src/cpu/x86/vm/assembler_x86.hpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 4001
006050192a5a
child 4052
75f33eecc1b3
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
stefank@2314 26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
stefank@2314 27
duke@435 28 class BiasedLockingCounters;
duke@435 29
duke@435 30 // Contains all the definitions needed for x86 assembly code generation.
duke@435 31
duke@435 32 // Calling convention
duke@435 33 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 34 public:
duke@435 35 enum {
duke@435 36 #ifdef _LP64
duke@435 37 #ifdef _WIN64
duke@435 38 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 39 n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
duke@435 40 #else
duke@435 41 n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 42 n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
duke@435 43 #endif // _WIN64
duke@435 44 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
duke@435 45 n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
duke@435 46 #else
duke@435 47 n_register_parameters = 0 // 0 registers used to pass arguments
duke@435 48 #endif // _LP64
duke@435 49 };
duke@435 50 };
duke@435 51
duke@435 52
duke@435 53 #ifdef _LP64
duke@435 54 // Symbolically name the register arguments used by the c calling convention.
duke@435 55 // Windows is different from linux/solaris. So much for standards...
duke@435 56
duke@435 57 #ifdef _WIN64
duke@435 58
duke@435 59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
duke@435 60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
duke@435 61 REGISTER_DECLARATION(Register, c_rarg2, r8);
duke@435 62 REGISTER_DECLARATION(Register, c_rarg3, r9);
duke@435 63
never@739 64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
duke@435 68
duke@435 69 #else
duke@435 70
duke@435 71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
duke@435 72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
duke@435 73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
duke@435 74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
duke@435 75 REGISTER_DECLARATION(Register, c_rarg4, r8);
duke@435 76 REGISTER_DECLARATION(Register, c_rarg5, r9);
duke@435 77
never@739 78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
never@739 82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
never@739 83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
never@739 84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
never@739 85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
duke@435 86
duke@435 87 #endif // _WIN64
duke@435 88
duke@435 89 // Symbolically name the register arguments used by the Java calling convention.
duke@435 90 // We have control over the convention for java so we can do what we please.
duke@435 91 // What pleases us is to offset the java calling convention so that when
duke@435 92 // we call a suitable jni method the arguments are lined up and we don't
duke@435 93 // have to do little shuffling. A suitable jni method is non-static and a
duke@435 94 // small number of arguments (two fewer args on windows)
duke@435 95 //
duke@435 96 // |-------------------------------------------------------|
duke@435 97 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
duke@435 98 // |-------------------------------------------------------|
duke@435 99 // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
duke@435 100 // | rdi rsi rdx rcx r8 r9 | solaris/linux
duke@435 101 // |-------------------------------------------------------|
duke@435 102 // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
duke@435 103 // |-------------------------------------------------------|
duke@435 104
duke@435 105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
duke@435 106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
duke@435 107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
duke@435 108 // Windows runs out of register args here
duke@435 109 #ifdef _WIN64
duke@435 110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
duke@435 111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
duke@435 112 #else
duke@435 113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
duke@435 114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
duke@435 115 #endif /* _WIN64 */
duke@435 116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
duke@435 117
never@739 118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
never@739 119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
never@739 120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
never@739 121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
never@739 122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
never@739 123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
never@739 124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
never@739 125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
duke@435 126
duke@435 127 REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
duke@435 128 REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
duke@435 129
never@739 130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
duke@435 131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
duke@435 132
never@739 133 #else
never@739 134 // rscratch1 will apear in 32bit code that is dead but of course must compile
never@739 135 // Using noreg ensures if the dead code is incorrectly live and executed it
never@739 136 // will cause an assertion failure
never@739 137 #define rscratch1 noreg
iveresov@2344 138 #define rscratch2 noreg
never@739 139
duke@435 140 #endif // _LP64
duke@435 141
twisti@1919 142 // JSR 292 fixed register usages:
twisti@1919 143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
twisti@1919 144
duke@435 145 // Address is an abstraction used to represent a memory location
duke@435 146 // using any of the amd64 addressing modes with one object.
duke@435 147 //
duke@435 148 // Note: A register location is represented via a Register, not
duke@435 149 // via an address for efficiency & simplicity reasons.
duke@435 150
duke@435 151 class ArrayAddress;
duke@435 152
duke@435 153 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 154 public:
duke@435 155 enum ScaleFactor {
duke@435 156 no_scale = -1,
duke@435 157 times_1 = 0,
duke@435 158 times_2 = 1,
duke@435 159 times_4 = 2,
never@739 160 times_8 = 3,
never@739 161 times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
duke@435 162 };
jrose@1057 163 static ScaleFactor times(int size) {
jrose@1057 164 assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
jrose@1057 165 if (size == 8) return times_8;
jrose@1057 166 if (size == 4) return times_4;
jrose@1057 167 if (size == 2) return times_2;
jrose@1057 168 return times_1;
jrose@1057 169 }
jrose@1057 170 static int scale_size(ScaleFactor scale) {
jrose@1057 171 assert(scale != no_scale, "");
jrose@1057 172 assert(((1 << (int)times_1) == 1 &&
jrose@1057 173 (1 << (int)times_2) == 2 &&
jrose@1057 174 (1 << (int)times_4) == 4 &&
jrose@1057 175 (1 << (int)times_8) == 8), "");
jrose@1057 176 return (1 << (int)scale);
jrose@1057 177 }
duke@435 178
duke@435 179 private:
duke@435 180 Register _base;
duke@435 181 Register _index;
duke@435 182 ScaleFactor _scale;
duke@435 183 int _disp;
duke@435 184 RelocationHolder _rspec;
duke@435 185
never@739 186 // Easily misused constructors make them private
never@739 187 // %%% can we make these go away?
never@739 188 NOT_LP64(Address(address loc, RelocationHolder spec);)
never@739 189 Address(int disp, address loc, relocInfo::relocType rtype);
never@739 190 Address(int disp, address loc, RelocationHolder spec);
duke@435 191
duke@435 192 public:
never@739 193
never@739 194 int disp() { return _disp; }
duke@435 195 // creation
duke@435 196 Address()
duke@435 197 : _base(noreg),
duke@435 198 _index(noreg),
duke@435 199 _scale(no_scale),
duke@435 200 _disp(0) {
duke@435 201 }
duke@435 202
duke@435 203 // No default displacement otherwise Register can be implicitly
duke@435 204 // converted to 0(Register) which is quite a different animal.
duke@435 205
duke@435 206 Address(Register base, int disp)
duke@435 207 : _base(base),
duke@435 208 _index(noreg),
duke@435 209 _scale(no_scale),
duke@435 210 _disp(disp) {
duke@435 211 }
duke@435 212
duke@435 213 Address(Register base, Register index, ScaleFactor scale, int disp = 0)
duke@435 214 : _base (base),
duke@435 215 _index(index),
duke@435 216 _scale(scale),
duke@435 217 _disp (disp) {
duke@435 218 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 219 "inconsistent address");
duke@435 220 }
duke@435 221
jrose@1100 222 Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
jrose@1057 223 : _base (base),
jrose@1057 224 _index(index.register_or_noreg()),
jrose@1057 225 _scale(scale),
jrose@1057 226 _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 227 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 228 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 229 "inconsistent address");
jrose@1057 230 }
jrose@1057 231
jrose@1057 232 Address plus_disp(int disp) const {
jrose@1057 233 Address a = (*this);
jrose@1057 234 a._disp += disp;
jrose@1057 235 return a;
jrose@1057 236 }
never@2895 237 Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
never@2895 238 Address a = (*this);
never@2895 239 a._disp += disp.constant_or_zero() * scale_size(scale);
never@2895 240 if (disp.is_register()) {
never@2895 241 assert(!a.index()->is_valid(), "competing indexes");
never@2895 242 a._index = disp.as_register();
never@2895 243 a._scale = scale;
never@2895 244 }
never@2895 245 return a;
never@2895 246 }
never@2895 247 bool is_same_address(Address a) const {
never@2895 248 // disregard _rspec
never@2895 249 return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
never@2895 250 }
jrose@1057 251
duke@435 252 // The following two overloads are used in connection with the
duke@435 253 // ByteSize type (see sizes.hpp). They simplify the use of
duke@435 254 // ByteSize'd arguments in assembly code. Note that their equivalent
duke@435 255 // for the optimized build are the member functions with int disp
duke@435 256 // argument since ByteSize is mapped to an int type in that case.
duke@435 257 //
duke@435 258 // Note: DO NOT introduce similar overloaded functions for WordSize
duke@435 259 // arguments as in the optimized mode, both ByteSize and WordSize
duke@435 260 // are mapped to the same type and thus the compiler cannot make a
duke@435 261 // distinction anymore (=> compiler errors).
duke@435 262
duke@435 263 #ifdef ASSERT
duke@435 264 Address(Register base, ByteSize disp)
duke@435 265 : _base(base),
duke@435 266 _index(noreg),
duke@435 267 _scale(no_scale),
duke@435 268 _disp(in_bytes(disp)) {
duke@435 269 }
duke@435 270
duke@435 271 Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
duke@435 272 : _base(base),
duke@435 273 _index(index),
duke@435 274 _scale(scale),
duke@435 275 _disp(in_bytes(disp)) {
duke@435 276 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 277 "inconsistent address");
duke@435 278 }
jrose@1057 279
jrose@1100 280 Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
jrose@1057 281 : _base (base),
jrose@1057 282 _index(index.register_or_noreg()),
jrose@1057 283 _scale(scale),
jrose@1057 284 _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 285 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 286 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 287 "inconsistent address");
jrose@1057 288 }
jrose@1057 289
duke@435 290 #endif // ASSERT
duke@435 291
duke@435 292 // accessors
ysr@777 293 bool uses(Register reg) const { return _base == reg || _index == reg; }
ysr@777 294 Register base() const { return _base; }
ysr@777 295 Register index() const { return _index; }
ysr@777 296 ScaleFactor scale() const { return _scale; }
ysr@777 297 int disp() const { return _disp; }
duke@435 298
duke@435 299 // Convert the raw encoding form into the form expected by the constructor for
duke@435 300 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 301 // that to noreg for the Address constructor.
coleenp@4037 302 static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
duke@435 303
duke@435 304 static Address make_array(ArrayAddress);
duke@435 305
duke@435 306 private:
duke@435 307 bool base_needs_rex() const {
duke@435 308 return _base != noreg && _base->encoding() >= 8;
duke@435 309 }
duke@435 310
duke@435 311 bool index_needs_rex() const {
duke@435 312 return _index != noreg &&_index->encoding() >= 8;
duke@435 313 }
duke@435 314
duke@435 315 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 316
duke@435 317 friend class Assembler;
duke@435 318 friend class MacroAssembler;
duke@435 319 friend class LIR_Assembler; // base/index/scale/disp
duke@435 320 };
duke@435 321
duke@435 322 //
duke@435 323 // AddressLiteral has been split out from Address because operands of this type
duke@435 324 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
duke@435 325 // the few instructions that need to deal with address literals are unique and the
duke@435 326 // MacroAssembler does not have to implement every instruction in the Assembler
duke@435 327 // in order to search for address literals that may need special handling depending
duke@435 328 // on the instruction and the platform. As small step on the way to merging i486/amd64
duke@435 329 // directories.
duke@435 330 //
duke@435 331 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
duke@435 332 friend class ArrayAddress;
duke@435 333 RelocationHolder _rspec;
duke@435 334 // Typically we use AddressLiterals we want to use their rval
duke@435 335 // However in some situations we want the lval (effect address) of the item.
duke@435 336 // We provide a special factory for making those lvals.
duke@435 337 bool _is_lval;
duke@435 338
duke@435 339 // If the target is far we'll need to load the ea of this to
duke@435 340 // a register to reach it. Otherwise if near we can do rip
duke@435 341 // relative addressing.
duke@435 342
duke@435 343 address _target;
duke@435 344
duke@435 345 protected:
duke@435 346 // creation
duke@435 347 AddressLiteral()
duke@435 348 : _is_lval(false),
duke@435 349 _target(NULL)
duke@435 350 {}
duke@435 351
duke@435 352 public:
duke@435 353
duke@435 354
duke@435 355 AddressLiteral(address target, relocInfo::relocType rtype);
duke@435 356
duke@435 357 AddressLiteral(address target, RelocationHolder const& rspec)
duke@435 358 : _rspec(rspec),
duke@435 359 _is_lval(false),
duke@435 360 _target(target)
duke@435 361 {}
duke@435 362
duke@435 363 AddressLiteral addr() {
duke@435 364 AddressLiteral ret = *this;
duke@435 365 ret._is_lval = true;
duke@435 366 return ret;
duke@435 367 }
duke@435 368
duke@435 369
duke@435 370 private:
duke@435 371
duke@435 372 address target() { return _target; }
duke@435 373 bool is_lval() { return _is_lval; }
duke@435 374
duke@435 375 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 376 const RelocationHolder& rspec() const { return _rspec; }
duke@435 377
duke@435 378 friend class Assembler;
duke@435 379 friend class MacroAssembler;
duke@435 380 friend class Address;
duke@435 381 friend class LIR_Assembler;
duke@435 382 };
duke@435 383
duke@435 384 // Convience classes
duke@435 385 class RuntimeAddress: public AddressLiteral {
duke@435 386
duke@435 387 public:
duke@435 388
duke@435 389 RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
duke@435 390
duke@435 391 };
duke@435 392
duke@435 393 class ExternalAddress: public AddressLiteral {
never@2737 394 private:
never@2737 395 static relocInfo::relocType reloc_for_target(address target) {
never@2737 396 // Sometimes ExternalAddress is used for values which aren't
never@2737 397 // exactly addresses, like the card table base.
never@2737 398 // external_word_type can't be used for values in the first page
never@2737 399 // so just skip the reloc in that case.
never@2737 400 return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
never@2737 401 }
never@2737 402
never@2737 403 public:
never@2737 404
never@2737 405 ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
duke@435 406
duke@435 407 };
duke@435 408
duke@435 409 class InternalAddress: public AddressLiteral {
duke@435 410
duke@435 411 public:
duke@435 412
duke@435 413 InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
duke@435 414
duke@435 415 };
duke@435 416
duke@435 417 // x86 can do array addressing as a single operation since disp can be an absolute
duke@435 418 // address amd64 can't. We create a class that expresses the concept but does extra
duke@435 419 // magic on amd64 to get the final result
duke@435 420
duke@435 421 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
duke@435 422 private:
duke@435 423
duke@435 424 AddressLiteral _base;
duke@435 425 Address _index;
duke@435 426
duke@435 427 public:
duke@435 428
duke@435 429 ArrayAddress() {};
duke@435 430 ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
duke@435 431 AddressLiteral base() { return _base; }
duke@435 432 Address index() { return _index; }
duke@435 433
duke@435 434 };
duke@435 435
never@739 436 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
duke@435 437
duke@435 438 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 439 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
duke@435 440 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 441
duke@435 442 class Assembler : public AbstractAssembler {
duke@435 443 friend class AbstractAssembler; // for the non-virtual hack
duke@435 444 friend class LIR_Assembler; // as_Address()
never@739 445 friend class StubGenerator;
duke@435 446
duke@435 447 public:
duke@435 448 enum Condition { // The x86 condition codes used for conditional jumps/moves.
duke@435 449 zero = 0x4,
duke@435 450 notZero = 0x5,
duke@435 451 equal = 0x4,
duke@435 452 notEqual = 0x5,
duke@435 453 less = 0xc,
duke@435 454 lessEqual = 0xe,
duke@435 455 greater = 0xf,
duke@435 456 greaterEqual = 0xd,
duke@435 457 below = 0x2,
duke@435 458 belowEqual = 0x6,
duke@435 459 above = 0x7,
duke@435 460 aboveEqual = 0x3,
duke@435 461 overflow = 0x0,
duke@435 462 noOverflow = 0x1,
duke@435 463 carrySet = 0x2,
duke@435 464 carryClear = 0x3,
duke@435 465 negative = 0x8,
duke@435 466 positive = 0x9,
duke@435 467 parity = 0xa,
duke@435 468 noParity = 0xb
duke@435 469 };
duke@435 470
duke@435 471 enum Prefix {
duke@435 472 // segment overrides
duke@435 473 CS_segment = 0x2e,
duke@435 474 SS_segment = 0x36,
duke@435 475 DS_segment = 0x3e,
duke@435 476 ES_segment = 0x26,
duke@435 477 FS_segment = 0x64,
duke@435 478 GS_segment = 0x65,
duke@435 479
duke@435 480 REX = 0x40,
duke@435 481
duke@435 482 REX_B = 0x41,
duke@435 483 REX_X = 0x42,
duke@435 484 REX_XB = 0x43,
duke@435 485 REX_R = 0x44,
duke@435 486 REX_RB = 0x45,
duke@435 487 REX_RX = 0x46,
duke@435 488 REX_RXB = 0x47,
duke@435 489
duke@435 490 REX_W = 0x48,
duke@435 491
duke@435 492 REX_WB = 0x49,
duke@435 493 REX_WX = 0x4A,
duke@435 494 REX_WXB = 0x4B,
duke@435 495 REX_WR = 0x4C,
duke@435 496 REX_WRB = 0x4D,
duke@435 497 REX_WRX = 0x4E,
kvn@3388 498 REX_WRXB = 0x4F,
kvn@3388 499
kvn@3388 500 VEX_3bytes = 0xC4,
kvn@3388 501 VEX_2bytes = 0xC5
kvn@3388 502 };
kvn@3388 503
kvn@3388 504 enum VexPrefix {
kvn@3388 505 VEX_B = 0x20,
kvn@3388 506 VEX_X = 0x40,
kvn@3388 507 VEX_R = 0x80,
kvn@3388 508 VEX_W = 0x80
kvn@3388 509 };
kvn@3388 510
kvn@3388 511 enum VexSimdPrefix {
kvn@3388 512 VEX_SIMD_NONE = 0x0,
kvn@3388 513 VEX_SIMD_66 = 0x1,
kvn@3388 514 VEX_SIMD_F3 = 0x2,
kvn@3388 515 VEX_SIMD_F2 = 0x3
kvn@3388 516 };
kvn@3388 517
kvn@3388 518 enum VexOpcode {
kvn@3388 519 VEX_OPCODE_NONE = 0x0,
kvn@3388 520 VEX_OPCODE_0F = 0x1,
kvn@3388 521 VEX_OPCODE_0F_38 = 0x2,
kvn@3388 522 VEX_OPCODE_0F_3A = 0x3
duke@435 523 };
duke@435 524
duke@435 525 enum WhichOperand {
duke@435 526 // input to locate_operand, and format code for relocations
never@739 527 imm_operand = 0, // embedded 32-bit|64-bit immediate operand
duke@435 528 disp32_operand = 1, // embedded 32-bit displacement or address
duke@435 529 call32_operand = 2, // embedded 32-bit self-relative displacement
never@739 530 #ifndef _LP64
duke@435 531 _WhichOperand_limit = 3
never@739 532 #else
never@739 533 narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
never@739 534 _WhichOperand_limit = 4
never@739 535 #endif
duke@435 536 };
duke@435 537
never@739 538
never@739 539
never@739 540 // NOTE: The general philopsophy of the declarations here is that 64bit versions
never@739 541 // of instructions are freely declared without the need for wrapping them an ifdef.
never@739 542 // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
never@739 543 // In the .cpp file the implementations are wrapped so that they are dropped out
never@739 544 // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
never@739 545 // to the size it was prior to merging up the 32bit and 64bit assemblers.
never@739 546 //
never@739 547 // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
never@739 548 // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
never@739 549
never@739 550 private:
never@739 551
never@739 552
never@739 553 // 64bit prefixes
never@739 554 int prefix_and_encode(int reg_enc, bool byteinst = false);
never@739 555 int prefixq_and_encode(int reg_enc);
never@739 556
never@739 557 int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
never@739 558 int prefixq_and_encode(int dst_enc, int src_enc);
never@739 559
never@739 560 void prefix(Register reg);
never@739 561 void prefix(Address adr);
never@739 562 void prefixq(Address adr);
never@739 563
never@739 564 void prefix(Address adr, Register reg, bool byteinst = false);
kvn@3388 565 void prefix(Address adr, XMMRegister reg);
never@739 566 void prefixq(Address adr, Register reg);
kvn@3388 567 void prefixq(Address adr, XMMRegister reg);
never@739 568
never@739 569 void prefetch_prefix(Address src);
never@739 570
kvn@3388 571 void rex_prefix(Address adr, XMMRegister xreg,
kvn@3388 572 VexSimdPrefix pre, VexOpcode opc, bool rex_w);
kvn@3388 573 int rex_prefix_and_encode(int dst_enc, int src_enc,
kvn@3388 574 VexSimdPrefix pre, VexOpcode opc, bool rex_w);
kvn@3388 575
kvn@3388 576 void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
kvn@3388 577 int nds_enc, VexSimdPrefix pre, VexOpcode opc,
kvn@3388 578 bool vector256);
kvn@3388 579
kvn@3388 580 void vex_prefix(Address adr, int nds_enc, int xreg_enc,
kvn@3388 581 VexSimdPrefix pre, VexOpcode opc,
kvn@3388 582 bool vex_w, bool vector256);
kvn@3388 583
kvn@3390 584 void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
kvn@3390 585 VexSimdPrefix pre, bool vector256 = false) {
kvn@3882 586 int dst_enc = dst->encoding();
kvn@3882 587 int nds_enc = nds->is_valid() ? nds->encoding() : 0;
kvn@3882 588 vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, false, vector256);
kvn@3390 589 }
kvn@3390 590
kvn@3388 591 int vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
kvn@3388 592 VexSimdPrefix pre, VexOpcode opc,
kvn@3388 593 bool vex_w, bool vector256);
kvn@3388 594
kvn@3390 595 int vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
kvn@3882 596 VexSimdPrefix pre, bool vector256 = false,
kvn@3882 597 VexOpcode opc = VEX_OPCODE_0F) {
kvn@3882 598 int src_enc = src->encoding();
kvn@3882 599 int dst_enc = dst->encoding();
kvn@3882 600 int nds_enc = nds->is_valid() ? nds->encoding() : 0;
kvn@3882 601 return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, false, vector256);
kvn@3390 602 }
kvn@3388 603
kvn@3388 604 void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
kvn@3388 605 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
kvn@3388 606 bool rex_w = false, bool vector256 = false);
kvn@3388 607
kvn@3388 608 void simd_prefix(XMMRegister dst, Address src,
kvn@3388 609 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
kvn@3388 610 simd_prefix(dst, xnoreg, src, pre, opc);
kvn@3388 611 }
kvn@4001 612
kvn@3388 613 void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
kvn@3388 614 simd_prefix(src, dst, pre);
kvn@3388 615 }
kvn@3388 616 void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
kvn@3388 617 VexSimdPrefix pre) {
kvn@3388 618 bool rex_w = true;
kvn@3388 619 simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
kvn@3388 620 }
kvn@3388 621
kvn@3388 622 int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
kvn@3388 623 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
kvn@3388 624 bool rex_w = false, bool vector256 = false);
kvn@3388 625
kvn@3388 626 // Move/convert 32-bit integer value.
kvn@3388 627 int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
kvn@3388 628 VexSimdPrefix pre) {
kvn@3388 629 // It is OK to cast from Register to XMMRegister to pass argument here
kvn@3388 630 // since only encoding is used in simd_prefix_and_encode() and number of
kvn@3388 631 // Gen and Xmm registers are the same.
kvn@3388 632 return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre);
kvn@3388 633 }
kvn@3388 634 int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
kvn@3388 635 return simd_prefix_and_encode(dst, xnoreg, src, pre);
kvn@3388 636 }
kvn@3388 637 int simd_prefix_and_encode(Register dst, XMMRegister src,
kvn@3388 638 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
kvn@3388 639 return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc);
kvn@3388 640 }
kvn@3388 641
kvn@3388 642 // Move/convert 64-bit integer value.
kvn@3388 643 int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
kvn@3388 644 VexSimdPrefix pre) {
kvn@3388 645 bool rex_w = true;
kvn@3388 646 return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, VEX_OPCODE_0F, rex_w);
kvn@3388 647 }
kvn@3388 648 int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
kvn@3388 649 return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
kvn@3388 650 }
kvn@3388 651 int simd_prefix_and_encode_q(Register dst, XMMRegister src,
kvn@3388 652 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
kvn@3388 653 bool rex_w = true;
kvn@3388 654 return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc, rex_w);
kvn@3388 655 }
kvn@3388 656
never@739 657 // Helper functions for groups of instructions
never@739 658 void emit_arith_b(int op1, int op2, Register dst, int imm8);
never@739 659
never@739 660 void emit_arith(int op1, int op2, Register dst, int32_t imm32);
kvn@3574 661 // Force generation of a 4 byte immediate value even if it fits into 8bit
kvn@3574 662 void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
never@739 663 void emit_arith(int op1, int op2, Register dst, Register src);
never@739 664
kvn@4001 665 void emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
kvn@4001 666 void emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
kvn@4001 667 void emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
kvn@4001 668 void emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
kvn@4001 669 void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
kvn@4001 670 Address src, VexSimdPrefix pre, bool vector256);
kvn@4001 671 void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
kvn@4001 672 XMMRegister src, VexSimdPrefix pre, bool vector256);
kvn@4001 673
never@739 674 void emit_operand(Register reg,
never@739 675 Register base, Register index, Address::ScaleFactor scale,
never@739 676 int disp,
never@739 677 RelocationHolder const& rspec,
never@739 678 int rip_relative_correction = 0);
never@739 679
never@739 680 void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
never@739 681
never@739 682 // operands that only take the original 32bit registers
never@739 683 void emit_operand32(Register reg, Address adr);
never@739 684
never@739 685 void emit_operand(XMMRegister reg,
never@739 686 Register base, Register index, Address::ScaleFactor scale,
never@739 687 int disp,
never@739 688 RelocationHolder const& rspec);
never@739 689
never@739 690 void emit_operand(XMMRegister reg, Address adr);
never@739 691
never@739 692 void emit_operand(MMXRegister reg, Address adr);
never@739 693
never@739 694 // workaround gcc (3.2.1-7) bug
never@739 695 void emit_operand(Address adr, MMXRegister reg);
never@739 696
never@739 697
never@739 698 // Immediate-to-memory forms
never@739 699 void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
never@739 700
never@739 701 void emit_farith(int b1, int b2, int i);
never@739 702
duke@435 703
duke@435 704 protected:
never@739 705 #ifdef ASSERT
never@739 706 void check_relocation(RelocationHolder const& rspec, int format);
never@739 707 #endif
never@739 708
never@739 709 inline void emit_long64(jlong x);
never@739 710
never@739 711 void emit_data(jint data, relocInfo::relocType rtype, int format);
never@739 712 void emit_data(jint data, RelocationHolder const& rspec, int format);
never@739 713 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
never@739 714 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
never@739 715
never@739 716 bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
never@739 717
never@739 718 // These are all easily abused and hence protected
never@739 719
never@739 720 // 32BIT ONLY SECTION
never@739 721 #ifndef _LP64
never@739 722 // Make these disappear in 64bit mode since they would never be correct
never@739 723 void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 724 void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 725
kvn@1077 726 void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 727 void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 728
never@739 729 void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 730 #else
never@739 731 // 64BIT ONLY SECTION
never@739 732 void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
kvn@1077 733
kvn@1077 734 void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 735 void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 736
kvn@1077 737 void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 738 void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
never@739 739 #endif // _LP64
never@739 740
never@739 741 // These are unique in that we are ensured by the caller that the 32bit
never@739 742 // relative in these instructions will always be able to reach the potentially
never@739 743 // 64bit address described by entry. Since they can take a 64bit address they
never@739 744 // don't have the 32 suffix like the other instructions in this class.
never@739 745
never@739 746 void call_literal(address entry, RelocationHolder const& rspec);
never@739 747 void jmp_literal(address entry, RelocationHolder const& rspec);
never@739 748
never@739 749 // Avoid using directly section
never@739 750 // Instructions in this section are actually usable by anyone without danger
never@739 751 // of failure but have performance issues that are addressed my enhanced
never@739 752 // instructions which will do the proper thing base on the particular cpu.
never@739 753 // We protect them because we don't trust you...
never@739 754
duke@435 755 // Don't use next inc() and dec() methods directly. INC & DEC instructions
duke@435 756 // could cause a partial flag stall since they don't set CF flag.
duke@435 757 // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
duke@435 758 // which call inc() & dec() or add() & sub() in accordance with
duke@435 759 // the product flag UseIncDec value.
duke@435 760
duke@435 761 void decl(Register dst);
duke@435 762 void decl(Address dst);
never@739 763 void decq(Register dst);
never@739 764 void decq(Address dst);
duke@435 765
duke@435 766 void incl(Register dst);
duke@435 767 void incl(Address dst);
never@739 768 void incq(Register dst);
never@739 769 void incq(Address dst);
never@739 770
never@739 771 // New cpus require use of movsd and movss to avoid partial register stall
never@739 772 // when loading from memory. But for old Opteron use movlpd instead of movsd.
never@739 773 // The selection is done in MacroAssembler::movdbl() and movflt().
never@739 774
never@739 775 // Move Scalar Single-Precision Floating-Point Values
never@739 776 void movss(XMMRegister dst, Address src);
never@739 777 void movss(XMMRegister dst, XMMRegister src);
never@739 778 void movss(Address dst, XMMRegister src);
never@739 779
never@739 780 // Move Scalar Double-Precision Floating-Point Values
never@739 781 void movsd(XMMRegister dst, Address src);
never@739 782 void movsd(XMMRegister dst, XMMRegister src);
never@739 783 void movsd(Address dst, XMMRegister src);
never@739 784 void movlpd(XMMRegister dst, Address src);
never@739 785
never@739 786 // New cpus require use of movaps and movapd to avoid partial register stall
never@739 787 // when moving between registers.
never@739 788 void movaps(XMMRegister dst, XMMRegister src);
never@739 789 void movapd(XMMRegister dst, XMMRegister src);
never@739 790
never@739 791 // End avoid using directly
never@739 792
never@739 793
never@739 794 // Instruction prefixes
never@739 795 void prefix(Prefix p);
never@739 796
never@739 797 public:
never@739 798
never@739 799 // Creation
never@739 800 Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
never@739 801
never@739 802 // Decoding
never@739 803 static address locate_operand(address inst, WhichOperand which);
never@739 804 static address locate_next_instruction(address inst);
never@739 805
never@739 806 // Utilities
iveresov@2686 807 static bool is_polling_page_far() NOT_LP64({ return false;});
iveresov@2686 808
never@739 809 // Generic instructions
never@739 810 // Does 32bit or 64bit as needed for the platform. In some sense these
never@739 811 // belong in macro assembler but there is no need for both varieties to exist
never@739 812
never@739 813 void lea(Register dst, Address src);
never@739 814
never@739 815 void mov(Register dst, Register src);
never@739 816
never@739 817 void pusha();
never@739 818 void popa();
never@739 819
never@739 820 void pushf();
never@739 821 void popf();
never@739 822
never@739 823 void push(int32_t imm32);
never@739 824
never@739 825 void push(Register src);
never@739 826
never@739 827 void pop(Register dst);
never@739 828
never@739 829 // These are dummies to prevent surprise implicit conversions to Register
never@739 830 void push(void* v);
never@739 831 void pop(void* v);
never@739 832
never@739 833 // These do register sized moves/scans
never@739 834 void rep_mov();
never@739 835 void rep_set();
never@739 836 void repne_scan();
never@739 837 #ifdef _LP64
never@739 838 void repne_scanl();
never@739 839 #endif
never@739 840
never@739 841 // Vanilla instructions in lexical order
never@739 842
phh@2423 843 void adcl(Address dst, int32_t imm32);
phh@2423 844 void adcl(Address dst, Register src);
never@739 845 void adcl(Register dst, int32_t imm32);
never@739 846 void adcl(Register dst, Address src);
never@739 847 void adcl(Register dst, Register src);
never@739 848
never@739 849 void adcq(Register dst, int32_t imm32);
never@739 850 void adcq(Register dst, Address src);
never@739 851 void adcq(Register dst, Register src);
never@739 852
never@739 853 void addl(Address dst, int32_t imm32);
never@739 854 void addl(Address dst, Register src);
never@739 855 void addl(Register dst, int32_t imm32);
never@739 856 void addl(Register dst, Address src);
never@739 857 void addl(Register dst, Register src);
never@739 858
never@739 859 void addq(Address dst, int32_t imm32);
never@739 860 void addq(Address dst, Register src);
never@739 861 void addq(Register dst, int32_t imm32);
never@739 862 void addq(Register dst, Address src);
never@739 863 void addq(Register dst, Register src);
never@739 864
duke@435 865 void addr_nop_4();
duke@435 866 void addr_nop_5();
duke@435 867 void addr_nop_7();
duke@435 868 void addr_nop_8();
duke@435 869
never@739 870 // Add Scalar Double-Precision Floating-Point Values
never@739 871 void addsd(XMMRegister dst, Address src);
never@739 872 void addsd(XMMRegister dst, XMMRegister src);
never@739 873
never@739 874 // Add Scalar Single-Precision Floating-Point Values
never@739 875 void addss(XMMRegister dst, Address src);
never@739 876 void addss(XMMRegister dst, XMMRegister src);
never@739 877
kvn@3388 878 void andl(Address dst, int32_t imm32);
never@739 879 void andl(Register dst, int32_t imm32);
never@739 880 void andl(Register dst, Address src);
never@739 881 void andl(Register dst, Register src);
never@739 882
never@2980 883 void andq(Address dst, int32_t imm32);
never@739 884 void andq(Register dst, int32_t imm32);
never@739 885 void andq(Register dst, Address src);
never@739 886 void andq(Register dst, Register src);
never@739 887
twisti@1210 888 void bsfl(Register dst, Register src);
twisti@1210 889 void bsrl(Register dst, Register src);
twisti@1210 890
twisti@1210 891 #ifdef _LP64
twisti@1210 892 void bsfq(Register dst, Register src);
twisti@1210 893 void bsrq(Register dst, Register src);
twisti@1210 894 #endif
twisti@1210 895
never@739 896 void bswapl(Register reg);
never@739 897
never@739 898 void bswapq(Register reg);
never@739 899
duke@435 900 void call(Label& L, relocInfo::relocType rtype);
duke@435 901 void call(Register reg); // push pc; pc <- reg
duke@435 902 void call(Address adr); // push pc; pc <- adr
duke@435 903
never@739 904 void cdql();
never@739 905
never@739 906 void cdqq();
never@739 907
never@739 908 void cld() { emit_byte(0xfc); }
never@739 909
never@739 910 void clflush(Address adr);
never@739 911
never@739 912 void cmovl(Condition cc, Register dst, Register src);
never@739 913 void cmovl(Condition cc, Register dst, Address src);
never@739 914
never@739 915 void cmovq(Condition cc, Register dst, Register src);
never@739 916 void cmovq(Condition cc, Register dst, Address src);
never@739 917
never@739 918
never@739 919 void cmpb(Address dst, int imm8);
never@739 920
never@739 921 void cmpl(Address dst, int32_t imm32);
never@739 922
never@739 923 void cmpl(Register dst, int32_t imm32);
never@739 924 void cmpl(Register dst, Register src);
never@739 925 void cmpl(Register dst, Address src);
never@739 926
never@739 927 void cmpq(Address dst, int32_t imm32);
never@739 928 void cmpq(Address dst, Register src);
never@739 929
never@739 930 void cmpq(Register dst, int32_t imm32);
never@739 931 void cmpq(Register dst, Register src);
never@739 932 void cmpq(Register dst, Address src);
never@739 933
never@739 934 // these are dummies used to catch attempting to convert NULL to Register
never@739 935 void cmpl(Register dst, void* junk); // dummy
never@739 936 void cmpq(Register dst, void* junk); // dummy
never@739 937
never@739 938 void cmpw(Address dst, int imm16);
never@739 939
never@739 940 void cmpxchg8 (Address adr);
never@739 941
never@739 942 void cmpxchgl(Register reg, Address adr);
never@739 943
never@739 944 void cmpxchgq(Register reg, Address adr);
never@739 945
never@739 946 // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 947 void comisd(XMMRegister dst, Address src);
kvn@3388 948 void comisd(XMMRegister dst, XMMRegister src);
never@739 949
never@739 950 // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 951 void comiss(XMMRegister dst, Address src);
kvn@3388 952 void comiss(XMMRegister dst, XMMRegister src);
never@739 953
never@739 954 // Identify processor type and features
never@739 955 void cpuid() {
never@739 956 emit_byte(0x0F);
never@739 957 emit_byte(0xA2);
never@739 958 }
never@739 959
never@739 960 // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
never@739 961 void cvtsd2ss(XMMRegister dst, XMMRegister src);
kvn@3388 962 void cvtsd2ss(XMMRegister dst, Address src);
never@739 963
never@739 964 // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
never@739 965 void cvtsi2sdl(XMMRegister dst, Register src);
kvn@3388 966 void cvtsi2sdl(XMMRegister dst, Address src);
never@739 967 void cvtsi2sdq(XMMRegister dst, Register src);
kvn@3388 968 void cvtsi2sdq(XMMRegister dst, Address src);
never@739 969
never@739 970 // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
never@739 971 void cvtsi2ssl(XMMRegister dst, Register src);
kvn@3388 972 void cvtsi2ssl(XMMRegister dst, Address src);
never@739 973 void cvtsi2ssq(XMMRegister dst, Register src);
kvn@3388 974 void cvtsi2ssq(XMMRegister dst, Address src);
never@739 975
never@739 976 // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
never@739 977 void cvtdq2pd(XMMRegister dst, XMMRegister src);
never@739 978
never@739 979 // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
never@739 980 void cvtdq2ps(XMMRegister dst, XMMRegister src);
never@739 981
never@739 982 // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
never@739 983 void cvtss2sd(XMMRegister dst, XMMRegister src);
kvn@3388 984 void cvtss2sd(XMMRegister dst, Address src);
never@739 985
never@739 986 // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
never@739 987 void cvttsd2sil(Register dst, Address src);
never@739 988 void cvttsd2sil(Register dst, XMMRegister src);
never@739 989 void cvttsd2siq(Register dst, XMMRegister src);
never@739 990
never@739 991 // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
never@739 992 void cvttss2sil(Register dst, XMMRegister src);
never@739 993 void cvttss2siq(Register dst, XMMRegister src);
never@739 994
never@739 995 // Divide Scalar Double-Precision Floating-Point Values
never@739 996 void divsd(XMMRegister dst, Address src);
never@739 997 void divsd(XMMRegister dst, XMMRegister src);
never@739 998
never@739 999 // Divide Scalar Single-Precision Floating-Point Values
never@739 1000 void divss(XMMRegister dst, Address src);
never@739 1001 void divss(XMMRegister dst, XMMRegister src);
never@739 1002
never@739 1003 void emms();
never@739 1004
never@739 1005 void fabs();
never@739 1006
never@739 1007 void fadd(int i);
never@739 1008
never@739 1009 void fadd_d(Address src);
never@739 1010 void fadd_s(Address src);
never@739 1011
never@739 1012 // "Alternate" versions of x87 instructions place result down in FPU
never@739 1013 // stack instead of on TOS
never@739 1014
never@739 1015 void fadda(int i); // "alternate" fadd
never@739 1016 void faddp(int i = 1);
never@739 1017
never@739 1018 void fchs();
never@739 1019
never@739 1020 void fcom(int i);
never@739 1021
never@739 1022 void fcomp(int i = 1);
never@739 1023 void fcomp_d(Address src);
never@739 1024 void fcomp_s(Address src);
never@739 1025
never@739 1026 void fcompp();
never@739 1027
never@739 1028 void fcos();
never@739 1029
never@739 1030 void fdecstp();
never@739 1031
never@739 1032 void fdiv(int i);
never@739 1033 void fdiv_d(Address src);
never@739 1034 void fdivr_s(Address src);
never@739 1035 void fdiva(int i); // "alternate" fdiv
never@739 1036 void fdivp(int i = 1);
never@739 1037
never@739 1038 void fdivr(int i);
never@739 1039 void fdivr_d(Address src);
never@739 1040 void fdiv_s(Address src);
never@739 1041
never@739 1042 void fdivra(int i); // "alternate" reversed fdiv
never@739 1043
never@739 1044 void fdivrp(int i = 1);
never@739 1045
never@739 1046 void ffree(int i = 0);
never@739 1047
never@739 1048 void fild_d(Address adr);
never@739 1049 void fild_s(Address adr);
never@739 1050
never@739 1051 void fincstp();
never@739 1052
never@739 1053 void finit();
never@739 1054
never@739 1055 void fist_s (Address adr);
never@739 1056 void fistp_d(Address adr);
never@739 1057 void fistp_s(Address adr);
never@739 1058
never@739 1059 void fld1();
never@739 1060
never@739 1061 void fld_d(Address adr);
never@739 1062 void fld_s(Address adr);
never@739 1063 void fld_s(int index);
never@739 1064 void fld_x(Address adr); // extended-precision (80-bit) format
never@739 1065
never@739 1066 void fldcw(Address src);
never@739 1067
never@739 1068 void fldenv(Address src);
never@739 1069
never@739 1070 void fldlg2();
never@739 1071
never@739 1072 void fldln2();
never@739 1073
never@739 1074 void fldz();
never@739 1075
never@739 1076 void flog();
never@739 1077 void flog10();
never@739 1078
never@739 1079 void fmul(int i);
never@739 1080
never@739 1081 void fmul_d(Address src);
never@739 1082 void fmul_s(Address src);
never@739 1083
never@739 1084 void fmula(int i); // "alternate" fmul
never@739 1085
never@739 1086 void fmulp(int i = 1);
never@739 1087
never@739 1088 void fnsave(Address dst);
never@739 1089
never@739 1090 void fnstcw(Address src);
never@739 1091
never@739 1092 void fnstsw_ax();
never@739 1093
never@739 1094 void fprem();
never@739 1095 void fprem1();
never@739 1096
never@739 1097 void frstor(Address src);
never@739 1098
never@739 1099 void fsin();
never@739 1100
never@739 1101 void fsqrt();
never@739 1102
never@739 1103 void fst_d(Address adr);
never@739 1104 void fst_s(Address adr);
never@739 1105
never@739 1106 void fstp_d(Address adr);
never@739 1107 void fstp_d(int index);
never@739 1108 void fstp_s(Address adr);
never@739 1109 void fstp_x(Address adr); // extended-precision (80-bit) format
never@739 1110
never@739 1111 void fsub(int i);
never@739 1112 void fsub_d(Address src);
never@739 1113 void fsub_s(Address src);
never@739 1114
never@739 1115 void fsuba(int i); // "alternate" fsub
never@739 1116
never@739 1117 void fsubp(int i = 1);
never@739 1118
never@739 1119 void fsubr(int i);
never@739 1120 void fsubr_d(Address src);
never@739 1121 void fsubr_s(Address src);
never@739 1122
never@739 1123 void fsubra(int i); // "alternate" reversed fsub
never@739 1124
never@739 1125 void fsubrp(int i = 1);
never@739 1126
never@739 1127 void ftan();
never@739 1128
never@739 1129 void ftst();
never@739 1130
never@739 1131 void fucomi(int i = 1);
never@739 1132 void fucomip(int i = 1);
never@739 1133
never@739 1134 void fwait();
never@739 1135
never@739 1136 void fxch(int i = 1);
never@739 1137
never@739 1138 void fxrstor(Address src);
never@739 1139
never@739 1140 void fxsave(Address dst);
never@739 1141
never@739 1142 void fyl2x();
roland@3787 1143 void frndint();
roland@3787 1144 void f2xm1();
roland@3787 1145 void fldl2e();
never@739 1146
never@739 1147 void hlt();
never@739 1148
never@739 1149 void idivl(Register src);
kvn@2275 1150 void divl(Register src); // Unsigned division
never@739 1151
never@739 1152 void idivq(Register src);
never@739 1153
never@739 1154 void imull(Register dst, Register src);
never@739 1155 void imull(Register dst, Register src, int value);
never@739 1156
never@739 1157 void imulq(Register dst, Register src);
never@739 1158 void imulq(Register dst, Register src, int value);
never@739 1159
duke@435 1160
duke@435 1161 // jcc is the generic conditional branch generator to run-
duke@435 1162 // time routines, jcc is used for branches to labels. jcc
duke@435 1163 // takes a branch opcode (cc) and a label (L) and generates
duke@435 1164 // either a backward branch or a forward branch and links it
duke@435 1165 // to the label fixup chain. Usage:
duke@435 1166 //
duke@435 1167 // Label L; // unbound label
duke@435 1168 // jcc(cc, L); // forward branch to unbound label
duke@435 1169 // bind(L); // bind label to the current pc
duke@435 1170 // jcc(cc, L); // backward branch to bound label
duke@435 1171 // bind(L); // illegal: a label may be bound only once
duke@435 1172 //
duke@435 1173 // Note: The same Label can be used for forward and backward branches
duke@435 1174 // but it may be bound only once.
duke@435 1175
kvn@3049 1176 void jcc(Condition cc, Label& L, bool maybe_short = true);
duke@435 1177
duke@435 1178 // Conditional jump to a 8-bit offset to L.
duke@435 1179 // WARNING: be very careful using this for forward jumps. If the label is
duke@435 1180 // not bound within an 8-bit offset of this instruction, a run-time error
duke@435 1181 // will occur.
duke@435 1182 void jccb(Condition cc, Label& L);
duke@435 1183
never@739 1184 void jmp(Address entry); // pc <- entry
never@739 1185
never@739 1186 // Label operations & relative jumps (PPUM Appendix D)
kvn@3049 1187 void jmp(Label& L, bool maybe_short = true); // unconditional jump to L
never@739 1188
never@739 1189 void jmp(Register entry); // pc <- entry
never@739 1190
never@739 1191 // Unconditional 8-bit offset jump to L.
never@739 1192 // WARNING: be very careful using this for forward jumps. If the label is
never@739 1193 // not bound within an 8-bit offset of this instruction, a run-time error
never@739 1194 // will occur.
never@739 1195 void jmpb(Label& L);
never@739 1196
never@739 1197 void ldmxcsr( Address src );
never@739 1198
never@739 1199 void leal(Register dst, Address src);
never@739 1200
never@739 1201 void leaq(Register dst, Address src);
never@739 1202
never@739 1203 void lfence() {
never@739 1204 emit_byte(0x0F);
never@739 1205 emit_byte(0xAE);
never@739 1206 emit_byte(0xE8);
never@739 1207 }
never@739 1208
never@739 1209 void lock();
never@739 1210
twisti@1210 1211 void lzcntl(Register dst, Register src);
twisti@1210 1212
twisti@1210 1213 #ifdef _LP64
twisti@1210 1214 void lzcntq(Register dst, Register src);
twisti@1210 1215 #endif
twisti@1210 1216
never@739 1217 enum Membar_mask_bits {
never@739 1218 StoreStore = 1 << 3,
never@739 1219 LoadStore = 1 << 2,
never@739 1220 StoreLoad = 1 << 1,
never@739 1221 LoadLoad = 1 << 0
never@739 1222 };
never@739 1223
never@1106 1224 // Serializes memory and blows flags
never@739 1225 void membar(Membar_mask_bits order_constraint) {
never@1106 1226 if (os::is_MP()) {
never@1106 1227 // We only have to handle StoreLoad
never@1106 1228 if (order_constraint & StoreLoad) {
never@1106 1229 // All usable chips support "locked" instructions which suffice
never@1106 1230 // as barriers, and are much faster than the alternative of
never@1106 1231 // using cpuid instruction. We use here a locked add [esp],0.
never@1106 1232 // This is conveniently otherwise a no-op except for blowing
never@1106 1233 // flags.
never@1106 1234 // Any change to this code may need to revisit other places in
never@1106 1235 // the code where this idiom is used, in particular the
never@1106 1236 // orderAccess code.
never@1106 1237 lock();
never@1106 1238 addl(Address(rsp, 0), 0);// Assert the lock# signal here
never@1106 1239 }
never@1106 1240 }
never@739 1241 }
never@739 1242
never@739 1243 void mfence();
never@739 1244
never@739 1245 // Moves
never@739 1246
never@739 1247 void mov64(Register dst, int64_t imm64);
never@739 1248
never@739 1249 void movb(Address dst, Register src);
never@739 1250 void movb(Address dst, int imm8);
never@739 1251 void movb(Register dst, Address src);
never@739 1252
never@739 1253 void movdl(XMMRegister dst, Register src);
never@739 1254 void movdl(Register dst, XMMRegister src);
kvn@2602 1255 void movdl(XMMRegister dst, Address src);
kvn@3882 1256 void movdl(Address dst, XMMRegister src);
never@739 1257
never@739 1258 // Move Double Quadword
never@739 1259 void movdq(XMMRegister dst, Register src);
never@739 1260 void movdq(Register dst, XMMRegister src);
never@739 1261
never@739 1262 // Move Aligned Double Quadword
never@739 1263 void movdqa(XMMRegister dst, XMMRegister src);
never@739 1264
kvn@840 1265 // Move Unaligned Double Quadword
kvn@840 1266 void movdqu(Address dst, XMMRegister src);
kvn@840 1267 void movdqu(XMMRegister dst, Address src);
kvn@840 1268 void movdqu(XMMRegister dst, XMMRegister src);
kvn@840 1269
kvn@3882 1270 // Move Unaligned 256bit Vector
kvn@3882 1271 void vmovdqu(Address dst, XMMRegister src);
kvn@3882 1272 void vmovdqu(XMMRegister dst, Address src);
kvn@3882 1273 void vmovdqu(XMMRegister dst, XMMRegister src);
kvn@3882 1274
kvn@3882 1275 // Move lower 64bit to high 64bit in 128bit register
kvn@3882 1276 void movlhps(XMMRegister dst, XMMRegister src);
kvn@3882 1277
never@739 1278 void movl(Register dst, int32_t imm32);
never@739 1279 void movl(Address dst, int32_t imm32);
never@739 1280 void movl(Register dst, Register src);
never@739 1281 void movl(Register dst, Address src);
never@739 1282 void movl(Address dst, Register src);
never@739 1283
never@739 1284 // These dummies prevent using movl from converting a zero (like NULL) into Register
never@739 1285 // by giving the compiler two choices it can't resolve
never@739 1286
never@739 1287 void movl(Address dst, void* junk);
never@739 1288 void movl(Register dst, void* junk);
never@739 1289
never@739 1290 #ifdef _LP64
never@739 1291 void movq(Register dst, Register src);
never@739 1292 void movq(Register dst, Address src);
phh@2423 1293 void movq(Address dst, Register src);
never@739 1294 #endif
never@739 1295
never@739 1296 void movq(Address dst, MMXRegister src );
never@739 1297 void movq(MMXRegister dst, Address src );
never@739 1298
never@739 1299 #ifdef _LP64
never@739 1300 // These dummies prevent using movq from converting a zero (like NULL) into Register
never@739 1301 // by giving the compiler two choices it can't resolve
never@739 1302
never@739 1303 void movq(Address dst, void* dummy);
never@739 1304 void movq(Register dst, void* dummy);
never@739 1305 #endif
never@739 1306
never@739 1307 // Move Quadword
never@739 1308 void movq(Address dst, XMMRegister src);
never@739 1309 void movq(XMMRegister dst, Address src);
never@739 1310
never@739 1311 void movsbl(Register dst, Address src);
never@739 1312 void movsbl(Register dst, Register src);
never@739 1313
never@739 1314 #ifdef _LP64
twisti@1059 1315 void movsbq(Register dst, Address src);
twisti@1059 1316 void movsbq(Register dst, Register src);
twisti@1059 1317
never@739 1318 // Move signed 32bit immediate to 64bit extending sign
phh@2423 1319 void movslq(Address dst, int32_t imm64);
never@739 1320 void movslq(Register dst, int32_t imm64);
never@739 1321
never@739 1322 void movslq(Register dst, Address src);
never@739 1323 void movslq(Register dst, Register src);
never@739 1324 void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
never@739 1325 #endif
never@739 1326
never@739 1327 void movswl(Register dst, Address src);
never@739 1328 void movswl(Register dst, Register src);
never@739 1329
twisti@1059 1330 #ifdef _LP64
twisti@1059 1331 void movswq(Register dst, Address src);
twisti@1059 1332 void movswq(Register dst, Register src);
twisti@1059 1333 #endif
twisti@1059 1334
never@739 1335 void movw(Address dst, int imm16);
never@739 1336 void movw(Register dst, Address src);
never@739 1337 void movw(Address dst, Register src);
never@739 1338
never@739 1339 void movzbl(Register dst, Address src);
never@739 1340 void movzbl(Register dst, Register src);
never@739 1341
twisti@1059 1342 #ifdef _LP64
twisti@1059 1343 void movzbq(Register dst, Address src);
twisti@1059 1344 void movzbq(Register dst, Register src);
twisti@1059 1345 #endif
twisti@1059 1346
never@739 1347 void movzwl(Register dst, Address src);
never@739 1348 void movzwl(Register dst, Register src);
never@739 1349
twisti@1059 1350 #ifdef _LP64
twisti@1059 1351 void movzwq(Register dst, Address src);
twisti@1059 1352 void movzwq(Register dst, Register src);
twisti@1059 1353 #endif
twisti@1059 1354
never@739 1355 void mull(Address src);
never@739 1356 void mull(Register src);
never@739 1357
never@739 1358 // Multiply Scalar Double-Precision Floating-Point Values
never@739 1359 void mulsd(XMMRegister dst, Address src);
never@739 1360 void mulsd(XMMRegister dst, XMMRegister src);
never@739 1361
never@739 1362 // Multiply Scalar Single-Precision Floating-Point Values
never@739 1363 void mulss(XMMRegister dst, Address src);
never@739 1364 void mulss(XMMRegister dst, XMMRegister src);
never@739 1365
never@739 1366 void negl(Register dst);
never@739 1367
never@739 1368 #ifdef _LP64
never@739 1369 void negq(Register dst);
never@739 1370 #endif
never@739 1371
never@739 1372 void nop(int i = 1);
never@739 1373
never@739 1374 void notl(Register dst);
never@739 1375
never@739 1376 #ifdef _LP64
never@739 1377 void notq(Register dst);
never@739 1378 #endif
never@739 1379
never@739 1380 void orl(Address dst, int32_t imm32);
never@739 1381 void orl(Register dst, int32_t imm32);
never@739 1382 void orl(Register dst, Address src);
never@739 1383 void orl(Register dst, Register src);
never@739 1384
never@739 1385 void orq(Address dst, int32_t imm32);
never@739 1386 void orq(Register dst, int32_t imm32);
never@739 1387 void orq(Register dst, Address src);
never@739 1388 void orq(Register dst, Register src);
never@739 1389
kvn@3388 1390 // Pack with unsigned saturation
kvn@3388 1391 void packuswb(XMMRegister dst, XMMRegister src);
kvn@3388 1392 void packuswb(XMMRegister dst, Address src);
kvn@3388 1393
cfang@1116 1394 // SSE4.2 string instructions
cfang@1116 1395 void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
cfang@1116 1396 void pcmpestri(XMMRegister xmm1, Address src, int imm8);
cfang@1116 1397
kvn@3388 1398 // SSE4.1 packed move
kvn@3388 1399 void pmovzxbw(XMMRegister dst, XMMRegister src);
kvn@3388 1400 void pmovzxbw(XMMRegister dst, Address src);
kvn@3388 1401
roland@1495 1402 #ifndef _LP64 // no 32bit push/pop on amd64
never@739 1403 void popl(Address dst);
roland@1495 1404 #endif
never@739 1405
never@739 1406 #ifdef _LP64
never@739 1407 void popq(Address dst);
never@739 1408 #endif
never@739 1409
twisti@1078 1410 void popcntl(Register dst, Address src);
twisti@1078 1411 void popcntl(Register dst, Register src);
twisti@1078 1412
twisti@1078 1413 #ifdef _LP64
twisti@1078 1414 void popcntq(Register dst, Address src);
twisti@1078 1415 void popcntq(Register dst, Register src);
twisti@1078 1416 #endif
twisti@1078 1417
never@739 1418 // Prefetches (SSE, SSE2, 3DNOW only)
never@739 1419
never@739 1420 void prefetchnta(Address src);
never@739 1421 void prefetchr(Address src);
never@739 1422 void prefetcht0(Address src);
never@739 1423 void prefetcht1(Address src);
never@739 1424 void prefetcht2(Address src);
never@739 1425 void prefetchw(Address src);
never@739 1426
never@739 1427 // Shuffle Packed Doublewords
never@739 1428 void pshufd(XMMRegister dst, XMMRegister src, int mode);
never@739 1429 void pshufd(XMMRegister dst, Address src, int mode);
never@739 1430
never@739 1431 // Shuffle Packed Low Words
never@739 1432 void pshuflw(XMMRegister dst, XMMRegister src, int mode);
never@739 1433 void pshuflw(XMMRegister dst, Address src, int mode);
never@739 1434
kvn@2602 1435 // Shift Right by bytes Logical DoubleQuadword Immediate
kvn@2602 1436 void psrldq(XMMRegister dst, int shift);
kvn@2602 1437
cfang@1116 1438 // Logical Compare Double Quadword
cfang@1116 1439 void ptest(XMMRegister dst, XMMRegister src);
cfang@1116 1440 void ptest(XMMRegister dst, Address src);
cfang@1116 1441
never@739 1442 // Interleave Low Bytes
never@739 1443 void punpcklbw(XMMRegister dst, XMMRegister src);
kvn@3388 1444 void punpcklbw(XMMRegister dst, Address src);
kvn@3388 1445
kvn@3388 1446 // Interleave Low Doublewords
kvn@3388 1447 void punpckldq(XMMRegister dst, XMMRegister src);
kvn@3388 1448 void punpckldq(XMMRegister dst, Address src);
never@739 1449
kvn@3929 1450 // Interleave Low Quadwords
kvn@3929 1451 void punpcklqdq(XMMRegister dst, XMMRegister src);
kvn@3929 1452
roland@1495 1453 #ifndef _LP64 // no 32bit push/pop on amd64
never@739 1454 void pushl(Address src);
roland@1495 1455 #endif
never@739 1456
never@739 1457 void pushq(Address src);
never@739 1458
never@739 1459 void rcll(Register dst, int imm8);
never@739 1460
never@739 1461 void rclq(Register dst, int imm8);
never@739 1462
never@739 1463 void ret(int imm16);
duke@435 1464
duke@435 1465 void sahf();
duke@435 1466
never@739 1467 void sarl(Register dst, int imm8);
never@739 1468 void sarl(Register dst);
never@739 1469
never@739 1470 void sarq(Register dst, int imm8);
never@739 1471 void sarq(Register dst);
never@739 1472
never@739 1473 void sbbl(Address dst, int32_t imm32);
never@739 1474 void sbbl(Register dst, int32_t imm32);
never@739 1475 void sbbl(Register dst, Address src);
never@739 1476 void sbbl(Register dst, Register src);
never@739 1477
never@739 1478 void sbbq(Address dst, int32_t imm32);
never@739 1479 void sbbq(Register dst, int32_t imm32);
never@739 1480 void sbbq(Register dst, Address src);
never@739 1481 void sbbq(Register dst, Register src);
never@739 1482
never@739 1483 void setb(Condition cc, Register dst);
never@739 1484
never@739 1485 void shldl(Register dst, Register src);
never@739 1486
never@739 1487 void shll(Register dst, int imm8);
never@739 1488 void shll(Register dst);
never@739 1489
never@739 1490 void shlq(Register dst, int imm8);
never@739 1491 void shlq(Register dst);
never@739 1492
never@739 1493 void shrdl(Register dst, Register src);
never@739 1494
never@739 1495 void shrl(Register dst, int imm8);
never@739 1496 void shrl(Register dst);
never@739 1497
never@739 1498 void shrq(Register dst, int imm8);
never@739 1499 void shrq(Register dst);
never@739 1500
never@739 1501 void smovl(); // QQQ generic?
never@739 1502
never@739 1503 // Compute Square Root of Scalar Double-Precision Floating-Point Value
never@739 1504 void sqrtsd(XMMRegister dst, Address src);
never@739 1505 void sqrtsd(XMMRegister dst, XMMRegister src);
never@739 1506
twisti@2350 1507 // Compute Square Root of Scalar Single-Precision Floating-Point Value
twisti@2350 1508 void sqrtss(XMMRegister dst, Address src);
twisti@2350 1509 void sqrtss(XMMRegister dst, XMMRegister src);
twisti@2350 1510
never@739 1511 void std() { emit_byte(0xfd); }
never@739 1512
never@739 1513 void stmxcsr( Address dst );
never@739 1514
never@739 1515 void subl(Address dst, int32_t imm32);
never@739 1516 void subl(Address dst, Register src);
never@739 1517 void subl(Register dst, int32_t imm32);
never@739 1518 void subl(Register dst, Address src);
never@739 1519 void subl(Register dst, Register src);
never@739 1520
never@739 1521 void subq(Address dst, int32_t imm32);
never@739 1522 void subq(Address dst, Register src);
never@739 1523 void subq(Register dst, int32_t imm32);
never@739 1524 void subq(Register dst, Address src);
never@739 1525 void subq(Register dst, Register src);
never@739 1526
kvn@3574 1527 // Force generation of a 4 byte immediate value even if it fits into 8bit
kvn@3574 1528 void subl_imm32(Register dst, int32_t imm32);
kvn@3574 1529 void subq_imm32(Register dst, int32_t imm32);
never@739 1530
never@739 1531 // Subtract Scalar Double-Precision Floating-Point Values
never@739 1532 void subsd(XMMRegister dst, Address src);
never@739 1533 void subsd(XMMRegister dst, XMMRegister src);
never@739 1534
never@739 1535 // Subtract Scalar Single-Precision Floating-Point Values
never@739 1536 void subss(XMMRegister dst, Address src);
duke@435 1537 void subss(XMMRegister dst, XMMRegister src);
never@739 1538
never@739 1539 void testb(Register dst, int imm8);
never@739 1540
never@739 1541 void testl(Register dst, int32_t imm32);
never@739 1542 void testl(Register dst, Register src);
never@739 1543 void testl(Register dst, Address src);
never@739 1544
never@739 1545 void testq(Register dst, int32_t imm32);
never@739 1546 void testq(Register dst, Register src);
never@739 1547
never@739 1548
never@739 1549 // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 1550 void ucomisd(XMMRegister dst, Address src);
never@739 1551 void ucomisd(XMMRegister dst, XMMRegister src);
never@739 1552
never@739 1553 // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 1554 void ucomiss(XMMRegister dst, Address src);
duke@435 1555 void ucomiss(XMMRegister dst, XMMRegister src);
never@739 1556
never@739 1557 void xaddl(Address dst, Register src);
never@739 1558
never@739 1559 void xaddq(Address dst, Register src);
never@739 1560
never@739 1561 void xchgl(Register reg, Address adr);
never@739 1562 void xchgl(Register dst, Register src);
never@739 1563
never@739 1564 void xchgq(Register reg, Address adr);
never@739 1565 void xchgq(Register dst, Register src);
never@739 1566
kvn@3388 1567 // Get Value of Extended Control Register
kvn@3388 1568 void xgetbv() {
kvn@3388 1569 emit_byte(0x0F);
kvn@3388 1570 emit_byte(0x01);
kvn@3388 1571 emit_byte(0xD0);
kvn@3388 1572 }
kvn@3388 1573
never@739 1574 void xorl(Register dst, int32_t imm32);
never@739 1575 void xorl(Register dst, Address src);
never@739 1576 void xorl(Register dst, Register src);
never@739 1577
never@739 1578 void xorq(Register dst, Address src);
never@739 1579 void xorq(Register dst, Register src);
never@739 1580
kvn@3388 1581 void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
kvn@3388 1582
kvn@3929 1583 // AVX 3-operands scalar instructions (encoded with VEX prefix)
kvn@4001 1584
kvn@3390 1585 void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1586 void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1587 void vaddss(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1588 void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1589 void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1590 void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1591 void vdivss(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1592 void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1593 void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1594 void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1595 void vmulss(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1596 void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1597 void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1598 void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1599 void vsubss(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1600 void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3929 1601
kvn@4001 1602
kvn@4001 1603 //====================VECTOR ARITHMETIC=====================================
kvn@4001 1604
kvn@4001 1605 // Add Packed Floating-Point Values
kvn@4001 1606 void addpd(XMMRegister dst, XMMRegister src);
kvn@4001 1607 void addps(XMMRegister dst, XMMRegister src);
kvn@4001 1608 void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1609 void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1610 void vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1611 void vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1612
kvn@4001 1613 // Subtract Packed Floating-Point Values
kvn@4001 1614 void subpd(XMMRegister dst, XMMRegister src);
kvn@4001 1615 void subps(XMMRegister dst, XMMRegister src);
kvn@4001 1616 void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1617 void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1618 void vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1619 void vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1620
kvn@4001 1621 // Multiply Packed Floating-Point Values
kvn@4001 1622 void mulpd(XMMRegister dst, XMMRegister src);
kvn@4001 1623 void mulps(XMMRegister dst, XMMRegister src);
kvn@4001 1624 void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1625 void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1626 void vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1627 void vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1628
kvn@4001 1629 // Divide Packed Floating-Point Values
kvn@4001 1630 void divpd(XMMRegister dst, XMMRegister src);
kvn@4001 1631 void divps(XMMRegister dst, XMMRegister src);
kvn@4001 1632 void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1633 void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1634 void vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1635 void vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1636
kvn@4001 1637 // Bitwise Logical AND of Packed Floating-Point Values
kvn@4001 1638 void andpd(XMMRegister dst, XMMRegister src);
kvn@4001 1639 void andps(XMMRegister dst, XMMRegister src);
kvn@4001 1640 void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1641 void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1642 void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1643 void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1644
kvn@4001 1645 // Bitwise Logical XOR of Packed Floating-Point Values
kvn@4001 1646 void xorpd(XMMRegister dst, XMMRegister src);
kvn@4001 1647 void xorps(XMMRegister dst, XMMRegister src);
kvn@3882 1648 void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@3882 1649 void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1650 void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1651 void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1652
kvn@4001 1653 // Add packed integers
kvn@4001 1654 void paddb(XMMRegister dst, XMMRegister src);
kvn@4001 1655 void paddw(XMMRegister dst, XMMRegister src);
kvn@4001 1656 void paddd(XMMRegister dst, XMMRegister src);
kvn@4001 1657 void paddq(XMMRegister dst, XMMRegister src);
kvn@4001 1658 void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1659 void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1660 void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1661 void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1662 void vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1663 void vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1664 void vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1665 void vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1666
kvn@4001 1667 // Sub packed integers
kvn@4001 1668 void psubb(XMMRegister dst, XMMRegister src);
kvn@4001 1669 void psubw(XMMRegister dst, XMMRegister src);
kvn@4001 1670 void psubd(XMMRegister dst, XMMRegister src);
kvn@4001 1671 void psubq(XMMRegister dst, XMMRegister src);
kvn@4001 1672 void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1673 void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1674 void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1675 void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1676 void vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1677 void vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1678 void vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1679 void vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1680
kvn@4001 1681 // Multiply packed integers (only shorts and ints)
kvn@4001 1682 void pmullw(XMMRegister dst, XMMRegister src);
kvn@4001 1683 void pmulld(XMMRegister dst, XMMRegister src);
kvn@4001 1684 void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1685 void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1686 void vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1687 void vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1688
kvn@4001 1689 // Shift left packed integers
kvn@4001 1690 void psllw(XMMRegister dst, int shift);
kvn@4001 1691 void pslld(XMMRegister dst, int shift);
kvn@4001 1692 void psllq(XMMRegister dst, int shift);
kvn@4001 1693 void psllw(XMMRegister dst, XMMRegister shift);
kvn@4001 1694 void pslld(XMMRegister dst, XMMRegister shift);
kvn@4001 1695 void psllq(XMMRegister dst, XMMRegister shift);
kvn@4001 1696 void vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
kvn@4001 1697 void vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
kvn@4001 1698 void vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
kvn@4001 1699 void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
kvn@4001 1700 void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
kvn@4001 1701 void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
kvn@4001 1702
kvn@4001 1703 // Logical shift right packed integers
kvn@4001 1704 void psrlw(XMMRegister dst, int shift);
kvn@4001 1705 void psrld(XMMRegister dst, int shift);
kvn@4001 1706 void psrlq(XMMRegister dst, int shift);
kvn@4001 1707 void psrlw(XMMRegister dst, XMMRegister shift);
kvn@4001 1708 void psrld(XMMRegister dst, XMMRegister shift);
kvn@4001 1709 void psrlq(XMMRegister dst, XMMRegister shift);
kvn@4001 1710 void vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
kvn@4001 1711 void vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
kvn@4001 1712 void vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
kvn@4001 1713 void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
kvn@4001 1714 void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
kvn@4001 1715 void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
kvn@4001 1716
kvn@4001 1717 // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
kvn@4001 1718 void psraw(XMMRegister dst, int shift);
kvn@4001 1719 void psrad(XMMRegister dst, int shift);
kvn@4001 1720 void psraw(XMMRegister dst, XMMRegister shift);
kvn@4001 1721 void psrad(XMMRegister dst, XMMRegister shift);
kvn@4001 1722 void vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
kvn@4001 1723 void vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256);
kvn@4001 1724 void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
kvn@4001 1725 void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
kvn@4001 1726
kvn@4001 1727 // And packed integers
kvn@4001 1728 void pand(XMMRegister dst, XMMRegister src);
kvn@4001 1729 void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1730 void vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1731
kvn@4001 1732 // Or packed integers
kvn@4001 1733 void por(XMMRegister dst, XMMRegister src);
kvn@4001 1734 void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1735 void vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1736
kvn@4001 1737 // Xor packed integers
kvn@4001 1738 void pxor(XMMRegister dst, XMMRegister src);
kvn@3929 1739 void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
kvn@4001 1740 void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
kvn@4001 1741
kvn@4001 1742 // Copy low 128bit into high 128bit of YMM registers.
kvn@3882 1743 void vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3929 1744 void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3882 1745
kvn@3882 1746 // AVX instruction which is used to clear upper 128 bits of YMM registers and
kvn@3882 1747 // to avoid transaction penalty between AVX and SSE states. There is no
kvn@3882 1748 // penalty if legacy SSE instructions are encoded using VEX prefix because
kvn@3882 1749 // they always clear upper 128 bits. It should be used before calling
kvn@3882 1750 // runtime code and native libraries.
kvn@3882 1751 void vzeroupper();
kvn@3390 1752
kvn@3388 1753 protected:
kvn@3388 1754 // Next instructions require address alignment 16 bytes SSE mode.
kvn@3388 1755 // They should be called only from corresponding MacroAssembler instructions.
kvn@3388 1756 void andpd(XMMRegister dst, Address src);
kvn@3388 1757 void andps(XMMRegister dst, Address src);
never@739 1758 void xorpd(XMMRegister dst, Address src);
never@739 1759 void xorps(XMMRegister dst, Address src);
kvn@3388 1760
duke@435 1761 };
duke@435 1762
duke@435 1763
duke@435 1764 // MacroAssembler extends Assembler by frequently used macros.
duke@435 1765 //
duke@435 1766 // Instructions for which a 'better' code sequence exists depending
duke@435 1767 // on arguments should also go in here.
duke@435 1768
duke@435 1769 class MacroAssembler: public Assembler {
ysr@777 1770 friend class LIR_Assembler;
ysr@777 1771 friend class Runtime1; // as_Address()
johnc@2781 1772
duke@435 1773 protected:
duke@435 1774
duke@435 1775 Address as_Address(AddressLiteral adr);
duke@435 1776 Address as_Address(ArrayAddress adr);
duke@435 1777
duke@435 1778 // Support for VM calls
duke@435 1779 //
duke@435 1780 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
duke@435 1781 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1782 // additional registers when doing a VM call).
duke@435 1783 #ifdef CC_INTERP
duke@435 1784 // c++ interpreter never wants to use interp_masm version of call_VM
duke@435 1785 #define VIRTUAL
duke@435 1786 #else
duke@435 1787 #define VIRTUAL virtual
duke@435 1788 #endif
duke@435 1789
duke@435 1790 VIRTUAL void call_VM_leaf_base(
duke@435 1791 address entry_point, // the entry point
duke@435 1792 int number_of_arguments // the number of arguments to pop after the call
duke@435 1793 );
duke@435 1794
duke@435 1795 // This is the base routine called by the different versions of call_VM. The interpreter
duke@435 1796 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1797 // additional registers when doing a VM call).
duke@435 1798 //
duke@435 1799 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
duke@435 1800 // returns the register which contains the thread upon return. If a thread register has been
duke@435 1801 // specified, the return value will correspond to that register. If no last_java_sp is specified
duke@435 1802 // (noreg) than rsp will be used instead.
duke@435 1803 VIRTUAL void call_VM_base( // returns the register containing the thread upon return
duke@435 1804 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
duke@435 1805 Register java_thread, // the thread if computed before ; use noreg otherwise
duke@435 1806 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
duke@435 1807 address entry_point, // the entry point
duke@435 1808 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
duke@435 1809 bool check_exceptions // whether to check for pending exceptions after return
duke@435 1810 );
duke@435 1811
duke@435 1812 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
duke@435 1813 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1814 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
duke@435 1815 virtual void check_and_handle_popframe(Register java_thread);
duke@435 1816 virtual void check_and_handle_earlyret(Register java_thread);
duke@435 1817
duke@435 1818 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
duke@435 1819
duke@435 1820 // helpers for FPU flag access
duke@435 1821 // tmp is a temporary register, if none is available use noreg
duke@435 1822 void save_rax (Register tmp);
duke@435 1823 void restore_rax(Register tmp);
duke@435 1824
duke@435 1825 public:
duke@435 1826 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1827
duke@435 1828 // Support for NULL-checks
duke@435 1829 //
duke@435 1830 // Generates code that causes a NULL OS exception if the content of reg is NULL.
duke@435 1831 // If the accessed location is M[reg + offset] and the offset is known, provide the
duke@435 1832 // offset. No explicit code generation is needed if the offset is within a certain
duke@435 1833 // range (0 <= offset <= page_size).
duke@435 1834
duke@435 1835 void null_check(Register reg, int offset = -1);
kvn@603 1836 static bool needs_explicit_null_check(intptr_t offset);
duke@435 1837
duke@435 1838 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1839 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1840 void pd_patch_instruction(address branch, address target);
duke@435 1841 #ifndef PRODUCT
duke@435 1842 static void pd_print_patched_instruction(address branch);
duke@435 1843 #endif
duke@435 1844
duke@435 1845 // The following 4 methods return the offset of the appropriate move instruction
duke@435 1846
jrose@1057 1847 // Support for fast byte/short loading with zero extension (depending on particular CPU)
duke@435 1848 int load_unsigned_byte(Register dst, Address src);
jrose@1057 1849 int load_unsigned_short(Register dst, Address src);
jrose@1057 1850
jrose@1057 1851 // Support for fast byte/short loading with sign extension (depending on particular CPU)
duke@435 1852 int load_signed_byte(Register dst, Address src);
jrose@1057 1853 int load_signed_short(Register dst, Address src);
duke@435 1854
duke@435 1855 // Support for sign-extension (hi:lo = extend_sign(lo))
duke@435 1856 void extend_sign(Register hi, Register lo);
duke@435 1857
twisti@2565 1858 // Load and store values by size and signed-ness
twisti@2565 1859 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
twisti@2565 1860 void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
jrose@1057 1861
duke@435 1862 // Support for inc/dec with optimal instruction selection depending on value
never@739 1863
never@739 1864 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
never@739 1865 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
never@739 1866
never@739 1867 void decrementl(Address dst, int value = 1);
never@739 1868 void decrementl(Register reg, int value = 1);
never@739 1869
never@739 1870 void decrementq(Register reg, int value = 1);
never@739 1871 void decrementq(Address dst, int value = 1);
never@739 1872
never@739 1873 void incrementl(Address dst, int value = 1);
never@739 1874 void incrementl(Register reg, int value = 1);
never@739 1875
never@739 1876 void incrementq(Register reg, int value = 1);
never@739 1877 void incrementq(Address dst, int value = 1);
never@739 1878
duke@435 1879
duke@435 1880 // Support optimal SSE move instructions.
duke@435 1881 void movflt(XMMRegister dst, XMMRegister src) {
duke@435 1882 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
duke@435 1883 else { movss (dst, src); return; }
duke@435 1884 }
duke@435 1885 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
duke@435 1886 void movflt(XMMRegister dst, AddressLiteral src);
duke@435 1887 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
duke@435 1888
duke@435 1889 void movdbl(XMMRegister dst, XMMRegister src) {
duke@435 1890 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
duke@435 1891 else { movsd (dst, src); return; }
duke@435 1892 }
duke@435 1893
duke@435 1894 void movdbl(XMMRegister dst, AddressLiteral src);
duke@435 1895
duke@435 1896 void movdbl(XMMRegister dst, Address src) {
duke@435 1897 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
duke@435 1898 else { movlpd(dst, src); return; }
duke@435 1899 }
duke@435 1900 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
duke@435 1901
never@739 1902 void incrementl(AddressLiteral dst);
never@739 1903 void incrementl(ArrayAddress dst);
duke@435 1904
duke@435 1905 // Alignment
duke@435 1906 void align(int modulus);
duke@435 1907
kvn@3574 1908 // A 5 byte nop that is safe for patching (see patch_verified_entry)
kvn@3574 1909 void fat_nop();
duke@435 1910
duke@435 1911 // Stack frame creation/removal
duke@435 1912 void enter();
duke@435 1913 void leave();
duke@435 1914
duke@435 1915 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
duke@435 1916 // The pointer will be loaded into the thread register.
duke@435 1917 void get_thread(Register thread);
duke@435 1918
apetrusenko@797 1919
duke@435 1920 // Support for VM calls
duke@435 1921 //
duke@435 1922 // It is imperative that all calls into the VM are handled via the call_VM macros.
duke@435 1923 // They make sure that the stack linkage is setup correctly. call_VM's correspond
duke@435 1924 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
duke@435 1925
never@739 1926
never@739 1927 void call_VM(Register oop_result,
never@739 1928 address entry_point,
never@739 1929 bool check_exceptions = true);
never@739 1930 void call_VM(Register oop_result,
never@739 1931 address entry_point,
never@739 1932 Register arg_1,
never@739 1933 bool check_exceptions = true);
never@739 1934 void call_VM(Register oop_result,
never@739 1935 address entry_point,
never@739 1936 Register arg_1, Register arg_2,
never@739 1937 bool check_exceptions = true);
never@739 1938 void call_VM(Register oop_result,
never@739 1939 address entry_point,
never@739 1940 Register arg_1, Register arg_2, Register arg_3,
never@739 1941 bool check_exceptions = true);
never@739 1942
never@739 1943 // Overloadings with last_Java_sp
never@739 1944 void call_VM(Register oop_result,
never@739 1945 Register last_java_sp,
never@739 1946 address entry_point,
never@739 1947 int number_of_arguments = 0,
never@739 1948 bool check_exceptions = true);
never@739 1949 void call_VM(Register oop_result,
never@739 1950 Register last_java_sp,
never@739 1951 address entry_point,
never@739 1952 Register arg_1, bool
never@739 1953 check_exceptions = true);
never@739 1954 void call_VM(Register oop_result,
never@739 1955 Register last_java_sp,
never@739 1956 address entry_point,
never@739 1957 Register arg_1, Register arg_2,
never@739 1958 bool check_exceptions = true);
never@739 1959 void call_VM(Register oop_result,
never@739 1960 Register last_java_sp,
never@739 1961 address entry_point,
never@739 1962 Register arg_1, Register arg_2, Register arg_3,
never@739 1963 bool check_exceptions = true);
never@739 1964
coleenp@4037 1965 void get_vm_result (Register oop_result, Register thread);
coleenp@4037 1966 void get_vm_result_2(Register metadata_result, Register thread);
coleenp@4037 1967
jrose@2952 1968 // These always tightly bind to MacroAssembler::call_VM_base
jrose@2952 1969 // bypassing the virtual implementation
jrose@2952 1970 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
jrose@2952 1971 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
jrose@2952 1972 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
jrose@2952 1973 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
jrose@2952 1974 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
jrose@2952 1975
never@739 1976 void call_VM_leaf(address entry_point,
never@739 1977 int number_of_arguments = 0);
never@739 1978 void call_VM_leaf(address entry_point,
never@739 1979 Register arg_1);
never@739 1980 void call_VM_leaf(address entry_point,
never@739 1981 Register arg_1, Register arg_2);
never@739 1982 void call_VM_leaf(address entry_point,
never@739 1983 Register arg_1, Register arg_2, Register arg_3);
duke@435 1984
never@2868 1985 // These always tightly bind to MacroAssembler::call_VM_leaf_base
never@2868 1986 // bypassing the virtual implementation
never@2868 1987 void super_call_VM_leaf(address entry_point);
never@2868 1988 void super_call_VM_leaf(address entry_point, Register arg_1);
never@2868 1989 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
never@2868 1990 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
never@2868 1991 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
never@2868 1992
duke@435 1993 // last Java Frame (fills frame anchor)
never@739 1994 void set_last_Java_frame(Register thread,
never@739 1995 Register last_java_sp,
never@739 1996 Register last_java_fp,
never@739 1997 address last_java_pc);
never@739 1998
never@739 1999 // thread in the default location (r15_thread on 64bit)
never@739 2000 void set_last_Java_frame(Register last_java_sp,
never@739 2001 Register last_java_fp,
never@739 2002 address last_java_pc);
never@739 2003
duke@435 2004 void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
duke@435 2005
never@739 2006 // thread in the default location (r15_thread on 64bit)
never@739 2007 void reset_last_Java_frame(bool clear_fp, bool clear_pc);
never@739 2008
duke@435 2009 // Stores
duke@435 2010 void store_check(Register obj); // store check for obj - register is destroyed afterwards
duke@435 2011 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
duke@435 2012
johnc@2781 2013 #ifndef SERIALGC
johnc@2781 2014
apetrusenko@797 2015 void g1_write_barrier_pre(Register obj,
johnc@2781 2016 Register pre_val,
apetrusenko@797 2017 Register thread,
apetrusenko@797 2018 Register tmp,
johnc@2781 2019 bool tosca_live,
johnc@2781 2020 bool expand_call);
johnc@2781 2021
apetrusenko@797 2022 void g1_write_barrier_post(Register store_addr,
apetrusenko@797 2023 Register new_val,
apetrusenko@797 2024 Register thread,
apetrusenko@797 2025 Register tmp,
apetrusenko@797 2026 Register tmp2);
ysr@777 2027
johnc@2781 2028 #endif // SERIALGC
ysr@777 2029
duke@435 2030 // split store_check(Register obj) to enhance instruction interleaving
duke@435 2031 void store_check_part_1(Register obj);
duke@435 2032 void store_check_part_2(Register obj);
duke@435 2033
duke@435 2034 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
duke@435 2035 void c2bool(Register x);
duke@435 2036
duke@435 2037 // C++ bool manipulation
duke@435 2038
duke@435 2039 void movbool(Register dst, Address src);
duke@435 2040 void movbool(Address dst, bool boolconst);
duke@435 2041 void movbool(Address dst, Register src);
duke@435 2042 void testbool(Register dst);
duke@435 2043
never@739 2044 // oop manipulations
never@739 2045 void load_klass(Register dst, Register src);
never@739 2046 void store_klass(Register dst, Register src);
never@739 2047
twisti@2201 2048 void load_heap_oop(Register dst, Address src);
iveresov@2746 2049 void load_heap_oop_not_null(Register dst, Address src);
twisti@2201 2050 void store_heap_oop(Address dst, Register src);
twisti@3969 2051 void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
twisti@2201 2052
twisti@2201 2053 // Used for storing NULL. All other oop constants should be
twisti@2201 2054 // stored using routines that take a jobject.
twisti@2201 2055 void store_heap_oop_null(Address dst);
twisti@2201 2056
never@739 2057 void load_prototype_header(Register dst, Register src);
never@739 2058
never@739 2059 #ifdef _LP64
never@739 2060 void store_klass_gap(Register dst, Register src);
never@739 2061
johnc@1482 2062 // This dummy is to prevent a call to store_heap_oop from
johnc@1482 2063 // converting a zero (like NULL) into a Register by giving
johnc@1482 2064 // the compiler two choices it can't resolve
johnc@1482 2065
johnc@1482 2066 void store_heap_oop(Address dst, void* dummy);
johnc@1482 2067
never@739 2068 void encode_heap_oop(Register r);
never@739 2069 void decode_heap_oop(Register r);
never@739 2070 void encode_heap_oop_not_null(Register r);
never@739 2071 void decode_heap_oop_not_null(Register r);
never@739 2072 void encode_heap_oop_not_null(Register dst, Register src);
never@739 2073 void decode_heap_oop_not_null(Register dst, Register src);
never@739 2074
never@739 2075 void set_narrow_oop(Register dst, jobject obj);
kvn@1077 2076 void set_narrow_oop(Address dst, jobject obj);
kvn@1077 2077 void cmp_narrow_oop(Register dst, jobject obj);
kvn@1077 2078 void cmp_narrow_oop(Address dst, jobject obj);
never@739 2079
never@739 2080 // if heap base register is used - reinit it with the correct value
never@739 2081 void reinit_heapbase();
kvn@2039 2082
kvn@2039 2083 DEBUG_ONLY(void verify_heapbase(const char* msg);)
kvn@2039 2084
never@739 2085 #endif // _LP64
never@739 2086
never@739 2087 // Int division/remainder for Java
duke@435 2088 // (as idivl, but checks for special case as described in JVM spec.)
duke@435 2089 // returns idivl instruction offset for implicit exception handling
duke@435 2090 int corrected_idivl(Register reg);
duke@435 2091
never@739 2092 // Long division/remainder for Java
never@739 2093 // (as idivq, but checks for special case as described in JVM spec.)
never@739 2094 // returns idivq instruction offset for implicit exception handling
never@739 2095 int corrected_idivq(Register reg);
never@739 2096
duke@435 2097 void int3();
duke@435 2098
never@739 2099 // Long operation macros for a 32bit cpu
duke@435 2100 // Long negation for Java
duke@435 2101 void lneg(Register hi, Register lo);
duke@435 2102
duke@435 2103 // Long multiplication for Java
never@739 2104 // (destroys contents of eax, ebx, ecx and edx)
duke@435 2105 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
duke@435 2106
duke@435 2107 // Long shifts for Java
duke@435 2108 // (semantics as described in JVM spec.)
duke@435 2109 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
duke@435 2110 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
duke@435 2111
duke@435 2112 // Long compare for Java
duke@435 2113 // (semantics as described in JVM spec.)
duke@435 2114 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
duke@435 2115
never@739 2116
never@739 2117 // misc
never@739 2118
never@739 2119 // Sign extension
never@739 2120 void sign_extend_short(Register reg);
never@739 2121 void sign_extend_byte(Register reg);
never@739 2122
never@739 2123 // Division by power of 2, rounding towards 0
never@739 2124 void division_with_shift(Register reg, int shift_value);
never@739 2125
duke@435 2126 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
duke@435 2127 //
duke@435 2128 // CF (corresponds to C0) if x < y
duke@435 2129 // PF (corresponds to C2) if unordered
duke@435 2130 // ZF (corresponds to C3) if x = y
duke@435 2131 //
duke@435 2132 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 2133 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
duke@435 2134 void fcmp(Register tmp);
duke@435 2135 // Variant of the above which allows y to be further down the stack
duke@435 2136 // and which only pops x and y if specified. If pop_right is
duke@435 2137 // specified then pop_left must also be specified.
duke@435 2138 void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
duke@435 2139
duke@435 2140 // Floating-point comparison for Java
duke@435 2141 // Compares the top-most stack entries on the FPU stack and stores the result in dst.
duke@435 2142 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 2143 // (semantics as described in JVM spec.)
duke@435 2144 void fcmp2int(Register dst, bool unordered_is_less);
duke@435 2145 // Variant of the above which allows y to be further down the stack
duke@435 2146 // and which only pops x and y if specified. If pop_right is
duke@435 2147 // specified then pop_left must also be specified.
duke@435 2148 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
duke@435 2149
duke@435 2150 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
duke@435 2151 // tmp is a temporary register, if none is available use noreg
duke@435 2152 void fremr(Register tmp);
duke@435 2153
duke@435 2154
duke@435 2155 // same as fcmp2int, but using SSE2
duke@435 2156 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 2157 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 2158
duke@435 2159 // Inlined sin/cos generator for Java; must not use CPU instruction
duke@435 2160 // directly on Intel as it does not have high enough precision
duke@435 2161 // outside of the range [-pi/4, pi/4]. Extra argument indicate the
duke@435 2162 // number of FPU stack slots in use; all but the topmost will
duke@435 2163 // require saving if a slow case is necessary. Assumes argument is
duke@435 2164 // on FP TOS; result is on FP TOS. No cpu registers are changed by
duke@435 2165 // this code.
duke@435 2166 void trigfunc(char trig, int num_fpu_regs_in_use = 1);
duke@435 2167
duke@435 2168 // branch to L if FPU flag C2 is set/not set
duke@435 2169 // tmp is a temporary register, if none is available use noreg
duke@435 2170 void jC2 (Register tmp, Label& L);
duke@435 2171 void jnC2(Register tmp, Label& L);
duke@435 2172
duke@435 2173 // Pop ST (ffree & fincstp combined)
duke@435 2174 void fpop();
duke@435 2175
duke@435 2176 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 2177 void push_fTOS();
duke@435 2178
duke@435 2179 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 2180 void pop_fTOS();
duke@435 2181
duke@435 2182 void empty_FPU_stack();
duke@435 2183
duke@435 2184 void push_IU_state();
duke@435 2185 void pop_IU_state();
duke@435 2186
duke@435 2187 void push_FPU_state();
duke@435 2188 void pop_FPU_state();
duke@435 2189
duke@435 2190 void push_CPU_state();
duke@435 2191 void pop_CPU_state();
duke@435 2192
duke@435 2193 // Round up to a power of two
duke@435 2194 void round_to(Register reg, int modulus);
duke@435 2195
duke@435 2196 // Callee saved registers handling
duke@435 2197 void push_callee_saved_registers();
duke@435 2198 void pop_callee_saved_registers();
duke@435 2199
duke@435 2200 // allocation
duke@435 2201 void eden_allocate(
duke@435 2202 Register obj, // result: pointer to object after successful allocation
duke@435 2203 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 2204 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 2205 Register t1, // temp register
duke@435 2206 Label& slow_case // continuation point if fast allocation fails
duke@435 2207 );
duke@435 2208 void tlab_allocate(
duke@435 2209 Register obj, // result: pointer to object after successful allocation
duke@435 2210 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 2211 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 2212 Register t1, // temp register
duke@435 2213 Register t2, // temp register
duke@435 2214 Label& slow_case // continuation point if fast allocation fails
duke@435 2215 );
phh@2423 2216 Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
phh@2423 2217 void incr_allocated_bytes(Register thread,
phh@2423 2218 Register var_size_in_bytes, int con_size_in_bytes,
phh@2423 2219 Register t1 = noreg);
duke@435 2220
jrose@1058 2221 // interface method calling
jrose@1058 2222 void lookup_interface_method(Register recv_klass,
jrose@1058 2223 Register intf_klass,
jrose@1100 2224 RegisterOrConstant itable_index,
jrose@1058 2225 Register method_result,
jrose@1058 2226 Register scan_temp,
jrose@1058 2227 Label& no_such_interface);
jrose@1058 2228
twisti@3969 2229 // virtual method calling
twisti@3969 2230 void lookup_virtual_method(Register recv_klass,
twisti@3969 2231 RegisterOrConstant vtable_index,
twisti@3969 2232 Register method_result);
twisti@3969 2233
jrose@1079 2234 // Test sub_klass against super_klass, with fast and slow paths.
jrose@1079 2235
jrose@1079 2236 // The fast path produces a tri-state answer: yes / no / maybe-slow.
jrose@1079 2237 // One of the three labels can be NULL, meaning take the fall-through.
jrose@1079 2238 // If super_check_offset is -1, the value is loaded up from super_klass.
jrose@1079 2239 // No registers are killed, except temp_reg.
jrose@1079 2240 void check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 2241 Register super_klass,
jrose@1079 2242 Register temp_reg,
jrose@1079 2243 Label* L_success,
jrose@1079 2244 Label* L_failure,
jrose@1079 2245 Label* L_slow_path,
jrose@1100 2246 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
jrose@1079 2247
jrose@1079 2248 // The rest of the type check; must be wired to a corresponding fast path.
jrose@1079 2249 // It does not repeat the fast path logic, so don't use it standalone.
jrose@1079 2250 // The temp_reg and temp2_reg can be noreg, if no temps are available.
jrose@1079 2251 // Updates the sub's secondary super cache as necessary.
jrose@1079 2252 // If set_cond_codes, condition codes will be Z on success, NZ on failure.
jrose@1079 2253 void check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 2254 Register super_klass,
jrose@1079 2255 Register temp_reg,
jrose@1079 2256 Register temp2_reg,
jrose@1079 2257 Label* L_success,
jrose@1079 2258 Label* L_failure,
jrose@1079 2259 bool set_cond_codes = false);
jrose@1079 2260
jrose@1079 2261 // Simplified, combined version, good for typical uses.
jrose@1079 2262 // Falls through on failure.
jrose@1079 2263 void check_klass_subtype(Register sub_klass,
jrose@1079 2264 Register super_klass,
jrose@1079 2265 Register temp_reg,
jrose@1079 2266 Label& L_success);
jrose@1079 2267
jrose@1145 2268 // method handles (JSR 292)
jrose@1145 2269 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
jrose@1145 2270
duke@435 2271 //----
duke@435 2272 void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
duke@435 2273
duke@435 2274 // Debugging
never@739 2275
never@739 2276 // only if +VerifyOops
never@739 2277 void verify_oop(Register reg, const char* s = "broken oop");
duke@435 2278 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
duke@435 2279
never@739 2280 // only if +VerifyFPU
never@739 2281 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
never@739 2282
never@739 2283 // prints msg, dumps registers and stops execution
never@739 2284 void stop(const char* msg);
never@739 2285
never@739 2286 // prints msg and continues
never@739 2287 void warn(const char* msg);
never@739 2288
twisti@3969 2289 // dumps registers and other state
twisti@3969 2290 void print_state();
twisti@3969 2291
never@739 2292 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
never@739 2293 static void debug64(char* msg, int64_t pc, int64_t regs[]);
twisti@3969 2294 static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
twisti@3969 2295 static void print_state64(int64_t pc, int64_t regs[]);
never@739 2296
duke@435 2297 void os_breakpoint();
never@739 2298
duke@435 2299 void untested() { stop("untested"); }
never@739 2300
twisti@2201 2301 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
never@739 2302
duke@435 2303 void should_not_reach_here() { stop("should not reach here"); }
never@739 2304
duke@435 2305 void print_CPU_state();
duke@435 2306
duke@435 2307 // Stack overflow checking
duke@435 2308 void bang_stack_with_offset(int offset) {
duke@435 2309 // stack grows down, caller passes positive offset
duke@435 2310 assert(offset > 0, "must bang with negative offset");
duke@435 2311 movl(Address(rsp, (-offset)), rax);
duke@435 2312 }
duke@435 2313
duke@435 2314 // Writes to stack successive pages until offset reached to check for
duke@435 2315 // stack overflow + shadow pages. Also, clobbers tmp
duke@435 2316 void bang_stack_size(Register size, Register tmp);
duke@435 2317
jrose@1100 2318 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 2319 Register tmp,
jrose@1100 2320 int offset);
jrose@1057 2321
duke@435 2322 // Support for serializing memory accesses between threads
duke@435 2323 void serialize_memory(Register thread, Register tmp);
duke@435 2324
duke@435 2325 void verify_tlab();
duke@435 2326
duke@435 2327 // Biased locking support
duke@435 2328 // lock_reg and obj_reg must be loaded up with the appropriate values.
duke@435 2329 // swap_reg must be rax, and is killed.
duke@435 2330 // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
duke@435 2331 // be killed; if not supplied, push/pop will be used internally to
duke@435 2332 // allocate a temporary (inefficient, avoid if possible).
duke@435 2333 // Optional slow case is for implementations (interpreter and C1) which branch to
duke@435 2334 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
duke@435 2335 // Returns offset of first potentially-faulting instruction for null
duke@435 2336 // check info (currently consumed only by C1). If
duke@435 2337 // swap_reg_contains_mark is true then returns -1 as it is assumed
duke@435 2338 // the calling code has already passed any potential faults.
kvn@855 2339 int biased_locking_enter(Register lock_reg, Register obj_reg,
kvn@855 2340 Register swap_reg, Register tmp_reg,
duke@435 2341 bool swap_reg_contains_mark,
duke@435 2342 Label& done, Label* slow_case = NULL,
duke@435 2343 BiasedLockingCounters* counters = NULL);
duke@435 2344 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
duke@435 2345
duke@435 2346
duke@435 2347 Condition negate_condition(Condition cond);
duke@435 2348
duke@435 2349 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
duke@435 2350 // operands. In general the names are modified to avoid hiding the instruction in Assembler
duke@435 2351 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
duke@435 2352 // here in MacroAssembler. The major exception to this rule is call
duke@435 2353
duke@435 2354 // Arithmetics
duke@435 2355
never@739 2356
never@739 2357 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
never@739 2358 void addptr(Address dst, Register src);
never@739 2359
never@739 2360 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
never@739 2361 void addptr(Register dst, int32_t src);
never@739 2362 void addptr(Register dst, Register src);
never@2895 2363 void addptr(Register dst, RegisterOrConstant src) {
never@2895 2364 if (src.is_constant()) addptr(dst, (int) src.as_constant());
never@2895 2365 else addptr(dst, src.as_register());
never@2895 2366 }
never@739 2367
never@739 2368 void andptr(Register dst, int32_t src);
never@739 2369 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
never@739 2370
never@739 2371 void cmp8(AddressLiteral src1, int imm);
never@739 2372
never@739 2373 // renamed to drag out the casting of address to int32_t/intptr_t
duke@435 2374 void cmp32(Register src1, int32_t imm);
duke@435 2375
duke@435 2376 void cmp32(AddressLiteral src1, int32_t imm);
duke@435 2377 // compare reg - mem, or reg - &mem
duke@435 2378 void cmp32(Register src1, AddressLiteral src2);
duke@435 2379
duke@435 2380 void cmp32(Register src1, Address src2);
duke@435 2381
never@739 2382 #ifndef _LP64
coleenp@4037 2383 void cmpklass(Address dst, Metadata* obj);
coleenp@4037 2384 void cmpklass(Register dst, Metadata* obj);
never@739 2385 void cmpoop(Address dst, jobject obj);
never@739 2386 void cmpoop(Register dst, jobject obj);
never@739 2387 #endif // _LP64
never@739 2388
duke@435 2389 // NOTE src2 must be the lval. This is NOT an mem-mem compare
duke@435 2390 void cmpptr(Address src1, AddressLiteral src2);
duke@435 2391
duke@435 2392 void cmpptr(Register src1, AddressLiteral src2);
duke@435 2393
never@739 2394 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2395 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2396 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2397
never@739 2398 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2399 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2400
never@739 2401 // cmp64 to avoild hiding cmpq
never@739 2402 void cmp64(Register src1, AddressLiteral src);
never@739 2403
never@739 2404 void cmpxchgptr(Register reg, Address adr);
never@739 2405
never@739 2406 void locked_cmpxchgptr(Register reg, AddressLiteral adr);
never@739 2407
never@739 2408
never@739 2409 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
never@739 2410
never@739 2411
never@739 2412 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
never@739 2413
never@739 2414 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
never@739 2415
never@739 2416 void shlptr(Register dst, int32_t shift);
never@739 2417 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
never@739 2418
never@739 2419 void shrptr(Register dst, int32_t shift);
never@739 2420 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
never@739 2421
never@739 2422 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
never@739 2423 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
never@739 2424
never@739 2425 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 2426
never@739 2427 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 2428 void subptr(Register dst, int32_t src);
kvn@3574 2429 // Force generation of a 4 byte immediate value even if it fits into 8bit
kvn@3574 2430 void subptr_imm32(Register dst, int32_t src);
never@739 2431 void subptr(Register dst, Register src);
never@2895 2432 void subptr(Register dst, RegisterOrConstant src) {
never@2895 2433 if (src.is_constant()) subptr(dst, (int) src.as_constant());
never@2895 2434 else subptr(dst, src.as_register());
never@2895 2435 }
never@739 2436
never@739 2437 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 2438 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 2439
never@739 2440 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 2441 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 2442
never@739 2443 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
never@739 2444
never@739 2445
duke@435 2446
duke@435 2447 // Helper functions for statistics gathering.
duke@435 2448 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
duke@435 2449 void cond_inc32(Condition cond, AddressLiteral counter_addr);
duke@435 2450 // Unconditional atomic increment.
duke@435 2451 void atomic_incl(AddressLiteral counter_addr);
duke@435 2452
duke@435 2453 void lea(Register dst, AddressLiteral adr);
duke@435 2454 void lea(Address dst, AddressLiteral adr);
never@739 2455 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
never@739 2456
never@739 2457 void leal32(Register dst, Address src) { leal(dst, src); }
never@739 2458
iveresov@2686 2459 // Import other testl() methods from the parent class or else
iveresov@2686 2460 // they will be hidden by the following overriding declaration.
iveresov@2686 2461 using Assembler::testl;
iveresov@2686 2462 void testl(Register dst, AddressLiteral src);
never@739 2463
never@739 2464 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2465 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2466 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2467
never@739 2468 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
never@739 2469 void testptr(Register src1, Register src2);
never@739 2470
never@739 2471 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
never@739 2472 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
duke@435 2473
duke@435 2474 // Calls
duke@435 2475
duke@435 2476 void call(Label& L, relocInfo::relocType rtype);
duke@435 2477 void call(Register entry);
duke@435 2478
duke@435 2479 // NOTE: this call tranfers to the effective address of entry NOT
duke@435 2480 // the address contained by entry. This is because this is more natural
duke@435 2481 // for jumps/calls.
duke@435 2482 void call(AddressLiteral entry);
duke@435 2483
coleenp@4037 2484 // Emit the CompiledIC call idiom
coleenp@4037 2485 void ic_call(address entry);
coleenp@4037 2486
duke@435 2487 // Jumps
duke@435 2488
duke@435 2489 // NOTE: these jumps tranfer to the effective address of dst NOT
duke@435 2490 // the address contained by dst. This is because this is more natural
duke@435 2491 // for jumps/calls.
duke@435 2492 void jump(AddressLiteral dst);
duke@435 2493 void jump_cc(Condition cc, AddressLiteral dst);
duke@435 2494
duke@435 2495 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 2496 // to be installed in the Address class. This jump will tranfers to the address
duke@435 2497 // contained in the location described by entry (not the address of entry)
duke@435 2498 void jump(ArrayAddress entry);
duke@435 2499
duke@435 2500 // Floating
duke@435 2501
duke@435 2502 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
duke@435 2503 void andpd(XMMRegister dst, AddressLiteral src);
duke@435 2504
kvn@3388 2505 void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
kvn@3388 2506 void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
kvn@3388 2507 void andps(XMMRegister dst, AddressLiteral src);
kvn@3388 2508
kvn@3388 2509 void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
duke@435 2510 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
duke@435 2511 void comiss(XMMRegister dst, AddressLiteral src);
duke@435 2512
kvn@3388 2513 void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
duke@435 2514 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
duke@435 2515 void comisd(XMMRegister dst, AddressLiteral src);
duke@435 2516
twisti@2350 2517 void fadd_s(Address src) { Assembler::fadd_s(src); }
twisti@2350 2518 void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
twisti@2350 2519
duke@435 2520 void fldcw(Address src) { Assembler::fldcw(src); }
duke@435 2521 void fldcw(AddressLiteral src);
duke@435 2522
duke@435 2523 void fld_s(int index) { Assembler::fld_s(index); }
duke@435 2524 void fld_s(Address src) { Assembler::fld_s(src); }
duke@435 2525 void fld_s(AddressLiteral src);
duke@435 2526
duke@435 2527 void fld_d(Address src) { Assembler::fld_d(src); }
duke@435 2528 void fld_d(AddressLiteral src);
duke@435 2529
duke@435 2530 void fld_x(Address src) { Assembler::fld_x(src); }
duke@435 2531 void fld_x(AddressLiteral src);
duke@435 2532
twisti@2350 2533 void fmul_s(Address src) { Assembler::fmul_s(src); }
twisti@2350 2534 void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
twisti@2350 2535
duke@435 2536 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
duke@435 2537 void ldmxcsr(AddressLiteral src);
duke@435 2538
roland@3787 2539 // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
roland@3787 2540 // all corner cases and may result in NaN and require fallback to a
roland@3787 2541 // runtime call.
roland@3787 2542 void fast_pow();
roland@3787 2543 void fast_exp();
roland@3844 2544 void increase_precision();
roland@3844 2545 void restore_precision();
roland@3787 2546
roland@3787 2547 // computes exp(x). Fallback to runtime call included.
roland@3787 2548 void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
roland@3787 2549 // computes pow(x,y). Fallback to runtime call included.
roland@3787 2550 void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
roland@3787 2551
never@739 2552 private:
roland@3787 2553
roland@3787 2554 // call runtime as a fallback for trig functions and pow/exp.
roland@3787 2555 void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
roland@3787 2556
roland@3787 2557 // computes 2^(Ylog2X); Ylog2X in ST(0)
roland@3787 2558 void pow_exp_core_encoding();
roland@3787 2559
roland@3787 2560 // computes pow(x,y) or exp(x). Fallback to runtime call included.
roland@3787 2561 void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
roland@3787 2562
never@739 2563 // these are private because users should be doing movflt/movdbl
never@739 2564
duke@435 2565 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2566 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2567 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
duke@435 2568 void movss(XMMRegister dst, AddressLiteral src);
duke@435 2569
kvn@3388 2570 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
never@739 2571 void movlpd(XMMRegister dst, AddressLiteral src);
never@739 2572
never@739 2573 public:
never@739 2574
twisti@2350 2575 void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); }
twisti@2350 2576 void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); }
kvn@3388 2577 void addsd(XMMRegister dst, AddressLiteral src);
twisti@2350 2578
twisti@2350 2579 void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); }
twisti@2350 2580 void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); }
kvn@3388 2581 void addss(XMMRegister dst, AddressLiteral src);
twisti@2350 2582
twisti@2350 2583 void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); }
twisti@2350 2584 void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); }
kvn@3388 2585 void divsd(XMMRegister dst, AddressLiteral src);
twisti@2350 2586
twisti@2350 2587 void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); }
twisti@2350 2588 void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); }
kvn@3388 2589 void divss(XMMRegister dst, AddressLiteral src);
twisti@2350 2590
phh@2423 2591 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
phh@2423 2592 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
phh@2423 2593 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
kvn@3388 2594 void movsd(XMMRegister dst, AddressLiteral src);
twisti@2350 2595
twisti@2350 2596 void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); }
twisti@2350 2597 void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); }
kvn@3388 2598 void mulsd(XMMRegister dst, AddressLiteral src);
twisti@2350 2599
twisti@2350 2600 void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); }
twisti@2350 2601 void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); }
kvn@3388 2602 void mulss(XMMRegister dst, AddressLiteral src);
twisti@2350 2603
twisti@2350 2604 void sqrtsd(XMMRegister dst, XMMRegister src) { Assembler::sqrtsd(dst, src); }
twisti@2350 2605 void sqrtsd(XMMRegister dst, Address src) { Assembler::sqrtsd(dst, src); }
kvn@3388 2606 void sqrtsd(XMMRegister dst, AddressLiteral src);
twisti@2350 2607
twisti@2350 2608 void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); }
twisti@2350 2609 void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); }
kvn@3388 2610 void sqrtss(XMMRegister dst, AddressLiteral src);
twisti@2350 2611
twisti@2350 2612 void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); }
twisti@2350 2613 void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); }
kvn@3388 2614 void subsd(XMMRegister dst, AddressLiteral src);
twisti@2350 2615
twisti@2350 2616 void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); }
twisti@2350 2617 void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); }
kvn@3388 2618 void subss(XMMRegister dst, AddressLiteral src);
duke@435 2619
duke@435 2620 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
kvn@3388 2621 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
duke@435 2622 void ucomiss(XMMRegister dst, AddressLiteral src);
duke@435 2623
duke@435 2624 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
kvn@3388 2625 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
duke@435 2626 void ucomisd(XMMRegister dst, AddressLiteral src);
duke@435 2627
duke@435 2628 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
duke@435 2629 void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
duke@435 2630 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
duke@435 2631 void xorpd(XMMRegister dst, AddressLiteral src);
duke@435 2632
duke@435 2633 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
duke@435 2634 void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
duke@435 2635 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
duke@435 2636 void xorps(XMMRegister dst, AddressLiteral src);
duke@435 2637
kvn@3390 2638 // AVX 3-operands instructions
kvn@3390 2639
kvn@3390 2640 void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
kvn@3390 2641 void vaddsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddsd(dst, nds, src); }
kvn@3390 2642 void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2643
kvn@3390 2644 void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
kvn@3390 2645 void vaddss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddss(dst, nds, src); }
kvn@3390 2646 void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2647
kvn@4001 2648 void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
kvn@4001 2649 void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
kvn@4001 2650 void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
kvn@4001 2651
kvn@4001 2652 void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
kvn@4001 2653 void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
kvn@4001 2654 void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
kvn@3390 2655
kvn@3390 2656 void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
kvn@3390 2657 void vdivsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivsd(dst, nds, src); }
kvn@3390 2658 void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2659
kvn@3390 2660 void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
kvn@3390 2661 void vdivss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivss(dst, nds, src); }
kvn@3390 2662 void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2663
kvn@3390 2664 void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
kvn@3390 2665 void vmulsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulsd(dst, nds, src); }
kvn@3390 2666 void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2667
kvn@3390 2668 void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
kvn@3390 2669 void vmulss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulss(dst, nds, src); }
kvn@3390 2670 void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2671
kvn@3390 2672 void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
kvn@3390 2673 void vsubsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubsd(dst, nds, src); }
kvn@3390 2674 void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2675
kvn@3390 2676 void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
kvn@3390 2677 void vsubss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubss(dst, nds, src); }
kvn@3390 2678 void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2679
kvn@3882 2680 // AVX Vector instructions
kvn@3882 2681
kvn@3882 2682 void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
kvn@4001 2683 void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
kvn@4001 2684 void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
kvn@3390 2685
kvn@3882 2686 void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
kvn@4001 2687 void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
kvn@4001 2688 void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
kvn@3390 2689
kvn@3929 2690 void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
kvn@3929 2691 if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
kvn@3929 2692 Assembler::vpxor(dst, nds, src, vector256);
kvn@3929 2693 else
kvn@3929 2694 Assembler::vxorpd(dst, nds, src, vector256);
kvn@3929 2695 }
kvn@4001 2696 void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
kvn@4001 2697 if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
kvn@4001 2698 Assembler::vpxor(dst, nds, src, vector256);
kvn@4001 2699 else
kvn@4001 2700 Assembler::vxorpd(dst, nds, src, vector256);
kvn@4001 2701 }
kvn@3929 2702
kvn@3929 2703 // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
kvn@3929 2704 void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
kvn@3929 2705 if (UseAVX > 1) // vinserti128h is available only in AVX2
kvn@3929 2706 Assembler::vinserti128h(dst, nds, src);
kvn@3929 2707 else
kvn@3929 2708 Assembler::vinsertf128h(dst, nds, src);
kvn@3929 2709 }
kvn@3390 2710
duke@435 2711 // Data
duke@435 2712
twisti@2697 2713 void cmov32( Condition cc, Register dst, Address src);
twisti@2697 2714 void cmov32( Condition cc, Register dst, Register src);
twisti@2697 2715
twisti@2697 2716 void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
twisti@2697 2717
twisti@2697 2718 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
twisti@2697 2719 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
never@739 2720
duke@435 2721 void movoop(Register dst, jobject obj);
duke@435 2722 void movoop(Address dst, jobject obj);
duke@435 2723
coleenp@4037 2724 void mov_metadata(Register dst, Metadata* obj);
coleenp@4037 2725 void mov_metadata(Address dst, Metadata* obj);
coleenp@4037 2726
duke@435 2727 void movptr(ArrayAddress dst, Register src);
duke@435 2728 // can this do an lea?
duke@435 2729 void movptr(Register dst, ArrayAddress src);
duke@435 2730
never@739 2731 void movptr(Register dst, Address src);
never@739 2732
duke@435 2733 void movptr(Register dst, AddressLiteral src);
duke@435 2734
never@739 2735 void movptr(Register dst, intptr_t src);
never@739 2736 void movptr(Register dst, Register src);
never@739 2737 void movptr(Address dst, intptr_t src);
never@739 2738
never@739 2739 void movptr(Address dst, Register src);
never@739 2740
never@2895 2741 void movptr(Register dst, RegisterOrConstant src) {
never@2895 2742 if (src.is_constant()) movptr(dst, src.as_constant());
never@2895 2743 else movptr(dst, src.as_register());
never@2895 2744 }
never@2895 2745
never@739 2746 #ifdef _LP64
never@739 2747 // Generally the next two are only used for moving NULL
never@739 2748 // Although there are situations in initializing the mark word where
never@739 2749 // they could be used. They are dangerous.
never@739 2750
never@739 2751 // They only exist on LP64 so that int32_t and intptr_t are not the same
never@739 2752 // and we have ambiguous declarations.
never@739 2753
never@739 2754 void movptr(Address dst, int32_t imm32);
never@739 2755 void movptr(Register dst, int32_t imm32);
never@739 2756 #endif // _LP64
never@739 2757
duke@435 2758 // to avoid hiding movl
duke@435 2759 void mov32(AddressLiteral dst, Register src);
duke@435 2760 void mov32(Register dst, AddressLiteral src);
never@739 2761
duke@435 2762 // to avoid hiding movb
duke@435 2763 void movbyte(ArrayAddress dst, int src);
duke@435 2764
kvn@3929 2765 // Import other mov() methods from the parent class or else
kvn@3929 2766 // they will be hidden by the following overriding declaration.
kvn@3929 2767 using Assembler::movdl;
kvn@3929 2768 using Assembler::movq;
kvn@3929 2769 void movdl(XMMRegister dst, AddressLiteral src);
kvn@3929 2770 void movq(XMMRegister dst, AddressLiteral src);
kvn@3929 2771
duke@435 2772 // Can push value or effective address
duke@435 2773 void pushptr(AddressLiteral src);
duke@435 2774
never@739 2775 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
never@739 2776 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
never@739 2777
never@739 2778 void pushoop(jobject obj);
coleenp@4037 2779 void pushklass(Metadata* obj);
never@739 2780
never@739 2781 // sign extend as need a l to ptr sized element
never@739 2782 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
never@739 2783 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
never@739 2784
kvn@3574 2785 // C2 compiled method's prolog code.
kvn@3574 2786 void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
kvn@3574 2787
kvn@1421 2788 // IndexOf strings.
kvn@2602 2789 // Small strings are loaded through stack if they cross page boundary.
kvn@1421 2790 void string_indexof(Register str1, Register str2,
kvn@2602 2791 Register cnt1, Register cnt2,
kvn@2602 2792 int int_cnt2, Register result,
kvn@1421 2793 XMMRegister vec, Register tmp);
kvn@1421 2794
kvn@2602 2795 // IndexOf for constant substrings with size >= 8 elements
kvn@2602 2796 // which don't need to be loaded through stack.
kvn@2602 2797 void string_indexofC8(Register str1, Register str2,
kvn@2602 2798 Register cnt1, Register cnt2,
kvn@2602 2799 int int_cnt2, Register result,
kvn@2602 2800 XMMRegister vec, Register tmp);
kvn@2602 2801
kvn@2602 2802 // Smallest code: we don't need to load through stack,
kvn@2602 2803 // check string tail.
kvn@2602 2804
kvn@1421 2805 // Compare strings.
kvn@1421 2806 void string_compare(Register str1, Register str2,
kvn@1421 2807 Register cnt1, Register cnt2, Register result,
never@2569 2808 XMMRegister vec1);
kvn@1421 2809
kvn@1421 2810 // Compare char[] arrays.
kvn@1421 2811 void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
kvn@1421 2812 Register limit, Register result, Register chr,
kvn@1421 2813 XMMRegister vec1, XMMRegister vec2);
never@739 2814
never@2118 2815 // Fill primitive arrays
never@2118 2816 void generate_fill(BasicType t, bool aligned,
never@2118 2817 Register to, Register value, Register count,
never@2118 2818 Register rtmp, XMMRegister xtmp);
never@2118 2819
duke@435 2820 #undef VIRTUAL
duke@435 2821
duke@435 2822 };
duke@435 2823
duke@435 2824 /**
duke@435 2825 * class SkipIfEqual:
duke@435 2826 *
duke@435 2827 * Instantiating this class will result in assembly code being output that will
duke@435 2828 * jump around any code emitted between the creation of the instance and it's
duke@435 2829 * automatic destruction at the end of a scope block, depending on the value of
duke@435 2830 * the flag passed to the constructor, which will be checked at run-time.
duke@435 2831 */
duke@435 2832 class SkipIfEqual {
duke@435 2833 private:
duke@435 2834 MacroAssembler* _masm;
duke@435 2835 Label _label;
duke@435 2836
duke@435 2837 public:
duke@435 2838 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
duke@435 2839 ~SkipIfEqual();
duke@435 2840 };
duke@435 2841
duke@435 2842 #ifdef ASSERT
duke@435 2843 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
duke@435 2844 #endif
stefank@2314 2845
stefank@2314 2846 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP

mercurial