src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Fri, 29 Apr 2011 14:59:04 -0400

author
tonyp
date
Fri, 29 Apr 2011 14:59:04 -0400
changeset 2849
063382f9b575
parent 2821
b52782ae3880
child 2909
2aa9ddbb9e60
permissions
-rw-r--r--

7035144: G1: nightly failure: Non-dirty cards in region that should be dirty (failures still exist...)
Summary: We should only undirty cards after we decide that they are not on a young region, not before. The fix also includes improvements to the verify_dirty_region() method which print out which cards were not found dirty.
Reviewed-by: johnc, brutisso

ysr@777 1 /*
tonyp@2453 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/concurrentMark.hpp"
tonyp@2715 29 #include "gc_implementation/g1/g1AllocRegion.hpp"
stefank@2314 30 #include "gc_implementation/g1/g1RemSet.hpp"
jmasa@2821 31 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
tonyp@2472 32 #include "gc_implementation/g1/heapRegionSets.hpp"
jmasa@2821 33 #include "gc_implementation/shared/hSpaceCounters.hpp"
stefank@2314 34 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
stefank@2314 35 #include "memory/barrierSet.hpp"
stefank@2314 36 #include "memory/memRegion.hpp"
stefank@2314 37 #include "memory/sharedHeap.hpp"
stefank@2314 38
ysr@777 39 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 40 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 41 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 42 // heap subsets that will yield large amounts of garbage.
ysr@777 43
ysr@777 44 class HeapRegion;
ysr@777 45 class HeapRegionSeq;
tonyp@2493 46 class HRRSCleanupTask;
ysr@777 47 class PermanentGenerationSpec;
ysr@777 48 class GenerationSpec;
ysr@777 49 class OopsInHeapRegionClosure;
ysr@777 50 class G1ScanHeapEvacClosure;
ysr@777 51 class ObjectClosure;
ysr@777 52 class SpaceClosure;
ysr@777 53 class CompactibleSpaceClosure;
ysr@777 54 class Space;
ysr@777 55 class G1CollectorPolicy;
ysr@777 56 class GenRemSet;
ysr@777 57 class G1RemSet;
ysr@777 58 class HeapRegionRemSetIterator;
ysr@777 59 class ConcurrentMark;
ysr@777 60 class ConcurrentMarkThread;
ysr@777 61 class ConcurrentG1Refine;
jmasa@2821 62 class GenerationCounters;
ysr@777 63
jcoomes@2064 64 typedef OverflowTaskQueue<StarTask> RefToScanQueue;
jcoomes@1746 65 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
ysr@777 66
johnc@1242 67 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 68 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 69
ysr@777 70 enum GCAllocPurpose {
ysr@777 71 GCAllocForTenured,
ysr@777 72 GCAllocForSurvived,
ysr@777 73 GCAllocPurposeCount
ysr@777 74 };
ysr@777 75
ysr@777 76 class YoungList : public CHeapObj {
ysr@777 77 private:
ysr@777 78 G1CollectedHeap* _g1h;
ysr@777 79
ysr@777 80 HeapRegion* _head;
ysr@777 81
johnc@1829 82 HeapRegion* _survivor_head;
johnc@1829 83 HeapRegion* _survivor_tail;
johnc@1829 84
johnc@1829 85 HeapRegion* _curr;
johnc@1829 86
ysr@777 87 size_t _length;
johnc@1829 88 size_t _survivor_length;
ysr@777 89
ysr@777 90 size_t _last_sampled_rs_lengths;
ysr@777 91 size_t _sampled_rs_lengths;
ysr@777 92
johnc@1829 93 void empty_list(HeapRegion* list);
ysr@777 94
ysr@777 95 public:
ysr@777 96 YoungList(G1CollectedHeap* g1h);
ysr@777 97
johnc@1829 98 void push_region(HeapRegion* hr);
johnc@1829 99 void add_survivor_region(HeapRegion* hr);
johnc@1829 100
johnc@1829 101 void empty_list();
johnc@1829 102 bool is_empty() { return _length == 0; }
johnc@1829 103 size_t length() { return _length; }
johnc@1829 104 size_t survivor_length() { return _survivor_length; }
ysr@777 105
ysr@777 106 void rs_length_sampling_init();
ysr@777 107 bool rs_length_sampling_more();
ysr@777 108 void rs_length_sampling_next();
ysr@777 109
ysr@777 110 void reset_sampled_info() {
ysr@777 111 _last_sampled_rs_lengths = 0;
ysr@777 112 }
ysr@777 113 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 114
ysr@777 115 // for development purposes
ysr@777 116 void reset_auxilary_lists();
johnc@1829 117 void clear() { _head = NULL; _length = 0; }
johnc@1829 118
johnc@1829 119 void clear_survivors() {
johnc@1829 120 _survivor_head = NULL;
johnc@1829 121 _survivor_tail = NULL;
johnc@1829 122 _survivor_length = 0;
johnc@1829 123 }
johnc@1829 124
ysr@777 125 HeapRegion* first_region() { return _head; }
ysr@777 126 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 127 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 128
ysr@777 129 // debugging
ysr@777 130 bool check_list_well_formed();
johnc@1829 131 bool check_list_empty(bool check_sample = true);
ysr@777 132 void print();
ysr@777 133 };
ysr@777 134
tonyp@2715 135 class MutatorAllocRegion : public G1AllocRegion {
tonyp@2715 136 protected:
tonyp@2715 137 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@2715 138 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@2715 139 public:
tonyp@2715 140 MutatorAllocRegion()
tonyp@2715 141 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
tonyp@2715 142 };
tonyp@2715 143
ysr@777 144 class RefineCardTableEntryClosure;
ysr@777 145 class G1CollectedHeap : public SharedHeap {
ysr@777 146 friend class VM_G1CollectForAllocation;
ysr@777 147 friend class VM_GenCollectForPermanentAllocation;
ysr@777 148 friend class VM_G1CollectFull;
ysr@777 149 friend class VM_G1IncCollectionPause;
ysr@777 150 friend class VMStructs;
tonyp@2715 151 friend class MutatorAllocRegion;
ysr@777 152
ysr@777 153 // Closures used in implementation.
ysr@777 154 friend class G1ParCopyHelper;
ysr@777 155 friend class G1IsAliveClosure;
ysr@777 156 friend class G1EvacuateFollowersClosure;
ysr@777 157 friend class G1ParScanThreadState;
ysr@777 158 friend class G1ParScanClosureSuper;
ysr@777 159 friend class G1ParEvacuateFollowersClosure;
ysr@777 160 friend class G1ParTask;
ysr@777 161 friend class G1FreeGarbageRegionClosure;
ysr@777 162 friend class RefineCardTableEntryClosure;
ysr@777 163 friend class G1PrepareCompactClosure;
ysr@777 164 friend class RegionSorter;
tonyp@2472 165 friend class RegionResetter;
ysr@777 166 friend class CountRCClosure;
ysr@777 167 friend class EvacPopObjClosure;
apetrusenko@1231 168 friend class G1ParCleanupCTTask;
ysr@777 169
ysr@777 170 // Other related classes.
ysr@777 171 friend class G1MarkSweep;
ysr@777 172
ysr@777 173 private:
ysr@777 174 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 175 static G1CollectedHeap* _g1h;
ysr@777 176
tonyp@1377 177 static size_t _humongous_object_threshold_in_words;
tonyp@1377 178
ysr@777 179 // Storage for the G1 heap (excludes the permanent generation).
ysr@777 180 VirtualSpace _g1_storage;
ysr@777 181 MemRegion _g1_reserved;
ysr@777 182
ysr@777 183 // The part of _g1_storage that is currently committed.
ysr@777 184 MemRegion _g1_committed;
ysr@777 185
ysr@777 186 // The maximum part of _g1_storage that has ever been committed.
ysr@777 187 MemRegion _g1_max_committed;
ysr@777 188
tonyp@2472 189 // The master free list. It will satisfy all new region allocations.
tonyp@2472 190 MasterFreeRegionList _free_list;
tonyp@2472 191
tonyp@2472 192 // The secondary free list which contains regions that have been
tonyp@2472 193 // freed up during the cleanup process. This will be appended to the
tonyp@2472 194 // master free list when appropriate.
tonyp@2472 195 SecondaryFreeRegionList _secondary_free_list;
tonyp@2472 196
tonyp@2472 197 // It keeps track of the humongous regions.
tonyp@2472 198 MasterHumongousRegionSet _humongous_set;
ysr@777 199
ysr@777 200 // The number of regions we could create by expansion.
ysr@777 201 size_t _expansion_regions;
ysr@777 202
ysr@777 203 // The block offset table for the G1 heap.
ysr@777 204 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 205
ysr@777 206 // Move all of the regions off the free lists, then rebuild those free
ysr@777 207 // lists, before and after full GC.
ysr@777 208 void tear_down_region_lists();
ysr@777 209 void rebuild_region_lists();
ysr@777 210
ysr@777 211 // The sequence of all heap regions in the heap.
ysr@777 212 HeapRegionSeq* _hrs;
ysr@777 213
tonyp@2715 214 // Alloc region used to satisfy mutator allocation requests.
tonyp@2715 215 MutatorAllocRegion _mutator_alloc_region;
ysr@777 216
tonyp@2715 217 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 218 void init_mutator_alloc_region();
tonyp@2715 219
tonyp@2715 220 // It releases the mutator alloc region.
tonyp@2715 221 void release_mutator_alloc_region();
tonyp@2715 222
tonyp@1071 223 void abandon_gc_alloc_regions();
ysr@777 224
ysr@777 225 // The to-space memory regions into which objects are being copied during
ysr@777 226 // a GC.
ysr@777 227 HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
apetrusenko@980 228 size_t _gc_alloc_region_counts[GCAllocPurposeCount];
tonyp@1071 229 // These are the regions, one per GCAllocPurpose, that are half-full
tonyp@1071 230 // at the end of a collection and that we want to reuse during the
tonyp@1071 231 // next collection.
tonyp@1071 232 HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
tonyp@1071 233 // This specifies whether we will keep the last half-full region at
tonyp@1071 234 // the end of a collection so that it can be reused during the next
tonyp@1071 235 // collection (this is specified per GCAllocPurpose)
tonyp@1071 236 bool _retain_gc_alloc_region[GCAllocPurposeCount];
ysr@777 237
ysr@777 238 // A list of the regions that have been set to be alloc regions in the
ysr@777 239 // current collection.
ysr@777 240 HeapRegion* _gc_alloc_region_list;
ysr@777 241
jmasa@2821 242 // Helper for monitoring and management support.
jmasa@2821 243 G1MonitoringSupport* _g1mm;
jmasa@2821 244
apetrusenko@1826 245 // Determines PLAB size for a particular allocation purpose.
apetrusenko@1826 246 static size_t desired_plab_sz(GCAllocPurpose purpose);
apetrusenko@1826 247
tonyp@2472 248 // When called by par thread, requires the FreeList_lock to be held.
ysr@777 249 void push_gc_alloc_region(HeapRegion* hr);
ysr@777 250
ysr@777 251 // This should only be called single-threaded. Undeclares all GC alloc
ysr@777 252 // regions.
ysr@777 253 void forget_alloc_region_list();
ysr@777 254
ysr@777 255 // Should be used to set an alloc region, because there's other
ysr@777 256 // associated bookkeeping.
ysr@777 257 void set_gc_alloc_region(int purpose, HeapRegion* r);
ysr@777 258
ysr@777 259 // Check well-formedness of alloc region list.
ysr@777 260 bool check_gc_alloc_regions();
ysr@777 261
ysr@777 262 // Outside of GC pauses, the number of bytes used in all regions other
ysr@777 263 // than the current allocation region.
ysr@777 264 size_t _summary_bytes_used;
ysr@777 265
tonyp@961 266 // This is used for a quick test on whether a reference points into
tonyp@961 267 // the collection set or not. Basically, we have an array, with one
tonyp@961 268 // byte per region, and that byte denotes whether the corresponding
tonyp@961 269 // region is in the collection set or not. The entry corresponding
tonyp@961 270 // the bottom of the heap, i.e., region 0, is pointed to by
tonyp@961 271 // _in_cset_fast_test_base. The _in_cset_fast_test field has been
tonyp@961 272 // biased so that it actually points to address 0 of the address
tonyp@961 273 // space, to make the test as fast as possible (we can simply shift
tonyp@961 274 // the address to address into it, instead of having to subtract the
tonyp@961 275 // bottom of the heap from the address before shifting it; basically
tonyp@961 276 // it works in the same way the card table works).
tonyp@961 277 bool* _in_cset_fast_test;
tonyp@961 278
tonyp@961 279 // The allocated array used for the fast test on whether a reference
tonyp@961 280 // points into the collection set or not. This field is also used to
tonyp@961 281 // free the array.
tonyp@961 282 bool* _in_cset_fast_test_base;
tonyp@961 283
tonyp@961 284 // The length of the _in_cset_fast_test_base array.
tonyp@961 285 size_t _in_cset_fast_test_length;
tonyp@961 286
iveresov@788 287 volatile unsigned _gc_time_stamp;
ysr@777 288
ysr@777 289 size_t* _surviving_young_words;
ysr@777 290
ysr@777 291 void setup_surviving_young_words();
ysr@777 292 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 293 void cleanup_surviving_young_words();
ysr@777 294
tonyp@2011 295 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 296 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 297 // explicitly started if:
tonyp@2011 298 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 299 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
tonyp@2011 300 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 301
tonyp@2011 302 // Keeps track of how many "full collections" (i.e., Full GCs or
tonyp@2011 303 // concurrent cycles) we have completed. The number of them we have
tonyp@2011 304 // started is maintained in _total_full_collections in CollectedHeap.
tonyp@2011 305 volatile unsigned int _full_collections_completed;
tonyp@2011 306
tonyp@2817 307 // This is a non-product method that is helpful for testing. It is
tonyp@2817 308 // called at the end of a GC and artificially expands the heap by
tonyp@2817 309 // allocating a number of dead regions. This way we can induce very
tonyp@2817 310 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 311 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 312 // this method will be found dead by the marking cycle).
tonyp@2817 313 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 314
tonyp@2315 315 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 316 // line number, file, etc.
tonyp@2315 317
tonyp@2643 318 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 319 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 320 (_extra_message_), \
tonyp@2472 321 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 322 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 323 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 324
tonyp@2315 325 #define assert_heap_locked() \
tonyp@2315 326 do { \
tonyp@2315 327 assert(Heap_lock->owned_by_self(), \
tonyp@2315 328 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 329 } while (0)
tonyp@2315 330
tonyp@2643 331 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 332 do { \
tonyp@2315 333 assert(Heap_lock->owned_by_self() || \
tonyp@2472 334 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 335 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 336 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 337 "should be at a safepoint")); \
tonyp@2315 338 } while (0)
tonyp@2315 339
tonyp@2315 340 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 341 do { \
tonyp@2315 342 assert(Heap_lock->owned_by_self() && \
tonyp@2315 343 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 344 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 345 "should not be at a safepoint")); \
tonyp@2315 346 } while (0)
tonyp@2315 347
tonyp@2315 348 #define assert_heap_not_locked() \
tonyp@2315 349 do { \
tonyp@2315 350 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 351 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 352 } while (0)
tonyp@2315 353
tonyp@2315 354 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 355 do { \
tonyp@2315 356 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 357 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 358 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 359 "should not be at a safepoint")); \
tonyp@2315 360 } while (0)
tonyp@2315 361
tonyp@2643 362 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 363 do { \
tonyp@2472 364 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 365 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 366 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 367 } while (0)
tonyp@2315 368
tonyp@2315 369 #define assert_not_at_safepoint() \
tonyp@2315 370 do { \
tonyp@2315 371 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 372 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 373 } while (0)
tonyp@2315 374
ysr@777 375 protected:
ysr@777 376
ysr@777 377 // Returns "true" iff none of the gc alloc regions have any allocations
ysr@777 378 // since the last call to "save_marks".
ysr@777 379 bool all_alloc_regions_no_allocs_since_save_marks();
apetrusenko@980 380 // Perform finalization stuff on all allocation regions.
apetrusenko@980 381 void retire_all_alloc_regions();
ysr@777 382
ysr@777 383 // The number of regions allocated to hold humongous objects.
ysr@777 384 int _num_humongous_regions;
ysr@777 385 YoungList* _young_list;
ysr@777 386
ysr@777 387 // The current policy object for the collector.
ysr@777 388 G1CollectorPolicy* _g1_policy;
ysr@777 389
tonyp@2472 390 // This is the second level of trying to allocate a new region. If
tonyp@2715 391 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 392 // check whether there's anything available on the
tonyp@2715 393 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 394 // that list, if _free_regions_coming is set.
tonyp@2643 395 HeapRegion* new_region_try_secondary_free_list();
ysr@777 396
tonyp@2643 397 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 398 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 399 // attempt to expand the heap if necessary to satisfy the allocation
tonyp@2643 400 // request.
tonyp@2715 401 HeapRegion* new_region(size_t word_size, bool do_expand);
ysr@777 402
tonyp@2715 403 // Try to allocate a new region to be used for allocation by
tonyp@2715 404 // a GC thread. It will try to expand the heap if no region is
tonyp@2643 405 // available.
tonyp@2472 406 HeapRegion* new_gc_alloc_region(int purpose, size_t word_size);
tonyp@2472 407
tonyp@2643 408 // Attempt to satisfy a humongous allocation request of the given
tonyp@2643 409 // size by finding a contiguous set of free regions of num_regions
tonyp@2643 410 // length and remove them from the master free list. Return the
tonyp@2643 411 // index of the first region or -1 if the search was unsuccessful.
tonyp@2472 412 int humongous_obj_allocate_find_first(size_t num_regions, size_t word_size);
ysr@777 413
tonyp@2643 414 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 415 // and starting at index first so that they appear as a single
tonyp@2643 416 // humongous region.
tonyp@2643 417 HeapWord* humongous_obj_allocate_initialize_regions(int first,
tonyp@2643 418 size_t num_regions,
tonyp@2643 419 size_t word_size);
tonyp@2643 420
tonyp@2643 421 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 422 // NULL if unsuccessful.
tonyp@2472 423 HeapWord* humongous_obj_allocate(size_t word_size);
ysr@777 424
tonyp@2315 425 // The following two methods, allocate_new_tlab() and
tonyp@2315 426 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 427 // into the G1's allocation routines. They have the following
tonyp@2315 428 // assumptions:
tonyp@2315 429 //
tonyp@2315 430 // * They should both be called outside safepoints.
tonyp@2315 431 //
tonyp@2315 432 // * They should both be called without holding the Heap_lock.
tonyp@2315 433 //
tonyp@2315 434 // * All allocation requests for new TLABs should go to
tonyp@2315 435 // allocate_new_tlab().
tonyp@2315 436 //
tonyp@2315 437 // * All non-TLAB allocation requests should go to mem_allocate()
tonyp@2315 438 // and mem_allocate() should never be called with is_tlab == true.
tonyp@2315 439 //
tonyp@2315 440 // * If either call cannot satisfy the allocation request using the
tonyp@2315 441 // current allocating region, they will try to get a new one. If
tonyp@2315 442 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 443 // retry the allocation.
tonyp@2315 444 //
tonyp@2315 445 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 446 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 447 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 448 // schedule a Full GC.
tonyp@2315 449 //
tonyp@2315 450 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 451 // should never be called with word_size being humongous. All
tonyp@2315 452 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 453 // will satisfy them with a special path.
ysr@777 454
tonyp@2315 455 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 456
tonyp@2315 457 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 458 bool is_noref,
tonyp@2315 459 bool is_tlab, /* expected to be false */
tonyp@2315 460 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 461
tonyp@2715 462 // The following three methods take a gc_count_before_ret
tonyp@2715 463 // parameter which is used to return the GC count if the method
tonyp@2715 464 // returns NULL. Given that we are required to read the GC count
tonyp@2715 465 // while holding the Heap_lock, and these paths will take the
tonyp@2715 466 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 467 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 468 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 469 // Heap_lock just to read the GC count.
tonyp@2315 470
tonyp@2715 471 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 472 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 473 // should only be used for non-humongous allocations.
tonyp@2715 474 inline HeapWord* attempt_allocation(size_t word_size,
tonyp@2715 475 unsigned int* gc_count_before_ret);
tonyp@2315 476
tonyp@2715 477 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 478 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 479 // pause. This should only be used for non-humongous allocations.
tonyp@2715 480 HeapWord* attempt_allocation_slow(size_t word_size,
tonyp@2715 481 unsigned int* gc_count_before_ret);
tonyp@2315 482
tonyp@2715 483 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 484 // potentially schedule a GC pause.
tonyp@2715 485 HeapWord* attempt_allocation_humongous(size_t word_size,
tonyp@2715 486 unsigned int* gc_count_before_ret);
tonyp@2454 487
tonyp@2715 488 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 489 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 490 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 491 // or not.
tonyp@2315 492 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
tonyp@2715 493 bool expect_null_mutator_alloc_region);
tonyp@2315 494
tonyp@2315 495 // It dirties the cards that cover the block so that so that the post
tonyp@2315 496 // write barrier never queues anything when updating objects on this
tonyp@2315 497 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 498 // belongs to a young region.
tonyp@2315 499 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 500
ysr@777 501 // Allocate blocks during garbage collection. Will ensure an
ysr@777 502 // allocation region, either by picking one or expanding the
ysr@777 503 // heap, and then allocate a block of the given size. The block
ysr@777 504 // may not be a humongous - it must fit into a single heap region.
ysr@777 505 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 506
ysr@777 507 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
ysr@777 508 HeapRegion* alloc_region,
ysr@777 509 bool par,
ysr@777 510 size_t word_size);
ysr@777 511
ysr@777 512 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 513 // that parallel threads might be attempting allocations.
ysr@777 514 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 515
apetrusenko@980 516 // Retires an allocation region when it is full or at the end of a
apetrusenko@980 517 // GC pause.
apetrusenko@980 518 void retire_alloc_region(HeapRegion* alloc_region, bool par);
apetrusenko@980 519
tonyp@2715 520 // These two methods are the "callbacks" from the G1AllocRegion class.
tonyp@2715 521
tonyp@2715 522 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 523 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 524 size_t allocated_bytes);
tonyp@2715 525
tonyp@2011 526 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 527 // inspection request and should collect the entire heap
tonyp@2315 528 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 529 // cleared during the GC
tonyp@2011 530 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 531 // the GC should attempt (at least) to satisfy
tonyp@2315 532 // - it returns false if it is unable to do the collection due to the
tonyp@2315 533 // GC locker being active, true otherwise
tonyp@2315 534 bool do_collection(bool explicit_gc,
tonyp@2011 535 bool clear_all_soft_refs,
ysr@777 536 size_t word_size);
ysr@777 537
ysr@777 538 // Callback from VM_G1CollectFull operation.
ysr@777 539 // Perform a full collection.
ysr@777 540 void do_full_collection(bool clear_all_soft_refs);
ysr@777 541
ysr@777 542 // Resize the heap if necessary after a full collection. If this is
ysr@777 543 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 544 // and will be considered part of the used portion of the heap.
ysr@777 545 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 546
ysr@777 547 // Callback from VM_G1CollectForAllocation operation.
ysr@777 548 // This function does everything necessary/possible to satisfy a
ysr@777 549 // failed allocation request (including collection, expansion, etc.)
tonyp@2315 550 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
ysr@777 551
ysr@777 552 // Attempting to expand the heap sufficiently
ysr@777 553 // to support an allocation of the given "word_size". If
ysr@777 554 // successful, perform the allocation and return the address of the
ysr@777 555 // allocated block, or else "NULL".
tonyp@2315 556 HeapWord* expand_and_allocate(size_t word_size);
ysr@777 557
ysr@777 558 public:
jmasa@2821 559
jmasa@2821 560 G1MonitoringSupport* g1mm() { return _g1mm; }
jmasa@2821 561
ysr@777 562 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 563 // Returns true if the heap was expanded by the requested amount;
johnc@2504 564 // false otherwise.
ysr@777 565 // (Rounds up to a HeapRegion boundary.)
johnc@2504 566 bool expand(size_t expand_bytes);
ysr@777 567
ysr@777 568 // Do anything common to GC's.
ysr@777 569 virtual void gc_prologue(bool full);
ysr@777 570 virtual void gc_epilogue(bool full);
ysr@777 571
tonyp@961 572 // We register a region with the fast "in collection set" test. We
tonyp@961 573 // simply set to true the array slot corresponding to this region.
tonyp@961 574 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tonyp@961 575 assert(_in_cset_fast_test_base != NULL, "sanity");
tonyp@961 576 assert(r->in_collection_set(), "invariant");
tonyp@961 577 int index = r->hrs_index();
johnc@1829 578 assert(0 <= index && (size_t) index < _in_cset_fast_test_length, "invariant");
tonyp@961 579 assert(!_in_cset_fast_test_base[index], "invariant");
tonyp@961 580 _in_cset_fast_test_base[index] = true;
tonyp@961 581 }
tonyp@961 582
tonyp@961 583 // This is a fast test on whether a reference points into the
tonyp@961 584 // collection set or not. It does not assume that the reference
tonyp@961 585 // points into the heap; if it doesn't, it will return false.
tonyp@961 586 bool in_cset_fast_test(oop obj) {
tonyp@961 587 assert(_in_cset_fast_test != NULL, "sanity");
tonyp@961 588 if (_g1_committed.contains((HeapWord*) obj)) {
tonyp@961 589 // no need to subtract the bottom of the heap from obj,
tonyp@961 590 // _in_cset_fast_test is biased
tonyp@961 591 size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
tonyp@961 592 bool ret = _in_cset_fast_test[index];
tonyp@961 593 // let's make sure the result is consistent with what the slower
tonyp@961 594 // test returns
tonyp@961 595 assert( ret || !obj_in_cs(obj), "sanity");
tonyp@961 596 assert(!ret || obj_in_cs(obj), "sanity");
tonyp@961 597 return ret;
tonyp@961 598 } else {
tonyp@961 599 return false;
tonyp@961 600 }
tonyp@961 601 }
tonyp@961 602
johnc@1829 603 void clear_cset_fast_test() {
johnc@1829 604 assert(_in_cset_fast_test_base != NULL, "sanity");
johnc@1829 605 memset(_in_cset_fast_test_base, false,
johnc@1829 606 _in_cset_fast_test_length * sizeof(bool));
johnc@1829 607 }
johnc@1829 608
tonyp@2011 609 // This is called at the end of either a concurrent cycle or a Full
tonyp@2011 610 // GC to update the number of full collections completed. Those two
tonyp@2011 611 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 612 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 613 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 614 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 615 // tighter consistency checking in the method. If concurrent is
tonyp@2372 616 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 617 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 618 // in this nesting (i.e., the concurrent cycle). Further nesting is
tonyp@2372 619 // not currently supported. The end of the this call also notifies
tonyp@2372 620 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 621 // GC to happen (e.g., it called System.gc() with
tonyp@2011 622 // +ExplicitGCInvokesConcurrent).
tonyp@2372 623 void increment_full_collections_completed(bool concurrent);
tonyp@2011 624
tonyp@2011 625 unsigned int full_collections_completed() {
tonyp@2011 626 return _full_collections_completed;
tonyp@2011 627 }
tonyp@2011 628
ysr@777 629 protected:
ysr@777 630
ysr@777 631 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 632 // (Rounds down to a HeapRegion boundary.)
ysr@777 633 virtual void shrink(size_t expand_bytes);
ysr@777 634 void shrink_helper(size_t expand_bytes);
ysr@777 635
jcoomes@2064 636 #if TASKQUEUE_STATS
jcoomes@2064 637 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 638 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 639 void reset_taskqueue_stats();
jcoomes@2064 640 #endif // TASKQUEUE_STATS
jcoomes@2064 641
tonyp@2315 642 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 643 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 644 // return whether the VM operation was successful (it did do an
tonyp@2315 645 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 646 // locker was active). Given that we should not be holding the
tonyp@2315 647 // Heap_lock when we enter this method, we will pass the
tonyp@2315 648 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 649 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 650 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 651 // before the call, so it's easy to read gc_count_before just before.
tonyp@2315 652 HeapWord* do_collection_pause(size_t word_size,
tonyp@2315 653 unsigned int gc_count_before,
tonyp@2315 654 bool* succeeded);
ysr@777 655
ysr@777 656 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 657 // thread. It returns false if it is unable to do the collection due
tonyp@2315 658 // to the GC locker being active, true otherwise
tonyp@2315 659 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 660
ysr@777 661 // Actually do the work of evacuating the collection set.
tonyp@2315 662 void evacuate_collection_set();
ysr@777 663
ysr@777 664 // The g1 remembered set of the heap.
ysr@777 665 G1RemSet* _g1_rem_set;
ysr@777 666 // And it's mod ref barrier set, used to track updates for the above.
ysr@777 667 ModRefBarrierSet* _mr_bs;
ysr@777 668
iveresov@1051 669 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 670 // concurrently after the collection.
iveresov@1051 671 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 672
ysr@777 673 // The Heap Region Rem Set Iterator.
ysr@777 674 HeapRegionRemSetIterator** _rem_set_iterator;
ysr@777 675
ysr@777 676 // The closure used to refine a single card.
ysr@777 677 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 678
ysr@777 679 // A function to check the consistency of dirty card logs.
ysr@777 680 void check_ct_logs_at_safepoint();
ysr@777 681
johnc@2060 682 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 683 // references into the current collection set. This is used to
johnc@2060 684 // update the remembered sets of the regions in the collection
johnc@2060 685 // set in the event of an evacuation failure.
johnc@2060 686 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 687
ysr@777 688 // After a collection pause, make the regions in the CS into free
ysr@777 689 // regions.
ysr@777 690 void free_collection_set(HeapRegion* cs_head);
ysr@777 691
johnc@1829 692 // Abandon the current collection set without recording policy
johnc@1829 693 // statistics or updating free lists.
johnc@1829 694 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 695
ysr@777 696 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 697 // "scan_rs" to roots inside the heap (having done "set_region" to
ysr@777 698 // indicate the region in which the root resides), and does "scan_perm"
ysr@777 699 // (setting the generation to the perm generation.) If "scan_rs" is
ysr@777 700 // NULL, then this step is skipped. The "worker_i"
ysr@777 701 // param is for use with parallel roots processing, and should be
ysr@777 702 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 703 // In the sequential case this param will be ignored.
ysr@777 704 void g1_process_strong_roots(bool collecting_perm_gen,
ysr@777 705 SharedHeap::ScanningOption so,
ysr@777 706 OopClosure* scan_non_heap_roots,
ysr@777 707 OopsInHeapRegionClosure* scan_rs,
ysr@777 708 OopsInGenClosure* scan_perm,
ysr@777 709 int worker_i);
ysr@777 710
ysr@777 711 // Apply "blk" to all the weak roots of the system. These include
ysr@777 712 // JNI weak roots, the code cache, system dictionary, symbol table,
ysr@777 713 // string table, and referents of reachable weak refs.
ysr@777 714 void g1_process_weak_roots(OopClosure* root_closure,
ysr@777 715 OopClosure* non_root_closure);
ysr@777 716
ysr@777 717 // Invoke "save_marks" on all heap regions.
ysr@777 718 void save_marks();
ysr@777 719
tonyp@2643 720 // Frees a non-humongous region by initializing its contents and
tonyp@2472 721 // adding it to the free list that's passed as a parameter (this is
tonyp@2472 722 // usually a local list which will be appended to the master free
tonyp@2472 723 // list later). The used bytes of freed regions are accumulated in
tonyp@2472 724 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2472 725 // up. The assumption is that this will be done later.
tonyp@2472 726 void free_region(HeapRegion* hr,
tonyp@2472 727 size_t* pre_used,
tonyp@2472 728 FreeRegionList* free_list,
tonyp@2472 729 bool par);
ysr@777 730
tonyp@2643 731 // Frees a humongous region by collapsing it into individual regions
tonyp@2643 732 // and calling free_region() for each of them. The freed regions
tonyp@2643 733 // will be added to the free list that's passed as a parameter (this
tonyp@2643 734 // is usually a local list which will be appended to the master free
tonyp@2643 735 // list later). The used bytes of freed regions are accumulated in
tonyp@2643 736 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2643 737 // up. The assumption is that this will be done later.
tonyp@2472 738 void free_humongous_region(HeapRegion* hr,
tonyp@2472 739 size_t* pre_used,
tonyp@2472 740 FreeRegionList* free_list,
tonyp@2472 741 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 742 bool par);
ysr@777 743
ysr@777 744 // The concurrent marker (and the thread it runs in.)
ysr@777 745 ConcurrentMark* _cm;
ysr@777 746 ConcurrentMarkThread* _cmThread;
ysr@777 747 bool _mark_in_progress;
ysr@777 748
ysr@777 749 // The concurrent refiner.
ysr@777 750 ConcurrentG1Refine* _cg1r;
ysr@777 751
ysr@777 752 // The parallel task queues
ysr@777 753 RefToScanQueueSet *_task_queues;
ysr@777 754
ysr@777 755 // True iff a evacuation has failed in the current collection.
ysr@777 756 bool _evacuation_failed;
ysr@777 757
ysr@777 758 // Set the attribute indicating whether evacuation has failed in the
ysr@777 759 // current collection.
ysr@777 760 void set_evacuation_failed(bool b) { _evacuation_failed = b; }
ysr@777 761
ysr@777 762 // Failed evacuations cause some logical from-space objects to have
ysr@777 763 // forwarding pointers to themselves. Reset them.
ysr@777 764 void remove_self_forwarding_pointers();
ysr@777 765
ysr@777 766 // When one is non-null, so is the other. Together, they each pair is
ysr@777 767 // an object with a preserved mark, and its mark value.
ysr@777 768 GrowableArray<oop>* _objs_with_preserved_marks;
ysr@777 769 GrowableArray<markOop>* _preserved_marks_of_objs;
ysr@777 770
ysr@777 771 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 772 // word being overwritten with a self-forwarding-pointer.
ysr@777 773 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 774
ysr@777 775 // The stack of evac-failure objects left to be scanned.
ysr@777 776 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 777 // The closure to apply to evac-failure objects.
ysr@777 778
ysr@777 779 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 780 // Set the field above.
ysr@777 781 void
ysr@777 782 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 783 _evac_failure_closure = evac_failure_closure;
ysr@777 784 }
ysr@777 785
ysr@777 786 // Push "obj" on the scan stack.
ysr@777 787 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 788 // Process scan stack entries until the stack is empty.
ysr@777 789 void drain_evac_failure_scan_stack();
ysr@777 790 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 791 // prevent unnecessary recursion.
ysr@777 792 bool _drain_in_progress;
ysr@777 793
ysr@777 794 // Do any necessary initialization for evacuation-failure handling.
ysr@777 795 // "cl" is the closure that will be used to process evac-failure
ysr@777 796 // objects.
ysr@777 797 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 798 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 799 // structures.
ysr@777 800 void finalize_for_evac_failure();
ysr@777 801
ysr@777 802 // An attempt to evacuate "obj" has failed; take necessary steps.
ysr@777 803 oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
ysr@777 804 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 805
ysr@777 806
ysr@777 807 // Ensure that the relevant gc_alloc regions are set.
ysr@777 808 void get_gc_alloc_regions();
tonyp@1071 809 // We're done with GC alloc regions. We are going to tear down the
tonyp@1071 810 // gc alloc list and remove the gc alloc tag from all the regions on
tonyp@1071 811 // that list. However, we will also retain the last (i.e., the one
tonyp@1071 812 // that is half-full) GC alloc region, per GCAllocPurpose, for
tonyp@1071 813 // possible reuse during the next collection, provided
tonyp@1071 814 // _retain_gc_alloc_region[] indicates that it should be the
tonyp@1071 815 // case. Said regions are kept in the _retained_gc_alloc_regions[]
tonyp@1071 816 // array. If the parameter totally is set, we will not retain any
tonyp@1071 817 // regions, irrespective of what _retain_gc_alloc_region[]
tonyp@1071 818 // indicates.
tonyp@1071 819 void release_gc_alloc_regions(bool totally);
tonyp@1071 820 #ifndef PRODUCT
tonyp@1071 821 // Useful for debugging.
tonyp@1071 822 void print_gc_alloc_regions();
tonyp@1071 823 #endif // !PRODUCT
ysr@777 824
johnc@2379 825 // Instance of the concurrent mark is_alive closure for embedding
johnc@2379 826 // into the reference processor as the is_alive_non_header. This
johnc@2379 827 // prevents unnecessary additions to the discovered lists during
johnc@2379 828 // concurrent discovery.
johnc@2379 829 G1CMIsAliveClosure _is_alive_closure;
johnc@2379 830
ysr@777 831 // ("Weak") Reference processing support
ysr@777 832 ReferenceProcessor* _ref_processor;
ysr@777 833
ysr@777 834 enum G1H_process_strong_roots_tasks {
ysr@777 835 G1H_PS_mark_stack_oops_do,
ysr@777 836 G1H_PS_refProcessor_oops_do,
ysr@777 837 // Leave this one last.
ysr@777 838 G1H_PS_NumElements
ysr@777 839 };
ysr@777 840
ysr@777 841 SubTasksDone* _process_strong_tasks;
ysr@777 842
tonyp@2472 843 volatile bool _free_regions_coming;
ysr@777 844
ysr@777 845 public:
jmasa@2188 846
jmasa@2188 847 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 848
ysr@777 849 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 850
jcoomes@2064 851 RefToScanQueue *task_queue(int i) const;
ysr@777 852
iveresov@1051 853 // A set of cards where updates happened during the GC
iveresov@1051 854 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 855
johnc@2060 856 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 857 // references into the current collection set. This is used to
johnc@2060 858 // update the remembered sets of the regions in the collection
johnc@2060 859 // set in the event of an evacuation failure.
johnc@2060 860 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 861 { return _into_cset_dirty_card_queue_set; }
johnc@2060 862
ysr@777 863 // Create a G1CollectedHeap with the specified policy.
ysr@777 864 // Must call the initialize method afterwards.
ysr@777 865 // May not return if something goes wrong.
ysr@777 866 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 867
ysr@777 868 // Initialize the G1CollectedHeap to have the initial and
ysr@777 869 // maximum sizes, permanent generation, and remembered and barrier sets
ysr@777 870 // specified by the policy object.
ysr@777 871 jint initialize();
ysr@777 872
johnc@2379 873 virtual void ref_processing_init();
ysr@777 874
ysr@777 875 void set_par_threads(int t) {
ysr@777 876 SharedHeap::set_par_threads(t);
jmasa@2188 877 _process_strong_tasks->set_n_threads(t);
ysr@777 878 }
ysr@777 879
ysr@777 880 virtual CollectedHeap::Name kind() const {
ysr@777 881 return CollectedHeap::G1CollectedHeap;
ysr@777 882 }
ysr@777 883
ysr@777 884 // The current policy object for the collector.
ysr@777 885 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 886
ysr@777 887 // Adaptive size policy. No such thing for g1.
ysr@777 888 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 889
ysr@777 890 // The rem set and barrier set.
ysr@777 891 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 892 ModRefBarrierSet* mr_bs() const { return _mr_bs; }
ysr@777 893
ysr@777 894 // The rem set iterator.
ysr@777 895 HeapRegionRemSetIterator* rem_set_iterator(int i) {
ysr@777 896 return _rem_set_iterator[i];
ysr@777 897 }
ysr@777 898
ysr@777 899 HeapRegionRemSetIterator* rem_set_iterator() {
ysr@777 900 return _rem_set_iterator[0];
ysr@777 901 }
ysr@777 902
ysr@777 903 unsigned get_gc_time_stamp() {
ysr@777 904 return _gc_time_stamp;
ysr@777 905 }
ysr@777 906
ysr@777 907 void reset_gc_time_stamp() {
ysr@777 908 _gc_time_stamp = 0;
iveresov@788 909 OrderAccess::fence();
iveresov@788 910 }
iveresov@788 911
iveresov@788 912 void increment_gc_time_stamp() {
iveresov@788 913 ++_gc_time_stamp;
iveresov@788 914 OrderAccess::fence();
ysr@777 915 }
ysr@777 916
johnc@2060 917 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 918 DirtyCardQueue* into_cset_dcq,
johnc@2060 919 bool concurrent, int worker_i);
ysr@777 920
ysr@777 921 // The shared block offset table array.
ysr@777 922 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 923
ysr@777 924 // Reference Processing accessor
ysr@777 925 ReferenceProcessor* ref_processor() { return _ref_processor; }
ysr@777 926
ysr@777 927 virtual size_t capacity() const;
ysr@777 928 virtual size_t used() const;
tonyp@1281 929 // This should be called when we're not holding the heap lock. The
tonyp@1281 930 // result might be a bit inaccurate.
tonyp@1281 931 size_t used_unlocked() const;
ysr@777 932 size_t recalculate_used() const;
ysr@777 933 #ifndef PRODUCT
ysr@777 934 size_t recalculate_used_regions() const;
ysr@777 935 #endif // PRODUCT
ysr@777 936
ysr@777 937 // These virtual functions do the actual allocation.
ysr@777 938 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 939 // allocation, via inlined code (by exporting the address of the top and
ysr@777 940 // end fields defining the extent of the contiguous allocation region.)
ysr@777 941 // But G1CollectedHeap doesn't yet support this.
ysr@777 942
ysr@777 943 // Return an estimate of the maximum allocation that could be performed
ysr@777 944 // without triggering any collection or expansion activity. In a
ysr@777 945 // generational collector, for example, this is probably the largest
ysr@777 946 // allocation that could be supported (without expansion) in the youngest
ysr@777 947 // generation. It is "unsafe" because no locks are taken; the result
ysr@777 948 // should be treated as an approximation, not a guarantee, for use in
ysr@777 949 // heuristic resizing decisions.
ysr@777 950 virtual size_t unsafe_max_alloc();
ysr@777 951
ysr@777 952 virtual bool is_maximal_no_gc() const {
ysr@777 953 return _g1_storage.uncommitted_size() == 0;
ysr@777 954 }
ysr@777 955
ysr@777 956 // The total number of regions in the heap.
ysr@777 957 size_t n_regions();
ysr@777 958
ysr@777 959 // The number of regions that are completely free.
ysr@777 960 size_t max_regions();
ysr@777 961
ysr@777 962 // The number of regions that are completely free.
tonyp@2472 963 size_t free_regions() {
tonyp@2472 964 return _free_list.length();
tonyp@2472 965 }
ysr@777 966
ysr@777 967 // The number of regions that are not completely free.
ysr@777 968 size_t used_regions() { return n_regions() - free_regions(); }
ysr@777 969
ysr@777 970 // The number of regions available for "regular" expansion.
ysr@777 971 size_t expansion_regions() { return _expansion_regions; }
ysr@777 972
tonyp@2849 973 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 974 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 975 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 976 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 977
tonyp@2472 978 // verify_region_sets() performs verification over the region
tonyp@2472 979 // lists. It will be compiled in the product code to be used when
tonyp@2472 980 // necessary (i.e., during heap verification).
tonyp@2472 981 void verify_region_sets();
ysr@777 982
tonyp@2472 983 // verify_region_sets_optional() is planted in the code for
tonyp@2472 984 // list verification in non-product builds (and it can be enabled in
tonyp@2472 985 // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 986 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 987 void verify_region_sets_optional() {
tonyp@2472 988 verify_region_sets();
tonyp@2472 989 }
tonyp@2472 990 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 991 void verify_region_sets_optional() { }
tonyp@2472 992 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 993
tonyp@2472 994 #ifdef ASSERT
tonyp@2643 995 bool is_on_master_free_list(HeapRegion* hr) {
tonyp@2472 996 return hr->containing_set() == &_free_list;
tonyp@2472 997 }
ysr@777 998
tonyp@2643 999 bool is_in_humongous_set(HeapRegion* hr) {
tonyp@2472 1000 return hr->containing_set() == &_humongous_set;
tonyp@2643 1001 }
tonyp@2472 1002 #endif // ASSERT
ysr@777 1003
tonyp@2472 1004 // Wrapper for the region list operations that can be called from
tonyp@2472 1005 // methods outside this class.
ysr@777 1006
tonyp@2472 1007 void secondary_free_list_add_as_tail(FreeRegionList* list) {
tonyp@2472 1008 _secondary_free_list.add_as_tail(list);
tonyp@2472 1009 }
ysr@777 1010
tonyp@2472 1011 void append_secondary_free_list() {
tonyp@2714 1012 _free_list.add_as_head(&_secondary_free_list);
tonyp@2472 1013 }
ysr@777 1014
tonyp@2643 1015 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1016 // If the secondary free list looks empty there's no reason to
tonyp@2643 1017 // take the lock and then try to append it.
tonyp@2472 1018 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1019 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1020 append_secondary_free_list();
tonyp@2472 1021 }
tonyp@2472 1022 }
ysr@777 1023
tonyp@2472 1024 void set_free_regions_coming();
tonyp@2472 1025 void reset_free_regions_coming();
tonyp@2472 1026 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1027 void wait_while_free_regions_coming();
ysr@777 1028
ysr@777 1029 // Perform a collection of the heap; intended for use in implementing
ysr@777 1030 // "System.gc". This probably implies as full a collection as the
ysr@777 1031 // "CollectedHeap" supports.
ysr@777 1032 virtual void collect(GCCause::Cause cause);
ysr@777 1033
ysr@777 1034 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1035 void collect_locked(GCCause::Cause cause);
ysr@777 1036
ysr@777 1037 // This interface assumes that it's being called by the
ysr@777 1038 // vm thread. It collects the heap assuming that the
ysr@777 1039 // heap lock is already held and that we are executing in
ysr@777 1040 // the context of the vm thread.
ysr@777 1041 virtual void collect_as_vm_thread(GCCause::Cause cause);
ysr@777 1042
ysr@777 1043 // True iff a evacuation has failed in the most-recent collection.
ysr@777 1044 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1045
tonyp@2472 1046 // It will free a region if it has allocated objects in it that are
tonyp@2472 1047 // all dead. It calls either free_region() or
tonyp@2472 1048 // free_humongous_region() depending on the type of the region that
tonyp@2472 1049 // is passed to it.
tonyp@2493 1050 void free_region_if_empty(HeapRegion* hr,
tonyp@2493 1051 size_t* pre_used,
tonyp@2493 1052 FreeRegionList* free_list,
tonyp@2493 1053 HumongousRegionSet* humongous_proxy_set,
tonyp@2493 1054 HRRSCleanupTask* hrrs_cleanup_task,
tonyp@2493 1055 bool par);
ysr@777 1056
tonyp@2472 1057 // It appends the free list to the master free list and updates the
tonyp@2472 1058 // master humongous list according to the contents of the proxy
tonyp@2472 1059 // list. It also adjusts the total used bytes according to pre_used
tonyp@2472 1060 // (if par is true, it will do so by taking the ParGCRareEvent_lock).
tonyp@2472 1061 void update_sets_after_freeing_regions(size_t pre_used,
tonyp@2472 1062 FreeRegionList* free_list,
tonyp@2472 1063 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 1064 bool par);
ysr@777 1065
ysr@777 1066 // Returns "TRUE" iff "p" points into the allocated area of the heap.
ysr@777 1067 virtual bool is_in(const void* p) const;
ysr@777 1068
ysr@777 1069 // Return "TRUE" iff the given object address is within the collection
ysr@777 1070 // set.
ysr@777 1071 inline bool obj_in_cs(oop obj);
ysr@777 1072
ysr@777 1073 // Return "TRUE" iff the given object address is in the reserved
ysr@777 1074 // region of g1 (excluding the permanent generation).
ysr@777 1075 bool is_in_g1_reserved(const void* p) const {
ysr@777 1076 return _g1_reserved.contains(p);
ysr@777 1077 }
ysr@777 1078
tonyp@2717 1079 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1080 // reserved for the heap
tonyp@2717 1081 MemRegion g1_reserved() {
tonyp@2717 1082 return _g1_reserved;
tonyp@2717 1083 }
tonyp@2717 1084
tonyp@2717 1085 // Returns a MemRegion that corresponds to the space that has been
ysr@777 1086 // committed in the heap
ysr@777 1087 MemRegion g1_committed() {
ysr@777 1088 return _g1_committed;
ysr@777 1089 }
ysr@777 1090
johnc@2593 1091 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1092
ysr@777 1093 // Dirty card table entries covering a list of young regions.
ysr@777 1094 void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
ysr@777 1095
ysr@777 1096 // This resets the card table to all zeros. It is used after
ysr@777 1097 // a collection pause which used the card table to claim cards.
ysr@777 1098 void cleanUpCardTable();
ysr@777 1099
ysr@777 1100 // Iteration functions.
ysr@777 1101
ysr@777 1102 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1103 // "cl.do_oop" on each.
iveresov@1113 1104 virtual void oop_iterate(OopClosure* cl) {
iveresov@1113 1105 oop_iterate(cl, true);
iveresov@1113 1106 }
iveresov@1113 1107 void oop_iterate(OopClosure* cl, bool do_perm);
ysr@777 1108
ysr@777 1109 // Same as above, restricted to a memory region.
iveresov@1113 1110 virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
iveresov@1113 1111 oop_iterate(mr, cl, true);
iveresov@1113 1112 }
iveresov@1113 1113 void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
ysr@777 1114
ysr@777 1115 // Iterate over all objects, calling "cl.do_object" on each.
iveresov@1113 1116 virtual void object_iterate(ObjectClosure* cl) {
iveresov@1113 1117 object_iterate(cl, true);
iveresov@1113 1118 }
iveresov@1113 1119 virtual void safe_object_iterate(ObjectClosure* cl) {
iveresov@1113 1120 object_iterate(cl, true);
iveresov@1113 1121 }
iveresov@1113 1122 void object_iterate(ObjectClosure* cl, bool do_perm);
ysr@777 1123
ysr@777 1124 // Iterate over all objects allocated since the last collection, calling
ysr@777 1125 // "cl.do_object" on each. The heap must have been initialized properly
ysr@777 1126 // to support this function, or else this call will fail.
ysr@777 1127 virtual void object_iterate_since_last_GC(ObjectClosure* cl);
ysr@777 1128
ysr@777 1129 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1130 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1131
ysr@777 1132 // Iterate over heap regions, in address order, terminating the
ysr@777 1133 // iteration early if the "doHeapRegion" method returns "true".
ysr@777 1134 void heap_region_iterate(HeapRegionClosure* blk);
ysr@777 1135
ysr@777 1136 // Iterate over heap regions starting with r (or the first region if "r"
ysr@777 1137 // is NULL), in address order, terminating early if the "doHeapRegion"
ysr@777 1138 // method returns "true".
ysr@777 1139 void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
ysr@777 1140
ysr@777 1141 // As above but starting from the region at index idx.
ysr@777 1142 void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
ysr@777 1143
ysr@777 1144 HeapRegion* region_at(size_t idx);
ysr@777 1145
ysr@777 1146 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1147 // of regions divided by the number of parallel threads times some
ysr@777 1148 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1149 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1150 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1151 // calls will use the same "claim_value", and that that claim value is
ysr@777 1152 // different from the claim_value of any heap region before the start of
ysr@777 1153 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1154 // attempting to claim the first region in each chunk, and, if
ysr@777 1155 // successful, applying the closure to each region in the chunk (and
ysr@777 1156 // setting the claim value of the second and subsequent regions of the
ysr@777 1157 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1158 // i.e., that a closure never attempt to abort a traversal.
ysr@777 1159 void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
ysr@777 1160 int worker,
ysr@777 1161 jint claim_value);
ysr@777 1162
tonyp@825 1163 // It resets all the region claim values to the default.
tonyp@825 1164 void reset_heap_region_claim_values();
tonyp@825 1165
tonyp@790 1166 #ifdef ASSERT
tonyp@790 1167 bool check_heap_region_claim_values(jint claim_value);
tonyp@790 1168 #endif // ASSERT
tonyp@790 1169
ysr@777 1170 // Iterate over the regions (if any) in the current collection set.
ysr@777 1171 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1172
ysr@777 1173 // As above but starting from region r
ysr@777 1174 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1175
ysr@777 1176 // Returns the first (lowest address) compactible space in the heap.
ysr@777 1177 virtual CompactibleSpace* first_compactible_space();
ysr@777 1178
ysr@777 1179 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1180 // space containing a given address, or else returns NULL.
ysr@777 1181 virtual Space* space_containing(const void* addr) const;
ysr@777 1182
ysr@777 1183 // A G1CollectedHeap will contain some number of heap regions. This
ysr@777 1184 // finds the region containing a given address, or else returns NULL.
ysr@777 1185 HeapRegion* heap_region_containing(const void* addr) const;
ysr@777 1186
ysr@777 1187 // Like the above, but requires "addr" to be in the heap (to avoid a
ysr@777 1188 // null-check), and unlike the above, may return an continuing humongous
ysr@777 1189 // region.
ysr@777 1190 HeapRegion* heap_region_containing_raw(const void* addr) const;
ysr@777 1191
ysr@777 1192 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1193 // each address in the (reserved) heap is a member of exactly
ysr@777 1194 // one block. The defining characteristic of a block is that it is
ysr@777 1195 // possible to find its size, and thus to progress forward to the next
ysr@777 1196 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1197 // represent Java objects, or they might be free blocks in a
ysr@777 1198 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1199 // distinguishable and the size of each is determinable.
ysr@777 1200
ysr@777 1201 // Returns the address of the start of the "block" that contains the
ysr@777 1202 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1203 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1204 // non-object.
ysr@777 1205 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1206
ysr@777 1207 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1208 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1209 // of the active area of the heap.
ysr@777 1210 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1211
ysr@777 1212 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1213 // the block is an object.
ysr@777 1214 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1215
ysr@777 1216 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1217 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1218
ysr@777 1219 // Section on thread-local allocation buffers (TLABs)
ysr@777 1220 // See CollectedHeap for semantics.
ysr@777 1221
ysr@777 1222 virtual bool supports_tlab_allocation() const;
ysr@777 1223 virtual size_t tlab_capacity(Thread* thr) const;
ysr@777 1224 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
ysr@777 1225
ysr@777 1226 // Can a compiler initialize a new object without store barriers?
ysr@777 1227 // This permission only extends from the creation of a new object
ysr@1462 1228 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1229 // is granted for this heap type, the compiler promises to call
ysr@1462 1230 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1231 // a new object for which such initializing store barriers will
ysr@1462 1232 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1233 // ready to provide a compensating write barrier as necessary
ysr@1462 1234 // if that storage came out of a non-young region. The efficiency
ysr@1462 1235 // of this implementation depends crucially on being able to
ysr@1462 1236 // answer very efficiently in constant time whether a piece of
ysr@1462 1237 // storage in the heap comes from a young region or not.
ysr@1462 1238 // See ReduceInitialCardMarks.
ysr@777 1239 virtual bool can_elide_tlab_store_barriers() const {
ysr@1629 1240 // 6920090: Temporarily disabled, because of lingering
ysr@1629 1241 // instabilities related to RICM with G1. In the
ysr@1629 1242 // interim, the option ReduceInitialCardMarksForG1
ysr@1629 1243 // below is left solely as a debugging device at least
ysr@1629 1244 // until 6920109 fixes the instabilities.
ysr@1629 1245 return ReduceInitialCardMarksForG1;
ysr@1462 1246 }
ysr@1462 1247
ysr@1601 1248 virtual bool card_mark_must_follow_store() const {
ysr@1601 1249 return true;
ysr@1601 1250 }
ysr@1601 1251
ysr@1462 1252 bool is_in_young(oop obj) {
ysr@1462 1253 HeapRegion* hr = heap_region_containing(obj);
ysr@1462 1254 return hr != NULL && hr->is_young();
ysr@1462 1255 }
ysr@1462 1256
ysr@1462 1257 // We don't need barriers for initializing stores to objects
ysr@1462 1258 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1259 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1260 // update logging post-barrier, we don't maintain remembered set
ysr@1462 1261 // information for young gen objects. Note that non-generational
ysr@1462 1262 // G1 does not have any "young" objects, should not elide
ysr@1462 1263 // the rs logging barrier and so should always answer false below.
ysr@1462 1264 // However, non-generational G1 (-XX:-G1Gen) appears to have
ysr@1462 1265 // bit-rotted so was not tested below.
ysr@1462 1266 virtual bool can_elide_initializing_store_barrier(oop new_obj) {
ysr@1629 1267 // Re 6920090, 6920109 above.
ysr@1629 1268 assert(ReduceInitialCardMarksForG1, "Else cannot be here");
ysr@1462 1269 assert(G1Gen || !is_in_young(new_obj),
ysr@1462 1270 "Non-generational G1 should never return true below");
ysr@1462 1271 return is_in_young(new_obj);
ysr@777 1272 }
ysr@777 1273
ysr@777 1274 // Can a compiler elide a store barrier when it writes
ysr@777 1275 // a permanent oop into the heap? Applies when the compiler
ysr@777 1276 // is storing x to the heap, where x->is_perm() is true.
ysr@777 1277 virtual bool can_elide_permanent_oop_store_barriers() const {
ysr@777 1278 // At least until perm gen collection is also G1-ified, at
ysr@777 1279 // which point this should return false.
ysr@777 1280 return true;
ysr@777 1281 }
ysr@777 1282
ysr@777 1283 // The boundary between a "large" and "small" array of primitives, in
ysr@777 1284 // words.
ysr@777 1285 virtual size_t large_typearray_limit();
ysr@777 1286
ysr@777 1287 // Returns "true" iff the given word_size is "very large".
ysr@777 1288 static bool isHumongous(size_t word_size) {
johnc@1748 1289 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1290 // are capped at the humongous thresold and we want to
johnc@1748 1291 // ensure that we don't try to allocate a TLAB as
johnc@1748 1292 // humongous and that we don't allocate a humongous
johnc@1748 1293 // object in a TLAB.
johnc@1748 1294 return word_size > _humongous_object_threshold_in_words;
ysr@777 1295 }
ysr@777 1296
ysr@777 1297 // Update mod union table with the set of dirty cards.
ysr@777 1298 void updateModUnion();
ysr@777 1299
ysr@777 1300 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1301 // that this is always a safe operation, since it doesn't clear any
ysr@777 1302 // bits.
ysr@777 1303 void markModUnionRange(MemRegion mr);
ysr@777 1304
ysr@777 1305 // Records the fact that a marking phase is no longer in progress.
ysr@777 1306 void set_marking_complete() {
ysr@777 1307 _mark_in_progress = false;
ysr@777 1308 }
ysr@777 1309 void set_marking_started() {
ysr@777 1310 _mark_in_progress = true;
ysr@777 1311 }
ysr@777 1312 bool mark_in_progress() {
ysr@777 1313 return _mark_in_progress;
ysr@777 1314 }
ysr@777 1315
ysr@777 1316 // Print the maximum heap capacity.
ysr@777 1317 virtual size_t max_capacity() const;
ysr@777 1318
ysr@777 1319 virtual jlong millis_since_last_gc();
ysr@777 1320
ysr@777 1321 // Perform any cleanup actions necessary before allowing a verification.
ysr@777 1322 virtual void prepare_for_verify();
ysr@777 1323
ysr@777 1324 // Perform verification.
tonyp@1246 1325
tonyp@1246 1326 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 1327 // use_prev_marking == false -> use "next" marking information
tonyp@1246 1328 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 1329 // consistent most of the time, so most calls to this should use
tonyp@1246 1330 // use_prev_marking == true. Currently, there is only one case where
tonyp@1246 1331 // this is called with use_prev_marking == false, which is to verify
tonyp@1246 1332 // the "next" marking information at the end of remark.
tonyp@1246 1333 void verify(bool allow_dirty, bool silent, bool use_prev_marking);
tonyp@1246 1334
tonyp@1246 1335 // Override; it uses the "prev" marking information
ysr@777 1336 virtual void verify(bool allow_dirty, bool silent);
tonyp@1273 1337 // Default behavior by calling print(tty);
ysr@777 1338 virtual void print() const;
tonyp@1273 1339 // This calls print_on(st, PrintHeapAtGCExtended).
ysr@777 1340 virtual void print_on(outputStream* st) const;
tonyp@1273 1341 // If extended is true, it will print out information for all
tonyp@1273 1342 // regions in the heap by calling print_on_extended(st).
tonyp@1273 1343 virtual void print_on(outputStream* st, bool extended) const;
tonyp@1273 1344 virtual void print_on_extended(outputStream* st) const;
ysr@777 1345
ysr@777 1346 virtual void print_gc_threads_on(outputStream* st) const;
ysr@777 1347 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1348
ysr@777 1349 // Override
ysr@777 1350 void print_tracing_info() const;
ysr@777 1351
ysr@777 1352 // If "addr" is a pointer into the (reserved?) heap, returns a positive
ysr@777 1353 // number indicating the "arena" within the heap in which "addr" falls.
ysr@777 1354 // Or else returns 0.
ysr@777 1355 virtual int addr_to_arena_id(void* addr) const;
ysr@777 1356
ysr@777 1357 // Convenience function to be used in situations where the heap type can be
ysr@777 1358 // asserted to be this type.
ysr@777 1359 static G1CollectedHeap* heap();
ysr@777 1360
ysr@777 1361 void empty_young_list();
ysr@777 1362
ysr@777 1363 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1364 // add appropriate methods for any other surv rate groups
ysr@777 1365
johnc@1829 1366 YoungList* young_list() { return _young_list; }
ysr@777 1367
ysr@777 1368 // debugging
ysr@777 1369 bool check_young_list_well_formed() {
ysr@777 1370 return _young_list->check_list_well_formed();
ysr@777 1371 }
johnc@1829 1372
johnc@1829 1373 bool check_young_list_empty(bool check_heap,
ysr@777 1374 bool check_sample = true);
ysr@777 1375
ysr@777 1376 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1377 // many of these need to be public.
ysr@777 1378
ysr@777 1379 // The functions below are helper functions that a subclass of
ysr@777 1380 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1381 // functions.
ysr@777 1382 // This performs a concurrent marking of the live objects in a
ysr@777 1383 // bitmap off to the side.
ysr@777 1384 void doConcurrentMark();
ysr@777 1385
ysr@777 1386 // This is called from the marksweep collector which then does
ysr@777 1387 // a concurrent mark and verifies that the results agree with
ysr@777 1388 // the stop the world marking.
ysr@777 1389 void checkConcurrentMark();
ysr@777 1390 void do_sync_mark();
ysr@777 1391
ysr@777 1392 bool isMarkedPrev(oop obj) const;
ysr@777 1393 bool isMarkedNext(oop obj) const;
ysr@777 1394
tonyp@1246 1395 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 1396 // use_prev_marking == false -> use "next" marking information
tonyp@1246 1397 bool is_obj_dead_cond(const oop obj,
tonyp@1246 1398 const HeapRegion* hr,
tonyp@1246 1399 const bool use_prev_marking) const {
tonyp@1246 1400 if (use_prev_marking) {
tonyp@1246 1401 return is_obj_dead(obj, hr);
tonyp@1246 1402 } else {
tonyp@1246 1403 return is_obj_ill(obj, hr);
tonyp@1246 1404 }
tonyp@1246 1405 }
tonyp@1246 1406
ysr@777 1407 // Determine if an object is dead, given the object and also
ysr@777 1408 // the region to which the object belongs. An object is dead
ysr@777 1409 // iff a) it was not allocated since the last mark and b) it
ysr@777 1410 // is not marked.
ysr@777 1411
ysr@777 1412 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1413 return
ysr@777 1414 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1415 !isMarkedPrev(obj);
ysr@777 1416 }
ysr@777 1417
ysr@777 1418 // This is used when copying an object to survivor space.
ysr@777 1419 // If the object is marked live, then we mark the copy live.
ysr@777 1420 // If the object is allocated since the start of this mark
ysr@777 1421 // cycle, then we mark the copy live.
ysr@777 1422 // If the object has been around since the previous mark
ysr@777 1423 // phase, and hasn't been marked yet during this phase,
ysr@777 1424 // then we don't mark it, we just wait for the
ysr@777 1425 // current marking cycle to get to it.
ysr@777 1426
ysr@777 1427 // This function returns true when an object has been
ysr@777 1428 // around since the previous marking and hasn't yet
ysr@777 1429 // been marked during this marking.
ysr@777 1430
ysr@777 1431 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1432 return
ysr@777 1433 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1434 !isMarkedNext(obj);
ysr@777 1435 }
ysr@777 1436
ysr@777 1437 // Determine if an object is dead, given only the object itself.
ysr@777 1438 // This will find the region to which the object belongs and
ysr@777 1439 // then call the region version of the same function.
ysr@777 1440
ysr@777 1441 // Added if it is in permanent gen it isn't dead.
ysr@777 1442 // Added if it is NULL it isn't dead.
ysr@777 1443
tonyp@1246 1444 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 1445 // use_prev_marking == false -> use "next" marking information
tonyp@1246 1446 bool is_obj_dead_cond(const oop obj,
tonyp@1246 1447 const bool use_prev_marking) {
tonyp@1246 1448 if (use_prev_marking) {
tonyp@1246 1449 return is_obj_dead(obj);
tonyp@1246 1450 } else {
tonyp@1246 1451 return is_obj_ill(obj);
tonyp@1246 1452 }
tonyp@1246 1453 }
tonyp@1246 1454
tonyp@1246 1455 bool is_obj_dead(const oop obj) {
tonyp@1246 1456 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1457 if (hr == NULL) {
ysr@777 1458 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1459 return false;
ysr@777 1460 else if (obj == NULL) return false;
ysr@777 1461 else return true;
ysr@777 1462 }
ysr@777 1463 else return is_obj_dead(obj, hr);
ysr@777 1464 }
ysr@777 1465
tonyp@1246 1466 bool is_obj_ill(const oop obj) {
tonyp@1246 1467 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1468 if (hr == NULL) {
ysr@777 1469 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1470 return false;
ysr@777 1471 else if (obj == NULL) return false;
ysr@777 1472 else return true;
ysr@777 1473 }
ysr@777 1474 else return is_obj_ill(obj, hr);
ysr@777 1475 }
ysr@777 1476
ysr@777 1477 // The following is just to alert the verification code
ysr@777 1478 // that a full collection has occurred and that the
ysr@777 1479 // remembered sets are no longer up to date.
ysr@777 1480 bool _full_collection;
ysr@777 1481 void set_full_collection() { _full_collection = true;}
ysr@777 1482 void clear_full_collection() {_full_collection = false;}
ysr@777 1483 bool full_collection() {return _full_collection;}
ysr@777 1484
ysr@777 1485 ConcurrentMark* concurrent_mark() const { return _cm; }
ysr@777 1486 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
ysr@777 1487
apetrusenko@1231 1488 // The dirty cards region list is used to record a subset of regions
apetrusenko@1231 1489 // whose cards need clearing. The list if populated during the
apetrusenko@1231 1490 // remembered set scanning and drained during the card table
apetrusenko@1231 1491 // cleanup. Although the methods are reentrant, population/draining
apetrusenko@1231 1492 // phases must not overlap. For synchronization purposes the last
apetrusenko@1231 1493 // element on the list points to itself.
apetrusenko@1231 1494 HeapRegion* _dirty_cards_region_list;
apetrusenko@1231 1495 void push_dirty_cards_region(HeapRegion* hr);
apetrusenko@1231 1496 HeapRegion* pop_dirty_cards_region();
apetrusenko@1231 1497
ysr@777 1498 public:
ysr@777 1499 void stop_conc_gc_threads();
ysr@777 1500
ysr@777 1501 // <NEW PREDICTION>
ysr@777 1502
ysr@777 1503 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 1504 void check_if_region_is_too_expensive(double predicted_time_ms);
ysr@777 1505 size_t pending_card_num();
ysr@777 1506 size_t max_pending_card_num();
ysr@777 1507 size_t cards_scanned();
ysr@777 1508
ysr@777 1509 // </NEW PREDICTION>
ysr@777 1510
ysr@777 1511 protected:
ysr@777 1512 size_t _max_heap_capacity;
ysr@777 1513 };
ysr@777 1514
ysr@1280 1515 #define use_local_bitmaps 1
ysr@1280 1516 #define verify_local_bitmaps 0
ysr@1280 1517 #define oop_buffer_length 256
ysr@1280 1518
ysr@1280 1519 #ifndef PRODUCT
ysr@1280 1520 class GCLabBitMap;
ysr@1280 1521 class GCLabBitMapClosure: public BitMapClosure {
ysr@1280 1522 private:
ysr@1280 1523 ConcurrentMark* _cm;
ysr@1280 1524 GCLabBitMap* _bitmap;
ysr@1280 1525
ysr@1280 1526 public:
ysr@1280 1527 GCLabBitMapClosure(ConcurrentMark* cm,
ysr@1280 1528 GCLabBitMap* bitmap) {
ysr@1280 1529 _cm = cm;
ysr@1280 1530 _bitmap = bitmap;
ysr@1280 1531 }
ysr@1280 1532
ysr@1280 1533 virtual bool do_bit(size_t offset);
ysr@1280 1534 };
ysr@1280 1535 #endif // !PRODUCT
ysr@1280 1536
ysr@1280 1537 class GCLabBitMap: public BitMap {
ysr@1280 1538 private:
ysr@1280 1539 ConcurrentMark* _cm;
ysr@1280 1540
ysr@1280 1541 int _shifter;
ysr@1280 1542 size_t _bitmap_word_covers_words;
ysr@1280 1543
ysr@1280 1544 // beginning of the heap
ysr@1280 1545 HeapWord* _heap_start;
ysr@1280 1546
ysr@1280 1547 // this is the actual start of the GCLab
ysr@1280 1548 HeapWord* _real_start_word;
ysr@1280 1549
ysr@1280 1550 // this is the actual end of the GCLab
ysr@1280 1551 HeapWord* _real_end_word;
ysr@1280 1552
ysr@1280 1553 // this is the first word, possibly located before the actual start
ysr@1280 1554 // of the GCLab, that corresponds to the first bit of the bitmap
ysr@1280 1555 HeapWord* _start_word;
ysr@1280 1556
ysr@1280 1557 // size of a GCLab in words
ysr@1280 1558 size_t _gclab_word_size;
ysr@1280 1559
ysr@1280 1560 static int shifter() {
ysr@1280 1561 return MinObjAlignment - 1;
ysr@1280 1562 }
ysr@1280 1563
ysr@1280 1564 // how many heap words does a single bitmap word corresponds to?
ysr@1280 1565 static size_t bitmap_word_covers_words() {
ysr@1280 1566 return BitsPerWord << shifter();
ysr@1280 1567 }
ysr@1280 1568
apetrusenko@1826 1569 size_t gclab_word_size() const {
apetrusenko@1826 1570 return _gclab_word_size;
ysr@1280 1571 }
ysr@1280 1572
apetrusenko@1826 1573 // Calculates actual GCLab size in words
apetrusenko@1826 1574 size_t gclab_real_word_size() const {
apetrusenko@1826 1575 return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
apetrusenko@1826 1576 / BitsPerWord;
apetrusenko@1826 1577 }
apetrusenko@1826 1578
apetrusenko@1826 1579 static size_t bitmap_size_in_bits(size_t gclab_word_size) {
apetrusenko@1826 1580 size_t bits_in_bitmap = gclab_word_size >> shifter();
ysr@1280 1581 // We are going to ensure that the beginning of a word in this
ysr@1280 1582 // bitmap also corresponds to the beginning of a word in the
ysr@1280 1583 // global marking bitmap. To handle the case where a GCLab
ysr@1280 1584 // starts from the middle of the bitmap, we need to add enough
ysr@1280 1585 // space (i.e. up to a bitmap word) to ensure that we have
ysr@1280 1586 // enough bits in the bitmap.
ysr@1280 1587 return bits_in_bitmap + BitsPerWord - 1;
ysr@1280 1588 }
ysr@1280 1589 public:
apetrusenko@1826 1590 GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
apetrusenko@1826 1591 : BitMap(bitmap_size_in_bits(gclab_word_size)),
ysr@1280 1592 _cm(G1CollectedHeap::heap()->concurrent_mark()),
ysr@1280 1593 _shifter(shifter()),
ysr@1280 1594 _bitmap_word_covers_words(bitmap_word_covers_words()),
ysr@1280 1595 _heap_start(heap_start),
apetrusenko@1826 1596 _gclab_word_size(gclab_word_size),
ysr@1280 1597 _real_start_word(NULL),
ysr@1280 1598 _real_end_word(NULL),
ysr@1280 1599 _start_word(NULL)
ysr@1280 1600 {
ysr@1280 1601 guarantee( size_in_words() >= bitmap_size_in_words(),
ysr@1280 1602 "just making sure");
ysr@1280 1603 }
ysr@1280 1604
ysr@1280 1605 inline unsigned heapWordToOffset(HeapWord* addr) {
ysr@1280 1606 unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
ysr@1280 1607 assert(offset < size(), "offset should be within bounds");
ysr@1280 1608 return offset;
ysr@1280 1609 }
ysr@1280 1610
ysr@1280 1611 inline HeapWord* offsetToHeapWord(size_t offset) {
ysr@1280 1612 HeapWord* addr = _start_word + (offset << _shifter);
ysr@1280 1613 assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
ysr@1280 1614 return addr;
ysr@1280 1615 }
ysr@1280 1616
ysr@1280 1617 bool fields_well_formed() {
ysr@1280 1618 bool ret1 = (_real_start_word == NULL) &&
ysr@1280 1619 (_real_end_word == NULL) &&
ysr@1280 1620 (_start_word == NULL);
ysr@1280 1621 if (ret1)
ysr@1280 1622 return true;
ysr@1280 1623
ysr@1280 1624 bool ret2 = _real_start_word >= _start_word &&
ysr@1280 1625 _start_word < _real_end_word &&
ysr@1280 1626 (_real_start_word + _gclab_word_size) == _real_end_word &&
ysr@1280 1627 (_start_word + _gclab_word_size + _bitmap_word_covers_words)
ysr@1280 1628 > _real_end_word;
ysr@1280 1629 return ret2;
ysr@1280 1630 }
ysr@1280 1631
ysr@1280 1632 inline bool mark(HeapWord* addr) {
ysr@1280 1633 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1634 assert(fields_well_formed(), "invariant");
ysr@1280 1635
ysr@1280 1636 if (addr >= _real_start_word && addr < _real_end_word) {
ysr@1280 1637 assert(!isMarked(addr), "should not have already been marked");
ysr@1280 1638
ysr@1280 1639 // first mark it on the bitmap
ysr@1280 1640 at_put(heapWordToOffset(addr), true);
ysr@1280 1641
ysr@1280 1642 return true;
ysr@1280 1643 } else {
ysr@1280 1644 return false;
ysr@1280 1645 }
ysr@1280 1646 }
ysr@1280 1647
ysr@1280 1648 inline bool isMarked(HeapWord* addr) {
ysr@1280 1649 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1650 assert(fields_well_formed(), "invariant");
ysr@1280 1651
ysr@1280 1652 return at(heapWordToOffset(addr));
ysr@1280 1653 }
ysr@1280 1654
ysr@1280 1655 void set_buffer(HeapWord* start) {
ysr@1280 1656 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1657 clear();
ysr@1280 1658
ysr@1280 1659 assert(start != NULL, "invariant");
ysr@1280 1660 _real_start_word = start;
ysr@1280 1661 _real_end_word = start + _gclab_word_size;
ysr@1280 1662
ysr@1280 1663 size_t diff =
ysr@1280 1664 pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
ysr@1280 1665 _start_word = start - diff;
ysr@1280 1666
ysr@1280 1667 assert(fields_well_formed(), "invariant");
ysr@1280 1668 }
ysr@1280 1669
ysr@1280 1670 #ifndef PRODUCT
ysr@1280 1671 void verify() {
ysr@1280 1672 // verify that the marks have been propagated
ysr@1280 1673 GCLabBitMapClosure cl(_cm, this);
ysr@1280 1674 iterate(&cl);
ysr@1280 1675 }
ysr@1280 1676 #endif // PRODUCT
ysr@1280 1677
ysr@1280 1678 void retire() {
ysr@1280 1679 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1680 assert(fields_well_formed(), "invariant");
ysr@1280 1681
ysr@1280 1682 if (_start_word != NULL) {
ysr@1280 1683 CMBitMap* mark_bitmap = _cm->nextMarkBitMap();
ysr@1280 1684
ysr@1280 1685 // this means that the bitmap was set up for the GCLab
ysr@1280 1686 assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
ysr@1280 1687
ysr@1280 1688 mark_bitmap->mostly_disjoint_range_union(this,
ysr@1280 1689 0, // always start from the start of the bitmap
ysr@1280 1690 _start_word,
apetrusenko@1826 1691 gclab_real_word_size());
ysr@1280 1692 _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
ysr@1280 1693
ysr@1280 1694 #ifndef PRODUCT
ysr@1280 1695 if (use_local_bitmaps && verify_local_bitmaps)
ysr@1280 1696 verify();
ysr@1280 1697 #endif // PRODUCT
ysr@1280 1698 } else {
ysr@1280 1699 assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
ysr@1280 1700 }
ysr@1280 1701 }
ysr@1280 1702
apetrusenko@1826 1703 size_t bitmap_size_in_words() const {
apetrusenko@1826 1704 return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
ysr@1280 1705 }
apetrusenko@1826 1706
ysr@1280 1707 };
ysr@1280 1708
ysr@1280 1709 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@1280 1710 private:
ysr@1280 1711 bool _retired;
ysr@1280 1712 bool _during_marking;
ysr@1280 1713 GCLabBitMap _bitmap;
ysr@1280 1714
ysr@1280 1715 public:
apetrusenko@1826 1716 G1ParGCAllocBuffer(size_t gclab_word_size) :
apetrusenko@1826 1717 ParGCAllocBuffer(gclab_word_size),
ysr@1280 1718 _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
apetrusenko@1826 1719 _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
ysr@1280 1720 _retired(false)
ysr@1280 1721 { }
ysr@1280 1722
ysr@1280 1723 inline bool mark(HeapWord* addr) {
ysr@1280 1724 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1725 assert(_during_marking, "invariant");
ysr@1280 1726 return _bitmap.mark(addr);
ysr@1280 1727 }
ysr@1280 1728
ysr@1280 1729 inline void set_buf(HeapWord* buf) {
ysr@1280 1730 if (use_local_bitmaps && _during_marking)
ysr@1280 1731 _bitmap.set_buffer(buf);
ysr@1280 1732 ParGCAllocBuffer::set_buf(buf);
ysr@1280 1733 _retired = false;
ysr@1280 1734 }
ysr@1280 1735
ysr@1280 1736 inline void retire(bool end_of_gc, bool retain) {
ysr@1280 1737 if (_retired)
ysr@1280 1738 return;
ysr@1280 1739 if (use_local_bitmaps && _during_marking) {
ysr@1280 1740 _bitmap.retire();
ysr@1280 1741 }
ysr@1280 1742 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@1280 1743 _retired = true;
ysr@1280 1744 }
ysr@1280 1745 };
ysr@1280 1746
ysr@1280 1747 class G1ParScanThreadState : public StackObj {
ysr@1280 1748 protected:
ysr@1280 1749 G1CollectedHeap* _g1h;
ysr@1280 1750 RefToScanQueue* _refs;
ysr@1280 1751 DirtyCardQueue _dcq;
ysr@1280 1752 CardTableModRefBS* _ct_bs;
ysr@1280 1753 G1RemSet* _g1_rem;
ysr@1280 1754
apetrusenko@1826 1755 G1ParGCAllocBuffer _surviving_alloc_buffer;
apetrusenko@1826 1756 G1ParGCAllocBuffer _tenured_alloc_buffer;
apetrusenko@1826 1757 G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
apetrusenko@1826 1758 ageTable _age_table;
ysr@1280 1759
ysr@1280 1760 size_t _alloc_buffer_waste;
ysr@1280 1761 size_t _undo_waste;
ysr@1280 1762
ysr@1280 1763 OopsInHeapRegionClosure* _evac_failure_cl;
ysr@1280 1764 G1ParScanHeapEvacClosure* _evac_cl;
ysr@1280 1765 G1ParScanPartialArrayClosure* _partial_scan_cl;
ysr@1280 1766
ysr@1280 1767 int _hash_seed;
ysr@1280 1768 int _queue_num;
ysr@1280 1769
tonyp@1966 1770 size_t _term_attempts;
ysr@1280 1771
ysr@1280 1772 double _start;
ysr@1280 1773 double _start_strong_roots;
ysr@1280 1774 double _strong_roots_time;
ysr@1280 1775 double _start_term;
ysr@1280 1776 double _term_time;
ysr@1280 1777
ysr@1280 1778 // Map from young-age-index (0 == not young, 1 is youngest) to
ysr@1280 1779 // surviving words. base is what we get back from the malloc call
ysr@1280 1780 size_t* _surviving_young_words_base;
ysr@1280 1781 // this points into the array, as we use the first few entries for padding
ysr@1280 1782 size_t* _surviving_young_words;
ysr@1280 1783
jcoomes@2064 1784 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
ysr@1280 1785
ysr@1280 1786 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
ysr@1280 1787
ysr@1280 1788 void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
ysr@1280 1789
ysr@1280 1790 DirtyCardQueue& dirty_card_queue() { return _dcq; }
ysr@1280 1791 CardTableModRefBS* ctbs() { return _ct_bs; }
ysr@1280 1792
ysr@1280 1793 template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1794 if (!from->is_survivor()) {
ysr@1280 1795 _g1_rem->par_write_ref(from, p, tid);
ysr@1280 1796 }
ysr@1280 1797 }
ysr@1280 1798
ysr@1280 1799 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1800 // If the new value of the field points to the same region or
ysr@1280 1801 // is the to-space, we don't need to include it in the Rset updates.
ysr@1280 1802 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
ysr@1280 1803 size_t card_index = ctbs()->index_for(p);
ysr@1280 1804 // If the card hasn't been added to the buffer, do it.
ysr@1280 1805 if (ctbs()->mark_card_deferred(card_index)) {
ysr@1280 1806 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
ysr@1280 1807 }
ysr@1280 1808 }
ysr@1280 1809 }
ysr@1280 1810
ysr@1280 1811 public:
ysr@1280 1812 G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
ysr@1280 1813
ysr@1280 1814 ~G1ParScanThreadState() {
ysr@1280 1815 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
ysr@1280 1816 }
ysr@1280 1817
ysr@1280 1818 RefToScanQueue* refs() { return _refs; }
ysr@1280 1819 ageTable* age_table() { return &_age_table; }
ysr@1280 1820
ysr@1280 1821 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
apetrusenko@1826 1822 return _alloc_buffers[purpose];
ysr@1280 1823 }
ysr@1280 1824
jcoomes@2064 1825 size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
jcoomes@2064 1826 size_t undo_waste() const { return _undo_waste; }
ysr@1280 1827
jcoomes@2217 1828 #ifdef ASSERT
jcoomes@2217 1829 bool verify_ref(narrowOop* ref) const;
jcoomes@2217 1830 bool verify_ref(oop* ref) const;
jcoomes@2217 1831 bool verify_task(StarTask ref) const;
jcoomes@2217 1832 #endif // ASSERT
jcoomes@2217 1833
ysr@1280 1834 template <class T> void push_on_queue(T* ref) {
jcoomes@2217 1835 assert(verify_ref(ref), "sanity");
jcoomes@2064 1836 refs()->push(ref);
ysr@1280 1837 }
ysr@1280 1838
ysr@1280 1839 template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
ysr@1280 1840 if (G1DeferredRSUpdate) {
ysr@1280 1841 deferred_rs_update(from, p, tid);
ysr@1280 1842 } else {
ysr@1280 1843 immediate_rs_update(from, p, tid);
ysr@1280 1844 }
ysr@1280 1845 }
ysr@1280 1846
ysr@1280 1847 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1848
ysr@1280 1849 HeapWord* obj = NULL;
apetrusenko@1826 1850 size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
apetrusenko@1826 1851 if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
ysr@1280 1852 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
apetrusenko@1826 1853 assert(gclab_word_size == alloc_buf->word_sz(),
apetrusenko@1826 1854 "dynamic resizing is not supported");
ysr@1280 1855 add_to_alloc_buffer_waste(alloc_buf->words_remaining());
ysr@1280 1856 alloc_buf->retire(false, false);
ysr@1280 1857
apetrusenko@1826 1858 HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
ysr@1280 1859 if (buf == NULL) return NULL; // Let caller handle allocation failure.
ysr@1280 1860 // Otherwise.
ysr@1280 1861 alloc_buf->set_buf(buf);
ysr@1280 1862
ysr@1280 1863 obj = alloc_buf->allocate(word_sz);
ysr@1280 1864 assert(obj != NULL, "buffer was definitely big enough...");
ysr@1280 1865 } else {
ysr@1280 1866 obj = _g1h->par_allocate_during_gc(purpose, word_sz);
ysr@1280 1867 }
ysr@1280 1868 return obj;
ysr@1280 1869 }
ysr@1280 1870
ysr@1280 1871 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1872 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
ysr@1280 1873 if (obj != NULL) return obj;
ysr@1280 1874 return allocate_slow(purpose, word_sz);
ysr@1280 1875 }
ysr@1280 1876
ysr@1280 1877 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
ysr@1280 1878 if (alloc_buffer(purpose)->contains(obj)) {
ysr@1280 1879 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
ysr@1280 1880 "should contain whole object");
ysr@1280 1881 alloc_buffer(purpose)->undo_allocation(obj, word_sz);
ysr@1280 1882 } else {
ysr@1280 1883 CollectedHeap::fill_with_object(obj, word_sz);
ysr@1280 1884 add_to_undo_waste(word_sz);
ysr@1280 1885 }
ysr@1280 1886 }
ysr@1280 1887
ysr@1280 1888 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
ysr@1280 1889 _evac_failure_cl = evac_failure_cl;
ysr@1280 1890 }
ysr@1280 1891 OopsInHeapRegionClosure* evac_failure_closure() {
ysr@1280 1892 return _evac_failure_cl;
ysr@1280 1893 }
ysr@1280 1894
ysr@1280 1895 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
ysr@1280 1896 _evac_cl = evac_cl;
ysr@1280 1897 }
ysr@1280 1898
ysr@1280 1899 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
ysr@1280 1900 _partial_scan_cl = partial_scan_cl;
ysr@1280 1901 }
ysr@1280 1902
ysr@1280 1903 int* hash_seed() { return &_hash_seed; }
ysr@1280 1904 int queue_num() { return _queue_num; }
ysr@1280 1905
jcoomes@2064 1906 size_t term_attempts() const { return _term_attempts; }
tonyp@1966 1907 void note_term_attempt() { _term_attempts++; }
ysr@1280 1908
ysr@1280 1909 void start_strong_roots() {
ysr@1280 1910 _start_strong_roots = os::elapsedTime();
ysr@1280 1911 }
ysr@1280 1912 void end_strong_roots() {
ysr@1280 1913 _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
ysr@1280 1914 }
jcoomes@2064 1915 double strong_roots_time() const { return _strong_roots_time; }
ysr@1280 1916
ysr@1280 1917 void start_term_time() {
ysr@1280 1918 note_term_attempt();
ysr@1280 1919 _start_term = os::elapsedTime();
ysr@1280 1920 }
ysr@1280 1921 void end_term_time() {
ysr@1280 1922 _term_time += (os::elapsedTime() - _start_term);
ysr@1280 1923 }
jcoomes@2064 1924 double term_time() const { return _term_time; }
ysr@1280 1925
jcoomes@2064 1926 double elapsed_time() const {
ysr@1280 1927 return os::elapsedTime() - _start;
ysr@1280 1928 }
ysr@1280 1929
jcoomes@2064 1930 static void
jcoomes@2064 1931 print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 1932 void
jcoomes@2064 1933 print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
jcoomes@2064 1934
ysr@1280 1935 size_t* surviving_young_words() {
ysr@1280 1936 // We add on to hide entry 0 which accumulates surviving words for
ysr@1280 1937 // age -1 regions (i.e. non-young ones)
ysr@1280 1938 return _surviving_young_words;
ysr@1280 1939 }
ysr@1280 1940
ysr@1280 1941 void retire_alloc_buffers() {
ysr@1280 1942 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
apetrusenko@1826 1943 size_t waste = _alloc_buffers[ap]->words_remaining();
ysr@1280 1944 add_to_alloc_buffer_waste(waste);
apetrusenko@1826 1945 _alloc_buffers[ap]->retire(true, false);
ysr@1280 1946 }
ysr@1280 1947 }
ysr@1280 1948
ysr@1280 1949 template <class T> void deal_with_reference(T* ref_to_scan) {
ysr@1280 1950 if (has_partial_array_mask(ref_to_scan)) {
ysr@1280 1951 _partial_scan_cl->do_oop_nv(ref_to_scan);
ysr@1280 1952 } else {
ysr@1280 1953 // Note: we can use "raw" versions of "region_containing" because
ysr@1280 1954 // "obj_to_scan" is definitely in the heap, and is not in a
ysr@1280 1955 // humongous region.
ysr@1280 1956 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
ysr@1280 1957 _evac_cl->set_region(r);
ysr@1280 1958 _evac_cl->do_oop_nv(ref_to_scan);
ysr@1280 1959 }
ysr@1280 1960 }
ysr@1280 1961
jcoomes@2217 1962 void deal_with_reference(StarTask ref) {
jcoomes@2217 1963 assert(verify_task(ref), "sanity");
jcoomes@2217 1964 if (ref.is_narrow()) {
jcoomes@2217 1965 deal_with_reference((narrowOop*)ref);
jcoomes@2217 1966 } else {
jcoomes@2217 1967 deal_with_reference((oop*)ref);
ysr@1280 1968 }
ysr@1280 1969 }
jcoomes@2217 1970
jcoomes@2217 1971 public:
jcoomes@2217 1972 void trim_queue();
ysr@1280 1973 };
stefank@2314 1974
stefank@2314 1975 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial