src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Fri, 16 Oct 2009 02:05:46 -0700

author
ysr
date
Fri, 16 Oct 2009 02:05:46 -0700
changeset 1462
39b01ab7035a
parent 1377
2c79770d1f6e
child 1527
ed52bcc32739
permissions
-rw-r--r--

6888898: CMS: ReduceInitialCardMarks unsafe in the presence of cms precleaning
6889757: G1: enable card mark elision for initializing writes from compiled code (ReduceInitialCardMarks)
Summary: Defer the (compiler-elided) card-mark upon a slow-path allocation until after the store and before the next subsequent safepoint; G1 now answers yes to can_elide_tlab_write_barriers().
Reviewed-by: jcoomes, kvn, never

ysr@777 1 /*
xdono@1014 2 * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
ysr@777 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
ysr@777 20 * CA 95054 USA or visit www.sun.com if you need additional information or
ysr@777 21 * have any questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
ysr@777 25 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 26 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 27 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 28 // heap subsets that will yield large amounts of garbage.
ysr@777 29
ysr@777 30 class HeapRegion;
ysr@777 31 class HeapRegionSeq;
ysr@777 32 class PermanentGenerationSpec;
ysr@777 33 class GenerationSpec;
ysr@777 34 class OopsInHeapRegionClosure;
ysr@777 35 class G1ScanHeapEvacClosure;
ysr@777 36 class ObjectClosure;
ysr@777 37 class SpaceClosure;
ysr@777 38 class CompactibleSpaceClosure;
ysr@777 39 class Space;
ysr@777 40 class G1CollectorPolicy;
ysr@777 41 class GenRemSet;
ysr@777 42 class G1RemSet;
ysr@777 43 class HeapRegionRemSetIterator;
ysr@777 44 class ConcurrentMark;
ysr@777 45 class ConcurrentMarkThread;
ysr@777 46 class ConcurrentG1Refine;
ysr@777 47 class ConcurrentZFThread;
ysr@777 48
ysr@777 49 // If want to accumulate detailed statistics on work queues
ysr@777 50 // turn this on.
ysr@777 51 #define G1_DETAILED_STATS 0
ysr@777 52
ysr@777 53 #if G1_DETAILED_STATS
ysr@777 54 # define IF_G1_DETAILED_STATS(code) code
ysr@777 55 #else
ysr@777 56 # define IF_G1_DETAILED_STATS(code)
ysr@777 57 #endif
ysr@777 58
ysr@1280 59 typedef GenericTaskQueue<StarTask> RefToScanQueue;
ysr@1280 60 typedef GenericTaskQueueSet<StarTask> RefToScanQueueSet;
ysr@777 61
johnc@1242 62 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 63 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 64
ysr@777 65 enum G1GCThreadGroups {
ysr@777 66 G1CRGroup = 0,
ysr@777 67 G1ZFGroup = 1,
ysr@777 68 G1CMGroup = 2,
ysr@777 69 G1CLGroup = 3
ysr@777 70 };
ysr@777 71
ysr@777 72 enum GCAllocPurpose {
ysr@777 73 GCAllocForTenured,
ysr@777 74 GCAllocForSurvived,
ysr@777 75 GCAllocPurposeCount
ysr@777 76 };
ysr@777 77
ysr@777 78 class YoungList : public CHeapObj {
ysr@777 79 private:
ysr@777 80 G1CollectedHeap* _g1h;
ysr@777 81
ysr@777 82 HeapRegion* _head;
ysr@777 83
ysr@777 84 HeapRegion* _scan_only_head;
ysr@777 85 HeapRegion* _scan_only_tail;
ysr@777 86 size_t _length;
ysr@777 87 size_t _scan_only_length;
ysr@777 88
ysr@777 89 size_t _last_sampled_rs_lengths;
ysr@777 90 size_t _sampled_rs_lengths;
ysr@777 91 HeapRegion* _curr;
ysr@777 92 HeapRegion* _curr_scan_only;
ysr@777 93
ysr@777 94 HeapRegion* _survivor_head;
apetrusenko@980 95 HeapRegion* _survivor_tail;
ysr@777 96 size_t _survivor_length;
ysr@777 97
ysr@777 98 void empty_list(HeapRegion* list);
ysr@777 99
ysr@777 100 public:
ysr@777 101 YoungList(G1CollectedHeap* g1h);
ysr@777 102
ysr@777 103 void push_region(HeapRegion* hr);
ysr@777 104 void add_survivor_region(HeapRegion* hr);
ysr@777 105 HeapRegion* pop_region();
ysr@777 106 void empty_list();
ysr@777 107 bool is_empty() { return _length == 0; }
ysr@777 108 size_t length() { return _length; }
ysr@777 109 size_t scan_only_length() { return _scan_only_length; }
apetrusenko@980 110 size_t survivor_length() { return _survivor_length; }
ysr@777 111
ysr@777 112 void rs_length_sampling_init();
ysr@777 113 bool rs_length_sampling_more();
ysr@777 114 void rs_length_sampling_next();
ysr@777 115
ysr@777 116 void reset_sampled_info() {
ysr@777 117 _last_sampled_rs_lengths = 0;
ysr@777 118 }
ysr@777 119 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 120
ysr@777 121 // for development purposes
ysr@777 122 void reset_auxilary_lists();
ysr@777 123 HeapRegion* first_region() { return _head; }
ysr@777 124 HeapRegion* first_scan_only_region() { return _scan_only_head; }
ysr@777 125 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 126 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 127 HeapRegion* par_get_next_scan_only_region() {
ysr@777 128 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 129 HeapRegion* ret = _curr_scan_only;
ysr@777 130 if (ret != NULL)
ysr@777 131 _curr_scan_only = ret->get_next_young_region();
ysr@777 132 return ret;
ysr@777 133 }
ysr@777 134
ysr@777 135 // debugging
ysr@777 136 bool check_list_well_formed();
ysr@777 137 bool check_list_empty(bool ignore_scan_only_list,
ysr@777 138 bool check_sample = true);
ysr@777 139 void print();
ysr@777 140 };
ysr@777 141
ysr@777 142 class RefineCardTableEntryClosure;
ysr@777 143 class G1CollectedHeap : public SharedHeap {
ysr@777 144 friend class VM_G1CollectForAllocation;
ysr@777 145 friend class VM_GenCollectForPermanentAllocation;
ysr@777 146 friend class VM_G1CollectFull;
ysr@777 147 friend class VM_G1IncCollectionPause;
ysr@777 148 friend class VMStructs;
ysr@777 149
ysr@777 150 // Closures used in implementation.
ysr@777 151 friend class G1ParCopyHelper;
ysr@777 152 friend class G1IsAliveClosure;
ysr@777 153 friend class G1EvacuateFollowersClosure;
ysr@777 154 friend class G1ParScanThreadState;
ysr@777 155 friend class G1ParScanClosureSuper;
ysr@777 156 friend class G1ParEvacuateFollowersClosure;
ysr@777 157 friend class G1ParTask;
ysr@777 158 friend class G1FreeGarbageRegionClosure;
ysr@777 159 friend class RefineCardTableEntryClosure;
ysr@777 160 friend class G1PrepareCompactClosure;
ysr@777 161 friend class RegionSorter;
ysr@777 162 friend class CountRCClosure;
ysr@777 163 friend class EvacPopObjClosure;
apetrusenko@1231 164 friend class G1ParCleanupCTTask;
ysr@777 165
ysr@777 166 // Other related classes.
ysr@777 167 friend class G1MarkSweep;
ysr@777 168
ysr@777 169 private:
ysr@777 170 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 171 static G1CollectedHeap* _g1h;
ysr@777 172
tonyp@1377 173 static size_t _humongous_object_threshold_in_words;
tonyp@1377 174
ysr@777 175 // Storage for the G1 heap (excludes the permanent generation).
ysr@777 176 VirtualSpace _g1_storage;
ysr@777 177 MemRegion _g1_reserved;
ysr@777 178
ysr@777 179 // The part of _g1_storage that is currently committed.
ysr@777 180 MemRegion _g1_committed;
ysr@777 181
ysr@777 182 // The maximum part of _g1_storage that has ever been committed.
ysr@777 183 MemRegion _g1_max_committed;
ysr@777 184
ysr@777 185 // The number of regions that are completely free.
ysr@777 186 size_t _free_regions;
ysr@777 187
ysr@777 188 // The number of regions we could create by expansion.
ysr@777 189 size_t _expansion_regions;
ysr@777 190
ysr@777 191 // Return the number of free regions in the heap (by direct counting.)
ysr@777 192 size_t count_free_regions();
ysr@777 193 // Return the number of free regions on the free and unclean lists.
ysr@777 194 size_t count_free_regions_list();
ysr@777 195
ysr@777 196 // The block offset table for the G1 heap.
ysr@777 197 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 198
ysr@777 199 // Move all of the regions off the free lists, then rebuild those free
ysr@777 200 // lists, before and after full GC.
ysr@777 201 void tear_down_region_lists();
ysr@777 202 void rebuild_region_lists();
ysr@777 203 // This sets all non-empty regions to need zero-fill (which they will if
ysr@777 204 // they are empty after full collection.)
ysr@777 205 void set_used_regions_to_need_zero_fill();
ysr@777 206
ysr@777 207 // The sequence of all heap regions in the heap.
ysr@777 208 HeapRegionSeq* _hrs;
ysr@777 209
ysr@777 210 // The region from which normal-sized objects are currently being
ysr@777 211 // allocated. May be NULL.
ysr@777 212 HeapRegion* _cur_alloc_region;
ysr@777 213
ysr@777 214 // Postcondition: cur_alloc_region == NULL.
ysr@777 215 void abandon_cur_alloc_region();
tonyp@1071 216 void abandon_gc_alloc_regions();
ysr@777 217
ysr@777 218 // The to-space memory regions into which objects are being copied during
ysr@777 219 // a GC.
ysr@777 220 HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
apetrusenko@980 221 size_t _gc_alloc_region_counts[GCAllocPurposeCount];
tonyp@1071 222 // These are the regions, one per GCAllocPurpose, that are half-full
tonyp@1071 223 // at the end of a collection and that we want to reuse during the
tonyp@1071 224 // next collection.
tonyp@1071 225 HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
tonyp@1071 226 // This specifies whether we will keep the last half-full region at
tonyp@1071 227 // the end of a collection so that it can be reused during the next
tonyp@1071 228 // collection (this is specified per GCAllocPurpose)
tonyp@1071 229 bool _retain_gc_alloc_region[GCAllocPurposeCount];
ysr@777 230
ysr@777 231 // A list of the regions that have been set to be alloc regions in the
ysr@777 232 // current collection.
ysr@777 233 HeapRegion* _gc_alloc_region_list;
ysr@777 234
ysr@777 235 // When called by par thread, require par_alloc_during_gc_lock() to be held.
ysr@777 236 void push_gc_alloc_region(HeapRegion* hr);
ysr@777 237
ysr@777 238 // This should only be called single-threaded. Undeclares all GC alloc
ysr@777 239 // regions.
ysr@777 240 void forget_alloc_region_list();
ysr@777 241
ysr@777 242 // Should be used to set an alloc region, because there's other
ysr@777 243 // associated bookkeeping.
ysr@777 244 void set_gc_alloc_region(int purpose, HeapRegion* r);
ysr@777 245
ysr@777 246 // Check well-formedness of alloc region list.
ysr@777 247 bool check_gc_alloc_regions();
ysr@777 248
ysr@777 249 // Outside of GC pauses, the number of bytes used in all regions other
ysr@777 250 // than the current allocation region.
ysr@777 251 size_t _summary_bytes_used;
ysr@777 252
tonyp@961 253 // This is used for a quick test on whether a reference points into
tonyp@961 254 // the collection set or not. Basically, we have an array, with one
tonyp@961 255 // byte per region, and that byte denotes whether the corresponding
tonyp@961 256 // region is in the collection set or not. The entry corresponding
tonyp@961 257 // the bottom of the heap, i.e., region 0, is pointed to by
tonyp@961 258 // _in_cset_fast_test_base. The _in_cset_fast_test field has been
tonyp@961 259 // biased so that it actually points to address 0 of the address
tonyp@961 260 // space, to make the test as fast as possible (we can simply shift
tonyp@961 261 // the address to address into it, instead of having to subtract the
tonyp@961 262 // bottom of the heap from the address before shifting it; basically
tonyp@961 263 // it works in the same way the card table works).
tonyp@961 264 bool* _in_cset_fast_test;
tonyp@961 265
tonyp@961 266 // The allocated array used for the fast test on whether a reference
tonyp@961 267 // points into the collection set or not. This field is also used to
tonyp@961 268 // free the array.
tonyp@961 269 bool* _in_cset_fast_test_base;
tonyp@961 270
tonyp@961 271 // The length of the _in_cset_fast_test_base array.
tonyp@961 272 size_t _in_cset_fast_test_length;
tonyp@961 273
iveresov@788 274 volatile unsigned _gc_time_stamp;
ysr@777 275
ysr@777 276 size_t* _surviving_young_words;
ysr@777 277
ysr@777 278 void setup_surviving_young_words();
ysr@777 279 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 280 void cleanup_surviving_young_words();
ysr@777 281
ysr@777 282 protected:
ysr@777 283
ysr@777 284 // Returns "true" iff none of the gc alloc regions have any allocations
ysr@777 285 // since the last call to "save_marks".
ysr@777 286 bool all_alloc_regions_no_allocs_since_save_marks();
apetrusenko@980 287 // Perform finalization stuff on all allocation regions.
apetrusenko@980 288 void retire_all_alloc_regions();
ysr@777 289
ysr@777 290 // The number of regions allocated to hold humongous objects.
ysr@777 291 int _num_humongous_regions;
ysr@777 292 YoungList* _young_list;
ysr@777 293
ysr@777 294 // The current policy object for the collector.
ysr@777 295 G1CollectorPolicy* _g1_policy;
ysr@777 296
ysr@777 297 // Parallel allocation lock to protect the current allocation region.
ysr@777 298 Mutex _par_alloc_during_gc_lock;
ysr@777 299 Mutex* par_alloc_during_gc_lock() { return &_par_alloc_during_gc_lock; }
ysr@777 300
ysr@777 301 // If possible/desirable, allocate a new HeapRegion for normal object
ysr@777 302 // allocation sufficient for an allocation of the given "word_size".
ysr@777 303 // If "do_expand" is true, will attempt to expand the heap if necessary
ysr@777 304 // to to satisfy the request. If "zero_filled" is true, requires a
ysr@777 305 // zero-filled region.
ysr@777 306 // (Returning NULL will trigger a GC.)
ysr@777 307 virtual HeapRegion* newAllocRegion_work(size_t word_size,
ysr@777 308 bool do_expand,
ysr@777 309 bool zero_filled);
ysr@777 310
ysr@777 311 virtual HeapRegion* newAllocRegion(size_t word_size,
ysr@777 312 bool zero_filled = true) {
ysr@777 313 return newAllocRegion_work(word_size, false, zero_filled);
ysr@777 314 }
ysr@777 315 virtual HeapRegion* newAllocRegionWithExpansion(int purpose,
ysr@777 316 size_t word_size,
ysr@777 317 bool zero_filled = true);
ysr@777 318
ysr@777 319 // Attempt to allocate an object of the given (very large) "word_size".
ysr@777 320 // Returns "NULL" on failure.
ysr@777 321 virtual HeapWord* humongousObjAllocate(size_t word_size);
ysr@777 322
ysr@777 323 // If possible, allocate a block of the given word_size, else return "NULL".
ysr@777 324 // Returning NULL will trigger GC or heap expansion.
ysr@777 325 // These two methods have rather awkward pre- and
ysr@777 326 // post-conditions. If they are called outside a safepoint, then
ysr@777 327 // they assume that the caller is holding the heap lock. Upon return
ysr@777 328 // they release the heap lock, if they are returning a non-NULL
ysr@777 329 // value. attempt_allocation_slow() also dirties the cards of a
ysr@777 330 // newly-allocated young region after it releases the heap
ysr@777 331 // lock. This change in interface was the neatest way to achieve
ysr@777 332 // this card dirtying without affecting mem_allocate(), which is a
ysr@777 333 // more frequently called method. We tried two or three different
ysr@777 334 // approaches, but they were even more hacky.
ysr@777 335 HeapWord* attempt_allocation(size_t word_size,
ysr@777 336 bool permit_collection_pause = true);
ysr@777 337
ysr@777 338 HeapWord* attempt_allocation_slow(size_t word_size,
ysr@777 339 bool permit_collection_pause = true);
ysr@777 340
ysr@777 341 // Allocate blocks during garbage collection. Will ensure an
ysr@777 342 // allocation region, either by picking one or expanding the
ysr@777 343 // heap, and then allocate a block of the given size. The block
ysr@777 344 // may not be a humongous - it must fit into a single heap region.
ysr@777 345 HeapWord* allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 346 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 347
ysr@777 348 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
ysr@777 349 HeapRegion* alloc_region,
ysr@777 350 bool par,
ysr@777 351 size_t word_size);
ysr@777 352
ysr@777 353 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 354 // that parallel threads might be attempting allocations.
ysr@777 355 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 356
apetrusenko@980 357 // Retires an allocation region when it is full or at the end of a
apetrusenko@980 358 // GC pause.
apetrusenko@980 359 void retire_alloc_region(HeapRegion* alloc_region, bool par);
apetrusenko@980 360
ysr@777 361 // Helper function for two callbacks below.
ysr@777 362 // "full", if true, indicates that the GC is for a System.gc() request,
ysr@777 363 // and should collect the entire heap. If "clear_all_soft_refs" is true,
ysr@777 364 // all soft references are cleared during the GC. If "full" is false,
ysr@777 365 // "word_size" describes the allocation that the GC should
ysr@777 366 // attempt (at least) to satisfy.
ysr@777 367 void do_collection(bool full, bool clear_all_soft_refs,
ysr@777 368 size_t word_size);
ysr@777 369
ysr@777 370 // Callback from VM_G1CollectFull operation.
ysr@777 371 // Perform a full collection.
ysr@777 372 void do_full_collection(bool clear_all_soft_refs);
ysr@777 373
ysr@777 374 // Resize the heap if necessary after a full collection. If this is
ysr@777 375 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 376 // and will be considered part of the used portion of the heap.
ysr@777 377 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 378
ysr@777 379 // Callback from VM_G1CollectForAllocation operation.
ysr@777 380 // This function does everything necessary/possible to satisfy a
ysr@777 381 // failed allocation request (including collection, expansion, etc.)
ysr@777 382 HeapWord* satisfy_failed_allocation(size_t word_size);
ysr@777 383
ysr@777 384 // Attempting to expand the heap sufficiently
ysr@777 385 // to support an allocation of the given "word_size". If
ysr@777 386 // successful, perform the allocation and return the address of the
ysr@777 387 // allocated block, or else "NULL".
ysr@777 388 virtual HeapWord* expand_and_allocate(size_t word_size);
ysr@777 389
ysr@777 390 public:
ysr@777 391 // Expand the garbage-first heap by at least the given size (in bytes!).
ysr@777 392 // (Rounds up to a HeapRegion boundary.)
ysr@777 393 virtual void expand(size_t expand_bytes);
ysr@777 394
ysr@777 395 // Do anything common to GC's.
ysr@777 396 virtual void gc_prologue(bool full);
ysr@777 397 virtual void gc_epilogue(bool full);
ysr@777 398
tonyp@961 399 // We register a region with the fast "in collection set" test. We
tonyp@961 400 // simply set to true the array slot corresponding to this region.
tonyp@961 401 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tonyp@961 402 assert(_in_cset_fast_test_base != NULL, "sanity");
tonyp@961 403 assert(r->in_collection_set(), "invariant");
tonyp@961 404 int index = r->hrs_index();
tonyp@961 405 assert(0 <= (size_t) index && (size_t) index < _in_cset_fast_test_length,
tonyp@961 406 "invariant");
tonyp@961 407 assert(!_in_cset_fast_test_base[index], "invariant");
tonyp@961 408 _in_cset_fast_test_base[index] = true;
tonyp@961 409 }
tonyp@961 410
tonyp@961 411 // This is a fast test on whether a reference points into the
tonyp@961 412 // collection set or not. It does not assume that the reference
tonyp@961 413 // points into the heap; if it doesn't, it will return false.
tonyp@961 414 bool in_cset_fast_test(oop obj) {
tonyp@961 415 assert(_in_cset_fast_test != NULL, "sanity");
tonyp@961 416 if (_g1_committed.contains((HeapWord*) obj)) {
tonyp@961 417 // no need to subtract the bottom of the heap from obj,
tonyp@961 418 // _in_cset_fast_test is biased
tonyp@961 419 size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
tonyp@961 420 bool ret = _in_cset_fast_test[index];
tonyp@961 421 // let's make sure the result is consistent with what the slower
tonyp@961 422 // test returns
tonyp@961 423 assert( ret || !obj_in_cs(obj), "sanity");
tonyp@961 424 assert(!ret || obj_in_cs(obj), "sanity");
tonyp@961 425 return ret;
tonyp@961 426 } else {
tonyp@961 427 return false;
tonyp@961 428 }
tonyp@961 429 }
tonyp@961 430
ysr@777 431 protected:
ysr@777 432
ysr@777 433 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 434 // (Rounds down to a HeapRegion boundary.)
ysr@777 435 virtual void shrink(size_t expand_bytes);
ysr@777 436 void shrink_helper(size_t expand_bytes);
ysr@777 437
ysr@777 438 // Do an incremental collection: identify a collection set, and evacuate
ysr@777 439 // its live objects elsewhere.
ysr@777 440 virtual void do_collection_pause();
ysr@777 441
ysr@777 442 // The guts of the incremental collection pause, executed by the vm
apetrusenko@1112 443 // thread.
apetrusenko@1112 444 virtual void do_collection_pause_at_safepoint();
ysr@777 445
ysr@777 446 // Actually do the work of evacuating the collection set.
ysr@777 447 virtual void evacuate_collection_set();
ysr@777 448
ysr@777 449 // If this is an appropriate right time, do a collection pause.
ysr@777 450 // The "word_size" argument, if non-zero, indicates the size of an
ysr@777 451 // allocation request that is prompting this query.
ysr@777 452 void do_collection_pause_if_appropriate(size_t word_size);
ysr@777 453
ysr@777 454 // The g1 remembered set of the heap.
ysr@777 455 G1RemSet* _g1_rem_set;
ysr@777 456 // And it's mod ref barrier set, used to track updates for the above.
ysr@777 457 ModRefBarrierSet* _mr_bs;
ysr@777 458
iveresov@1051 459 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 460 // concurrently after the collection.
iveresov@1051 461 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 462
ysr@777 463 // The Heap Region Rem Set Iterator.
ysr@777 464 HeapRegionRemSetIterator** _rem_set_iterator;
ysr@777 465
ysr@777 466 // The closure used to refine a single card.
ysr@777 467 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 468
ysr@777 469 // A function to check the consistency of dirty card logs.
ysr@777 470 void check_ct_logs_at_safepoint();
ysr@777 471
ysr@777 472 // After a collection pause, make the regions in the CS into free
ysr@777 473 // regions.
ysr@777 474 void free_collection_set(HeapRegion* cs_head);
ysr@777 475
ysr@777 476 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 477 // "scan_rs" to roots inside the heap (having done "set_region" to
ysr@777 478 // indicate the region in which the root resides), and does "scan_perm"
ysr@777 479 // (setting the generation to the perm generation.) If "scan_rs" is
ysr@777 480 // NULL, then this step is skipped. The "worker_i"
ysr@777 481 // param is for use with parallel roots processing, and should be
ysr@777 482 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 483 // In the sequential case this param will be ignored.
ysr@777 484 void g1_process_strong_roots(bool collecting_perm_gen,
ysr@777 485 SharedHeap::ScanningOption so,
ysr@777 486 OopClosure* scan_non_heap_roots,
ysr@777 487 OopsInHeapRegionClosure* scan_rs,
ysr@777 488 OopsInHeapRegionClosure* scan_so,
ysr@777 489 OopsInGenClosure* scan_perm,
ysr@777 490 int worker_i);
ysr@777 491
ysr@777 492 void scan_scan_only_set(OopsInHeapRegionClosure* oc,
ysr@777 493 int worker_i);
ysr@777 494 void scan_scan_only_region(HeapRegion* hr,
ysr@777 495 OopsInHeapRegionClosure* oc,
ysr@777 496 int worker_i);
ysr@777 497
ysr@777 498 // Apply "blk" to all the weak roots of the system. These include
ysr@777 499 // JNI weak roots, the code cache, system dictionary, symbol table,
ysr@777 500 // string table, and referents of reachable weak refs.
ysr@777 501 void g1_process_weak_roots(OopClosure* root_closure,
ysr@777 502 OopClosure* non_root_closure);
ysr@777 503
ysr@777 504 // Invoke "save_marks" on all heap regions.
ysr@777 505 void save_marks();
ysr@777 506
ysr@777 507 // Free a heap region.
ysr@777 508 void free_region(HeapRegion* hr);
ysr@777 509 // A component of "free_region", exposed for 'batching'.
ysr@777 510 // All the params after "hr" are out params: the used bytes of the freed
ysr@777 511 // region(s), the number of H regions cleared, the number of regions
ysr@777 512 // freed, and pointers to the head and tail of a list of freed contig
ysr@777 513 // regions, linked throught the "next_on_unclean_list" field.
ysr@777 514 void free_region_work(HeapRegion* hr,
ysr@777 515 size_t& pre_used,
ysr@777 516 size_t& cleared_h,
ysr@777 517 size_t& freed_regions,
ysr@777 518 UncleanRegionList* list,
ysr@777 519 bool par = false);
ysr@777 520
ysr@777 521
ysr@777 522 // The concurrent marker (and the thread it runs in.)
ysr@777 523 ConcurrentMark* _cm;
ysr@777 524 ConcurrentMarkThread* _cmThread;
ysr@777 525 bool _mark_in_progress;
ysr@777 526
ysr@777 527 // The concurrent refiner.
ysr@777 528 ConcurrentG1Refine* _cg1r;
ysr@777 529
ysr@777 530 // The concurrent zero-fill thread.
ysr@777 531 ConcurrentZFThread* _czft;
ysr@777 532
ysr@777 533 // The parallel task queues
ysr@777 534 RefToScanQueueSet *_task_queues;
ysr@777 535
ysr@777 536 // True iff a evacuation has failed in the current collection.
ysr@777 537 bool _evacuation_failed;
ysr@777 538
ysr@777 539 // Set the attribute indicating whether evacuation has failed in the
ysr@777 540 // current collection.
ysr@777 541 void set_evacuation_failed(bool b) { _evacuation_failed = b; }
ysr@777 542
ysr@777 543 // Failed evacuations cause some logical from-space objects to have
ysr@777 544 // forwarding pointers to themselves. Reset them.
ysr@777 545 void remove_self_forwarding_pointers();
ysr@777 546
ysr@777 547 // When one is non-null, so is the other. Together, they each pair is
ysr@777 548 // an object with a preserved mark, and its mark value.
ysr@777 549 GrowableArray<oop>* _objs_with_preserved_marks;
ysr@777 550 GrowableArray<markOop>* _preserved_marks_of_objs;
ysr@777 551
ysr@777 552 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 553 // word being overwritten with a self-forwarding-pointer.
ysr@777 554 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 555
ysr@777 556 // The stack of evac-failure objects left to be scanned.
ysr@777 557 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 558 // The closure to apply to evac-failure objects.
ysr@777 559
ysr@777 560 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 561 // Set the field above.
ysr@777 562 void
ysr@777 563 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 564 _evac_failure_closure = evac_failure_closure;
ysr@777 565 }
ysr@777 566
ysr@777 567 // Push "obj" on the scan stack.
ysr@777 568 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 569 // Process scan stack entries until the stack is empty.
ysr@777 570 void drain_evac_failure_scan_stack();
ysr@777 571 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 572 // prevent unnecessary recursion.
ysr@777 573 bool _drain_in_progress;
ysr@777 574
ysr@777 575 // Do any necessary initialization for evacuation-failure handling.
ysr@777 576 // "cl" is the closure that will be used to process evac-failure
ysr@777 577 // objects.
ysr@777 578 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 579 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 580 // structures.
ysr@777 581 void finalize_for_evac_failure();
ysr@777 582
ysr@777 583 // An attempt to evacuate "obj" has failed; take necessary steps.
ysr@777 584 void handle_evacuation_failure(oop obj);
ysr@777 585 oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
ysr@777 586 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 587
ysr@777 588
ysr@777 589 // Ensure that the relevant gc_alloc regions are set.
ysr@777 590 void get_gc_alloc_regions();
tonyp@1071 591 // We're done with GC alloc regions. We are going to tear down the
tonyp@1071 592 // gc alloc list and remove the gc alloc tag from all the regions on
tonyp@1071 593 // that list. However, we will also retain the last (i.e., the one
tonyp@1071 594 // that is half-full) GC alloc region, per GCAllocPurpose, for
tonyp@1071 595 // possible reuse during the next collection, provided
tonyp@1071 596 // _retain_gc_alloc_region[] indicates that it should be the
tonyp@1071 597 // case. Said regions are kept in the _retained_gc_alloc_regions[]
tonyp@1071 598 // array. If the parameter totally is set, we will not retain any
tonyp@1071 599 // regions, irrespective of what _retain_gc_alloc_region[]
tonyp@1071 600 // indicates.
tonyp@1071 601 void release_gc_alloc_regions(bool totally);
tonyp@1071 602 #ifndef PRODUCT
tonyp@1071 603 // Useful for debugging.
tonyp@1071 604 void print_gc_alloc_regions();
tonyp@1071 605 #endif // !PRODUCT
ysr@777 606
ysr@777 607 // ("Weak") Reference processing support
ysr@777 608 ReferenceProcessor* _ref_processor;
ysr@777 609
ysr@777 610 enum G1H_process_strong_roots_tasks {
ysr@777 611 G1H_PS_mark_stack_oops_do,
ysr@777 612 G1H_PS_refProcessor_oops_do,
ysr@777 613 // Leave this one last.
ysr@777 614 G1H_PS_NumElements
ysr@777 615 };
ysr@777 616
ysr@777 617 SubTasksDone* _process_strong_tasks;
ysr@777 618
ysr@777 619 // List of regions which require zero filling.
ysr@777 620 UncleanRegionList _unclean_region_list;
ysr@777 621 bool _unclean_regions_coming;
ysr@777 622
ysr@777 623 public:
ysr@777 624 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 625
ysr@777 626 RefToScanQueue *task_queue(int i);
ysr@777 627
iveresov@1051 628 // A set of cards where updates happened during the GC
iveresov@1051 629 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 630
ysr@777 631 // Create a G1CollectedHeap with the specified policy.
ysr@777 632 // Must call the initialize method afterwards.
ysr@777 633 // May not return if something goes wrong.
ysr@777 634 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 635
ysr@777 636 // Initialize the G1CollectedHeap to have the initial and
ysr@777 637 // maximum sizes, permanent generation, and remembered and barrier sets
ysr@777 638 // specified by the policy object.
ysr@777 639 jint initialize();
ysr@777 640
ysr@777 641 void ref_processing_init();
ysr@777 642
ysr@777 643 void set_par_threads(int t) {
ysr@777 644 SharedHeap::set_par_threads(t);
ysr@777 645 _process_strong_tasks->set_par_threads(t);
ysr@777 646 }
ysr@777 647
ysr@777 648 virtual CollectedHeap::Name kind() const {
ysr@777 649 return CollectedHeap::G1CollectedHeap;
ysr@777 650 }
ysr@777 651
ysr@777 652 // The current policy object for the collector.
ysr@777 653 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 654
ysr@777 655 // Adaptive size policy. No such thing for g1.
ysr@777 656 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 657
ysr@777 658 // The rem set and barrier set.
ysr@777 659 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 660 ModRefBarrierSet* mr_bs() const { return _mr_bs; }
ysr@777 661
ysr@777 662 // The rem set iterator.
ysr@777 663 HeapRegionRemSetIterator* rem_set_iterator(int i) {
ysr@777 664 return _rem_set_iterator[i];
ysr@777 665 }
ysr@777 666
ysr@777 667 HeapRegionRemSetIterator* rem_set_iterator() {
ysr@777 668 return _rem_set_iterator[0];
ysr@777 669 }
ysr@777 670
ysr@777 671 unsigned get_gc_time_stamp() {
ysr@777 672 return _gc_time_stamp;
ysr@777 673 }
ysr@777 674
ysr@777 675 void reset_gc_time_stamp() {
ysr@777 676 _gc_time_stamp = 0;
iveresov@788 677 OrderAccess::fence();
iveresov@788 678 }
iveresov@788 679
iveresov@788 680 void increment_gc_time_stamp() {
iveresov@788 681 ++_gc_time_stamp;
iveresov@788 682 OrderAccess::fence();
ysr@777 683 }
ysr@777 684
ysr@777 685 void iterate_dirty_card_closure(bool concurrent, int worker_i);
ysr@777 686
ysr@777 687 // The shared block offset table array.
ysr@777 688 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 689
ysr@777 690 // Reference Processing accessor
ysr@777 691 ReferenceProcessor* ref_processor() { return _ref_processor; }
ysr@777 692
ysr@777 693 // Reserved (g1 only; super method includes perm), capacity and the used
ysr@777 694 // portion in bytes.
ysr@777 695 size_t g1_reserved_obj_bytes() { return _g1_reserved.byte_size(); }
ysr@777 696 virtual size_t capacity() const;
ysr@777 697 virtual size_t used() const;
tonyp@1281 698 // This should be called when we're not holding the heap lock. The
tonyp@1281 699 // result might be a bit inaccurate.
tonyp@1281 700 size_t used_unlocked() const;
ysr@777 701 size_t recalculate_used() const;
ysr@777 702 #ifndef PRODUCT
ysr@777 703 size_t recalculate_used_regions() const;
ysr@777 704 #endif // PRODUCT
ysr@777 705
ysr@777 706 // These virtual functions do the actual allocation.
ysr@777 707 virtual HeapWord* mem_allocate(size_t word_size,
ysr@777 708 bool is_noref,
ysr@777 709 bool is_tlab,
ysr@777 710 bool* gc_overhead_limit_was_exceeded);
ysr@777 711
ysr@777 712 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 713 // allocation, via inlined code (by exporting the address of the top and
ysr@777 714 // end fields defining the extent of the contiguous allocation region.)
ysr@777 715 // But G1CollectedHeap doesn't yet support this.
ysr@777 716
ysr@777 717 // Return an estimate of the maximum allocation that could be performed
ysr@777 718 // without triggering any collection or expansion activity. In a
ysr@777 719 // generational collector, for example, this is probably the largest
ysr@777 720 // allocation that could be supported (without expansion) in the youngest
ysr@777 721 // generation. It is "unsafe" because no locks are taken; the result
ysr@777 722 // should be treated as an approximation, not a guarantee, for use in
ysr@777 723 // heuristic resizing decisions.
ysr@777 724 virtual size_t unsafe_max_alloc();
ysr@777 725
ysr@777 726 virtual bool is_maximal_no_gc() const {
ysr@777 727 return _g1_storage.uncommitted_size() == 0;
ysr@777 728 }
ysr@777 729
ysr@777 730 // The total number of regions in the heap.
ysr@777 731 size_t n_regions();
ysr@777 732
ysr@777 733 // The number of regions that are completely free.
ysr@777 734 size_t max_regions();
ysr@777 735
ysr@777 736 // The number of regions that are completely free.
ysr@777 737 size_t free_regions();
ysr@777 738
ysr@777 739 // The number of regions that are not completely free.
ysr@777 740 size_t used_regions() { return n_regions() - free_regions(); }
ysr@777 741
ysr@777 742 // True iff the ZF thread should run.
ysr@777 743 bool should_zf();
ysr@777 744
ysr@777 745 // The number of regions available for "regular" expansion.
ysr@777 746 size_t expansion_regions() { return _expansion_regions; }
ysr@777 747
ysr@777 748 #ifndef PRODUCT
ysr@777 749 bool regions_accounted_for();
ysr@777 750 bool print_region_accounting_info();
ysr@777 751 void print_region_counts();
ysr@777 752 #endif
ysr@777 753
ysr@777 754 HeapRegion* alloc_region_from_unclean_list(bool zero_filled);
ysr@777 755 HeapRegion* alloc_region_from_unclean_list_locked(bool zero_filled);
ysr@777 756
ysr@777 757 void put_region_on_unclean_list(HeapRegion* r);
ysr@777 758 void put_region_on_unclean_list_locked(HeapRegion* r);
ysr@777 759
ysr@777 760 void prepend_region_list_on_unclean_list(UncleanRegionList* list);
ysr@777 761 void prepend_region_list_on_unclean_list_locked(UncleanRegionList* list);
ysr@777 762
ysr@777 763 void set_unclean_regions_coming(bool b);
ysr@777 764 void set_unclean_regions_coming_locked(bool b);
ysr@777 765 // Wait for cleanup to be complete.
ysr@777 766 void wait_for_cleanup_complete();
ysr@777 767 // Like above, but assumes that the calling thread owns the Heap_lock.
ysr@777 768 void wait_for_cleanup_complete_locked();
ysr@777 769
ysr@777 770 // Return the head of the unclean list.
ysr@777 771 HeapRegion* peek_unclean_region_list_locked();
ysr@777 772 // Remove and return the head of the unclean list.
ysr@777 773 HeapRegion* pop_unclean_region_list_locked();
ysr@777 774
ysr@777 775 // List of regions which are zero filled and ready for allocation.
ysr@777 776 HeapRegion* _free_region_list;
ysr@777 777 // Number of elements on the free list.
ysr@777 778 size_t _free_region_list_size;
ysr@777 779
ysr@777 780 // If the head of the unclean list is ZeroFilled, move it to the free
ysr@777 781 // list.
ysr@777 782 bool move_cleaned_region_to_free_list_locked();
ysr@777 783 bool move_cleaned_region_to_free_list();
ysr@777 784
ysr@777 785 void put_free_region_on_list_locked(HeapRegion* r);
ysr@777 786 void put_free_region_on_list(HeapRegion* r);
ysr@777 787
ysr@777 788 // Remove and return the head element of the free list.
ysr@777 789 HeapRegion* pop_free_region_list_locked();
ysr@777 790
ysr@777 791 // If "zero_filled" is true, we first try the free list, then we try the
ysr@777 792 // unclean list, zero-filling the result. If "zero_filled" is false, we
ysr@777 793 // first try the unclean list, then the zero-filled list.
ysr@777 794 HeapRegion* alloc_free_region_from_lists(bool zero_filled);
ysr@777 795
ysr@777 796 // Verify the integrity of the region lists.
ysr@777 797 void remove_allocated_regions_from_lists();
ysr@777 798 bool verify_region_lists();
ysr@777 799 bool verify_region_lists_locked();
ysr@777 800 size_t unclean_region_list_length();
ysr@777 801 size_t free_region_list_length();
ysr@777 802
ysr@777 803 // Perform a collection of the heap; intended for use in implementing
ysr@777 804 // "System.gc". This probably implies as full a collection as the
ysr@777 805 // "CollectedHeap" supports.
ysr@777 806 virtual void collect(GCCause::Cause cause);
ysr@777 807
ysr@777 808 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 809 void collect_locked(GCCause::Cause cause);
ysr@777 810
ysr@777 811 // This interface assumes that it's being called by the
ysr@777 812 // vm thread. It collects the heap assuming that the
ysr@777 813 // heap lock is already held and that we are executing in
ysr@777 814 // the context of the vm thread.
ysr@777 815 virtual void collect_as_vm_thread(GCCause::Cause cause);
ysr@777 816
ysr@777 817 // True iff a evacuation has failed in the most-recent collection.
ysr@777 818 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 819
ysr@777 820 // Free a region if it is totally full of garbage. Returns the number of
ysr@777 821 // bytes freed (0 ==> didn't free it).
ysr@777 822 size_t free_region_if_totally_empty(HeapRegion *hr);
ysr@777 823 void free_region_if_totally_empty_work(HeapRegion *hr,
ysr@777 824 size_t& pre_used,
ysr@777 825 size_t& cleared_h_regions,
ysr@777 826 size_t& freed_regions,
ysr@777 827 UncleanRegionList* list,
ysr@777 828 bool par = false);
ysr@777 829
ysr@777 830 // If we've done free region work that yields the given changes, update
ysr@777 831 // the relevant global variables.
ysr@777 832 void finish_free_region_work(size_t pre_used,
ysr@777 833 size_t cleared_h_regions,
ysr@777 834 size_t freed_regions,
ysr@777 835 UncleanRegionList* list);
ysr@777 836
ysr@777 837
ysr@777 838 // Returns "TRUE" iff "p" points into the allocated area of the heap.
ysr@777 839 virtual bool is_in(const void* p) const;
ysr@777 840
ysr@777 841 // Return "TRUE" iff the given object address is within the collection
ysr@777 842 // set.
ysr@777 843 inline bool obj_in_cs(oop obj);
ysr@777 844
ysr@777 845 // Return "TRUE" iff the given object address is in the reserved
ysr@777 846 // region of g1 (excluding the permanent generation).
ysr@777 847 bool is_in_g1_reserved(const void* p) const {
ysr@777 848 return _g1_reserved.contains(p);
ysr@777 849 }
ysr@777 850
ysr@777 851 // Returns a MemRegion that corresponds to the space that has been
ysr@777 852 // committed in the heap
ysr@777 853 MemRegion g1_committed() {
ysr@777 854 return _g1_committed;
ysr@777 855 }
ysr@777 856
ysr@1376 857 NOT_PRODUCT(bool is_in_closed_subset(const void* p) const;)
ysr@777 858
ysr@777 859 // Dirty card table entries covering a list of young regions.
ysr@777 860 void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
ysr@777 861
ysr@777 862 // This resets the card table to all zeros. It is used after
ysr@777 863 // a collection pause which used the card table to claim cards.
ysr@777 864 void cleanUpCardTable();
ysr@777 865
ysr@777 866 // Iteration functions.
ysr@777 867
ysr@777 868 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 869 // "cl.do_oop" on each.
iveresov@1113 870 virtual void oop_iterate(OopClosure* cl) {
iveresov@1113 871 oop_iterate(cl, true);
iveresov@1113 872 }
iveresov@1113 873 void oop_iterate(OopClosure* cl, bool do_perm);
ysr@777 874
ysr@777 875 // Same as above, restricted to a memory region.
iveresov@1113 876 virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
iveresov@1113 877 oop_iterate(mr, cl, true);
iveresov@1113 878 }
iveresov@1113 879 void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
ysr@777 880
ysr@777 881 // Iterate over all objects, calling "cl.do_object" on each.
iveresov@1113 882 virtual void object_iterate(ObjectClosure* cl) {
iveresov@1113 883 object_iterate(cl, true);
iveresov@1113 884 }
iveresov@1113 885 virtual void safe_object_iterate(ObjectClosure* cl) {
iveresov@1113 886 object_iterate(cl, true);
iveresov@1113 887 }
iveresov@1113 888 void object_iterate(ObjectClosure* cl, bool do_perm);
ysr@777 889
ysr@777 890 // Iterate over all objects allocated since the last collection, calling
ysr@777 891 // "cl.do_object" on each. The heap must have been initialized properly
ysr@777 892 // to support this function, or else this call will fail.
ysr@777 893 virtual void object_iterate_since_last_GC(ObjectClosure* cl);
ysr@777 894
ysr@777 895 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 896 virtual void space_iterate(SpaceClosure* cl);
ysr@777 897
ysr@777 898 // Iterate over heap regions, in address order, terminating the
ysr@777 899 // iteration early if the "doHeapRegion" method returns "true".
ysr@777 900 void heap_region_iterate(HeapRegionClosure* blk);
ysr@777 901
ysr@777 902 // Iterate over heap regions starting with r (or the first region if "r"
ysr@777 903 // is NULL), in address order, terminating early if the "doHeapRegion"
ysr@777 904 // method returns "true".
ysr@777 905 void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
ysr@777 906
ysr@777 907 // As above but starting from the region at index idx.
ysr@777 908 void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
ysr@777 909
ysr@777 910 HeapRegion* region_at(size_t idx);
ysr@777 911
ysr@777 912 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 913 // of regions divided by the number of parallel threads times some
ysr@777 914 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 915 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 916 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 917 // calls will use the same "claim_value", and that that claim value is
ysr@777 918 // different from the claim_value of any heap region before the start of
ysr@777 919 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 920 // attempting to claim the first region in each chunk, and, if
ysr@777 921 // successful, applying the closure to each region in the chunk (and
ysr@777 922 // setting the claim value of the second and subsequent regions of the
ysr@777 923 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 924 // i.e., that a closure never attempt to abort a traversal.
ysr@777 925 void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
ysr@777 926 int worker,
ysr@777 927 jint claim_value);
ysr@777 928
tonyp@825 929 // It resets all the region claim values to the default.
tonyp@825 930 void reset_heap_region_claim_values();
tonyp@825 931
tonyp@790 932 #ifdef ASSERT
tonyp@790 933 bool check_heap_region_claim_values(jint claim_value);
tonyp@790 934 #endif // ASSERT
tonyp@790 935
ysr@777 936 // Iterate over the regions (if any) in the current collection set.
ysr@777 937 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 938
ysr@777 939 // As above but starting from region r
ysr@777 940 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 941
ysr@777 942 // Returns the first (lowest address) compactible space in the heap.
ysr@777 943 virtual CompactibleSpace* first_compactible_space();
ysr@777 944
ysr@777 945 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 946 // space containing a given address, or else returns NULL.
ysr@777 947 virtual Space* space_containing(const void* addr) const;
ysr@777 948
ysr@777 949 // A G1CollectedHeap will contain some number of heap regions. This
ysr@777 950 // finds the region containing a given address, or else returns NULL.
ysr@777 951 HeapRegion* heap_region_containing(const void* addr) const;
ysr@777 952
ysr@777 953 // Like the above, but requires "addr" to be in the heap (to avoid a
ysr@777 954 // null-check), and unlike the above, may return an continuing humongous
ysr@777 955 // region.
ysr@777 956 HeapRegion* heap_region_containing_raw(const void* addr) const;
ysr@777 957
ysr@777 958 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 959 // each address in the (reserved) heap is a member of exactly
ysr@777 960 // one block. The defining characteristic of a block is that it is
ysr@777 961 // possible to find its size, and thus to progress forward to the next
ysr@777 962 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 963 // represent Java objects, or they might be free blocks in a
ysr@777 964 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 965 // distinguishable and the size of each is determinable.
ysr@777 966
ysr@777 967 // Returns the address of the start of the "block" that contains the
ysr@777 968 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 969 // may not pack objects densely; a chunk may either be an object or a
ysr@777 970 // non-object.
ysr@777 971 virtual HeapWord* block_start(const void* addr) const;
ysr@777 972
ysr@777 973 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 974 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 975 // of the active area of the heap.
ysr@777 976 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 977
ysr@777 978 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 979 // the block is an object.
ysr@777 980 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 981
ysr@777 982 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 983 virtual bool supports_heap_inspection() const { return true; }
ysr@777 984
ysr@777 985 // Section on thread-local allocation buffers (TLABs)
ysr@777 986 // See CollectedHeap for semantics.
ysr@777 987
ysr@777 988 virtual bool supports_tlab_allocation() const;
ysr@777 989 virtual size_t tlab_capacity(Thread* thr) const;
ysr@777 990 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
ysr@777 991 virtual HeapWord* allocate_new_tlab(size_t size);
ysr@777 992
ysr@777 993 // Can a compiler initialize a new object without store barriers?
ysr@777 994 // This permission only extends from the creation of a new object
ysr@1462 995 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 996 // is granted for this heap type, the compiler promises to call
ysr@1462 997 // defer_store_barrier() below on any slow path allocation of
ysr@1462 998 // a new object for which such initializing store barriers will
ysr@1462 999 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1000 // ready to provide a compensating write barrier as necessary
ysr@1462 1001 // if that storage came out of a non-young region. The efficiency
ysr@1462 1002 // of this implementation depends crucially on being able to
ysr@1462 1003 // answer very efficiently in constant time whether a piece of
ysr@1462 1004 // storage in the heap comes from a young region or not.
ysr@1462 1005 // See ReduceInitialCardMarks.
ysr@777 1006 virtual bool can_elide_tlab_store_barriers() const {
ysr@1462 1007 return true;
ysr@1462 1008 }
ysr@1462 1009
ysr@1462 1010 bool is_in_young(oop obj) {
ysr@1462 1011 HeapRegion* hr = heap_region_containing(obj);
ysr@1462 1012 return hr != NULL && hr->is_young();
ysr@1462 1013 }
ysr@1462 1014
ysr@1462 1015 // We don't need barriers for initializing stores to objects
ysr@1462 1016 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1017 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1018 // update logging post-barrier, we don't maintain remembered set
ysr@1462 1019 // information for young gen objects. Note that non-generational
ysr@1462 1020 // G1 does not have any "young" objects, should not elide
ysr@1462 1021 // the rs logging barrier and so should always answer false below.
ysr@1462 1022 // However, non-generational G1 (-XX:-G1Gen) appears to have
ysr@1462 1023 // bit-rotted so was not tested below.
ysr@1462 1024 virtual bool can_elide_initializing_store_barrier(oop new_obj) {
ysr@1462 1025 assert(G1Gen || !is_in_young(new_obj),
ysr@1462 1026 "Non-generational G1 should never return true below");
ysr@1462 1027 return is_in_young(new_obj);
ysr@777 1028 }
ysr@777 1029
ysr@777 1030 // Can a compiler elide a store barrier when it writes
ysr@777 1031 // a permanent oop into the heap? Applies when the compiler
ysr@777 1032 // is storing x to the heap, where x->is_perm() is true.
ysr@777 1033 virtual bool can_elide_permanent_oop_store_barriers() const {
ysr@777 1034 // At least until perm gen collection is also G1-ified, at
ysr@777 1035 // which point this should return false.
ysr@777 1036 return true;
ysr@777 1037 }
ysr@777 1038
ysr@777 1039 virtual bool allocs_are_zero_filled();
ysr@777 1040
ysr@777 1041 // The boundary between a "large" and "small" array of primitives, in
ysr@777 1042 // words.
ysr@777 1043 virtual size_t large_typearray_limit();
ysr@777 1044
ysr@777 1045 // Returns "true" iff the given word_size is "very large".
ysr@777 1046 static bool isHumongous(size_t word_size) {
tonyp@1377 1047 return word_size >= _humongous_object_threshold_in_words;
ysr@777 1048 }
ysr@777 1049
ysr@777 1050 // Update mod union table with the set of dirty cards.
ysr@777 1051 void updateModUnion();
ysr@777 1052
ysr@777 1053 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1054 // that this is always a safe operation, since it doesn't clear any
ysr@777 1055 // bits.
ysr@777 1056 void markModUnionRange(MemRegion mr);
ysr@777 1057
ysr@777 1058 // Records the fact that a marking phase is no longer in progress.
ysr@777 1059 void set_marking_complete() {
ysr@777 1060 _mark_in_progress = false;
ysr@777 1061 }
ysr@777 1062 void set_marking_started() {
ysr@777 1063 _mark_in_progress = true;
ysr@777 1064 }
ysr@777 1065 bool mark_in_progress() {
ysr@777 1066 return _mark_in_progress;
ysr@777 1067 }
ysr@777 1068
ysr@777 1069 // Print the maximum heap capacity.
ysr@777 1070 virtual size_t max_capacity() const;
ysr@777 1071
ysr@777 1072 virtual jlong millis_since_last_gc();
ysr@777 1073
ysr@777 1074 // Perform any cleanup actions necessary before allowing a verification.
ysr@777 1075 virtual void prepare_for_verify();
ysr@777 1076
ysr@777 1077 // Perform verification.
tonyp@1246 1078
tonyp@1246 1079 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 1080 // use_prev_marking == false -> use "next" marking information
tonyp@1246 1081 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 1082 // consistent most of the time, so most calls to this should use
tonyp@1246 1083 // use_prev_marking == true. Currently, there is only one case where
tonyp@1246 1084 // this is called with use_prev_marking == false, which is to verify
tonyp@1246 1085 // the "next" marking information at the end of remark.
tonyp@1246 1086 void verify(bool allow_dirty, bool silent, bool use_prev_marking);
tonyp@1246 1087
tonyp@1246 1088 // Override; it uses the "prev" marking information
ysr@777 1089 virtual void verify(bool allow_dirty, bool silent);
tonyp@1273 1090 // Default behavior by calling print(tty);
ysr@777 1091 virtual void print() const;
tonyp@1273 1092 // This calls print_on(st, PrintHeapAtGCExtended).
ysr@777 1093 virtual void print_on(outputStream* st) const;
tonyp@1273 1094 // If extended is true, it will print out information for all
tonyp@1273 1095 // regions in the heap by calling print_on_extended(st).
tonyp@1273 1096 virtual void print_on(outputStream* st, bool extended) const;
tonyp@1273 1097 virtual void print_on_extended(outputStream* st) const;
ysr@777 1098
ysr@777 1099 virtual void print_gc_threads_on(outputStream* st) const;
ysr@777 1100 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1101
ysr@777 1102 // Override
ysr@777 1103 void print_tracing_info() const;
ysr@777 1104
ysr@777 1105 // If "addr" is a pointer into the (reserved?) heap, returns a positive
ysr@777 1106 // number indicating the "arena" within the heap in which "addr" falls.
ysr@777 1107 // Or else returns 0.
ysr@777 1108 virtual int addr_to_arena_id(void* addr) const;
ysr@777 1109
ysr@777 1110 // Convenience function to be used in situations where the heap type can be
ysr@777 1111 // asserted to be this type.
ysr@777 1112 static G1CollectedHeap* heap();
ysr@777 1113
ysr@777 1114 void empty_young_list();
ysr@777 1115 bool should_set_young_locked();
ysr@777 1116
ysr@777 1117 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1118 // add appropriate methods for any other surv rate groups
ysr@777 1119
ysr@777 1120 void young_list_rs_length_sampling_init() {
ysr@777 1121 _young_list->rs_length_sampling_init();
ysr@777 1122 }
ysr@777 1123 bool young_list_rs_length_sampling_more() {
ysr@777 1124 return _young_list->rs_length_sampling_more();
ysr@777 1125 }
ysr@777 1126 void young_list_rs_length_sampling_next() {
ysr@777 1127 _young_list->rs_length_sampling_next();
ysr@777 1128 }
ysr@777 1129 size_t young_list_sampled_rs_lengths() {
ysr@777 1130 return _young_list->sampled_rs_lengths();
ysr@777 1131 }
ysr@777 1132
ysr@777 1133 size_t young_list_length() { return _young_list->length(); }
ysr@777 1134 size_t young_list_scan_only_length() {
ysr@777 1135 return _young_list->scan_only_length(); }
ysr@777 1136
ysr@777 1137 HeapRegion* pop_region_from_young_list() {
ysr@777 1138 return _young_list->pop_region();
ysr@777 1139 }
ysr@777 1140
ysr@777 1141 HeapRegion* young_list_first_region() {
ysr@777 1142 return _young_list->first_region();
ysr@777 1143 }
ysr@777 1144
ysr@777 1145 // debugging
ysr@777 1146 bool check_young_list_well_formed() {
ysr@777 1147 return _young_list->check_list_well_formed();
ysr@777 1148 }
ysr@777 1149 bool check_young_list_empty(bool ignore_scan_only_list,
ysr@777 1150 bool check_sample = true);
ysr@777 1151
ysr@777 1152 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1153 // many of these need to be public.
ysr@777 1154
ysr@777 1155 // The functions below are helper functions that a subclass of
ysr@777 1156 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1157 // functions.
ysr@777 1158 // This performs a concurrent marking of the live objects in a
ysr@777 1159 // bitmap off to the side.
ysr@777 1160 void doConcurrentMark();
ysr@777 1161
ysr@777 1162 // This is called from the marksweep collector which then does
ysr@777 1163 // a concurrent mark and verifies that the results agree with
ysr@777 1164 // the stop the world marking.
ysr@777 1165 void checkConcurrentMark();
ysr@777 1166 void do_sync_mark();
ysr@777 1167
ysr@777 1168 bool isMarkedPrev(oop obj) const;
ysr@777 1169 bool isMarkedNext(oop obj) const;
ysr@777 1170
tonyp@1246 1171 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 1172 // use_prev_marking == false -> use "next" marking information
tonyp@1246 1173 bool is_obj_dead_cond(const oop obj,
tonyp@1246 1174 const HeapRegion* hr,
tonyp@1246 1175 const bool use_prev_marking) const {
tonyp@1246 1176 if (use_prev_marking) {
tonyp@1246 1177 return is_obj_dead(obj, hr);
tonyp@1246 1178 } else {
tonyp@1246 1179 return is_obj_ill(obj, hr);
tonyp@1246 1180 }
tonyp@1246 1181 }
tonyp@1246 1182
ysr@777 1183 // Determine if an object is dead, given the object and also
ysr@777 1184 // the region to which the object belongs. An object is dead
ysr@777 1185 // iff a) it was not allocated since the last mark and b) it
ysr@777 1186 // is not marked.
ysr@777 1187
ysr@777 1188 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1189 return
ysr@777 1190 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1191 !isMarkedPrev(obj);
ysr@777 1192 }
ysr@777 1193
ysr@777 1194 // This is used when copying an object to survivor space.
ysr@777 1195 // If the object is marked live, then we mark the copy live.
ysr@777 1196 // If the object is allocated since the start of this mark
ysr@777 1197 // cycle, then we mark the copy live.
ysr@777 1198 // If the object has been around since the previous mark
ysr@777 1199 // phase, and hasn't been marked yet during this phase,
ysr@777 1200 // then we don't mark it, we just wait for the
ysr@777 1201 // current marking cycle to get to it.
ysr@777 1202
ysr@777 1203 // This function returns true when an object has been
ysr@777 1204 // around since the previous marking and hasn't yet
ysr@777 1205 // been marked during this marking.
ysr@777 1206
ysr@777 1207 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1208 return
ysr@777 1209 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1210 !isMarkedNext(obj);
ysr@777 1211 }
ysr@777 1212
ysr@777 1213 // Determine if an object is dead, given only the object itself.
ysr@777 1214 // This will find the region to which the object belongs and
ysr@777 1215 // then call the region version of the same function.
ysr@777 1216
ysr@777 1217 // Added if it is in permanent gen it isn't dead.
ysr@777 1218 // Added if it is NULL it isn't dead.
ysr@777 1219
tonyp@1246 1220 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 1221 // use_prev_marking == false -> use "next" marking information
tonyp@1246 1222 bool is_obj_dead_cond(const oop obj,
tonyp@1246 1223 const bool use_prev_marking) {
tonyp@1246 1224 if (use_prev_marking) {
tonyp@1246 1225 return is_obj_dead(obj);
tonyp@1246 1226 } else {
tonyp@1246 1227 return is_obj_ill(obj);
tonyp@1246 1228 }
tonyp@1246 1229 }
tonyp@1246 1230
tonyp@1246 1231 bool is_obj_dead(const oop obj) {
tonyp@1246 1232 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1233 if (hr == NULL) {
ysr@777 1234 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1235 return false;
ysr@777 1236 else if (obj == NULL) return false;
ysr@777 1237 else return true;
ysr@777 1238 }
ysr@777 1239 else return is_obj_dead(obj, hr);
ysr@777 1240 }
ysr@777 1241
tonyp@1246 1242 bool is_obj_ill(const oop obj) {
tonyp@1246 1243 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1244 if (hr == NULL) {
ysr@777 1245 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1246 return false;
ysr@777 1247 else if (obj == NULL) return false;
ysr@777 1248 else return true;
ysr@777 1249 }
ysr@777 1250 else return is_obj_ill(obj, hr);
ysr@777 1251 }
ysr@777 1252
ysr@777 1253 // The following is just to alert the verification code
ysr@777 1254 // that a full collection has occurred and that the
ysr@777 1255 // remembered sets are no longer up to date.
ysr@777 1256 bool _full_collection;
ysr@777 1257 void set_full_collection() { _full_collection = true;}
ysr@777 1258 void clear_full_collection() {_full_collection = false;}
ysr@777 1259 bool full_collection() {return _full_collection;}
ysr@777 1260
ysr@777 1261 ConcurrentMark* concurrent_mark() const { return _cm; }
ysr@777 1262 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
ysr@777 1263
apetrusenko@1231 1264 // The dirty cards region list is used to record a subset of regions
apetrusenko@1231 1265 // whose cards need clearing. The list if populated during the
apetrusenko@1231 1266 // remembered set scanning and drained during the card table
apetrusenko@1231 1267 // cleanup. Although the methods are reentrant, population/draining
apetrusenko@1231 1268 // phases must not overlap. For synchronization purposes the last
apetrusenko@1231 1269 // element on the list points to itself.
apetrusenko@1231 1270 HeapRegion* _dirty_cards_region_list;
apetrusenko@1231 1271 void push_dirty_cards_region(HeapRegion* hr);
apetrusenko@1231 1272 HeapRegion* pop_dirty_cards_region();
apetrusenko@1231 1273
ysr@777 1274 public:
ysr@777 1275 void stop_conc_gc_threads();
ysr@777 1276
ysr@777 1277 // <NEW PREDICTION>
ysr@777 1278
ysr@777 1279 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 1280 void check_if_region_is_too_expensive(double predicted_time_ms);
ysr@777 1281 size_t pending_card_num();
ysr@777 1282 size_t max_pending_card_num();
ysr@777 1283 size_t cards_scanned();
ysr@777 1284
ysr@777 1285 // </NEW PREDICTION>
ysr@777 1286
ysr@777 1287 protected:
ysr@777 1288 size_t _max_heap_capacity;
ysr@777 1289
ysr@777 1290 // debug_only(static void check_for_valid_allocation_state();)
ysr@777 1291
ysr@777 1292 public:
ysr@777 1293 // Temporary: call to mark things unimplemented for the G1 heap (e.g.,
ysr@777 1294 // MemoryService). In productization, we can make this assert false
ysr@777 1295 // to catch such places (as well as searching for calls to this...)
ysr@777 1296 static void g1_unimplemented();
ysr@777 1297
ysr@777 1298 };
ysr@777 1299
ysr@1280 1300 #define use_local_bitmaps 1
ysr@1280 1301 #define verify_local_bitmaps 0
ysr@1280 1302 #define oop_buffer_length 256
ysr@1280 1303
ysr@1280 1304 #ifndef PRODUCT
ysr@1280 1305 class GCLabBitMap;
ysr@1280 1306 class GCLabBitMapClosure: public BitMapClosure {
ysr@1280 1307 private:
ysr@1280 1308 ConcurrentMark* _cm;
ysr@1280 1309 GCLabBitMap* _bitmap;
ysr@1280 1310
ysr@1280 1311 public:
ysr@1280 1312 GCLabBitMapClosure(ConcurrentMark* cm,
ysr@1280 1313 GCLabBitMap* bitmap) {
ysr@1280 1314 _cm = cm;
ysr@1280 1315 _bitmap = bitmap;
ysr@1280 1316 }
ysr@1280 1317
ysr@1280 1318 virtual bool do_bit(size_t offset);
ysr@1280 1319 };
ysr@1280 1320 #endif // !PRODUCT
ysr@1280 1321
ysr@1280 1322 class GCLabBitMap: public BitMap {
ysr@1280 1323 private:
ysr@1280 1324 ConcurrentMark* _cm;
ysr@1280 1325
ysr@1280 1326 int _shifter;
ysr@1280 1327 size_t _bitmap_word_covers_words;
ysr@1280 1328
ysr@1280 1329 // beginning of the heap
ysr@1280 1330 HeapWord* _heap_start;
ysr@1280 1331
ysr@1280 1332 // this is the actual start of the GCLab
ysr@1280 1333 HeapWord* _real_start_word;
ysr@1280 1334
ysr@1280 1335 // this is the actual end of the GCLab
ysr@1280 1336 HeapWord* _real_end_word;
ysr@1280 1337
ysr@1280 1338 // this is the first word, possibly located before the actual start
ysr@1280 1339 // of the GCLab, that corresponds to the first bit of the bitmap
ysr@1280 1340 HeapWord* _start_word;
ysr@1280 1341
ysr@1280 1342 // size of a GCLab in words
ysr@1280 1343 size_t _gclab_word_size;
ysr@1280 1344
ysr@1280 1345 static int shifter() {
ysr@1280 1346 return MinObjAlignment - 1;
ysr@1280 1347 }
ysr@1280 1348
ysr@1280 1349 // how many heap words does a single bitmap word corresponds to?
ysr@1280 1350 static size_t bitmap_word_covers_words() {
ysr@1280 1351 return BitsPerWord << shifter();
ysr@1280 1352 }
ysr@1280 1353
ysr@1280 1354 static size_t gclab_word_size() {
ysr@1280 1355 return G1ParallelGCAllocBufferSize / HeapWordSize;
ysr@1280 1356 }
ysr@1280 1357
ysr@1280 1358 static size_t bitmap_size_in_bits() {
ysr@1280 1359 size_t bits_in_bitmap = gclab_word_size() >> shifter();
ysr@1280 1360 // We are going to ensure that the beginning of a word in this
ysr@1280 1361 // bitmap also corresponds to the beginning of a word in the
ysr@1280 1362 // global marking bitmap. To handle the case where a GCLab
ysr@1280 1363 // starts from the middle of the bitmap, we need to add enough
ysr@1280 1364 // space (i.e. up to a bitmap word) to ensure that we have
ysr@1280 1365 // enough bits in the bitmap.
ysr@1280 1366 return bits_in_bitmap + BitsPerWord - 1;
ysr@1280 1367 }
ysr@1280 1368 public:
ysr@1280 1369 GCLabBitMap(HeapWord* heap_start)
ysr@1280 1370 : BitMap(bitmap_size_in_bits()),
ysr@1280 1371 _cm(G1CollectedHeap::heap()->concurrent_mark()),
ysr@1280 1372 _shifter(shifter()),
ysr@1280 1373 _bitmap_word_covers_words(bitmap_word_covers_words()),
ysr@1280 1374 _heap_start(heap_start),
ysr@1280 1375 _gclab_word_size(gclab_word_size()),
ysr@1280 1376 _real_start_word(NULL),
ysr@1280 1377 _real_end_word(NULL),
ysr@1280 1378 _start_word(NULL)
ysr@1280 1379 {
ysr@1280 1380 guarantee( size_in_words() >= bitmap_size_in_words(),
ysr@1280 1381 "just making sure");
ysr@1280 1382 }
ysr@1280 1383
ysr@1280 1384 inline unsigned heapWordToOffset(HeapWord* addr) {
ysr@1280 1385 unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
ysr@1280 1386 assert(offset < size(), "offset should be within bounds");
ysr@1280 1387 return offset;
ysr@1280 1388 }
ysr@1280 1389
ysr@1280 1390 inline HeapWord* offsetToHeapWord(size_t offset) {
ysr@1280 1391 HeapWord* addr = _start_word + (offset << _shifter);
ysr@1280 1392 assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
ysr@1280 1393 return addr;
ysr@1280 1394 }
ysr@1280 1395
ysr@1280 1396 bool fields_well_formed() {
ysr@1280 1397 bool ret1 = (_real_start_word == NULL) &&
ysr@1280 1398 (_real_end_word == NULL) &&
ysr@1280 1399 (_start_word == NULL);
ysr@1280 1400 if (ret1)
ysr@1280 1401 return true;
ysr@1280 1402
ysr@1280 1403 bool ret2 = _real_start_word >= _start_word &&
ysr@1280 1404 _start_word < _real_end_word &&
ysr@1280 1405 (_real_start_word + _gclab_word_size) == _real_end_word &&
ysr@1280 1406 (_start_word + _gclab_word_size + _bitmap_word_covers_words)
ysr@1280 1407 > _real_end_word;
ysr@1280 1408 return ret2;
ysr@1280 1409 }
ysr@1280 1410
ysr@1280 1411 inline bool mark(HeapWord* addr) {
ysr@1280 1412 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1413 assert(fields_well_formed(), "invariant");
ysr@1280 1414
ysr@1280 1415 if (addr >= _real_start_word && addr < _real_end_word) {
ysr@1280 1416 assert(!isMarked(addr), "should not have already been marked");
ysr@1280 1417
ysr@1280 1418 // first mark it on the bitmap
ysr@1280 1419 at_put(heapWordToOffset(addr), true);
ysr@1280 1420
ysr@1280 1421 return true;
ysr@1280 1422 } else {
ysr@1280 1423 return false;
ysr@1280 1424 }
ysr@1280 1425 }
ysr@1280 1426
ysr@1280 1427 inline bool isMarked(HeapWord* addr) {
ysr@1280 1428 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1429 assert(fields_well_formed(), "invariant");
ysr@1280 1430
ysr@1280 1431 return at(heapWordToOffset(addr));
ysr@1280 1432 }
ysr@1280 1433
ysr@1280 1434 void set_buffer(HeapWord* start) {
ysr@1280 1435 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1436 clear();
ysr@1280 1437
ysr@1280 1438 assert(start != NULL, "invariant");
ysr@1280 1439 _real_start_word = start;
ysr@1280 1440 _real_end_word = start + _gclab_word_size;
ysr@1280 1441
ysr@1280 1442 size_t diff =
ysr@1280 1443 pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
ysr@1280 1444 _start_word = start - diff;
ysr@1280 1445
ysr@1280 1446 assert(fields_well_formed(), "invariant");
ysr@1280 1447 }
ysr@1280 1448
ysr@1280 1449 #ifndef PRODUCT
ysr@1280 1450 void verify() {
ysr@1280 1451 // verify that the marks have been propagated
ysr@1280 1452 GCLabBitMapClosure cl(_cm, this);
ysr@1280 1453 iterate(&cl);
ysr@1280 1454 }
ysr@1280 1455 #endif // PRODUCT
ysr@1280 1456
ysr@1280 1457 void retire() {
ysr@1280 1458 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1459 assert(fields_well_formed(), "invariant");
ysr@1280 1460
ysr@1280 1461 if (_start_word != NULL) {
ysr@1280 1462 CMBitMap* mark_bitmap = _cm->nextMarkBitMap();
ysr@1280 1463
ysr@1280 1464 // this means that the bitmap was set up for the GCLab
ysr@1280 1465 assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
ysr@1280 1466
ysr@1280 1467 mark_bitmap->mostly_disjoint_range_union(this,
ysr@1280 1468 0, // always start from the start of the bitmap
ysr@1280 1469 _start_word,
ysr@1280 1470 size_in_words());
ysr@1280 1471 _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
ysr@1280 1472
ysr@1280 1473 #ifndef PRODUCT
ysr@1280 1474 if (use_local_bitmaps && verify_local_bitmaps)
ysr@1280 1475 verify();
ysr@1280 1476 #endif // PRODUCT
ysr@1280 1477 } else {
ysr@1280 1478 assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
ysr@1280 1479 }
ysr@1280 1480 }
ysr@1280 1481
ysr@1280 1482 static size_t bitmap_size_in_words() {
ysr@1280 1483 return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
ysr@1280 1484 }
ysr@1280 1485 };
ysr@1280 1486
ysr@1280 1487 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@1280 1488 private:
ysr@1280 1489 bool _retired;
ysr@1280 1490 bool _during_marking;
ysr@1280 1491 GCLabBitMap _bitmap;
ysr@1280 1492
ysr@1280 1493 public:
ysr@1280 1494 G1ParGCAllocBuffer() :
ysr@1280 1495 ParGCAllocBuffer(G1ParallelGCAllocBufferSize / HeapWordSize),
ysr@1280 1496 _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
ysr@1280 1497 _bitmap(G1CollectedHeap::heap()->reserved_region().start()),
ysr@1280 1498 _retired(false)
ysr@1280 1499 { }
ysr@1280 1500
ysr@1280 1501 inline bool mark(HeapWord* addr) {
ysr@1280 1502 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1503 assert(_during_marking, "invariant");
ysr@1280 1504 return _bitmap.mark(addr);
ysr@1280 1505 }
ysr@1280 1506
ysr@1280 1507 inline void set_buf(HeapWord* buf) {
ysr@1280 1508 if (use_local_bitmaps && _during_marking)
ysr@1280 1509 _bitmap.set_buffer(buf);
ysr@1280 1510 ParGCAllocBuffer::set_buf(buf);
ysr@1280 1511 _retired = false;
ysr@1280 1512 }
ysr@1280 1513
ysr@1280 1514 inline void retire(bool end_of_gc, bool retain) {
ysr@1280 1515 if (_retired)
ysr@1280 1516 return;
ysr@1280 1517 if (use_local_bitmaps && _during_marking) {
ysr@1280 1518 _bitmap.retire();
ysr@1280 1519 }
ysr@1280 1520 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@1280 1521 _retired = true;
ysr@1280 1522 }
ysr@1280 1523 };
ysr@1280 1524
ysr@1280 1525 class G1ParScanThreadState : public StackObj {
ysr@1280 1526 protected:
ysr@1280 1527 G1CollectedHeap* _g1h;
ysr@1280 1528 RefToScanQueue* _refs;
ysr@1280 1529 DirtyCardQueue _dcq;
ysr@1280 1530 CardTableModRefBS* _ct_bs;
ysr@1280 1531 G1RemSet* _g1_rem;
ysr@1280 1532
ysr@1280 1533 typedef GrowableArray<StarTask> OverflowQueue;
ysr@1280 1534 OverflowQueue* _overflowed_refs;
ysr@1280 1535
ysr@1280 1536 G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
ysr@1280 1537 ageTable _age_table;
ysr@1280 1538
ysr@1280 1539 size_t _alloc_buffer_waste;
ysr@1280 1540 size_t _undo_waste;
ysr@1280 1541
ysr@1280 1542 OopsInHeapRegionClosure* _evac_failure_cl;
ysr@1280 1543 G1ParScanHeapEvacClosure* _evac_cl;
ysr@1280 1544 G1ParScanPartialArrayClosure* _partial_scan_cl;
ysr@1280 1545
ysr@1280 1546 int _hash_seed;
ysr@1280 1547 int _queue_num;
ysr@1280 1548
ysr@1280 1549 int _term_attempts;
ysr@1280 1550 #if G1_DETAILED_STATS
ysr@1280 1551 int _pushes, _pops, _steals, _steal_attempts;
ysr@1280 1552 int _overflow_pushes;
ysr@1280 1553 #endif
ysr@1280 1554
ysr@1280 1555 double _start;
ysr@1280 1556 double _start_strong_roots;
ysr@1280 1557 double _strong_roots_time;
ysr@1280 1558 double _start_term;
ysr@1280 1559 double _term_time;
ysr@1280 1560
ysr@1280 1561 // Map from young-age-index (0 == not young, 1 is youngest) to
ysr@1280 1562 // surviving words. base is what we get back from the malloc call
ysr@1280 1563 size_t* _surviving_young_words_base;
ysr@1280 1564 // this points into the array, as we use the first few entries for padding
ysr@1280 1565 size_t* _surviving_young_words;
ysr@1280 1566
ysr@1280 1567 #define PADDING_ELEM_NUM (64 / sizeof(size_t))
ysr@1280 1568
ysr@1280 1569 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
ysr@1280 1570
ysr@1280 1571 void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
ysr@1280 1572
ysr@1280 1573 DirtyCardQueue& dirty_card_queue() { return _dcq; }
ysr@1280 1574 CardTableModRefBS* ctbs() { return _ct_bs; }
ysr@1280 1575
ysr@1280 1576 template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1577 if (!from->is_survivor()) {
ysr@1280 1578 _g1_rem->par_write_ref(from, p, tid);
ysr@1280 1579 }
ysr@1280 1580 }
ysr@1280 1581
ysr@1280 1582 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1583 // If the new value of the field points to the same region or
ysr@1280 1584 // is the to-space, we don't need to include it in the Rset updates.
ysr@1280 1585 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
ysr@1280 1586 size_t card_index = ctbs()->index_for(p);
ysr@1280 1587 // If the card hasn't been added to the buffer, do it.
ysr@1280 1588 if (ctbs()->mark_card_deferred(card_index)) {
ysr@1280 1589 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
ysr@1280 1590 }
ysr@1280 1591 }
ysr@1280 1592 }
ysr@1280 1593
ysr@1280 1594 public:
ysr@1280 1595 G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
ysr@1280 1596
ysr@1280 1597 ~G1ParScanThreadState() {
ysr@1280 1598 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
ysr@1280 1599 }
ysr@1280 1600
ysr@1280 1601 RefToScanQueue* refs() { return _refs; }
ysr@1280 1602 OverflowQueue* overflowed_refs() { return _overflowed_refs; }
ysr@1280 1603 ageTable* age_table() { return &_age_table; }
ysr@1280 1604
ysr@1280 1605 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
ysr@1280 1606 return &_alloc_buffers[purpose];
ysr@1280 1607 }
ysr@1280 1608
ysr@1280 1609 size_t alloc_buffer_waste() { return _alloc_buffer_waste; }
ysr@1280 1610 size_t undo_waste() { return _undo_waste; }
ysr@1280 1611
ysr@1280 1612 template <class T> void push_on_queue(T* ref) {
ysr@1280 1613 assert(ref != NULL, "invariant");
ysr@1280 1614 assert(has_partial_array_mask(ref) ||
ysr@1280 1615 _g1h->obj_in_cs(oopDesc::load_decode_heap_oop(ref)), "invariant");
ysr@1280 1616 #ifdef ASSERT
ysr@1280 1617 if (has_partial_array_mask(ref)) {
ysr@1280 1618 oop p = clear_partial_array_mask(ref);
ysr@1280 1619 // Verify that we point into the CS
ysr@1280 1620 assert(_g1h->obj_in_cs(p), "Should be in CS");
ysr@1280 1621 }
ysr@1280 1622 #endif
ysr@1280 1623 if (!refs()->push(ref)) {
ysr@1280 1624 overflowed_refs()->push(ref);
ysr@1280 1625 IF_G1_DETAILED_STATS(note_overflow_push());
ysr@1280 1626 } else {
ysr@1280 1627 IF_G1_DETAILED_STATS(note_push());
ysr@1280 1628 }
ysr@1280 1629 }
ysr@1280 1630
ysr@1280 1631 void pop_from_queue(StarTask& ref) {
ysr@1280 1632 if (refs()->pop_local(ref)) {
ysr@1280 1633 assert((oop*)ref != NULL, "pop_local() returned true");
ysr@1280 1634 assert(UseCompressedOops || !ref.is_narrow(), "Error");
ysr@1280 1635 assert(has_partial_array_mask((oop*)ref) ||
ysr@1280 1636 _g1h->obj_in_cs(ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)ref)
ysr@1280 1637 : oopDesc::load_decode_heap_oop((oop*)ref)),
ysr@1280 1638 "invariant");
ysr@1280 1639 IF_G1_DETAILED_STATS(note_pop());
ysr@1280 1640 } else {
ysr@1280 1641 StarTask null_task;
ysr@1280 1642 ref = null_task;
ysr@1280 1643 }
ysr@1280 1644 }
ysr@1280 1645
ysr@1280 1646 void pop_from_overflow_queue(StarTask& ref) {
ysr@1280 1647 StarTask new_ref = overflowed_refs()->pop();
ysr@1280 1648 assert((oop*)new_ref != NULL, "pop() from a local non-empty stack");
ysr@1280 1649 assert(UseCompressedOops || !new_ref.is_narrow(), "Error");
ysr@1280 1650 assert(has_partial_array_mask((oop*)new_ref) ||
ysr@1280 1651 _g1h->obj_in_cs(new_ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)new_ref)
ysr@1280 1652 : oopDesc::load_decode_heap_oop((oop*)new_ref)),
ysr@1280 1653 "invariant");
ysr@1280 1654 ref = new_ref;
ysr@1280 1655 }
ysr@1280 1656
ysr@1280 1657 int refs_to_scan() { return refs()->size(); }
ysr@1280 1658 int overflowed_refs_to_scan() { return overflowed_refs()->length(); }
ysr@1280 1659
ysr@1280 1660 template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
ysr@1280 1661 if (G1DeferredRSUpdate) {
ysr@1280 1662 deferred_rs_update(from, p, tid);
ysr@1280 1663 } else {
ysr@1280 1664 immediate_rs_update(from, p, tid);
ysr@1280 1665 }
ysr@1280 1666 }
ysr@1280 1667
ysr@1280 1668 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1669
ysr@1280 1670 HeapWord* obj = NULL;
ysr@1280 1671 if (word_sz * 100 <
ysr@1280 1672 (size_t)(G1ParallelGCAllocBufferSize / HeapWordSize) *
ysr@1280 1673 ParallelGCBufferWastePct) {
ysr@1280 1674 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
ysr@1280 1675 add_to_alloc_buffer_waste(alloc_buf->words_remaining());
ysr@1280 1676 alloc_buf->retire(false, false);
ysr@1280 1677
ysr@1280 1678 HeapWord* buf =
ysr@1280 1679 _g1h->par_allocate_during_gc(purpose, G1ParallelGCAllocBufferSize / HeapWordSize);
ysr@1280 1680 if (buf == NULL) return NULL; // Let caller handle allocation failure.
ysr@1280 1681 // Otherwise.
ysr@1280 1682 alloc_buf->set_buf(buf);
ysr@1280 1683
ysr@1280 1684 obj = alloc_buf->allocate(word_sz);
ysr@1280 1685 assert(obj != NULL, "buffer was definitely big enough...");
ysr@1280 1686 } else {
ysr@1280 1687 obj = _g1h->par_allocate_during_gc(purpose, word_sz);
ysr@1280 1688 }
ysr@1280 1689 return obj;
ysr@1280 1690 }
ysr@1280 1691
ysr@1280 1692 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1693 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
ysr@1280 1694 if (obj != NULL) return obj;
ysr@1280 1695 return allocate_slow(purpose, word_sz);
ysr@1280 1696 }
ysr@1280 1697
ysr@1280 1698 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
ysr@1280 1699 if (alloc_buffer(purpose)->contains(obj)) {
ysr@1280 1700 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
ysr@1280 1701 "should contain whole object");
ysr@1280 1702 alloc_buffer(purpose)->undo_allocation(obj, word_sz);
ysr@1280 1703 } else {
ysr@1280 1704 CollectedHeap::fill_with_object(obj, word_sz);
ysr@1280 1705 add_to_undo_waste(word_sz);
ysr@1280 1706 }
ysr@1280 1707 }
ysr@1280 1708
ysr@1280 1709 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
ysr@1280 1710 _evac_failure_cl = evac_failure_cl;
ysr@1280 1711 }
ysr@1280 1712 OopsInHeapRegionClosure* evac_failure_closure() {
ysr@1280 1713 return _evac_failure_cl;
ysr@1280 1714 }
ysr@1280 1715
ysr@1280 1716 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
ysr@1280 1717 _evac_cl = evac_cl;
ysr@1280 1718 }
ysr@1280 1719
ysr@1280 1720 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
ysr@1280 1721 _partial_scan_cl = partial_scan_cl;
ysr@1280 1722 }
ysr@1280 1723
ysr@1280 1724 int* hash_seed() { return &_hash_seed; }
ysr@1280 1725 int queue_num() { return _queue_num; }
ysr@1280 1726
ysr@1280 1727 int term_attempts() { return _term_attempts; }
ysr@1280 1728 void note_term_attempt() { _term_attempts++; }
ysr@1280 1729
ysr@1280 1730 #if G1_DETAILED_STATS
ysr@1280 1731 int pushes() { return _pushes; }
ysr@1280 1732 int pops() { return _pops; }
ysr@1280 1733 int steals() { return _steals; }
ysr@1280 1734 int steal_attempts() { return _steal_attempts; }
ysr@1280 1735 int overflow_pushes() { return _overflow_pushes; }
ysr@1280 1736
ysr@1280 1737 void note_push() { _pushes++; }
ysr@1280 1738 void note_pop() { _pops++; }
ysr@1280 1739 void note_steal() { _steals++; }
ysr@1280 1740 void note_steal_attempt() { _steal_attempts++; }
ysr@1280 1741 void note_overflow_push() { _overflow_pushes++; }
ysr@1280 1742 #endif
ysr@1280 1743
ysr@1280 1744 void start_strong_roots() {
ysr@1280 1745 _start_strong_roots = os::elapsedTime();
ysr@1280 1746 }
ysr@1280 1747 void end_strong_roots() {
ysr@1280 1748 _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
ysr@1280 1749 }
ysr@1280 1750 double strong_roots_time() { return _strong_roots_time; }
ysr@1280 1751
ysr@1280 1752 void start_term_time() {
ysr@1280 1753 note_term_attempt();
ysr@1280 1754 _start_term = os::elapsedTime();
ysr@1280 1755 }
ysr@1280 1756 void end_term_time() {
ysr@1280 1757 _term_time += (os::elapsedTime() - _start_term);
ysr@1280 1758 }
ysr@1280 1759 double term_time() { return _term_time; }
ysr@1280 1760
ysr@1280 1761 double elapsed() {
ysr@1280 1762 return os::elapsedTime() - _start;
ysr@1280 1763 }
ysr@1280 1764
ysr@1280 1765 size_t* surviving_young_words() {
ysr@1280 1766 // We add on to hide entry 0 which accumulates surviving words for
ysr@1280 1767 // age -1 regions (i.e. non-young ones)
ysr@1280 1768 return _surviving_young_words;
ysr@1280 1769 }
ysr@1280 1770
ysr@1280 1771 void retire_alloc_buffers() {
ysr@1280 1772 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
ysr@1280 1773 size_t waste = _alloc_buffers[ap].words_remaining();
ysr@1280 1774 add_to_alloc_buffer_waste(waste);
ysr@1280 1775 _alloc_buffers[ap].retire(true, false);
ysr@1280 1776 }
ysr@1280 1777 }
ysr@1280 1778
ysr@1280 1779 private:
ysr@1280 1780 template <class T> void deal_with_reference(T* ref_to_scan) {
ysr@1280 1781 if (has_partial_array_mask(ref_to_scan)) {
ysr@1280 1782 _partial_scan_cl->do_oop_nv(ref_to_scan);
ysr@1280 1783 } else {
ysr@1280 1784 // Note: we can use "raw" versions of "region_containing" because
ysr@1280 1785 // "obj_to_scan" is definitely in the heap, and is not in a
ysr@1280 1786 // humongous region.
ysr@1280 1787 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
ysr@1280 1788 _evac_cl->set_region(r);
ysr@1280 1789 _evac_cl->do_oop_nv(ref_to_scan);
ysr@1280 1790 }
ysr@1280 1791 }
ysr@1280 1792
ysr@1280 1793 public:
ysr@1280 1794 void trim_queue() {
ysr@1280 1795 // I've replicated the loop twice, first to drain the overflow
ysr@1280 1796 // queue, second to drain the task queue. This is better than
ysr@1280 1797 // having a single loop, which checks both conditions and, inside
ysr@1280 1798 // it, either pops the overflow queue or the task queue, as each
ysr@1280 1799 // loop is tighter. Also, the decision to drain the overflow queue
ysr@1280 1800 // first is not arbitrary, as the overflow queue is not visible
ysr@1280 1801 // to the other workers, whereas the task queue is. So, we want to
ysr@1280 1802 // drain the "invisible" entries first, while allowing the other
ysr@1280 1803 // workers to potentially steal the "visible" entries.
ysr@1280 1804
ysr@1280 1805 while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
ysr@1280 1806 while (overflowed_refs_to_scan() > 0) {
ysr@1280 1807 StarTask ref_to_scan;
ysr@1280 1808 assert((oop*)ref_to_scan == NULL, "Constructed above");
ysr@1280 1809 pop_from_overflow_queue(ref_to_scan);
ysr@1280 1810 // We shouldn't have pushed it on the queue if it was not
ysr@1280 1811 // pointing into the CSet.
ysr@1280 1812 assert((oop*)ref_to_scan != NULL, "Follows from inner loop invariant");
ysr@1280 1813 if (ref_to_scan.is_narrow()) {
ysr@1280 1814 assert(UseCompressedOops, "Error");
ysr@1280 1815 narrowOop* p = (narrowOop*)ref_to_scan;
ysr@1280 1816 assert(!has_partial_array_mask(p) &&
ysr@1280 1817 _g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "sanity");
ysr@1280 1818 deal_with_reference(p);
ysr@1280 1819 } else {
ysr@1280 1820 oop* p = (oop*)ref_to_scan;
ysr@1280 1821 assert((has_partial_array_mask(p) && _g1h->obj_in_cs(clear_partial_array_mask(p))) ||
ysr@1280 1822 _g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "sanity");
ysr@1280 1823 deal_with_reference(p);
ysr@1280 1824 }
ysr@1280 1825 }
ysr@1280 1826
ysr@1280 1827 while (refs_to_scan() > 0) {
ysr@1280 1828 StarTask ref_to_scan;
ysr@1280 1829 assert((oop*)ref_to_scan == NULL, "Constructed above");
ysr@1280 1830 pop_from_queue(ref_to_scan);
ysr@1280 1831 if ((oop*)ref_to_scan != NULL) {
ysr@1280 1832 if (ref_to_scan.is_narrow()) {
ysr@1280 1833 assert(UseCompressedOops, "Error");
ysr@1280 1834 narrowOop* p = (narrowOop*)ref_to_scan;
ysr@1280 1835 assert(!has_partial_array_mask(p) &&
ysr@1280 1836 _g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "sanity");
ysr@1280 1837 deal_with_reference(p);
ysr@1280 1838 } else {
ysr@1280 1839 oop* p = (oop*)ref_to_scan;
ysr@1280 1840 assert((has_partial_array_mask(p) && _g1h->obj_in_cs(clear_partial_array_mask(p))) ||
ysr@1280 1841 _g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "sanity");
ysr@1280 1842 deal_with_reference(p);
ysr@1280 1843 }
ysr@1280 1844 }
ysr@1280 1845 }
ysr@1280 1846 }
ysr@1280 1847 }
ysr@1280 1848 };

mercurial