src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Mon, 16 Jan 2012 22:10:05 +0100

author
brutisso
date
Mon, 16 Jan 2012 22:10:05 +0100
changeset 3456
9509c20bba28
parent 3416
2ace1c4ee8da
child 3463
d30fa85f9994
permissions
-rw-r--r--

6976060: G1: humongous object allocations should initiate marking cycles when necessary
Reviewed-by: tonyp, johnc

ysr@777 1 /*
johnc@3412 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/concurrentMark.hpp"
tonyp@2715 29 #include "gc_implementation/g1/g1AllocRegion.hpp"
tonyp@2975 30 #include "gc_implementation/g1/g1HRPrinter.hpp"
stefank@2314 31 #include "gc_implementation/g1/g1RemSet.hpp"
jmasa@2821 32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
tonyp@2963 33 #include "gc_implementation/g1/heapRegionSeq.hpp"
tonyp@2472 34 #include "gc_implementation/g1/heapRegionSets.hpp"
jmasa@2821 35 #include "gc_implementation/shared/hSpaceCounters.hpp"
stefank@2314 36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
stefank@2314 37 #include "memory/barrierSet.hpp"
stefank@2314 38 #include "memory/memRegion.hpp"
stefank@2314 39 #include "memory/sharedHeap.hpp"
stefank@2314 40
ysr@777 41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 42 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 43 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 44 // heap subsets that will yield large amounts of garbage.
ysr@777 45
ysr@777 46 class HeapRegion;
tonyp@2493 47 class HRRSCleanupTask;
ysr@777 48 class PermanentGenerationSpec;
ysr@777 49 class GenerationSpec;
ysr@777 50 class OopsInHeapRegionClosure;
ysr@777 51 class G1ScanHeapEvacClosure;
ysr@777 52 class ObjectClosure;
ysr@777 53 class SpaceClosure;
ysr@777 54 class CompactibleSpaceClosure;
ysr@777 55 class Space;
ysr@777 56 class G1CollectorPolicy;
ysr@777 57 class GenRemSet;
ysr@777 58 class G1RemSet;
ysr@777 59 class HeapRegionRemSetIterator;
ysr@777 60 class ConcurrentMark;
ysr@777 61 class ConcurrentMarkThread;
ysr@777 62 class ConcurrentG1Refine;
jmasa@2821 63 class GenerationCounters;
ysr@777 64
jcoomes@2064 65 typedef OverflowTaskQueue<StarTask> RefToScanQueue;
jcoomes@1746 66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
ysr@777 67
johnc@1242 68 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 69 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 70
ysr@777 71 enum GCAllocPurpose {
ysr@777 72 GCAllocForTenured,
ysr@777 73 GCAllocForSurvived,
ysr@777 74 GCAllocPurposeCount
ysr@777 75 };
ysr@777 76
ysr@777 77 class YoungList : public CHeapObj {
ysr@777 78 private:
ysr@777 79 G1CollectedHeap* _g1h;
ysr@777 80
ysr@777 81 HeapRegion* _head;
ysr@777 82
johnc@1829 83 HeapRegion* _survivor_head;
johnc@1829 84 HeapRegion* _survivor_tail;
johnc@1829 85
johnc@1829 86 HeapRegion* _curr;
johnc@1829 87
ysr@777 88 size_t _length;
johnc@1829 89 size_t _survivor_length;
ysr@777 90
ysr@777 91 size_t _last_sampled_rs_lengths;
ysr@777 92 size_t _sampled_rs_lengths;
ysr@777 93
johnc@1829 94 void empty_list(HeapRegion* list);
ysr@777 95
ysr@777 96 public:
ysr@777 97 YoungList(G1CollectedHeap* g1h);
ysr@777 98
johnc@1829 99 void push_region(HeapRegion* hr);
johnc@1829 100 void add_survivor_region(HeapRegion* hr);
johnc@1829 101
johnc@1829 102 void empty_list();
johnc@1829 103 bool is_empty() { return _length == 0; }
johnc@1829 104 size_t length() { return _length; }
johnc@1829 105 size_t survivor_length() { return _survivor_length; }
ysr@777 106
tonyp@2961 107 // Currently we do not keep track of the used byte sum for the
tonyp@2961 108 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 109 // do so. When we'll eventually replace the young list with
tonyp@2961 110 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 111 // we'll report the more accurate information then.
tonyp@2961 112 size_t eden_used_bytes() {
tonyp@2961 113 assert(length() >= survivor_length(), "invariant");
tonyp@2961 114 return (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 115 }
tonyp@2961 116 size_t survivor_used_bytes() {
tonyp@2961 117 return survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 118 }
tonyp@2961 119
ysr@777 120 void rs_length_sampling_init();
ysr@777 121 bool rs_length_sampling_more();
ysr@777 122 void rs_length_sampling_next();
ysr@777 123
ysr@777 124 void reset_sampled_info() {
ysr@777 125 _last_sampled_rs_lengths = 0;
ysr@777 126 }
ysr@777 127 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 128
ysr@777 129 // for development purposes
ysr@777 130 void reset_auxilary_lists();
johnc@1829 131 void clear() { _head = NULL; _length = 0; }
johnc@1829 132
johnc@1829 133 void clear_survivors() {
johnc@1829 134 _survivor_head = NULL;
johnc@1829 135 _survivor_tail = NULL;
johnc@1829 136 _survivor_length = 0;
johnc@1829 137 }
johnc@1829 138
ysr@777 139 HeapRegion* first_region() { return _head; }
ysr@777 140 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 141 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 142
ysr@777 143 // debugging
ysr@777 144 bool check_list_well_formed();
johnc@1829 145 bool check_list_empty(bool check_sample = true);
ysr@777 146 void print();
ysr@777 147 };
ysr@777 148
tonyp@2715 149 class MutatorAllocRegion : public G1AllocRegion {
tonyp@2715 150 protected:
tonyp@2715 151 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@2715 152 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@2715 153 public:
tonyp@2715 154 MutatorAllocRegion()
tonyp@2715 155 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
tonyp@2715 156 };
tonyp@2715 157
johnc@3175 158 // The G1 STW is alive closure.
johnc@3175 159 // An instance is embedded into the G1CH and used as the
johnc@3175 160 // (optional) _is_alive_non_header closure in the STW
johnc@3175 161 // reference processor. It is also extensively used during
johnc@3175 162 // refence processing during STW evacuation pauses.
johnc@3175 163 class G1STWIsAliveClosure: public BoolObjectClosure {
johnc@3175 164 G1CollectedHeap* _g1;
johnc@3175 165 public:
johnc@3175 166 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
johnc@3175 167 void do_object(oop p) { assert(false, "Do not call."); }
johnc@3175 168 bool do_object_b(oop p);
johnc@3175 169 };
johnc@3175 170
tonyp@3028 171 class SurvivorGCAllocRegion : public G1AllocRegion {
tonyp@3028 172 protected:
tonyp@3028 173 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 174 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 175 public:
tonyp@3028 176 SurvivorGCAllocRegion()
tonyp@3028 177 : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
tonyp@3028 178 };
tonyp@3028 179
tonyp@3028 180 class OldGCAllocRegion : public G1AllocRegion {
tonyp@3028 181 protected:
tonyp@3028 182 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 183 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 184 public:
tonyp@3028 185 OldGCAllocRegion()
tonyp@3028 186 : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
tonyp@3028 187 };
tonyp@3028 188
ysr@777 189 class RefineCardTableEntryClosure;
johnc@3175 190
ysr@777 191 class G1CollectedHeap : public SharedHeap {
ysr@777 192 friend class VM_G1CollectForAllocation;
ysr@777 193 friend class VM_GenCollectForPermanentAllocation;
ysr@777 194 friend class VM_G1CollectFull;
ysr@777 195 friend class VM_G1IncCollectionPause;
ysr@777 196 friend class VMStructs;
tonyp@2715 197 friend class MutatorAllocRegion;
tonyp@3028 198 friend class SurvivorGCAllocRegion;
tonyp@3028 199 friend class OldGCAllocRegion;
ysr@777 200
ysr@777 201 // Closures used in implementation.
ysr@777 202 friend class G1ParCopyHelper;
ysr@777 203 friend class G1IsAliveClosure;
ysr@777 204 friend class G1EvacuateFollowersClosure;
ysr@777 205 friend class G1ParScanThreadState;
ysr@777 206 friend class G1ParScanClosureSuper;
ysr@777 207 friend class G1ParEvacuateFollowersClosure;
ysr@777 208 friend class G1ParTask;
ysr@777 209 friend class G1FreeGarbageRegionClosure;
ysr@777 210 friend class RefineCardTableEntryClosure;
ysr@777 211 friend class G1PrepareCompactClosure;
ysr@777 212 friend class RegionSorter;
tonyp@2472 213 friend class RegionResetter;
ysr@777 214 friend class CountRCClosure;
ysr@777 215 friend class EvacPopObjClosure;
apetrusenko@1231 216 friend class G1ParCleanupCTTask;
ysr@777 217
ysr@777 218 // Other related classes.
ysr@777 219 friend class G1MarkSweep;
ysr@777 220
ysr@777 221 private:
ysr@777 222 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 223 static G1CollectedHeap* _g1h;
ysr@777 224
tonyp@1377 225 static size_t _humongous_object_threshold_in_words;
tonyp@1377 226
ysr@777 227 // Storage for the G1 heap (excludes the permanent generation).
ysr@777 228 VirtualSpace _g1_storage;
ysr@777 229 MemRegion _g1_reserved;
ysr@777 230
ysr@777 231 // The part of _g1_storage that is currently committed.
ysr@777 232 MemRegion _g1_committed;
ysr@777 233
tonyp@2472 234 // The master free list. It will satisfy all new region allocations.
tonyp@2472 235 MasterFreeRegionList _free_list;
tonyp@2472 236
tonyp@2472 237 // The secondary free list which contains regions that have been
tonyp@2472 238 // freed up during the cleanup process. This will be appended to the
tonyp@2472 239 // master free list when appropriate.
tonyp@2472 240 SecondaryFreeRegionList _secondary_free_list;
tonyp@2472 241
tonyp@3268 242 // It keeps track of the old regions.
tonyp@3268 243 MasterOldRegionSet _old_set;
tonyp@3268 244
tonyp@2472 245 // It keeps track of the humongous regions.
tonyp@2472 246 MasterHumongousRegionSet _humongous_set;
ysr@777 247
ysr@777 248 // The number of regions we could create by expansion.
ysr@777 249 size_t _expansion_regions;
ysr@777 250
ysr@777 251 // The block offset table for the G1 heap.
ysr@777 252 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 253
tonyp@3268 254 // Tears down the region sets / lists so that they are empty and the
tonyp@3268 255 // regions on the heap do not belong to a region set / list. The
tonyp@3268 256 // only exception is the humongous set which we leave unaltered. If
tonyp@3268 257 // free_list_only is true, it will only tear down the master free
tonyp@3268 258 // list. It is called before a Full GC (free_list_only == false) or
tonyp@3268 259 // before heap shrinking (free_list_only == true).
tonyp@3268 260 void tear_down_region_sets(bool free_list_only);
tonyp@3268 261
tonyp@3268 262 // Rebuilds the region sets / lists so that they are repopulated to
tonyp@3268 263 // reflect the contents of the heap. The only exception is the
tonyp@3268 264 // humongous set which was not torn down in the first place. If
tonyp@3268 265 // free_list_only is true, it will only rebuild the master free
tonyp@3268 266 // list. It is called after a Full GC (free_list_only == false) or
tonyp@3268 267 // after heap shrinking (free_list_only == true).
tonyp@3268 268 void rebuild_region_sets(bool free_list_only);
ysr@777 269
ysr@777 270 // The sequence of all heap regions in the heap.
tonyp@2963 271 HeapRegionSeq _hrs;
ysr@777 272
tonyp@2715 273 // Alloc region used to satisfy mutator allocation requests.
tonyp@2715 274 MutatorAllocRegion _mutator_alloc_region;
ysr@777 275
tonyp@3028 276 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 277 // survivor objects.
tonyp@3028 278 SurvivorGCAllocRegion _survivor_gc_alloc_region;
tonyp@3028 279
tonyp@3028 280 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 281 // old objects.
tonyp@3028 282 OldGCAllocRegion _old_gc_alloc_region;
tonyp@3028 283
tonyp@3028 284 // The last old region we allocated to during the last GC.
tonyp@3028 285 // Typically, it is not full so we should re-use it during the next GC.
tonyp@3028 286 HeapRegion* _retained_old_gc_alloc_region;
tonyp@3028 287
tonyp@3410 288 // It specifies whether we should attempt to expand the heap after a
tonyp@3410 289 // region allocation failure. If heap expansion fails we set this to
tonyp@3410 290 // false so that we don't re-attempt the heap expansion (it's likely
tonyp@3410 291 // that subsequent expansion attempts will also fail if one fails).
tonyp@3410 292 // Currently, it is only consulted during GC and it's reset at the
tonyp@3410 293 // start of each GC.
tonyp@3410 294 bool _expand_heap_after_alloc_failure;
tonyp@3410 295
tonyp@2715 296 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 297 void init_mutator_alloc_region();
tonyp@2715 298
tonyp@2715 299 // It releases the mutator alloc region.
tonyp@2715 300 void release_mutator_alloc_region();
tonyp@2715 301
tonyp@3028 302 // It initializes the GC alloc regions at the start of a GC.
tonyp@3028 303 void init_gc_alloc_regions();
tonyp@3028 304
tonyp@3028 305 // It releases the GC alloc regions at the end of a GC.
tonyp@3028 306 void release_gc_alloc_regions();
tonyp@3028 307
tonyp@3028 308 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 309 // before a Full GC.
tonyp@1071 310 void abandon_gc_alloc_regions();
ysr@777 311
jmasa@2821 312 // Helper for monitoring and management support.
jmasa@2821 313 G1MonitoringSupport* _g1mm;
jmasa@2821 314
apetrusenko@1826 315 // Determines PLAB size for a particular allocation purpose.
apetrusenko@1826 316 static size_t desired_plab_sz(GCAllocPurpose purpose);
apetrusenko@1826 317
ysr@777 318 // Outside of GC pauses, the number of bytes used in all regions other
ysr@777 319 // than the current allocation region.
ysr@777 320 size_t _summary_bytes_used;
ysr@777 321
tonyp@961 322 // This is used for a quick test on whether a reference points into
tonyp@961 323 // the collection set or not. Basically, we have an array, with one
tonyp@961 324 // byte per region, and that byte denotes whether the corresponding
tonyp@961 325 // region is in the collection set or not. The entry corresponding
tonyp@961 326 // the bottom of the heap, i.e., region 0, is pointed to by
tonyp@961 327 // _in_cset_fast_test_base. The _in_cset_fast_test field has been
tonyp@961 328 // biased so that it actually points to address 0 of the address
tonyp@961 329 // space, to make the test as fast as possible (we can simply shift
tonyp@961 330 // the address to address into it, instead of having to subtract the
tonyp@961 331 // bottom of the heap from the address before shifting it; basically
tonyp@961 332 // it works in the same way the card table works).
tonyp@961 333 bool* _in_cset_fast_test;
tonyp@961 334
tonyp@961 335 // The allocated array used for the fast test on whether a reference
tonyp@961 336 // points into the collection set or not. This field is also used to
tonyp@961 337 // free the array.
tonyp@961 338 bool* _in_cset_fast_test_base;
tonyp@961 339
tonyp@961 340 // The length of the _in_cset_fast_test_base array.
tonyp@961 341 size_t _in_cset_fast_test_length;
tonyp@961 342
iveresov@788 343 volatile unsigned _gc_time_stamp;
ysr@777 344
ysr@777 345 size_t* _surviving_young_words;
ysr@777 346
tonyp@2975 347 G1HRPrinter _hr_printer;
tonyp@2975 348
ysr@777 349 void setup_surviving_young_words();
ysr@777 350 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 351 void cleanup_surviving_young_words();
ysr@777 352
tonyp@2011 353 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 354 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 355 // explicitly started if:
tonyp@2011 356 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 357 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
brutisso@3456 358 // (c) cause == _g1_humongous_allocation
tonyp@2011 359 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 360
tonyp@2011 361 // Keeps track of how many "full collections" (i.e., Full GCs or
tonyp@2011 362 // concurrent cycles) we have completed. The number of them we have
tonyp@2011 363 // started is maintained in _total_full_collections in CollectedHeap.
tonyp@2011 364 volatile unsigned int _full_collections_completed;
tonyp@2011 365
tonyp@2817 366 // This is a non-product method that is helpful for testing. It is
tonyp@2817 367 // called at the end of a GC and artificially expands the heap by
tonyp@2817 368 // allocating a number of dead regions. This way we can induce very
tonyp@2817 369 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 370 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 371 // this method will be found dead by the marking cycle).
tonyp@2817 372 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 373
tonyp@2315 374 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 375 // line number, file, etc.
tonyp@2315 376
tonyp@2643 377 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 378 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 379 (_extra_message_), \
tonyp@2472 380 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 381 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 382 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 383
tonyp@2315 384 #define assert_heap_locked() \
tonyp@2315 385 do { \
tonyp@2315 386 assert(Heap_lock->owned_by_self(), \
tonyp@2315 387 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 388 } while (0)
tonyp@2315 389
tonyp@2643 390 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 391 do { \
tonyp@2315 392 assert(Heap_lock->owned_by_self() || \
tonyp@2472 393 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 394 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 395 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 396 "should be at a safepoint")); \
tonyp@2315 397 } while (0)
tonyp@2315 398
tonyp@2315 399 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 400 do { \
tonyp@2315 401 assert(Heap_lock->owned_by_self() && \
tonyp@2315 402 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 403 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 404 "should not be at a safepoint")); \
tonyp@2315 405 } while (0)
tonyp@2315 406
tonyp@2315 407 #define assert_heap_not_locked() \
tonyp@2315 408 do { \
tonyp@2315 409 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 410 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 411 } while (0)
tonyp@2315 412
tonyp@2315 413 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 414 do { \
tonyp@2315 415 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 416 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 417 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 418 "should not be at a safepoint")); \
tonyp@2315 419 } while (0)
tonyp@2315 420
tonyp@2643 421 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 422 do { \
tonyp@2472 423 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 424 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 425 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 426 } while (0)
tonyp@2315 427
tonyp@2315 428 #define assert_not_at_safepoint() \
tonyp@2315 429 do { \
tonyp@2315 430 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 431 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 432 } while (0)
tonyp@2315 433
ysr@777 434 protected:
ysr@777 435
johnc@3021 436 // The young region list.
ysr@777 437 YoungList* _young_list;
ysr@777 438
ysr@777 439 // The current policy object for the collector.
ysr@777 440 G1CollectorPolicy* _g1_policy;
ysr@777 441
tonyp@2472 442 // This is the second level of trying to allocate a new region. If
tonyp@2715 443 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 444 // check whether there's anything available on the
tonyp@2715 445 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 446 // that list, if _free_regions_coming is set.
tonyp@2643 447 HeapRegion* new_region_try_secondary_free_list();
ysr@777 448
tonyp@2643 449 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 450 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 451 // attempt to expand the heap if necessary to satisfy the allocation
tonyp@2643 452 // request.
tonyp@2715 453 HeapRegion* new_region(size_t word_size, bool do_expand);
ysr@777 454
tonyp@2643 455 // Attempt to satisfy a humongous allocation request of the given
tonyp@2643 456 // size by finding a contiguous set of free regions of num_regions
tonyp@2643 457 // length and remove them from the master free list. Return the
tonyp@2963 458 // index of the first region or G1_NULL_HRS_INDEX if the search
tonyp@2963 459 // was unsuccessful.
tonyp@2963 460 size_t humongous_obj_allocate_find_first(size_t num_regions,
tonyp@2963 461 size_t word_size);
ysr@777 462
tonyp@2643 463 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 464 // and starting at index first so that they appear as a single
tonyp@2643 465 // humongous region.
tonyp@2963 466 HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
tonyp@2643 467 size_t num_regions,
tonyp@2643 468 size_t word_size);
tonyp@2643 469
tonyp@2643 470 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 471 // NULL if unsuccessful.
tonyp@2472 472 HeapWord* humongous_obj_allocate(size_t word_size);
ysr@777 473
tonyp@2315 474 // The following two methods, allocate_new_tlab() and
tonyp@2315 475 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 476 // into the G1's allocation routines. They have the following
tonyp@2315 477 // assumptions:
tonyp@2315 478 //
tonyp@2315 479 // * They should both be called outside safepoints.
tonyp@2315 480 //
tonyp@2315 481 // * They should both be called without holding the Heap_lock.
tonyp@2315 482 //
tonyp@2315 483 // * All allocation requests for new TLABs should go to
tonyp@2315 484 // allocate_new_tlab().
tonyp@2315 485 //
tonyp@2971 486 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 487 //
tonyp@2315 488 // * If either call cannot satisfy the allocation request using the
tonyp@2315 489 // current allocating region, they will try to get a new one. If
tonyp@2315 490 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 491 // retry the allocation.
tonyp@2315 492 //
tonyp@2315 493 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 494 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 495 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 496 // schedule a Full GC.
tonyp@2315 497 //
tonyp@2315 498 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 499 // should never be called with word_size being humongous. All
tonyp@2315 500 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 501 // will satisfy them with a special path.
ysr@777 502
tonyp@2315 503 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 504
tonyp@2315 505 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 506 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 507
tonyp@2715 508 // The following three methods take a gc_count_before_ret
tonyp@2715 509 // parameter which is used to return the GC count if the method
tonyp@2715 510 // returns NULL. Given that we are required to read the GC count
tonyp@2715 511 // while holding the Heap_lock, and these paths will take the
tonyp@2715 512 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 513 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 514 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 515 // Heap_lock just to read the GC count.
tonyp@2315 516
tonyp@2715 517 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 518 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 519 // should only be used for non-humongous allocations.
tonyp@2715 520 inline HeapWord* attempt_allocation(size_t word_size,
tonyp@2715 521 unsigned int* gc_count_before_ret);
tonyp@2315 522
tonyp@2715 523 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 524 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 525 // pause. This should only be used for non-humongous allocations.
tonyp@2715 526 HeapWord* attempt_allocation_slow(size_t word_size,
tonyp@2715 527 unsigned int* gc_count_before_ret);
tonyp@2315 528
tonyp@2715 529 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 530 // potentially schedule a GC pause.
tonyp@2715 531 HeapWord* attempt_allocation_humongous(size_t word_size,
tonyp@2715 532 unsigned int* gc_count_before_ret);
tonyp@2454 533
tonyp@2715 534 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 535 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 536 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 537 // or not.
tonyp@2315 538 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
tonyp@2715 539 bool expect_null_mutator_alloc_region);
tonyp@2315 540
tonyp@2315 541 // It dirties the cards that cover the block so that so that the post
tonyp@2315 542 // write barrier never queues anything when updating objects on this
tonyp@2315 543 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 544 // belongs to a young region.
tonyp@2315 545 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 546
ysr@777 547 // Allocate blocks during garbage collection. Will ensure an
ysr@777 548 // allocation region, either by picking one or expanding the
ysr@777 549 // heap, and then allocate a block of the given size. The block
ysr@777 550 // may not be a humongous - it must fit into a single heap region.
ysr@777 551 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 552
ysr@777 553 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
ysr@777 554 HeapRegion* alloc_region,
ysr@777 555 bool par,
ysr@777 556 size_t word_size);
ysr@777 557
ysr@777 558 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 559 // that parallel threads might be attempting allocations.
ysr@777 560 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 561
tonyp@3028 562 // Allocation attempt during GC for a survivor object / PLAB.
tonyp@3028 563 inline HeapWord* survivor_attempt_allocation(size_t word_size);
apetrusenko@980 564
tonyp@3028 565 // Allocation attempt during GC for an old object / PLAB.
tonyp@3028 566 inline HeapWord* old_attempt_allocation(size_t word_size);
tonyp@2715 567
tonyp@3028 568 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 569
tonyp@3028 570 // For mutator alloc regions.
tonyp@2715 571 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 572 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 573 size_t allocated_bytes);
tonyp@2715 574
tonyp@3028 575 // For GC alloc regions.
tonyp@3028 576 HeapRegion* new_gc_alloc_region(size_t word_size, size_t count,
tonyp@3028 577 GCAllocPurpose ap);
tonyp@3028 578 void retire_gc_alloc_region(HeapRegion* alloc_region,
tonyp@3028 579 size_t allocated_bytes, GCAllocPurpose ap);
tonyp@3028 580
tonyp@2011 581 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 582 // inspection request and should collect the entire heap
tonyp@2315 583 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 584 // cleared during the GC
tonyp@2011 585 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 586 // the GC should attempt (at least) to satisfy
tonyp@2315 587 // - it returns false if it is unable to do the collection due to the
tonyp@2315 588 // GC locker being active, true otherwise
tonyp@2315 589 bool do_collection(bool explicit_gc,
tonyp@2011 590 bool clear_all_soft_refs,
ysr@777 591 size_t word_size);
ysr@777 592
ysr@777 593 // Callback from VM_G1CollectFull operation.
ysr@777 594 // Perform a full collection.
ysr@777 595 void do_full_collection(bool clear_all_soft_refs);
ysr@777 596
ysr@777 597 // Resize the heap if necessary after a full collection. If this is
ysr@777 598 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 599 // and will be considered part of the used portion of the heap.
ysr@777 600 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 601
ysr@777 602 // Callback from VM_G1CollectForAllocation operation.
ysr@777 603 // This function does everything necessary/possible to satisfy a
ysr@777 604 // failed allocation request (including collection, expansion, etc.)
tonyp@2315 605 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
ysr@777 606
ysr@777 607 // Attempting to expand the heap sufficiently
ysr@777 608 // to support an allocation of the given "word_size". If
ysr@777 609 // successful, perform the allocation and return the address of the
ysr@777 610 // allocated block, or else "NULL".
tonyp@2315 611 HeapWord* expand_and_allocate(size_t word_size);
ysr@777 612
johnc@3175 613 // Process any reference objects discovered during
johnc@3175 614 // an incremental evacuation pause.
johnc@3175 615 void process_discovered_references();
johnc@3175 616
johnc@3175 617 // Enqueue any remaining discovered references
johnc@3175 618 // after processing.
johnc@3175 619 void enqueue_discovered_references();
johnc@3175 620
ysr@777 621 public:
jmasa@2821 622
tonyp@3176 623 G1MonitoringSupport* g1mm() {
tonyp@3176 624 assert(_g1mm != NULL, "should have been initialized");
tonyp@3176 625 return _g1mm;
tonyp@3176 626 }
jmasa@2821 627
ysr@777 628 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 629 // Returns true if the heap was expanded by the requested amount;
johnc@2504 630 // false otherwise.
ysr@777 631 // (Rounds up to a HeapRegion boundary.)
johnc@2504 632 bool expand(size_t expand_bytes);
ysr@777 633
ysr@777 634 // Do anything common to GC's.
ysr@777 635 virtual void gc_prologue(bool full);
ysr@777 636 virtual void gc_epilogue(bool full);
ysr@777 637
tonyp@961 638 // We register a region with the fast "in collection set" test. We
tonyp@961 639 // simply set to true the array slot corresponding to this region.
tonyp@961 640 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tonyp@961 641 assert(_in_cset_fast_test_base != NULL, "sanity");
tonyp@961 642 assert(r->in_collection_set(), "invariant");
tonyp@2963 643 size_t index = r->hrs_index();
tonyp@2963 644 assert(index < _in_cset_fast_test_length, "invariant");
tonyp@961 645 assert(!_in_cset_fast_test_base[index], "invariant");
tonyp@961 646 _in_cset_fast_test_base[index] = true;
tonyp@961 647 }
tonyp@961 648
tonyp@961 649 // This is a fast test on whether a reference points into the
tonyp@961 650 // collection set or not. It does not assume that the reference
tonyp@961 651 // points into the heap; if it doesn't, it will return false.
tonyp@961 652 bool in_cset_fast_test(oop obj) {
tonyp@961 653 assert(_in_cset_fast_test != NULL, "sanity");
tonyp@961 654 if (_g1_committed.contains((HeapWord*) obj)) {
tonyp@961 655 // no need to subtract the bottom of the heap from obj,
tonyp@961 656 // _in_cset_fast_test is biased
tonyp@961 657 size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
tonyp@961 658 bool ret = _in_cset_fast_test[index];
tonyp@961 659 // let's make sure the result is consistent with what the slower
tonyp@961 660 // test returns
tonyp@961 661 assert( ret || !obj_in_cs(obj), "sanity");
tonyp@961 662 assert(!ret || obj_in_cs(obj), "sanity");
tonyp@961 663 return ret;
tonyp@961 664 } else {
tonyp@961 665 return false;
tonyp@961 666 }
tonyp@961 667 }
tonyp@961 668
johnc@1829 669 void clear_cset_fast_test() {
johnc@1829 670 assert(_in_cset_fast_test_base != NULL, "sanity");
johnc@1829 671 memset(_in_cset_fast_test_base, false,
johnc@1829 672 _in_cset_fast_test_length * sizeof(bool));
johnc@1829 673 }
johnc@1829 674
tonyp@2011 675 // This is called at the end of either a concurrent cycle or a Full
tonyp@2011 676 // GC to update the number of full collections completed. Those two
tonyp@2011 677 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 678 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 679 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 680 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 681 // tighter consistency checking in the method. If concurrent is
tonyp@2372 682 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 683 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 684 // in this nesting (i.e., the concurrent cycle). Further nesting is
tonyp@2372 685 // not currently supported. The end of the this call also notifies
tonyp@2372 686 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 687 // GC to happen (e.g., it called System.gc() with
tonyp@2011 688 // +ExplicitGCInvokesConcurrent).
tonyp@2372 689 void increment_full_collections_completed(bool concurrent);
tonyp@2011 690
tonyp@2011 691 unsigned int full_collections_completed() {
tonyp@2011 692 return _full_collections_completed;
tonyp@2011 693 }
tonyp@2011 694
tonyp@2975 695 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 696
ysr@777 697 protected:
ysr@777 698
ysr@777 699 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 700 // (Rounds down to a HeapRegion boundary.)
ysr@777 701 virtual void shrink(size_t expand_bytes);
ysr@777 702 void shrink_helper(size_t expand_bytes);
ysr@777 703
jcoomes@2064 704 #if TASKQUEUE_STATS
jcoomes@2064 705 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 706 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 707 void reset_taskqueue_stats();
jcoomes@2064 708 #endif // TASKQUEUE_STATS
jcoomes@2064 709
tonyp@2315 710 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 711 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 712 // return whether the VM operation was successful (it did do an
tonyp@2315 713 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 714 // locker was active). Given that we should not be holding the
tonyp@2315 715 // Heap_lock when we enter this method, we will pass the
tonyp@2315 716 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 717 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 718 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 719 // before the call, so it's easy to read gc_count_before just before.
tonyp@2315 720 HeapWord* do_collection_pause(size_t word_size,
tonyp@2315 721 unsigned int gc_count_before,
tonyp@2315 722 bool* succeeded);
ysr@777 723
ysr@777 724 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 725 // thread. It returns false if it is unable to do the collection due
tonyp@2315 726 // to the GC locker being active, true otherwise
tonyp@2315 727 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 728
ysr@777 729 // Actually do the work of evacuating the collection set.
tonyp@2315 730 void evacuate_collection_set();
ysr@777 731
ysr@777 732 // The g1 remembered set of the heap.
ysr@777 733 G1RemSet* _g1_rem_set;
ysr@777 734 // And it's mod ref barrier set, used to track updates for the above.
ysr@777 735 ModRefBarrierSet* _mr_bs;
ysr@777 736
iveresov@1051 737 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 738 // concurrently after the collection.
iveresov@1051 739 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 740
ysr@777 741 // The Heap Region Rem Set Iterator.
ysr@777 742 HeapRegionRemSetIterator** _rem_set_iterator;
ysr@777 743
ysr@777 744 // The closure used to refine a single card.
ysr@777 745 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 746
ysr@777 747 // A function to check the consistency of dirty card logs.
ysr@777 748 void check_ct_logs_at_safepoint();
ysr@777 749
johnc@2060 750 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 751 // references into the current collection set. This is used to
johnc@2060 752 // update the remembered sets of the regions in the collection
johnc@2060 753 // set in the event of an evacuation failure.
johnc@2060 754 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 755
ysr@777 756 // After a collection pause, make the regions in the CS into free
ysr@777 757 // regions.
ysr@777 758 void free_collection_set(HeapRegion* cs_head);
ysr@777 759
johnc@1829 760 // Abandon the current collection set without recording policy
johnc@1829 761 // statistics or updating free lists.
johnc@1829 762 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 763
ysr@777 764 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 765 // "scan_rs" to roots inside the heap (having done "set_region" to
ysr@777 766 // indicate the region in which the root resides), and does "scan_perm"
ysr@777 767 // (setting the generation to the perm generation.) If "scan_rs" is
ysr@777 768 // NULL, then this step is skipped. The "worker_i"
ysr@777 769 // param is for use with parallel roots processing, and should be
ysr@777 770 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 771 // In the sequential case this param will be ignored.
ysr@777 772 void g1_process_strong_roots(bool collecting_perm_gen,
ysr@777 773 SharedHeap::ScanningOption so,
ysr@777 774 OopClosure* scan_non_heap_roots,
ysr@777 775 OopsInHeapRegionClosure* scan_rs,
ysr@777 776 OopsInGenClosure* scan_perm,
ysr@777 777 int worker_i);
ysr@777 778
ysr@777 779 // Apply "blk" to all the weak roots of the system. These include
ysr@777 780 // JNI weak roots, the code cache, system dictionary, symbol table,
ysr@777 781 // string table, and referents of reachable weak refs.
ysr@777 782 void g1_process_weak_roots(OopClosure* root_closure,
ysr@777 783 OopClosure* non_root_closure);
ysr@777 784
tonyp@2643 785 // Frees a non-humongous region by initializing its contents and
tonyp@2472 786 // adding it to the free list that's passed as a parameter (this is
tonyp@2472 787 // usually a local list which will be appended to the master free
tonyp@2472 788 // list later). The used bytes of freed regions are accumulated in
tonyp@2472 789 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2472 790 // up. The assumption is that this will be done later.
tonyp@2472 791 void free_region(HeapRegion* hr,
tonyp@2472 792 size_t* pre_used,
tonyp@2472 793 FreeRegionList* free_list,
tonyp@2472 794 bool par);
ysr@777 795
tonyp@2643 796 // Frees a humongous region by collapsing it into individual regions
tonyp@2643 797 // and calling free_region() for each of them. The freed regions
tonyp@2643 798 // will be added to the free list that's passed as a parameter (this
tonyp@2643 799 // is usually a local list which will be appended to the master free
tonyp@2643 800 // list later). The used bytes of freed regions are accumulated in
tonyp@2643 801 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2643 802 // up. The assumption is that this will be done later.
tonyp@2472 803 void free_humongous_region(HeapRegion* hr,
tonyp@2472 804 size_t* pre_used,
tonyp@2472 805 FreeRegionList* free_list,
tonyp@2472 806 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 807 bool par);
ysr@777 808
tonyp@2963 809 // Notifies all the necessary spaces that the committed space has
tonyp@2963 810 // been updated (either expanded or shrunk). It should be called
tonyp@2963 811 // after _g1_storage is updated.
tonyp@2963 812 void update_committed_space(HeapWord* old_end, HeapWord* new_end);
tonyp@2963 813
ysr@777 814 // The concurrent marker (and the thread it runs in.)
ysr@777 815 ConcurrentMark* _cm;
ysr@777 816 ConcurrentMarkThread* _cmThread;
ysr@777 817 bool _mark_in_progress;
ysr@777 818
ysr@777 819 // The concurrent refiner.
ysr@777 820 ConcurrentG1Refine* _cg1r;
ysr@777 821
ysr@777 822 // The parallel task queues
ysr@777 823 RefToScanQueueSet *_task_queues;
ysr@777 824
ysr@777 825 // True iff a evacuation has failed in the current collection.
ysr@777 826 bool _evacuation_failed;
ysr@777 827
ysr@777 828 // Set the attribute indicating whether evacuation has failed in the
ysr@777 829 // current collection.
ysr@777 830 void set_evacuation_failed(bool b) { _evacuation_failed = b; }
ysr@777 831
ysr@777 832 // Failed evacuations cause some logical from-space objects to have
ysr@777 833 // forwarding pointers to themselves. Reset them.
ysr@777 834 void remove_self_forwarding_pointers();
ysr@777 835
ysr@777 836 // When one is non-null, so is the other. Together, they each pair is
ysr@777 837 // an object with a preserved mark, and its mark value.
ysr@777 838 GrowableArray<oop>* _objs_with_preserved_marks;
ysr@777 839 GrowableArray<markOop>* _preserved_marks_of_objs;
ysr@777 840
ysr@777 841 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 842 // word being overwritten with a self-forwarding-pointer.
ysr@777 843 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 844
ysr@777 845 // The stack of evac-failure objects left to be scanned.
ysr@777 846 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 847 // The closure to apply to evac-failure objects.
ysr@777 848
ysr@777 849 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 850 // Set the field above.
ysr@777 851 void
ysr@777 852 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 853 _evac_failure_closure = evac_failure_closure;
ysr@777 854 }
ysr@777 855
ysr@777 856 // Push "obj" on the scan stack.
ysr@777 857 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 858 // Process scan stack entries until the stack is empty.
ysr@777 859 void drain_evac_failure_scan_stack();
ysr@777 860 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 861 // prevent unnecessary recursion.
ysr@777 862 bool _drain_in_progress;
ysr@777 863
ysr@777 864 // Do any necessary initialization for evacuation-failure handling.
ysr@777 865 // "cl" is the closure that will be used to process evac-failure
ysr@777 866 // objects.
ysr@777 867 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 868 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 869 // structures.
ysr@777 870 void finalize_for_evac_failure();
ysr@777 871
ysr@777 872 // An attempt to evacuate "obj" has failed; take necessary steps.
tonyp@3416 873 oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
ysr@777 874 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 875
johnc@3175 876 // ("Weak") Reference processing support.
johnc@3175 877 //
johnc@3175 878 // G1 has 2 instances of the referece processor class. One
johnc@3175 879 // (_ref_processor_cm) handles reference object discovery
johnc@3175 880 // and subsequent processing during concurrent marking cycles.
johnc@3175 881 //
johnc@3175 882 // The other (_ref_processor_stw) handles reference object
johnc@3175 883 // discovery and processing during full GCs and incremental
johnc@3175 884 // evacuation pauses.
johnc@3175 885 //
johnc@3175 886 // During an incremental pause, reference discovery will be
johnc@3175 887 // temporarily disabled for _ref_processor_cm and will be
johnc@3175 888 // enabled for _ref_processor_stw. At the end of the evacuation
johnc@3175 889 // pause references discovered by _ref_processor_stw will be
johnc@3175 890 // processed and discovery will be disabled. The previous
johnc@3175 891 // setting for reference object discovery for _ref_processor_cm
johnc@3175 892 // will be re-instated.
johnc@3175 893 //
johnc@3175 894 // At the start of marking:
johnc@3175 895 // * Discovery by the CM ref processor is verified to be inactive
johnc@3175 896 // and it's discovered lists are empty.
johnc@3175 897 // * Discovery by the CM ref processor is then enabled.
johnc@3175 898 //
johnc@3175 899 // At the end of marking:
johnc@3175 900 // * Any references on the CM ref processor's discovered
johnc@3175 901 // lists are processed (possibly MT).
johnc@3175 902 //
johnc@3175 903 // At the start of full GC we:
johnc@3175 904 // * Disable discovery by the CM ref processor and
johnc@3175 905 // empty CM ref processor's discovered lists
johnc@3175 906 // (without processing any entries).
johnc@3175 907 // * Verify that the STW ref processor is inactive and it's
johnc@3175 908 // discovered lists are empty.
johnc@3175 909 // * Temporarily set STW ref processor discovery as single threaded.
johnc@3175 910 // * Temporarily clear the STW ref processor's _is_alive_non_header
johnc@3175 911 // field.
johnc@3175 912 // * Finally enable discovery by the STW ref processor.
johnc@3175 913 //
johnc@3175 914 // The STW ref processor is used to record any discovered
johnc@3175 915 // references during the full GC.
johnc@3175 916 //
johnc@3175 917 // At the end of a full GC we:
johnc@3175 918 // * Enqueue any reference objects discovered by the STW ref processor
johnc@3175 919 // that have non-live referents. This has the side-effect of
johnc@3175 920 // making the STW ref processor inactive by disabling discovery.
johnc@3175 921 // * Verify that the CM ref processor is still inactive
johnc@3175 922 // and no references have been placed on it's discovered
johnc@3175 923 // lists (also checked as a precondition during initial marking).
johnc@3175 924
johnc@3175 925 // The (stw) reference processor...
johnc@3175 926 ReferenceProcessor* _ref_processor_stw;
johnc@3175 927
johnc@3175 928 // During reference object discovery, the _is_alive_non_header
johnc@3175 929 // closure (if non-null) is applied to the referent object to
johnc@3175 930 // determine whether the referent is live. If so then the
johnc@3175 931 // reference object does not need to be 'discovered' and can
johnc@3175 932 // be treated as a regular oop. This has the benefit of reducing
johnc@3175 933 // the number of 'discovered' reference objects that need to
johnc@3175 934 // be processed.
johnc@3175 935 //
johnc@3175 936 // Instance of the is_alive closure for embedding into the
johnc@3175 937 // STW reference processor as the _is_alive_non_header field.
johnc@3175 938 // Supplying a value for the _is_alive_non_header field is
johnc@3175 939 // optional but doing so prevents unnecessary additions to
johnc@3175 940 // the discovered lists during reference discovery.
johnc@3175 941 G1STWIsAliveClosure _is_alive_closure_stw;
johnc@3175 942
johnc@3175 943 // The (concurrent marking) reference processor...
johnc@3175 944 ReferenceProcessor* _ref_processor_cm;
johnc@3175 945
johnc@2379 946 // Instance of the concurrent mark is_alive closure for embedding
johnc@3175 947 // into the Concurrent Marking reference processor as the
johnc@3175 948 // _is_alive_non_header field. Supplying a value for the
johnc@3175 949 // _is_alive_non_header field is optional but doing so prevents
johnc@3175 950 // unnecessary additions to the discovered lists during reference
johnc@3175 951 // discovery.
johnc@3175 952 G1CMIsAliveClosure _is_alive_closure_cm;
ysr@777 953
johnc@3336 954 // Cache used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 955 HeapRegion** _worker_cset_start_region;
johnc@3336 956
johnc@3336 957 // Time stamp to validate the regions recorded in the cache
johnc@3336 958 // used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 959 // The heap region entry for a given worker is valid iff
johnc@3336 960 // the associated time stamp value matches the current value
johnc@3336 961 // of G1CollectedHeap::_gc_time_stamp.
johnc@3336 962 unsigned int* _worker_cset_start_region_time_stamp;
johnc@3336 963
ysr@777 964 enum G1H_process_strong_roots_tasks {
tonyp@3416 965 G1H_PS_filter_satb_buffers,
ysr@777 966 G1H_PS_refProcessor_oops_do,
ysr@777 967 // Leave this one last.
ysr@777 968 G1H_PS_NumElements
ysr@777 969 };
ysr@777 970
ysr@777 971 SubTasksDone* _process_strong_tasks;
ysr@777 972
tonyp@2472 973 volatile bool _free_regions_coming;
ysr@777 974
ysr@777 975 public:
jmasa@2188 976
jmasa@2188 977 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 978
ysr@777 979 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 980
jcoomes@2064 981 RefToScanQueue *task_queue(int i) const;
ysr@777 982
iveresov@1051 983 // A set of cards where updates happened during the GC
iveresov@1051 984 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 985
johnc@2060 986 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 987 // references into the current collection set. This is used to
johnc@2060 988 // update the remembered sets of the regions in the collection
johnc@2060 989 // set in the event of an evacuation failure.
johnc@2060 990 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 991 { return _into_cset_dirty_card_queue_set; }
johnc@2060 992
ysr@777 993 // Create a G1CollectedHeap with the specified policy.
ysr@777 994 // Must call the initialize method afterwards.
ysr@777 995 // May not return if something goes wrong.
ysr@777 996 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 997
ysr@777 998 // Initialize the G1CollectedHeap to have the initial and
ysr@777 999 // maximum sizes, permanent generation, and remembered and barrier sets
ysr@777 1000 // specified by the policy object.
ysr@777 1001 jint initialize();
ysr@777 1002
johnc@3175 1003 // Initialize weak reference processing.
johnc@2379 1004 virtual void ref_processing_init();
ysr@777 1005
jmasa@3357 1006 void set_par_threads(uint t) {
ysr@777 1007 SharedHeap::set_par_threads(t);
jmasa@3294 1008 // Done in SharedHeap but oddly there are
jmasa@3294 1009 // two _process_strong_tasks's in a G1CollectedHeap
jmasa@3294 1010 // so do it here too.
jmasa@3294 1011 _process_strong_tasks->set_n_threads(t);
jmasa@3294 1012 }
jmasa@3294 1013
jmasa@3294 1014 // Set _n_par_threads according to a policy TBD.
jmasa@3294 1015 void set_par_threads();
jmasa@3294 1016
jmasa@3294 1017 void set_n_termination(int t) {
jmasa@2188 1018 _process_strong_tasks->set_n_threads(t);
ysr@777 1019 }
ysr@777 1020
ysr@777 1021 virtual CollectedHeap::Name kind() const {
ysr@777 1022 return CollectedHeap::G1CollectedHeap;
ysr@777 1023 }
ysr@777 1024
ysr@777 1025 // The current policy object for the collector.
ysr@777 1026 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 1027
ysr@777 1028 // Adaptive size policy. No such thing for g1.
ysr@777 1029 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 1030
ysr@777 1031 // The rem set and barrier set.
ysr@777 1032 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 1033 ModRefBarrierSet* mr_bs() const { return _mr_bs; }
ysr@777 1034
ysr@777 1035 // The rem set iterator.
ysr@777 1036 HeapRegionRemSetIterator* rem_set_iterator(int i) {
ysr@777 1037 return _rem_set_iterator[i];
ysr@777 1038 }
ysr@777 1039
ysr@777 1040 HeapRegionRemSetIterator* rem_set_iterator() {
ysr@777 1041 return _rem_set_iterator[0];
ysr@777 1042 }
ysr@777 1043
ysr@777 1044 unsigned get_gc_time_stamp() {
ysr@777 1045 return _gc_time_stamp;
ysr@777 1046 }
ysr@777 1047
ysr@777 1048 void reset_gc_time_stamp() {
ysr@777 1049 _gc_time_stamp = 0;
iveresov@788 1050 OrderAccess::fence();
johnc@3336 1051 // Clear the cached CSet starting regions and time stamps.
johnc@3336 1052 // Their validity is dependent on the GC timestamp.
johnc@3336 1053 clear_cset_start_regions();
iveresov@788 1054 }
iveresov@788 1055
iveresov@788 1056 void increment_gc_time_stamp() {
iveresov@788 1057 ++_gc_time_stamp;
iveresov@788 1058 OrderAccess::fence();
ysr@777 1059 }
ysr@777 1060
johnc@2060 1061 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 1062 DirtyCardQueue* into_cset_dcq,
johnc@2060 1063 bool concurrent, int worker_i);
ysr@777 1064
ysr@777 1065 // The shared block offset table array.
ysr@777 1066 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 1067
johnc@3175 1068 // Reference Processing accessors
johnc@3175 1069
johnc@3175 1070 // The STW reference processor....
johnc@3175 1071 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
johnc@3175 1072
johnc@3175 1073 // The Concurent Marking reference processor...
johnc@3175 1074 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
ysr@777 1075
ysr@777 1076 virtual size_t capacity() const;
ysr@777 1077 virtual size_t used() const;
tonyp@1281 1078 // This should be called when we're not holding the heap lock. The
tonyp@1281 1079 // result might be a bit inaccurate.
tonyp@1281 1080 size_t used_unlocked() const;
ysr@777 1081 size_t recalculate_used() const;
ysr@777 1082
ysr@777 1083 // These virtual functions do the actual allocation.
ysr@777 1084 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 1085 // allocation, via inlined code (by exporting the address of the top and
ysr@777 1086 // end fields defining the extent of the contiguous allocation region.)
ysr@777 1087 // But G1CollectedHeap doesn't yet support this.
ysr@777 1088
ysr@777 1089 // Return an estimate of the maximum allocation that could be performed
ysr@777 1090 // without triggering any collection or expansion activity. In a
ysr@777 1091 // generational collector, for example, this is probably the largest
ysr@777 1092 // allocation that could be supported (without expansion) in the youngest
ysr@777 1093 // generation. It is "unsafe" because no locks are taken; the result
ysr@777 1094 // should be treated as an approximation, not a guarantee, for use in
ysr@777 1095 // heuristic resizing decisions.
ysr@777 1096 virtual size_t unsafe_max_alloc();
ysr@777 1097
ysr@777 1098 virtual bool is_maximal_no_gc() const {
ysr@777 1099 return _g1_storage.uncommitted_size() == 0;
ysr@777 1100 }
ysr@777 1101
ysr@777 1102 // The total number of regions in the heap.
tonyp@2963 1103 size_t n_regions() { return _hrs.length(); }
tonyp@2963 1104
tonyp@2963 1105 // The max number of regions in the heap.
tonyp@2963 1106 size_t max_regions() { return _hrs.max_length(); }
ysr@777 1107
ysr@777 1108 // The number of regions that are completely free.
tonyp@2963 1109 size_t free_regions() { return _free_list.length(); }
ysr@777 1110
ysr@777 1111 // The number of regions that are not completely free.
ysr@777 1112 size_t used_regions() { return n_regions() - free_regions(); }
ysr@777 1113
ysr@777 1114 // The number of regions available for "regular" expansion.
ysr@777 1115 size_t expansion_regions() { return _expansion_regions; }
ysr@777 1116
tonyp@2963 1117 // Factory method for HeapRegion instances. It will return NULL if
tonyp@2963 1118 // the allocation fails.
tonyp@2963 1119 HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
tonyp@2963 1120
tonyp@2849 1121 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 1122 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 1123 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 1124 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 1125
tonyp@2472 1126 // verify_region_sets() performs verification over the region
tonyp@2472 1127 // lists. It will be compiled in the product code to be used when
tonyp@2472 1128 // necessary (i.e., during heap verification).
tonyp@2472 1129 void verify_region_sets();
ysr@777 1130
tonyp@2472 1131 // verify_region_sets_optional() is planted in the code for
tonyp@2472 1132 // list verification in non-product builds (and it can be enabled in
tonyp@2472 1133 // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 1134 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1135 void verify_region_sets_optional() {
tonyp@2472 1136 verify_region_sets();
tonyp@2472 1137 }
tonyp@2472 1138 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1139 void verify_region_sets_optional() { }
tonyp@2472 1140 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 1141
tonyp@2472 1142 #ifdef ASSERT
tonyp@2643 1143 bool is_on_master_free_list(HeapRegion* hr) {
tonyp@2472 1144 return hr->containing_set() == &_free_list;
tonyp@2472 1145 }
ysr@777 1146
tonyp@2643 1147 bool is_in_humongous_set(HeapRegion* hr) {
tonyp@2472 1148 return hr->containing_set() == &_humongous_set;
tonyp@2643 1149 }
tonyp@2472 1150 #endif // ASSERT
ysr@777 1151
tonyp@2472 1152 // Wrapper for the region list operations that can be called from
tonyp@2472 1153 // methods outside this class.
ysr@777 1154
tonyp@2472 1155 void secondary_free_list_add_as_tail(FreeRegionList* list) {
tonyp@2472 1156 _secondary_free_list.add_as_tail(list);
tonyp@2472 1157 }
ysr@777 1158
tonyp@2472 1159 void append_secondary_free_list() {
tonyp@2714 1160 _free_list.add_as_head(&_secondary_free_list);
tonyp@2472 1161 }
ysr@777 1162
tonyp@2643 1163 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1164 // If the secondary free list looks empty there's no reason to
tonyp@2643 1165 // take the lock and then try to append it.
tonyp@2472 1166 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1167 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1168 append_secondary_free_list();
tonyp@2472 1169 }
tonyp@2472 1170 }
ysr@777 1171
tonyp@3268 1172 void old_set_remove(HeapRegion* hr) {
tonyp@3268 1173 _old_set.remove(hr);
tonyp@3268 1174 }
tonyp@3268 1175
brutisso@3456 1176 size_t non_young_capacity_bytes() {
brutisso@3456 1177 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
brutisso@3456 1178 }
brutisso@3456 1179
tonyp@2472 1180 void set_free_regions_coming();
tonyp@2472 1181 void reset_free_regions_coming();
tonyp@2472 1182 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1183 void wait_while_free_regions_coming();
ysr@777 1184
ysr@777 1185 // Perform a collection of the heap; intended for use in implementing
ysr@777 1186 // "System.gc". This probably implies as full a collection as the
ysr@777 1187 // "CollectedHeap" supports.
ysr@777 1188 virtual void collect(GCCause::Cause cause);
ysr@777 1189
ysr@777 1190 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1191 void collect_locked(GCCause::Cause cause);
ysr@777 1192
ysr@777 1193 // This interface assumes that it's being called by the
ysr@777 1194 // vm thread. It collects the heap assuming that the
ysr@777 1195 // heap lock is already held and that we are executing in
ysr@777 1196 // the context of the vm thread.
ysr@777 1197 virtual void collect_as_vm_thread(GCCause::Cause cause);
ysr@777 1198
ysr@777 1199 // True iff a evacuation has failed in the most-recent collection.
ysr@777 1200 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1201
tonyp@2472 1202 // It will free a region if it has allocated objects in it that are
tonyp@2472 1203 // all dead. It calls either free_region() or
tonyp@2472 1204 // free_humongous_region() depending on the type of the region that
tonyp@2472 1205 // is passed to it.
tonyp@2493 1206 void free_region_if_empty(HeapRegion* hr,
tonyp@2493 1207 size_t* pre_used,
tonyp@2493 1208 FreeRegionList* free_list,
tonyp@3268 1209 OldRegionSet* old_proxy_set,
tonyp@2493 1210 HumongousRegionSet* humongous_proxy_set,
tonyp@2493 1211 HRRSCleanupTask* hrrs_cleanup_task,
tonyp@2493 1212 bool par);
ysr@777 1213
tonyp@2472 1214 // It appends the free list to the master free list and updates the
tonyp@2472 1215 // master humongous list according to the contents of the proxy
tonyp@2472 1216 // list. It also adjusts the total used bytes according to pre_used
tonyp@2472 1217 // (if par is true, it will do so by taking the ParGCRareEvent_lock).
tonyp@2472 1218 void update_sets_after_freeing_regions(size_t pre_used,
tonyp@2472 1219 FreeRegionList* free_list,
tonyp@3268 1220 OldRegionSet* old_proxy_set,
tonyp@2472 1221 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 1222 bool par);
ysr@777 1223
stefank@3335 1224 // Returns "TRUE" iff "p" points into the committed areas of the heap.
ysr@777 1225 virtual bool is_in(const void* p) const;
ysr@777 1226
ysr@777 1227 // Return "TRUE" iff the given object address is within the collection
ysr@777 1228 // set.
ysr@777 1229 inline bool obj_in_cs(oop obj);
ysr@777 1230
ysr@777 1231 // Return "TRUE" iff the given object address is in the reserved
ysr@777 1232 // region of g1 (excluding the permanent generation).
ysr@777 1233 bool is_in_g1_reserved(const void* p) const {
ysr@777 1234 return _g1_reserved.contains(p);
ysr@777 1235 }
ysr@777 1236
tonyp@2717 1237 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1238 // reserved for the heap
tonyp@2717 1239 MemRegion g1_reserved() {
tonyp@2717 1240 return _g1_reserved;
tonyp@2717 1241 }
tonyp@2717 1242
tonyp@2717 1243 // Returns a MemRegion that corresponds to the space that has been
ysr@777 1244 // committed in the heap
ysr@777 1245 MemRegion g1_committed() {
ysr@777 1246 return _g1_committed;
ysr@777 1247 }
ysr@777 1248
johnc@2593 1249 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1250
ysr@777 1251 // This resets the card table to all zeros. It is used after
ysr@777 1252 // a collection pause which used the card table to claim cards.
ysr@777 1253 void cleanUpCardTable();
ysr@777 1254
ysr@777 1255 // Iteration functions.
ysr@777 1256
ysr@777 1257 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1258 // "cl.do_oop" on each.
iveresov@1113 1259 virtual void oop_iterate(OopClosure* cl) {
iveresov@1113 1260 oop_iterate(cl, true);
iveresov@1113 1261 }
iveresov@1113 1262 void oop_iterate(OopClosure* cl, bool do_perm);
ysr@777 1263
ysr@777 1264 // Same as above, restricted to a memory region.
iveresov@1113 1265 virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
iveresov@1113 1266 oop_iterate(mr, cl, true);
iveresov@1113 1267 }
iveresov@1113 1268 void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
ysr@777 1269
ysr@777 1270 // Iterate over all objects, calling "cl.do_object" on each.
iveresov@1113 1271 virtual void object_iterate(ObjectClosure* cl) {
iveresov@1113 1272 object_iterate(cl, true);
iveresov@1113 1273 }
iveresov@1113 1274 virtual void safe_object_iterate(ObjectClosure* cl) {
iveresov@1113 1275 object_iterate(cl, true);
iveresov@1113 1276 }
iveresov@1113 1277 void object_iterate(ObjectClosure* cl, bool do_perm);
ysr@777 1278
ysr@777 1279 // Iterate over all objects allocated since the last collection, calling
ysr@777 1280 // "cl.do_object" on each. The heap must have been initialized properly
ysr@777 1281 // to support this function, or else this call will fail.
ysr@777 1282 virtual void object_iterate_since_last_GC(ObjectClosure* cl);
ysr@777 1283
ysr@777 1284 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1285 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1286
ysr@777 1287 // Iterate over heap regions, in address order, terminating the
ysr@777 1288 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1289 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1290
ysr@777 1291 // Iterate over heap regions starting with r (or the first region if "r"
ysr@777 1292 // is NULL), in address order, terminating early if the "doHeapRegion"
ysr@777 1293 // method returns "true".
tonyp@2963 1294 void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
ysr@777 1295
tonyp@2963 1296 // Return the region with the given index. It assumes the index is valid.
tonyp@2963 1297 HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
ysr@777 1298
ysr@777 1299 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1300 // of regions divided by the number of parallel threads times some
ysr@777 1301 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1302 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1303 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1304 // calls will use the same "claim_value", and that that claim value is
ysr@777 1305 // different from the claim_value of any heap region before the start of
ysr@777 1306 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1307 // attempting to claim the first region in each chunk, and, if
ysr@777 1308 // successful, applying the closure to each region in the chunk (and
ysr@777 1309 // setting the claim value of the second and subsequent regions of the
ysr@777 1310 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1311 // i.e., that a closure never attempt to abort a traversal.
ysr@777 1312 void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
jmasa@3357 1313 uint worker,
jmasa@3357 1314 uint no_of_par_workers,
ysr@777 1315 jint claim_value);
ysr@777 1316
tonyp@825 1317 // It resets all the region claim values to the default.
tonyp@825 1318 void reset_heap_region_claim_values();
tonyp@825 1319
johnc@3412 1320 // Resets the claim values of regions in the current
johnc@3412 1321 // collection set to the default.
johnc@3412 1322 void reset_cset_heap_region_claim_values();
johnc@3412 1323
tonyp@790 1324 #ifdef ASSERT
tonyp@790 1325 bool check_heap_region_claim_values(jint claim_value);
johnc@3296 1326
johnc@3296 1327 // Same as the routine above but only checks regions in the
johnc@3296 1328 // current collection set.
johnc@3296 1329 bool check_cset_heap_region_claim_values(jint claim_value);
tonyp@790 1330 #endif // ASSERT
tonyp@790 1331
johnc@3336 1332 // Clear the cached cset start regions and (more importantly)
johnc@3336 1333 // the time stamps. Called when we reset the GC time stamp.
johnc@3336 1334 void clear_cset_start_regions();
johnc@3336 1335
johnc@3336 1336 // Given the id of a worker, obtain or calculate a suitable
johnc@3336 1337 // starting region for iterating over the current collection set.
johnc@3296 1338 HeapRegion* start_cset_region_for_worker(int worker_i);
johnc@3296 1339
ysr@777 1340 // Iterate over the regions (if any) in the current collection set.
ysr@777 1341 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1342
ysr@777 1343 // As above but starting from region r
ysr@777 1344 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1345
ysr@777 1346 // Returns the first (lowest address) compactible space in the heap.
ysr@777 1347 virtual CompactibleSpace* first_compactible_space();
ysr@777 1348
ysr@777 1349 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1350 // space containing a given address, or else returns NULL.
ysr@777 1351 virtual Space* space_containing(const void* addr) const;
ysr@777 1352
ysr@777 1353 // A G1CollectedHeap will contain some number of heap regions. This
ysr@777 1354 // finds the region containing a given address, or else returns NULL.
tonyp@2963 1355 template <class T>
tonyp@2963 1356 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1357
ysr@777 1358 // Like the above, but requires "addr" to be in the heap (to avoid a
ysr@777 1359 // null-check), and unlike the above, may return an continuing humongous
ysr@777 1360 // region.
tonyp@2963 1361 template <class T>
tonyp@2963 1362 inline HeapRegion* heap_region_containing_raw(const T addr) const;
ysr@777 1363
ysr@777 1364 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1365 // each address in the (reserved) heap is a member of exactly
ysr@777 1366 // one block. The defining characteristic of a block is that it is
ysr@777 1367 // possible to find its size, and thus to progress forward to the next
ysr@777 1368 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1369 // represent Java objects, or they might be free blocks in a
ysr@777 1370 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1371 // distinguishable and the size of each is determinable.
ysr@777 1372
ysr@777 1373 // Returns the address of the start of the "block" that contains the
ysr@777 1374 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1375 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1376 // non-object.
ysr@777 1377 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1378
ysr@777 1379 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1380 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1381 // of the active area of the heap.
ysr@777 1382 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1383
ysr@777 1384 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1385 // the block is an object.
ysr@777 1386 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1387
ysr@777 1388 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1389 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1390
ysr@777 1391 // Section on thread-local allocation buffers (TLABs)
ysr@777 1392 // See CollectedHeap for semantics.
ysr@777 1393
ysr@777 1394 virtual bool supports_tlab_allocation() const;
ysr@777 1395 virtual size_t tlab_capacity(Thread* thr) const;
ysr@777 1396 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
ysr@777 1397
ysr@777 1398 // Can a compiler initialize a new object without store barriers?
ysr@777 1399 // This permission only extends from the creation of a new object
ysr@1462 1400 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1401 // is granted for this heap type, the compiler promises to call
ysr@1462 1402 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1403 // a new object for which such initializing store barriers will
ysr@1462 1404 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1405 // ready to provide a compensating write barrier as necessary
ysr@1462 1406 // if that storage came out of a non-young region. The efficiency
ysr@1462 1407 // of this implementation depends crucially on being able to
ysr@1462 1408 // answer very efficiently in constant time whether a piece of
ysr@1462 1409 // storage in the heap comes from a young region or not.
ysr@1462 1410 // See ReduceInitialCardMarks.
ysr@777 1411 virtual bool can_elide_tlab_store_barriers() const {
brutisso@3184 1412 return true;
ysr@1462 1413 }
ysr@1462 1414
ysr@1601 1415 virtual bool card_mark_must_follow_store() const {
ysr@1601 1416 return true;
ysr@1601 1417 }
ysr@1601 1418
tonyp@2963 1419 bool is_in_young(const oop obj) {
ysr@1462 1420 HeapRegion* hr = heap_region_containing(obj);
ysr@1462 1421 return hr != NULL && hr->is_young();
ysr@1462 1422 }
ysr@1462 1423
jmasa@2909 1424 #ifdef ASSERT
jmasa@2909 1425 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1426 #endif
jmasa@2909 1427
jmasa@2909 1428 virtual bool is_scavengable(const void* addr);
jmasa@2909 1429
ysr@1462 1430 // We don't need barriers for initializing stores to objects
ysr@1462 1431 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1432 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1433 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1434 // information for young gen objects.
ysr@1462 1435 virtual bool can_elide_initializing_store_barrier(oop new_obj) {
ysr@1462 1436 return is_in_young(new_obj);
ysr@777 1437 }
ysr@777 1438
ysr@777 1439 // Can a compiler elide a store barrier when it writes
ysr@777 1440 // a permanent oop into the heap? Applies when the compiler
ysr@777 1441 // is storing x to the heap, where x->is_perm() is true.
ysr@777 1442 virtual bool can_elide_permanent_oop_store_barriers() const {
ysr@777 1443 // At least until perm gen collection is also G1-ified, at
ysr@777 1444 // which point this should return false.
ysr@777 1445 return true;
ysr@777 1446 }
ysr@777 1447
ysr@777 1448 // Returns "true" iff the given word_size is "very large".
ysr@777 1449 static bool isHumongous(size_t word_size) {
johnc@1748 1450 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1451 // are capped at the humongous thresold and we want to
johnc@1748 1452 // ensure that we don't try to allocate a TLAB as
johnc@1748 1453 // humongous and that we don't allocate a humongous
johnc@1748 1454 // object in a TLAB.
johnc@1748 1455 return word_size > _humongous_object_threshold_in_words;
ysr@777 1456 }
ysr@777 1457
ysr@777 1458 // Update mod union table with the set of dirty cards.
ysr@777 1459 void updateModUnion();
ysr@777 1460
ysr@777 1461 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1462 // that this is always a safe operation, since it doesn't clear any
ysr@777 1463 // bits.
ysr@777 1464 void markModUnionRange(MemRegion mr);
ysr@777 1465
ysr@777 1466 // Records the fact that a marking phase is no longer in progress.
ysr@777 1467 void set_marking_complete() {
ysr@777 1468 _mark_in_progress = false;
ysr@777 1469 }
ysr@777 1470 void set_marking_started() {
ysr@777 1471 _mark_in_progress = true;
ysr@777 1472 }
ysr@777 1473 bool mark_in_progress() {
ysr@777 1474 return _mark_in_progress;
ysr@777 1475 }
ysr@777 1476
ysr@777 1477 // Print the maximum heap capacity.
ysr@777 1478 virtual size_t max_capacity() const;
ysr@777 1479
ysr@777 1480 virtual jlong millis_since_last_gc();
ysr@777 1481
ysr@777 1482 // Perform any cleanup actions necessary before allowing a verification.
ysr@777 1483 virtual void prepare_for_verify();
ysr@777 1484
ysr@777 1485 // Perform verification.
tonyp@1246 1486
johnc@2969 1487 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 1488 // vo == UseNextMarking -> use "next" marking information
johnc@2969 1489 // vo == UseMarkWord -> use the mark word in the object header
johnc@2969 1490 //
tonyp@1246 1491 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 1492 // consistent most of the time, so most calls to this should use
johnc@2969 1493 // vo == UsePrevMarking.
johnc@2969 1494 // Currently, there is only one case where this is called with
johnc@2969 1495 // vo == UseNextMarking, which is to verify the "next" marking
johnc@2969 1496 // information at the end of remark.
johnc@2969 1497 // Currently there is only one place where this is called with
johnc@2969 1498 // vo == UseMarkWord, which is to verify the marking during a
johnc@2969 1499 // full GC.
johnc@2969 1500 void verify(bool allow_dirty, bool silent, VerifyOption vo);
tonyp@1246 1501
tonyp@1246 1502 // Override; it uses the "prev" marking information
ysr@777 1503 virtual void verify(bool allow_dirty, bool silent);
ysr@777 1504 virtual void print_on(outputStream* st) const;
tonyp@3269 1505 virtual void print_extended_on(outputStream* st) const;
ysr@777 1506
ysr@777 1507 virtual void print_gc_threads_on(outputStream* st) const;
ysr@777 1508 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1509
ysr@777 1510 // Override
ysr@777 1511 void print_tracing_info() const;
ysr@777 1512
tonyp@2974 1513 // The following two methods are helpful for debugging RSet issues.
tonyp@2974 1514 void print_cset_rsets() PRODUCT_RETURN;
tonyp@2974 1515 void print_all_rsets() PRODUCT_RETURN;
tonyp@2974 1516
ysr@777 1517 // Convenience function to be used in situations where the heap type can be
ysr@777 1518 // asserted to be this type.
ysr@777 1519 static G1CollectedHeap* heap();
ysr@777 1520
ysr@777 1521 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1522 // add appropriate methods for any other surv rate groups
ysr@777 1523
johnc@1829 1524 YoungList* young_list() { return _young_list; }
ysr@777 1525
ysr@777 1526 // debugging
ysr@777 1527 bool check_young_list_well_formed() {
ysr@777 1528 return _young_list->check_list_well_formed();
ysr@777 1529 }
johnc@1829 1530
johnc@1829 1531 bool check_young_list_empty(bool check_heap,
ysr@777 1532 bool check_sample = true);
ysr@777 1533
ysr@777 1534 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1535 // many of these need to be public.
ysr@777 1536
ysr@777 1537 // The functions below are helper functions that a subclass of
ysr@777 1538 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1539 // functions.
ysr@777 1540 // This performs a concurrent marking of the live objects in a
ysr@777 1541 // bitmap off to the side.
ysr@777 1542 void doConcurrentMark();
ysr@777 1543
ysr@777 1544 bool isMarkedPrev(oop obj) const;
ysr@777 1545 bool isMarkedNext(oop obj) const;
ysr@777 1546
johnc@2969 1547 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 1548 // vo == UseNextMarking -> use "next" marking information,
johnc@2969 1549 // vo == UseMarkWord -> use mark word from object header
tonyp@1246 1550 bool is_obj_dead_cond(const oop obj,
tonyp@1246 1551 const HeapRegion* hr,
johnc@2969 1552 const VerifyOption vo) const {
johnc@2969 1553
johnc@2969 1554 switch (vo) {
johnc@2969 1555 case VerifyOption_G1UsePrevMarking:
johnc@2969 1556 return is_obj_dead(obj, hr);
johnc@2969 1557 case VerifyOption_G1UseNextMarking:
johnc@2969 1558 return is_obj_ill(obj, hr);
johnc@2969 1559 default:
johnc@2969 1560 assert(vo == VerifyOption_G1UseMarkWord, "must be");
johnc@2969 1561 return !obj->is_gc_marked();
tonyp@1246 1562 }
tonyp@1246 1563 }
tonyp@1246 1564
ysr@777 1565 // Determine if an object is dead, given the object and also
ysr@777 1566 // the region to which the object belongs. An object is dead
ysr@777 1567 // iff a) it was not allocated since the last mark and b) it
ysr@777 1568 // is not marked.
ysr@777 1569
ysr@777 1570 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1571 return
ysr@777 1572 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1573 !isMarkedPrev(obj);
ysr@777 1574 }
ysr@777 1575
ysr@777 1576 // This is used when copying an object to survivor space.
ysr@777 1577 // If the object is marked live, then we mark the copy live.
ysr@777 1578 // If the object is allocated since the start of this mark
ysr@777 1579 // cycle, then we mark the copy live.
ysr@777 1580 // If the object has been around since the previous mark
ysr@777 1581 // phase, and hasn't been marked yet during this phase,
ysr@777 1582 // then we don't mark it, we just wait for the
ysr@777 1583 // current marking cycle to get to it.
ysr@777 1584
ysr@777 1585 // This function returns true when an object has been
ysr@777 1586 // around since the previous marking and hasn't yet
ysr@777 1587 // been marked during this marking.
ysr@777 1588
ysr@777 1589 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1590 return
ysr@777 1591 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1592 !isMarkedNext(obj);
ysr@777 1593 }
ysr@777 1594
ysr@777 1595 // Determine if an object is dead, given only the object itself.
ysr@777 1596 // This will find the region to which the object belongs and
ysr@777 1597 // then call the region version of the same function.
ysr@777 1598
ysr@777 1599 // Added if it is in permanent gen it isn't dead.
ysr@777 1600 // Added if it is NULL it isn't dead.
ysr@777 1601
johnc@2969 1602 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 1603 // vo == UseNextMarking -> use "next" marking information,
johnc@2969 1604 // vo == UseMarkWord -> use mark word from object header
tonyp@1246 1605 bool is_obj_dead_cond(const oop obj,
johnc@2969 1606 const VerifyOption vo) const {
johnc@2969 1607
johnc@2969 1608 switch (vo) {
johnc@2969 1609 case VerifyOption_G1UsePrevMarking:
johnc@2969 1610 return is_obj_dead(obj);
johnc@2969 1611 case VerifyOption_G1UseNextMarking:
johnc@2969 1612 return is_obj_ill(obj);
johnc@2969 1613 default:
johnc@2969 1614 assert(vo == VerifyOption_G1UseMarkWord, "must be");
johnc@2969 1615 return !obj->is_gc_marked();
tonyp@1246 1616 }
tonyp@1246 1617 }
tonyp@1246 1618
johnc@2969 1619 bool is_obj_dead(const oop obj) const {
tonyp@1246 1620 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1621 if (hr == NULL) {
ysr@777 1622 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1623 return false;
ysr@777 1624 else if (obj == NULL) return false;
ysr@777 1625 else return true;
ysr@777 1626 }
ysr@777 1627 else return is_obj_dead(obj, hr);
ysr@777 1628 }
ysr@777 1629
johnc@2969 1630 bool is_obj_ill(const oop obj) const {
tonyp@1246 1631 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1632 if (hr == NULL) {
ysr@777 1633 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1634 return false;
ysr@777 1635 else if (obj == NULL) return false;
ysr@777 1636 else return true;
ysr@777 1637 }
ysr@777 1638 else return is_obj_ill(obj, hr);
ysr@777 1639 }
ysr@777 1640
ysr@777 1641 // The following is just to alert the verification code
ysr@777 1642 // that a full collection has occurred and that the
ysr@777 1643 // remembered sets are no longer up to date.
ysr@777 1644 bool _full_collection;
ysr@777 1645 void set_full_collection() { _full_collection = true;}
ysr@777 1646 void clear_full_collection() {_full_collection = false;}
ysr@777 1647 bool full_collection() {return _full_collection;}
ysr@777 1648
ysr@777 1649 ConcurrentMark* concurrent_mark() const { return _cm; }
ysr@777 1650 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
ysr@777 1651
apetrusenko@1231 1652 // The dirty cards region list is used to record a subset of regions
apetrusenko@1231 1653 // whose cards need clearing. The list if populated during the
apetrusenko@1231 1654 // remembered set scanning and drained during the card table
apetrusenko@1231 1655 // cleanup. Although the methods are reentrant, population/draining
apetrusenko@1231 1656 // phases must not overlap. For synchronization purposes the last
apetrusenko@1231 1657 // element on the list points to itself.
apetrusenko@1231 1658 HeapRegion* _dirty_cards_region_list;
apetrusenko@1231 1659 void push_dirty_cards_region(HeapRegion* hr);
apetrusenko@1231 1660 HeapRegion* pop_dirty_cards_region();
apetrusenko@1231 1661
ysr@777 1662 public:
ysr@777 1663 void stop_conc_gc_threads();
ysr@777 1664
ysr@777 1665 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 1666 void check_if_region_is_too_expensive(double predicted_time_ms);
ysr@777 1667 size_t pending_card_num();
ysr@777 1668 size_t max_pending_card_num();
ysr@777 1669 size_t cards_scanned();
ysr@777 1670
ysr@777 1671 protected:
ysr@777 1672 size_t _max_heap_capacity;
ysr@777 1673 };
ysr@777 1674
ysr@1280 1675 #define use_local_bitmaps 1
ysr@1280 1676 #define verify_local_bitmaps 0
ysr@1280 1677 #define oop_buffer_length 256
ysr@1280 1678
ysr@1280 1679 #ifndef PRODUCT
ysr@1280 1680 class GCLabBitMap;
ysr@1280 1681 class GCLabBitMapClosure: public BitMapClosure {
ysr@1280 1682 private:
ysr@1280 1683 ConcurrentMark* _cm;
ysr@1280 1684 GCLabBitMap* _bitmap;
ysr@1280 1685
ysr@1280 1686 public:
ysr@1280 1687 GCLabBitMapClosure(ConcurrentMark* cm,
ysr@1280 1688 GCLabBitMap* bitmap) {
ysr@1280 1689 _cm = cm;
ysr@1280 1690 _bitmap = bitmap;
ysr@1280 1691 }
ysr@1280 1692
ysr@1280 1693 virtual bool do_bit(size_t offset);
ysr@1280 1694 };
ysr@1280 1695 #endif // !PRODUCT
ysr@1280 1696
ysr@1280 1697 class GCLabBitMap: public BitMap {
ysr@1280 1698 private:
ysr@1280 1699 ConcurrentMark* _cm;
ysr@1280 1700
ysr@1280 1701 int _shifter;
ysr@1280 1702 size_t _bitmap_word_covers_words;
ysr@1280 1703
ysr@1280 1704 // beginning of the heap
ysr@1280 1705 HeapWord* _heap_start;
ysr@1280 1706
ysr@1280 1707 // this is the actual start of the GCLab
ysr@1280 1708 HeapWord* _real_start_word;
ysr@1280 1709
ysr@1280 1710 // this is the actual end of the GCLab
ysr@1280 1711 HeapWord* _real_end_word;
ysr@1280 1712
ysr@1280 1713 // this is the first word, possibly located before the actual start
ysr@1280 1714 // of the GCLab, that corresponds to the first bit of the bitmap
ysr@1280 1715 HeapWord* _start_word;
ysr@1280 1716
ysr@1280 1717 // size of a GCLab in words
ysr@1280 1718 size_t _gclab_word_size;
ysr@1280 1719
ysr@1280 1720 static int shifter() {
ysr@1280 1721 return MinObjAlignment - 1;
ysr@1280 1722 }
ysr@1280 1723
ysr@1280 1724 // how many heap words does a single bitmap word corresponds to?
ysr@1280 1725 static size_t bitmap_word_covers_words() {
ysr@1280 1726 return BitsPerWord << shifter();
ysr@1280 1727 }
ysr@1280 1728
apetrusenko@1826 1729 size_t gclab_word_size() const {
apetrusenko@1826 1730 return _gclab_word_size;
ysr@1280 1731 }
ysr@1280 1732
apetrusenko@1826 1733 // Calculates actual GCLab size in words
apetrusenko@1826 1734 size_t gclab_real_word_size() const {
apetrusenko@1826 1735 return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
apetrusenko@1826 1736 / BitsPerWord;
apetrusenko@1826 1737 }
apetrusenko@1826 1738
apetrusenko@1826 1739 static size_t bitmap_size_in_bits(size_t gclab_word_size) {
apetrusenko@1826 1740 size_t bits_in_bitmap = gclab_word_size >> shifter();
ysr@1280 1741 // We are going to ensure that the beginning of a word in this
ysr@1280 1742 // bitmap also corresponds to the beginning of a word in the
ysr@1280 1743 // global marking bitmap. To handle the case where a GCLab
ysr@1280 1744 // starts from the middle of the bitmap, we need to add enough
ysr@1280 1745 // space (i.e. up to a bitmap word) to ensure that we have
ysr@1280 1746 // enough bits in the bitmap.
ysr@1280 1747 return bits_in_bitmap + BitsPerWord - 1;
ysr@1280 1748 }
ysr@1280 1749 public:
apetrusenko@1826 1750 GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
apetrusenko@1826 1751 : BitMap(bitmap_size_in_bits(gclab_word_size)),
ysr@1280 1752 _cm(G1CollectedHeap::heap()->concurrent_mark()),
ysr@1280 1753 _shifter(shifter()),
ysr@1280 1754 _bitmap_word_covers_words(bitmap_word_covers_words()),
ysr@1280 1755 _heap_start(heap_start),
apetrusenko@1826 1756 _gclab_word_size(gclab_word_size),
ysr@1280 1757 _real_start_word(NULL),
ysr@1280 1758 _real_end_word(NULL),
tonyp@3416 1759 _start_word(NULL) {
tonyp@3416 1760 guarantee(false, "GCLabBitMap::GCLabBitmap(): don't call this any more");
ysr@1280 1761 }
ysr@1280 1762
ysr@1280 1763 inline unsigned heapWordToOffset(HeapWord* addr) {
ysr@1280 1764 unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
ysr@1280 1765 assert(offset < size(), "offset should be within bounds");
ysr@1280 1766 return offset;
ysr@1280 1767 }
ysr@1280 1768
ysr@1280 1769 inline HeapWord* offsetToHeapWord(size_t offset) {
ysr@1280 1770 HeapWord* addr = _start_word + (offset << _shifter);
ysr@1280 1771 assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
ysr@1280 1772 return addr;
ysr@1280 1773 }
ysr@1280 1774
ysr@1280 1775 bool fields_well_formed() {
ysr@1280 1776 bool ret1 = (_real_start_word == NULL) &&
ysr@1280 1777 (_real_end_word == NULL) &&
ysr@1280 1778 (_start_word == NULL);
ysr@1280 1779 if (ret1)
ysr@1280 1780 return true;
ysr@1280 1781
ysr@1280 1782 bool ret2 = _real_start_word >= _start_word &&
ysr@1280 1783 _start_word < _real_end_word &&
ysr@1280 1784 (_real_start_word + _gclab_word_size) == _real_end_word &&
ysr@1280 1785 (_start_word + _gclab_word_size + _bitmap_word_covers_words)
ysr@1280 1786 > _real_end_word;
ysr@1280 1787 return ret2;
ysr@1280 1788 }
ysr@1280 1789
ysr@1280 1790 inline bool mark(HeapWord* addr) {
ysr@1280 1791 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1792 assert(fields_well_formed(), "invariant");
ysr@1280 1793
ysr@1280 1794 if (addr >= _real_start_word && addr < _real_end_word) {
ysr@1280 1795 assert(!isMarked(addr), "should not have already been marked");
ysr@1280 1796
ysr@1280 1797 // first mark it on the bitmap
ysr@1280 1798 at_put(heapWordToOffset(addr), true);
ysr@1280 1799
ysr@1280 1800 return true;
ysr@1280 1801 } else {
ysr@1280 1802 return false;
ysr@1280 1803 }
ysr@1280 1804 }
ysr@1280 1805
ysr@1280 1806 inline bool isMarked(HeapWord* addr) {
ysr@1280 1807 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1808 assert(fields_well_formed(), "invariant");
ysr@1280 1809
ysr@1280 1810 return at(heapWordToOffset(addr));
ysr@1280 1811 }
ysr@1280 1812
ysr@1280 1813 void set_buffer(HeapWord* start) {
tonyp@3416 1814 guarantee(false, "set_buffer(): don't call this any more");
tonyp@3416 1815
ysr@1280 1816 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1817 clear();
ysr@1280 1818
ysr@1280 1819 assert(start != NULL, "invariant");
ysr@1280 1820 _real_start_word = start;
ysr@1280 1821 _real_end_word = start + _gclab_word_size;
ysr@1280 1822
ysr@1280 1823 size_t diff =
ysr@1280 1824 pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
ysr@1280 1825 _start_word = start - diff;
ysr@1280 1826
ysr@1280 1827 assert(fields_well_formed(), "invariant");
ysr@1280 1828 }
ysr@1280 1829
ysr@1280 1830 #ifndef PRODUCT
ysr@1280 1831 void verify() {
ysr@1280 1832 // verify that the marks have been propagated
ysr@1280 1833 GCLabBitMapClosure cl(_cm, this);
ysr@1280 1834 iterate(&cl);
ysr@1280 1835 }
ysr@1280 1836 #endif // PRODUCT
ysr@1280 1837
ysr@1280 1838 void retire() {
tonyp@3416 1839 guarantee(false, "retire(): don't call this any more");
tonyp@3416 1840
ysr@1280 1841 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1842 assert(fields_well_formed(), "invariant");
ysr@1280 1843
ysr@1280 1844 if (_start_word != NULL) {
ysr@1280 1845 CMBitMap* mark_bitmap = _cm->nextMarkBitMap();
ysr@1280 1846
ysr@1280 1847 // this means that the bitmap was set up for the GCLab
ysr@1280 1848 assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
ysr@1280 1849
ysr@1280 1850 mark_bitmap->mostly_disjoint_range_union(this,
ysr@1280 1851 0, // always start from the start of the bitmap
ysr@1280 1852 _start_word,
apetrusenko@1826 1853 gclab_real_word_size());
ysr@1280 1854 _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
ysr@1280 1855
ysr@1280 1856 #ifndef PRODUCT
ysr@1280 1857 if (use_local_bitmaps && verify_local_bitmaps)
ysr@1280 1858 verify();
ysr@1280 1859 #endif // PRODUCT
ysr@1280 1860 } else {
ysr@1280 1861 assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
ysr@1280 1862 }
ysr@1280 1863 }
ysr@1280 1864
apetrusenko@1826 1865 size_t bitmap_size_in_words() const {
apetrusenko@1826 1866 return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
ysr@1280 1867 }
apetrusenko@1826 1868
ysr@1280 1869 };
ysr@1280 1870
ysr@1280 1871 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@1280 1872 private:
ysr@1280 1873 bool _retired;
ysr@1280 1874
ysr@1280 1875 public:
johnc@3086 1876 G1ParGCAllocBuffer(size_t gclab_word_size);
ysr@1280 1877
tonyp@3416 1878 void set_buf(HeapWord* buf) {
ysr@1280 1879 ParGCAllocBuffer::set_buf(buf);
ysr@1280 1880 _retired = false;
ysr@1280 1881 }
ysr@1280 1882
tonyp@3416 1883 void retire(bool end_of_gc, bool retain) {
ysr@1280 1884 if (_retired)
ysr@1280 1885 return;
ysr@1280 1886 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@1280 1887 _retired = true;
ysr@1280 1888 }
ysr@1280 1889 };
ysr@1280 1890
ysr@1280 1891 class G1ParScanThreadState : public StackObj {
ysr@1280 1892 protected:
ysr@1280 1893 G1CollectedHeap* _g1h;
ysr@1280 1894 RefToScanQueue* _refs;
ysr@1280 1895 DirtyCardQueue _dcq;
ysr@1280 1896 CardTableModRefBS* _ct_bs;
ysr@1280 1897 G1RemSet* _g1_rem;
ysr@1280 1898
apetrusenko@1826 1899 G1ParGCAllocBuffer _surviving_alloc_buffer;
apetrusenko@1826 1900 G1ParGCAllocBuffer _tenured_alloc_buffer;
apetrusenko@1826 1901 G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
apetrusenko@1826 1902 ageTable _age_table;
ysr@1280 1903
ysr@1280 1904 size_t _alloc_buffer_waste;
ysr@1280 1905 size_t _undo_waste;
ysr@1280 1906
ysr@1280 1907 OopsInHeapRegionClosure* _evac_failure_cl;
ysr@1280 1908 G1ParScanHeapEvacClosure* _evac_cl;
ysr@1280 1909 G1ParScanPartialArrayClosure* _partial_scan_cl;
ysr@1280 1910
ysr@1280 1911 int _hash_seed;
ysr@1280 1912 int _queue_num;
ysr@1280 1913
tonyp@1966 1914 size_t _term_attempts;
ysr@1280 1915
ysr@1280 1916 double _start;
ysr@1280 1917 double _start_strong_roots;
ysr@1280 1918 double _strong_roots_time;
ysr@1280 1919 double _start_term;
ysr@1280 1920 double _term_time;
ysr@1280 1921
ysr@1280 1922 // Map from young-age-index (0 == not young, 1 is youngest) to
ysr@1280 1923 // surviving words. base is what we get back from the malloc call
ysr@1280 1924 size_t* _surviving_young_words_base;
ysr@1280 1925 // this points into the array, as we use the first few entries for padding
ysr@1280 1926 size_t* _surviving_young_words;
ysr@1280 1927
jcoomes@2064 1928 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
ysr@1280 1929
ysr@1280 1930 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
ysr@1280 1931
ysr@1280 1932 void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
ysr@1280 1933
ysr@1280 1934 DirtyCardQueue& dirty_card_queue() { return _dcq; }
ysr@1280 1935 CardTableModRefBS* ctbs() { return _ct_bs; }
ysr@1280 1936
ysr@1280 1937 template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1938 if (!from->is_survivor()) {
ysr@1280 1939 _g1_rem->par_write_ref(from, p, tid);
ysr@1280 1940 }
ysr@1280 1941 }
ysr@1280 1942
ysr@1280 1943 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1944 // If the new value of the field points to the same region or
ysr@1280 1945 // is the to-space, we don't need to include it in the Rset updates.
ysr@1280 1946 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
ysr@1280 1947 size_t card_index = ctbs()->index_for(p);
ysr@1280 1948 // If the card hasn't been added to the buffer, do it.
ysr@1280 1949 if (ctbs()->mark_card_deferred(card_index)) {
ysr@1280 1950 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
ysr@1280 1951 }
ysr@1280 1952 }
ysr@1280 1953 }
ysr@1280 1954
ysr@1280 1955 public:
ysr@1280 1956 G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
ysr@1280 1957
ysr@1280 1958 ~G1ParScanThreadState() {
ysr@1280 1959 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
ysr@1280 1960 }
ysr@1280 1961
ysr@1280 1962 RefToScanQueue* refs() { return _refs; }
ysr@1280 1963 ageTable* age_table() { return &_age_table; }
ysr@1280 1964
ysr@1280 1965 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
apetrusenko@1826 1966 return _alloc_buffers[purpose];
ysr@1280 1967 }
ysr@1280 1968
jcoomes@2064 1969 size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
jcoomes@2064 1970 size_t undo_waste() const { return _undo_waste; }
ysr@1280 1971
jcoomes@2217 1972 #ifdef ASSERT
jcoomes@2217 1973 bool verify_ref(narrowOop* ref) const;
jcoomes@2217 1974 bool verify_ref(oop* ref) const;
jcoomes@2217 1975 bool verify_task(StarTask ref) const;
jcoomes@2217 1976 #endif // ASSERT
jcoomes@2217 1977
ysr@1280 1978 template <class T> void push_on_queue(T* ref) {
jcoomes@2217 1979 assert(verify_ref(ref), "sanity");
jcoomes@2064 1980 refs()->push(ref);
ysr@1280 1981 }
ysr@1280 1982
ysr@1280 1983 template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
ysr@1280 1984 if (G1DeferredRSUpdate) {
ysr@1280 1985 deferred_rs_update(from, p, tid);
ysr@1280 1986 } else {
ysr@1280 1987 immediate_rs_update(from, p, tid);
ysr@1280 1988 }
ysr@1280 1989 }
ysr@1280 1990
ysr@1280 1991 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1992
ysr@1280 1993 HeapWord* obj = NULL;
apetrusenko@1826 1994 size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
apetrusenko@1826 1995 if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
ysr@1280 1996 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
apetrusenko@1826 1997 assert(gclab_word_size == alloc_buf->word_sz(),
apetrusenko@1826 1998 "dynamic resizing is not supported");
ysr@1280 1999 add_to_alloc_buffer_waste(alloc_buf->words_remaining());
ysr@1280 2000 alloc_buf->retire(false, false);
ysr@1280 2001
apetrusenko@1826 2002 HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
ysr@1280 2003 if (buf == NULL) return NULL; // Let caller handle allocation failure.
ysr@1280 2004 // Otherwise.
ysr@1280 2005 alloc_buf->set_buf(buf);
ysr@1280 2006
ysr@1280 2007 obj = alloc_buf->allocate(word_sz);
ysr@1280 2008 assert(obj != NULL, "buffer was definitely big enough...");
ysr@1280 2009 } else {
ysr@1280 2010 obj = _g1h->par_allocate_during_gc(purpose, word_sz);
ysr@1280 2011 }
ysr@1280 2012 return obj;
ysr@1280 2013 }
ysr@1280 2014
ysr@1280 2015 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 2016 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
ysr@1280 2017 if (obj != NULL) return obj;
ysr@1280 2018 return allocate_slow(purpose, word_sz);
ysr@1280 2019 }
ysr@1280 2020
ysr@1280 2021 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
ysr@1280 2022 if (alloc_buffer(purpose)->contains(obj)) {
ysr@1280 2023 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
ysr@1280 2024 "should contain whole object");
ysr@1280 2025 alloc_buffer(purpose)->undo_allocation(obj, word_sz);
ysr@1280 2026 } else {
ysr@1280 2027 CollectedHeap::fill_with_object(obj, word_sz);
ysr@1280 2028 add_to_undo_waste(word_sz);
ysr@1280 2029 }
ysr@1280 2030 }
ysr@1280 2031
ysr@1280 2032 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
ysr@1280 2033 _evac_failure_cl = evac_failure_cl;
ysr@1280 2034 }
ysr@1280 2035 OopsInHeapRegionClosure* evac_failure_closure() {
ysr@1280 2036 return _evac_failure_cl;
ysr@1280 2037 }
ysr@1280 2038
ysr@1280 2039 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
ysr@1280 2040 _evac_cl = evac_cl;
ysr@1280 2041 }
ysr@1280 2042
ysr@1280 2043 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
ysr@1280 2044 _partial_scan_cl = partial_scan_cl;
ysr@1280 2045 }
ysr@1280 2046
ysr@1280 2047 int* hash_seed() { return &_hash_seed; }
ysr@1280 2048 int queue_num() { return _queue_num; }
ysr@1280 2049
jcoomes@2064 2050 size_t term_attempts() const { return _term_attempts; }
tonyp@1966 2051 void note_term_attempt() { _term_attempts++; }
ysr@1280 2052
ysr@1280 2053 void start_strong_roots() {
ysr@1280 2054 _start_strong_roots = os::elapsedTime();
ysr@1280 2055 }
ysr@1280 2056 void end_strong_roots() {
ysr@1280 2057 _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
ysr@1280 2058 }
jcoomes@2064 2059 double strong_roots_time() const { return _strong_roots_time; }
ysr@1280 2060
ysr@1280 2061 void start_term_time() {
ysr@1280 2062 note_term_attempt();
ysr@1280 2063 _start_term = os::elapsedTime();
ysr@1280 2064 }
ysr@1280 2065 void end_term_time() {
ysr@1280 2066 _term_time += (os::elapsedTime() - _start_term);
ysr@1280 2067 }
jcoomes@2064 2068 double term_time() const { return _term_time; }
ysr@1280 2069
jcoomes@2064 2070 double elapsed_time() const {
ysr@1280 2071 return os::elapsedTime() - _start;
ysr@1280 2072 }
ysr@1280 2073
jcoomes@2064 2074 static void
jcoomes@2064 2075 print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 2076 void
jcoomes@2064 2077 print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
jcoomes@2064 2078
ysr@1280 2079 size_t* surviving_young_words() {
ysr@1280 2080 // We add on to hide entry 0 which accumulates surviving words for
ysr@1280 2081 // age -1 regions (i.e. non-young ones)
ysr@1280 2082 return _surviving_young_words;
ysr@1280 2083 }
ysr@1280 2084
ysr@1280 2085 void retire_alloc_buffers() {
ysr@1280 2086 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
apetrusenko@1826 2087 size_t waste = _alloc_buffers[ap]->words_remaining();
ysr@1280 2088 add_to_alloc_buffer_waste(waste);
apetrusenko@1826 2089 _alloc_buffers[ap]->retire(true, false);
ysr@1280 2090 }
ysr@1280 2091 }
ysr@1280 2092
ysr@1280 2093 template <class T> void deal_with_reference(T* ref_to_scan) {
ysr@1280 2094 if (has_partial_array_mask(ref_to_scan)) {
ysr@1280 2095 _partial_scan_cl->do_oop_nv(ref_to_scan);
ysr@1280 2096 } else {
ysr@1280 2097 // Note: we can use "raw" versions of "region_containing" because
ysr@1280 2098 // "obj_to_scan" is definitely in the heap, and is not in a
ysr@1280 2099 // humongous region.
ysr@1280 2100 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
ysr@1280 2101 _evac_cl->set_region(r);
ysr@1280 2102 _evac_cl->do_oop_nv(ref_to_scan);
ysr@1280 2103 }
ysr@1280 2104 }
ysr@1280 2105
jcoomes@2217 2106 void deal_with_reference(StarTask ref) {
jcoomes@2217 2107 assert(verify_task(ref), "sanity");
jcoomes@2217 2108 if (ref.is_narrow()) {
jcoomes@2217 2109 deal_with_reference((narrowOop*)ref);
jcoomes@2217 2110 } else {
jcoomes@2217 2111 deal_with_reference((oop*)ref);
ysr@1280 2112 }
ysr@1280 2113 }
jcoomes@2217 2114
jcoomes@2217 2115 public:
jcoomes@2217 2116 void trim_queue();
ysr@1280 2117 };
stefank@2314 2118
stefank@2314 2119 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial