 195 public:
johnc@5548 196 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
johnc@5548 197 bool do_object_b(oop p);
johnc@5548 198 };
johnc@5548 199
tschatzl@6926 200 // Instances of this class are used for quick tests on whether a reference points
tschatzl@6926 201 // into the collection set. Each of the array's elements denotes whether the
tschatzl@6926 202 // corresponding region is in the collection set.
tschatzl@6926 203 class G1FastCSetBiasedMappedArray : public G1BiasedMappedArray<bool> {
tschatzl@6926 204 protected:
tschatzl@6926 205 bool default_value() const { return false; }
tschatzl@6926 206 public:
tschatzl@6926 207 void clear() { G1BiasedMappedArray<bool>::clear(); }
tschatzl@6926 208 };
tschatzl@6926 209
ysr@777 210 class RefineCardTableEntryClosure;
johnc@3175 211
ysr@777 212 class G1CollectedHeap : public SharedHeap {
stefank@6992 213 friend class VM_CollectForMetadataAllocation;
ysr@777 214 friend class VM_G1CollectForAllocation;
ysr@777 215 friend class VM_G1CollectFull;
ysr@777 216 friend class VM_G1IncCollectionPause;
ysr@777 217 friend class VMStructs;
tonyp@2715 218 friend class MutatorAllocRegion;
tonyp@3028 219 friend class SurvivorGCAllocRegion;
tonyp@3028 220 friend class OldGCAllocRegion;
ysr@777 221
ysr@777 222 // Closures used in implementation.
stefank@6992 223 template <G1Barrier barrier, G1Mark do_mark_object>
brutisso@3690 224 friend class G1ParCopyClosure;
ysr@777 225 friend class G1IsAliveClosure;
ysr@777 226 friend class G1EvacuateFollowersClosure;
ysr@777 227 friend class G1ParScanThreadState;
ysr@777 228 friend class G1ParScanClosureSuper;
ysr@777 229 friend class G1ParEvacuateFollowersClosure;
ysr@777 230 friend class G1ParTask;
ysr@777 231 friend class G1FreeGarbageRegionClosure;
ysr@777 232 friend class RefineCardTableEntryClosure;
ysr@777 233 friend class G1PrepareCompactClosure;
ysr@777 234 friend class RegionSorter;
tonyp@2472 235 friend class RegionResetter;
ysr@777 236 friend class CountRCClosure;
ysr@777 237 friend class EvacPopObjClosure;
apetrusenko@1231 238 friend class G1ParCleanupCTTask;
ysr@777 239
ysr@777 240 // Other related classes.
ysr@777 241 friend class G1MarkSweep;
ysr@777 242
ysr@777 243 private:
ysr@777 244 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 245 static G1CollectedHeap* _g1h;
ysr@777 246
tonyp@1377 247 static size_t _humongous_object_threshold_in_words;
tonyp@1377 248
coleenp@4037 249 // Storage for the G1 heap.
ysr@777 250 VirtualSpace _g1_storage;
ysr@777 251 MemRegion _g1_reserved;
ysr@777 252
ysr@777 253 // The part of _g1_storage that is currently committed.
ysr@777 254 MemRegion _g1_committed;
ysr@777 255
tonyp@2472 256 // The master free list. It will satisfy all new region allocations.
brutisso@6385 257 FreeRegionList _free_list;
tonyp@2472 258
tonyp@2472 259 // The secondary free list which contains regions that have been
tonyp@2472 260 // freed up during the cleanup process. This will be appended to the
tonyp@2472 261 // master free list when appropriate.
brutisso@6385 262 FreeRegionList _secondary_free_list;
tonyp@2472 263
tonyp@3268 264 // It keeps track of the old regions.
brutisso@6385 265 HeapRegionSet _old_set;
tonyp@3268 266
tonyp@2472 267 // It keeps track of the humongous regions.
brutisso@6385 268 HeapRegionSet _humongous_set;
ysr@777 269
ysr@777 270 // The number of regions we could create by expansion.
tonyp@3713 271 uint _expansion_regions;
ysr@777 272
ysr@777 273 // The block offset table for the G1 heap.
ysr@777 274 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 275
tonyp@3268 276 // Tears down the region sets / lists so that they are empty and the
tonyp@3268 277 // regions on the heap do not belong to a region set / list. The
tonyp@3268 278 // only exception is the humongous set which we leave unaltered. If
tonyp@3268 279 // free_list_only is true, it will only tear down the master free
tonyp@3268 280 // list. It is called before a Full GC (free_list_only == false) or
tonyp@3268 281 // before heap shrinking (free_list_only == true).
tonyp@3268 282 void tear_down_region_sets(bool free_list_only);
tonyp@3268 283
tonyp@3268 284 // Rebuilds the region sets / lists so that they are repopulated to
tonyp@3268 285 // reflect the contents of the heap. The only exception is the
tonyp@3268 286 // humongous set which was not torn down in the first place. If
tonyp@3268 287 // free_list_only is true, it will only rebuild the master free
tonyp@3268 288 // list. It is called after a Full GC (free_list_only == false) or
tonyp@3268 289 // after heap shrinking (free_list_only == true).
tonyp@3268 290 void rebuild_region_sets(bool free_list_only);
ysr@777 291
ysr@777 292 // The sequence of all heap regions in the heap.
tonyp@2963 293 HeapRegionSeq _hrs;
ysr@777 294
tonyp@2715 295 // Alloc region used to satisfy mutator allocation requests.
tonyp@2715 296 MutatorAllocRegion _mutator_alloc_region;
ysr@777 297
tonyp@3028 298 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 299 // survivor objects.
tonyp@3028 300 SurvivorGCAllocRegion _survivor_gc_alloc_region;
tonyp@3028 301
johnc@3982 302 // PLAB sizing policy for survivors.
johnc@3982 303 PLABStats _survivor_plab_stats;
johnc@3982 304
tonyp@3028 305 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 306 // old objects.
tonyp@3028 307 OldGCAllocRegion _old_gc_alloc_region;
tonyp@3028 308
johnc@3982 309 // PLAB sizing policy for tenured objects.
johnc@3982 310 PLABStats _old_plab_stats;
johnc@3982 311
johnc@3982 312 PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
johnc@3982 313 PLABStats* stats = NULL;
johnc@3982 314
johnc@3982 315 switch (purpose) {
johnc@3982 316 case GCAllocForSurvived:
johnc@3982 317 stats = &_survivor_plab_stats;
johnc@3982 318 break;
johnc@3982 319 case GCAllocForTenured:
johnc@3982 320 stats = &_old_plab_stats;
johnc@3982 321 break;
johnc@3982 322 default:
johnc@3982 323 assert(false, "unrecognized GCAllocPurpose");
johnc@3982 324 }
johnc@3982 325
johnc@3982 326 return stats;
johnc@3982 327 }
johnc@3982 328
tonyp@3028 329 // The last old region we allocated to during the last GC.
tonyp@3028 330 // Typically, it is not full so we should re-use it during the next GC.
tonyp@3028 331 HeapRegion* _retained_old_gc_alloc_region;
tonyp@3028 332
tonyp@3410 333 // It specifies whether we should attempt to expand the heap after a
tonyp@3410 334 // region allocation failure. If heap expansion fails we set this to
tonyp@3410 335 // false so that we don't re-attempt the heap expansion (it's likely
tonyp@3410 336 // that subsequent expansion attempts will also fail if one fails).
tonyp@3410 337 // Currently, it is only consulted during GC and it's reset at the
tonyp@3410 338 // start of each GC.
tonyp@3410 339 bool _expand_heap_after_alloc_failure;
tonyp@3410 340
tonyp@2715 341 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 342 void init_mutator_alloc_region();
tonyp@2715 343
tonyp@2715 344 // It releases the mutator alloc region.
tonyp@2715 345 void release_mutator_alloc_region();
tonyp@2715 346
tonyp@3028 347 // It initializes the GC alloc regions at the start of a GC.
sla@5237 348 void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
tonyp@3028 349
stefank@6992 350 // Setup the retained old gc alloc region as the currrent old gc alloc region.
stefank@6992 351 void use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info);
stefank@6992 352
tonyp@3028 353 // It releases the GC alloc regions at the end of a GC.
sla@5237 354 void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
tonyp@3028 355
tonyp@3028 356 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 357 // before a Full GC.
tonyp@1071 358 void abandon_gc_alloc_regions();
ysr@777 359
jmasa@2821 360 // Helper for monitoring and management support.
jmasa@2821 361 G1MonitoringSupport* _g1mm;
jmasa@2821 362
apetrusenko@1826 363 // Determines PLAB size for a particular allocation purpose.
johnc@3982 364 size_t desired_plab_sz(GCAllocPurpose purpose);
apetrusenko@1826 365
ysr@777 366 // Outside of GC pauses, the number of bytes used in all regions other
ysr@777 367 // than the current allocation region.
ysr@777 368 size_t _summary_bytes_used;
ysr@777 369
tschatzl@6926 370 // This array is used for a quick test on whether a reference points into
tschatzl@6926 371 // the collection set or not. Each of the array's elements denotes whether the
tschatzl@6926 372 // corresponding region is in the collection set or not.
tschatzl@6926 373 G1FastCSetBiasedMappedArray _in_cset_fast_test;
tonyp@961 374
iveresov@788 375 volatile unsigned _gc_time_stamp;
ysr@777 376
ysr@777 377 size_t* _surviving_young_words;
ysr@777 378
tonyp@2975 379 G1HRPrinter _hr_printer;
tonyp@2975 380
ysr@777 381 void setup_surviving_young_words();
ysr@777 382 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 383 void cleanup_surviving_young_words();
ysr@777 384
tonyp@2011 385 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 386 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 387 // explicitly started if:
tonyp@2011 388 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 389 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
brutisso@3456 390 // (c) cause == _g1_humongous_allocation
tonyp@2011 391 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 392
brutisso@3823 393 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 394 // concurrent cycles) we have started.
brutisso@3823 395 volatile unsigned int _old_marking_cycles_started;
brutisso@3823 396
brutisso@3823 397 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 398 // concurrent cycles) we have completed.
brutisso@3823 399 volatile unsigned int _old_marking_cycles_completed;
tonyp@2011 400
sla@5237 401 bool _concurrent_cycle_started;
sla@5237 402
tonyp@2817 403 // This is a non-product method that is helpful for testing. It is
tonyp@2817 404 // called at the end of a GC and artificially expands the heap by
tonyp@2817 405 // allocating a number of dead regions. This way we can induce very
tonyp@2817 406 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 407 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 408 // this method will be found dead by the marking cycle).
tonyp@2817 409 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 410
tonyp@3957 411 // Clear RSets after a compaction. It also resets the GC time stamps.
tonyp@3957 412 void clear_rsets_post_compaction();
tonyp@3957 413
tonyp@3957 414 // If the HR printer is active, dump the state of the regions in the
tonyp@3957 415 // heap after a compaction.
tonyp@3957 416 void print_hrs_post_compaction();
tonyp@3957 417
brutisso@4015 418 double verify(bool guard, const char* msg);
brutisso@4015 419 void verify_before_gc();
brutisso@4015 420 void verify_after_gc();
brutisso@4015 421
brutisso@4063 422 void log_gc_header();
brutisso@4063 423 void log_gc_footer(double pause_time_sec);
brutisso@4063 424
tonyp@2315 425 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 426 // line number, file, etc.
tonyp@2315 427
tonyp@2643 428 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 429 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 430 (_extra_message_), \
tonyp@2472 431 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 432 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 433 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 434
tonyp@2315 435 #define assert_heap_locked() \
tonyp@2315 436 do { \
tonyp@2315 437 assert(Heap_lock->owned_by_self(), \
tonyp@2315 438 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 439 } while (0)
tonyp@2315 440
tonyp@2643 441 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 442 do { \
tonyp@2315 443 assert(Heap_lock->owned_by_self() || \
tonyp@2472 444 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 445 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 446 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 447 "should be at a safepoint")); \
tonyp@2315 448 } while (0)
tonyp@2315 449
tonyp@2315 450 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 451 do { \
tonyp@2315 452 assert(Heap_lock->owned_by_self() && \
tonyp@2315 453 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 454 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 455 "should not be at a safepoint")); \
tonyp@2315 456 } while (0)
tonyp@2315 457
tonyp@2315 458 #define assert_heap_not_locked() \
tonyp@2315 459 do { \
tonyp@2315 460 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 461 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 462 } while (0)
tonyp@2315 463
tonyp@2315 464 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 465 do { \
tonyp@2315 466 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 467 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 468 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 469 "should not be at a safepoint")); \
tonyp@2315 470 } while (0)
tonyp@2315 471
tonyp@2643 472 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 473 do { \
tonyp@2472 474 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 475 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 476 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 477 } while (0)
tonyp@2315 478
tonyp@2315 479 #define assert_not_at_safepoint() \
tonyp@2315 480 do { \
tonyp@2315 481 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 482 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 483 } while (0)
tonyp@2315 484
ysr@777 485 protected:
ysr@777 486
johnc@3021 487 // The young region list.
ysr@777 488 YoungList* _young_list;
ysr@777 489
ysr@777 490 // The current policy object for the collector.
ysr@777 491 G1CollectorPolicy* _g1_policy;
ysr@777 492
tonyp@2472 493 // This is the second level of trying to allocate a new region. If
tonyp@2715 494 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 495 // check whether there's anything available on the
tonyp@2715 496 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 497 // that list, if _free_regions_coming is set.
jwilhelm@6422 498 HeapRegion* new_region_try_secondary_free_list(bool is_old);
ysr@777 499
tonyp@2643 500 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 501 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 502 // attempt to expand the heap if necessary to satisfy the allocation
jwilhelm@6422 503 // request. If the region is to be used as an old region or for a
jwilhelm@6422 504 // humongous object, set is_old to true. If not, to false.
jwilhelm@6422 505 HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
ysr@777 506
tonyp@2643 507 // Attempt to satisfy a humongous allocation request of the given
tonyp@2643 508 // size by finding a contiguous set of free regions of num_regions
tonyp@2643 509 // length and remove them from the master free list. Return the
tonyp@2963 510 // index of the first region or G1_NULL_HRS_INDEX if the search
tonyp@2963 511 // was unsuccessful.
tonyp@3713 512 uint humongous_obj_allocate_find_first(uint num_regions,
tonyp@3713 513 size_t word_size);
ysr@777 514
tonyp@2643 515 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 516 // and starting at index first so that they appear as a single
tonyp@2643 517 // humongous region.
tonyp@3713 518 HeapWord* humongous_obj_allocate_initialize_regions(uint first,
tonyp@3713 519 uint num_regions,
tonyp@2643 520 size_t word_size);
tonyp@2643 521
tonyp@2643 522 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 523 // NULL if unsuccessful.
tonyp@2472 524 HeapWord* humongous_obj_allocate(size_t word_size);
ysr@777 525
tonyp@2315 526 // The following two methods, allocate_new_tlab() and
tonyp@2315 527 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 528 // into the G1's allocation routines. They have the following
tonyp@2315 529 // assumptions:
tonyp@2315 530 //
tonyp@2315 531 // * They should both be called outside safepoints.
tonyp@2315 532 //
tonyp@2315 533 // * They should both be called without holding the Heap_lock.
tonyp@2315 534 //
tonyp@2315 535 // * All allocation requests for new TLABs should go to
tonyp@2315 536 // allocate_new_tlab().
tonyp@2315 537 //
tonyp@2971 538 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 539 //
tonyp@2315 540 // * If either call cannot satisfy the allocation request using the
tonyp@2315 541 // current allocating region, they will try to get a new one. If
tonyp@2315 542 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 543 // retry the allocation.
tonyp@2315 544 //
tonyp@2315 545 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 546 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 547 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 548 // schedule a Full GC.
tonyp@2315 549 //
tonyp@2315 550 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 551 // should never be called with word_size being humongous. All
tonyp@2315 552 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 553 // will satisfy them with a special path.
ysr@777 554
tonyp@2315 555 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 556
tonyp@2315 557 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 558 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 559
tonyp@2715 560 // The following three methods take a gc_count_before_ret
tonyp@2715 561 // parameter which is used to return the GC count if the method
tonyp@2715 562 // returns NULL. Given that we are required to read the GC count
tonyp@2715 563 // while holding the Heap_lock, and these paths will take the
tonyp@2715 564 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 565 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 566 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 567 // Heap_lock just to read the GC count.
tonyp@2315 568
tonyp@2715 569 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 570 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 571 // should only be used for non-humongous allocations.
tonyp@2715 572 inline HeapWord* attempt_allocation(size_t word_size,
mgerdin@4853 573 unsigned int* gc_count_before_ret,
mgerdin@4853 574 int* gclocker_retry_count_ret);
tonyp@2315 575
tonyp@2715 576 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 577 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 578 // pause. This should only be used for non-humongous allocations.
tonyp@2715 579 HeapWord* attempt_allocation_slow(size_t word_size,
mgerdin@4853 580 unsigned int* gc_count_before_ret,
mgerdin@4853 581 int* gclocker_retry_count_ret);
tonyp@2315 582
tonyp@2715 583 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 584 // potentially schedule a GC pause.
tonyp@2715 585 HeapWord* attempt_allocation_humongous(size_t word_size,
mgerdin@4853 586 unsigned int* gc_count_before_ret,
mgerdin@4853 587 int* gclocker_retry_count_ret);
tonyp@2454 588
tonyp@2715 589 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 590 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 591 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 592 // or not.
tonyp@2315 593 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
tonyp@2715 594 bool expect_null_mutator_alloc_region);
tonyp@2315 595
tonyp@2315 596 // It dirties the cards that cover the block so that so that the post
tonyp@2315 597 // write barrier never queues anything when updating objects on this
tonyp@2315 598 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 599 // belongs to a young region.
tonyp@2315 600 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 601
ysr@777 602 // Allocate blocks during garbage collection. Will ensure an
ysr@777 603 // allocation region, either by picking one or expanding the
ysr@777 604 // heap, and then allocate a block of the given size. The block
ysr@777 605 // may not be a humongous - it must fit into a single heap region.
ysr@777 606 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 607
tschatzl@6332 608 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
tschatzl@6332 609 HeapRegion* alloc_region,
tschatzl@6332 610 bool par,
tschatzl@6332 611 size_t word_size);
tschatzl@6332 612
ysr@777 613 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 614 // that parallel threads might be attempting allocations.
ysr@777 615 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 616
tonyp@3028 617 // Allocation attempt during GC for a survivor object / PLAB.
tonyp@3028 618 inline HeapWord* survivor_attempt_allocation(size_t word_size);
apetrusenko@980 619
tonyp@3028 620 // Allocation attempt during GC for an old object / PLAB.
tonyp@3028 621 inline HeapWord* old_attempt_allocation(size_t word_size);
tonyp@2715 622
tonyp@3028 623 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 624
tonyp@3028 625 // For mutator alloc regions.
tonyp@2715 626 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 627 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 628 size_t allocated_bytes);
tonyp@2715 629
tonyp@3028 630 // For GC alloc regions.
tonyp@3713 631 HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
tonyp@3028 632 GCAllocPurpose ap);
tonyp@3028 633 void retire_gc_alloc_region(HeapRegion* alloc_region,
tonyp@3028 634 size_t allocated_bytes, GCAllocPurpose ap);
tonyp@3028 635
tonyp@2011 636 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 637 // inspection request and should collect the entire heap
tonyp@2315 638 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 639 // cleared during the GC
tonyp@2011 640 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 641 // the GC should attempt (at least) to satisfy
tonyp@2315 642 // - it returns false if it is unable to do the collection due to the
tonyp@2315 643 // GC locker being active, true otherwise
tonyp@2315 644 bool do_collection(bool explicit_gc,
tonyp@2011 645 bool clear_all_soft_refs,
ysr@777 646 size_t word_size);
ysr@777 647
ysr@777 648 // Callback from VM_G1CollectFull operation.
ysr@777 649 // Perform a full collection.
coleenp@4037 650 virtual void do_full_collection(bool clear_all_soft_refs);
ysr@777 651
ysr@777 652 // Resize the heap if necessary after a full collection. If this is
ysr@777 653 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 654 // and will be considered part of the used portion of the heap.
ysr@777 655 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 656
ysr@777 657 // Callback from VM_G1CollectForAllocation operation.
ysr@777 658 // This function does everything necessary/possible to satisfy a
ysr@777 659 // failed allocation request (including collection, expansion, etc.)
tonyp@2315 660 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
ysr@777 661
ysr@777 662 // Attempting to expand the heap sufficiently
ysr@777 663 // to support an allocation of the given "word_size". If
ysr@777 664 // successful, perform the allocation and return the address of the
ysr@777 665 // allocated block, or else "NULL".
tonyp@2315 666 HeapWord* expand_and_allocate(size_t word_size);
ysr@777 667
johnc@3175 668 // Process any reference objects discovered during
johnc@3175 669 // an incremental evacuation pause.
johnc@4130 670 void process_discovered_references(uint no_of_gc_workers);
johnc@3175 671
johnc@3175 672 // Enqueue any remaining discovered references
johnc@3175 673 // after processing.
johnc@4130 674 void enqueue_discovered_references(uint no_of_gc_workers);
johnc@3175 675
ysr@777 676 public:
jmasa@2821 677
tonyp@3176 678 G1MonitoringSupport* g1mm() {
tonyp@3176 679 assert(_g1mm != NULL, "should have been initialized");
tonyp@3176 680 return _g1mm;
tonyp@3176 681 }
jmasa@2821 682
ysr@777 683 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 684 // Returns true if the heap was expanded by the requested amount;
johnc@2504 685 // false otherwise.
ysr@777 686 // (Rounds up to a HeapRegion boundary.)
johnc@2504 687 bool expand(size_t expand_bytes);
ysr@777 688
ysr@777 689 // Do anything common to GC's.
ysr@777 690 virtual void gc_prologue(bool full);
ysr@777 691 virtual void gc_epilogue(bool full);
ysr@777 692
tonyp@961 693 // We register a region with the fast "in collection set" test. We
tonyp@961 694 // simply set to true the array slot corresponding to this region.
tonyp@961 695 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tschatzl@6926 696 _in_cset_fast_test.set_by_index(r->hrs_index(), true);
tonyp@961 697 }
tonyp@961 698
tonyp@961 699 // This is a fast test on whether a reference points into the
tschatzl@6330 700 // collection set or not. Assume that the reference
tschatzl@6330 701 // points into the heap.
tschatzl@6541 702 inline bool in_cset_fast_test(oop obj);
tonyp@961 703
johnc@1829 704 void clear_cset_fast_test() {
tschatzl@6926 705 _in_cset_fast_test.clear();
johnc@1829 706 }
johnc@1829 707
brutisso@3823 708 // This is called at the start of either a concurrent cycle or a Full
brutisso@3823 709 // GC to update the number of old marking cycles started.
brutisso@3823 710 void increment_old_marking_cycles_started();
brutisso@3823 711
tonyp@2011 712 // This is called at the end of either a concurrent cycle or a Full
brutisso@3823 713 // GC to update the number of old marking cycles completed. Those two
tonyp@2011 714 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 715 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 716 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 717 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 718 // tighter consistency checking in the method. If concurrent is
tonyp@2372 719 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 720 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 721 // in this nesting (i.e., the concurrent cycle). Further nesting is
brutisso@3823 722 // not currently supported. The end of this call also notifies
tonyp@2372 723 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 724 // GC to happen (e.g., it called System.gc() with
tonyp@2011 725 // +ExplicitGCInvokesConcurrent).
brutisso@3823 726 void increment_old_marking_cycles_completed(bool concurrent);
tonyp@2011 727
brutisso@3823 728 unsigned int old_marking_cycles_completed() {
brutisso@3823 729 return _old_marking_cycles_completed;
tonyp@2011 730 }
tonyp@2011 731
mgronlun@6131 732 void register_concurrent_cycle_start(const Ticks& start_time);
sla@5237 733 void register_concurrent_cycle_end();
sla@5237 734 void trace_heap_after_concurrent_cycle();
sla@5237 735
sla@5237 736 G1YCType yc_type();
sla@5237 737
tonyp@2975 738 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 739
brutisso@6385 740 // Frees a non-humongous region by initializing its contents and
brutisso@6385 741 // adding it to the free list that's passed as a parameter (this is
brutisso@6385 742 // usually a local list which will be appended to the master free
brutisso@6385 743 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 744 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 745 // up. The assumption is that this will be done later.
tschatzl@6404 746 // The locked parameter indicates if the caller has already taken
tschatzl@6404 747 // care of proper synchronization. This may allow some optimizations.
brutisso@6385 748 void free_region(HeapRegion* hr,
brutisso@6385 749 FreeRegionList* free_list,
tschatzl@6404 750 bool par,
tschatzl@6404 751 bool locked = false);
brutisso@6385 752
brutisso@6385 753 // Frees a humongous region by collapsing it into individual regions
brutisso@6385 754 // and calling free_region() for each of them. The freed regions
brutisso@6385 755 // will be added to the free list that's passed as a parameter (this
brutisso@6385 756 // is usually a local list which will be appended to the master free
brutisso@6385 757 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 758 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 759 // up. The assumption is that this will be done later.
brutisso@6385 760 void free_humongous_region(HeapRegion* hr,
brutisso@6385 761 FreeRegionList* free_list,
brutisso@6385 762 bool par);
ysr@777 763 protected:
ysr@777 764
ysr@777 765 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 766 // (Rounds down to a HeapRegion boundary.)
ysr@777 767 virtual void shrink(size_t expand_bytes);
ysr@777 768 void shrink_helper(size_t expand_bytes);
ysr@777 769
jcoomes@2064 770 #if TASKQUEUE_STATS
jcoomes@2064 771 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 772 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 773 void reset_taskqueue_stats();
jcoomes@2064 774 #endif // TASKQUEUE_STATS
jcoomes@2064 775
tonyp@2315 776 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 777 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 778 // return whether the VM operation was successful (it did do an
tonyp@2315 779 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 780 // locker was active). Given that we should not be holding the
tonyp@2315 781 // Heap_lock when we enter this method, we will pass the
tonyp@2315 782 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 783 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 784 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 785 // before the call, so it's easy to read gc_count_before just before.
brutisso@5581 786 HeapWord* do_collection_pause(size_t word_size,
brutisso@5581 787 unsigned int gc_count_before,
brutisso@5581 788 bool* succeeded,
brutisso@5581 789 GCCause::Cause gc_cause);
ysr@777 790
ysr@777 791 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 792 // thread. It returns false if it is unable to do the collection due
tonyp@2315 793 // to the GC locker being active, true otherwise
tonyp@2315 794 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 795
ysr@777 796 // Actually do the work of evacuating the collection set.
sla@5237 797 void evacuate_collection_set(EvacuationInfo& evacuation_info);
ysr@777 798
ysr@777 799 // The g1 remembered set of the heap.
ysr@777 800 G1RemSet* _g1_rem_set;
ysr@777 801
iveresov@1051 802 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 803 // concurrently after the collection.
iveresov@1051 804 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 805
ysr@777 806 // The closure used to refine a single card.
ysr@777 807 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 808
ysr@777 809 // A function to check the consistency of dirty card logs.
ysr@777 810 void check_ct_logs_at_safepoint();
ysr@777 811
johnc@2060 812 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 813 // references into the current collection set. This is used to
johnc@2060 814 // update the remembered sets of the regions in the collection
johnc@2060 815 // set in the event of an evacuation failure.
johnc@2060 816 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 817
ysr@777 818 // After a collection pause, make the regions in the CS into free
ysr@777 819 // regions.
sla@5237 820 void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
ysr@777 821
johnc@1829 822 // Abandon the current collection set without recording policy
johnc@1829 823 // statistics or updating free lists.
johnc@1829 824 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 825
ysr@777 826 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 827 // "scan_rs" to roots inside the heap (having done "set_region" to
coleenp@4037 828 // indicate the region in which the root resides),
coleenp@4037 829 // and does "scan_metadata" If "scan_rs" is
ysr@777 830 // NULL, then this step is skipped. The "worker_i"
ysr@777 831 // param is for use with parallel roots processing, and should be
ysr@777 832 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 833 // In the sequential case this param will be ignored.
stefank@6992 834 void g1_process_roots(OopClosure* scan_non_heap_roots,
stefank@6992 835 OopClosure* scan_non_heap_weak_roots,
stefank@6992 836 OopsInHeapRegionClosure* scan_rs,
stefank@6992 837 CLDClosure* scan_strong_clds,
stefank@6992 838 CLDClosure* scan_weak_clds,
stefank@6992 839 CodeBlobClosure* scan_strong_code,
stefank@6992 840 uint worker_i);
ysr@777 841
tonyp@2963 842 // Notifies all the necessary spaces that the committed space has
tonyp@2963 843 // been updated (either expanded or shrunk). It should be called
tonyp@2963 844 // after _g1_storage is updated.
tonyp@2963 845 void update_committed_space(HeapWord* old_end, HeapWord* new_end);
tonyp@2963 846
ysr@777 847 // The concurrent marker (and the thread it runs in.)
ysr@777 848 ConcurrentMark* _cm;
ysr@777 849 ConcurrentMarkThread* _cmThread;
ysr@777 850 bool _mark_in_progress;
ysr@777 851
ysr@777 852 // The concurrent refiner.
ysr@777 853 ConcurrentG1Refine* _cg1r;
ysr@777 854
ysr@777 855 // The parallel task queues
ysr@777 856 RefToScanQueueSet *_task_queues;
ysr@777 857
ysr@777 858 // True iff a evacuation has failed in the current collection.
ysr@777 859 bool _evacuation_failed;
ysr@777 860
sla@5237 861 EvacuationFailedInfo* _evacuation_failed_info_array;
ysr@777 862
ysr@777 863 // Failed evacuations cause some logical from-space objects to have
ysr@777 864 // forwarding pointers to themselves. Reset them.
ysr@777 865 void remove_self_forwarding_pointers();
ysr@777 866
brutisso@4579 867 // Together, these store an object with a preserved mark, and its mark value.
brutisso@4579 868 Stack<oop, mtGC> _objs_with_preserved_marks;
brutisso@4579 869 Stack<markOop, mtGC> _preserved_marks_of_objs;
ysr@777 870
ysr@777 871 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 872 // word being overwritten with a self-forwarding-pointer.
ysr@777 873 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 874
ysr@777 875 // The stack of evac-failure objects left to be scanned.
ysr@777 876 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 877 // The closure to apply to evac-failure objects.
ysr@777 878
ysr@777 879 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 880 // Set the field above.
ysr@777 881 void
ysr@777 882 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 883 _evac_failure_closure = evac_failure_closure;
ysr@777 884 }
ysr@777 885
ysr@777 886 // Push "obj" on the scan stack.
ysr@777 887 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 888 // Process scan stack entries until the stack is empty.
ysr@777 889 void drain_evac_failure_scan_stack();
ysr@777 890 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 891 // prevent unnecessary recursion.
ysr@777 892 bool _drain_in_progress;
ysr@777 893
ysr@777 894 // Do any necessary initialization for evacuation-failure handling.
ysr@777 895 // "cl" is the closure that will be used to process evac-failure
ysr@777 896 // objects.
ysr@777 897 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 898 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 899 // structures.
ysr@777 900 void finalize_for_evac_failure();
ysr@777 901
ysr@777 902 // An attempt to evacuate "obj" has failed; take necessary steps.
sla@5237 903 oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
ysr@777 904 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 905
johnc@4016 906 #ifndef PRODUCT
johnc@4016 907 // Support for forcing evacuation failures. Analogous to
johnc@4016 908 // PromotionFailureALot for the other collectors.
johnc@4016 909
johnc@4016 910 // Records whether G1EvacuationFailureALot should be in effect
johnc@4016 911 // for the current GC
johnc@4016 912 bool _evacuation_failure_alot_for_current_gc;
johnc@4016 913
johnc@4016 914 // Used to record the GC number for interval checking when
johnc@4016 915 // determining whether G1EvaucationFailureALot is in effect
johnc@4016 916 // for the current GC.
johnc@4016 917 size_t _evacuation_failure_alot_gc_number;
johnc@4016 918
johnc@4016 919 // Count of the number of evacuations between failures.
johnc@4016 920 volatile size_t _evacuation_failure_alot_count;
johnc@4016 921
johnc@4016 922 // Set whether G1EvacuationFailureALot should be in effect
johnc@4016 923 // for the current GC (based upon the type of GC and which
johnc@4016 924 // command line flags are set);
johnc@4016 925 inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
johnc@4016 926 bool during_initial_mark,
johnc@4016 927 bool during_marking);
johnc@4016 928
johnc@4016 929 inline void set_evacuation_failure_alot_for_current_gc();
johnc@4016 930
johnc@4016 931 // Return true if it's time to cause an evacuation failure.
johnc@4016 932 inline bool evacuation_should_fail();
johnc@4016 933
johnc@4016 934 // Reset the G1EvacuationFailureALot counters. Should be called at
sla@5237 935 // the end of an evacuation pause in which an evacuation failure occurred.
johnc@4016 936 inline void reset_evacuation_should_fail();
johnc@4016 937 #endif // !PRODUCT
johnc@4016 938
johnc@3175 939 // ("Weak") Reference processing support.
johnc@3175 940 //
sla@5237 941 // G1 has 2 instances of the reference processor class. One
johnc@3175 942 // (_ref_processor_cm) handles reference object discovery
johnc@3175 943 // and subsequent processing during concurrent marking cycles.
johnc@3175 944 //
johnc@3175 945 // The other (_ref_processor_stw) handles reference object
johnc@3175 946 // discovery and processing during full GCs and incremental
johnc@3175 947 // evacuation pauses.
johnc@3175 948 //
johnc@3175 949 // During an incremental pause, reference discovery will be
johnc@3175 950 // temporarily disabled for _ref_processor_cm and will be
johnc@3175 951 // enabled for _ref_processor_stw. At the end of the evacuation
johnc@3175 952 // pause references discovered by _ref_processor_stw will be
johnc@3175 953 // processed and discovery will be disabled. The previous
johnc@3175 954 // setting for reference object discovery for _ref_processor_cm
johnc@3175 955 // will be re-instated.
johnc@3175 956 //
johnc@3175 957 // At the start of marking:
johnc@3175 958 // * Discovery by the CM ref processor is verified to be inactive
johnc@3175 959 // and it's discovered lists are empty.
johnc@3175 960 // * Discovery by the CM ref processor is then enabled.
johnc@3175 961 //
johnc@3175 962 // At the end of marking:
johnc@3175 963 // * Any references on the CM ref processor's discovered
johnc@3175 964 // lists are processed (possibly MT).
johnc@3175 965 //
johnc@3175 966 // At the start of full GC we:
johnc@3175 967 // * Disable discovery by the CM ref processor and
johnc@3175 968 // empty CM ref processor's discovered lists
johnc@3175 969 // (without processing any entries).
johnc@3175 970 // * Verify that the STW ref processor is inactive and it's
johnc@3175 971 // discovered lists are empty.
johnc@3175 972 // * Temporarily set STW ref processor discovery as single threaded.
johnc@3175 973 // * Temporarily clear the STW ref processor's _is_alive_non_header
johnc@3175 974 // field.
johnc@3175 975 // * Finally enable discovery by the STW ref processor.
johnc@3175 976 //
johnc@3175 977 // The STW ref processor is used to record any discovered
johnc@3175 978 // references during the full GC.
johnc@3175 979 //
johnc@3175 980 // At the end of a full GC we:
johnc@3175 981 // * Enqueue any reference objects discovered by the STW ref processor
johnc@3175 982 // that have non-live referents. This has the side-effect of
johnc@3175 983 // making the STW ref processor inactive by disabling discovery.
johnc@3175 984 // * Verify that the CM ref processor is still inactive
johnc@3175 985 // and no references have been placed on it's discovered
johnc@3175 986 // lists (also checked as a precondition during initial marking).
johnc@3175 987
johnc@3175 988 // The (stw) reference processor...
johnc@3175 989 ReferenceProcessor* _ref_processor_stw;
johnc@3175 990
sla@5237 991 STWGCTimer* _gc_timer_stw;
sla@5237 992 ConcurrentGCTimer* _gc_timer_cm;
sla@5237 993
sla@5237 994 G1OldTracer* _gc_tracer_cm;
sla@5237 995 G1NewTracer* _gc_tracer_stw;
sla@5237 996
johnc@3175 997 // During reference object discovery, the _is_alive_non_header
johnc@3175 998 // closure (if non-null) is applied to the referent object to
johnc@3175 999 // determine whether the referent is live. If so then the
johnc@3175 1000 // reference object does not need to be 'discovered' and can
johnc@3175 1001 // be treated as a regular oop. This has the benefit of reducing
johnc@3175 1002 // the number of 'discovered' reference objects that need to
johnc@3175 1003 // be processed.
johnc@3175 1004 //
johnc@3175 1005 // Instance of the is_alive closure for embedding into the
johnc@3175 1006 // STW reference processor as the _is_alive_non_header field.
johnc@3175 1007 // Supplying a value for the _is_alive_non_header field is
johnc@3175 1008 // optional but doing so prevents unnecessary additions to
johnc@3175 1009 // the discovered lists during reference discovery.
johnc@3175 1010 G1STWIsAliveClosure _is_alive_closure_stw;
johnc@3175 1011
johnc@3175 1012 // The (concurrent marking) reference processor...
johnc@3175 1013 ReferenceProcessor* _ref_processor_cm;
johnc@3175 1014
johnc@2379 1015 // Instance of the concurrent mark is_alive closure for embedding
johnc@3175 1016 // into the Concurrent Marking reference processor as the
johnc@3175 1017 // _is_alive_non_header field. Supplying a value for the
johnc@3175 1018 // _is_alive_non_header field is optional but doing so prevents
johnc@3175 1019 // unnecessary additions to the discovered lists during reference
johnc@3175 1020 // discovery.
johnc@3175 1021 G1CMIsAliveClosure _is_alive_closure_cm;
ysr@777 1022
johnc@3336 1023 // Cache used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1024 HeapRegion** _worker_cset_start_region;
johnc@3336 1025
johnc@3336 1026 // Time stamp to validate the regions recorded in the cache
johnc@3336 1027 // used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1028 // The heap region entry for a given worker is valid iff
johnc@3336 1029 // the associated time stamp value matches the current value
johnc@3336 1030 // of G1CollectedHeap::_gc_time_stamp.
johnc@3336 1031 unsigned int* _worker_cset_start_region_time_stamp;
johnc@3336 1032
stefank@6992 1033 enum G1H_process_roots_tasks {
tonyp@3416 1034 G1H_PS_filter_satb_buffers,
ysr@777 1035 G1H_PS_refProcessor_oops_do,
ysr@777 1036 // Leave this one last.
ysr@777 1037 G1H_PS_NumElements
ysr@777 1038 };
ysr@777 1039
ysr@777 1040 SubTasksDone* _process_strong_tasks;
ysr@777 1041
tonyp@2472 1042 volatile bool _free_regions_coming;
ysr@777 1043
ysr@777 1044 public:
jmasa@2188 1045
jmasa@2188 1046 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 1047
ysr@777 1048 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 1049
jcoomes@2064 1050 RefToScanQueue *task_queue(int i) const;
ysr@777 1051
iveresov@1051 1052 // A set of cards where updates happened during the GC
iveresov@1051 1053 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 1054
johnc@2060 1055 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 1056 // references into the current collection set. This is used to
johnc@2060 1057 // update the remembered sets of the regions in the collection
johnc@2060 1058 // set in the event of an evacuation failure.
johnc@2060 1059 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 1060 { return _into_cset_dirty_card_queue_set; }
johnc@2060 1061
ysr@777 1062 // Create a G1CollectedHeap with the specified policy.
ysr@777 1063 // Must call the initialize method afterwards.
ysr@777 1064 // May not return if something goes wrong.
ysr@777 1065 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 1066
ysr@777 1067 // Initialize the G1CollectedHeap to have the initial and
coleenp@4037 1068 // maximum sizes and remembered and barrier sets
ysr@777 1069 // specified by the policy object.
ysr@777 1070 jint initialize();
ysr@777 1071
pliden@6690 1072 virtual void stop();
pliden@6690 1073
tschatzl@5701 1074 // Return the (conservative) maximum heap alignment for any G1 heap
tschatzl@5701 1075 static size_t conservative_max_heap_alignment();
tschatzl@5701 1076
johnc@3175 1077 // Initialize weak reference processing.
johnc@2379 1078 virtual void ref_processing_init();
ysr@777 1079
jmasa@3357 1080 void set_par_threads(uint t) {
ysr@777 1081 SharedHeap::set_par_threads(t);
jmasa@3294 1082 // Done in SharedHeap but oddly there are
jmasa@3294 1083 // two _process_strong_tasks's in a G1CollectedHeap
jmasa@3294 1084 // so do it here too.
jmasa@3294 1085 _process_strong_tasks->set_n_threads(t);
jmasa@3294 1086 }
jmasa@3294 1087
jmasa@3294 1088 // Set _n_par_threads according to a policy TBD.
jmasa@3294 1089 void set_par_threads();
jmasa@3294 1090
jmasa@3294 1091 void set_n_termination(int t) {
jmasa@2188 1092 _process_strong_tasks->set_n_threads(t);
ysr@777 1093 }
ysr@777 1094
ysr@777 1095 virtual CollectedHeap::Name kind() const {
ysr@777 1096 return CollectedHeap::G1CollectedHeap;
ysr@777 1097 }
ysr@777 1098
ysr@777 1099 // The current policy object for the collector.
ysr@777 1100 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 1101
coleenp@4037 1102 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
coleenp@4037 1103
ysr@777 1104 // Adaptive size policy. No such thing for g1.
ysr@777 1105 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 1106
ysr@777 1107 // The rem set and barrier set.
ysr@777 1108 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 1109
ysr@777 1110 unsigned get_gc_time_stamp() {
ysr@777 1111 return _gc_time_stamp;
ysr@777 1112 }
ysr@777 1113
goetz@6911 1114 inline void reset_gc_time_stamp();
iveresov@788 1115
tonyp@3957 1116 void check_gc_time_stamps() PRODUCT_RETURN;
tonyp@3957 1117
goetz@6911 1118 inline void increment_gc_time_stamp();
ysr@777 1119
tonyp@3957 1120 // Reset the given region's GC timestamp. If it's starts humongous,
tonyp@3957 1121 // also reset the GC timestamp of its corresponding
tonyp@3957 1122 // continues humongous regions too.
tonyp@3957 1123 void reset_gc_time_stamps(HeapRegion* hr);
tonyp@3957 1124
johnc@2060 1125 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 1126 DirtyCardQueue* into_cset_dcq,
vkempik@6552 1127 bool concurrent, uint worker_i);
ysr@777 1128
ysr@777 1129 // The shared block offset table array.
ysr@777 1130 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 1131
johnc@3175 1132 // Reference Processing accessors
johnc@3175 1133
johnc@3175 1134 // The STW reference processor....
johnc@3175 1135 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
johnc@3175 1136
sla@5237 1137 // The Concurrent Marking reference processor...
johnc@3175 1138 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
ysr@777 1139
sla@5237 1140 ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
sla@5237 1141 G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
sla@5237 1142
ysr@777 1143 virtual size_t capacity() const;
ysr@777 1144 virtual size_t used() const;
tonyp@1281 1145 // This should be called when we're not holding the heap lock. The
tonyp@1281 1146 // result might be a bit inaccurate.
tonyp@1281 1147 size_t used_unlocked() const;
ysr@777 1148 size_t recalculate_used() const;
ysr@777 1149
ysr@777 1150 // These virtual functions do the actual allocation.
ysr@777 1151 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 1152 // allocation, via inlined code (by exporting the address of the top and
ysr@777 1153 // end fields defining the extent of the contiguous allocation region.)
ysr@777 1154 // But G1CollectedHeap doesn't yet support this.
ysr@777 1155
ysr@777 1156 // Return an estimate of the maximum allocation that could be performed
ysr@777 1157 // without triggering any collection or expansion activity. In a
ysr@777 1158 // generational collector, for example, this is probably the largest
ysr@777 1159 // allocation that could be supported (without expansion) in the youngest
ysr@777 1160 // generation. It is "unsafe" because no locks are taken; the result
ysr@777 1161 // should be treated as an approximation, not a guarantee, for use in
ysr@777 1162 // heuristic resizing decisions.
ysr@777 1163 virtual size_t unsafe_max_alloc();
ysr@777 1164
ysr@777 1165 virtual bool is_maximal_no_gc() const {
ysr@777 1166 return _g1_storage.uncommitted_size() == 0;
ysr@777 1167 }
ysr@777 1168
ysr@777 1169 // The total number of regions in the heap.
tonyp@3713 1170 uint n_regions() { return _hrs.length(); }
tonyp@2963 1171
tonyp@2963 1172 // The max number of regions in the heap.
tonyp@3713 1173 uint max_regions() { return _hrs.max_length(); }
ysr@777 1174
ysr@777 1175 // The number of regions that are completely free.
tonyp@3713 1176 uint free_regions() { return _free_list.length(); }
ysr@777 1177
ysr@777 1178 // The number of regions that are not completely free.
tonyp@3713 1179 uint used_regions() { return n_regions() - free_regions(); }
ysr@777 1180
ysr@777 1181 // The number of regions available for "regular" expansion.
tonyp@3713 1182 uint expansion_regions() { return _expansion_regions; }
ysr@777 1183
tonyp@2963 1184 // Factory method for HeapRegion instances. It will return NULL if
tonyp@2963 1185 // the allocation fails.
tonyp@3713 1186 HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
tonyp@2963 1187
tonyp@2849 1188 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 1189 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 1190 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 1191 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 1192
tonyp@2472 1193 // verify_region_sets() performs verification over the region
tonyp@2472 1194 // lists. It will be compiled in the product code to be used when
tonyp@2472 1195 // necessary (i.e., during heap verification).
tonyp@2472 1196 void verify_region_sets();
ysr@777 1197
tonyp@2472 1198 // verify_region_sets_optional() is planted in the code for
tonyp@2472 1199 // list verification in non-product builds (and it can be enabled in
sla@5237 1200 // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 1201 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1202 void verify_region_sets_optional() {
tonyp@2472 1203 verify_region_sets();
tonyp@2472 1204 }
tonyp@2472 1205 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1206 void verify_region_sets_optional() { }
tonyp@2472 1207 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 1208
tonyp@2472 1209 #ifdef ASSERT
tonyp@2643 1210 bool is_on_master_free_list(HeapRegion* hr) {
tonyp@2472 1211 return hr->containing_set() == &_free_list;
tonyp@2472 1212 }
tonyp@2472 1213 #endif // ASSERT
ysr@777 1214
tonyp@2472 1215 // Wrapper for the region list operations that can be called from
tonyp@2472 1216 // methods outside this class.
ysr@777 1217
jwilhelm@6422 1218 void secondary_free_list_add(FreeRegionList* list) {
jwilhelm@6422 1219 _secondary_free_list.add_ordered(list);
tonyp@2472 1220 }
ysr@777 1221
tonyp@2472 1222 void append_secondary_free_list() {
jwilhelm@6422 1223 _free_list.add_ordered(&_secondary_free_list);
tonyp@2472 1224 }
ysr@777 1225
tonyp@2643 1226 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1227 // If the secondary free list looks empty there's no reason to
tonyp@2643 1228 // take the lock and then try to append it.
tonyp@2472 1229 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1230 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1231 append_secondary_free_list();
tonyp@2472 1232 }
tonyp@2472 1233 }
ysr@777 1234
tschatzl@6541 1235 inline void old_set_remove(HeapRegion* hr);
tonyp@3268 1236
brutisso@3456 1237 size_t non_young_capacity_bytes() {
brutisso@3456 1238 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
brutisso@3456 1239 }
brutisso@3456 1240
tonyp@2472 1241 void set_free_regions_coming();
tonyp@2472 1242 void reset_free_regions_coming();
tonyp@2472 1243 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1244 void wait_while_free_regions_coming();
ysr@777 1245
tonyp@3539 1246 // Determine whether the given region is one that we are using as an
tonyp@3539 1247 // old GC alloc region.
tonyp@3539 1248 bool is_old_gc_alloc_region(HeapRegion* hr) {
tonyp@3539 1249 return hr == _retained_old_gc_alloc_region;
tonyp@3539 1250 }
tonyp@3539 1251
ysr@777 1252 // Perform a collection of the heap; intended for use in implementing
ysr@777 1253 // "System.gc". This probably implies as full a collection as the
ysr@777 1254 // "CollectedHeap" supports.
ysr@777 1255 virtual void collect(GCCause::Cause cause);
ysr@777 1256
ysr@777 1257 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1258 void collect_locked(GCCause::Cause cause);
ysr@777 1259
sla@5237 1260 // True iff an evacuation has failed in the most-recent collection.
ysr@777 1261 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1262
brutisso@6385 1263 void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
brutisso@6385 1264 void prepend_to_freelist(FreeRegionList* list);
brutisso@6385 1265 void decrement_summary_bytes(size_t bytes);
ysr@777 1266
stefank@3335 1267 // Returns "TRUE" iff "p" points into the committed areas of the heap.
ysr@777 1268 virtual bool is_in(const void* p) const;
ysr@777 1269
ysr@777 1270 // Return "TRUE" iff the given object address is within the collection
ysr@777 1271 // set.
ysr@777 1272 inline bool obj_in_cs(oop obj);
ysr@777 1273
ysr@777 1274 // Return "TRUE" iff the given object address is in the reserved
coleenp@4037 1275 // region of g1.
ysr@777 1276 bool is_in_g1_reserved(const void* p) const {
ysr@777 1277 return _g1_reserved.contains(p);
ysr@777 1278 }
ysr@777 1279
tonyp@2717 1280 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1281 // reserved for the heap
tonyp@2717 1282 MemRegion g1_reserved() {
tonyp@2717 1283 return _g1_reserved;
tonyp@2717 1284 }
tonyp@2717 1285
tonyp@2717 1286 // Returns a MemRegion that corresponds to the space that has been
ysr@777 1287 // committed in the heap
ysr@777 1288 MemRegion g1_committed() {
ysr@777 1289 return _g1_committed;
ysr@777 1290 }
ysr@777 1291
johnc@2593 1292 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1293
mgerdin@5811 1294 G1SATBCardTableModRefBS* g1_barrier_set() {
mgerdin@5811 1295 return (G1SATBCardTableModRefBS*) barrier_set();
mgerdin@5811 1296 }
mgerdin@5811 1297
ysr@777 1298 // This resets the card table to all zeros. It is used after
ysr@777 1299 // a collection pause which used the card table to claim cards.
ysr@777 1300 void cleanUpCardTable();
ysr@777 1301
ysr@777 1302 // Iteration functions.
ysr@777 1303
ysr@777 1304 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1305 // "cl.do_oop" on each.
coleenp@4037 1306 virtual void oop_iterate(ExtendedOopClosure* cl);
ysr@777 1307
ysr@777 1308 // Same as above, restricted to a memory region.
coleenp@4037 1309 void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
ysr@777 1310
ysr@777 1311 // Iterate over all objects, calling "cl.do_object" on each.
coleenp@4037 1312 virtual void object_iterate(ObjectClosure* cl);
coleenp@4037 1313
coleenp@4037 1314 virtual void safe_object_iterate(ObjectClosure* cl) {
coleenp@4037 1315 object_iterate(cl);
iveresov@1113 1316 }
ysr@777 1317
ysr@777 1318 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1319 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1320
ysr@777 1321 // Iterate over heap regions, in address order, terminating the
ysr@777 1322 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1323 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1324
tonyp@2963 1325 // Return the region with the given index. It assumes the index is valid.
tschatzl@6541 1326 inline HeapRegion* region_at(uint index) const;
ysr@777 1327
ysr@777 1328 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1329 // of regions divided by the number of parallel threads times some
ysr@777 1330 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1331 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1332 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1333 // calls will use the same "claim_value", and that that claim value is
ysr@777 1334 // different from the claim_value of any heap region before the start of
ysr@777 1335 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1336 // attempting to claim the first region in each chunk, and, if
ysr@777 1337 // successful, applying the closure to each region in the chunk (and
ysr@777 1338 // setting the claim value of the second and subsequent regions of the
ysr@777 1339 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1340 // i.e., that a closure never attempt to abort a traversal.
ysr@777 1341 void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
jmasa@3357 1342 uint worker,
jmasa@3357 1343 uint no_of_par_workers,
ysr@777 1344 jint claim_value);
ysr@777 1345
tonyp@825 1346 // It resets all the region claim values to the default.
tonyp@825 1347 void reset_heap_region_claim_values();
tonyp@825 1348
johnc@3412 1349 // Resets the claim values of regions in the current
johnc@3412 1350 // collection set to the default.
johnc@3412 1351 void reset_cset_heap_region_claim_values();
johnc@3412 1352
tonyp@790 1353 #ifdef ASSERT
tonyp@790 1354 bool check_heap_region_claim_values(jint claim_value);
johnc@3296 1355
johnc@3296 1356 // Same as the routine above but only checks regions in the
johnc@3296 1357 // current collection set.
johnc@3296 1358 bool check_cset_heap_region_claim_values(jint claim_value);
tonyp@790 1359 #endif // ASSERT
tonyp@790 1360
johnc@3336 1361 // Clear the cached cset start regions and (more importantly)
johnc@3336 1362 // the time stamps. Called when we reset the GC time stamp.
johnc@3336 1363 void clear_cset_start_regions();
johnc@3336 1364
johnc@3336 1365 // Given the id of a worker, obtain or calculate a suitable
johnc@3336 1366 // starting region for iterating over the current collection set.
vkempik@6552 1367 HeapRegion* start_cset_region_for_worker(uint worker_i);
johnc@3296 1368
tonyp@3957 1369 // This is a convenience method that is used by the
tonyp@3957 1370 // HeapRegionIterator classes to calculate the starting region for
tonyp@3957 1371 // each worker so that they do not all start from the same region.
tonyp@3957 1372 HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
tonyp@3957 1373
ysr@777 1374 // Iterate over the regions (if any) in the current collection set.
ysr@777 1375 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1376
ysr@777 1377 // As above but starting from region r
ysr@777 1378 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1379
ysr@777 1380 // Returns the first (lowest address) compactible space in the heap.
ysr@777 1381 virtual CompactibleSpace* first_compactible_space();
ysr@777 1382
ysr@777 1383 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1384 // space containing a given address, or else returns NULL.
ysr@777 1385 virtual Space* space_containing(const void* addr) const;
ysr@777 1386
ysr@777 1387 // A G1CollectedHeap will contain some number of heap regions. This
ysr@777 1388 // finds the region containing a given address, or else returns NULL.
tonyp@2963 1389 template <class T>
tonyp@2963 1390 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1391
ysr@777 1392 // Like the above, but requires "addr" to be in the heap (to avoid a
ysr@777 1393 // null-check), and unlike the above, may return an continuing humongous
ysr@777 1394 // region.
tonyp@2963 1395 template <class T>
tonyp@2963 1396 inline HeapRegion* heap_region_containing_raw(const T addr) const;
ysr@777 1397
ysr@777 1398 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1399 // each address in the (reserved) heap is a member of exactly
ysr@777 1400 // one block. The defining characteristic of a block is that it is
ysr@777 1401 // possible to find its size, and thus to progress forward to the next
ysr@777 1402 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1403 // represent Java objects, or they might be free blocks in a
ysr@777 1404 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1405 // distinguishable and the size of each is determinable.
ysr@777 1406
ysr@777 1407 // Returns the address of the start of the "block" that contains the
ysr@777 1408 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1409 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1410 // non-object.
ysr@777 1411 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1412
ysr@777 1413 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1414 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1415 // of the active area of the heap.
ysr@777 1416 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1417
ysr@777 1418 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1419 // the block is an object.
ysr@777 1420 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1421
ysr@777 1422 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1423 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1424
ysr@777 1425 // Section on thread-local allocation buffers (TLABs)
ysr@777 1426 // See CollectedHeap for semantics.
ysr@777 1427
brutisso@6376 1428 bool supports_tlab_allocation() const;
brutisso@6376 1429 size_t tlab_capacity(Thread* ignored) const;
brutisso@6376 1430 size_t tlab_used(Thread* ignored) const;
brutisso@6376 1431 size_t max_tlab_size() const;
brutisso@6376 1432 size_t unsafe_max_tlab_alloc(Thread* ignored) const;
ysr@777 1433
ysr@777 1434 // Can a compiler initialize a new object without store barriers?
ysr@777 1435 // This permission only extends from the creation of a new object
ysr@1462 1436 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1437 // is granted for this heap type, the compiler promises to call
ysr@1462 1438 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1439 // a new object for which such initializing store barriers will
ysr@1462 1440 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1441 // ready to provide a compensating write barrier as necessary
ysr@1462 1442 // if that storage came out of a non-young region. The efficiency
ysr@1462 1443 // of this implementation depends crucially on being able to
ysr@1462 1444 // answer very efficiently in constant time whether a piece of
ysr@1462 1445 // storage in the heap comes from a young region or not.
ysr@1462 1446 // See ReduceInitialCardMarks.
ysr@777 1447 virtual bool can_elide_tlab_store_barriers() const {
brutisso@3184 1448 return true;
ysr@1462 1449 }
ysr@1462 1450
ysr@1601 1451 virtual bool card_mark_must_follow_store() const {
ysr@1601 1452 return true;
ysr@1601 1453 }
ysr@1601 1454
tschatzl@6541 1455 inline bool is_in_young(const oop obj);
ysr@1462 1456
jmasa@2909 1457 #ifdef ASSERT
jmasa@2909 1458 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1459 #endif
jmasa@2909 1460
jmasa@2909 1461 virtual bool is_scavengable(const void* addr);
jmasa@2909 1462
ysr@1462 1463 // We don't need barriers for initializing stores to objects
ysr@1462 1464 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1465 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1466 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1467 // information for young gen objects.
tschatzl@6541 1468 virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
ysr@777 1469
ysr@777 1470 // Returns "true" iff the given word_size is "very large".
ysr@777 1471 static bool isHumongous(size_t word_size) {
johnc@1748 1472 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1473 // are capped at the humongous thresold and we want to
johnc@1748 1474 // ensure that we don't try to allocate a TLAB as
johnc@1748 1475 // humongous and that we don't allocate a humongous
johnc@1748 1476 // object in a TLAB.
johnc@1748 1477 return word_size > _humongous_object_threshold_in_words;
ysr@777 1478 }
ysr@777 1479
ysr@777 1480 // Update mod union table with the set of dirty cards.
ysr@777 1481 void updateModUnion();
ysr@777 1482
ysr@777 1483 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1484 // that this is always a safe operation, since it doesn't clear any
ysr@777 1485 // bits.
ysr@777 1486 void markModUnionRange(MemRegion mr);
ysr@777 1487
ysr@777 1488 // Records the fact that a marking phase is no longer in progress.
ysr@777 1489 void set_marking_complete() {
ysr@777 1490 _mark_in_progress = false;
ysr@777 1491 }
ysr@777 1492 void set_marking_started() {
ysr@777 1493 _mark_in_progress = true;
ysr@777 1494 }
ysr@777 1495 bool mark_in_progress() {
ysr@777 1496 return _mark_in_progress;
ysr@777 1497 }
ysr@777 1498
ysr@777 1499 // Print the maximum heap capacity.
ysr@777 1500 virtual size_t max_capacity() const;
ysr@777 1501
ysr@777 1502 virtual jlong millis_since_last_gc();
ysr@777 1503
tonyp@2974 1504
ysr@777 1505 // Convenience function to be used in situations where the heap type can be
ysr@777 1506 // asserted to be this type.
ysr@777 1507 static G1CollectedHeap* heap();
ysr@777 1508
ysr@777 1509 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1510 // add appropriate methods for any other surv rate groups
ysr@777 1511
brutisso@6376 1512 YoungList* young_list() const { return _young_list; }
ysr@777 1513
ysr@777 1514 // debugging
ysr@777 1515 bool check_young_list_well_formed() {
ysr@777 1516 return _young_list->check_list_well_formed();
ysr@777 1517 }
johnc@1829 1518
johnc@1829 1519 bool check_young_list_empty(bool check_heap,
ysr@777 1520 bool check_sample = true);
ysr@777 1521
ysr@777 1522 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1523 // many of these need to be public.
ysr@777 1524
ysr@777 1525 // The functions below are helper functions that a subclass of
ysr@777 1526 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1527 // functions.
ysr@777 1528 // This performs a concurrent marking of the live objects in a
ysr@777 1529 // bitmap off to the side.
ysr@777 1530 void doConcurrentMark();
ysr@777 1531
ysr@777 1532 bool isMarkedPrev(oop obj) const;
ysr@777 1533 bool isMarkedNext(oop obj) const;
ysr@777 1534
ysr@777 1535 // Determine if an object is dead, given the object and also
ysr@777 1536 // the region to which the object belongs. An object is dead
ysr@777 1537 // iff a) it was not allocated since the last mark and b) it
ysr@777 1538 // is not marked.
ysr@777 1539
ysr@777 1540 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1541 return
ysr@777 1542 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1543 !isMarkedPrev(obj);
ysr@777 1544 }
ysr@777 1545
ysr@777 1546 // This function returns true when an object has been
ysr@777 1547 // around since the previous marking and hasn't yet
ysr@777 1548 // been marked during this marking.
ysr@777 1549
ysr@777 1550 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1551 return
ysr@777 1552 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1553 !isMarkedNext(obj);
ysr@777 1554 }
ysr@777 1555
ysr@777 1556 // Determine if an object is dead, given only the object itself.
ysr@777 1557 // This will find the region to which the object belongs and
ysr@777 1558 // then call the region version of the same function.
ysr@777 1559
ysr@777 1560 // Added if it is NULL it isn't dead.
ysr@777 1561
tschatzl@6541 1562 inline bool is_obj_dead(const oop obj) const;
ysr@777 1563
tschatzl@6541 1564 inline bool is_obj_ill(const oop obj) const;
ysr@777 1565
johnc@5548 1566 bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
johnc@5548 1567 HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
johnc@5548 1568 bool is_marked(oop obj, VerifyOption vo);
johnc@5548 1569 const char* top_at_mark_start_str(VerifyOption vo);
johnc@5548 1570
johnc@5548 1571 ConcurrentMark* concurrent_mark() const { return _cm; }
johnc@5548 1572
johnc@5548 1573 // Refinement
johnc@5548 1574
johnc@5548 1575 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
johnc@5548 1576
johnc@5548 1577 // The dirty cards region list is used to record a subset of regions
johnc@5548 1578 // whose cards need clearing. The list if populated during the
johnc@5548 1579 // remembered set scanning and drained during the card table
johnc@5548 1580 // cleanup. Although the methods are reentrant, population/draining
johnc@5548 1581 // phases must not overlap. For synchronization purposes the last
johnc@5548 1582 // element on the list points to itself.
johnc@5548 1583 HeapRegion* _dirty_cards_region_list;
johnc@5548 1584 void push_dirty_cards_region(HeapRegion* hr);
johnc@5548 1585 HeapRegion* pop_dirty_cards_region();
johnc@5548 1586
johnc@5548 1587 // Optimized nmethod scanning support routines
johnc@5548 1588
johnc@5548 1589 // Register the given nmethod with the G1 heap
johnc@5548 1590 virtual void register_nmethod(nmethod* nm);
johnc@5548 1591
johnc@5548 1592 // Unregister the given nmethod from the G1 heap
johnc@5548 1593 virtual void unregister_nmethod(nmethod* nm);
johnc@5548 1594
johnc@5548 1595 // Migrate the nmethods in the code root lists of the regions
johnc@5548 1596 // in the collection set to regions in to-space. In the event
johnc@5548 1597 // of an evacuation failure, nmethods that reference objects
johnc@5548 1598 // that were not successfullly evacuated are not migrated.
johnc@5548 1599 void migrate_strong_code_roots();
johnc@5548 1600
tschatzl@6402 1601 // Free up superfluous code root memory.
tschatzl@6402 1602 void purge_code_root_memory();
tschatzl@6402 1603
johnc@5548 1604 // Rebuild the stong code root lists for each region
johnc@5548 1605 // after a full GC
johnc@5548 1606 void rebuild_strong_code_roots();
johnc@5548 1607
tschatzl@6229 1608 // Delete entries for dead interned string and clean up unreferenced symbols
tschatzl@6229 1609 // in symbol table, possibly in parallel.
tschatzl@6229 1610 void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
tschatzl@6229 1611
stefank@6992 1612 // Parallel phase of unloading/cleaning after G1 concurrent mark.
stefank@6992 1613 void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
stefank@6992 1614
tschatzl@6405 1615 // Redirty logged cards in the refinement queue.
tschatzl@6405 1616 void redirty_logged_cards();
johnc@5548 1617 // Verification
johnc@5548 1618
johnc@5548 1619 // The following is just to alert the verification code
johnc@5548 1620 // that a full collection has occurred and that the
johnc@5548 1621 // remembered sets are no longer up to date.
johnc@5548 1622 bool _full_collection;
johnc@5548 1623 void set_full_collection() { _full_collection = true;}
johnc@5548 1624 void clear_full_collection() {_full_collection = false;}
johnc@5548 1625 bool full_collection() {return _full_collection;}
johnc@5548 1626
johnc@5548 1627 // Perform any cleanup actions necessary before allowing a verification.
johnc@5548 1628 virtual void prepare_for_verify();
johnc@5548 1629
johnc@5548 1630 // Perform verification.
johnc@5548 1631
johnc@5548 1632 // vo == UsePrevMarking -> use "prev" marking information,
johnc@5548 1633 // vo == UseNextMarking -> use "next" marking information
johnc@5548 1634 // vo == UseMarkWord -> use the mark word in the object header
johnc@5548 1635 //
johnc@5548 1636 // NOTE: Only the "prev" marking information is guaranteed to be
johnc@5548 1637 // consistent most of the time, so most calls to this should use
johnc@5548 1638 // vo == UsePrevMarking.
johnc@5548 1639 // Currently, there is only one case where this is called with
johnc@5548 1640 // vo == UseNextMarking, which is to verify the "next" marking
johnc@5548 1641 // information at the end of remark.
johnc@5548 1642 // Currently there is only one place where this is called with
johnc@5548 1643 // vo == UseMarkWord, which is to verify the marking during a
johnc@5548 1644 // full GC.
johnc@5548 1645 void verify(bool silent, VerifyOption vo);
johnc@5548 1646
johnc@5548 1647 // Override; it uses the "prev" marking information
johnc@5548 1648 virtual void verify(bool silent);
johnc@5548 1649
tonyp@3957 1650 // The methods below are here for convenience and dispatch the
tonyp@3957 1651 // appropriate method depending on value of the given VerifyOption
johnc@5548 1652 // parameter. The values for that parameter, and their meanings,
johnc@5548 1653 // are the same as those above.
tonyp@3957 1654
tonyp@3957 1655 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1656 const HeapRegion* hr,
tschatzl@6541 1657 const VerifyOption vo) const;
tonyp@3957 1658
tonyp@3957 1659 bool is_obj_dead_cond(const oop obj,
tschatzl@6541 1660 const VerifyOption vo) const;
tonyp@3957 1661
johnc@5548 1662 // Printing
tonyp@3957 1663
johnc@5548 1664 virtual void print_on(outputStream* st) const;
johnc@5548 1665 virtual void print_extended_on(outputStream* st) const;
johnc@5548 1666 virtual void print_on_error(outputStream* st) const;
ysr@777 1667
johnc@5548 1668 virtual void print_gc_threads_on(outputStream* st) const;
johnc@5548 1669 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1670
johnc@5548 1671 // Override
johnc@5548 1672 void print_tracing_info() const;
johnc@5548 1673
johnc@5548 1674 // The following two methods are helpful for debugging RSet issues.
johnc@5548 1675 void print_cset_rsets() PRODUCT_RETURN;
johnc@5548 1676 void print_all_rsets() PRODUCT_RETURN;
apetrusenko@1231 1677
ysr@777 1678 public:
ysr@777 1679 size_t pending_card_num();
ysr@777 1680 size_t cards_scanned();
ysr@777 1681
ysr@777 1682 protected:
ysr@777 1683 size_t _max_heap_capacity;
ysr@777 1684 };
ysr@777 1685
ysr@1280 1686 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@1280 1687 private:
ysr@1280 1688 bool _retired;
ysr@1280 1689
ysr@1280 1690 public:
johnc@3086 1691 G1ParGCAllocBuffer(size_t gclab_word_size);
tschatzl@6929 1692 virtual ~G1ParGCAllocBuffer() {
tschatzl@6929 1693 guarantee(_retired, "Allocation buffer has not been retired");
tschatzl@6929 1694 }
ysr@1280 1695
tschatzl@6929 1696 virtual void set_buf(HeapWord* buf) {
ysr@1280 1697 ParGCAllocBuffer::set_buf(buf);
ysr@1280 1698 _retired = false;
ysr@1280 1699 }
ysr@1280 1700
tschatzl@6929 1701 virtual void retire(bool end_of_gc, bool retain) {
tschatzl@6929 1702 if (_retired) {
ysr@1280 1703 return;
tschatzl@6929 1704 }
ysr@1280 1705 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@1280 1706 _retired = true;
ysr@1280 1707 }
ysr@1280 1708 };
ysr@1280 1709
stefank@2314 1710 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial