src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Wed, 15 Apr 2015 12:16:01 -0400

author
kbarrett
date
Wed, 15 Apr 2015 12:16:01 -0400
changeset 7830
b7c8142a9e0b
parent 7828
cbc7c4c9e11c
child 7835
e5406a79ae90
permissions
-rw-r--r--

8069367: Eagerly reclaimed humongous objects left on mark stack
Summary: Prevent eager reclaim of objects that might be on mark stack.
Reviewed-by: brutisso, tschatzl

mgerdin@7208 1 /*
mlarsson@7686 2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
sjohanss@7118 28 #include "gc_implementation/g1/g1AllocationContext.hpp"
sjohanss@7118 29 #include "gc_implementation/g1/g1Allocator.hpp"
stefank@2314 30 #include "gc_implementation/g1/concurrentMark.hpp"
sla@5237 31 #include "gc_implementation/g1/evacuationInfo.hpp"
tonyp@2715 32 #include "gc_implementation/g1/g1AllocRegion.hpp"
tschatzl@6926 33 #include "gc_implementation/g1/g1BiasedArray.hpp"
tonyp@2975 34 #include "gc_implementation/g1/g1HRPrinter.hpp"
tschatzl@7651 35 #include "gc_implementation/g1/g1InCSetState.hpp"
sla@5237 36 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
mgerdin@5811 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
sla@5237 38 #include "gc_implementation/g1/g1YCTypes.hpp"
tschatzl@7091 39 #include "gc_implementation/g1/heapRegionManager.hpp"
brutisso@6385 40 #include "gc_implementation/g1/heapRegionSet.hpp"
jmasa@2821 41 #include "gc_implementation/shared/hSpaceCounters.hpp"
johnc@3982 42 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
stefank@2314 43 #include "memory/barrierSet.hpp"
stefank@2314 44 #include "memory/memRegion.hpp"
stefank@2314 45 #include "memory/sharedHeap.hpp"
brutisso@4579 46 #include "utilities/stack.hpp"
stefank@2314 47
ysr@777 48 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 49 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 50 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 51 // heap subsets that will yield large amounts of garbage.
ysr@777 52
johnc@5548 53 // Forward declarations
ysr@777 54 class HeapRegion;
tonyp@2493 55 class HRRSCleanupTask;
ysr@777 56 class GenerationSpec;
ysr@777 57 class OopsInHeapRegionClosure;
coleenp@4037 58 class G1KlassScanClosure;
ysr@777 59 class G1ScanHeapEvacClosure;
ysr@777 60 class ObjectClosure;
ysr@777 61 class SpaceClosure;
ysr@777 62 class CompactibleSpaceClosure;
ysr@777 63 class Space;
ysr@777 64 class G1CollectorPolicy;
ysr@777 65 class GenRemSet;
ysr@777 66 class G1RemSet;
ysr@777 67 class HeapRegionRemSetIterator;
ysr@777 68 class ConcurrentMark;
ysr@777 69 class ConcurrentMarkThread;
ysr@777 70 class ConcurrentG1Refine;
sla@5237 71 class ConcurrentGCTimer;
jmasa@2821 72 class GenerationCounters;
sla@5237 73 class STWGCTimer;
sla@5237 74 class G1NewTracer;
sla@5237 75 class G1OldTracer;
sla@5237 76 class EvacuationFailedInfo;
johnc@5548 77 class nmethod;
mgronlun@6131 78 class Ticks;
ysr@777 79
zgu@3900 80 typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
zgu@3900 81 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
ysr@777 82
johnc@1242 83 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 84 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 85
zgu@3900 86 class YoungList : public CHeapObj<mtGC> {
ysr@777 87 private:
ysr@777 88 G1CollectedHeap* _g1h;
ysr@777 89
ysr@777 90 HeapRegion* _head;
ysr@777 91
johnc@1829 92 HeapRegion* _survivor_head;
johnc@1829 93 HeapRegion* _survivor_tail;
johnc@1829 94
johnc@1829 95 HeapRegion* _curr;
johnc@1829 96
tonyp@3713 97 uint _length;
tonyp@3713 98 uint _survivor_length;
ysr@777 99
ysr@777 100 size_t _last_sampled_rs_lengths;
ysr@777 101 size_t _sampled_rs_lengths;
ysr@777 102
johnc@1829 103 void empty_list(HeapRegion* list);
ysr@777 104
ysr@777 105 public:
ysr@777 106 YoungList(G1CollectedHeap* g1h);
ysr@777 107
johnc@1829 108 void push_region(HeapRegion* hr);
johnc@1829 109 void add_survivor_region(HeapRegion* hr);
johnc@1829 110
johnc@1829 111 void empty_list();
johnc@1829 112 bool is_empty() { return _length == 0; }
tonyp@3713 113 uint length() { return _length; }
tonyp@3713 114 uint survivor_length() { return _survivor_length; }
ysr@777 115
tonyp@2961 116 // Currently we do not keep track of the used byte sum for the
tonyp@2961 117 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 118 // do so. When we'll eventually replace the young list with
tonyp@2961 119 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 120 // we'll report the more accurate information then.
tonyp@2961 121 size_t eden_used_bytes() {
tonyp@2961 122 assert(length() >= survivor_length(), "invariant");
tonyp@3713 123 return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 124 }
tonyp@2961 125 size_t survivor_used_bytes() {
tonyp@3713 126 return (size_t) survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 127 }
tonyp@2961 128
ysr@777 129 void rs_length_sampling_init();
ysr@777 130 bool rs_length_sampling_more();
ysr@777 131 void rs_length_sampling_next();
ysr@777 132
ysr@777 133 void reset_sampled_info() {
ysr@777 134 _last_sampled_rs_lengths = 0;
ysr@777 135 }
ysr@777 136 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 137
ysr@777 138 // for development purposes
ysr@777 139 void reset_auxilary_lists();
johnc@1829 140 void clear() { _head = NULL; _length = 0; }
johnc@1829 141
johnc@1829 142 void clear_survivors() {
johnc@1829 143 _survivor_head = NULL;
johnc@1829 144 _survivor_tail = NULL;
johnc@1829 145 _survivor_length = 0;
johnc@1829 146 }
johnc@1829 147
ysr@777 148 HeapRegion* first_region() { return _head; }
ysr@777 149 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 150 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 151
ysr@777 152 // debugging
ysr@777 153 bool check_list_well_formed();
johnc@1829 154 bool check_list_empty(bool check_sample = true);
ysr@777 155 void print();
ysr@777 156 };
ysr@777 157
johnc@5548 158 // The G1 STW is alive closure.
johnc@5548 159 // An instance is embedded into the G1CH and used as the
johnc@5548 160 // (optional) _is_alive_non_header closure in the STW
johnc@5548 161 // reference processor. It is also extensively used during
johnc@5548 162 // reference processing during STW evacuation pauses.
johnc@5548 163 class G1STWIsAliveClosure: public BoolObjectClosure {
johnc@5548 164 G1CollectedHeap* _g1;
johnc@5548 165 public:
johnc@5548 166 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
johnc@5548 167 bool do_object_b(oop p);
johnc@5548 168 };
johnc@5548 169
ysr@777 170 class RefineCardTableEntryClosure;
johnc@3175 171
tschatzl@7051 172 class G1RegionMappingChangedListener : public G1MappingChangedListener {
tschatzl@7051 173 private:
tschatzl@7051 174 void reset_from_card_cache(uint start_idx, size_t num_regions);
tschatzl@7051 175 public:
tschatzl@7257 176 virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
tschatzl@7051 177 };
tschatzl@7051 178
ysr@777 179 class G1CollectedHeap : public SharedHeap {
stefank@6992 180 friend class VM_CollectForMetadataAllocation;
ysr@777 181 friend class VM_G1CollectForAllocation;
ysr@777 182 friend class VM_G1CollectFull;
ysr@777 183 friend class VM_G1IncCollectionPause;
ysr@777 184 friend class VMStructs;
tonyp@2715 185 friend class MutatorAllocRegion;
tonyp@3028 186 friend class SurvivorGCAllocRegion;
tonyp@3028 187 friend class OldGCAllocRegion;
sjohanss@7118 188 friend class G1Allocator;
sjohanss@7118 189 friend class G1DefaultAllocator;
sjohanss@7118 190 friend class G1ResManAllocator;
ysr@777 191
ysr@777 192 // Closures used in implementation.
stefank@6992 193 template <G1Barrier barrier, G1Mark do_mark_object>
brutisso@3690 194 friend class G1ParCopyClosure;
ysr@777 195 friend class G1IsAliveClosure;
ysr@777 196 friend class G1EvacuateFollowersClosure;
ysr@777 197 friend class G1ParScanThreadState;
ysr@777 198 friend class G1ParScanClosureSuper;
ysr@777 199 friend class G1ParEvacuateFollowersClosure;
ysr@777 200 friend class G1ParTask;
sjohanss@7118 201 friend class G1ParGCAllocator;
sjohanss@7118 202 friend class G1DefaultParGCAllocator;
ysr@777 203 friend class G1FreeGarbageRegionClosure;
ysr@777 204 friend class RefineCardTableEntryClosure;
ysr@777 205 friend class G1PrepareCompactClosure;
ysr@777 206 friend class RegionSorter;
tonyp@2472 207 friend class RegionResetter;
ysr@777 208 friend class CountRCClosure;
ysr@777 209 friend class EvacPopObjClosure;
apetrusenko@1231 210 friend class G1ParCleanupCTTask;
ysr@777 211
tschatzl@7019 212 friend class G1FreeHumongousRegionClosure;
ysr@777 213 // Other related classes.
ysr@777 214 friend class G1MarkSweep;
ysr@777 215
tschatzl@7673 216 // Testing classes.
tschatzl@7673 217 friend class G1CheckCSetFastTableClosure;
tschatzl@7673 218
ysr@777 219 private:
ysr@777 220 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 221 static G1CollectedHeap* _g1h;
ysr@777 222
tonyp@1377 223 static size_t _humongous_object_threshold_in_words;
tonyp@1377 224
tonyp@2472 225 // The secondary free list which contains regions that have been
tschatzl@7050 226 // freed up during the cleanup process. This will be appended to
tschatzl@7050 227 // the master free list when appropriate.
brutisso@6385 228 FreeRegionList _secondary_free_list;
tonyp@2472 229
tonyp@3268 230 // It keeps track of the old regions.
brutisso@6385 231 HeapRegionSet _old_set;
tonyp@3268 232
tonyp@2472 233 // It keeps track of the humongous regions.
brutisso@6385 234 HeapRegionSet _humongous_set;
ysr@777 235
tschatzl@7019 236 void eagerly_reclaim_humongous_regions();
tschatzl@7019 237
ysr@777 238 // The number of regions we could create by expansion.
tonyp@3713 239 uint _expansion_regions;
ysr@777 240
ysr@777 241 // The block offset table for the G1 heap.
ysr@777 242 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 243
tonyp@3268 244 // Tears down the region sets / lists so that they are empty and the
tonyp@3268 245 // regions on the heap do not belong to a region set / list. The
tonyp@3268 246 // only exception is the humongous set which we leave unaltered. If
tonyp@3268 247 // free_list_only is true, it will only tear down the master free
tonyp@3268 248 // list. It is called before a Full GC (free_list_only == false) or
tonyp@3268 249 // before heap shrinking (free_list_only == true).
tonyp@3268 250 void tear_down_region_sets(bool free_list_only);
tonyp@3268 251
tonyp@3268 252 // Rebuilds the region sets / lists so that they are repopulated to
tonyp@3268 253 // reflect the contents of the heap. The only exception is the
tonyp@3268 254 // humongous set which was not torn down in the first place. If
tonyp@3268 255 // free_list_only is true, it will only rebuild the master free
tonyp@3268 256 // list. It is called after a Full GC (free_list_only == false) or
tonyp@3268 257 // after heap shrinking (free_list_only == true).
tonyp@3268 258 void rebuild_region_sets(bool free_list_only);
ysr@777 259
tschatzl@7051 260 // Callback for region mapping changed events.
tschatzl@7051 261 G1RegionMappingChangedListener _listener;
tschatzl@7051 262
ysr@777 263 // The sequence of all heap regions in the heap.
tschatzl@7091 264 HeapRegionManager _hrm;
ysr@777 265
sjohanss@7118 266 // Class that handles the different kinds of allocations.
sjohanss@7118 267 G1Allocator* _allocator;
tonyp@3028 268
jcoomes@7159 269 // Statistics for each allocation context
jcoomes@7159 270 AllocationContextStats _allocation_context_stats;
jcoomes@7159 271
johnc@3982 272 // PLAB sizing policy for survivors.
johnc@3982 273 PLABStats _survivor_plab_stats;
johnc@3982 274
johnc@3982 275 // PLAB sizing policy for tenured objects.
johnc@3982 276 PLABStats _old_plab_stats;
johnc@3982 277
tonyp@3410 278 // It specifies whether we should attempt to expand the heap after a
tonyp@3410 279 // region allocation failure. If heap expansion fails we set this to
tonyp@3410 280 // false so that we don't re-attempt the heap expansion (it's likely
tonyp@3410 281 // that subsequent expansion attempts will also fail if one fails).
tonyp@3410 282 // Currently, it is only consulted during GC and it's reset at the
tonyp@3410 283 // start of each GC.
tonyp@3410 284 bool _expand_heap_after_alloc_failure;
tonyp@3410 285
tonyp@2715 286 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 287 void init_mutator_alloc_region();
tonyp@2715 288
tonyp@2715 289 // It releases the mutator alloc region.
tonyp@2715 290 void release_mutator_alloc_region();
tonyp@2715 291
tonyp@3028 292 // It initializes the GC alloc regions at the start of a GC.
sla@5237 293 void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
tonyp@3028 294
tonyp@3028 295 // It releases the GC alloc regions at the end of a GC.
sla@5237 296 void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
tonyp@3028 297
tonyp@3028 298 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 299 // before a Full GC.
tonyp@1071 300 void abandon_gc_alloc_regions();
ysr@777 301
jmasa@2821 302 // Helper for monitoring and management support.
jmasa@2821 303 G1MonitoringSupport* _g1mm;
jmasa@2821 304
kbarrett@7830 305 // Records whether the region at the given index is (still) a
kbarrett@7830 306 // candidate for eager reclaim. Only valid for humongous start
kbarrett@7830 307 // regions; other regions have unspecified values. Humongous start
kbarrett@7830 308 // regions are initialized at start of collection pause, with
kbarrett@7830 309 // candidates removed from the set as they are found reachable from
kbarrett@7830 310 // roots or the young generation.
kbarrett@7830 311 class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
tschatzl@7019 312 protected:
tschatzl@7019 313 bool default_value() const { return false; }
tschatzl@7019 314 public:
tschatzl@7019 315 void clear() { G1BiasedMappedArray<bool>::clear(); }
kbarrett@7830 316 void set_candidate(uint region, bool value) {
kbarrett@7830 317 set_by_index(region, value);
tschatzl@7019 318 }
kbarrett@7830 319 bool is_candidate(uint region) {
tschatzl@7019 320 return get_by_index(region);
tschatzl@7019 321 }
tschatzl@7019 322 };
tschatzl@7019 323
kbarrett@7830 324 HumongousReclaimCandidates _humongous_reclaim_candidates;
tschatzl@7019 325 // Stores whether during humongous object registration we found candidate regions.
tschatzl@7019 326 // If not, we can skip a few steps.
tschatzl@7019 327 bool _has_humongous_reclaim_candidates;
tonyp@961 328
iveresov@788 329 volatile unsigned _gc_time_stamp;
ysr@777 330
ysr@777 331 size_t* _surviving_young_words;
ysr@777 332
tonyp@2975 333 G1HRPrinter _hr_printer;
tonyp@2975 334
ysr@777 335 void setup_surviving_young_words();
ysr@777 336 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 337 void cleanup_surviving_young_words();
ysr@777 338
tonyp@2011 339 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 340 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 341 // explicitly started if:
tonyp@2011 342 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 343 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
brutisso@3456 344 // (c) cause == _g1_humongous_allocation
tonyp@2011 345 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 346
brutisso@3823 347 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 348 // concurrent cycles) we have started.
mlarsson@7686 349 volatile uint _old_marking_cycles_started;
brutisso@3823 350
brutisso@3823 351 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 352 // concurrent cycles) we have completed.
mlarsson@7686 353 volatile uint _old_marking_cycles_completed;
tonyp@2011 354
sla@5237 355 bool _concurrent_cycle_started;
stefank@7648 356 bool _heap_summary_sent;
sla@5237 357
tonyp@2817 358 // This is a non-product method that is helpful for testing. It is
tonyp@2817 359 // called at the end of a GC and artificially expands the heap by
tonyp@2817 360 // allocating a number of dead regions. This way we can induce very
tonyp@2817 361 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 362 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 363 // this method will be found dead by the marking cycle).
tonyp@2817 364 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 365
tonyp@3957 366 // Clear RSets after a compaction. It also resets the GC time stamps.
tonyp@3957 367 void clear_rsets_post_compaction();
tonyp@3957 368
tonyp@3957 369 // If the HR printer is active, dump the state of the regions in the
tonyp@3957 370 // heap after a compaction.
tschatzl@7091 371 void print_hrm_post_compaction();
tonyp@3957 372
tschatzl@7781 373 // Create a memory mapper for auxiliary data structures of the given size and
tschatzl@7781 374 // translation factor.
tschatzl@7781 375 static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
tschatzl@7781 376 size_t size,
tschatzl@7781 377 size_t translation_factor);
tschatzl@7781 378
brutisso@4015 379 double verify(bool guard, const char* msg);
brutisso@4015 380 void verify_before_gc();
brutisso@4015 381 void verify_after_gc();
brutisso@4015 382
brutisso@4063 383 void log_gc_header();
brutisso@4063 384 void log_gc_footer(double pause_time_sec);
brutisso@4063 385
tonyp@2315 386 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 387 // line number, file, etc.
tonyp@2315 388
tonyp@2643 389 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 390 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 391 (_extra_message_), \
tonyp@2472 392 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 393 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 394 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 395
tonyp@2315 396 #define assert_heap_locked() \
tonyp@2315 397 do { \
tonyp@2315 398 assert(Heap_lock->owned_by_self(), \
tonyp@2315 399 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 400 } while (0)
tonyp@2315 401
tonyp@2643 402 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 403 do { \
tonyp@2315 404 assert(Heap_lock->owned_by_self() || \
tonyp@2472 405 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 406 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 407 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 408 "should be at a safepoint")); \
tonyp@2315 409 } while (0)
tonyp@2315 410
tonyp@2315 411 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 412 do { \
tonyp@2315 413 assert(Heap_lock->owned_by_self() && \
tonyp@2315 414 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 415 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 416 "should not be at a safepoint")); \
tonyp@2315 417 } while (0)
tonyp@2315 418
tonyp@2315 419 #define assert_heap_not_locked() \
tonyp@2315 420 do { \
tonyp@2315 421 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 422 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 423 } while (0)
tonyp@2315 424
tonyp@2315 425 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 426 do { \
tonyp@2315 427 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 428 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 429 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 430 "should not be at a safepoint")); \
tonyp@2315 431 } while (0)
tonyp@2315 432
tonyp@2643 433 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 434 do { \
tonyp@2472 435 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 436 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 437 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 438 } while (0)
tonyp@2315 439
tonyp@2315 440 #define assert_not_at_safepoint() \
tonyp@2315 441 do { \
tonyp@2315 442 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 443 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 444 } while (0)
tonyp@2315 445
ysr@777 446 protected:
ysr@777 447
johnc@3021 448 // The young region list.
ysr@777 449 YoungList* _young_list;
ysr@777 450
ysr@777 451 // The current policy object for the collector.
ysr@777 452 G1CollectorPolicy* _g1_policy;
ysr@777 453
tonyp@2472 454 // This is the second level of trying to allocate a new region. If
tonyp@2715 455 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 456 // check whether there's anything available on the
tonyp@2715 457 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 458 // that list, if _free_regions_coming is set.
jwilhelm@6422 459 HeapRegion* new_region_try_secondary_free_list(bool is_old);
ysr@777 460
tonyp@2643 461 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 462 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 463 // attempt to expand the heap if necessary to satisfy the allocation
jwilhelm@6422 464 // request. If the region is to be used as an old region or for a
jwilhelm@6422 465 // humongous object, set is_old to true. If not, to false.
jwilhelm@6422 466 HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
ysr@777 467
tonyp@2643 468 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 469 // and starting at index first so that they appear as a single
tonyp@2643 470 // humongous region.
tonyp@3713 471 HeapWord* humongous_obj_allocate_initialize_regions(uint first,
tonyp@3713 472 uint num_regions,
sjohanss@7118 473 size_t word_size,
sjohanss@7118 474 AllocationContext_t context);
tonyp@2643 475
tonyp@2643 476 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 477 // NULL if unsuccessful.
sjohanss@7118 478 HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
ysr@777 479
tonyp@2315 480 // The following two methods, allocate_new_tlab() and
tonyp@2315 481 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 482 // into the G1's allocation routines. They have the following
tonyp@2315 483 // assumptions:
tonyp@2315 484 //
tonyp@2315 485 // * They should both be called outside safepoints.
tonyp@2315 486 //
tonyp@2315 487 // * They should both be called without holding the Heap_lock.
tonyp@2315 488 //
tonyp@2315 489 // * All allocation requests for new TLABs should go to
tonyp@2315 490 // allocate_new_tlab().
tonyp@2315 491 //
tonyp@2971 492 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 493 //
tonyp@2315 494 // * If either call cannot satisfy the allocation request using the
tonyp@2315 495 // current allocating region, they will try to get a new one. If
tonyp@2315 496 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 497 // retry the allocation.
tonyp@2315 498 //
tonyp@2315 499 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 500 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 501 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 502 // schedule a Full GC.
tonyp@2315 503 //
tonyp@2315 504 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 505 // should never be called with word_size being humongous. All
tonyp@2315 506 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 507 // will satisfy them with a special path.
ysr@777 508
tonyp@2315 509 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 510
tonyp@2315 511 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 512 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 513
tonyp@2715 514 // The following three methods take a gc_count_before_ret
tonyp@2715 515 // parameter which is used to return the GC count if the method
tonyp@2715 516 // returns NULL. Given that we are required to read the GC count
tonyp@2715 517 // while holding the Heap_lock, and these paths will take the
tonyp@2715 518 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 519 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 520 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 521 // Heap_lock just to read the GC count.
tonyp@2315 522
tonyp@2715 523 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 524 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 525 // should only be used for non-humongous allocations.
tonyp@2715 526 inline HeapWord* attempt_allocation(size_t word_size,
mlarsson@7686 527 uint* gc_count_before_ret,
mlarsson@7686 528 uint* gclocker_retry_count_ret);
tonyp@2315 529
tonyp@2715 530 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 531 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 532 // pause. This should only be used for non-humongous allocations.
tonyp@2715 533 HeapWord* attempt_allocation_slow(size_t word_size,
sjohanss@7118 534 AllocationContext_t context,
mlarsson@7686 535 uint* gc_count_before_ret,
mlarsson@7686 536 uint* gclocker_retry_count_ret);
tonyp@2315 537
tonyp@2715 538 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 539 // potentially schedule a GC pause.
tonyp@2715 540 HeapWord* attempt_allocation_humongous(size_t word_size,
mlarsson@7686 541 uint* gc_count_before_ret,
mlarsson@7686 542 uint* gclocker_retry_count_ret);
tonyp@2454 543
tonyp@2715 544 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 545 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 546 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 547 // or not.
tonyp@2315 548 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
sjohanss@7118 549 AllocationContext_t context,
sjohanss@7118 550 bool expect_null_mutator_alloc_region);
tonyp@2315 551
tonyp@2315 552 // It dirties the cards that cover the block so that so that the post
tonyp@2315 553 // write barrier never queues anything when updating objects on this
tonyp@2315 554 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 555 // belongs to a young region.
tonyp@2315 556 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 557
ysr@777 558 // Allocate blocks during garbage collection. Will ensure an
ysr@777 559 // allocation region, either by picking one or expanding the
ysr@777 560 // heap, and then allocate a block of the given size. The block
ysr@777 561 // may not be a humongous - it must fit into a single heap region.
tschatzl@7651 562 inline HeapWord* par_allocate_during_gc(InCSetState dest,
tschatzl@7651 563 size_t word_size,
tschatzl@7651 564 AllocationContext_t context);
ysr@777 565 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 566 // that parallel threads might be attempting allocations.
ysr@777 567 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 568
tonyp@3028 569 // Allocation attempt during GC for a survivor object / PLAB.
sjohanss@7118 570 inline HeapWord* survivor_attempt_allocation(size_t word_size,
sjohanss@7118 571 AllocationContext_t context);
apetrusenko@980 572
tonyp@3028 573 // Allocation attempt during GC for an old object / PLAB.
sjohanss@7118 574 inline HeapWord* old_attempt_allocation(size_t word_size,
sjohanss@7118 575 AllocationContext_t context);
tonyp@2715 576
tonyp@3028 577 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 578
tonyp@3028 579 // For mutator alloc regions.
tonyp@2715 580 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 581 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 582 size_t allocated_bytes);
tonyp@2715 583
tonyp@3028 584 // For GC alloc regions.
tonyp@3713 585 HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
tschatzl@7651 586 InCSetState dest);
tonyp@3028 587 void retire_gc_alloc_region(HeapRegion* alloc_region,
tschatzl@7651 588 size_t allocated_bytes, InCSetState dest);
tonyp@3028 589
tonyp@2011 590 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 591 // inspection request and should collect the entire heap
tonyp@2315 592 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 593 // cleared during the GC
tonyp@2011 594 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 595 // the GC should attempt (at least) to satisfy
tonyp@2315 596 // - it returns false if it is unable to do the collection due to the
tonyp@2315 597 // GC locker being active, true otherwise
tonyp@2315 598 bool do_collection(bool explicit_gc,
tonyp@2011 599 bool clear_all_soft_refs,
ysr@777 600 size_t word_size);
ysr@777 601
ysr@777 602 // Callback from VM_G1CollectFull operation.
ysr@777 603 // Perform a full collection.
coleenp@4037 604 virtual void do_full_collection(bool clear_all_soft_refs);
ysr@777 605
ysr@777 606 // Resize the heap if necessary after a full collection. If this is
ysr@777 607 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 608 // and will be considered part of the used portion of the heap.
ysr@777 609 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 610
ysr@777 611 // Callback from VM_G1CollectForAllocation operation.
ysr@777 612 // This function does everything necessary/possible to satisfy a
ysr@777 613 // failed allocation request (including collection, expansion, etc.)
sjohanss@7118 614 HeapWord* satisfy_failed_allocation(size_t word_size,
sjohanss@7118 615 AllocationContext_t context,
sjohanss@7118 616 bool* succeeded);
ysr@777 617
ysr@777 618 // Attempting to expand the heap sufficiently
ysr@777 619 // to support an allocation of the given "word_size". If
ysr@777 620 // successful, perform the allocation and return the address of the
ysr@777 621 // allocated block, or else "NULL".
sjohanss@7118 622 HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
ysr@777 623
johnc@3175 624 // Process any reference objects discovered during
johnc@3175 625 // an incremental evacuation pause.
johnc@4130 626 void process_discovered_references(uint no_of_gc_workers);
johnc@3175 627
johnc@3175 628 // Enqueue any remaining discovered references
johnc@3175 629 // after processing.
johnc@4130 630 void enqueue_discovered_references(uint no_of_gc_workers);
johnc@3175 631
ysr@777 632 public:
jmasa@2821 633
sjohanss@7131 634 G1Allocator* allocator() {
sjohanss@7131 635 return _allocator;
sjohanss@7131 636 }
sjohanss@7131 637
tonyp@3176 638 G1MonitoringSupport* g1mm() {
tonyp@3176 639 assert(_g1mm != NULL, "should have been initialized");
tonyp@3176 640 return _g1mm;
tonyp@3176 641 }
jmasa@2821 642
ysr@777 643 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 644 // Returns true if the heap was expanded by the requested amount;
johnc@2504 645 // false otherwise.
ysr@777 646 // (Rounds up to a HeapRegion boundary.)
johnc@2504 647 bool expand(size_t expand_bytes);
ysr@777 648
tschatzl@7651 649 // Returns the PLAB statistics for a given destination.
tschatzl@7651 650 inline PLABStats* alloc_buffer_stats(InCSetState dest);
sjohanss@7118 651
tschatzl@7651 652 // Determines PLAB size for a given destination.
tschatzl@7651 653 inline size_t desired_plab_sz(InCSetState dest);
sjohanss@7118 654
jcoomes@7159 655 inline AllocationContextStats& allocation_context_stats();
jcoomes@7159 656
ysr@777 657 // Do anything common to GC's.
ysr@777 658 virtual void gc_prologue(bool full);
ysr@777 659 virtual void gc_epilogue(bool full);
ysr@777 660
kbarrett@7830 661 // Modify the reclaim candidate set and test for presence.
kbarrett@7830 662 // These are only valid for starts_humongous regions.
kbarrett@7830 663 inline void set_humongous_reclaim_candidate(uint region, bool value);
kbarrett@7830 664 inline bool is_humongous_reclaim_candidate(uint region);
kbarrett@7830 665
kbarrett@7830 666 // Remove from the reclaim candidate set. Also remove from the
kbarrett@7830 667 // collection set so that later encounters avoid the slow path.
tschatzl@7019 668 inline void set_humongous_is_live(oop obj);
tschatzl@7019 669
tschatzl@7019 670 // Register the given region to be part of the collection set.
tschatzl@7019 671 inline void register_humongous_region_with_in_cset_fast_test(uint index);
tschatzl@7019 672 // Register regions with humongous objects (actually on the start region) in
tschatzl@7019 673 // the in_cset_fast_test table.
tschatzl@7019 674 void register_humongous_regions_with_in_cset_fast_test();
tonyp@961 675 // We register a region with the fast "in collection set" test. We
tonyp@961 676 // simply set to true the array slot corresponding to this region.
tschatzl@7651 677 void register_young_region_with_in_cset_fast_test(HeapRegion* r) {
tschatzl@7651 678 _in_cset_fast_test.set_in_young(r->hrm_index());
tschatzl@7651 679 }
tschatzl@7651 680 void register_old_region_with_in_cset_fast_test(HeapRegion* r) {
tschatzl@7651 681 _in_cset_fast_test.set_in_old(r->hrm_index());
tonyp@961 682 }
tonyp@961 683
tonyp@961 684 // This is a fast test on whether a reference points into the
tschatzl@6330 685 // collection set or not. Assume that the reference
tschatzl@6330 686 // points into the heap.
tschatzl@6541 687 inline bool in_cset_fast_test(oop obj);
tonyp@961 688
johnc@1829 689 void clear_cset_fast_test() {
tschatzl@6926 690 _in_cset_fast_test.clear();
johnc@1829 691 }
johnc@1829 692
brutisso@3823 693 // This is called at the start of either a concurrent cycle or a Full
brutisso@3823 694 // GC to update the number of old marking cycles started.
brutisso@3823 695 void increment_old_marking_cycles_started();
brutisso@3823 696
tonyp@2011 697 // This is called at the end of either a concurrent cycle or a Full
brutisso@3823 698 // GC to update the number of old marking cycles completed. Those two
tonyp@2011 699 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 700 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 701 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 702 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 703 // tighter consistency checking in the method. If concurrent is
tonyp@2372 704 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 705 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 706 // in this nesting (i.e., the concurrent cycle). Further nesting is
brutisso@3823 707 // not currently supported. The end of this call also notifies
tonyp@2372 708 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 709 // GC to happen (e.g., it called System.gc() with
tonyp@2011 710 // +ExplicitGCInvokesConcurrent).
brutisso@3823 711 void increment_old_marking_cycles_completed(bool concurrent);
tonyp@2011 712
mlarsson@7686 713 uint old_marking_cycles_completed() {
brutisso@3823 714 return _old_marking_cycles_completed;
tonyp@2011 715 }
tonyp@2011 716
mgronlun@6131 717 void register_concurrent_cycle_start(const Ticks& start_time);
sla@5237 718 void register_concurrent_cycle_end();
sla@5237 719 void trace_heap_after_concurrent_cycle();
sla@5237 720
sla@5237 721 G1YCType yc_type();
sla@5237 722
tonyp@2975 723 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 724
brutisso@6385 725 // Frees a non-humongous region by initializing its contents and
brutisso@6385 726 // adding it to the free list that's passed as a parameter (this is
brutisso@6385 727 // usually a local list which will be appended to the master free
brutisso@6385 728 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 729 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 730 // up. The assumption is that this will be done later.
tschatzl@6404 731 // The locked parameter indicates if the caller has already taken
tschatzl@6404 732 // care of proper synchronization. This may allow some optimizations.
brutisso@6385 733 void free_region(HeapRegion* hr,
brutisso@6385 734 FreeRegionList* free_list,
tschatzl@6404 735 bool par,
tschatzl@6404 736 bool locked = false);
brutisso@6385 737
brutisso@6385 738 // Frees a humongous region by collapsing it into individual regions
brutisso@6385 739 // and calling free_region() for each of them. The freed regions
brutisso@6385 740 // will be added to the free list that's passed as a parameter (this
brutisso@6385 741 // is usually a local list which will be appended to the master free
brutisso@6385 742 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 743 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 744 // up. The assumption is that this will be done later.
brutisso@6385 745 void free_humongous_region(HeapRegion* hr,
brutisso@6385 746 FreeRegionList* free_list,
brutisso@6385 747 bool par);
ysr@777 748 protected:
ysr@777 749
ysr@777 750 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 751 // (Rounds down to a HeapRegion boundary.)
ysr@777 752 virtual void shrink(size_t expand_bytes);
ysr@777 753 void shrink_helper(size_t expand_bytes);
ysr@777 754
jcoomes@2064 755 #if TASKQUEUE_STATS
jcoomes@2064 756 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 757 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 758 void reset_taskqueue_stats();
jcoomes@2064 759 #endif // TASKQUEUE_STATS
jcoomes@2064 760
tonyp@2315 761 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 762 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 763 // return whether the VM operation was successful (it did do an
tonyp@2315 764 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 765 // locker was active). Given that we should not be holding the
tonyp@2315 766 // Heap_lock when we enter this method, we will pass the
tonyp@2315 767 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 768 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 769 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 770 // before the call, so it's easy to read gc_count_before just before.
brutisso@5581 771 HeapWord* do_collection_pause(size_t word_size,
mlarsson@7686 772 uint gc_count_before,
brutisso@5581 773 bool* succeeded,
brutisso@5581 774 GCCause::Cause gc_cause);
ysr@777 775
ysr@777 776 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 777 // thread. It returns false if it is unable to do the collection due
tonyp@2315 778 // to the GC locker being active, true otherwise
tonyp@2315 779 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 780
ysr@777 781 // Actually do the work of evacuating the collection set.
sla@5237 782 void evacuate_collection_set(EvacuationInfo& evacuation_info);
ysr@777 783
ysr@777 784 // The g1 remembered set of the heap.
ysr@777 785 G1RemSet* _g1_rem_set;
ysr@777 786
iveresov@1051 787 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 788 // concurrently after the collection.
iveresov@1051 789 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 790
ysr@777 791 // The closure used to refine a single card.
ysr@777 792 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 793
ysr@777 794 // A function to check the consistency of dirty card logs.
ysr@777 795 void check_ct_logs_at_safepoint();
ysr@777 796
johnc@2060 797 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 798 // references into the current collection set. This is used to
johnc@2060 799 // update the remembered sets of the regions in the collection
johnc@2060 800 // set in the event of an evacuation failure.
johnc@2060 801 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 802
ysr@777 803 // After a collection pause, make the regions in the CS into free
ysr@777 804 // regions.
sla@5237 805 void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
ysr@777 806
johnc@1829 807 // Abandon the current collection set without recording policy
johnc@1829 808 // statistics or updating free lists.
johnc@1829 809 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 810
ysr@777 811 // The concurrent marker (and the thread it runs in.)
ysr@777 812 ConcurrentMark* _cm;
ysr@777 813 ConcurrentMarkThread* _cmThread;
ysr@777 814 bool _mark_in_progress;
ysr@777 815
ysr@777 816 // The concurrent refiner.
ysr@777 817 ConcurrentG1Refine* _cg1r;
ysr@777 818
ysr@777 819 // The parallel task queues
ysr@777 820 RefToScanQueueSet *_task_queues;
ysr@777 821
ysr@777 822 // True iff a evacuation has failed in the current collection.
ysr@777 823 bool _evacuation_failed;
ysr@777 824
sla@5237 825 EvacuationFailedInfo* _evacuation_failed_info_array;
ysr@777 826
ysr@777 827 // Failed evacuations cause some logical from-space objects to have
ysr@777 828 // forwarding pointers to themselves. Reset them.
ysr@777 829 void remove_self_forwarding_pointers();
ysr@777 830
brutisso@4579 831 // Together, these store an object with a preserved mark, and its mark value.
brutisso@4579 832 Stack<oop, mtGC> _objs_with_preserved_marks;
brutisso@4579 833 Stack<markOop, mtGC> _preserved_marks_of_objs;
ysr@777 834
ysr@777 835 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 836 // word being overwritten with a self-forwarding-pointer.
ysr@777 837 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 838
ysr@777 839 // The stack of evac-failure objects left to be scanned.
ysr@777 840 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 841 // The closure to apply to evac-failure objects.
ysr@777 842
ysr@777 843 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 844 // Set the field above.
ysr@777 845 void
ysr@777 846 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 847 _evac_failure_closure = evac_failure_closure;
ysr@777 848 }
ysr@777 849
ysr@777 850 // Push "obj" on the scan stack.
ysr@777 851 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 852 // Process scan stack entries until the stack is empty.
ysr@777 853 void drain_evac_failure_scan_stack();
ysr@777 854 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 855 // prevent unnecessary recursion.
ysr@777 856 bool _drain_in_progress;
ysr@777 857
ysr@777 858 // Do any necessary initialization for evacuation-failure handling.
ysr@777 859 // "cl" is the closure that will be used to process evac-failure
ysr@777 860 // objects.
ysr@777 861 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 862 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 863 // structures.
ysr@777 864 void finalize_for_evac_failure();
ysr@777 865
ysr@777 866 // An attempt to evacuate "obj" has failed; take necessary steps.
sla@5237 867 oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
ysr@777 868 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 869
johnc@4016 870 #ifndef PRODUCT
johnc@4016 871 // Support for forcing evacuation failures. Analogous to
johnc@4016 872 // PromotionFailureALot for the other collectors.
johnc@4016 873
johnc@4016 874 // Records whether G1EvacuationFailureALot should be in effect
johnc@4016 875 // for the current GC
johnc@4016 876 bool _evacuation_failure_alot_for_current_gc;
johnc@4016 877
johnc@4016 878 // Used to record the GC number for interval checking when
johnc@4016 879 // determining whether G1EvaucationFailureALot is in effect
johnc@4016 880 // for the current GC.
johnc@4016 881 size_t _evacuation_failure_alot_gc_number;
johnc@4016 882
johnc@4016 883 // Count of the number of evacuations between failures.
johnc@4016 884 volatile size_t _evacuation_failure_alot_count;
johnc@4016 885
johnc@4016 886 // Set whether G1EvacuationFailureALot should be in effect
johnc@4016 887 // for the current GC (based upon the type of GC and which
johnc@4016 888 // command line flags are set);
johnc@4016 889 inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
johnc@4016 890 bool during_initial_mark,
johnc@4016 891 bool during_marking);
johnc@4016 892
johnc@4016 893 inline void set_evacuation_failure_alot_for_current_gc();
johnc@4016 894
johnc@4016 895 // Return true if it's time to cause an evacuation failure.
johnc@4016 896 inline bool evacuation_should_fail();
johnc@4016 897
johnc@4016 898 // Reset the G1EvacuationFailureALot counters. Should be called at
sla@5237 899 // the end of an evacuation pause in which an evacuation failure occurred.
johnc@4016 900 inline void reset_evacuation_should_fail();
johnc@4016 901 #endif // !PRODUCT
johnc@4016 902
johnc@3175 903 // ("Weak") Reference processing support.
johnc@3175 904 //
sla@5237 905 // G1 has 2 instances of the reference processor class. One
johnc@3175 906 // (_ref_processor_cm) handles reference object discovery
johnc@3175 907 // and subsequent processing during concurrent marking cycles.
johnc@3175 908 //
johnc@3175 909 // The other (_ref_processor_stw) handles reference object
johnc@3175 910 // discovery and processing during full GCs and incremental
johnc@3175 911 // evacuation pauses.
johnc@3175 912 //
johnc@3175 913 // During an incremental pause, reference discovery will be
johnc@3175 914 // temporarily disabled for _ref_processor_cm and will be
johnc@3175 915 // enabled for _ref_processor_stw. At the end of the evacuation
johnc@3175 916 // pause references discovered by _ref_processor_stw will be
johnc@3175 917 // processed and discovery will be disabled. The previous
johnc@3175 918 // setting for reference object discovery for _ref_processor_cm
johnc@3175 919 // will be re-instated.
johnc@3175 920 //
johnc@3175 921 // At the start of marking:
johnc@3175 922 // * Discovery by the CM ref processor is verified to be inactive
johnc@3175 923 // and it's discovered lists are empty.
johnc@3175 924 // * Discovery by the CM ref processor is then enabled.
johnc@3175 925 //
johnc@3175 926 // At the end of marking:
johnc@3175 927 // * Any references on the CM ref processor's discovered
johnc@3175 928 // lists are processed (possibly MT).
johnc@3175 929 //
johnc@3175 930 // At the start of full GC we:
johnc@3175 931 // * Disable discovery by the CM ref processor and
johnc@3175 932 // empty CM ref processor's discovered lists
johnc@3175 933 // (without processing any entries).
johnc@3175 934 // * Verify that the STW ref processor is inactive and it's
johnc@3175 935 // discovered lists are empty.
johnc@3175 936 // * Temporarily set STW ref processor discovery as single threaded.
johnc@3175 937 // * Temporarily clear the STW ref processor's _is_alive_non_header
johnc@3175 938 // field.
johnc@3175 939 // * Finally enable discovery by the STW ref processor.
johnc@3175 940 //
johnc@3175 941 // The STW ref processor is used to record any discovered
johnc@3175 942 // references during the full GC.
johnc@3175 943 //
johnc@3175 944 // At the end of a full GC we:
johnc@3175 945 // * Enqueue any reference objects discovered by the STW ref processor
johnc@3175 946 // that have non-live referents. This has the side-effect of
johnc@3175 947 // making the STW ref processor inactive by disabling discovery.
johnc@3175 948 // * Verify that the CM ref processor is still inactive
johnc@3175 949 // and no references have been placed on it's discovered
johnc@3175 950 // lists (also checked as a precondition during initial marking).
johnc@3175 951
johnc@3175 952 // The (stw) reference processor...
johnc@3175 953 ReferenceProcessor* _ref_processor_stw;
johnc@3175 954
sla@5237 955 STWGCTimer* _gc_timer_stw;
sla@5237 956 ConcurrentGCTimer* _gc_timer_cm;
sla@5237 957
sla@5237 958 G1OldTracer* _gc_tracer_cm;
sla@5237 959 G1NewTracer* _gc_tracer_stw;
sla@5237 960
johnc@3175 961 // During reference object discovery, the _is_alive_non_header
johnc@3175 962 // closure (if non-null) is applied to the referent object to
johnc@3175 963 // determine whether the referent is live. If so then the
johnc@3175 964 // reference object does not need to be 'discovered' and can
johnc@3175 965 // be treated as a regular oop. This has the benefit of reducing
johnc@3175 966 // the number of 'discovered' reference objects that need to
johnc@3175 967 // be processed.
johnc@3175 968 //
johnc@3175 969 // Instance of the is_alive closure for embedding into the
johnc@3175 970 // STW reference processor as the _is_alive_non_header field.
johnc@3175 971 // Supplying a value for the _is_alive_non_header field is
johnc@3175 972 // optional but doing so prevents unnecessary additions to
johnc@3175 973 // the discovered lists during reference discovery.
johnc@3175 974 G1STWIsAliveClosure _is_alive_closure_stw;
johnc@3175 975
johnc@3175 976 // The (concurrent marking) reference processor...
johnc@3175 977 ReferenceProcessor* _ref_processor_cm;
johnc@3175 978
johnc@2379 979 // Instance of the concurrent mark is_alive closure for embedding
johnc@3175 980 // into the Concurrent Marking reference processor as the
johnc@3175 981 // _is_alive_non_header field. Supplying a value for the
johnc@3175 982 // _is_alive_non_header field is optional but doing so prevents
johnc@3175 983 // unnecessary additions to the discovered lists during reference
johnc@3175 984 // discovery.
johnc@3175 985 G1CMIsAliveClosure _is_alive_closure_cm;
ysr@777 986
johnc@3336 987 // Cache used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 988 HeapRegion** _worker_cset_start_region;
johnc@3336 989
johnc@3336 990 // Time stamp to validate the regions recorded in the cache
johnc@3336 991 // used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 992 // The heap region entry for a given worker is valid iff
johnc@3336 993 // the associated time stamp value matches the current value
johnc@3336 994 // of G1CollectedHeap::_gc_time_stamp.
mlarsson@7686 995 uint* _worker_cset_start_region_time_stamp;
johnc@3336 996
tonyp@2472 997 volatile bool _free_regions_coming;
ysr@777 998
ysr@777 999 public:
jmasa@2188 1000
ysr@777 1001 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 1002
jcoomes@2064 1003 RefToScanQueue *task_queue(int i) const;
ysr@777 1004
iveresov@1051 1005 // A set of cards where updates happened during the GC
iveresov@1051 1006 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 1007
johnc@2060 1008 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 1009 // references into the current collection set. This is used to
johnc@2060 1010 // update the remembered sets of the regions in the collection
johnc@2060 1011 // set in the event of an evacuation failure.
johnc@2060 1012 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 1013 { return _into_cset_dirty_card_queue_set; }
johnc@2060 1014
ysr@777 1015 // Create a G1CollectedHeap with the specified policy.
ysr@777 1016 // Must call the initialize method afterwards.
ysr@777 1017 // May not return if something goes wrong.
ysr@777 1018 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 1019
ysr@777 1020 // Initialize the G1CollectedHeap to have the initial and
coleenp@4037 1021 // maximum sizes and remembered and barrier sets
ysr@777 1022 // specified by the policy object.
ysr@777 1023 jint initialize();
ysr@777 1024
pliden@6690 1025 virtual void stop();
pliden@6690 1026
tschatzl@5701 1027 // Return the (conservative) maximum heap alignment for any G1 heap
tschatzl@5701 1028 static size_t conservative_max_heap_alignment();
tschatzl@5701 1029
johnc@3175 1030 // Initialize weak reference processing.
johnc@2379 1031 virtual void ref_processing_init();
ysr@777 1032
mgerdin@7659 1033 // Explicitly import set_par_threads into this scope
mgerdin@7659 1034 using SharedHeap::set_par_threads;
jmasa@3294 1035 // Set _n_par_threads according to a policy TBD.
jmasa@3294 1036 void set_par_threads();
jmasa@3294 1037
ysr@777 1038 virtual CollectedHeap::Name kind() const {
ysr@777 1039 return CollectedHeap::G1CollectedHeap;
ysr@777 1040 }
ysr@777 1041
ysr@777 1042 // The current policy object for the collector.
ysr@777 1043 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 1044
coleenp@4037 1045 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
coleenp@4037 1046
ysr@777 1047 // Adaptive size policy. No such thing for g1.
ysr@777 1048 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 1049
ysr@777 1050 // The rem set and barrier set.
ysr@777 1051 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 1052
ysr@777 1053 unsigned get_gc_time_stamp() {
ysr@777 1054 return _gc_time_stamp;
ysr@777 1055 }
ysr@777 1056
goetz@6911 1057 inline void reset_gc_time_stamp();
iveresov@788 1058
tonyp@3957 1059 void check_gc_time_stamps() PRODUCT_RETURN;
tonyp@3957 1060
goetz@6911 1061 inline void increment_gc_time_stamp();
ysr@777 1062
tonyp@3957 1063 // Reset the given region's GC timestamp. If it's starts humongous,
tonyp@3957 1064 // also reset the GC timestamp of its corresponding
tonyp@3957 1065 // continues humongous regions too.
tonyp@3957 1066 void reset_gc_time_stamps(HeapRegion* hr);
tonyp@3957 1067
johnc@2060 1068 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 1069 DirtyCardQueue* into_cset_dcq,
vkempik@6552 1070 bool concurrent, uint worker_i);
ysr@777 1071
ysr@777 1072 // The shared block offset table array.
ysr@777 1073 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 1074
johnc@3175 1075 // Reference Processing accessors
johnc@3175 1076
johnc@3175 1077 // The STW reference processor....
johnc@3175 1078 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
johnc@3175 1079
sla@5237 1080 // The Concurrent Marking reference processor...
johnc@3175 1081 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
ysr@777 1082
sla@5237 1083 ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
sla@5237 1084 G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
sla@5237 1085
ysr@777 1086 virtual size_t capacity() const;
ysr@777 1087 virtual size_t used() const;
tonyp@1281 1088 // This should be called when we're not holding the heap lock. The
tonyp@1281 1089 // result might be a bit inaccurate.
tonyp@1281 1090 size_t used_unlocked() const;
ysr@777 1091 size_t recalculate_used() const;
ysr@777 1092
ysr@777 1093 // These virtual functions do the actual allocation.
ysr@777 1094 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 1095 // allocation, via inlined code (by exporting the address of the top and
ysr@777 1096 // end fields defining the extent of the contiguous allocation region.)
ysr@777 1097 // But G1CollectedHeap doesn't yet support this.
ysr@777 1098
ysr@777 1099 virtual bool is_maximal_no_gc() const {
tschatzl@7091 1100 return _hrm.available() == 0;
ysr@777 1101 }
ysr@777 1102
tschatzl@7050 1103 // The current number of regions in the heap.
tschatzl@7091 1104 uint num_regions() const { return _hrm.length(); }
tonyp@2963 1105
tonyp@2963 1106 // The max number of regions in the heap.
tschatzl@7091 1107 uint max_regions() const { return _hrm.max_length(); }
ysr@777 1108
ysr@777 1109 // The number of regions that are completely free.
tschatzl@7091 1110 uint num_free_regions() const { return _hrm.num_free_regions(); }
ysr@777 1111
ysr@777 1112 // The number of regions that are not completely free.
tschatzl@7050 1113 uint num_used_regions() const { return num_regions() - num_free_regions(); }
tonyp@2963 1114
tonyp@2849 1115 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 1116 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 1117 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 1118 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 1119
brutisso@7005 1120 #ifndef PRODUCT
brutisso@7005 1121 // Make sure that the given bitmap has no marked objects in the
brutisso@7005 1122 // range [from,limit). If it does, print an error message and return
brutisso@7005 1123 // false. Otherwise, just return true. bitmap_name should be "prev"
brutisso@7005 1124 // or "next".
brutisso@7005 1125 bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
brutisso@7005 1126 HeapWord* from, HeapWord* limit);
brutisso@7005 1127
brutisso@7005 1128 // Verify that the prev / next bitmap range [tams,end) for the given
brutisso@7005 1129 // region has no marks. Return true if all is well, false if errors
brutisso@7005 1130 // are detected.
brutisso@7005 1131 bool verify_bitmaps(const char* caller, HeapRegion* hr);
brutisso@7005 1132 #endif // PRODUCT
brutisso@7005 1133
brutisso@7005 1134 // If G1VerifyBitmaps is set, verify that the marking bitmaps for
brutisso@7005 1135 // the given region do not have any spurious marks. If errors are
brutisso@7005 1136 // detected, print appropriate error messages and crash.
brutisso@7005 1137 void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
brutisso@7005 1138
brutisso@7005 1139 // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
brutisso@7005 1140 // have any spurious marks. If errors are detected, print
brutisso@7005 1141 // appropriate error messages and crash.
brutisso@7005 1142 void check_bitmaps(const char* caller) PRODUCT_RETURN;
brutisso@7005 1143
tschatzl@7651 1144 // Do sanity check on the contents of the in-cset fast test table.
tschatzl@7651 1145 bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
tschatzl@7651 1146
tonyp@2472 1147 // verify_region_sets() performs verification over the region
tonyp@2472 1148 // lists. It will be compiled in the product code to be used when
tonyp@2472 1149 // necessary (i.e., during heap verification).
tonyp@2472 1150 void verify_region_sets();
ysr@777 1151
tonyp@2472 1152 // verify_region_sets_optional() is planted in the code for
tonyp@2472 1153 // list verification in non-product builds (and it can be enabled in
sla@5237 1154 // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 1155 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1156 void verify_region_sets_optional() {
tonyp@2472 1157 verify_region_sets();
tonyp@2472 1158 }
tonyp@2472 1159 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1160 void verify_region_sets_optional() { }
tonyp@2472 1161 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 1162
tonyp@2472 1163 #ifdef ASSERT
tonyp@2643 1164 bool is_on_master_free_list(HeapRegion* hr) {
tschatzl@7091 1165 return _hrm.is_free(hr);
tonyp@2472 1166 }
tonyp@2472 1167 #endif // ASSERT
ysr@777 1168
tonyp@2472 1169 // Wrapper for the region list operations that can be called from
tonyp@2472 1170 // methods outside this class.
ysr@777 1171
jwilhelm@6422 1172 void secondary_free_list_add(FreeRegionList* list) {
jwilhelm@6422 1173 _secondary_free_list.add_ordered(list);
tonyp@2472 1174 }
ysr@777 1175
tonyp@2472 1176 void append_secondary_free_list() {
tschatzl@7091 1177 _hrm.insert_list_into_free_list(&_secondary_free_list);
tonyp@2472 1178 }
ysr@777 1179
tonyp@2643 1180 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1181 // If the secondary free list looks empty there's no reason to
tonyp@2643 1182 // take the lock and then try to append it.
tonyp@2472 1183 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1184 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1185 append_secondary_free_list();
tonyp@2472 1186 }
tonyp@2472 1187 }
ysr@777 1188
tschatzl@6541 1189 inline void old_set_remove(HeapRegion* hr);
tonyp@3268 1190
brutisso@3456 1191 size_t non_young_capacity_bytes() {
brutisso@3456 1192 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
brutisso@3456 1193 }
brutisso@3456 1194
tonyp@2472 1195 void set_free_regions_coming();
tonyp@2472 1196 void reset_free_regions_coming();
tonyp@2472 1197 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1198 void wait_while_free_regions_coming();
ysr@777 1199
tonyp@3539 1200 // Determine whether the given region is one that we are using as an
tonyp@3539 1201 // old GC alloc region.
tonyp@3539 1202 bool is_old_gc_alloc_region(HeapRegion* hr) {
sjohanss@7118 1203 return _allocator->is_retained_old_region(hr);
tonyp@3539 1204 }
tonyp@3539 1205
ysr@777 1206 // Perform a collection of the heap; intended for use in implementing
ysr@777 1207 // "System.gc". This probably implies as full a collection as the
ysr@777 1208 // "CollectedHeap" supports.
ysr@777 1209 virtual void collect(GCCause::Cause cause);
ysr@777 1210
ysr@777 1211 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1212 void collect_locked(GCCause::Cause cause);
ysr@777 1213
sjohanss@7298 1214 virtual bool copy_allocation_context_stats(const jint* contexts,
jcoomes@7160 1215 jlong* totals,
jcoomes@7160 1216 jbyte* accuracy,
jcoomes@7160 1217 jint len);
jcoomes@7160 1218
sla@5237 1219 // True iff an evacuation has failed in the most-recent collection.
ysr@777 1220 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1221
brutisso@6385 1222 void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
brutisso@6385 1223 void prepend_to_freelist(FreeRegionList* list);
brutisso@6385 1224 void decrement_summary_bytes(size_t bytes);
ysr@777 1225
stefank@3335 1226 // Returns "TRUE" iff "p" points into the committed areas of the heap.
ysr@777 1227 virtual bool is_in(const void* p) const;
tschatzl@7051 1228 #ifdef ASSERT
tschatzl@7051 1229 // Returns whether p is in one of the available areas of the heap. Slow but
tschatzl@7051 1230 // extensive version.
tschatzl@7051 1231 bool is_in_exact(const void* p) const;
tschatzl@7051 1232 #endif
ysr@777 1233
ysr@777 1234 // Return "TRUE" iff the given object address is within the collection
tschatzl@7019 1235 // set. Slow implementation.
ysr@777 1236 inline bool obj_in_cs(oop obj);
ysr@777 1237
tschatzl@7019 1238 inline bool is_in_cset(oop obj);
tschatzl@7019 1239
tschatzl@7019 1240 inline bool is_in_cset_or_humongous(const oop obj);
tschatzl@7019 1241
tschatzl@7019 1242 private:
tschatzl@7019 1243 // This array is used for a quick test on whether a reference points into
tschatzl@7019 1244 // the collection set or not. Each of the array's elements denotes whether the
tschatzl@7019 1245 // corresponding region is in the collection set or not.
tschatzl@7651 1246 G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
tschatzl@7019 1247
tschatzl@7019 1248 public:
tschatzl@7019 1249
tschatzl@7651 1250 inline InCSetState in_cset_state(const oop obj);
tschatzl@7019 1251
ysr@777 1252 // Return "TRUE" iff the given object address is in the reserved
coleenp@4037 1253 // region of g1.
ysr@777 1254 bool is_in_g1_reserved(const void* p) const {
tschatzl@7091 1255 return _hrm.reserved().contains(p);
ysr@777 1256 }
ysr@777 1257
tonyp@2717 1258 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1259 // reserved for the heap
tschatzl@7050 1260 MemRegion g1_reserved() const {
tschatzl@7091 1261 return _hrm.reserved();
tonyp@2717 1262 }
tonyp@2717 1263
johnc@2593 1264 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1265
tschatzl@7051 1266 G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
tschatzl@7051 1267 return (G1SATBCardTableLoggingModRefBS*) barrier_set();
mgerdin@5811 1268 }
mgerdin@5811 1269
ysr@777 1270 // This resets the card table to all zeros. It is used after
ysr@777 1271 // a collection pause which used the card table to claim cards.
ysr@777 1272 void cleanUpCardTable();
ysr@777 1273
ysr@777 1274 // Iteration functions.
ysr@777 1275
ysr@777 1276 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1277 // "cl.do_oop" on each.
coleenp@4037 1278 virtual void oop_iterate(ExtendedOopClosure* cl);
ysr@777 1279
ysr@777 1280 // Iterate over all objects, calling "cl.do_object" on each.
coleenp@4037 1281 virtual void object_iterate(ObjectClosure* cl);
coleenp@4037 1282
coleenp@4037 1283 virtual void safe_object_iterate(ObjectClosure* cl) {
coleenp@4037 1284 object_iterate(cl);
iveresov@1113 1285 }
ysr@777 1286
ysr@777 1287 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1288 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1289
ysr@777 1290 // Iterate over heap regions, in address order, terminating the
ysr@777 1291 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1292 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1293
tonyp@2963 1294 // Return the region with the given index. It assumes the index is valid.
tschatzl@6541 1295 inline HeapRegion* region_at(uint index) const;
ysr@777 1296
tschatzl@7019 1297 // Calculate the region index of the given address. Given address must be
tschatzl@7019 1298 // within the heap.
tschatzl@7019 1299 inline uint addr_to_region(HeapWord* addr) const;
tschatzl@7019 1300
tschatzl@7050 1301 inline HeapWord* bottom_addr_for_region(uint index) const;
tschatzl@7050 1302
ysr@777 1303 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1304 // of regions divided by the number of parallel threads times some
ysr@777 1305 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1306 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1307 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1308 // calls will use the same "claim_value", and that that claim value is
ysr@777 1309 // different from the claim_value of any heap region before the start of
ysr@777 1310 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1311 // attempting to claim the first region in each chunk, and, if
ysr@777 1312 // successful, applying the closure to each region in the chunk (and
ysr@777 1313 // setting the claim value of the second and subsequent regions of the
ysr@777 1314 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1315 // i.e., that a closure never attempt to abort a traversal.
tschatzl@7050 1316 void heap_region_par_iterate_chunked(HeapRegionClosure* cl,
tschatzl@7050 1317 uint worker_id,
tschatzl@7050 1318 uint num_workers,
tschatzl@7050 1319 jint claim_value) const;
ysr@777 1320
tonyp@825 1321 // It resets all the region claim values to the default.
tonyp@825 1322 void reset_heap_region_claim_values();
tonyp@825 1323
johnc@3412 1324 // Resets the claim values of regions in the current
johnc@3412 1325 // collection set to the default.
johnc@3412 1326 void reset_cset_heap_region_claim_values();
johnc@3412 1327
tonyp@790 1328 #ifdef ASSERT
tonyp@790 1329 bool check_heap_region_claim_values(jint claim_value);
johnc@3296 1330
johnc@3296 1331 // Same as the routine above but only checks regions in the
johnc@3296 1332 // current collection set.
johnc@3296 1333 bool check_cset_heap_region_claim_values(jint claim_value);
tonyp@790 1334 #endif // ASSERT
tonyp@790 1335
johnc@3336 1336 // Clear the cached cset start regions and (more importantly)
johnc@3336 1337 // the time stamps. Called when we reset the GC time stamp.
johnc@3336 1338 void clear_cset_start_regions();
johnc@3336 1339
johnc@3336 1340 // Given the id of a worker, obtain or calculate a suitable
johnc@3336 1341 // starting region for iterating over the current collection set.
vkempik@6552 1342 HeapRegion* start_cset_region_for_worker(uint worker_i);
johnc@3296 1343
ysr@777 1344 // Iterate over the regions (if any) in the current collection set.
ysr@777 1345 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1346
ysr@777 1347 // As above but starting from region r
ysr@777 1348 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1349
tschatzl@7018 1350 HeapRegion* next_compaction_region(const HeapRegion* from) const;
ysr@777 1351
ysr@777 1352 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1353 // space containing a given address, or else returns NULL.
ysr@777 1354 virtual Space* space_containing(const void* addr) const;
ysr@777 1355
brutisso@7049 1356 // Returns the HeapRegion that contains addr. addr must not be NULL.
brutisso@7049 1357 template <class T>
brutisso@7049 1358 inline HeapRegion* heap_region_containing_raw(const T addr) const;
brutisso@7049 1359
brutisso@7049 1360 // Returns the HeapRegion that contains addr. addr must not be NULL.
brutisso@7049 1361 // If addr is within a humongous continues region, it returns its humongous start region.
tonyp@2963 1362 template <class T>
tonyp@2963 1363 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1364
ysr@777 1365 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1366 // each address in the (reserved) heap is a member of exactly
ysr@777 1367 // one block. The defining characteristic of a block is that it is
ysr@777 1368 // possible to find its size, and thus to progress forward to the next
ysr@777 1369 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1370 // represent Java objects, or they might be free blocks in a
ysr@777 1371 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1372 // distinguishable and the size of each is determinable.
ysr@777 1373
ysr@777 1374 // Returns the address of the start of the "block" that contains the
ysr@777 1375 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1376 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1377 // non-object.
ysr@777 1378 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1379
ysr@777 1380 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1381 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1382 // of the active area of the heap.
ysr@777 1383 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1384
ysr@777 1385 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1386 // the block is an object.
ysr@777 1387 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1388
ysr@777 1389 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1390 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1391
ysr@777 1392 // Section on thread-local allocation buffers (TLABs)
ysr@777 1393 // See CollectedHeap for semantics.
ysr@777 1394
brutisso@6376 1395 bool supports_tlab_allocation() const;
brutisso@6376 1396 size_t tlab_capacity(Thread* ignored) const;
brutisso@6376 1397 size_t tlab_used(Thread* ignored) const;
brutisso@6376 1398 size_t max_tlab_size() const;
brutisso@6376 1399 size_t unsafe_max_tlab_alloc(Thread* ignored) const;
ysr@777 1400
ysr@777 1401 // Can a compiler initialize a new object without store barriers?
ysr@777 1402 // This permission only extends from the creation of a new object
ysr@1462 1403 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1404 // is granted for this heap type, the compiler promises to call
ysr@1462 1405 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1406 // a new object for which such initializing store barriers will
ysr@1462 1407 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1408 // ready to provide a compensating write barrier as necessary
ysr@1462 1409 // if that storage came out of a non-young region. The efficiency
ysr@1462 1410 // of this implementation depends crucially on being able to
ysr@1462 1411 // answer very efficiently in constant time whether a piece of
ysr@1462 1412 // storage in the heap comes from a young region or not.
ysr@1462 1413 // See ReduceInitialCardMarks.
ysr@777 1414 virtual bool can_elide_tlab_store_barriers() const {
brutisso@3184 1415 return true;
ysr@1462 1416 }
ysr@1462 1417
ysr@1601 1418 virtual bool card_mark_must_follow_store() const {
ysr@1601 1419 return true;
ysr@1601 1420 }
ysr@1601 1421
tschatzl@6541 1422 inline bool is_in_young(const oop obj);
ysr@1462 1423
jmasa@2909 1424 #ifdef ASSERT
jmasa@2909 1425 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1426 #endif
jmasa@2909 1427
jmasa@2909 1428 virtual bool is_scavengable(const void* addr);
jmasa@2909 1429
ysr@1462 1430 // We don't need barriers for initializing stores to objects
ysr@1462 1431 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1432 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1433 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1434 // information for young gen objects.
tschatzl@6541 1435 virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
ysr@777 1436
ysr@777 1437 // Returns "true" iff the given word_size is "very large".
ysr@777 1438 static bool isHumongous(size_t word_size) {
johnc@1748 1439 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1440 // are capped at the humongous thresold and we want to
johnc@1748 1441 // ensure that we don't try to allocate a TLAB as
johnc@1748 1442 // humongous and that we don't allocate a humongous
johnc@1748 1443 // object in a TLAB.
johnc@1748 1444 return word_size > _humongous_object_threshold_in_words;
ysr@777 1445 }
ysr@777 1446
ysr@777 1447 // Update mod union table with the set of dirty cards.
ysr@777 1448 void updateModUnion();
ysr@777 1449
ysr@777 1450 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1451 // that this is always a safe operation, since it doesn't clear any
ysr@777 1452 // bits.
ysr@777 1453 void markModUnionRange(MemRegion mr);
ysr@777 1454
ysr@777 1455 // Records the fact that a marking phase is no longer in progress.
ysr@777 1456 void set_marking_complete() {
ysr@777 1457 _mark_in_progress = false;
ysr@777 1458 }
ysr@777 1459 void set_marking_started() {
ysr@777 1460 _mark_in_progress = true;
ysr@777 1461 }
ysr@777 1462 bool mark_in_progress() {
ysr@777 1463 return _mark_in_progress;
ysr@777 1464 }
ysr@777 1465
ysr@777 1466 // Print the maximum heap capacity.
ysr@777 1467 virtual size_t max_capacity() const;
ysr@777 1468
ysr@777 1469 virtual jlong millis_since_last_gc();
ysr@777 1470
tonyp@2974 1471
ysr@777 1472 // Convenience function to be used in situations where the heap type can be
ysr@777 1473 // asserted to be this type.
ysr@777 1474 static G1CollectedHeap* heap();
ysr@777 1475
ysr@777 1476 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1477 // add appropriate methods for any other surv rate groups
ysr@777 1478
brutisso@6376 1479 YoungList* young_list() const { return _young_list; }
ysr@777 1480
ysr@777 1481 // debugging
ysr@777 1482 bool check_young_list_well_formed() {
ysr@777 1483 return _young_list->check_list_well_formed();
ysr@777 1484 }
johnc@1829 1485
johnc@1829 1486 bool check_young_list_empty(bool check_heap,
ysr@777 1487 bool check_sample = true);
ysr@777 1488
ysr@777 1489 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1490 // many of these need to be public.
ysr@777 1491
ysr@777 1492 // The functions below are helper functions that a subclass of
ysr@777 1493 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1494 // functions.
ysr@777 1495 // This performs a concurrent marking of the live objects in a
ysr@777 1496 // bitmap off to the side.
ysr@777 1497 void doConcurrentMark();
ysr@777 1498
ysr@777 1499 bool isMarkedPrev(oop obj) const;
ysr@777 1500 bool isMarkedNext(oop obj) const;
ysr@777 1501
ysr@777 1502 // Determine if an object is dead, given the object and also
ysr@777 1503 // the region to which the object belongs. An object is dead
ysr@777 1504 // iff a) it was not allocated since the last mark and b) it
ysr@777 1505 // is not marked.
ysr@777 1506 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1507 return
ysr@777 1508 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1509 !isMarkedPrev(obj);
ysr@777 1510 }
ysr@777 1511
ysr@777 1512 // This function returns true when an object has been
ysr@777 1513 // around since the previous marking and hasn't yet
ysr@777 1514 // been marked during this marking.
ysr@777 1515 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1516 return
ysr@777 1517 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1518 !isMarkedNext(obj);
ysr@777 1519 }
ysr@777 1520
ysr@777 1521 // Determine if an object is dead, given only the object itself.
ysr@777 1522 // This will find the region to which the object belongs and
ysr@777 1523 // then call the region version of the same function.
ysr@777 1524
ysr@777 1525 // Added if it is NULL it isn't dead.
ysr@777 1526
tschatzl@6541 1527 inline bool is_obj_dead(const oop obj) const;
ysr@777 1528
tschatzl@6541 1529 inline bool is_obj_ill(const oop obj) const;
ysr@777 1530
johnc@5548 1531 bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
johnc@5548 1532 HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
johnc@5548 1533 bool is_marked(oop obj, VerifyOption vo);
johnc@5548 1534 const char* top_at_mark_start_str(VerifyOption vo);
johnc@5548 1535
johnc@5548 1536 ConcurrentMark* concurrent_mark() const { return _cm; }
johnc@5548 1537
johnc@5548 1538 // Refinement
johnc@5548 1539
johnc@5548 1540 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
johnc@5548 1541
johnc@5548 1542 // The dirty cards region list is used to record a subset of regions
johnc@5548 1543 // whose cards need clearing. The list if populated during the
johnc@5548 1544 // remembered set scanning and drained during the card table
johnc@5548 1545 // cleanup. Although the methods are reentrant, population/draining
johnc@5548 1546 // phases must not overlap. For synchronization purposes the last
johnc@5548 1547 // element on the list points to itself.
johnc@5548 1548 HeapRegion* _dirty_cards_region_list;
johnc@5548 1549 void push_dirty_cards_region(HeapRegion* hr);
johnc@5548 1550 HeapRegion* pop_dirty_cards_region();
johnc@5548 1551
johnc@5548 1552 // Optimized nmethod scanning support routines
johnc@5548 1553
johnc@5548 1554 // Register the given nmethod with the G1 heap
johnc@5548 1555 virtual void register_nmethod(nmethod* nm);
johnc@5548 1556
johnc@5548 1557 // Unregister the given nmethod from the G1 heap
johnc@5548 1558 virtual void unregister_nmethod(nmethod* nm);
johnc@5548 1559
tschatzl@6402 1560 // Free up superfluous code root memory.
tschatzl@6402 1561 void purge_code_root_memory();
tschatzl@6402 1562
johnc@5548 1563 // Rebuild the stong code root lists for each region
johnc@5548 1564 // after a full GC
johnc@5548 1565 void rebuild_strong_code_roots();
johnc@5548 1566
tschatzl@6229 1567 // Delete entries for dead interned string and clean up unreferenced symbols
tschatzl@6229 1568 // in symbol table, possibly in parallel.
tschatzl@6229 1569 void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
tschatzl@6229 1570
stefank@6992 1571 // Parallel phase of unloading/cleaning after G1 concurrent mark.
stefank@6992 1572 void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
stefank@6992 1573
tschatzl@6405 1574 // Redirty logged cards in the refinement queue.
tschatzl@6405 1575 void redirty_logged_cards();
johnc@5548 1576 // Verification
johnc@5548 1577
johnc@5548 1578 // The following is just to alert the verification code
johnc@5548 1579 // that a full collection has occurred and that the
johnc@5548 1580 // remembered sets are no longer up to date.
johnc@5548 1581 bool _full_collection;
johnc@5548 1582 void set_full_collection() { _full_collection = true;}
johnc@5548 1583 void clear_full_collection() {_full_collection = false;}
johnc@5548 1584 bool full_collection() {return _full_collection;}
johnc@5548 1585
johnc@5548 1586 // Perform any cleanup actions necessary before allowing a verification.
johnc@5548 1587 virtual void prepare_for_verify();
johnc@5548 1588
johnc@5548 1589 // Perform verification.
johnc@5548 1590
johnc@5548 1591 // vo == UsePrevMarking -> use "prev" marking information,
johnc@5548 1592 // vo == UseNextMarking -> use "next" marking information
johnc@5548 1593 // vo == UseMarkWord -> use the mark word in the object header
johnc@5548 1594 //
johnc@5548 1595 // NOTE: Only the "prev" marking information is guaranteed to be
johnc@5548 1596 // consistent most of the time, so most calls to this should use
johnc@5548 1597 // vo == UsePrevMarking.
johnc@5548 1598 // Currently, there is only one case where this is called with
johnc@5548 1599 // vo == UseNextMarking, which is to verify the "next" marking
johnc@5548 1600 // information at the end of remark.
johnc@5548 1601 // Currently there is only one place where this is called with
johnc@5548 1602 // vo == UseMarkWord, which is to verify the marking during a
johnc@5548 1603 // full GC.
johnc@5548 1604 void verify(bool silent, VerifyOption vo);
johnc@5548 1605
johnc@5548 1606 // Override; it uses the "prev" marking information
johnc@5548 1607 virtual void verify(bool silent);
johnc@5548 1608
tonyp@3957 1609 // The methods below are here for convenience and dispatch the
tonyp@3957 1610 // appropriate method depending on value of the given VerifyOption
johnc@5548 1611 // parameter. The values for that parameter, and their meanings,
johnc@5548 1612 // are the same as those above.
tonyp@3957 1613
tonyp@3957 1614 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1615 const HeapRegion* hr,
tschatzl@6541 1616 const VerifyOption vo) const;
tonyp@3957 1617
tonyp@3957 1618 bool is_obj_dead_cond(const oop obj,
tschatzl@6541 1619 const VerifyOption vo) const;
tonyp@3957 1620
johnc@5548 1621 // Printing
tonyp@3957 1622
johnc@5548 1623 virtual void print_on(outputStream* st) const;
johnc@5548 1624 virtual void print_extended_on(outputStream* st) const;
johnc@5548 1625 virtual void print_on_error(outputStream* st) const;
ysr@777 1626
johnc@5548 1627 virtual void print_gc_threads_on(outputStream* st) const;
johnc@5548 1628 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1629
johnc@5548 1630 // Override
johnc@5548 1631 void print_tracing_info() const;
johnc@5548 1632
johnc@5548 1633 // The following two methods are helpful for debugging RSet issues.
johnc@5548 1634 void print_cset_rsets() PRODUCT_RETURN;
johnc@5548 1635 void print_all_rsets() PRODUCT_RETURN;
apetrusenko@1231 1636
ysr@777 1637 public:
ysr@777 1638 size_t pending_card_num();
ysr@777 1639 size_t cards_scanned();
ysr@777 1640
ysr@777 1641 protected:
ysr@777 1642 size_t _max_heap_capacity;
ysr@777 1643 };
ysr@777 1644
stefank@2314 1645 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial