src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Mon, 20 Jan 2014 11:47:07 +0100

author
tschatzl
date
Mon, 20 Jan 2014 11:47:07 +0100
changeset 6229
5a32d2a3cc1e
parent 6131
86e6d691f2e1
child 6231
889068b9a088
permissions
-rw-r--r--

8027476: Improve performance of Stringtable unlink
8027455: Improve symbol table scan times during gc pauses
Summary: Parallelize string table and symbol table scan during remark and full GC. Some additional statistics output if the experimental flag G1TraceStringSymbolTableScrubbing is set.
Reviewed-by: mgerdin, coleenp, brutisso

ysr@777 1 /*
sla@5237 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/concurrentMark.hpp"
sla@5237 29 #include "gc_implementation/g1/evacuationInfo.hpp"
tonyp@2715 30 #include "gc_implementation/g1/g1AllocRegion.hpp"
tonyp@2975 31 #include "gc_implementation/g1/g1HRPrinter.hpp"
sla@5237 32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
stefank@2314 33 #include "gc_implementation/g1/g1RemSet.hpp"
mgerdin@5811 34 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
sla@5237 35 #include "gc_implementation/g1/g1YCTypes.hpp"
tonyp@2963 36 #include "gc_implementation/g1/heapRegionSeq.hpp"
tonyp@2472 37 #include "gc_implementation/g1/heapRegionSets.hpp"
jmasa@2821 38 #include "gc_implementation/shared/hSpaceCounters.hpp"
johnc@3982 39 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
stefank@2314 40 #include "memory/barrierSet.hpp"
stefank@2314 41 #include "memory/memRegion.hpp"
stefank@2314 42 #include "memory/sharedHeap.hpp"
brutisso@4579 43 #include "utilities/stack.hpp"
stefank@2314 44
ysr@777 45 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 46 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 47 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 48 // heap subsets that will yield large amounts of garbage.
ysr@777 49
johnc@5548 50 // Forward declarations
ysr@777 51 class HeapRegion;
tonyp@2493 52 class HRRSCleanupTask;
ysr@777 53 class GenerationSpec;
ysr@777 54 class OopsInHeapRegionClosure;
coleenp@4037 55 class G1KlassScanClosure;
ysr@777 56 class G1ScanHeapEvacClosure;
ysr@777 57 class ObjectClosure;
ysr@777 58 class SpaceClosure;
ysr@777 59 class CompactibleSpaceClosure;
ysr@777 60 class Space;
ysr@777 61 class G1CollectorPolicy;
ysr@777 62 class GenRemSet;
ysr@777 63 class G1RemSet;
ysr@777 64 class HeapRegionRemSetIterator;
ysr@777 65 class ConcurrentMark;
ysr@777 66 class ConcurrentMarkThread;
ysr@777 67 class ConcurrentG1Refine;
sla@5237 68 class ConcurrentGCTimer;
jmasa@2821 69 class GenerationCounters;
sla@5237 70 class STWGCTimer;
sla@5237 71 class G1NewTracer;
sla@5237 72 class G1OldTracer;
sla@5237 73 class EvacuationFailedInfo;
johnc@5548 74 class nmethod;
mgronlun@6131 75 class Ticks;
ysr@777 76
zgu@3900 77 typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
zgu@3900 78 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
ysr@777 79
johnc@1242 80 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 81 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 82
ysr@777 83 enum GCAllocPurpose {
ysr@777 84 GCAllocForTenured,
ysr@777 85 GCAllocForSurvived,
ysr@777 86 GCAllocPurposeCount
ysr@777 87 };
ysr@777 88
zgu@3900 89 class YoungList : public CHeapObj<mtGC> {
ysr@777 90 private:
ysr@777 91 G1CollectedHeap* _g1h;
ysr@777 92
ysr@777 93 HeapRegion* _head;
ysr@777 94
johnc@1829 95 HeapRegion* _survivor_head;
johnc@1829 96 HeapRegion* _survivor_tail;
johnc@1829 97
johnc@1829 98 HeapRegion* _curr;
johnc@1829 99
tonyp@3713 100 uint _length;
tonyp@3713 101 uint _survivor_length;
ysr@777 102
ysr@777 103 size_t _last_sampled_rs_lengths;
ysr@777 104 size_t _sampled_rs_lengths;
ysr@777 105
johnc@1829 106 void empty_list(HeapRegion* list);
ysr@777 107
ysr@777 108 public:
ysr@777 109 YoungList(G1CollectedHeap* g1h);
ysr@777 110
johnc@1829 111 void push_region(HeapRegion* hr);
johnc@1829 112 void add_survivor_region(HeapRegion* hr);
johnc@1829 113
johnc@1829 114 void empty_list();
johnc@1829 115 bool is_empty() { return _length == 0; }
tonyp@3713 116 uint length() { return _length; }
tonyp@3713 117 uint survivor_length() { return _survivor_length; }
ysr@777 118
tonyp@2961 119 // Currently we do not keep track of the used byte sum for the
tonyp@2961 120 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 121 // do so. When we'll eventually replace the young list with
tonyp@2961 122 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 123 // we'll report the more accurate information then.
tonyp@2961 124 size_t eden_used_bytes() {
tonyp@2961 125 assert(length() >= survivor_length(), "invariant");
tonyp@3713 126 return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 127 }
tonyp@2961 128 size_t survivor_used_bytes() {
tonyp@3713 129 return (size_t) survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 130 }
tonyp@2961 131
ysr@777 132 void rs_length_sampling_init();
ysr@777 133 bool rs_length_sampling_more();
ysr@777 134 void rs_length_sampling_next();
ysr@777 135
ysr@777 136 void reset_sampled_info() {
ysr@777 137 _last_sampled_rs_lengths = 0;
ysr@777 138 }
ysr@777 139 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 140
ysr@777 141 // for development purposes
ysr@777 142 void reset_auxilary_lists();
johnc@1829 143 void clear() { _head = NULL; _length = 0; }
johnc@1829 144
johnc@1829 145 void clear_survivors() {
johnc@1829 146 _survivor_head = NULL;
johnc@1829 147 _survivor_tail = NULL;
johnc@1829 148 _survivor_length = 0;
johnc@1829 149 }
johnc@1829 150
ysr@777 151 HeapRegion* first_region() { return _head; }
ysr@777 152 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 153 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 154
ysr@777 155 // debugging
ysr@777 156 bool check_list_well_formed();
johnc@1829 157 bool check_list_empty(bool check_sample = true);
ysr@777 158 void print();
ysr@777 159 };
ysr@777 160
tonyp@2715 161 class MutatorAllocRegion : public G1AllocRegion {
tonyp@2715 162 protected:
tonyp@2715 163 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@2715 164 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@2715 165 public:
tonyp@2715 166 MutatorAllocRegion()
tonyp@2715 167 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
tonyp@2715 168 };
tonyp@2715 169
tonyp@3028 170 class SurvivorGCAllocRegion : public G1AllocRegion {
tonyp@3028 171 protected:
tonyp@3028 172 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 173 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 174 public:
tonyp@3028 175 SurvivorGCAllocRegion()
tonyp@3028 176 : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
tonyp@3028 177 };
tonyp@3028 178
tonyp@3028 179 class OldGCAllocRegion : public G1AllocRegion {
tonyp@3028 180 protected:
tonyp@3028 181 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 182 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 183 public:
tonyp@3028 184 OldGCAllocRegion()
tonyp@3028 185 : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
tonyp@3028 186 };
tonyp@3028 187
johnc@5548 188 // The G1 STW is alive closure.
johnc@5548 189 // An instance is embedded into the G1CH and used as the
johnc@5548 190 // (optional) _is_alive_non_header closure in the STW
johnc@5548 191 // reference processor. It is also extensively used during
johnc@5548 192 // reference processing during STW evacuation pauses.
johnc@5548 193 class G1STWIsAliveClosure: public BoolObjectClosure {
johnc@5548 194 G1CollectedHeap* _g1;
johnc@5548 195 public:
johnc@5548 196 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
johnc@5548 197 bool do_object_b(oop p);
johnc@5548 198 };
johnc@5548 199
ysr@777 200 class RefineCardTableEntryClosure;
johnc@3175 201
ysr@777 202 class G1CollectedHeap : public SharedHeap {
ysr@777 203 friend class VM_G1CollectForAllocation;
ysr@777 204 friend class VM_G1CollectFull;
ysr@777 205 friend class VM_G1IncCollectionPause;
ysr@777 206 friend class VMStructs;
tonyp@2715 207 friend class MutatorAllocRegion;
tonyp@3028 208 friend class SurvivorGCAllocRegion;
tonyp@3028 209 friend class OldGCAllocRegion;
ysr@777 210
ysr@777 211 // Closures used in implementation.
brutisso@3690 212 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
brutisso@3690 213 friend class G1ParCopyClosure;
ysr@777 214 friend class G1IsAliveClosure;
ysr@777 215 friend class G1EvacuateFollowersClosure;
ysr@777 216 friend class G1ParScanThreadState;
ysr@777 217 friend class G1ParScanClosureSuper;
ysr@777 218 friend class G1ParEvacuateFollowersClosure;
ysr@777 219 friend class G1ParTask;
ysr@777 220 friend class G1FreeGarbageRegionClosure;
ysr@777 221 friend class RefineCardTableEntryClosure;
ysr@777 222 friend class G1PrepareCompactClosure;
ysr@777 223 friend class RegionSorter;
tonyp@2472 224 friend class RegionResetter;
ysr@777 225 friend class CountRCClosure;
ysr@777 226 friend class EvacPopObjClosure;
apetrusenko@1231 227 friend class G1ParCleanupCTTask;
ysr@777 228
ysr@777 229 // Other related classes.
ysr@777 230 friend class G1MarkSweep;
ysr@777 231
ysr@777 232 private:
ysr@777 233 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 234 static G1CollectedHeap* _g1h;
ysr@777 235
tonyp@1377 236 static size_t _humongous_object_threshold_in_words;
tonyp@1377 237
coleenp@4037 238 // Storage for the G1 heap.
ysr@777 239 VirtualSpace _g1_storage;
ysr@777 240 MemRegion _g1_reserved;
ysr@777 241
ysr@777 242 // The part of _g1_storage that is currently committed.
ysr@777 243 MemRegion _g1_committed;
ysr@777 244
tonyp@2472 245 // The master free list. It will satisfy all new region allocations.
tonyp@2472 246 MasterFreeRegionList _free_list;
tonyp@2472 247
tonyp@2472 248 // The secondary free list which contains regions that have been
tonyp@2472 249 // freed up during the cleanup process. This will be appended to the
tonyp@2472 250 // master free list when appropriate.
tonyp@2472 251 SecondaryFreeRegionList _secondary_free_list;
tonyp@2472 252
tonyp@3268 253 // It keeps track of the old regions.
tonyp@3268 254 MasterOldRegionSet _old_set;
tonyp@3268 255
tonyp@2472 256 // It keeps track of the humongous regions.
tonyp@2472 257 MasterHumongousRegionSet _humongous_set;
ysr@777 258
ysr@777 259 // The number of regions we could create by expansion.
tonyp@3713 260 uint _expansion_regions;
ysr@777 261
ysr@777 262 // The block offset table for the G1 heap.
ysr@777 263 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 264
tonyp@3268 265 // Tears down the region sets / lists so that they are empty and the
tonyp@3268 266 // regions on the heap do not belong to a region set / list. The
tonyp@3268 267 // only exception is the humongous set which we leave unaltered. If
tonyp@3268 268 // free_list_only is true, it will only tear down the master free
tonyp@3268 269 // list. It is called before a Full GC (free_list_only == false) or
tonyp@3268 270 // before heap shrinking (free_list_only == true).
tonyp@3268 271 void tear_down_region_sets(bool free_list_only);
tonyp@3268 272
tonyp@3268 273 // Rebuilds the region sets / lists so that they are repopulated to
tonyp@3268 274 // reflect the contents of the heap. The only exception is the
tonyp@3268 275 // humongous set which was not torn down in the first place. If
tonyp@3268 276 // free_list_only is true, it will only rebuild the master free
tonyp@3268 277 // list. It is called after a Full GC (free_list_only == false) or
tonyp@3268 278 // after heap shrinking (free_list_only == true).
tonyp@3268 279 void rebuild_region_sets(bool free_list_only);
ysr@777 280
ysr@777 281 // The sequence of all heap regions in the heap.
tonyp@2963 282 HeapRegionSeq _hrs;
ysr@777 283
tonyp@2715 284 // Alloc region used to satisfy mutator allocation requests.
tonyp@2715 285 MutatorAllocRegion _mutator_alloc_region;
ysr@777 286
tonyp@3028 287 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 288 // survivor objects.
tonyp@3028 289 SurvivorGCAllocRegion _survivor_gc_alloc_region;
tonyp@3028 290
johnc@3982 291 // PLAB sizing policy for survivors.
johnc@3982 292 PLABStats _survivor_plab_stats;
johnc@3982 293
tonyp@3028 294 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 295 // old objects.
tonyp@3028 296 OldGCAllocRegion _old_gc_alloc_region;
tonyp@3028 297
johnc@3982 298 // PLAB sizing policy for tenured objects.
johnc@3982 299 PLABStats _old_plab_stats;
johnc@3982 300
johnc@3982 301 PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
johnc@3982 302 PLABStats* stats = NULL;
johnc@3982 303
johnc@3982 304 switch (purpose) {
johnc@3982 305 case GCAllocForSurvived:
johnc@3982 306 stats = &_survivor_plab_stats;
johnc@3982 307 break;
johnc@3982 308 case GCAllocForTenured:
johnc@3982 309 stats = &_old_plab_stats;
johnc@3982 310 break;
johnc@3982 311 default:
johnc@3982 312 assert(false, "unrecognized GCAllocPurpose");
johnc@3982 313 }
johnc@3982 314
johnc@3982 315 return stats;
johnc@3982 316 }
johnc@3982 317
tonyp@3028 318 // The last old region we allocated to during the last GC.
tonyp@3028 319 // Typically, it is not full so we should re-use it during the next GC.
tonyp@3028 320 HeapRegion* _retained_old_gc_alloc_region;
tonyp@3028 321
tonyp@3410 322 // It specifies whether we should attempt to expand the heap after a
tonyp@3410 323 // region allocation failure. If heap expansion fails we set this to
tonyp@3410 324 // false so that we don't re-attempt the heap expansion (it's likely
tonyp@3410 325 // that subsequent expansion attempts will also fail if one fails).
tonyp@3410 326 // Currently, it is only consulted during GC and it's reset at the
tonyp@3410 327 // start of each GC.
tonyp@3410 328 bool _expand_heap_after_alloc_failure;
tonyp@3410 329
tonyp@2715 330 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 331 void init_mutator_alloc_region();
tonyp@2715 332
tonyp@2715 333 // It releases the mutator alloc region.
tonyp@2715 334 void release_mutator_alloc_region();
tonyp@2715 335
tonyp@3028 336 // It initializes the GC alloc regions at the start of a GC.
sla@5237 337 void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
tonyp@3028 338
tonyp@3028 339 // It releases the GC alloc regions at the end of a GC.
sla@5237 340 void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
tonyp@3028 341
tonyp@3028 342 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 343 // before a Full GC.
tonyp@1071 344 void abandon_gc_alloc_regions();
ysr@777 345
jmasa@2821 346 // Helper for monitoring and management support.
jmasa@2821 347 G1MonitoringSupport* _g1mm;
jmasa@2821 348
apetrusenko@1826 349 // Determines PLAB size for a particular allocation purpose.
johnc@3982 350 size_t desired_plab_sz(GCAllocPurpose purpose);
apetrusenko@1826 351
ysr@777 352 // Outside of GC pauses, the number of bytes used in all regions other
ysr@777 353 // than the current allocation region.
ysr@777 354 size_t _summary_bytes_used;
ysr@777 355
tonyp@961 356 // This is used for a quick test on whether a reference points into
tonyp@961 357 // the collection set or not. Basically, we have an array, with one
tonyp@961 358 // byte per region, and that byte denotes whether the corresponding
tonyp@961 359 // region is in the collection set or not. The entry corresponding
tonyp@961 360 // the bottom of the heap, i.e., region 0, is pointed to by
tonyp@961 361 // _in_cset_fast_test_base. The _in_cset_fast_test field has been
tonyp@961 362 // biased so that it actually points to address 0 of the address
tonyp@961 363 // space, to make the test as fast as possible (we can simply shift
tonyp@961 364 // the address to address into it, instead of having to subtract the
tonyp@961 365 // bottom of the heap from the address before shifting it; basically
tonyp@961 366 // it works in the same way the card table works).
tonyp@961 367 bool* _in_cset_fast_test;
tonyp@961 368
tonyp@961 369 // The allocated array used for the fast test on whether a reference
tonyp@961 370 // points into the collection set or not. This field is also used to
tonyp@961 371 // free the array.
tonyp@961 372 bool* _in_cset_fast_test_base;
tonyp@961 373
tonyp@961 374 // The length of the _in_cset_fast_test_base array.
tonyp@3713 375 uint _in_cset_fast_test_length;
tonyp@961 376
iveresov@788 377 volatile unsigned _gc_time_stamp;
ysr@777 378
ysr@777 379 size_t* _surviving_young_words;
ysr@777 380
tonyp@2975 381 G1HRPrinter _hr_printer;
tonyp@2975 382
ysr@777 383 void setup_surviving_young_words();
ysr@777 384 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 385 void cleanup_surviving_young_words();
ysr@777 386
tonyp@2011 387 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 388 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 389 // explicitly started if:
tonyp@2011 390 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 391 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
brutisso@3456 392 // (c) cause == _g1_humongous_allocation
tonyp@2011 393 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 394
brutisso@3823 395 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 396 // concurrent cycles) we have started.
brutisso@3823 397 volatile unsigned int _old_marking_cycles_started;
brutisso@3823 398
brutisso@3823 399 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 400 // concurrent cycles) we have completed.
brutisso@3823 401 volatile unsigned int _old_marking_cycles_completed;
tonyp@2011 402
sla@5237 403 bool _concurrent_cycle_started;
sla@5237 404
tonyp@2817 405 // This is a non-product method that is helpful for testing. It is
tonyp@2817 406 // called at the end of a GC and artificially expands the heap by
tonyp@2817 407 // allocating a number of dead regions. This way we can induce very
tonyp@2817 408 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 409 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 410 // this method will be found dead by the marking cycle).
tonyp@2817 411 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 412
tonyp@3957 413 // Clear RSets after a compaction. It also resets the GC time stamps.
tonyp@3957 414 void clear_rsets_post_compaction();
tonyp@3957 415
tonyp@3957 416 // If the HR printer is active, dump the state of the regions in the
tonyp@3957 417 // heap after a compaction.
tonyp@3957 418 void print_hrs_post_compaction();
tonyp@3957 419
brutisso@4015 420 double verify(bool guard, const char* msg);
brutisso@4015 421 void verify_before_gc();
brutisso@4015 422 void verify_after_gc();
brutisso@4015 423
brutisso@4063 424 void log_gc_header();
brutisso@4063 425 void log_gc_footer(double pause_time_sec);
brutisso@4063 426
tonyp@2315 427 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 428 // line number, file, etc.
tonyp@2315 429
tonyp@2643 430 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 431 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 432 (_extra_message_), \
tonyp@2472 433 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 434 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 435 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 436
tonyp@2315 437 #define assert_heap_locked() \
tonyp@2315 438 do { \
tonyp@2315 439 assert(Heap_lock->owned_by_self(), \
tonyp@2315 440 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 441 } while (0)
tonyp@2315 442
tonyp@2643 443 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 444 do { \
tonyp@2315 445 assert(Heap_lock->owned_by_self() || \
tonyp@2472 446 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 447 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 448 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 449 "should be at a safepoint")); \
tonyp@2315 450 } while (0)
tonyp@2315 451
tonyp@2315 452 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 453 do { \
tonyp@2315 454 assert(Heap_lock->owned_by_self() && \
tonyp@2315 455 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 456 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 457 "should not be at a safepoint")); \
tonyp@2315 458 } while (0)
tonyp@2315 459
tonyp@2315 460 #define assert_heap_not_locked() \
tonyp@2315 461 do { \
tonyp@2315 462 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 463 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 464 } while (0)
tonyp@2315 465
tonyp@2315 466 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 467 do { \
tonyp@2315 468 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 469 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 470 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 471 "should not be at a safepoint")); \
tonyp@2315 472 } while (0)
tonyp@2315 473
tonyp@2643 474 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 475 do { \
tonyp@2472 476 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 477 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 478 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 479 } while (0)
tonyp@2315 480
tonyp@2315 481 #define assert_not_at_safepoint() \
tonyp@2315 482 do { \
tonyp@2315 483 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 484 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 485 } while (0)
tonyp@2315 486
ysr@777 487 protected:
ysr@777 488
johnc@3021 489 // The young region list.
ysr@777 490 YoungList* _young_list;
ysr@777 491
ysr@777 492 // The current policy object for the collector.
ysr@777 493 G1CollectorPolicy* _g1_policy;
ysr@777 494
tonyp@2472 495 // This is the second level of trying to allocate a new region. If
tonyp@2715 496 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 497 // check whether there's anything available on the
tonyp@2715 498 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 499 // that list, if _free_regions_coming is set.
tonyp@2643 500 HeapRegion* new_region_try_secondary_free_list();
ysr@777 501
tonyp@2643 502 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 503 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 504 // attempt to expand the heap if necessary to satisfy the allocation
tonyp@2643 505 // request.
tonyp@2715 506 HeapRegion* new_region(size_t word_size, bool do_expand);
ysr@777 507
tonyp@2643 508 // Attempt to satisfy a humongous allocation request of the given
tonyp@2643 509 // size by finding a contiguous set of free regions of num_regions
tonyp@2643 510 // length and remove them from the master free list. Return the
tonyp@2963 511 // index of the first region or G1_NULL_HRS_INDEX if the search
tonyp@2963 512 // was unsuccessful.
tonyp@3713 513 uint humongous_obj_allocate_find_first(uint num_regions,
tonyp@3713 514 size_t word_size);
ysr@777 515
tonyp@2643 516 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 517 // and starting at index first so that they appear as a single
tonyp@2643 518 // humongous region.
tonyp@3713 519 HeapWord* humongous_obj_allocate_initialize_regions(uint first,
tonyp@3713 520 uint num_regions,
tonyp@2643 521 size_t word_size);
tonyp@2643 522
tonyp@2643 523 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 524 // NULL if unsuccessful.
tonyp@2472 525 HeapWord* humongous_obj_allocate(size_t word_size);
ysr@777 526
tonyp@2315 527 // The following two methods, allocate_new_tlab() and
tonyp@2315 528 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 529 // into the G1's allocation routines. They have the following
tonyp@2315 530 // assumptions:
tonyp@2315 531 //
tonyp@2315 532 // * They should both be called outside safepoints.
tonyp@2315 533 //
tonyp@2315 534 // * They should both be called without holding the Heap_lock.
tonyp@2315 535 //
tonyp@2315 536 // * All allocation requests for new TLABs should go to
tonyp@2315 537 // allocate_new_tlab().
tonyp@2315 538 //
tonyp@2971 539 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 540 //
tonyp@2315 541 // * If either call cannot satisfy the allocation request using the
tonyp@2315 542 // current allocating region, they will try to get a new one. If
tonyp@2315 543 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 544 // retry the allocation.
tonyp@2315 545 //
tonyp@2315 546 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 547 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 548 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 549 // schedule a Full GC.
tonyp@2315 550 //
tonyp@2315 551 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 552 // should never be called with word_size being humongous. All
tonyp@2315 553 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 554 // will satisfy them with a special path.
ysr@777 555
tonyp@2315 556 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 557
tonyp@2315 558 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 559 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 560
tonyp@2715 561 // The following three methods take a gc_count_before_ret
tonyp@2715 562 // parameter which is used to return the GC count if the method
tonyp@2715 563 // returns NULL. Given that we are required to read the GC count
tonyp@2715 564 // while holding the Heap_lock, and these paths will take the
tonyp@2715 565 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 566 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 567 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 568 // Heap_lock just to read the GC count.
tonyp@2315 569
tonyp@2715 570 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 571 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 572 // should only be used for non-humongous allocations.
tonyp@2715 573 inline HeapWord* attempt_allocation(size_t word_size,
mgerdin@4853 574 unsigned int* gc_count_before_ret,
mgerdin@4853 575 int* gclocker_retry_count_ret);
tonyp@2315 576
tonyp@2715 577 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 578 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 579 // pause. This should only be used for non-humongous allocations.
tonyp@2715 580 HeapWord* attempt_allocation_slow(size_t word_size,
mgerdin@4853 581 unsigned int* gc_count_before_ret,
mgerdin@4853 582 int* gclocker_retry_count_ret);
tonyp@2315 583
tonyp@2715 584 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 585 // potentially schedule a GC pause.
tonyp@2715 586 HeapWord* attempt_allocation_humongous(size_t word_size,
mgerdin@4853 587 unsigned int* gc_count_before_ret,
mgerdin@4853 588 int* gclocker_retry_count_ret);
tonyp@2454 589
tonyp@2715 590 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 591 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 592 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 593 // or not.
tonyp@2315 594 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
tonyp@2715 595 bool expect_null_mutator_alloc_region);
tonyp@2315 596
tonyp@2315 597 // It dirties the cards that cover the block so that so that the post
tonyp@2315 598 // write barrier never queues anything when updating objects on this
tonyp@2315 599 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 600 // belongs to a young region.
tonyp@2315 601 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 602
ysr@777 603 // Allocate blocks during garbage collection. Will ensure an
ysr@777 604 // allocation region, either by picking one or expanding the
ysr@777 605 // heap, and then allocate a block of the given size. The block
ysr@777 606 // may not be a humongous - it must fit into a single heap region.
ysr@777 607 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 608
ysr@777 609 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 610 // that parallel threads might be attempting allocations.
ysr@777 611 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 612
tonyp@3028 613 // Allocation attempt during GC for a survivor object / PLAB.
tonyp@3028 614 inline HeapWord* survivor_attempt_allocation(size_t word_size);
apetrusenko@980 615
tonyp@3028 616 // Allocation attempt during GC for an old object / PLAB.
tonyp@3028 617 inline HeapWord* old_attempt_allocation(size_t word_size);
tonyp@2715 618
tonyp@3028 619 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 620
tonyp@3028 621 // For mutator alloc regions.
tonyp@2715 622 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 623 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 624 size_t allocated_bytes);
tonyp@2715 625
tonyp@3028 626 // For GC alloc regions.
tonyp@3713 627 HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
tonyp@3028 628 GCAllocPurpose ap);
tonyp@3028 629 void retire_gc_alloc_region(HeapRegion* alloc_region,
tonyp@3028 630 size_t allocated_bytes, GCAllocPurpose ap);
tonyp@3028 631
tonyp@2011 632 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 633 // inspection request and should collect the entire heap
tonyp@2315 634 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 635 // cleared during the GC
tonyp@2011 636 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 637 // the GC should attempt (at least) to satisfy
tonyp@2315 638 // - it returns false if it is unable to do the collection due to the
tonyp@2315 639 // GC locker being active, true otherwise
tonyp@2315 640 bool do_collection(bool explicit_gc,
tonyp@2011 641 bool clear_all_soft_refs,
ysr@777 642 size_t word_size);
ysr@777 643
ysr@777 644 // Callback from VM_G1CollectFull operation.
ysr@777 645 // Perform a full collection.
coleenp@4037 646 virtual void do_full_collection(bool clear_all_soft_refs);
ysr@777 647
ysr@777 648 // Resize the heap if necessary after a full collection. If this is
ysr@777 649 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 650 // and will be considered part of the used portion of the heap.
ysr@777 651 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 652
ysr@777 653 // Callback from VM_G1CollectForAllocation operation.
ysr@777 654 // This function does everything necessary/possible to satisfy a
ysr@777 655 // failed allocation request (including collection, expansion, etc.)
tonyp@2315 656 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
ysr@777 657
ysr@777 658 // Attempting to expand the heap sufficiently
ysr@777 659 // to support an allocation of the given "word_size". If
ysr@777 660 // successful, perform the allocation and return the address of the
ysr@777 661 // allocated block, or else "NULL".
tonyp@2315 662 HeapWord* expand_and_allocate(size_t word_size);
ysr@777 663
johnc@3175 664 // Process any reference objects discovered during
johnc@3175 665 // an incremental evacuation pause.
johnc@4130 666 void process_discovered_references(uint no_of_gc_workers);
johnc@3175 667
johnc@3175 668 // Enqueue any remaining discovered references
johnc@3175 669 // after processing.
johnc@4130 670 void enqueue_discovered_references(uint no_of_gc_workers);
johnc@3175 671
ysr@777 672 public:
jmasa@2821 673
tonyp@3176 674 G1MonitoringSupport* g1mm() {
tonyp@3176 675 assert(_g1mm != NULL, "should have been initialized");
tonyp@3176 676 return _g1mm;
tonyp@3176 677 }
jmasa@2821 678
ysr@777 679 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 680 // Returns true if the heap was expanded by the requested amount;
johnc@2504 681 // false otherwise.
ysr@777 682 // (Rounds up to a HeapRegion boundary.)
johnc@2504 683 bool expand(size_t expand_bytes);
ysr@777 684
ysr@777 685 // Do anything common to GC's.
ysr@777 686 virtual void gc_prologue(bool full);
ysr@777 687 virtual void gc_epilogue(bool full);
ysr@777 688
tonyp@961 689 // We register a region with the fast "in collection set" test. We
tonyp@961 690 // simply set to true the array slot corresponding to this region.
tonyp@961 691 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tonyp@961 692 assert(_in_cset_fast_test_base != NULL, "sanity");
tonyp@961 693 assert(r->in_collection_set(), "invariant");
tonyp@3713 694 uint index = r->hrs_index();
tonyp@2963 695 assert(index < _in_cset_fast_test_length, "invariant");
tonyp@961 696 assert(!_in_cset_fast_test_base[index], "invariant");
tonyp@961 697 _in_cset_fast_test_base[index] = true;
tonyp@961 698 }
tonyp@961 699
tonyp@961 700 // This is a fast test on whether a reference points into the
tonyp@961 701 // collection set or not. It does not assume that the reference
tonyp@961 702 // points into the heap; if it doesn't, it will return false.
tonyp@961 703 bool in_cset_fast_test(oop obj) {
tonyp@961 704 assert(_in_cset_fast_test != NULL, "sanity");
tonyp@961 705 if (_g1_committed.contains((HeapWord*) obj)) {
tonyp@961 706 // no need to subtract the bottom of the heap from obj,
tonyp@961 707 // _in_cset_fast_test is biased
hseigel@5784 708 uintx index = cast_from_oop<uintx>(obj) >> HeapRegion::LogOfHRGrainBytes;
tonyp@961 709 bool ret = _in_cset_fast_test[index];
tonyp@961 710 // let's make sure the result is consistent with what the slower
tonyp@961 711 // test returns
tonyp@961 712 assert( ret || !obj_in_cs(obj), "sanity");
tonyp@961 713 assert(!ret || obj_in_cs(obj), "sanity");
tonyp@961 714 return ret;
tonyp@961 715 } else {
tonyp@961 716 return false;
tonyp@961 717 }
tonyp@961 718 }
tonyp@961 719
johnc@1829 720 void clear_cset_fast_test() {
johnc@1829 721 assert(_in_cset_fast_test_base != NULL, "sanity");
johnc@1829 722 memset(_in_cset_fast_test_base, false,
tonyp@3713 723 (size_t) _in_cset_fast_test_length * sizeof(bool));
johnc@1829 724 }
johnc@1829 725
brutisso@3823 726 // This is called at the start of either a concurrent cycle or a Full
brutisso@3823 727 // GC to update the number of old marking cycles started.
brutisso@3823 728 void increment_old_marking_cycles_started();
brutisso@3823 729
tonyp@2011 730 // This is called at the end of either a concurrent cycle or a Full
brutisso@3823 731 // GC to update the number of old marking cycles completed. Those two
tonyp@2011 732 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 733 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 734 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 735 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 736 // tighter consistency checking in the method. If concurrent is
tonyp@2372 737 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 738 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 739 // in this nesting (i.e., the concurrent cycle). Further nesting is
brutisso@3823 740 // not currently supported. The end of this call also notifies
tonyp@2372 741 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 742 // GC to happen (e.g., it called System.gc() with
tonyp@2011 743 // +ExplicitGCInvokesConcurrent).
brutisso@3823 744 void increment_old_marking_cycles_completed(bool concurrent);
tonyp@2011 745
brutisso@3823 746 unsigned int old_marking_cycles_completed() {
brutisso@3823 747 return _old_marking_cycles_completed;
tonyp@2011 748 }
tonyp@2011 749
mgronlun@6131 750 void register_concurrent_cycle_start(const Ticks& start_time);
sla@5237 751 void register_concurrent_cycle_end();
sla@5237 752 void trace_heap_after_concurrent_cycle();
sla@5237 753
sla@5237 754 G1YCType yc_type();
sla@5237 755
tonyp@2975 756 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 757
ysr@777 758 protected:
ysr@777 759
ysr@777 760 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 761 // (Rounds down to a HeapRegion boundary.)
ysr@777 762 virtual void shrink(size_t expand_bytes);
ysr@777 763 void shrink_helper(size_t expand_bytes);
ysr@777 764
jcoomes@2064 765 #if TASKQUEUE_STATS
jcoomes@2064 766 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 767 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 768 void reset_taskqueue_stats();
jcoomes@2064 769 #endif // TASKQUEUE_STATS
jcoomes@2064 770
tonyp@2315 771 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 772 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 773 // return whether the VM operation was successful (it did do an
tonyp@2315 774 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 775 // locker was active). Given that we should not be holding the
tonyp@2315 776 // Heap_lock when we enter this method, we will pass the
tonyp@2315 777 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 778 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 779 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 780 // before the call, so it's easy to read gc_count_before just before.
brutisso@5581 781 HeapWord* do_collection_pause(size_t word_size,
brutisso@5581 782 unsigned int gc_count_before,
brutisso@5581 783 bool* succeeded,
brutisso@5581 784 GCCause::Cause gc_cause);
ysr@777 785
ysr@777 786 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 787 // thread. It returns false if it is unable to do the collection due
tonyp@2315 788 // to the GC locker being active, true otherwise
tonyp@2315 789 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 790
ysr@777 791 // Actually do the work of evacuating the collection set.
sla@5237 792 void evacuate_collection_set(EvacuationInfo& evacuation_info);
ysr@777 793
ysr@777 794 // The g1 remembered set of the heap.
ysr@777 795 G1RemSet* _g1_rem_set;
ysr@777 796
iveresov@1051 797 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 798 // concurrently after the collection.
iveresov@1051 799 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 800
ysr@777 801 // The closure used to refine a single card.
ysr@777 802 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 803
ysr@777 804 // A function to check the consistency of dirty card logs.
ysr@777 805 void check_ct_logs_at_safepoint();
ysr@777 806
johnc@2060 807 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 808 // references into the current collection set. This is used to
johnc@2060 809 // update the remembered sets of the regions in the collection
johnc@2060 810 // set in the event of an evacuation failure.
johnc@2060 811 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 812
ysr@777 813 // After a collection pause, make the regions in the CS into free
ysr@777 814 // regions.
sla@5237 815 void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
ysr@777 816
johnc@1829 817 // Abandon the current collection set without recording policy
johnc@1829 818 // statistics or updating free lists.
johnc@1829 819 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 820
ysr@777 821 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 822 // "scan_rs" to roots inside the heap (having done "set_region" to
coleenp@4037 823 // indicate the region in which the root resides),
coleenp@4037 824 // and does "scan_metadata" If "scan_rs" is
ysr@777 825 // NULL, then this step is skipped. The "worker_i"
ysr@777 826 // param is for use with parallel roots processing, and should be
ysr@777 827 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 828 // In the sequential case this param will be ignored.
coleenp@4037 829 void g1_process_strong_roots(bool is_scavenging,
tonyp@3537 830 ScanningOption so,
ysr@777 831 OopClosure* scan_non_heap_roots,
ysr@777 832 OopsInHeapRegionClosure* scan_rs,
coleenp@4037 833 G1KlassScanClosure* scan_klasses,
ysr@777 834 int worker_i);
ysr@777 835
ysr@777 836 // Apply "blk" to all the weak roots of the system. These include
ysr@777 837 // JNI weak roots, the code cache, system dictionary, symbol table,
ysr@777 838 // string table, and referents of reachable weak refs.
stefank@5011 839 void g1_process_weak_roots(OopClosure* root_closure);
ysr@777 840
tonyp@2643 841 // Frees a non-humongous region by initializing its contents and
tonyp@2472 842 // adding it to the free list that's passed as a parameter (this is
tonyp@2472 843 // usually a local list which will be appended to the master free
tonyp@2472 844 // list later). The used bytes of freed regions are accumulated in
tonyp@2472 845 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2472 846 // up. The assumption is that this will be done later.
tonyp@2472 847 void free_region(HeapRegion* hr,
tonyp@2472 848 size_t* pre_used,
tonyp@2472 849 FreeRegionList* free_list,
tonyp@2472 850 bool par);
ysr@777 851
tonyp@2643 852 // Frees a humongous region by collapsing it into individual regions
tonyp@2643 853 // and calling free_region() for each of them. The freed regions
tonyp@2643 854 // will be added to the free list that's passed as a parameter (this
tonyp@2643 855 // is usually a local list which will be appended to the master free
tonyp@2643 856 // list later). The used bytes of freed regions are accumulated in
tonyp@2643 857 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2643 858 // up. The assumption is that this will be done later.
tonyp@2472 859 void free_humongous_region(HeapRegion* hr,
tonyp@2472 860 size_t* pre_used,
tonyp@2472 861 FreeRegionList* free_list,
tonyp@2472 862 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 863 bool par);
ysr@777 864
tonyp@2963 865 // Notifies all the necessary spaces that the committed space has
tonyp@2963 866 // been updated (either expanded or shrunk). It should be called
tonyp@2963 867 // after _g1_storage is updated.
tonyp@2963 868 void update_committed_space(HeapWord* old_end, HeapWord* new_end);
tonyp@2963 869
ysr@777 870 // The concurrent marker (and the thread it runs in.)
ysr@777 871 ConcurrentMark* _cm;
ysr@777 872 ConcurrentMarkThread* _cmThread;
ysr@777 873 bool _mark_in_progress;
ysr@777 874
ysr@777 875 // The concurrent refiner.
ysr@777 876 ConcurrentG1Refine* _cg1r;
ysr@777 877
ysr@777 878 // The parallel task queues
ysr@777 879 RefToScanQueueSet *_task_queues;
ysr@777 880
ysr@777 881 // True iff a evacuation has failed in the current collection.
ysr@777 882 bool _evacuation_failed;
ysr@777 883
sla@5237 884 EvacuationFailedInfo* _evacuation_failed_info_array;
ysr@777 885
ysr@777 886 // Failed evacuations cause some logical from-space objects to have
ysr@777 887 // forwarding pointers to themselves. Reset them.
ysr@777 888 void remove_self_forwarding_pointers();
ysr@777 889
brutisso@4579 890 // Together, these store an object with a preserved mark, and its mark value.
brutisso@4579 891 Stack<oop, mtGC> _objs_with_preserved_marks;
brutisso@4579 892 Stack<markOop, mtGC> _preserved_marks_of_objs;
ysr@777 893
ysr@777 894 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 895 // word being overwritten with a self-forwarding-pointer.
ysr@777 896 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 897
ysr@777 898 // The stack of evac-failure objects left to be scanned.
ysr@777 899 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 900 // The closure to apply to evac-failure objects.
ysr@777 901
ysr@777 902 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 903 // Set the field above.
ysr@777 904 void
ysr@777 905 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 906 _evac_failure_closure = evac_failure_closure;
ysr@777 907 }
ysr@777 908
ysr@777 909 // Push "obj" on the scan stack.
ysr@777 910 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 911 // Process scan stack entries until the stack is empty.
ysr@777 912 void drain_evac_failure_scan_stack();
ysr@777 913 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 914 // prevent unnecessary recursion.
ysr@777 915 bool _drain_in_progress;
ysr@777 916
ysr@777 917 // Do any necessary initialization for evacuation-failure handling.
ysr@777 918 // "cl" is the closure that will be used to process evac-failure
ysr@777 919 // objects.
ysr@777 920 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 921 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 922 // structures.
ysr@777 923 void finalize_for_evac_failure();
ysr@777 924
ysr@777 925 // An attempt to evacuate "obj" has failed; take necessary steps.
sla@5237 926 oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
ysr@777 927 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 928
johnc@4016 929 #ifndef PRODUCT
johnc@4016 930 // Support for forcing evacuation failures. Analogous to
johnc@4016 931 // PromotionFailureALot for the other collectors.
johnc@4016 932
johnc@4016 933 // Records whether G1EvacuationFailureALot should be in effect
johnc@4016 934 // for the current GC
johnc@4016 935 bool _evacuation_failure_alot_for_current_gc;
johnc@4016 936
johnc@4016 937 // Used to record the GC number for interval checking when
johnc@4016 938 // determining whether G1EvaucationFailureALot is in effect
johnc@4016 939 // for the current GC.
johnc@4016 940 size_t _evacuation_failure_alot_gc_number;
johnc@4016 941
johnc@4016 942 // Count of the number of evacuations between failures.
johnc@4016 943 volatile size_t _evacuation_failure_alot_count;
johnc@4016 944
johnc@4016 945 // Set whether G1EvacuationFailureALot should be in effect
johnc@4016 946 // for the current GC (based upon the type of GC and which
johnc@4016 947 // command line flags are set);
johnc@4016 948 inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
johnc@4016 949 bool during_initial_mark,
johnc@4016 950 bool during_marking);
johnc@4016 951
johnc@4016 952 inline void set_evacuation_failure_alot_for_current_gc();
johnc@4016 953
johnc@4016 954 // Return true if it's time to cause an evacuation failure.
johnc@4016 955 inline bool evacuation_should_fail();
johnc@4016 956
johnc@4016 957 // Reset the G1EvacuationFailureALot counters. Should be called at
sla@5237 958 // the end of an evacuation pause in which an evacuation failure occurred.
johnc@4016 959 inline void reset_evacuation_should_fail();
johnc@4016 960 #endif // !PRODUCT
johnc@4016 961
johnc@3175 962 // ("Weak") Reference processing support.
johnc@3175 963 //
sla@5237 964 // G1 has 2 instances of the reference processor class. One
johnc@3175 965 // (_ref_processor_cm) handles reference object discovery
johnc@3175 966 // and subsequent processing during concurrent marking cycles.
johnc@3175 967 //
johnc@3175 968 // The other (_ref_processor_stw) handles reference object
johnc@3175 969 // discovery and processing during full GCs and incremental
johnc@3175 970 // evacuation pauses.
johnc@3175 971 //
johnc@3175 972 // During an incremental pause, reference discovery will be
johnc@3175 973 // temporarily disabled for _ref_processor_cm and will be
johnc@3175 974 // enabled for _ref_processor_stw. At the end of the evacuation
johnc@3175 975 // pause references discovered by _ref_processor_stw will be
johnc@3175 976 // processed and discovery will be disabled. The previous
johnc@3175 977 // setting for reference object discovery for _ref_processor_cm
johnc@3175 978 // will be re-instated.
johnc@3175 979 //
johnc@3175 980 // At the start of marking:
johnc@3175 981 // * Discovery by the CM ref processor is verified to be inactive
johnc@3175 982 // and it's discovered lists are empty.
johnc@3175 983 // * Discovery by the CM ref processor is then enabled.
johnc@3175 984 //
johnc@3175 985 // At the end of marking:
johnc@3175 986 // * Any references on the CM ref processor's discovered
johnc@3175 987 // lists are processed (possibly MT).
johnc@3175 988 //
johnc@3175 989 // At the start of full GC we:
johnc@3175 990 // * Disable discovery by the CM ref processor and
johnc@3175 991 // empty CM ref processor's discovered lists
johnc@3175 992 // (without processing any entries).
johnc@3175 993 // * Verify that the STW ref processor is inactive and it's
johnc@3175 994 // discovered lists are empty.
johnc@3175 995 // * Temporarily set STW ref processor discovery as single threaded.
johnc@3175 996 // * Temporarily clear the STW ref processor's _is_alive_non_header
johnc@3175 997 // field.
johnc@3175 998 // * Finally enable discovery by the STW ref processor.
johnc@3175 999 //
johnc@3175 1000 // The STW ref processor is used to record any discovered
johnc@3175 1001 // references during the full GC.
johnc@3175 1002 //
johnc@3175 1003 // At the end of a full GC we:
johnc@3175 1004 // * Enqueue any reference objects discovered by the STW ref processor
johnc@3175 1005 // that have non-live referents. This has the side-effect of
johnc@3175 1006 // making the STW ref processor inactive by disabling discovery.
johnc@3175 1007 // * Verify that the CM ref processor is still inactive
johnc@3175 1008 // and no references have been placed on it's discovered
johnc@3175 1009 // lists (also checked as a precondition during initial marking).
johnc@3175 1010
johnc@3175 1011 // The (stw) reference processor...
johnc@3175 1012 ReferenceProcessor* _ref_processor_stw;
johnc@3175 1013
sla@5237 1014 STWGCTimer* _gc_timer_stw;
sla@5237 1015 ConcurrentGCTimer* _gc_timer_cm;
sla@5237 1016
sla@5237 1017 G1OldTracer* _gc_tracer_cm;
sla@5237 1018 G1NewTracer* _gc_tracer_stw;
sla@5237 1019
johnc@3175 1020 // During reference object discovery, the _is_alive_non_header
johnc@3175 1021 // closure (if non-null) is applied to the referent object to
johnc@3175 1022 // determine whether the referent is live. If so then the
johnc@3175 1023 // reference object does not need to be 'discovered' and can
johnc@3175 1024 // be treated as a regular oop. This has the benefit of reducing
johnc@3175 1025 // the number of 'discovered' reference objects that need to
johnc@3175 1026 // be processed.
johnc@3175 1027 //
johnc@3175 1028 // Instance of the is_alive closure for embedding into the
johnc@3175 1029 // STW reference processor as the _is_alive_non_header field.
johnc@3175 1030 // Supplying a value for the _is_alive_non_header field is
johnc@3175 1031 // optional but doing so prevents unnecessary additions to
johnc@3175 1032 // the discovered lists during reference discovery.
johnc@3175 1033 G1STWIsAliveClosure _is_alive_closure_stw;
johnc@3175 1034
johnc@3175 1035 // The (concurrent marking) reference processor...
johnc@3175 1036 ReferenceProcessor* _ref_processor_cm;
johnc@3175 1037
johnc@2379 1038 // Instance of the concurrent mark is_alive closure for embedding
johnc@3175 1039 // into the Concurrent Marking reference processor as the
johnc@3175 1040 // _is_alive_non_header field. Supplying a value for the
johnc@3175 1041 // _is_alive_non_header field is optional but doing so prevents
johnc@3175 1042 // unnecessary additions to the discovered lists during reference
johnc@3175 1043 // discovery.
johnc@3175 1044 G1CMIsAliveClosure _is_alive_closure_cm;
ysr@777 1045
johnc@3336 1046 // Cache used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1047 HeapRegion** _worker_cset_start_region;
johnc@3336 1048
johnc@3336 1049 // Time stamp to validate the regions recorded in the cache
johnc@3336 1050 // used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1051 // The heap region entry for a given worker is valid iff
johnc@3336 1052 // the associated time stamp value matches the current value
johnc@3336 1053 // of G1CollectedHeap::_gc_time_stamp.
johnc@3336 1054 unsigned int* _worker_cset_start_region_time_stamp;
johnc@3336 1055
ysr@777 1056 enum G1H_process_strong_roots_tasks {
tonyp@3416 1057 G1H_PS_filter_satb_buffers,
ysr@777 1058 G1H_PS_refProcessor_oops_do,
ysr@777 1059 // Leave this one last.
ysr@777 1060 G1H_PS_NumElements
ysr@777 1061 };
ysr@777 1062
ysr@777 1063 SubTasksDone* _process_strong_tasks;
ysr@777 1064
tonyp@2472 1065 volatile bool _free_regions_coming;
ysr@777 1066
ysr@777 1067 public:
jmasa@2188 1068
jmasa@2188 1069 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 1070
ysr@777 1071 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 1072
jcoomes@2064 1073 RefToScanQueue *task_queue(int i) const;
ysr@777 1074
iveresov@1051 1075 // A set of cards where updates happened during the GC
iveresov@1051 1076 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 1077
johnc@2060 1078 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 1079 // references into the current collection set. This is used to
johnc@2060 1080 // update the remembered sets of the regions in the collection
johnc@2060 1081 // set in the event of an evacuation failure.
johnc@2060 1082 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 1083 { return _into_cset_dirty_card_queue_set; }
johnc@2060 1084
ysr@777 1085 // Create a G1CollectedHeap with the specified policy.
ysr@777 1086 // Must call the initialize method afterwards.
ysr@777 1087 // May not return if something goes wrong.
ysr@777 1088 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 1089
ysr@777 1090 // Initialize the G1CollectedHeap to have the initial and
coleenp@4037 1091 // maximum sizes and remembered and barrier sets
ysr@777 1092 // specified by the policy object.
ysr@777 1093 jint initialize();
ysr@777 1094
tschatzl@5701 1095 // Return the (conservative) maximum heap alignment for any G1 heap
tschatzl@5701 1096 static size_t conservative_max_heap_alignment();
tschatzl@5701 1097
johnc@3175 1098 // Initialize weak reference processing.
johnc@2379 1099 virtual void ref_processing_init();
ysr@777 1100
jmasa@3357 1101 void set_par_threads(uint t) {
ysr@777 1102 SharedHeap::set_par_threads(t);
jmasa@3294 1103 // Done in SharedHeap but oddly there are
jmasa@3294 1104 // two _process_strong_tasks's in a G1CollectedHeap
jmasa@3294 1105 // so do it here too.
jmasa@3294 1106 _process_strong_tasks->set_n_threads(t);
jmasa@3294 1107 }
jmasa@3294 1108
jmasa@3294 1109 // Set _n_par_threads according to a policy TBD.
jmasa@3294 1110 void set_par_threads();
jmasa@3294 1111
jmasa@3294 1112 void set_n_termination(int t) {
jmasa@2188 1113 _process_strong_tasks->set_n_threads(t);
ysr@777 1114 }
ysr@777 1115
ysr@777 1116 virtual CollectedHeap::Name kind() const {
ysr@777 1117 return CollectedHeap::G1CollectedHeap;
ysr@777 1118 }
ysr@777 1119
ysr@777 1120 // The current policy object for the collector.
ysr@777 1121 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 1122
coleenp@4037 1123 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
coleenp@4037 1124
ysr@777 1125 // Adaptive size policy. No such thing for g1.
ysr@777 1126 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 1127
ysr@777 1128 // The rem set and barrier set.
ysr@777 1129 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 1130
ysr@777 1131 unsigned get_gc_time_stamp() {
ysr@777 1132 return _gc_time_stamp;
ysr@777 1133 }
ysr@777 1134
ysr@777 1135 void reset_gc_time_stamp() {
ysr@777 1136 _gc_time_stamp = 0;
iveresov@788 1137 OrderAccess::fence();
johnc@3336 1138 // Clear the cached CSet starting regions and time stamps.
johnc@3336 1139 // Their validity is dependent on the GC timestamp.
johnc@3336 1140 clear_cset_start_regions();
iveresov@788 1141 }
iveresov@788 1142
tonyp@3957 1143 void check_gc_time_stamps() PRODUCT_RETURN;
tonyp@3957 1144
iveresov@788 1145 void increment_gc_time_stamp() {
iveresov@788 1146 ++_gc_time_stamp;
iveresov@788 1147 OrderAccess::fence();
ysr@777 1148 }
ysr@777 1149
tonyp@3957 1150 // Reset the given region's GC timestamp. If it's starts humongous,
tonyp@3957 1151 // also reset the GC timestamp of its corresponding
tonyp@3957 1152 // continues humongous regions too.
tonyp@3957 1153 void reset_gc_time_stamps(HeapRegion* hr);
tonyp@3957 1154
johnc@2060 1155 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 1156 DirtyCardQueue* into_cset_dcq,
johnc@2060 1157 bool concurrent, int worker_i);
ysr@777 1158
ysr@777 1159 // The shared block offset table array.
ysr@777 1160 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 1161
johnc@3175 1162 // Reference Processing accessors
johnc@3175 1163
johnc@3175 1164 // The STW reference processor....
johnc@3175 1165 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
johnc@3175 1166
sla@5237 1167 // The Concurrent Marking reference processor...
johnc@3175 1168 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
ysr@777 1169
sla@5237 1170 ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
sla@5237 1171 G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
sla@5237 1172
ysr@777 1173 virtual size_t capacity() const;
ysr@777 1174 virtual size_t used() const;
tonyp@1281 1175 // This should be called when we're not holding the heap lock. The
tonyp@1281 1176 // result might be a bit inaccurate.
tonyp@1281 1177 size_t used_unlocked() const;
ysr@777 1178 size_t recalculate_used() const;
ysr@777 1179
ysr@777 1180 // These virtual functions do the actual allocation.
ysr@777 1181 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 1182 // allocation, via inlined code (by exporting the address of the top and
ysr@777 1183 // end fields defining the extent of the contiguous allocation region.)
ysr@777 1184 // But G1CollectedHeap doesn't yet support this.
ysr@777 1185
ysr@777 1186 // Return an estimate of the maximum allocation that could be performed
ysr@777 1187 // without triggering any collection or expansion activity. In a
ysr@777 1188 // generational collector, for example, this is probably the largest
ysr@777 1189 // allocation that could be supported (without expansion) in the youngest
ysr@777 1190 // generation. It is "unsafe" because no locks are taken; the result
ysr@777 1191 // should be treated as an approximation, not a guarantee, for use in
ysr@777 1192 // heuristic resizing decisions.
ysr@777 1193 virtual size_t unsafe_max_alloc();
ysr@777 1194
ysr@777 1195 virtual bool is_maximal_no_gc() const {
ysr@777 1196 return _g1_storage.uncommitted_size() == 0;
ysr@777 1197 }
ysr@777 1198
ysr@777 1199 // The total number of regions in the heap.
tonyp@3713 1200 uint n_regions() { return _hrs.length(); }
tonyp@2963 1201
tonyp@2963 1202 // The max number of regions in the heap.
tonyp@3713 1203 uint max_regions() { return _hrs.max_length(); }
ysr@777 1204
ysr@777 1205 // The number of regions that are completely free.
tonyp@3713 1206 uint free_regions() { return _free_list.length(); }
ysr@777 1207
ysr@777 1208 // The number of regions that are not completely free.
tonyp@3713 1209 uint used_regions() { return n_regions() - free_regions(); }
ysr@777 1210
ysr@777 1211 // The number of regions available for "regular" expansion.
tonyp@3713 1212 uint expansion_regions() { return _expansion_regions; }
ysr@777 1213
tonyp@2963 1214 // Factory method for HeapRegion instances. It will return NULL if
tonyp@2963 1215 // the allocation fails.
tonyp@3713 1216 HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
tonyp@2963 1217
tonyp@2849 1218 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 1219 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 1220 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 1221 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 1222
tonyp@2472 1223 // verify_region_sets() performs verification over the region
tonyp@2472 1224 // lists. It will be compiled in the product code to be used when
tonyp@2472 1225 // necessary (i.e., during heap verification).
tonyp@2472 1226 void verify_region_sets();
ysr@777 1227
tonyp@2472 1228 // verify_region_sets_optional() is planted in the code for
tonyp@2472 1229 // list verification in non-product builds (and it can be enabled in
sla@5237 1230 // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 1231 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1232 void verify_region_sets_optional() {
tonyp@2472 1233 verify_region_sets();
tonyp@2472 1234 }
tonyp@2472 1235 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1236 void verify_region_sets_optional() { }
tonyp@2472 1237 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 1238
tonyp@2472 1239 #ifdef ASSERT
tonyp@2643 1240 bool is_on_master_free_list(HeapRegion* hr) {
tonyp@2472 1241 return hr->containing_set() == &_free_list;
tonyp@2472 1242 }
ysr@777 1243
tonyp@2643 1244 bool is_in_humongous_set(HeapRegion* hr) {
tonyp@2472 1245 return hr->containing_set() == &_humongous_set;
tonyp@2643 1246 }
tonyp@2472 1247 #endif // ASSERT
ysr@777 1248
tonyp@2472 1249 // Wrapper for the region list operations that can be called from
tonyp@2472 1250 // methods outside this class.
ysr@777 1251
tonyp@2472 1252 void secondary_free_list_add_as_tail(FreeRegionList* list) {
tonyp@2472 1253 _secondary_free_list.add_as_tail(list);
tonyp@2472 1254 }
ysr@777 1255
tonyp@2472 1256 void append_secondary_free_list() {
tonyp@2714 1257 _free_list.add_as_head(&_secondary_free_list);
tonyp@2472 1258 }
ysr@777 1259
tonyp@2643 1260 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1261 // If the secondary free list looks empty there's no reason to
tonyp@2643 1262 // take the lock and then try to append it.
tonyp@2472 1263 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1264 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1265 append_secondary_free_list();
tonyp@2472 1266 }
tonyp@2472 1267 }
ysr@777 1268
tonyp@3268 1269 void old_set_remove(HeapRegion* hr) {
tonyp@3268 1270 _old_set.remove(hr);
tonyp@3268 1271 }
tonyp@3268 1272
brutisso@3456 1273 size_t non_young_capacity_bytes() {
brutisso@3456 1274 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
brutisso@3456 1275 }
brutisso@3456 1276
tonyp@2472 1277 void set_free_regions_coming();
tonyp@2472 1278 void reset_free_regions_coming();
tonyp@2472 1279 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1280 void wait_while_free_regions_coming();
ysr@777 1281
tonyp@3539 1282 // Determine whether the given region is one that we are using as an
tonyp@3539 1283 // old GC alloc region.
tonyp@3539 1284 bool is_old_gc_alloc_region(HeapRegion* hr) {
tonyp@3539 1285 return hr == _retained_old_gc_alloc_region;
tonyp@3539 1286 }
tonyp@3539 1287
ysr@777 1288 // Perform a collection of the heap; intended for use in implementing
ysr@777 1289 // "System.gc". This probably implies as full a collection as the
ysr@777 1290 // "CollectedHeap" supports.
ysr@777 1291 virtual void collect(GCCause::Cause cause);
ysr@777 1292
ysr@777 1293 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1294 void collect_locked(GCCause::Cause cause);
ysr@777 1295
sla@5237 1296 // True iff an evacuation has failed in the most-recent collection.
ysr@777 1297 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1298
tonyp@2472 1299 // It will free a region if it has allocated objects in it that are
tonyp@2472 1300 // all dead. It calls either free_region() or
tonyp@2472 1301 // free_humongous_region() depending on the type of the region that
tonyp@2472 1302 // is passed to it.
tonyp@2493 1303 void free_region_if_empty(HeapRegion* hr,
tonyp@2493 1304 size_t* pre_used,
tonyp@2493 1305 FreeRegionList* free_list,
tonyp@3268 1306 OldRegionSet* old_proxy_set,
tonyp@2493 1307 HumongousRegionSet* humongous_proxy_set,
tonyp@2493 1308 HRRSCleanupTask* hrrs_cleanup_task,
tonyp@2493 1309 bool par);
ysr@777 1310
tonyp@2472 1311 // It appends the free list to the master free list and updates the
tonyp@2472 1312 // master humongous list according to the contents of the proxy
tonyp@2472 1313 // list. It also adjusts the total used bytes according to pre_used
tonyp@2472 1314 // (if par is true, it will do so by taking the ParGCRareEvent_lock).
tonyp@2472 1315 void update_sets_after_freeing_regions(size_t pre_used,
tonyp@2472 1316 FreeRegionList* free_list,
tonyp@3268 1317 OldRegionSet* old_proxy_set,
tonyp@2472 1318 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 1319 bool par);
ysr@777 1320
stefank@3335 1321 // Returns "TRUE" iff "p" points into the committed areas of the heap.
ysr@777 1322 virtual bool is_in(const void* p) const;
ysr@777 1323
ysr@777 1324 // Return "TRUE" iff the given object address is within the collection
ysr@777 1325 // set.
ysr@777 1326 inline bool obj_in_cs(oop obj);
ysr@777 1327
ysr@777 1328 // Return "TRUE" iff the given object address is in the reserved
coleenp@4037 1329 // region of g1.
ysr@777 1330 bool is_in_g1_reserved(const void* p) const {
ysr@777 1331 return _g1_reserved.contains(p);
ysr@777 1332 }
ysr@777 1333
tonyp@2717 1334 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1335 // reserved for the heap
tonyp@2717 1336 MemRegion g1_reserved() {
tonyp@2717 1337 return _g1_reserved;
tonyp@2717 1338 }
tonyp@2717 1339
tonyp@2717 1340 // Returns a MemRegion that corresponds to the space that has been
ysr@777 1341 // committed in the heap
ysr@777 1342 MemRegion g1_committed() {
ysr@777 1343 return _g1_committed;
ysr@777 1344 }
ysr@777 1345
johnc@2593 1346 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1347
mgerdin@5811 1348 G1SATBCardTableModRefBS* g1_barrier_set() {
mgerdin@5811 1349 return (G1SATBCardTableModRefBS*) barrier_set();
mgerdin@5811 1350 }
mgerdin@5811 1351
ysr@777 1352 // This resets the card table to all zeros. It is used after
ysr@777 1353 // a collection pause which used the card table to claim cards.
ysr@777 1354 void cleanUpCardTable();
ysr@777 1355
ysr@777 1356 // Iteration functions.
ysr@777 1357
ysr@777 1358 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1359 // "cl.do_oop" on each.
coleenp@4037 1360 virtual void oop_iterate(ExtendedOopClosure* cl);
ysr@777 1361
ysr@777 1362 // Same as above, restricted to a memory region.
coleenp@4037 1363 void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
ysr@777 1364
ysr@777 1365 // Iterate over all objects, calling "cl.do_object" on each.
coleenp@4037 1366 virtual void object_iterate(ObjectClosure* cl);
coleenp@4037 1367
coleenp@4037 1368 virtual void safe_object_iterate(ObjectClosure* cl) {
coleenp@4037 1369 object_iterate(cl);
iveresov@1113 1370 }
ysr@777 1371
ysr@777 1372 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1373 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1374
ysr@777 1375 // Iterate over heap regions, in address order, terminating the
ysr@777 1376 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1377 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1378
tonyp@2963 1379 // Return the region with the given index. It assumes the index is valid.
tonyp@3713 1380 HeapRegion* region_at(uint index) const { return _hrs.at(index); }
ysr@777 1381
ysr@777 1382 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1383 // of regions divided by the number of parallel threads times some
ysr@777 1384 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1385 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1386 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1387 // calls will use the same "claim_value", and that that claim value is
ysr@777 1388 // different from the claim_value of any heap region before the start of
ysr@777 1389 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1390 // attempting to claim the first region in each chunk, and, if
ysr@777 1391 // successful, applying the closure to each region in the chunk (and
ysr@777 1392 // setting the claim value of the second and subsequent regions of the
ysr@777 1393 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1394 // i.e., that a closure never attempt to abort a traversal.
ysr@777 1395 void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
jmasa@3357 1396 uint worker,
jmasa@3357 1397 uint no_of_par_workers,
ysr@777 1398 jint claim_value);
ysr@777 1399
tonyp@825 1400 // It resets all the region claim values to the default.
tonyp@825 1401 void reset_heap_region_claim_values();
tonyp@825 1402
johnc@3412 1403 // Resets the claim values of regions in the current
johnc@3412 1404 // collection set to the default.
johnc@3412 1405 void reset_cset_heap_region_claim_values();
johnc@3412 1406
tonyp@790 1407 #ifdef ASSERT
tonyp@790 1408 bool check_heap_region_claim_values(jint claim_value);
johnc@3296 1409
johnc@3296 1410 // Same as the routine above but only checks regions in the
johnc@3296 1411 // current collection set.
johnc@3296 1412 bool check_cset_heap_region_claim_values(jint claim_value);
tonyp@790 1413 #endif // ASSERT
tonyp@790 1414
johnc@3336 1415 // Clear the cached cset start regions and (more importantly)
johnc@3336 1416 // the time stamps. Called when we reset the GC time stamp.
johnc@3336 1417 void clear_cset_start_regions();
johnc@3336 1418
johnc@3336 1419 // Given the id of a worker, obtain or calculate a suitable
johnc@3336 1420 // starting region for iterating over the current collection set.
johnc@3296 1421 HeapRegion* start_cset_region_for_worker(int worker_i);
johnc@3296 1422
tonyp@3957 1423 // This is a convenience method that is used by the
tonyp@3957 1424 // HeapRegionIterator classes to calculate the starting region for
tonyp@3957 1425 // each worker so that they do not all start from the same region.
tonyp@3957 1426 HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
tonyp@3957 1427
ysr@777 1428 // Iterate over the regions (if any) in the current collection set.
ysr@777 1429 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1430
ysr@777 1431 // As above but starting from region r
ysr@777 1432 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1433
ysr@777 1434 // Returns the first (lowest address) compactible space in the heap.
ysr@777 1435 virtual CompactibleSpace* first_compactible_space();
ysr@777 1436
ysr@777 1437 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1438 // space containing a given address, or else returns NULL.
ysr@777 1439 virtual Space* space_containing(const void* addr) const;
ysr@777 1440
ysr@777 1441 // A G1CollectedHeap will contain some number of heap regions. This
ysr@777 1442 // finds the region containing a given address, or else returns NULL.
tonyp@2963 1443 template <class T>
tonyp@2963 1444 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1445
ysr@777 1446 // Like the above, but requires "addr" to be in the heap (to avoid a
ysr@777 1447 // null-check), and unlike the above, may return an continuing humongous
ysr@777 1448 // region.
tonyp@2963 1449 template <class T>
tonyp@2963 1450 inline HeapRegion* heap_region_containing_raw(const T addr) const;
ysr@777 1451
ysr@777 1452 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1453 // each address in the (reserved) heap is a member of exactly
ysr@777 1454 // one block. The defining characteristic of a block is that it is
ysr@777 1455 // possible to find its size, and thus to progress forward to the next
ysr@777 1456 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1457 // represent Java objects, or they might be free blocks in a
ysr@777 1458 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1459 // distinguishable and the size of each is determinable.
ysr@777 1460
ysr@777 1461 // Returns the address of the start of the "block" that contains the
ysr@777 1462 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1463 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1464 // non-object.
ysr@777 1465 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1466
ysr@777 1467 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1468 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1469 // of the active area of the heap.
ysr@777 1470 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1471
ysr@777 1472 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1473 // the block is an object.
ysr@777 1474 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1475
ysr@777 1476 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1477 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1478
ysr@777 1479 // Section on thread-local allocation buffers (TLABs)
ysr@777 1480 // See CollectedHeap for semantics.
ysr@777 1481
ysr@777 1482 virtual bool supports_tlab_allocation() const;
ysr@777 1483 virtual size_t tlab_capacity(Thread* thr) const;
ysr@777 1484 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
ysr@777 1485
ysr@777 1486 // Can a compiler initialize a new object without store barriers?
ysr@777 1487 // This permission only extends from the creation of a new object
ysr@1462 1488 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1489 // is granted for this heap type, the compiler promises to call
ysr@1462 1490 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1491 // a new object for which such initializing store barriers will
ysr@1462 1492 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1493 // ready to provide a compensating write barrier as necessary
ysr@1462 1494 // if that storage came out of a non-young region. The efficiency
ysr@1462 1495 // of this implementation depends crucially on being able to
ysr@1462 1496 // answer very efficiently in constant time whether a piece of
ysr@1462 1497 // storage in the heap comes from a young region or not.
ysr@1462 1498 // See ReduceInitialCardMarks.
ysr@777 1499 virtual bool can_elide_tlab_store_barriers() const {
brutisso@3184 1500 return true;
ysr@1462 1501 }
ysr@1462 1502
ysr@1601 1503 virtual bool card_mark_must_follow_store() const {
ysr@1601 1504 return true;
ysr@1601 1505 }
ysr@1601 1506
tonyp@2963 1507 bool is_in_young(const oop obj) {
ysr@1462 1508 HeapRegion* hr = heap_region_containing(obj);
ysr@1462 1509 return hr != NULL && hr->is_young();
ysr@1462 1510 }
ysr@1462 1511
jmasa@2909 1512 #ifdef ASSERT
jmasa@2909 1513 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1514 #endif
jmasa@2909 1515
jmasa@2909 1516 virtual bool is_scavengable(const void* addr);
jmasa@2909 1517
ysr@1462 1518 // We don't need barriers for initializing stores to objects
ysr@1462 1519 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1520 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1521 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1522 // information for young gen objects.
ysr@1462 1523 virtual bool can_elide_initializing_store_barrier(oop new_obj) {
ysr@1462 1524 return is_in_young(new_obj);
ysr@777 1525 }
ysr@777 1526
ysr@777 1527 // Returns "true" iff the given word_size is "very large".
ysr@777 1528 static bool isHumongous(size_t word_size) {
johnc@1748 1529 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1530 // are capped at the humongous thresold and we want to
johnc@1748 1531 // ensure that we don't try to allocate a TLAB as
johnc@1748 1532 // humongous and that we don't allocate a humongous
johnc@1748 1533 // object in a TLAB.
johnc@1748 1534 return word_size > _humongous_object_threshold_in_words;
ysr@777 1535 }
ysr@777 1536
ysr@777 1537 // Update mod union table with the set of dirty cards.
ysr@777 1538 void updateModUnion();
ysr@777 1539
ysr@777 1540 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1541 // that this is always a safe operation, since it doesn't clear any
ysr@777 1542 // bits.
ysr@777 1543 void markModUnionRange(MemRegion mr);
ysr@777 1544
ysr@777 1545 // Records the fact that a marking phase is no longer in progress.
ysr@777 1546 void set_marking_complete() {
ysr@777 1547 _mark_in_progress = false;
ysr@777 1548 }
ysr@777 1549 void set_marking_started() {
ysr@777 1550 _mark_in_progress = true;
ysr@777 1551 }
ysr@777 1552 bool mark_in_progress() {
ysr@777 1553 return _mark_in_progress;
ysr@777 1554 }
ysr@777 1555
ysr@777 1556 // Print the maximum heap capacity.
ysr@777 1557 virtual size_t max_capacity() const;
ysr@777 1558
ysr@777 1559 virtual jlong millis_since_last_gc();
ysr@777 1560
tonyp@2974 1561
ysr@777 1562 // Convenience function to be used in situations where the heap type can be
ysr@777 1563 // asserted to be this type.
ysr@777 1564 static G1CollectedHeap* heap();
ysr@777 1565
ysr@777 1566 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1567 // add appropriate methods for any other surv rate groups
ysr@777 1568
johnc@1829 1569 YoungList* young_list() { return _young_list; }
ysr@777 1570
ysr@777 1571 // debugging
ysr@777 1572 bool check_young_list_well_formed() {
ysr@777 1573 return _young_list->check_list_well_formed();
ysr@777 1574 }
johnc@1829 1575
johnc@1829 1576 bool check_young_list_empty(bool check_heap,
ysr@777 1577 bool check_sample = true);
ysr@777 1578
ysr@777 1579 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1580 // many of these need to be public.
ysr@777 1581
ysr@777 1582 // The functions below are helper functions that a subclass of
ysr@777 1583 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1584 // functions.
ysr@777 1585 // This performs a concurrent marking of the live objects in a
ysr@777 1586 // bitmap off to the side.
ysr@777 1587 void doConcurrentMark();
ysr@777 1588
ysr@777 1589 bool isMarkedPrev(oop obj) const;
ysr@777 1590 bool isMarkedNext(oop obj) const;
ysr@777 1591
ysr@777 1592 // Determine if an object is dead, given the object and also
ysr@777 1593 // the region to which the object belongs. An object is dead
ysr@777 1594 // iff a) it was not allocated since the last mark and b) it
ysr@777 1595 // is not marked.
ysr@777 1596
ysr@777 1597 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1598 return
ysr@777 1599 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1600 !isMarkedPrev(obj);
ysr@777 1601 }
ysr@777 1602
ysr@777 1603 // This function returns true when an object has been
ysr@777 1604 // around since the previous marking and hasn't yet
ysr@777 1605 // been marked during this marking.
ysr@777 1606
ysr@777 1607 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1608 return
ysr@777 1609 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1610 !isMarkedNext(obj);
ysr@777 1611 }
ysr@777 1612
ysr@777 1613 // Determine if an object is dead, given only the object itself.
ysr@777 1614 // This will find the region to which the object belongs and
ysr@777 1615 // then call the region version of the same function.
ysr@777 1616
ysr@777 1617 // Added if it is NULL it isn't dead.
ysr@777 1618
johnc@2969 1619 bool is_obj_dead(const oop obj) const {
tonyp@1246 1620 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1621 if (hr == NULL) {
coleenp@4037 1622 if (obj == NULL) return false;
ysr@777 1623 else return true;
ysr@777 1624 }
ysr@777 1625 else return is_obj_dead(obj, hr);
ysr@777 1626 }
ysr@777 1627
johnc@2969 1628 bool is_obj_ill(const oop obj) const {
tonyp@1246 1629 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1630 if (hr == NULL) {
coleenp@4037 1631 if (obj == NULL) return false;
ysr@777 1632 else return true;
ysr@777 1633 }
ysr@777 1634 else return is_obj_ill(obj, hr);
ysr@777 1635 }
ysr@777 1636
johnc@5548 1637 bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
johnc@5548 1638 HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
johnc@5548 1639 bool is_marked(oop obj, VerifyOption vo);
johnc@5548 1640 const char* top_at_mark_start_str(VerifyOption vo);
johnc@5548 1641
johnc@5548 1642 ConcurrentMark* concurrent_mark() const { return _cm; }
johnc@5548 1643
johnc@5548 1644 // Refinement
johnc@5548 1645
johnc@5548 1646 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
johnc@5548 1647
johnc@5548 1648 // The dirty cards region list is used to record a subset of regions
johnc@5548 1649 // whose cards need clearing. The list if populated during the
johnc@5548 1650 // remembered set scanning and drained during the card table
johnc@5548 1651 // cleanup. Although the methods are reentrant, population/draining
johnc@5548 1652 // phases must not overlap. For synchronization purposes the last
johnc@5548 1653 // element on the list points to itself.
johnc@5548 1654 HeapRegion* _dirty_cards_region_list;
johnc@5548 1655 void push_dirty_cards_region(HeapRegion* hr);
johnc@5548 1656 HeapRegion* pop_dirty_cards_region();
johnc@5548 1657
johnc@5548 1658 // Optimized nmethod scanning support routines
johnc@5548 1659
johnc@5548 1660 // Register the given nmethod with the G1 heap
johnc@5548 1661 virtual void register_nmethod(nmethod* nm);
johnc@5548 1662
johnc@5548 1663 // Unregister the given nmethod from the G1 heap
johnc@5548 1664 virtual void unregister_nmethod(nmethod* nm);
johnc@5548 1665
johnc@5548 1666 // Migrate the nmethods in the code root lists of the regions
johnc@5548 1667 // in the collection set to regions in to-space. In the event
johnc@5548 1668 // of an evacuation failure, nmethods that reference objects
johnc@5548 1669 // that were not successfullly evacuated are not migrated.
johnc@5548 1670 void migrate_strong_code_roots();
johnc@5548 1671
johnc@5548 1672 // During an initial mark pause, mark all the code roots that
johnc@5548 1673 // point into regions *not* in the collection set.
johnc@5548 1674 void mark_strong_code_roots(uint worker_id);
johnc@5548 1675
johnc@5548 1676 // Rebuild the stong code root lists for each region
johnc@5548 1677 // after a full GC
johnc@5548 1678 void rebuild_strong_code_roots();
johnc@5548 1679
tschatzl@6229 1680 // Delete entries for dead interned string and clean up unreferenced symbols
tschatzl@6229 1681 // in symbol table, possibly in parallel.
tschatzl@6229 1682 void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
tschatzl@6229 1683
johnc@5548 1684 // Verification
johnc@5548 1685
johnc@5548 1686 // The following is just to alert the verification code
johnc@5548 1687 // that a full collection has occurred and that the
johnc@5548 1688 // remembered sets are no longer up to date.
johnc@5548 1689 bool _full_collection;
johnc@5548 1690 void set_full_collection() { _full_collection = true;}
johnc@5548 1691 void clear_full_collection() {_full_collection = false;}
johnc@5548 1692 bool full_collection() {return _full_collection;}
johnc@5548 1693
johnc@5548 1694 // Perform any cleanup actions necessary before allowing a verification.
johnc@5548 1695 virtual void prepare_for_verify();
johnc@5548 1696
johnc@5548 1697 // Perform verification.
johnc@5548 1698
johnc@5548 1699 // vo == UsePrevMarking -> use "prev" marking information,
johnc@5548 1700 // vo == UseNextMarking -> use "next" marking information
johnc@5548 1701 // vo == UseMarkWord -> use the mark word in the object header
johnc@5548 1702 //
johnc@5548 1703 // NOTE: Only the "prev" marking information is guaranteed to be
johnc@5548 1704 // consistent most of the time, so most calls to this should use
johnc@5548 1705 // vo == UsePrevMarking.
johnc@5548 1706 // Currently, there is only one case where this is called with
johnc@5548 1707 // vo == UseNextMarking, which is to verify the "next" marking
johnc@5548 1708 // information at the end of remark.
johnc@5548 1709 // Currently there is only one place where this is called with
johnc@5548 1710 // vo == UseMarkWord, which is to verify the marking during a
johnc@5548 1711 // full GC.
johnc@5548 1712 void verify(bool silent, VerifyOption vo);
johnc@5548 1713
johnc@5548 1714 // Override; it uses the "prev" marking information
johnc@5548 1715 virtual void verify(bool silent);
johnc@5548 1716
tonyp@3957 1717 // The methods below are here for convenience and dispatch the
tonyp@3957 1718 // appropriate method depending on value of the given VerifyOption
johnc@5548 1719 // parameter. The values for that parameter, and their meanings,
johnc@5548 1720 // are the same as those above.
tonyp@3957 1721
tonyp@3957 1722 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1723 const HeapRegion* hr,
tonyp@3957 1724 const VerifyOption vo) const {
tonyp@3957 1725 switch (vo) {
tonyp@3957 1726 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
tonyp@3957 1727 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
tonyp@3957 1728 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
tonyp@3957 1729 default: ShouldNotReachHere();
tonyp@3957 1730 }
tonyp@3957 1731 return false; // keep some compilers happy
tonyp@3957 1732 }
tonyp@3957 1733
tonyp@3957 1734 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1735 const VerifyOption vo) const {
tonyp@3957 1736 switch (vo) {
tonyp@3957 1737 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
tonyp@3957 1738 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
tonyp@3957 1739 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
tonyp@3957 1740 default: ShouldNotReachHere();
tonyp@3957 1741 }
tonyp@3957 1742 return false; // keep some compilers happy
tonyp@3957 1743 }
tonyp@3957 1744
johnc@5548 1745 // Printing
tonyp@3957 1746
johnc@5548 1747 virtual void print_on(outputStream* st) const;
johnc@5548 1748 virtual void print_extended_on(outputStream* st) const;
johnc@5548 1749 virtual void print_on_error(outputStream* st) const;
ysr@777 1750
johnc@5548 1751 virtual void print_gc_threads_on(outputStream* st) const;
johnc@5548 1752 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1753
johnc@5548 1754 // Override
johnc@5548 1755 void print_tracing_info() const;
johnc@5548 1756
johnc@5548 1757 // The following two methods are helpful for debugging RSet issues.
johnc@5548 1758 void print_cset_rsets() PRODUCT_RETURN;
johnc@5548 1759 void print_all_rsets() PRODUCT_RETURN;
apetrusenko@1231 1760
ysr@777 1761 public:
ysr@777 1762 void stop_conc_gc_threads();
ysr@777 1763
ysr@777 1764 size_t pending_card_num();
ysr@777 1765 size_t cards_scanned();
ysr@777 1766
ysr@777 1767 protected:
ysr@777 1768 size_t _max_heap_capacity;
ysr@777 1769 };
ysr@777 1770
ysr@1280 1771 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@1280 1772 private:
ysr@1280 1773 bool _retired;
ysr@1280 1774
ysr@1280 1775 public:
johnc@3086 1776 G1ParGCAllocBuffer(size_t gclab_word_size);
ysr@1280 1777
tonyp@3416 1778 void set_buf(HeapWord* buf) {
ysr@1280 1779 ParGCAllocBuffer::set_buf(buf);
ysr@1280 1780 _retired = false;
ysr@1280 1781 }
ysr@1280 1782
tonyp@3416 1783 void retire(bool end_of_gc, bool retain) {
ysr@1280 1784 if (_retired)
ysr@1280 1785 return;
ysr@1280 1786 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@1280 1787 _retired = true;
ysr@1280 1788 }
tamao@5206 1789
tamao@5206 1790 bool is_retired() {
tamao@5206 1791 return _retired;
tamao@5206 1792 }
tamao@5206 1793 };
tamao@5206 1794
tamao@5206 1795 class G1ParGCAllocBufferContainer {
tamao@5206 1796 protected:
tamao@5206 1797 static int const _priority_max = 2;
tamao@5206 1798 G1ParGCAllocBuffer* _priority_buffer[_priority_max];
tamao@5206 1799
tamao@5206 1800 public:
tamao@5206 1801 G1ParGCAllocBufferContainer(size_t gclab_word_size) {
tamao@5206 1802 for (int pr = 0; pr < _priority_max; ++pr) {
tamao@5206 1803 _priority_buffer[pr] = new G1ParGCAllocBuffer(gclab_word_size);
tamao@5206 1804 }
tamao@5206 1805 }
tamao@5206 1806
tamao@5206 1807 ~G1ParGCAllocBufferContainer() {
tamao@5206 1808 for (int pr = 0; pr < _priority_max; ++pr) {
tamao@5206 1809 assert(_priority_buffer[pr]->is_retired(), "alloc buffers should all retire at this point.");
tamao@5206 1810 delete _priority_buffer[pr];
tamao@5206 1811 }
tamao@5206 1812 }
tamao@5206 1813
tamao@5206 1814 HeapWord* allocate(size_t word_sz) {
tamao@5206 1815 HeapWord* obj;
tamao@5206 1816 for (int pr = 0; pr < _priority_max; ++pr) {
tamao@5206 1817 obj = _priority_buffer[pr]->allocate(word_sz);
tamao@5206 1818 if (obj != NULL) return obj;
tamao@5206 1819 }
tamao@5206 1820 return obj;
tamao@5206 1821 }
tamao@5206 1822
tamao@5206 1823 bool contains(void* addr) {
tamao@5206 1824 for (int pr = 0; pr < _priority_max; ++pr) {
tamao@5206 1825 if (_priority_buffer[pr]->contains(addr)) return true;
tamao@5206 1826 }
tamao@5206 1827 return false;
tamao@5206 1828 }
tamao@5206 1829
tamao@5206 1830 void undo_allocation(HeapWord* obj, size_t word_sz) {
tamao@5206 1831 bool finish_undo;
tamao@5206 1832 for (int pr = 0; pr < _priority_max; ++pr) {
tamao@5206 1833 if (_priority_buffer[pr]->contains(obj)) {
tamao@5206 1834 _priority_buffer[pr]->undo_allocation(obj, word_sz);
tamao@5206 1835 finish_undo = true;
tamao@5206 1836 }
tamao@5206 1837 }
tamao@5206 1838 if (!finish_undo) ShouldNotReachHere();
tamao@5206 1839 }
tamao@5206 1840
tamao@5206 1841 size_t words_remaining() {
tamao@5206 1842 size_t result = 0;
tamao@5206 1843 for (int pr = 0; pr < _priority_max; ++pr) {
tamao@5206 1844 result += _priority_buffer[pr]->words_remaining();
tamao@5206 1845 }
tamao@5206 1846 return result;
tamao@5206 1847 }
tamao@5206 1848
tamao@5206 1849 size_t words_remaining_in_retired_buffer() {
tamao@5206 1850 G1ParGCAllocBuffer* retired = _priority_buffer[0];
tamao@5206 1851 return retired->words_remaining();
tamao@5206 1852 }
tamao@5206 1853
tamao@5206 1854 void flush_stats_and_retire(PLABStats* stats, bool end_of_gc, bool retain) {
tamao@5206 1855 for (int pr = 0; pr < _priority_max; ++pr) {
tamao@5206 1856 _priority_buffer[pr]->flush_stats_and_retire(stats, end_of_gc, retain);
tamao@5206 1857 }
tamao@5206 1858 }
tamao@5206 1859
tamao@5206 1860 void update(bool end_of_gc, bool retain, HeapWord* buf, size_t word_sz) {
tamao@5206 1861 G1ParGCAllocBuffer* retired_and_set = _priority_buffer[0];
tamao@5206 1862 retired_and_set->retire(end_of_gc, retain);
tamao@5206 1863 retired_and_set->set_buf(buf);
tamao@5206 1864 retired_and_set->set_word_size(word_sz);
tamao@5206 1865 adjust_priority_order();
tamao@5206 1866 }
tamao@5206 1867
tamao@5206 1868 private:
tamao@5206 1869 void adjust_priority_order() {
tamao@5206 1870 G1ParGCAllocBuffer* retired_and_set = _priority_buffer[0];
tamao@5206 1871
tamao@5206 1872 int last = _priority_max - 1;
tamao@5206 1873 for (int pr = 0; pr < last; ++pr) {
tamao@5206 1874 _priority_buffer[pr] = _priority_buffer[pr + 1];
tamao@5206 1875 }
tamao@5206 1876 _priority_buffer[last] = retired_and_set;
tamao@5206 1877 }
ysr@1280 1878 };
ysr@1280 1879
ysr@1280 1880 class G1ParScanThreadState : public StackObj {
ysr@1280 1881 protected:
ysr@1280 1882 G1CollectedHeap* _g1h;
ysr@1280 1883 RefToScanQueue* _refs;
ysr@1280 1884 DirtyCardQueue _dcq;
mgerdin@5811 1885 G1SATBCardTableModRefBS* _ct_bs;
ysr@1280 1886 G1RemSet* _g1_rem;
ysr@1280 1887
tamao@5206 1888 G1ParGCAllocBufferContainer _surviving_alloc_buffer;
tamao@5206 1889 G1ParGCAllocBufferContainer _tenured_alloc_buffer;
tamao@5206 1890 G1ParGCAllocBufferContainer* _alloc_buffers[GCAllocPurposeCount];
apetrusenko@1826 1891 ageTable _age_table;
ysr@1280 1892
ysr@1280 1893 size_t _alloc_buffer_waste;
ysr@1280 1894 size_t _undo_waste;
ysr@1280 1895
ysr@1280 1896 OopsInHeapRegionClosure* _evac_failure_cl;
ysr@1280 1897 G1ParScanHeapEvacClosure* _evac_cl;
ysr@1280 1898 G1ParScanPartialArrayClosure* _partial_scan_cl;
ysr@1280 1899
sla@5237 1900 int _hash_seed;
johnc@3463 1901 uint _queue_num;
ysr@1280 1902
tonyp@1966 1903 size_t _term_attempts;
ysr@1280 1904
ysr@1280 1905 double _start;
ysr@1280 1906 double _start_strong_roots;
ysr@1280 1907 double _strong_roots_time;
ysr@1280 1908 double _start_term;
ysr@1280 1909 double _term_time;
ysr@1280 1910
ysr@1280 1911 // Map from young-age-index (0 == not young, 1 is youngest) to
ysr@1280 1912 // surviving words. base is what we get back from the malloc call
ysr@1280 1913 size_t* _surviving_young_words_base;
ysr@1280 1914 // this points into the array, as we use the first few entries for padding
ysr@1280 1915 size_t* _surviving_young_words;
ysr@1280 1916
jcoomes@2064 1917 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
ysr@1280 1918
ysr@1280 1919 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
ysr@1280 1920
ysr@1280 1921 void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
ysr@1280 1922
ysr@1280 1923 DirtyCardQueue& dirty_card_queue() { return _dcq; }
mgerdin@5811 1924 G1SATBCardTableModRefBS* ctbs() { return _ct_bs; }
ysr@1280 1925
ysr@1280 1926 template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1927 if (!from->is_survivor()) {
ysr@1280 1928 _g1_rem->par_write_ref(from, p, tid);
ysr@1280 1929 }
ysr@1280 1930 }
ysr@1280 1931
ysr@1280 1932 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1933 // If the new value of the field points to the same region or
ysr@1280 1934 // is the to-space, we don't need to include it in the Rset updates.
ysr@1280 1935 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
ysr@1280 1936 size_t card_index = ctbs()->index_for(p);
ysr@1280 1937 // If the card hasn't been added to the buffer, do it.
ysr@1280 1938 if (ctbs()->mark_card_deferred(card_index)) {
ysr@1280 1939 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
ysr@1280 1940 }
ysr@1280 1941 }
ysr@1280 1942 }
ysr@1280 1943
ysr@1280 1944 public:
johnc@3463 1945 G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
ysr@1280 1946
ysr@1280 1947 ~G1ParScanThreadState() {
zgu@3900 1948 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
ysr@1280 1949 }
ysr@1280 1950
ysr@1280 1951 RefToScanQueue* refs() { return _refs; }
ysr@1280 1952 ageTable* age_table() { return &_age_table; }
ysr@1280 1953
tamao@5206 1954 G1ParGCAllocBufferContainer* alloc_buffer(GCAllocPurpose purpose) {
apetrusenko@1826 1955 return _alloc_buffers[purpose];
ysr@1280 1956 }
ysr@1280 1957
jcoomes@2064 1958 size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
jcoomes@2064 1959 size_t undo_waste() const { return _undo_waste; }
ysr@1280 1960
jcoomes@2217 1961 #ifdef ASSERT
jcoomes@2217 1962 bool verify_ref(narrowOop* ref) const;
jcoomes@2217 1963 bool verify_ref(oop* ref) const;
jcoomes@2217 1964 bool verify_task(StarTask ref) const;
jcoomes@2217 1965 #endif // ASSERT
jcoomes@2217 1966
ysr@1280 1967 template <class T> void push_on_queue(T* ref) {
jcoomes@2217 1968 assert(verify_ref(ref), "sanity");
jcoomes@2064 1969 refs()->push(ref);
ysr@1280 1970 }
ysr@1280 1971
ysr@1280 1972 template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
ysr@1280 1973 if (G1DeferredRSUpdate) {
ysr@1280 1974 deferred_rs_update(from, p, tid);
ysr@1280 1975 } else {
ysr@1280 1976 immediate_rs_update(from, p, tid);
ysr@1280 1977 }
ysr@1280 1978 }
ysr@1280 1979
ysr@1280 1980 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1981 HeapWord* obj = NULL;
apetrusenko@1826 1982 size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
apetrusenko@1826 1983 if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
tamao@5206 1984 G1ParGCAllocBufferContainer* alloc_buf = alloc_buffer(purpose);
ysr@1280 1985
apetrusenko@1826 1986 HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
ysr@1280 1987 if (buf == NULL) return NULL; // Let caller handle allocation failure.
tamao@5206 1988
tamao@5206 1989 add_to_alloc_buffer_waste(alloc_buf->words_remaining_in_retired_buffer());
tamao@5206 1990 alloc_buf->update(false /* end_of_gc */, false /* retain */, buf, gclab_word_size);
ysr@1280 1991
ysr@1280 1992 obj = alloc_buf->allocate(word_sz);
ysr@1280 1993 assert(obj != NULL, "buffer was definitely big enough...");
ysr@1280 1994 } else {
ysr@1280 1995 obj = _g1h->par_allocate_during_gc(purpose, word_sz);
ysr@1280 1996 }
ysr@1280 1997 return obj;
ysr@1280 1998 }
ysr@1280 1999
ysr@1280 2000 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 2001 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
ysr@1280 2002 if (obj != NULL) return obj;
ysr@1280 2003 return allocate_slow(purpose, word_sz);
ysr@1280 2004 }
ysr@1280 2005
ysr@1280 2006 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
ysr@1280 2007 if (alloc_buffer(purpose)->contains(obj)) {
ysr@1280 2008 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
ysr@1280 2009 "should contain whole object");
ysr@1280 2010 alloc_buffer(purpose)->undo_allocation(obj, word_sz);
ysr@1280 2011 } else {
ysr@1280 2012 CollectedHeap::fill_with_object(obj, word_sz);
ysr@1280 2013 add_to_undo_waste(word_sz);
ysr@1280 2014 }
ysr@1280 2015 }
ysr@1280 2016
ysr@1280 2017 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
ysr@1280 2018 _evac_failure_cl = evac_failure_cl;
ysr@1280 2019 }
ysr@1280 2020 OopsInHeapRegionClosure* evac_failure_closure() {
ysr@1280 2021 return _evac_failure_cl;
ysr@1280 2022 }
ysr@1280 2023
ysr@1280 2024 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
ysr@1280 2025 _evac_cl = evac_cl;
ysr@1280 2026 }
ysr@1280 2027
ysr@1280 2028 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
ysr@1280 2029 _partial_scan_cl = partial_scan_cl;
ysr@1280 2030 }
ysr@1280 2031
ysr@1280 2032 int* hash_seed() { return &_hash_seed; }
johnc@3463 2033 uint queue_num() { return _queue_num; }
ysr@1280 2034
jcoomes@2064 2035 size_t term_attempts() const { return _term_attempts; }
tonyp@1966 2036 void note_term_attempt() { _term_attempts++; }
ysr@1280 2037
ysr@1280 2038 void start_strong_roots() {
ysr@1280 2039 _start_strong_roots = os::elapsedTime();
ysr@1280 2040 }
ysr@1280 2041 void end_strong_roots() {
ysr@1280 2042 _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
ysr@1280 2043 }
jcoomes@2064 2044 double strong_roots_time() const { return _strong_roots_time; }
ysr@1280 2045
ysr@1280 2046 void start_term_time() {
ysr@1280 2047 note_term_attempt();
ysr@1280 2048 _start_term = os::elapsedTime();
ysr@1280 2049 }
ysr@1280 2050 void end_term_time() {
ysr@1280 2051 _term_time += (os::elapsedTime() - _start_term);
ysr@1280 2052 }
jcoomes@2064 2053 double term_time() const { return _term_time; }
ysr@1280 2054
jcoomes@2064 2055 double elapsed_time() const {
ysr@1280 2056 return os::elapsedTime() - _start;
ysr@1280 2057 }
ysr@1280 2058
jcoomes@2064 2059 static void
jcoomes@2064 2060 print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 2061 void
jcoomes@2064 2062 print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
jcoomes@2064 2063
ysr@1280 2064 size_t* surviving_young_words() {
ysr@1280 2065 // We add on to hide entry 0 which accumulates surviving words for
ysr@1280 2066 // age -1 regions (i.e. non-young ones)
ysr@1280 2067 return _surviving_young_words;
ysr@1280 2068 }
ysr@1280 2069
ysr@1280 2070 void retire_alloc_buffers() {
ysr@1280 2071 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
apetrusenko@1826 2072 size_t waste = _alloc_buffers[ap]->words_remaining();
ysr@1280 2073 add_to_alloc_buffer_waste(waste);
johnc@3982 2074 _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
johnc@3982 2075 true /* end_of_gc */,
johnc@3982 2076 false /* retain */);
ysr@1280 2077 }
ysr@1280 2078 }
ysr@1280 2079
ysr@1280 2080 template <class T> void deal_with_reference(T* ref_to_scan) {
ysr@1280 2081 if (has_partial_array_mask(ref_to_scan)) {
ysr@1280 2082 _partial_scan_cl->do_oop_nv(ref_to_scan);
ysr@1280 2083 } else {
ysr@1280 2084 // Note: we can use "raw" versions of "region_containing" because
ysr@1280 2085 // "obj_to_scan" is definitely in the heap, and is not in a
ysr@1280 2086 // humongous region.
ysr@1280 2087 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
ysr@1280 2088 _evac_cl->set_region(r);
ysr@1280 2089 _evac_cl->do_oop_nv(ref_to_scan);
ysr@1280 2090 }
ysr@1280 2091 }
ysr@1280 2092
jcoomes@2217 2093 void deal_with_reference(StarTask ref) {
jcoomes@2217 2094 assert(verify_task(ref), "sanity");
jcoomes@2217 2095 if (ref.is_narrow()) {
jcoomes@2217 2096 deal_with_reference((narrowOop*)ref);
jcoomes@2217 2097 } else {
jcoomes@2217 2098 deal_with_reference((oop*)ref);
ysr@1280 2099 }
ysr@1280 2100 }
jcoomes@2217 2101
jcoomes@2217 2102 void trim_queue();
ysr@1280 2103 };
stefank@2314 2104
stefank@2314 2105 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial