src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Fri, 05 Sep 2014 09:49:19 +0200

author
sjohanss
date
Fri, 05 Sep 2014 09:49:19 +0200
changeset 7118
227a9e5e4b4a
parent 7091
a8ea2f110d87
child 7131
d35872270666
permissions
-rw-r--r--

8057536: Refactor G1 to allow context specific allocations
Summary: Splitting out a g1 allocator class to simply specialized allocators which can associate each allocation with a given context.
Reviewed-by: mgerdin, brutisso

ysr@777 1 /*
tschatzl@6402 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
sjohanss@7118 28 #include "gc_implementation/g1/g1AllocationContext.hpp"
sjohanss@7118 29 #include "gc_implementation/g1/g1Allocator.hpp"
stefank@2314 30 #include "gc_implementation/g1/concurrentMark.hpp"
sla@5237 31 #include "gc_implementation/g1/evacuationInfo.hpp"
tonyp@2715 32 #include "gc_implementation/g1/g1AllocRegion.hpp"
tschatzl@6926 33 #include "gc_implementation/g1/g1BiasedArray.hpp"
tonyp@2975 34 #include "gc_implementation/g1/g1HRPrinter.hpp"
sla@5237 35 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
mgerdin@5811 36 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
sla@5237 37 #include "gc_implementation/g1/g1YCTypes.hpp"
tschatzl@7091 38 #include "gc_implementation/g1/heapRegionManager.hpp"
brutisso@6385 39 #include "gc_implementation/g1/heapRegionSet.hpp"
jmasa@2821 40 #include "gc_implementation/shared/hSpaceCounters.hpp"
johnc@3982 41 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
stefank@2314 42 #include "memory/barrierSet.hpp"
stefank@2314 43 #include "memory/memRegion.hpp"
stefank@2314 44 #include "memory/sharedHeap.hpp"
brutisso@4579 45 #include "utilities/stack.hpp"
stefank@2314 46
ysr@777 47 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 48 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 49 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 50 // heap subsets that will yield large amounts of garbage.
ysr@777 51
johnc@5548 52 // Forward declarations
ysr@777 53 class HeapRegion;
tonyp@2493 54 class HRRSCleanupTask;
ysr@777 55 class GenerationSpec;
ysr@777 56 class OopsInHeapRegionClosure;
coleenp@4037 57 class G1KlassScanClosure;
ysr@777 58 class G1ScanHeapEvacClosure;
ysr@777 59 class ObjectClosure;
ysr@777 60 class SpaceClosure;
ysr@777 61 class CompactibleSpaceClosure;
ysr@777 62 class Space;
ysr@777 63 class G1CollectorPolicy;
ysr@777 64 class GenRemSet;
ysr@777 65 class G1RemSet;
ysr@777 66 class HeapRegionRemSetIterator;
ysr@777 67 class ConcurrentMark;
ysr@777 68 class ConcurrentMarkThread;
ysr@777 69 class ConcurrentG1Refine;
sla@5237 70 class ConcurrentGCTimer;
jmasa@2821 71 class GenerationCounters;
sla@5237 72 class STWGCTimer;
sla@5237 73 class G1NewTracer;
sla@5237 74 class G1OldTracer;
sla@5237 75 class EvacuationFailedInfo;
johnc@5548 76 class nmethod;
mgronlun@6131 77 class Ticks;
ysr@777 78
zgu@3900 79 typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
zgu@3900 80 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
ysr@777 81
johnc@1242 82 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 83 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 84
zgu@3900 85 class YoungList : public CHeapObj<mtGC> {
ysr@777 86 private:
ysr@777 87 G1CollectedHeap* _g1h;
ysr@777 88
ysr@777 89 HeapRegion* _head;
ysr@777 90
johnc@1829 91 HeapRegion* _survivor_head;
johnc@1829 92 HeapRegion* _survivor_tail;
johnc@1829 93
johnc@1829 94 HeapRegion* _curr;
johnc@1829 95
tonyp@3713 96 uint _length;
tonyp@3713 97 uint _survivor_length;
ysr@777 98
ysr@777 99 size_t _last_sampled_rs_lengths;
ysr@777 100 size_t _sampled_rs_lengths;
ysr@777 101
johnc@1829 102 void empty_list(HeapRegion* list);
ysr@777 103
ysr@777 104 public:
ysr@777 105 YoungList(G1CollectedHeap* g1h);
ysr@777 106
johnc@1829 107 void push_region(HeapRegion* hr);
johnc@1829 108 void add_survivor_region(HeapRegion* hr);
johnc@1829 109
johnc@1829 110 void empty_list();
johnc@1829 111 bool is_empty() { return _length == 0; }
tonyp@3713 112 uint length() { return _length; }
tonyp@3713 113 uint survivor_length() { return _survivor_length; }
ysr@777 114
tonyp@2961 115 // Currently we do not keep track of the used byte sum for the
tonyp@2961 116 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 117 // do so. When we'll eventually replace the young list with
tonyp@2961 118 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 119 // we'll report the more accurate information then.
tonyp@2961 120 size_t eden_used_bytes() {
tonyp@2961 121 assert(length() >= survivor_length(), "invariant");
tonyp@3713 122 return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 123 }
tonyp@2961 124 size_t survivor_used_bytes() {
tonyp@3713 125 return (size_t) survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 126 }
tonyp@2961 127
ysr@777 128 void rs_length_sampling_init();
ysr@777 129 bool rs_length_sampling_more();
ysr@777 130 void rs_length_sampling_next();
ysr@777 131
ysr@777 132 void reset_sampled_info() {
ysr@777 133 _last_sampled_rs_lengths = 0;
ysr@777 134 }
ysr@777 135 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 136
ysr@777 137 // for development purposes
ysr@777 138 void reset_auxilary_lists();
johnc@1829 139 void clear() { _head = NULL; _length = 0; }
johnc@1829 140
johnc@1829 141 void clear_survivors() {
johnc@1829 142 _survivor_head = NULL;
johnc@1829 143 _survivor_tail = NULL;
johnc@1829 144 _survivor_length = 0;
johnc@1829 145 }
johnc@1829 146
ysr@777 147 HeapRegion* first_region() { return _head; }
ysr@777 148 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 149 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 150
ysr@777 151 // debugging
ysr@777 152 bool check_list_well_formed();
johnc@1829 153 bool check_list_empty(bool check_sample = true);
ysr@777 154 void print();
ysr@777 155 };
ysr@777 156
johnc@5548 157 // The G1 STW is alive closure.
johnc@5548 158 // An instance is embedded into the G1CH and used as the
johnc@5548 159 // (optional) _is_alive_non_header closure in the STW
johnc@5548 160 // reference processor. It is also extensively used during
johnc@5548 161 // reference processing during STW evacuation pauses.
johnc@5548 162 class G1STWIsAliveClosure: public BoolObjectClosure {
johnc@5548 163 G1CollectedHeap* _g1;
johnc@5548 164 public:
johnc@5548 165 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
johnc@5548 166 bool do_object_b(oop p);
johnc@5548 167 };
johnc@5548 168
ysr@777 169 class RefineCardTableEntryClosure;
johnc@3175 170
tschatzl@7051 171 class G1RegionMappingChangedListener : public G1MappingChangedListener {
tschatzl@7051 172 private:
tschatzl@7051 173 void reset_from_card_cache(uint start_idx, size_t num_regions);
tschatzl@7051 174 public:
tschatzl@7051 175 virtual void on_commit(uint start_idx, size_t num_regions);
tschatzl@7051 176 };
tschatzl@7051 177
ysr@777 178 class G1CollectedHeap : public SharedHeap {
stefank@6992 179 friend class VM_CollectForMetadataAllocation;
ysr@777 180 friend class VM_G1CollectForAllocation;
ysr@777 181 friend class VM_G1CollectFull;
ysr@777 182 friend class VM_G1IncCollectionPause;
ysr@777 183 friend class VMStructs;
tonyp@2715 184 friend class MutatorAllocRegion;
tonyp@3028 185 friend class SurvivorGCAllocRegion;
tonyp@3028 186 friend class OldGCAllocRegion;
sjohanss@7118 187 friend class G1Allocator;
sjohanss@7118 188 friend class G1DefaultAllocator;
sjohanss@7118 189 friend class G1ResManAllocator;
ysr@777 190
ysr@777 191 // Closures used in implementation.
stefank@6992 192 template <G1Barrier barrier, G1Mark do_mark_object>
brutisso@3690 193 friend class G1ParCopyClosure;
ysr@777 194 friend class G1IsAliveClosure;
ysr@777 195 friend class G1EvacuateFollowersClosure;
ysr@777 196 friend class G1ParScanThreadState;
ysr@777 197 friend class G1ParScanClosureSuper;
ysr@777 198 friend class G1ParEvacuateFollowersClosure;
ysr@777 199 friend class G1ParTask;
sjohanss@7118 200 friend class G1ParGCAllocator;
sjohanss@7118 201 friend class G1DefaultParGCAllocator;
ysr@777 202 friend class G1FreeGarbageRegionClosure;
ysr@777 203 friend class RefineCardTableEntryClosure;
ysr@777 204 friend class G1PrepareCompactClosure;
ysr@777 205 friend class RegionSorter;
tonyp@2472 206 friend class RegionResetter;
ysr@777 207 friend class CountRCClosure;
ysr@777 208 friend class EvacPopObjClosure;
apetrusenko@1231 209 friend class G1ParCleanupCTTask;
ysr@777 210
tschatzl@7019 211 friend class G1FreeHumongousRegionClosure;
ysr@777 212 // Other related classes.
ysr@777 213 friend class G1MarkSweep;
ysr@777 214
ysr@777 215 private:
ysr@777 216 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 217 static G1CollectedHeap* _g1h;
ysr@777 218
tonyp@1377 219 static size_t _humongous_object_threshold_in_words;
tonyp@1377 220
tonyp@2472 221 // The secondary free list which contains regions that have been
tschatzl@7050 222 // freed up during the cleanup process. This will be appended to
tschatzl@7050 223 // the master free list when appropriate.
brutisso@6385 224 FreeRegionList _secondary_free_list;
tonyp@2472 225
tonyp@3268 226 // It keeps track of the old regions.
brutisso@6385 227 HeapRegionSet _old_set;
tonyp@3268 228
tonyp@2472 229 // It keeps track of the humongous regions.
brutisso@6385 230 HeapRegionSet _humongous_set;
ysr@777 231
tschatzl@7019 232 void clear_humongous_is_live_table();
tschatzl@7019 233 void eagerly_reclaim_humongous_regions();
tschatzl@7019 234
ysr@777 235 // The number of regions we could create by expansion.
tonyp@3713 236 uint _expansion_regions;
ysr@777 237
ysr@777 238 // The block offset table for the G1 heap.
ysr@777 239 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 240
tonyp@3268 241 // Tears down the region sets / lists so that they are empty and the
tonyp@3268 242 // regions on the heap do not belong to a region set / list. The
tonyp@3268 243 // only exception is the humongous set which we leave unaltered. If
tonyp@3268 244 // free_list_only is true, it will only tear down the master free
tonyp@3268 245 // list. It is called before a Full GC (free_list_only == false) or
tonyp@3268 246 // before heap shrinking (free_list_only == true).
tonyp@3268 247 void tear_down_region_sets(bool free_list_only);
tonyp@3268 248
tonyp@3268 249 // Rebuilds the region sets / lists so that they are repopulated to
tonyp@3268 250 // reflect the contents of the heap. The only exception is the
tonyp@3268 251 // humongous set which was not torn down in the first place. If
tonyp@3268 252 // free_list_only is true, it will only rebuild the master free
tonyp@3268 253 // list. It is called after a Full GC (free_list_only == false) or
tonyp@3268 254 // after heap shrinking (free_list_only == true).
tonyp@3268 255 void rebuild_region_sets(bool free_list_only);
ysr@777 256
tschatzl@7051 257 // Callback for region mapping changed events.
tschatzl@7051 258 G1RegionMappingChangedListener _listener;
tschatzl@7051 259
ysr@777 260 // The sequence of all heap regions in the heap.
tschatzl@7091 261 HeapRegionManager _hrm;
ysr@777 262
sjohanss@7118 263 // Class that handles the different kinds of allocations.
sjohanss@7118 264 G1Allocator* _allocator;
tonyp@3028 265
johnc@3982 266 // PLAB sizing policy for survivors.
johnc@3982 267 PLABStats _survivor_plab_stats;
johnc@3982 268
johnc@3982 269 // PLAB sizing policy for tenured objects.
johnc@3982 270 PLABStats _old_plab_stats;
johnc@3982 271
tonyp@3410 272 // It specifies whether we should attempt to expand the heap after a
tonyp@3410 273 // region allocation failure. If heap expansion fails we set this to
tonyp@3410 274 // false so that we don't re-attempt the heap expansion (it's likely
tonyp@3410 275 // that subsequent expansion attempts will also fail if one fails).
tonyp@3410 276 // Currently, it is only consulted during GC and it's reset at the
tonyp@3410 277 // start of each GC.
tonyp@3410 278 bool _expand_heap_after_alloc_failure;
tonyp@3410 279
tonyp@2715 280 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 281 void init_mutator_alloc_region();
tonyp@2715 282
tonyp@2715 283 // It releases the mutator alloc region.
tonyp@2715 284 void release_mutator_alloc_region();
tonyp@2715 285
tonyp@3028 286 // It initializes the GC alloc regions at the start of a GC.
sla@5237 287 void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
tonyp@3028 288
tonyp@3028 289 // It releases the GC alloc regions at the end of a GC.
sla@5237 290 void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
tonyp@3028 291
tonyp@3028 292 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 293 // before a Full GC.
tonyp@1071 294 void abandon_gc_alloc_regions();
ysr@777 295
jmasa@2821 296 // Helper for monitoring and management support.
jmasa@2821 297 G1MonitoringSupport* _g1mm;
jmasa@2821 298
tschatzl@7019 299 // Records whether the region at the given index is kept live by roots or
tschatzl@7019 300 // references from the young generation.
tschatzl@7019 301 class HumongousIsLiveBiasedMappedArray : public G1BiasedMappedArray<bool> {
tschatzl@7019 302 protected:
tschatzl@7019 303 bool default_value() const { return false; }
tschatzl@7019 304 public:
tschatzl@7019 305 void clear() { G1BiasedMappedArray<bool>::clear(); }
tschatzl@7019 306 void set_live(uint region) {
tschatzl@7019 307 set_by_index(region, true);
tschatzl@7019 308 }
tschatzl@7019 309 bool is_live(uint region) {
tschatzl@7019 310 return get_by_index(region);
tschatzl@7019 311 }
tschatzl@7019 312 };
tschatzl@7019 313
tschatzl@7019 314 HumongousIsLiveBiasedMappedArray _humongous_is_live;
tschatzl@7019 315 // Stores whether during humongous object registration we found candidate regions.
tschatzl@7019 316 // If not, we can skip a few steps.
tschatzl@7019 317 bool _has_humongous_reclaim_candidates;
tonyp@961 318
iveresov@788 319 volatile unsigned _gc_time_stamp;
ysr@777 320
ysr@777 321 size_t* _surviving_young_words;
ysr@777 322
tonyp@2975 323 G1HRPrinter _hr_printer;
tonyp@2975 324
ysr@777 325 void setup_surviving_young_words();
ysr@777 326 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 327 void cleanup_surviving_young_words();
ysr@777 328
tonyp@2011 329 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 330 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 331 // explicitly started if:
tonyp@2011 332 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 333 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
brutisso@3456 334 // (c) cause == _g1_humongous_allocation
tonyp@2011 335 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 336
brutisso@3823 337 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 338 // concurrent cycles) we have started.
brutisso@3823 339 volatile unsigned int _old_marking_cycles_started;
brutisso@3823 340
brutisso@3823 341 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 342 // concurrent cycles) we have completed.
brutisso@3823 343 volatile unsigned int _old_marking_cycles_completed;
tonyp@2011 344
sla@5237 345 bool _concurrent_cycle_started;
sla@5237 346
tonyp@2817 347 // This is a non-product method that is helpful for testing. It is
tonyp@2817 348 // called at the end of a GC and artificially expands the heap by
tonyp@2817 349 // allocating a number of dead regions. This way we can induce very
tonyp@2817 350 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 351 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 352 // this method will be found dead by the marking cycle).
tonyp@2817 353 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 354
tonyp@3957 355 // Clear RSets after a compaction. It also resets the GC time stamps.
tonyp@3957 356 void clear_rsets_post_compaction();
tonyp@3957 357
tonyp@3957 358 // If the HR printer is active, dump the state of the regions in the
tonyp@3957 359 // heap after a compaction.
tschatzl@7091 360 void print_hrm_post_compaction();
tonyp@3957 361
brutisso@4015 362 double verify(bool guard, const char* msg);
brutisso@4015 363 void verify_before_gc();
brutisso@4015 364 void verify_after_gc();
brutisso@4015 365
brutisso@4063 366 void log_gc_header();
brutisso@4063 367 void log_gc_footer(double pause_time_sec);
brutisso@4063 368
tonyp@2315 369 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 370 // line number, file, etc.
tonyp@2315 371
tonyp@2643 372 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 373 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 374 (_extra_message_), \
tonyp@2472 375 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 376 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 377 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 378
tonyp@2315 379 #define assert_heap_locked() \
tonyp@2315 380 do { \
tonyp@2315 381 assert(Heap_lock->owned_by_self(), \
tonyp@2315 382 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 383 } while (0)
tonyp@2315 384
tonyp@2643 385 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 386 do { \
tonyp@2315 387 assert(Heap_lock->owned_by_self() || \
tonyp@2472 388 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 389 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 390 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 391 "should be at a safepoint")); \
tonyp@2315 392 } while (0)
tonyp@2315 393
tonyp@2315 394 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 395 do { \
tonyp@2315 396 assert(Heap_lock->owned_by_self() && \
tonyp@2315 397 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 398 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 399 "should not be at a safepoint")); \
tonyp@2315 400 } while (0)
tonyp@2315 401
tonyp@2315 402 #define assert_heap_not_locked() \
tonyp@2315 403 do { \
tonyp@2315 404 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 405 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 406 } while (0)
tonyp@2315 407
tonyp@2315 408 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 409 do { \
tonyp@2315 410 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 411 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 412 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 413 "should not be at a safepoint")); \
tonyp@2315 414 } while (0)
tonyp@2315 415
tonyp@2643 416 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 417 do { \
tonyp@2472 418 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 419 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 420 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 421 } while (0)
tonyp@2315 422
tonyp@2315 423 #define assert_not_at_safepoint() \
tonyp@2315 424 do { \
tonyp@2315 425 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 426 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 427 } while (0)
tonyp@2315 428
ysr@777 429 protected:
ysr@777 430
johnc@3021 431 // The young region list.
ysr@777 432 YoungList* _young_list;
ysr@777 433
ysr@777 434 // The current policy object for the collector.
ysr@777 435 G1CollectorPolicy* _g1_policy;
ysr@777 436
tonyp@2472 437 // This is the second level of trying to allocate a new region. If
tonyp@2715 438 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 439 // check whether there's anything available on the
tonyp@2715 440 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 441 // that list, if _free_regions_coming is set.
jwilhelm@6422 442 HeapRegion* new_region_try_secondary_free_list(bool is_old);
ysr@777 443
tonyp@2643 444 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 445 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 446 // attempt to expand the heap if necessary to satisfy the allocation
jwilhelm@6422 447 // request. If the region is to be used as an old region or for a
jwilhelm@6422 448 // humongous object, set is_old to true. If not, to false.
jwilhelm@6422 449 HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
ysr@777 450
tonyp@2643 451 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 452 // and starting at index first so that they appear as a single
tonyp@2643 453 // humongous region.
tonyp@3713 454 HeapWord* humongous_obj_allocate_initialize_regions(uint first,
tonyp@3713 455 uint num_regions,
sjohanss@7118 456 size_t word_size,
sjohanss@7118 457 AllocationContext_t context);
tonyp@2643 458
tonyp@2643 459 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 460 // NULL if unsuccessful.
sjohanss@7118 461 HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
ysr@777 462
tonyp@2315 463 // The following two methods, allocate_new_tlab() and
tonyp@2315 464 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 465 // into the G1's allocation routines. They have the following
tonyp@2315 466 // assumptions:
tonyp@2315 467 //
tonyp@2315 468 // * They should both be called outside safepoints.
tonyp@2315 469 //
tonyp@2315 470 // * They should both be called without holding the Heap_lock.
tonyp@2315 471 //
tonyp@2315 472 // * All allocation requests for new TLABs should go to
tonyp@2315 473 // allocate_new_tlab().
tonyp@2315 474 //
tonyp@2971 475 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 476 //
tonyp@2315 477 // * If either call cannot satisfy the allocation request using the
tonyp@2315 478 // current allocating region, they will try to get a new one. If
tonyp@2315 479 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 480 // retry the allocation.
tonyp@2315 481 //
tonyp@2315 482 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 483 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 484 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 485 // schedule a Full GC.
tonyp@2315 486 //
tonyp@2315 487 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 488 // should never be called with word_size being humongous. All
tonyp@2315 489 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 490 // will satisfy them with a special path.
ysr@777 491
tonyp@2315 492 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 493
tonyp@2315 494 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 495 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 496
tonyp@2715 497 // The following three methods take a gc_count_before_ret
tonyp@2715 498 // parameter which is used to return the GC count if the method
tonyp@2715 499 // returns NULL. Given that we are required to read the GC count
tonyp@2715 500 // while holding the Heap_lock, and these paths will take the
tonyp@2715 501 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 502 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 503 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 504 // Heap_lock just to read the GC count.
tonyp@2315 505
tonyp@2715 506 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 507 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 508 // should only be used for non-humongous allocations.
tonyp@2715 509 inline HeapWord* attempt_allocation(size_t word_size,
mgerdin@4853 510 unsigned int* gc_count_before_ret,
mgerdin@4853 511 int* gclocker_retry_count_ret);
tonyp@2315 512
tonyp@2715 513 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 514 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 515 // pause. This should only be used for non-humongous allocations.
tonyp@2715 516 HeapWord* attempt_allocation_slow(size_t word_size,
sjohanss@7118 517 AllocationContext_t context,
mgerdin@4853 518 unsigned int* gc_count_before_ret,
mgerdin@4853 519 int* gclocker_retry_count_ret);
tonyp@2315 520
tonyp@2715 521 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 522 // potentially schedule a GC pause.
tonyp@2715 523 HeapWord* attempt_allocation_humongous(size_t word_size,
mgerdin@4853 524 unsigned int* gc_count_before_ret,
mgerdin@4853 525 int* gclocker_retry_count_ret);
tonyp@2454 526
tonyp@2715 527 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 528 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 529 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 530 // or not.
tonyp@2315 531 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
sjohanss@7118 532 AllocationContext_t context,
sjohanss@7118 533 bool expect_null_mutator_alloc_region);
tonyp@2315 534
tonyp@2315 535 // It dirties the cards that cover the block so that so that the post
tonyp@2315 536 // write barrier never queues anything when updating objects on this
tonyp@2315 537 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 538 // belongs to a young region.
tonyp@2315 539 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 540
ysr@777 541 // Allocate blocks during garbage collection. Will ensure an
ysr@777 542 // allocation region, either by picking one or expanding the
ysr@777 543 // heap, and then allocate a block of the given size. The block
ysr@777 544 // may not be a humongous - it must fit into a single heap region.
sjohanss@7118 545 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose,
sjohanss@7118 546 size_t word_size,
sjohanss@7118 547 AllocationContext_t context);
ysr@777 548
tschatzl@6332 549 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
tschatzl@6332 550 HeapRegion* alloc_region,
tschatzl@6332 551 bool par,
tschatzl@6332 552 size_t word_size);
tschatzl@6332 553
ysr@777 554 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 555 // that parallel threads might be attempting allocations.
ysr@777 556 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 557
tonyp@3028 558 // Allocation attempt during GC for a survivor object / PLAB.
sjohanss@7118 559 inline HeapWord* survivor_attempt_allocation(size_t word_size,
sjohanss@7118 560 AllocationContext_t context);
apetrusenko@980 561
tonyp@3028 562 // Allocation attempt during GC for an old object / PLAB.
sjohanss@7118 563 inline HeapWord* old_attempt_allocation(size_t word_size,
sjohanss@7118 564 AllocationContext_t context);
tonyp@2715 565
tonyp@3028 566 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 567
tonyp@3028 568 // For mutator alloc regions.
tonyp@2715 569 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 570 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 571 size_t allocated_bytes);
tonyp@2715 572
tonyp@3028 573 // For GC alloc regions.
tonyp@3713 574 HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
tonyp@3028 575 GCAllocPurpose ap);
tonyp@3028 576 void retire_gc_alloc_region(HeapRegion* alloc_region,
tonyp@3028 577 size_t allocated_bytes, GCAllocPurpose ap);
tonyp@3028 578
tonyp@2011 579 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 580 // inspection request and should collect the entire heap
tonyp@2315 581 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 582 // cleared during the GC
tonyp@2011 583 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 584 // the GC should attempt (at least) to satisfy
tonyp@2315 585 // - it returns false if it is unable to do the collection due to the
tonyp@2315 586 // GC locker being active, true otherwise
tonyp@2315 587 bool do_collection(bool explicit_gc,
tonyp@2011 588 bool clear_all_soft_refs,
ysr@777 589 size_t word_size);
ysr@777 590
ysr@777 591 // Callback from VM_G1CollectFull operation.
ysr@777 592 // Perform a full collection.
coleenp@4037 593 virtual void do_full_collection(bool clear_all_soft_refs);
ysr@777 594
ysr@777 595 // Resize the heap if necessary after a full collection. If this is
ysr@777 596 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 597 // and will be considered part of the used portion of the heap.
ysr@777 598 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 599
ysr@777 600 // Callback from VM_G1CollectForAllocation operation.
ysr@777 601 // This function does everything necessary/possible to satisfy a
ysr@777 602 // failed allocation request (including collection, expansion, etc.)
sjohanss@7118 603 HeapWord* satisfy_failed_allocation(size_t word_size,
sjohanss@7118 604 AllocationContext_t context,
sjohanss@7118 605 bool* succeeded);
ysr@777 606
ysr@777 607 // Attempting to expand the heap sufficiently
ysr@777 608 // to support an allocation of the given "word_size". If
ysr@777 609 // successful, perform the allocation and return the address of the
ysr@777 610 // allocated block, or else "NULL".
sjohanss@7118 611 HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
ysr@777 612
johnc@3175 613 // Process any reference objects discovered during
johnc@3175 614 // an incremental evacuation pause.
johnc@4130 615 void process_discovered_references(uint no_of_gc_workers);
johnc@3175 616
johnc@3175 617 // Enqueue any remaining discovered references
johnc@3175 618 // after processing.
johnc@4130 619 void enqueue_discovered_references(uint no_of_gc_workers);
johnc@3175 620
ysr@777 621 public:
jmasa@2821 622
tonyp@3176 623 G1MonitoringSupport* g1mm() {
tonyp@3176 624 assert(_g1mm != NULL, "should have been initialized");
tonyp@3176 625 return _g1mm;
tonyp@3176 626 }
jmasa@2821 627
ysr@777 628 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 629 // Returns true if the heap was expanded by the requested amount;
johnc@2504 630 // false otherwise.
ysr@777 631 // (Rounds up to a HeapRegion boundary.)
johnc@2504 632 bool expand(size_t expand_bytes);
ysr@777 633
sjohanss@7118 634 // Returns the PLAB statistics given a purpose.
sjohanss@7118 635 PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
sjohanss@7118 636 PLABStats* stats = NULL;
sjohanss@7118 637
sjohanss@7118 638 switch (purpose) {
sjohanss@7118 639 case GCAllocForSurvived:
sjohanss@7118 640 stats = &_survivor_plab_stats;
sjohanss@7118 641 break;
sjohanss@7118 642 case GCAllocForTenured:
sjohanss@7118 643 stats = &_old_plab_stats;
sjohanss@7118 644 break;
sjohanss@7118 645 default:
sjohanss@7118 646 assert(false, "unrecognized GCAllocPurpose");
sjohanss@7118 647 }
sjohanss@7118 648
sjohanss@7118 649 return stats;
sjohanss@7118 650 }
sjohanss@7118 651
sjohanss@7118 652 // Determines PLAB size for a particular allocation purpose.
sjohanss@7118 653 size_t desired_plab_sz(GCAllocPurpose purpose);
sjohanss@7118 654
ysr@777 655 // Do anything common to GC's.
ysr@777 656 virtual void gc_prologue(bool full);
ysr@777 657 virtual void gc_epilogue(bool full);
ysr@777 658
tschatzl@7019 659 inline void set_humongous_is_live(oop obj);
tschatzl@7019 660
tschatzl@7019 661 bool humongous_is_live(uint region) {
tschatzl@7019 662 return _humongous_is_live.is_live(region);
tschatzl@7019 663 }
tschatzl@7019 664
tschatzl@7019 665 // Returns whether the given region (which must be a humongous (start) region)
tschatzl@7019 666 // is to be considered conservatively live regardless of any other conditions.
tschatzl@7019 667 bool humongous_region_is_always_live(uint index);
tschatzl@7019 668 // Register the given region to be part of the collection set.
tschatzl@7019 669 inline void register_humongous_region_with_in_cset_fast_test(uint index);
tschatzl@7019 670 // Register regions with humongous objects (actually on the start region) in
tschatzl@7019 671 // the in_cset_fast_test table.
tschatzl@7019 672 void register_humongous_regions_with_in_cset_fast_test();
tonyp@961 673 // We register a region with the fast "in collection set" test. We
tonyp@961 674 // simply set to true the array slot corresponding to this region.
tonyp@961 675 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tschatzl@7091 676 _in_cset_fast_test.set_in_cset(r->hrm_index());
tonyp@961 677 }
tonyp@961 678
tonyp@961 679 // This is a fast test on whether a reference points into the
tschatzl@6330 680 // collection set or not. Assume that the reference
tschatzl@6330 681 // points into the heap.
tschatzl@6541 682 inline bool in_cset_fast_test(oop obj);
tonyp@961 683
johnc@1829 684 void clear_cset_fast_test() {
tschatzl@6926 685 _in_cset_fast_test.clear();
johnc@1829 686 }
johnc@1829 687
brutisso@3823 688 // This is called at the start of either a concurrent cycle or a Full
brutisso@3823 689 // GC to update the number of old marking cycles started.
brutisso@3823 690 void increment_old_marking_cycles_started();
brutisso@3823 691
tonyp@2011 692 // This is called at the end of either a concurrent cycle or a Full
brutisso@3823 693 // GC to update the number of old marking cycles completed. Those two
tonyp@2011 694 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 695 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 696 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 697 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 698 // tighter consistency checking in the method. If concurrent is
tonyp@2372 699 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 700 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 701 // in this nesting (i.e., the concurrent cycle). Further nesting is
brutisso@3823 702 // not currently supported. The end of this call also notifies
tonyp@2372 703 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 704 // GC to happen (e.g., it called System.gc() with
tonyp@2011 705 // +ExplicitGCInvokesConcurrent).
brutisso@3823 706 void increment_old_marking_cycles_completed(bool concurrent);
tonyp@2011 707
brutisso@3823 708 unsigned int old_marking_cycles_completed() {
brutisso@3823 709 return _old_marking_cycles_completed;
tonyp@2011 710 }
tonyp@2011 711
mgronlun@6131 712 void register_concurrent_cycle_start(const Ticks& start_time);
sla@5237 713 void register_concurrent_cycle_end();
sla@5237 714 void trace_heap_after_concurrent_cycle();
sla@5237 715
sla@5237 716 G1YCType yc_type();
sla@5237 717
tonyp@2975 718 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 719
brutisso@6385 720 // Frees a non-humongous region by initializing its contents and
brutisso@6385 721 // adding it to the free list that's passed as a parameter (this is
brutisso@6385 722 // usually a local list which will be appended to the master free
brutisso@6385 723 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 724 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 725 // up. The assumption is that this will be done later.
tschatzl@6404 726 // The locked parameter indicates if the caller has already taken
tschatzl@6404 727 // care of proper synchronization. This may allow some optimizations.
brutisso@6385 728 void free_region(HeapRegion* hr,
brutisso@6385 729 FreeRegionList* free_list,
tschatzl@6404 730 bool par,
tschatzl@6404 731 bool locked = false);
brutisso@6385 732
brutisso@6385 733 // Frees a humongous region by collapsing it into individual regions
brutisso@6385 734 // and calling free_region() for each of them. The freed regions
brutisso@6385 735 // will be added to the free list that's passed as a parameter (this
brutisso@6385 736 // is usually a local list which will be appended to the master free
brutisso@6385 737 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 738 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 739 // up. The assumption is that this will be done later.
brutisso@6385 740 void free_humongous_region(HeapRegion* hr,
brutisso@6385 741 FreeRegionList* free_list,
brutisso@6385 742 bool par);
ysr@777 743 protected:
ysr@777 744
ysr@777 745 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 746 // (Rounds down to a HeapRegion boundary.)
ysr@777 747 virtual void shrink(size_t expand_bytes);
ysr@777 748 void shrink_helper(size_t expand_bytes);
ysr@777 749
jcoomes@2064 750 #if TASKQUEUE_STATS
jcoomes@2064 751 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 752 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 753 void reset_taskqueue_stats();
jcoomes@2064 754 #endif // TASKQUEUE_STATS
jcoomes@2064 755
tonyp@2315 756 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 757 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 758 // return whether the VM operation was successful (it did do an
tonyp@2315 759 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 760 // locker was active). Given that we should not be holding the
tonyp@2315 761 // Heap_lock when we enter this method, we will pass the
tonyp@2315 762 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 763 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 764 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 765 // before the call, so it's easy to read gc_count_before just before.
brutisso@5581 766 HeapWord* do_collection_pause(size_t word_size,
brutisso@5581 767 unsigned int gc_count_before,
brutisso@5581 768 bool* succeeded,
brutisso@5581 769 GCCause::Cause gc_cause);
ysr@777 770
ysr@777 771 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 772 // thread. It returns false if it is unable to do the collection due
tonyp@2315 773 // to the GC locker being active, true otherwise
tonyp@2315 774 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 775
ysr@777 776 // Actually do the work of evacuating the collection set.
sla@5237 777 void evacuate_collection_set(EvacuationInfo& evacuation_info);
ysr@777 778
ysr@777 779 // The g1 remembered set of the heap.
ysr@777 780 G1RemSet* _g1_rem_set;
ysr@777 781
iveresov@1051 782 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 783 // concurrently after the collection.
iveresov@1051 784 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 785
ysr@777 786 // The closure used to refine a single card.
ysr@777 787 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 788
ysr@777 789 // A function to check the consistency of dirty card logs.
ysr@777 790 void check_ct_logs_at_safepoint();
ysr@777 791
johnc@2060 792 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 793 // references into the current collection set. This is used to
johnc@2060 794 // update the remembered sets of the regions in the collection
johnc@2060 795 // set in the event of an evacuation failure.
johnc@2060 796 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 797
ysr@777 798 // After a collection pause, make the regions in the CS into free
ysr@777 799 // regions.
sla@5237 800 void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
ysr@777 801
johnc@1829 802 // Abandon the current collection set without recording policy
johnc@1829 803 // statistics or updating free lists.
johnc@1829 804 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 805
ysr@777 806 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 807 // "scan_rs" to roots inside the heap (having done "set_region" to
coleenp@4037 808 // indicate the region in which the root resides),
coleenp@4037 809 // and does "scan_metadata" If "scan_rs" is
ysr@777 810 // NULL, then this step is skipped. The "worker_i"
ysr@777 811 // param is for use with parallel roots processing, and should be
ysr@777 812 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 813 // In the sequential case this param will be ignored.
stefank@6992 814 void g1_process_roots(OopClosure* scan_non_heap_roots,
stefank@6992 815 OopClosure* scan_non_heap_weak_roots,
stefank@6992 816 OopsInHeapRegionClosure* scan_rs,
stefank@6992 817 CLDClosure* scan_strong_clds,
stefank@6992 818 CLDClosure* scan_weak_clds,
stefank@6992 819 CodeBlobClosure* scan_strong_code,
stefank@6992 820 uint worker_i);
ysr@777 821
ysr@777 822 // The concurrent marker (and the thread it runs in.)
ysr@777 823 ConcurrentMark* _cm;
ysr@777 824 ConcurrentMarkThread* _cmThread;
ysr@777 825 bool _mark_in_progress;
ysr@777 826
ysr@777 827 // The concurrent refiner.
ysr@777 828 ConcurrentG1Refine* _cg1r;
ysr@777 829
ysr@777 830 // The parallel task queues
ysr@777 831 RefToScanQueueSet *_task_queues;
ysr@777 832
ysr@777 833 // True iff a evacuation has failed in the current collection.
ysr@777 834 bool _evacuation_failed;
ysr@777 835
sla@5237 836 EvacuationFailedInfo* _evacuation_failed_info_array;
ysr@777 837
ysr@777 838 // Failed evacuations cause some logical from-space objects to have
ysr@777 839 // forwarding pointers to themselves. Reset them.
ysr@777 840 void remove_self_forwarding_pointers();
ysr@777 841
brutisso@4579 842 // Together, these store an object with a preserved mark, and its mark value.
brutisso@4579 843 Stack<oop, mtGC> _objs_with_preserved_marks;
brutisso@4579 844 Stack<markOop, mtGC> _preserved_marks_of_objs;
ysr@777 845
ysr@777 846 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 847 // word being overwritten with a self-forwarding-pointer.
ysr@777 848 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 849
ysr@777 850 // The stack of evac-failure objects left to be scanned.
ysr@777 851 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 852 // The closure to apply to evac-failure objects.
ysr@777 853
ysr@777 854 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 855 // Set the field above.
ysr@777 856 void
ysr@777 857 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 858 _evac_failure_closure = evac_failure_closure;
ysr@777 859 }
ysr@777 860
ysr@777 861 // Push "obj" on the scan stack.
ysr@777 862 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 863 // Process scan stack entries until the stack is empty.
ysr@777 864 void drain_evac_failure_scan_stack();
ysr@777 865 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 866 // prevent unnecessary recursion.
ysr@777 867 bool _drain_in_progress;
ysr@777 868
ysr@777 869 // Do any necessary initialization for evacuation-failure handling.
ysr@777 870 // "cl" is the closure that will be used to process evac-failure
ysr@777 871 // objects.
ysr@777 872 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 873 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 874 // structures.
ysr@777 875 void finalize_for_evac_failure();
ysr@777 876
ysr@777 877 // An attempt to evacuate "obj" has failed; take necessary steps.
sla@5237 878 oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
ysr@777 879 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 880
johnc@4016 881 #ifndef PRODUCT
johnc@4016 882 // Support for forcing evacuation failures. Analogous to
johnc@4016 883 // PromotionFailureALot for the other collectors.
johnc@4016 884
johnc@4016 885 // Records whether G1EvacuationFailureALot should be in effect
johnc@4016 886 // for the current GC
johnc@4016 887 bool _evacuation_failure_alot_for_current_gc;
johnc@4016 888
johnc@4016 889 // Used to record the GC number for interval checking when
johnc@4016 890 // determining whether G1EvaucationFailureALot is in effect
johnc@4016 891 // for the current GC.
johnc@4016 892 size_t _evacuation_failure_alot_gc_number;
johnc@4016 893
johnc@4016 894 // Count of the number of evacuations between failures.
johnc@4016 895 volatile size_t _evacuation_failure_alot_count;
johnc@4016 896
johnc@4016 897 // Set whether G1EvacuationFailureALot should be in effect
johnc@4016 898 // for the current GC (based upon the type of GC and which
johnc@4016 899 // command line flags are set);
johnc@4016 900 inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
johnc@4016 901 bool during_initial_mark,
johnc@4016 902 bool during_marking);
johnc@4016 903
johnc@4016 904 inline void set_evacuation_failure_alot_for_current_gc();
johnc@4016 905
johnc@4016 906 // Return true if it's time to cause an evacuation failure.
johnc@4016 907 inline bool evacuation_should_fail();
johnc@4016 908
johnc@4016 909 // Reset the G1EvacuationFailureALot counters. Should be called at
sla@5237 910 // the end of an evacuation pause in which an evacuation failure occurred.
johnc@4016 911 inline void reset_evacuation_should_fail();
johnc@4016 912 #endif // !PRODUCT
johnc@4016 913
johnc@3175 914 // ("Weak") Reference processing support.
johnc@3175 915 //
sla@5237 916 // G1 has 2 instances of the reference processor class. One
johnc@3175 917 // (_ref_processor_cm) handles reference object discovery
johnc@3175 918 // and subsequent processing during concurrent marking cycles.
johnc@3175 919 //
johnc@3175 920 // The other (_ref_processor_stw) handles reference object
johnc@3175 921 // discovery and processing during full GCs and incremental
johnc@3175 922 // evacuation pauses.
johnc@3175 923 //
johnc@3175 924 // During an incremental pause, reference discovery will be
johnc@3175 925 // temporarily disabled for _ref_processor_cm and will be
johnc@3175 926 // enabled for _ref_processor_stw. At the end of the evacuation
johnc@3175 927 // pause references discovered by _ref_processor_stw will be
johnc@3175 928 // processed and discovery will be disabled. The previous
johnc@3175 929 // setting for reference object discovery for _ref_processor_cm
johnc@3175 930 // will be re-instated.
johnc@3175 931 //
johnc@3175 932 // At the start of marking:
johnc@3175 933 // * Discovery by the CM ref processor is verified to be inactive
johnc@3175 934 // and it's discovered lists are empty.
johnc@3175 935 // * Discovery by the CM ref processor is then enabled.
johnc@3175 936 //
johnc@3175 937 // At the end of marking:
johnc@3175 938 // * Any references on the CM ref processor's discovered
johnc@3175 939 // lists are processed (possibly MT).
johnc@3175 940 //
johnc@3175 941 // At the start of full GC we:
johnc@3175 942 // * Disable discovery by the CM ref processor and
johnc@3175 943 // empty CM ref processor's discovered lists
johnc@3175 944 // (without processing any entries).
johnc@3175 945 // * Verify that the STW ref processor is inactive and it's
johnc@3175 946 // discovered lists are empty.
johnc@3175 947 // * Temporarily set STW ref processor discovery as single threaded.
johnc@3175 948 // * Temporarily clear the STW ref processor's _is_alive_non_header
johnc@3175 949 // field.
johnc@3175 950 // * Finally enable discovery by the STW ref processor.
johnc@3175 951 //
johnc@3175 952 // The STW ref processor is used to record any discovered
johnc@3175 953 // references during the full GC.
johnc@3175 954 //
johnc@3175 955 // At the end of a full GC we:
johnc@3175 956 // * Enqueue any reference objects discovered by the STW ref processor
johnc@3175 957 // that have non-live referents. This has the side-effect of
johnc@3175 958 // making the STW ref processor inactive by disabling discovery.
johnc@3175 959 // * Verify that the CM ref processor is still inactive
johnc@3175 960 // and no references have been placed on it's discovered
johnc@3175 961 // lists (also checked as a precondition during initial marking).
johnc@3175 962
johnc@3175 963 // The (stw) reference processor...
johnc@3175 964 ReferenceProcessor* _ref_processor_stw;
johnc@3175 965
sla@5237 966 STWGCTimer* _gc_timer_stw;
sla@5237 967 ConcurrentGCTimer* _gc_timer_cm;
sla@5237 968
sla@5237 969 G1OldTracer* _gc_tracer_cm;
sla@5237 970 G1NewTracer* _gc_tracer_stw;
sla@5237 971
johnc@3175 972 // During reference object discovery, the _is_alive_non_header
johnc@3175 973 // closure (if non-null) is applied to the referent object to
johnc@3175 974 // determine whether the referent is live. If so then the
johnc@3175 975 // reference object does not need to be 'discovered' and can
johnc@3175 976 // be treated as a regular oop. This has the benefit of reducing
johnc@3175 977 // the number of 'discovered' reference objects that need to
johnc@3175 978 // be processed.
johnc@3175 979 //
johnc@3175 980 // Instance of the is_alive closure for embedding into the
johnc@3175 981 // STW reference processor as the _is_alive_non_header field.
johnc@3175 982 // Supplying a value for the _is_alive_non_header field is
johnc@3175 983 // optional but doing so prevents unnecessary additions to
johnc@3175 984 // the discovered lists during reference discovery.
johnc@3175 985 G1STWIsAliveClosure _is_alive_closure_stw;
johnc@3175 986
johnc@3175 987 // The (concurrent marking) reference processor...
johnc@3175 988 ReferenceProcessor* _ref_processor_cm;
johnc@3175 989
johnc@2379 990 // Instance of the concurrent mark is_alive closure for embedding
johnc@3175 991 // into the Concurrent Marking reference processor as the
johnc@3175 992 // _is_alive_non_header field. Supplying a value for the
johnc@3175 993 // _is_alive_non_header field is optional but doing so prevents
johnc@3175 994 // unnecessary additions to the discovered lists during reference
johnc@3175 995 // discovery.
johnc@3175 996 G1CMIsAliveClosure _is_alive_closure_cm;
ysr@777 997
johnc@3336 998 // Cache used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 999 HeapRegion** _worker_cset_start_region;
johnc@3336 1000
johnc@3336 1001 // Time stamp to validate the regions recorded in the cache
johnc@3336 1002 // used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1003 // The heap region entry for a given worker is valid iff
johnc@3336 1004 // the associated time stamp value matches the current value
johnc@3336 1005 // of G1CollectedHeap::_gc_time_stamp.
johnc@3336 1006 unsigned int* _worker_cset_start_region_time_stamp;
johnc@3336 1007
stefank@6992 1008 enum G1H_process_roots_tasks {
tonyp@3416 1009 G1H_PS_filter_satb_buffers,
ysr@777 1010 G1H_PS_refProcessor_oops_do,
ysr@777 1011 // Leave this one last.
ysr@777 1012 G1H_PS_NumElements
ysr@777 1013 };
ysr@777 1014
ysr@777 1015 SubTasksDone* _process_strong_tasks;
ysr@777 1016
tonyp@2472 1017 volatile bool _free_regions_coming;
ysr@777 1018
ysr@777 1019 public:
jmasa@2188 1020
jmasa@2188 1021 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 1022
ysr@777 1023 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 1024
jcoomes@2064 1025 RefToScanQueue *task_queue(int i) const;
ysr@777 1026
iveresov@1051 1027 // A set of cards where updates happened during the GC
iveresov@1051 1028 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 1029
johnc@2060 1030 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 1031 // references into the current collection set. This is used to
johnc@2060 1032 // update the remembered sets of the regions in the collection
johnc@2060 1033 // set in the event of an evacuation failure.
johnc@2060 1034 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 1035 { return _into_cset_dirty_card_queue_set; }
johnc@2060 1036
ysr@777 1037 // Create a G1CollectedHeap with the specified policy.
ysr@777 1038 // Must call the initialize method afterwards.
ysr@777 1039 // May not return if something goes wrong.
ysr@777 1040 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 1041
ysr@777 1042 // Initialize the G1CollectedHeap to have the initial and
coleenp@4037 1043 // maximum sizes and remembered and barrier sets
ysr@777 1044 // specified by the policy object.
ysr@777 1045 jint initialize();
ysr@777 1046
pliden@6690 1047 virtual void stop();
pliden@6690 1048
tschatzl@5701 1049 // Return the (conservative) maximum heap alignment for any G1 heap
tschatzl@5701 1050 static size_t conservative_max_heap_alignment();
tschatzl@5701 1051
johnc@3175 1052 // Initialize weak reference processing.
johnc@2379 1053 virtual void ref_processing_init();
ysr@777 1054
jmasa@3357 1055 void set_par_threads(uint t) {
ysr@777 1056 SharedHeap::set_par_threads(t);
jmasa@3294 1057 // Done in SharedHeap but oddly there are
jmasa@3294 1058 // two _process_strong_tasks's in a G1CollectedHeap
jmasa@3294 1059 // so do it here too.
jmasa@3294 1060 _process_strong_tasks->set_n_threads(t);
jmasa@3294 1061 }
jmasa@3294 1062
jmasa@3294 1063 // Set _n_par_threads according to a policy TBD.
jmasa@3294 1064 void set_par_threads();
jmasa@3294 1065
jmasa@3294 1066 void set_n_termination(int t) {
jmasa@2188 1067 _process_strong_tasks->set_n_threads(t);
ysr@777 1068 }
ysr@777 1069
ysr@777 1070 virtual CollectedHeap::Name kind() const {
ysr@777 1071 return CollectedHeap::G1CollectedHeap;
ysr@777 1072 }
ysr@777 1073
ysr@777 1074 // The current policy object for the collector.
ysr@777 1075 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 1076
coleenp@4037 1077 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
coleenp@4037 1078
ysr@777 1079 // Adaptive size policy. No such thing for g1.
ysr@777 1080 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 1081
ysr@777 1082 // The rem set and barrier set.
ysr@777 1083 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 1084
ysr@777 1085 unsigned get_gc_time_stamp() {
ysr@777 1086 return _gc_time_stamp;
ysr@777 1087 }
ysr@777 1088
goetz@6911 1089 inline void reset_gc_time_stamp();
iveresov@788 1090
tonyp@3957 1091 void check_gc_time_stamps() PRODUCT_RETURN;
tonyp@3957 1092
goetz@6911 1093 inline void increment_gc_time_stamp();
ysr@777 1094
tonyp@3957 1095 // Reset the given region's GC timestamp. If it's starts humongous,
tonyp@3957 1096 // also reset the GC timestamp of its corresponding
tonyp@3957 1097 // continues humongous regions too.
tonyp@3957 1098 void reset_gc_time_stamps(HeapRegion* hr);
tonyp@3957 1099
johnc@2060 1100 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 1101 DirtyCardQueue* into_cset_dcq,
vkempik@6552 1102 bool concurrent, uint worker_i);
ysr@777 1103
ysr@777 1104 // The shared block offset table array.
ysr@777 1105 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 1106
johnc@3175 1107 // Reference Processing accessors
johnc@3175 1108
johnc@3175 1109 // The STW reference processor....
johnc@3175 1110 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
johnc@3175 1111
sla@5237 1112 // The Concurrent Marking reference processor...
johnc@3175 1113 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
ysr@777 1114
sla@5237 1115 ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
sla@5237 1116 G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
sla@5237 1117
ysr@777 1118 virtual size_t capacity() const;
ysr@777 1119 virtual size_t used() const;
tonyp@1281 1120 // This should be called when we're not holding the heap lock. The
tonyp@1281 1121 // result might be a bit inaccurate.
tonyp@1281 1122 size_t used_unlocked() const;
ysr@777 1123 size_t recalculate_used() const;
ysr@777 1124
ysr@777 1125 // These virtual functions do the actual allocation.
ysr@777 1126 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 1127 // allocation, via inlined code (by exporting the address of the top and
ysr@777 1128 // end fields defining the extent of the contiguous allocation region.)
ysr@777 1129 // But G1CollectedHeap doesn't yet support this.
ysr@777 1130
ysr@777 1131 virtual bool is_maximal_no_gc() const {
tschatzl@7091 1132 return _hrm.available() == 0;
ysr@777 1133 }
ysr@777 1134
tschatzl@7050 1135 // The current number of regions in the heap.
tschatzl@7091 1136 uint num_regions() const { return _hrm.length(); }
tonyp@2963 1137
tonyp@2963 1138 // The max number of regions in the heap.
tschatzl@7091 1139 uint max_regions() const { return _hrm.max_length(); }
ysr@777 1140
ysr@777 1141 // The number of regions that are completely free.
tschatzl@7091 1142 uint num_free_regions() const { return _hrm.num_free_regions(); }
ysr@777 1143
ysr@777 1144 // The number of regions that are not completely free.
tschatzl@7050 1145 uint num_used_regions() const { return num_regions() - num_free_regions(); }
tonyp@2963 1146
tonyp@2849 1147 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 1148 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 1149 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 1150 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 1151
brutisso@7005 1152 #ifndef PRODUCT
brutisso@7005 1153 // Make sure that the given bitmap has no marked objects in the
brutisso@7005 1154 // range [from,limit). If it does, print an error message and return
brutisso@7005 1155 // false. Otherwise, just return true. bitmap_name should be "prev"
brutisso@7005 1156 // or "next".
brutisso@7005 1157 bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
brutisso@7005 1158 HeapWord* from, HeapWord* limit);
brutisso@7005 1159
brutisso@7005 1160 // Verify that the prev / next bitmap range [tams,end) for the given
brutisso@7005 1161 // region has no marks. Return true if all is well, false if errors
brutisso@7005 1162 // are detected.
brutisso@7005 1163 bool verify_bitmaps(const char* caller, HeapRegion* hr);
brutisso@7005 1164 #endif // PRODUCT
brutisso@7005 1165
brutisso@7005 1166 // If G1VerifyBitmaps is set, verify that the marking bitmaps for
brutisso@7005 1167 // the given region do not have any spurious marks. If errors are
brutisso@7005 1168 // detected, print appropriate error messages and crash.
brutisso@7005 1169 void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
brutisso@7005 1170
brutisso@7005 1171 // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
brutisso@7005 1172 // have any spurious marks. If errors are detected, print
brutisso@7005 1173 // appropriate error messages and crash.
brutisso@7005 1174 void check_bitmaps(const char* caller) PRODUCT_RETURN;
brutisso@7005 1175
tonyp@2472 1176 // verify_region_sets() performs verification over the region
tonyp@2472 1177 // lists. It will be compiled in the product code to be used when
tonyp@2472 1178 // necessary (i.e., during heap verification).
tonyp@2472 1179 void verify_region_sets();
ysr@777 1180
tonyp@2472 1181 // verify_region_sets_optional() is planted in the code for
tonyp@2472 1182 // list verification in non-product builds (and it can be enabled in
sla@5237 1183 // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 1184 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1185 void verify_region_sets_optional() {
tonyp@2472 1186 verify_region_sets();
tonyp@2472 1187 }
tonyp@2472 1188 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1189 void verify_region_sets_optional() { }
tonyp@2472 1190 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 1191
tonyp@2472 1192 #ifdef ASSERT
tonyp@2643 1193 bool is_on_master_free_list(HeapRegion* hr) {
tschatzl@7091 1194 return _hrm.is_free(hr);
tonyp@2472 1195 }
tonyp@2472 1196 #endif // ASSERT
ysr@777 1197
tonyp@2472 1198 // Wrapper for the region list operations that can be called from
tonyp@2472 1199 // methods outside this class.
ysr@777 1200
jwilhelm@6422 1201 void secondary_free_list_add(FreeRegionList* list) {
jwilhelm@6422 1202 _secondary_free_list.add_ordered(list);
tonyp@2472 1203 }
ysr@777 1204
tonyp@2472 1205 void append_secondary_free_list() {
tschatzl@7091 1206 _hrm.insert_list_into_free_list(&_secondary_free_list);
tonyp@2472 1207 }
ysr@777 1208
tonyp@2643 1209 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1210 // If the secondary free list looks empty there's no reason to
tonyp@2643 1211 // take the lock and then try to append it.
tonyp@2472 1212 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1213 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1214 append_secondary_free_list();
tonyp@2472 1215 }
tonyp@2472 1216 }
ysr@777 1217
tschatzl@6541 1218 inline void old_set_remove(HeapRegion* hr);
tonyp@3268 1219
brutisso@3456 1220 size_t non_young_capacity_bytes() {
brutisso@3456 1221 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
brutisso@3456 1222 }
brutisso@3456 1223
tonyp@2472 1224 void set_free_regions_coming();
tonyp@2472 1225 void reset_free_regions_coming();
tonyp@2472 1226 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1227 void wait_while_free_regions_coming();
ysr@777 1228
tonyp@3539 1229 // Determine whether the given region is one that we are using as an
tonyp@3539 1230 // old GC alloc region.
tonyp@3539 1231 bool is_old_gc_alloc_region(HeapRegion* hr) {
sjohanss@7118 1232 return _allocator->is_retained_old_region(hr);
tonyp@3539 1233 }
tonyp@3539 1234
ysr@777 1235 // Perform a collection of the heap; intended for use in implementing
ysr@777 1236 // "System.gc". This probably implies as full a collection as the
ysr@777 1237 // "CollectedHeap" supports.
ysr@777 1238 virtual void collect(GCCause::Cause cause);
ysr@777 1239
ysr@777 1240 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1241 void collect_locked(GCCause::Cause cause);
ysr@777 1242
sla@5237 1243 // True iff an evacuation has failed in the most-recent collection.
ysr@777 1244 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1245
brutisso@6385 1246 void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
brutisso@6385 1247 void prepend_to_freelist(FreeRegionList* list);
brutisso@6385 1248 void decrement_summary_bytes(size_t bytes);
ysr@777 1249
stefank@3335 1250 // Returns "TRUE" iff "p" points into the committed areas of the heap.
ysr@777 1251 virtual bool is_in(const void* p) const;
tschatzl@7051 1252 #ifdef ASSERT
tschatzl@7051 1253 // Returns whether p is in one of the available areas of the heap. Slow but
tschatzl@7051 1254 // extensive version.
tschatzl@7051 1255 bool is_in_exact(const void* p) const;
tschatzl@7051 1256 #endif
ysr@777 1257
ysr@777 1258 // Return "TRUE" iff the given object address is within the collection
tschatzl@7019 1259 // set. Slow implementation.
ysr@777 1260 inline bool obj_in_cs(oop obj);
ysr@777 1261
tschatzl@7019 1262 inline bool is_in_cset(oop obj);
tschatzl@7019 1263
tschatzl@7019 1264 inline bool is_in_cset_or_humongous(const oop obj);
tschatzl@7019 1265
tschatzl@7019 1266 enum in_cset_state_t {
tschatzl@7019 1267 InNeither, // neither in collection set nor humongous
tschatzl@7019 1268 InCSet, // region is in collection set only
tschatzl@7019 1269 IsHumongous // region is a humongous start region
tschatzl@7019 1270 };
tschatzl@7019 1271 private:
tschatzl@7019 1272 // Instances of this class are used for quick tests on whether a reference points
tschatzl@7019 1273 // into the collection set or is a humongous object (points into a humongous
tschatzl@7019 1274 // object).
tschatzl@7019 1275 // Each of the array's elements denotes whether the corresponding region is in
tschatzl@7019 1276 // the collection set or a humongous region.
tschatzl@7019 1277 // We use this to quickly reclaim humongous objects: by making a humongous region
tschatzl@7019 1278 // succeed this test, we sort-of add it to the collection set. During the reference
tschatzl@7019 1279 // iteration closures, when we see a humongous region, we simply mark it as
tschatzl@7019 1280 // referenced, i.e. live.
tschatzl@7019 1281 class G1FastCSetBiasedMappedArray : public G1BiasedMappedArray<char> {
tschatzl@7019 1282 protected:
tschatzl@7019 1283 char default_value() const { return G1CollectedHeap::InNeither; }
tschatzl@7019 1284 public:
tschatzl@7019 1285 void set_humongous(uintptr_t index) {
tschatzl@7019 1286 assert(get_by_index(index) != InCSet, "Should not overwrite InCSet values");
tschatzl@7019 1287 set_by_index(index, G1CollectedHeap::IsHumongous);
tschatzl@7019 1288 }
tschatzl@7019 1289
tschatzl@7019 1290 void clear_humongous(uintptr_t index) {
tschatzl@7019 1291 set_by_index(index, G1CollectedHeap::InNeither);
tschatzl@7019 1292 }
tschatzl@7019 1293
tschatzl@7019 1294 void set_in_cset(uintptr_t index) {
tschatzl@7019 1295 assert(get_by_index(index) != G1CollectedHeap::IsHumongous, "Should not overwrite IsHumongous value");
tschatzl@7019 1296 set_by_index(index, G1CollectedHeap::InCSet);
tschatzl@7019 1297 }
tschatzl@7019 1298
tschatzl@7019 1299 bool is_in_cset_or_humongous(HeapWord* addr) const { return get_by_address(addr) != G1CollectedHeap::InNeither; }
tschatzl@7019 1300 bool is_in_cset(HeapWord* addr) const { return get_by_address(addr) == G1CollectedHeap::InCSet; }
tschatzl@7019 1301 G1CollectedHeap::in_cset_state_t at(HeapWord* addr) const { return (G1CollectedHeap::in_cset_state_t)get_by_address(addr); }
tschatzl@7019 1302 void clear() { G1BiasedMappedArray<char>::clear(); }
tschatzl@7019 1303 };
tschatzl@7019 1304
tschatzl@7019 1305 // This array is used for a quick test on whether a reference points into
tschatzl@7019 1306 // the collection set or not. Each of the array's elements denotes whether the
tschatzl@7019 1307 // corresponding region is in the collection set or not.
tschatzl@7019 1308 G1FastCSetBiasedMappedArray _in_cset_fast_test;
tschatzl@7019 1309
tschatzl@7019 1310 public:
tschatzl@7019 1311
tschatzl@7019 1312 inline in_cset_state_t in_cset_state(const oop obj);
tschatzl@7019 1313
ysr@777 1314 // Return "TRUE" iff the given object address is in the reserved
coleenp@4037 1315 // region of g1.
ysr@777 1316 bool is_in_g1_reserved(const void* p) const {
tschatzl@7091 1317 return _hrm.reserved().contains(p);
ysr@777 1318 }
ysr@777 1319
tonyp@2717 1320 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1321 // reserved for the heap
tschatzl@7050 1322 MemRegion g1_reserved() const {
tschatzl@7091 1323 return _hrm.reserved();
tonyp@2717 1324 }
tonyp@2717 1325
johnc@2593 1326 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1327
tschatzl@7051 1328 G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
tschatzl@7051 1329 return (G1SATBCardTableLoggingModRefBS*) barrier_set();
mgerdin@5811 1330 }
mgerdin@5811 1331
ysr@777 1332 // This resets the card table to all zeros. It is used after
ysr@777 1333 // a collection pause which used the card table to claim cards.
ysr@777 1334 void cleanUpCardTable();
ysr@777 1335
ysr@777 1336 // Iteration functions.
ysr@777 1337
ysr@777 1338 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1339 // "cl.do_oop" on each.
coleenp@4037 1340 virtual void oop_iterate(ExtendedOopClosure* cl);
ysr@777 1341
ysr@777 1342 // Iterate over all objects, calling "cl.do_object" on each.
coleenp@4037 1343 virtual void object_iterate(ObjectClosure* cl);
coleenp@4037 1344
coleenp@4037 1345 virtual void safe_object_iterate(ObjectClosure* cl) {
coleenp@4037 1346 object_iterate(cl);
iveresov@1113 1347 }
ysr@777 1348
ysr@777 1349 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1350 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1351
ysr@777 1352 // Iterate over heap regions, in address order, terminating the
ysr@777 1353 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1354 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1355
tonyp@2963 1356 // Return the region with the given index. It assumes the index is valid.
tschatzl@6541 1357 inline HeapRegion* region_at(uint index) const;
ysr@777 1358
tschatzl@7019 1359 // Calculate the region index of the given address. Given address must be
tschatzl@7019 1360 // within the heap.
tschatzl@7019 1361 inline uint addr_to_region(HeapWord* addr) const;
tschatzl@7019 1362
tschatzl@7050 1363 inline HeapWord* bottom_addr_for_region(uint index) const;
tschatzl@7050 1364
ysr@777 1365 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1366 // of regions divided by the number of parallel threads times some
ysr@777 1367 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1368 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1369 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1370 // calls will use the same "claim_value", and that that claim value is
ysr@777 1371 // different from the claim_value of any heap region before the start of
ysr@777 1372 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1373 // attempting to claim the first region in each chunk, and, if
ysr@777 1374 // successful, applying the closure to each region in the chunk (and
ysr@777 1375 // setting the claim value of the second and subsequent regions of the
ysr@777 1376 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1377 // i.e., that a closure never attempt to abort a traversal.
tschatzl@7050 1378 void heap_region_par_iterate_chunked(HeapRegionClosure* cl,
tschatzl@7050 1379 uint worker_id,
tschatzl@7050 1380 uint num_workers,
tschatzl@7050 1381 jint claim_value) const;
ysr@777 1382
tonyp@825 1383 // It resets all the region claim values to the default.
tonyp@825 1384 void reset_heap_region_claim_values();
tonyp@825 1385
johnc@3412 1386 // Resets the claim values of regions in the current
johnc@3412 1387 // collection set to the default.
johnc@3412 1388 void reset_cset_heap_region_claim_values();
johnc@3412 1389
tonyp@790 1390 #ifdef ASSERT
tonyp@790 1391 bool check_heap_region_claim_values(jint claim_value);
johnc@3296 1392
johnc@3296 1393 // Same as the routine above but only checks regions in the
johnc@3296 1394 // current collection set.
johnc@3296 1395 bool check_cset_heap_region_claim_values(jint claim_value);
tonyp@790 1396 #endif // ASSERT
tonyp@790 1397
johnc@3336 1398 // Clear the cached cset start regions and (more importantly)
johnc@3336 1399 // the time stamps. Called when we reset the GC time stamp.
johnc@3336 1400 void clear_cset_start_regions();
johnc@3336 1401
johnc@3336 1402 // Given the id of a worker, obtain or calculate a suitable
johnc@3336 1403 // starting region for iterating over the current collection set.
vkempik@6552 1404 HeapRegion* start_cset_region_for_worker(uint worker_i);
johnc@3296 1405
ysr@777 1406 // Iterate over the regions (if any) in the current collection set.
ysr@777 1407 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1408
ysr@777 1409 // As above but starting from region r
ysr@777 1410 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1411
tschatzl@7018 1412 HeapRegion* next_compaction_region(const HeapRegion* from) const;
ysr@777 1413
ysr@777 1414 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1415 // space containing a given address, or else returns NULL.
ysr@777 1416 virtual Space* space_containing(const void* addr) const;
ysr@777 1417
brutisso@7049 1418 // Returns the HeapRegion that contains addr. addr must not be NULL.
brutisso@7049 1419 template <class T>
brutisso@7049 1420 inline HeapRegion* heap_region_containing_raw(const T addr) const;
brutisso@7049 1421
brutisso@7049 1422 // Returns the HeapRegion that contains addr. addr must not be NULL.
brutisso@7049 1423 // If addr is within a humongous continues region, it returns its humongous start region.
tonyp@2963 1424 template <class T>
tonyp@2963 1425 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1426
ysr@777 1427 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1428 // each address in the (reserved) heap is a member of exactly
ysr@777 1429 // one block. The defining characteristic of a block is that it is
ysr@777 1430 // possible to find its size, and thus to progress forward to the next
ysr@777 1431 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1432 // represent Java objects, or they might be free blocks in a
ysr@777 1433 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1434 // distinguishable and the size of each is determinable.
ysr@777 1435
ysr@777 1436 // Returns the address of the start of the "block" that contains the
ysr@777 1437 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1438 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1439 // non-object.
ysr@777 1440 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1441
ysr@777 1442 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1443 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1444 // of the active area of the heap.
ysr@777 1445 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1446
ysr@777 1447 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1448 // the block is an object.
ysr@777 1449 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1450
ysr@777 1451 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1452 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1453
ysr@777 1454 // Section on thread-local allocation buffers (TLABs)
ysr@777 1455 // See CollectedHeap for semantics.
ysr@777 1456
brutisso@6376 1457 bool supports_tlab_allocation() const;
brutisso@6376 1458 size_t tlab_capacity(Thread* ignored) const;
brutisso@6376 1459 size_t tlab_used(Thread* ignored) const;
brutisso@6376 1460 size_t max_tlab_size() const;
brutisso@6376 1461 size_t unsafe_max_tlab_alloc(Thread* ignored) const;
ysr@777 1462
ysr@777 1463 // Can a compiler initialize a new object without store barriers?
ysr@777 1464 // This permission only extends from the creation of a new object
ysr@1462 1465 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1466 // is granted for this heap type, the compiler promises to call
ysr@1462 1467 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1468 // a new object for which such initializing store barriers will
ysr@1462 1469 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1470 // ready to provide a compensating write barrier as necessary
ysr@1462 1471 // if that storage came out of a non-young region. The efficiency
ysr@1462 1472 // of this implementation depends crucially on being able to
ysr@1462 1473 // answer very efficiently in constant time whether a piece of
ysr@1462 1474 // storage in the heap comes from a young region or not.
ysr@1462 1475 // See ReduceInitialCardMarks.
ysr@777 1476 virtual bool can_elide_tlab_store_barriers() const {
brutisso@3184 1477 return true;
ysr@1462 1478 }
ysr@1462 1479
ysr@1601 1480 virtual bool card_mark_must_follow_store() const {
ysr@1601 1481 return true;
ysr@1601 1482 }
ysr@1601 1483
tschatzl@6541 1484 inline bool is_in_young(const oop obj);
ysr@1462 1485
jmasa@2909 1486 #ifdef ASSERT
jmasa@2909 1487 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1488 #endif
jmasa@2909 1489
jmasa@2909 1490 virtual bool is_scavengable(const void* addr);
jmasa@2909 1491
ysr@1462 1492 // We don't need barriers for initializing stores to objects
ysr@1462 1493 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1494 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1495 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1496 // information for young gen objects.
tschatzl@6541 1497 virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
ysr@777 1498
ysr@777 1499 // Returns "true" iff the given word_size is "very large".
ysr@777 1500 static bool isHumongous(size_t word_size) {
johnc@1748 1501 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1502 // are capped at the humongous thresold and we want to
johnc@1748 1503 // ensure that we don't try to allocate a TLAB as
johnc@1748 1504 // humongous and that we don't allocate a humongous
johnc@1748 1505 // object in a TLAB.
johnc@1748 1506 return word_size > _humongous_object_threshold_in_words;
ysr@777 1507 }
ysr@777 1508
ysr@777 1509 // Update mod union table with the set of dirty cards.
ysr@777 1510 void updateModUnion();
ysr@777 1511
ysr@777 1512 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1513 // that this is always a safe operation, since it doesn't clear any
ysr@777 1514 // bits.
ysr@777 1515 void markModUnionRange(MemRegion mr);
ysr@777 1516
ysr@777 1517 // Records the fact that a marking phase is no longer in progress.
ysr@777 1518 void set_marking_complete() {
ysr@777 1519 _mark_in_progress = false;
ysr@777 1520 }
ysr@777 1521 void set_marking_started() {
ysr@777 1522 _mark_in_progress = true;
ysr@777 1523 }
ysr@777 1524 bool mark_in_progress() {
ysr@777 1525 return _mark_in_progress;
ysr@777 1526 }
ysr@777 1527
ysr@777 1528 // Print the maximum heap capacity.
ysr@777 1529 virtual size_t max_capacity() const;
ysr@777 1530
ysr@777 1531 virtual jlong millis_since_last_gc();
ysr@777 1532
tonyp@2974 1533
ysr@777 1534 // Convenience function to be used in situations where the heap type can be
ysr@777 1535 // asserted to be this type.
ysr@777 1536 static G1CollectedHeap* heap();
ysr@777 1537
ysr@777 1538 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1539 // add appropriate methods for any other surv rate groups
ysr@777 1540
brutisso@6376 1541 YoungList* young_list() const { return _young_list; }
ysr@777 1542
ysr@777 1543 // debugging
ysr@777 1544 bool check_young_list_well_formed() {
ysr@777 1545 return _young_list->check_list_well_formed();
ysr@777 1546 }
johnc@1829 1547
johnc@1829 1548 bool check_young_list_empty(bool check_heap,
ysr@777 1549 bool check_sample = true);
ysr@777 1550
ysr@777 1551 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1552 // many of these need to be public.
ysr@777 1553
ysr@777 1554 // The functions below are helper functions that a subclass of
ysr@777 1555 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1556 // functions.
ysr@777 1557 // This performs a concurrent marking of the live objects in a
ysr@777 1558 // bitmap off to the side.
ysr@777 1559 void doConcurrentMark();
ysr@777 1560
ysr@777 1561 bool isMarkedPrev(oop obj) const;
ysr@777 1562 bool isMarkedNext(oop obj) const;
ysr@777 1563
ysr@777 1564 // Determine if an object is dead, given the object and also
ysr@777 1565 // the region to which the object belongs. An object is dead
ysr@777 1566 // iff a) it was not allocated since the last mark and b) it
ysr@777 1567 // is not marked.
ysr@777 1568 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1569 return
ysr@777 1570 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1571 !isMarkedPrev(obj);
ysr@777 1572 }
ysr@777 1573
ysr@777 1574 // This function returns true when an object has been
ysr@777 1575 // around since the previous marking and hasn't yet
ysr@777 1576 // been marked during this marking.
ysr@777 1577 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1578 return
ysr@777 1579 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1580 !isMarkedNext(obj);
ysr@777 1581 }
ysr@777 1582
ysr@777 1583 // Determine if an object is dead, given only the object itself.
ysr@777 1584 // This will find the region to which the object belongs and
ysr@777 1585 // then call the region version of the same function.
ysr@777 1586
ysr@777 1587 // Added if it is NULL it isn't dead.
ysr@777 1588
tschatzl@6541 1589 inline bool is_obj_dead(const oop obj) const;
ysr@777 1590
tschatzl@6541 1591 inline bool is_obj_ill(const oop obj) const;
ysr@777 1592
johnc@5548 1593 bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
johnc@5548 1594 HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
johnc@5548 1595 bool is_marked(oop obj, VerifyOption vo);
johnc@5548 1596 const char* top_at_mark_start_str(VerifyOption vo);
johnc@5548 1597
johnc@5548 1598 ConcurrentMark* concurrent_mark() const { return _cm; }
johnc@5548 1599
johnc@5548 1600 // Refinement
johnc@5548 1601
johnc@5548 1602 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
johnc@5548 1603
johnc@5548 1604 // The dirty cards region list is used to record a subset of regions
johnc@5548 1605 // whose cards need clearing. The list if populated during the
johnc@5548 1606 // remembered set scanning and drained during the card table
johnc@5548 1607 // cleanup. Although the methods are reentrant, population/draining
johnc@5548 1608 // phases must not overlap. For synchronization purposes the last
johnc@5548 1609 // element on the list points to itself.
johnc@5548 1610 HeapRegion* _dirty_cards_region_list;
johnc@5548 1611 void push_dirty_cards_region(HeapRegion* hr);
johnc@5548 1612 HeapRegion* pop_dirty_cards_region();
johnc@5548 1613
johnc@5548 1614 // Optimized nmethod scanning support routines
johnc@5548 1615
johnc@5548 1616 // Register the given nmethod with the G1 heap
johnc@5548 1617 virtual void register_nmethod(nmethod* nm);
johnc@5548 1618
johnc@5548 1619 // Unregister the given nmethod from the G1 heap
johnc@5548 1620 virtual void unregister_nmethod(nmethod* nm);
johnc@5548 1621
johnc@5548 1622 // Migrate the nmethods in the code root lists of the regions
johnc@5548 1623 // in the collection set to regions in to-space. In the event
johnc@5548 1624 // of an evacuation failure, nmethods that reference objects
johnc@5548 1625 // that were not successfullly evacuated are not migrated.
johnc@5548 1626 void migrate_strong_code_roots();
johnc@5548 1627
tschatzl@6402 1628 // Free up superfluous code root memory.
tschatzl@6402 1629 void purge_code_root_memory();
tschatzl@6402 1630
johnc@5548 1631 // Rebuild the stong code root lists for each region
johnc@5548 1632 // after a full GC
johnc@5548 1633 void rebuild_strong_code_roots();
johnc@5548 1634
tschatzl@6229 1635 // Delete entries for dead interned string and clean up unreferenced symbols
tschatzl@6229 1636 // in symbol table, possibly in parallel.
tschatzl@6229 1637 void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
tschatzl@6229 1638
stefank@6992 1639 // Parallel phase of unloading/cleaning after G1 concurrent mark.
stefank@6992 1640 void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
stefank@6992 1641
tschatzl@6405 1642 // Redirty logged cards in the refinement queue.
tschatzl@6405 1643 void redirty_logged_cards();
johnc@5548 1644 // Verification
johnc@5548 1645
johnc@5548 1646 // The following is just to alert the verification code
johnc@5548 1647 // that a full collection has occurred and that the
johnc@5548 1648 // remembered sets are no longer up to date.
johnc@5548 1649 bool _full_collection;
johnc@5548 1650 void set_full_collection() { _full_collection = true;}
johnc@5548 1651 void clear_full_collection() {_full_collection = false;}
johnc@5548 1652 bool full_collection() {return _full_collection;}
johnc@5548 1653
johnc@5548 1654 // Perform any cleanup actions necessary before allowing a verification.
johnc@5548 1655 virtual void prepare_for_verify();
johnc@5548 1656
johnc@5548 1657 // Perform verification.
johnc@5548 1658
johnc@5548 1659 // vo == UsePrevMarking -> use "prev" marking information,
johnc@5548 1660 // vo == UseNextMarking -> use "next" marking information
johnc@5548 1661 // vo == UseMarkWord -> use the mark word in the object header
johnc@5548 1662 //
johnc@5548 1663 // NOTE: Only the "prev" marking information is guaranteed to be
johnc@5548 1664 // consistent most of the time, so most calls to this should use
johnc@5548 1665 // vo == UsePrevMarking.
johnc@5548 1666 // Currently, there is only one case where this is called with
johnc@5548 1667 // vo == UseNextMarking, which is to verify the "next" marking
johnc@5548 1668 // information at the end of remark.
johnc@5548 1669 // Currently there is only one place where this is called with
johnc@5548 1670 // vo == UseMarkWord, which is to verify the marking during a
johnc@5548 1671 // full GC.
johnc@5548 1672 void verify(bool silent, VerifyOption vo);
johnc@5548 1673
johnc@5548 1674 // Override; it uses the "prev" marking information
johnc@5548 1675 virtual void verify(bool silent);
johnc@5548 1676
tonyp@3957 1677 // The methods below are here for convenience and dispatch the
tonyp@3957 1678 // appropriate method depending on value of the given VerifyOption
johnc@5548 1679 // parameter. The values for that parameter, and their meanings,
johnc@5548 1680 // are the same as those above.
tonyp@3957 1681
tonyp@3957 1682 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1683 const HeapRegion* hr,
tschatzl@6541 1684 const VerifyOption vo) const;
tonyp@3957 1685
tonyp@3957 1686 bool is_obj_dead_cond(const oop obj,
tschatzl@6541 1687 const VerifyOption vo) const;
tonyp@3957 1688
johnc@5548 1689 // Printing
tonyp@3957 1690
johnc@5548 1691 virtual void print_on(outputStream* st) const;
johnc@5548 1692 virtual void print_extended_on(outputStream* st) const;
johnc@5548 1693 virtual void print_on_error(outputStream* st) const;
ysr@777 1694
johnc@5548 1695 virtual void print_gc_threads_on(outputStream* st) const;
johnc@5548 1696 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1697
johnc@5548 1698 // Override
johnc@5548 1699 void print_tracing_info() const;
johnc@5548 1700
johnc@5548 1701 // The following two methods are helpful for debugging RSet issues.
johnc@5548 1702 void print_cset_rsets() PRODUCT_RETURN;
johnc@5548 1703 void print_all_rsets() PRODUCT_RETURN;
apetrusenko@1231 1704
ysr@777 1705 public:
ysr@777 1706 size_t pending_card_num();
ysr@777 1707 size_t cards_scanned();
ysr@777 1708
ysr@777 1709 protected:
ysr@777 1710 size_t _max_heap_capacity;
ysr@777 1711 };
ysr@777 1712
stefank@2314 1713 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial