src/cpu/x86/vm/assembler_x86.hpp

Fri, 27 Aug 2010 17:33:49 -0700

author
never
date
Fri, 27 Aug 2010 17:33:49 -0700
changeset 2118
d6f45b55c972
parent 2039
66c5dadb4d61
child 2201
d55217dc206f
permissions
-rw-r--r--

4809552: Optimize Arrays.fill(...)
Reviewed-by: kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class BiasedLockingCounters;
duke@435 26
duke@435 27 // Contains all the definitions needed for x86 assembly code generation.
duke@435 28
duke@435 29 // Calling convention
duke@435 30 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 31 public:
duke@435 32 enum {
duke@435 33 #ifdef _LP64
duke@435 34 #ifdef _WIN64
duke@435 35 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 36 n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
duke@435 37 #else
duke@435 38 n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 39 n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
duke@435 40 #endif // _WIN64
duke@435 41 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
duke@435 42 n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
duke@435 43 #else
duke@435 44 n_register_parameters = 0 // 0 registers used to pass arguments
duke@435 45 #endif // _LP64
duke@435 46 };
duke@435 47 };
duke@435 48
duke@435 49
duke@435 50 #ifdef _LP64
duke@435 51 // Symbolically name the register arguments used by the c calling convention.
duke@435 52 // Windows is different from linux/solaris. So much for standards...
duke@435 53
duke@435 54 #ifdef _WIN64
duke@435 55
duke@435 56 REGISTER_DECLARATION(Register, c_rarg0, rcx);
duke@435 57 REGISTER_DECLARATION(Register, c_rarg1, rdx);
duke@435 58 REGISTER_DECLARATION(Register, c_rarg2, r8);
duke@435 59 REGISTER_DECLARATION(Register, c_rarg3, r9);
duke@435 60
never@739 61 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 62 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 63 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 64 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
duke@435 65
duke@435 66 #else
duke@435 67
duke@435 68 REGISTER_DECLARATION(Register, c_rarg0, rdi);
duke@435 69 REGISTER_DECLARATION(Register, c_rarg1, rsi);
duke@435 70 REGISTER_DECLARATION(Register, c_rarg2, rdx);
duke@435 71 REGISTER_DECLARATION(Register, c_rarg3, rcx);
duke@435 72 REGISTER_DECLARATION(Register, c_rarg4, r8);
duke@435 73 REGISTER_DECLARATION(Register, c_rarg5, r9);
duke@435 74
never@739 75 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 76 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 77 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 78 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
never@739 79 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
never@739 80 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
never@739 81 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
never@739 82 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
duke@435 83
duke@435 84 #endif // _WIN64
duke@435 85
duke@435 86 // Symbolically name the register arguments used by the Java calling convention.
duke@435 87 // We have control over the convention for java so we can do what we please.
duke@435 88 // What pleases us is to offset the java calling convention so that when
duke@435 89 // we call a suitable jni method the arguments are lined up and we don't
duke@435 90 // have to do little shuffling. A suitable jni method is non-static and a
duke@435 91 // small number of arguments (two fewer args on windows)
duke@435 92 //
duke@435 93 // |-------------------------------------------------------|
duke@435 94 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
duke@435 95 // |-------------------------------------------------------|
duke@435 96 // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
duke@435 97 // | rdi rsi rdx rcx r8 r9 | solaris/linux
duke@435 98 // |-------------------------------------------------------|
duke@435 99 // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
duke@435 100 // |-------------------------------------------------------|
duke@435 101
duke@435 102 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
duke@435 103 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
duke@435 104 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
duke@435 105 // Windows runs out of register args here
duke@435 106 #ifdef _WIN64
duke@435 107 REGISTER_DECLARATION(Register, j_rarg3, rdi);
duke@435 108 REGISTER_DECLARATION(Register, j_rarg4, rsi);
duke@435 109 #else
duke@435 110 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
duke@435 111 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
duke@435 112 #endif /* _WIN64 */
duke@435 113 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
duke@435 114
never@739 115 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
never@739 116 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
never@739 117 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
never@739 118 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
never@739 119 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
never@739 120 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
never@739 121 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
never@739 122 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
duke@435 123
duke@435 124 REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
duke@435 125 REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
duke@435 126
never@739 127 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
duke@435 128 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
duke@435 129
never@739 130 #else
never@739 131 // rscratch1 will apear in 32bit code that is dead but of course must compile
never@739 132 // Using noreg ensures if the dead code is incorrectly live and executed it
never@739 133 // will cause an assertion failure
never@739 134 #define rscratch1 noreg
never@739 135
duke@435 136 #endif // _LP64
duke@435 137
twisti@1919 138 // JSR 292 fixed register usages:
twisti@1919 139 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
twisti@1919 140
duke@435 141 // Address is an abstraction used to represent a memory location
duke@435 142 // using any of the amd64 addressing modes with one object.
duke@435 143 //
duke@435 144 // Note: A register location is represented via a Register, not
duke@435 145 // via an address for efficiency & simplicity reasons.
duke@435 146
duke@435 147 class ArrayAddress;
duke@435 148
duke@435 149 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 150 public:
duke@435 151 enum ScaleFactor {
duke@435 152 no_scale = -1,
duke@435 153 times_1 = 0,
duke@435 154 times_2 = 1,
duke@435 155 times_4 = 2,
never@739 156 times_8 = 3,
never@739 157 times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
duke@435 158 };
jrose@1057 159 static ScaleFactor times(int size) {
jrose@1057 160 assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
jrose@1057 161 if (size == 8) return times_8;
jrose@1057 162 if (size == 4) return times_4;
jrose@1057 163 if (size == 2) return times_2;
jrose@1057 164 return times_1;
jrose@1057 165 }
jrose@1057 166 static int scale_size(ScaleFactor scale) {
jrose@1057 167 assert(scale != no_scale, "");
jrose@1057 168 assert(((1 << (int)times_1) == 1 &&
jrose@1057 169 (1 << (int)times_2) == 2 &&
jrose@1057 170 (1 << (int)times_4) == 4 &&
jrose@1057 171 (1 << (int)times_8) == 8), "");
jrose@1057 172 return (1 << (int)scale);
jrose@1057 173 }
duke@435 174
duke@435 175 private:
duke@435 176 Register _base;
duke@435 177 Register _index;
duke@435 178 ScaleFactor _scale;
duke@435 179 int _disp;
duke@435 180 RelocationHolder _rspec;
duke@435 181
never@739 182 // Easily misused constructors make them private
never@739 183 // %%% can we make these go away?
never@739 184 NOT_LP64(Address(address loc, RelocationHolder spec);)
never@739 185 Address(int disp, address loc, relocInfo::relocType rtype);
never@739 186 Address(int disp, address loc, RelocationHolder spec);
duke@435 187
duke@435 188 public:
never@739 189
never@739 190 int disp() { return _disp; }
duke@435 191 // creation
duke@435 192 Address()
duke@435 193 : _base(noreg),
duke@435 194 _index(noreg),
duke@435 195 _scale(no_scale),
duke@435 196 _disp(0) {
duke@435 197 }
duke@435 198
duke@435 199 // No default displacement otherwise Register can be implicitly
duke@435 200 // converted to 0(Register) which is quite a different animal.
duke@435 201
duke@435 202 Address(Register base, int disp)
duke@435 203 : _base(base),
duke@435 204 _index(noreg),
duke@435 205 _scale(no_scale),
duke@435 206 _disp(disp) {
duke@435 207 }
duke@435 208
duke@435 209 Address(Register base, Register index, ScaleFactor scale, int disp = 0)
duke@435 210 : _base (base),
duke@435 211 _index(index),
duke@435 212 _scale(scale),
duke@435 213 _disp (disp) {
duke@435 214 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 215 "inconsistent address");
duke@435 216 }
duke@435 217
jrose@1100 218 Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
jrose@1057 219 : _base (base),
jrose@1057 220 _index(index.register_or_noreg()),
jrose@1057 221 _scale(scale),
jrose@1057 222 _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 223 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 224 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 225 "inconsistent address");
jrose@1057 226 }
jrose@1057 227
jrose@1057 228 Address plus_disp(int disp) const {
jrose@1057 229 Address a = (*this);
jrose@1057 230 a._disp += disp;
jrose@1057 231 return a;
jrose@1057 232 }
jrose@1057 233
duke@435 234 // The following two overloads are used in connection with the
duke@435 235 // ByteSize type (see sizes.hpp). They simplify the use of
duke@435 236 // ByteSize'd arguments in assembly code. Note that their equivalent
duke@435 237 // for the optimized build are the member functions with int disp
duke@435 238 // argument since ByteSize is mapped to an int type in that case.
duke@435 239 //
duke@435 240 // Note: DO NOT introduce similar overloaded functions for WordSize
duke@435 241 // arguments as in the optimized mode, both ByteSize and WordSize
duke@435 242 // are mapped to the same type and thus the compiler cannot make a
duke@435 243 // distinction anymore (=> compiler errors).
duke@435 244
duke@435 245 #ifdef ASSERT
duke@435 246 Address(Register base, ByteSize disp)
duke@435 247 : _base(base),
duke@435 248 _index(noreg),
duke@435 249 _scale(no_scale),
duke@435 250 _disp(in_bytes(disp)) {
duke@435 251 }
duke@435 252
duke@435 253 Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
duke@435 254 : _base(base),
duke@435 255 _index(index),
duke@435 256 _scale(scale),
duke@435 257 _disp(in_bytes(disp)) {
duke@435 258 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 259 "inconsistent address");
duke@435 260 }
jrose@1057 261
jrose@1100 262 Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
jrose@1057 263 : _base (base),
jrose@1057 264 _index(index.register_or_noreg()),
jrose@1057 265 _scale(scale),
jrose@1057 266 _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 267 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 268 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 269 "inconsistent address");
jrose@1057 270 }
jrose@1057 271
duke@435 272 #endif // ASSERT
duke@435 273
duke@435 274 // accessors
ysr@777 275 bool uses(Register reg) const { return _base == reg || _index == reg; }
ysr@777 276 Register base() const { return _base; }
ysr@777 277 Register index() const { return _index; }
ysr@777 278 ScaleFactor scale() const { return _scale; }
ysr@777 279 int disp() const { return _disp; }
duke@435 280
duke@435 281 // Convert the raw encoding form into the form expected by the constructor for
duke@435 282 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 283 // that to noreg for the Address constructor.
twisti@1059 284 static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
duke@435 285
duke@435 286 static Address make_array(ArrayAddress);
duke@435 287
duke@435 288 private:
duke@435 289 bool base_needs_rex() const {
duke@435 290 return _base != noreg && _base->encoding() >= 8;
duke@435 291 }
duke@435 292
duke@435 293 bool index_needs_rex() const {
duke@435 294 return _index != noreg &&_index->encoding() >= 8;
duke@435 295 }
duke@435 296
duke@435 297 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 298
duke@435 299 friend class Assembler;
duke@435 300 friend class MacroAssembler;
duke@435 301 friend class LIR_Assembler; // base/index/scale/disp
duke@435 302 };
duke@435 303
duke@435 304 //
duke@435 305 // AddressLiteral has been split out from Address because operands of this type
duke@435 306 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
duke@435 307 // the few instructions that need to deal with address literals are unique and the
duke@435 308 // MacroAssembler does not have to implement every instruction in the Assembler
duke@435 309 // in order to search for address literals that may need special handling depending
duke@435 310 // on the instruction and the platform. As small step on the way to merging i486/amd64
duke@435 311 // directories.
duke@435 312 //
duke@435 313 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
duke@435 314 friend class ArrayAddress;
duke@435 315 RelocationHolder _rspec;
duke@435 316 // Typically we use AddressLiterals we want to use their rval
duke@435 317 // However in some situations we want the lval (effect address) of the item.
duke@435 318 // We provide a special factory for making those lvals.
duke@435 319 bool _is_lval;
duke@435 320
duke@435 321 // If the target is far we'll need to load the ea of this to
duke@435 322 // a register to reach it. Otherwise if near we can do rip
duke@435 323 // relative addressing.
duke@435 324
duke@435 325 address _target;
duke@435 326
duke@435 327 protected:
duke@435 328 // creation
duke@435 329 AddressLiteral()
duke@435 330 : _is_lval(false),
duke@435 331 _target(NULL)
duke@435 332 {}
duke@435 333
duke@435 334 public:
duke@435 335
duke@435 336
duke@435 337 AddressLiteral(address target, relocInfo::relocType rtype);
duke@435 338
duke@435 339 AddressLiteral(address target, RelocationHolder const& rspec)
duke@435 340 : _rspec(rspec),
duke@435 341 _is_lval(false),
duke@435 342 _target(target)
duke@435 343 {}
duke@435 344
duke@435 345 AddressLiteral addr() {
duke@435 346 AddressLiteral ret = *this;
duke@435 347 ret._is_lval = true;
duke@435 348 return ret;
duke@435 349 }
duke@435 350
duke@435 351
duke@435 352 private:
duke@435 353
duke@435 354 address target() { return _target; }
duke@435 355 bool is_lval() { return _is_lval; }
duke@435 356
duke@435 357 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 358 const RelocationHolder& rspec() const { return _rspec; }
duke@435 359
duke@435 360 friend class Assembler;
duke@435 361 friend class MacroAssembler;
duke@435 362 friend class Address;
duke@435 363 friend class LIR_Assembler;
duke@435 364 };
duke@435 365
duke@435 366 // Convience classes
duke@435 367 class RuntimeAddress: public AddressLiteral {
duke@435 368
duke@435 369 public:
duke@435 370
duke@435 371 RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
duke@435 372
duke@435 373 };
duke@435 374
duke@435 375 class OopAddress: public AddressLiteral {
duke@435 376
duke@435 377 public:
duke@435 378
duke@435 379 OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
duke@435 380
duke@435 381 };
duke@435 382
duke@435 383 class ExternalAddress: public AddressLiteral {
duke@435 384
duke@435 385 public:
duke@435 386
duke@435 387 ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
duke@435 388
duke@435 389 };
duke@435 390
duke@435 391 class InternalAddress: public AddressLiteral {
duke@435 392
duke@435 393 public:
duke@435 394
duke@435 395 InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
duke@435 396
duke@435 397 };
duke@435 398
duke@435 399 // x86 can do array addressing as a single operation since disp can be an absolute
duke@435 400 // address amd64 can't. We create a class that expresses the concept but does extra
duke@435 401 // magic on amd64 to get the final result
duke@435 402
duke@435 403 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
duke@435 404 private:
duke@435 405
duke@435 406 AddressLiteral _base;
duke@435 407 Address _index;
duke@435 408
duke@435 409 public:
duke@435 410
duke@435 411 ArrayAddress() {};
duke@435 412 ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
duke@435 413 AddressLiteral base() { return _base; }
duke@435 414 Address index() { return _index; }
duke@435 415
duke@435 416 };
duke@435 417
never@739 418 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
duke@435 419
duke@435 420 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 421 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
duke@435 422 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 423
duke@435 424 class Assembler : public AbstractAssembler {
duke@435 425 friend class AbstractAssembler; // for the non-virtual hack
duke@435 426 friend class LIR_Assembler; // as_Address()
never@739 427 friend class StubGenerator;
duke@435 428
duke@435 429 public:
duke@435 430 enum Condition { // The x86 condition codes used for conditional jumps/moves.
duke@435 431 zero = 0x4,
duke@435 432 notZero = 0x5,
duke@435 433 equal = 0x4,
duke@435 434 notEqual = 0x5,
duke@435 435 less = 0xc,
duke@435 436 lessEqual = 0xe,
duke@435 437 greater = 0xf,
duke@435 438 greaterEqual = 0xd,
duke@435 439 below = 0x2,
duke@435 440 belowEqual = 0x6,
duke@435 441 above = 0x7,
duke@435 442 aboveEqual = 0x3,
duke@435 443 overflow = 0x0,
duke@435 444 noOverflow = 0x1,
duke@435 445 carrySet = 0x2,
duke@435 446 carryClear = 0x3,
duke@435 447 negative = 0x8,
duke@435 448 positive = 0x9,
duke@435 449 parity = 0xa,
duke@435 450 noParity = 0xb
duke@435 451 };
duke@435 452
duke@435 453 enum Prefix {
duke@435 454 // segment overrides
duke@435 455 CS_segment = 0x2e,
duke@435 456 SS_segment = 0x36,
duke@435 457 DS_segment = 0x3e,
duke@435 458 ES_segment = 0x26,
duke@435 459 FS_segment = 0x64,
duke@435 460 GS_segment = 0x65,
duke@435 461
duke@435 462 REX = 0x40,
duke@435 463
duke@435 464 REX_B = 0x41,
duke@435 465 REX_X = 0x42,
duke@435 466 REX_XB = 0x43,
duke@435 467 REX_R = 0x44,
duke@435 468 REX_RB = 0x45,
duke@435 469 REX_RX = 0x46,
duke@435 470 REX_RXB = 0x47,
duke@435 471
duke@435 472 REX_W = 0x48,
duke@435 473
duke@435 474 REX_WB = 0x49,
duke@435 475 REX_WX = 0x4A,
duke@435 476 REX_WXB = 0x4B,
duke@435 477 REX_WR = 0x4C,
duke@435 478 REX_WRB = 0x4D,
duke@435 479 REX_WRX = 0x4E,
duke@435 480 REX_WRXB = 0x4F
duke@435 481 };
duke@435 482
duke@435 483 enum WhichOperand {
duke@435 484 // input to locate_operand, and format code for relocations
never@739 485 imm_operand = 0, // embedded 32-bit|64-bit immediate operand
duke@435 486 disp32_operand = 1, // embedded 32-bit displacement or address
duke@435 487 call32_operand = 2, // embedded 32-bit self-relative displacement
never@739 488 #ifndef _LP64
duke@435 489 _WhichOperand_limit = 3
never@739 490 #else
never@739 491 narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
never@739 492 _WhichOperand_limit = 4
never@739 493 #endif
duke@435 494 };
duke@435 495
never@739 496
never@739 497
never@739 498 // NOTE: The general philopsophy of the declarations here is that 64bit versions
never@739 499 // of instructions are freely declared without the need for wrapping them an ifdef.
never@739 500 // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
never@739 501 // In the .cpp file the implementations are wrapped so that they are dropped out
never@739 502 // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
never@739 503 // to the size it was prior to merging up the 32bit and 64bit assemblers.
never@739 504 //
never@739 505 // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
never@739 506 // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
never@739 507
never@739 508 private:
never@739 509
never@739 510
never@739 511 // 64bit prefixes
never@739 512 int prefix_and_encode(int reg_enc, bool byteinst = false);
never@739 513 int prefixq_and_encode(int reg_enc);
never@739 514
never@739 515 int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
never@739 516 int prefixq_and_encode(int dst_enc, int src_enc);
never@739 517
never@739 518 void prefix(Register reg);
never@739 519 void prefix(Address adr);
never@739 520 void prefixq(Address adr);
never@739 521
never@739 522 void prefix(Address adr, Register reg, bool byteinst = false);
never@739 523 void prefixq(Address adr, Register reg);
never@739 524
never@739 525 void prefix(Address adr, XMMRegister reg);
never@739 526
never@739 527 void prefetch_prefix(Address src);
never@739 528
never@739 529 // Helper functions for groups of instructions
never@739 530 void emit_arith_b(int op1, int op2, Register dst, int imm8);
never@739 531
never@739 532 void emit_arith(int op1, int op2, Register dst, int32_t imm32);
never@739 533 // only 32bit??
never@739 534 void emit_arith(int op1, int op2, Register dst, jobject obj);
never@739 535 void emit_arith(int op1, int op2, Register dst, Register src);
never@739 536
never@739 537 void emit_operand(Register reg,
never@739 538 Register base, Register index, Address::ScaleFactor scale,
never@739 539 int disp,
never@739 540 RelocationHolder const& rspec,
never@739 541 int rip_relative_correction = 0);
never@739 542
never@739 543 void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
never@739 544
never@739 545 // operands that only take the original 32bit registers
never@739 546 void emit_operand32(Register reg, Address adr);
never@739 547
never@739 548 void emit_operand(XMMRegister reg,
never@739 549 Register base, Register index, Address::ScaleFactor scale,
never@739 550 int disp,
never@739 551 RelocationHolder const& rspec);
never@739 552
never@739 553 void emit_operand(XMMRegister reg, Address adr);
never@739 554
never@739 555 void emit_operand(MMXRegister reg, Address adr);
never@739 556
never@739 557 // workaround gcc (3.2.1-7) bug
never@739 558 void emit_operand(Address adr, MMXRegister reg);
never@739 559
never@739 560
never@739 561 // Immediate-to-memory forms
never@739 562 void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
never@739 563
never@739 564 void emit_farith(int b1, int b2, int i);
never@739 565
duke@435 566
duke@435 567 protected:
never@739 568 #ifdef ASSERT
never@739 569 void check_relocation(RelocationHolder const& rspec, int format);
never@739 570 #endif
never@739 571
never@739 572 inline void emit_long64(jlong x);
never@739 573
never@739 574 void emit_data(jint data, relocInfo::relocType rtype, int format);
never@739 575 void emit_data(jint data, RelocationHolder const& rspec, int format);
never@739 576 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
never@739 577 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
never@739 578
never@739 579
never@739 580 bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
never@739 581
never@739 582 // These are all easily abused and hence protected
never@739 583
never@739 584 // 32BIT ONLY SECTION
never@739 585 #ifndef _LP64
never@739 586 // Make these disappear in 64bit mode since they would never be correct
never@739 587 void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 588 void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 589
kvn@1077 590 void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 591 void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 592
never@739 593 void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 594 #else
never@739 595 // 64BIT ONLY SECTION
never@739 596 void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
kvn@1077 597
kvn@1077 598 void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 599 void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 600
kvn@1077 601 void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 602 void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
never@739 603 #endif // _LP64
never@739 604
never@739 605 // These are unique in that we are ensured by the caller that the 32bit
never@739 606 // relative in these instructions will always be able to reach the potentially
never@739 607 // 64bit address described by entry. Since they can take a 64bit address they
never@739 608 // don't have the 32 suffix like the other instructions in this class.
never@739 609
never@739 610 void call_literal(address entry, RelocationHolder const& rspec);
never@739 611 void jmp_literal(address entry, RelocationHolder const& rspec);
never@739 612
never@739 613 // Avoid using directly section
never@739 614 // Instructions in this section are actually usable by anyone without danger
never@739 615 // of failure but have performance issues that are addressed my enhanced
never@739 616 // instructions which will do the proper thing base on the particular cpu.
never@739 617 // We protect them because we don't trust you...
never@739 618
duke@435 619 // Don't use next inc() and dec() methods directly. INC & DEC instructions
duke@435 620 // could cause a partial flag stall since they don't set CF flag.
duke@435 621 // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
duke@435 622 // which call inc() & dec() or add() & sub() in accordance with
duke@435 623 // the product flag UseIncDec value.
duke@435 624
duke@435 625 void decl(Register dst);
duke@435 626 void decl(Address dst);
never@739 627 void decq(Register dst);
never@739 628 void decq(Address dst);
duke@435 629
duke@435 630 void incl(Register dst);
duke@435 631 void incl(Address dst);
never@739 632 void incq(Register dst);
never@739 633 void incq(Address dst);
never@739 634
never@739 635 // New cpus require use of movsd and movss to avoid partial register stall
never@739 636 // when loading from memory. But for old Opteron use movlpd instead of movsd.
never@739 637 // The selection is done in MacroAssembler::movdbl() and movflt().
never@739 638
never@739 639 // Move Scalar Single-Precision Floating-Point Values
never@739 640 void movss(XMMRegister dst, Address src);
never@739 641 void movss(XMMRegister dst, XMMRegister src);
never@739 642 void movss(Address dst, XMMRegister src);
never@739 643
never@739 644 // Move Scalar Double-Precision Floating-Point Values
never@739 645 void movsd(XMMRegister dst, Address src);
never@739 646 void movsd(XMMRegister dst, XMMRegister src);
never@739 647 void movsd(Address dst, XMMRegister src);
never@739 648 void movlpd(XMMRegister dst, Address src);
never@739 649
never@739 650 // New cpus require use of movaps and movapd to avoid partial register stall
never@739 651 // when moving between registers.
never@739 652 void movaps(XMMRegister dst, XMMRegister src);
never@739 653 void movapd(XMMRegister dst, XMMRegister src);
never@739 654
never@739 655 // End avoid using directly
never@739 656
never@739 657
never@739 658 // Instruction prefixes
never@739 659 void prefix(Prefix p);
never@739 660
never@739 661 public:
never@739 662
never@739 663 // Creation
never@739 664 Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
never@739 665
never@739 666 // Decoding
never@739 667 static address locate_operand(address inst, WhichOperand which);
never@739 668 static address locate_next_instruction(address inst);
never@739 669
never@739 670 // Utilities
never@739 671
never@739 672 #ifdef _LP64
never@739 673 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) ) <= x && x < ( CONST64(1) << (nbits-1) ); }
never@739 674 static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
never@739 675 #else
never@739 676 static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) ) <= x && x < ( 1 << (nbits-1) ); }
never@739 677 static bool is_simm32(int32_t x) { return true; }
never@739 678 #endif // LP64
never@739 679
never@739 680 // Generic instructions
never@739 681 // Does 32bit or 64bit as needed for the platform. In some sense these
never@739 682 // belong in macro assembler but there is no need for both varieties to exist
never@739 683
never@739 684 void lea(Register dst, Address src);
never@739 685
never@739 686 void mov(Register dst, Register src);
never@739 687
never@739 688 void pusha();
never@739 689 void popa();
never@739 690
never@739 691 void pushf();
never@739 692 void popf();
never@739 693
never@739 694 void push(int32_t imm32);
never@739 695
never@739 696 void push(Register src);
never@739 697
never@739 698 void pop(Register dst);
never@739 699
never@739 700 // These are dummies to prevent surprise implicit conversions to Register
never@739 701 void push(void* v);
never@739 702 void pop(void* v);
never@739 703
never@739 704
never@739 705 // These do register sized moves/scans
never@739 706 void rep_mov();
never@739 707 void rep_set();
never@739 708 void repne_scan();
never@739 709 #ifdef _LP64
never@739 710 void repne_scanl();
never@739 711 #endif
never@739 712
never@739 713 // Vanilla instructions in lexical order
never@739 714
never@739 715 void adcl(Register dst, int32_t imm32);
never@739 716 void adcl(Register dst, Address src);
never@739 717 void adcl(Register dst, Register src);
never@739 718
never@739 719 void adcq(Register dst, int32_t imm32);
never@739 720 void adcq(Register dst, Address src);
never@739 721 void adcq(Register dst, Register src);
never@739 722
never@739 723
never@739 724 void addl(Address dst, int32_t imm32);
never@739 725 void addl(Address dst, Register src);
never@739 726 void addl(Register dst, int32_t imm32);
never@739 727 void addl(Register dst, Address src);
never@739 728 void addl(Register dst, Register src);
never@739 729
never@739 730 void addq(Address dst, int32_t imm32);
never@739 731 void addq(Address dst, Register src);
never@739 732 void addq(Register dst, int32_t imm32);
never@739 733 void addq(Register dst, Address src);
never@739 734 void addq(Register dst, Register src);
never@739 735
never@739 736
duke@435 737 void addr_nop_4();
duke@435 738 void addr_nop_5();
duke@435 739 void addr_nop_7();
duke@435 740 void addr_nop_8();
duke@435 741
never@739 742 // Add Scalar Double-Precision Floating-Point Values
never@739 743 void addsd(XMMRegister dst, Address src);
never@739 744 void addsd(XMMRegister dst, XMMRegister src);
never@739 745
never@739 746 // Add Scalar Single-Precision Floating-Point Values
never@739 747 void addss(XMMRegister dst, Address src);
never@739 748 void addss(XMMRegister dst, XMMRegister src);
never@739 749
never@739 750 void andl(Register dst, int32_t imm32);
never@739 751 void andl(Register dst, Address src);
never@739 752 void andl(Register dst, Register src);
never@739 753
never@739 754 void andq(Register dst, int32_t imm32);
never@739 755 void andq(Register dst, Address src);
never@739 756 void andq(Register dst, Register src);
never@739 757
never@739 758
never@739 759 // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
never@739 760 void andpd(XMMRegister dst, Address src);
never@739 761 void andpd(XMMRegister dst, XMMRegister src);
never@739 762
twisti@1210 763 void bsfl(Register dst, Register src);
twisti@1210 764 void bsrl(Register dst, Register src);
twisti@1210 765
twisti@1210 766 #ifdef _LP64
twisti@1210 767 void bsfq(Register dst, Register src);
twisti@1210 768 void bsrq(Register dst, Register src);
twisti@1210 769 #endif
twisti@1210 770
never@739 771 void bswapl(Register reg);
never@739 772
never@739 773 void bswapq(Register reg);
never@739 774
duke@435 775 void call(Label& L, relocInfo::relocType rtype);
duke@435 776 void call(Register reg); // push pc; pc <- reg
duke@435 777 void call(Address adr); // push pc; pc <- adr
duke@435 778
never@739 779 void cdql();
never@739 780
never@739 781 void cdqq();
never@739 782
never@739 783 void cld() { emit_byte(0xfc); }
never@739 784
never@739 785 void clflush(Address adr);
never@739 786
never@739 787 void cmovl(Condition cc, Register dst, Register src);
never@739 788 void cmovl(Condition cc, Register dst, Address src);
never@739 789
never@739 790 void cmovq(Condition cc, Register dst, Register src);
never@739 791 void cmovq(Condition cc, Register dst, Address src);
never@739 792
never@739 793
never@739 794 void cmpb(Address dst, int imm8);
never@739 795
never@739 796 void cmpl(Address dst, int32_t imm32);
never@739 797
never@739 798 void cmpl(Register dst, int32_t imm32);
never@739 799 void cmpl(Register dst, Register src);
never@739 800 void cmpl(Register dst, Address src);
never@739 801
never@739 802 void cmpq(Address dst, int32_t imm32);
never@739 803 void cmpq(Address dst, Register src);
never@739 804
never@739 805 void cmpq(Register dst, int32_t imm32);
never@739 806 void cmpq(Register dst, Register src);
never@739 807 void cmpq(Register dst, Address src);
never@739 808
never@739 809 // these are dummies used to catch attempting to convert NULL to Register
never@739 810 void cmpl(Register dst, void* junk); // dummy
never@739 811 void cmpq(Register dst, void* junk); // dummy
never@739 812
never@739 813 void cmpw(Address dst, int imm16);
never@739 814
never@739 815 void cmpxchg8 (Address adr);
never@739 816
never@739 817 void cmpxchgl(Register reg, Address adr);
never@739 818
never@739 819 void cmpxchgq(Register reg, Address adr);
never@739 820
never@739 821 // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 822 void comisd(XMMRegister dst, Address src);
never@739 823
never@739 824 // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 825 void comiss(XMMRegister dst, Address src);
never@739 826
never@739 827 // Identify processor type and features
never@739 828 void cpuid() {
never@739 829 emit_byte(0x0F);
never@739 830 emit_byte(0xA2);
never@739 831 }
never@739 832
never@739 833 // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
never@739 834 void cvtsd2ss(XMMRegister dst, XMMRegister src);
never@739 835
never@739 836 // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
never@739 837 void cvtsi2sdl(XMMRegister dst, Register src);
never@739 838 void cvtsi2sdq(XMMRegister dst, Register src);
never@739 839
never@739 840 // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
never@739 841 void cvtsi2ssl(XMMRegister dst, Register src);
never@739 842 void cvtsi2ssq(XMMRegister dst, Register src);
never@739 843
never@739 844 // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
never@739 845 void cvtdq2pd(XMMRegister dst, XMMRegister src);
never@739 846
never@739 847 // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
never@739 848 void cvtdq2ps(XMMRegister dst, XMMRegister src);
never@739 849
never@739 850 // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
never@739 851 void cvtss2sd(XMMRegister dst, XMMRegister src);
never@739 852
never@739 853 // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
never@739 854 void cvttsd2sil(Register dst, Address src);
never@739 855 void cvttsd2sil(Register dst, XMMRegister src);
never@739 856 void cvttsd2siq(Register dst, XMMRegister src);
never@739 857
never@739 858 // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
never@739 859 void cvttss2sil(Register dst, XMMRegister src);
never@739 860 void cvttss2siq(Register dst, XMMRegister src);
never@739 861
never@739 862 // Divide Scalar Double-Precision Floating-Point Values
never@739 863 void divsd(XMMRegister dst, Address src);
never@739 864 void divsd(XMMRegister dst, XMMRegister src);
never@739 865
never@739 866 // Divide Scalar Single-Precision Floating-Point Values
never@739 867 void divss(XMMRegister dst, Address src);
never@739 868 void divss(XMMRegister dst, XMMRegister src);
never@739 869
never@739 870 void emms();
never@739 871
never@739 872 void fabs();
never@739 873
never@739 874 void fadd(int i);
never@739 875
never@739 876 void fadd_d(Address src);
never@739 877 void fadd_s(Address src);
never@739 878
never@739 879 // "Alternate" versions of x87 instructions place result down in FPU
never@739 880 // stack instead of on TOS
never@739 881
never@739 882 void fadda(int i); // "alternate" fadd
never@739 883 void faddp(int i = 1);
never@739 884
never@739 885 void fchs();
never@739 886
never@739 887 void fcom(int i);
never@739 888
never@739 889 void fcomp(int i = 1);
never@739 890 void fcomp_d(Address src);
never@739 891 void fcomp_s(Address src);
never@739 892
never@739 893 void fcompp();
never@739 894
never@739 895 void fcos();
never@739 896
never@739 897 void fdecstp();
never@739 898
never@739 899 void fdiv(int i);
never@739 900 void fdiv_d(Address src);
never@739 901 void fdivr_s(Address src);
never@739 902 void fdiva(int i); // "alternate" fdiv
never@739 903 void fdivp(int i = 1);
never@739 904
never@739 905 void fdivr(int i);
never@739 906 void fdivr_d(Address src);
never@739 907 void fdiv_s(Address src);
never@739 908
never@739 909 void fdivra(int i); // "alternate" reversed fdiv
never@739 910
never@739 911 void fdivrp(int i = 1);
never@739 912
never@739 913 void ffree(int i = 0);
never@739 914
never@739 915 void fild_d(Address adr);
never@739 916 void fild_s(Address adr);
never@739 917
never@739 918 void fincstp();
never@739 919
never@739 920 void finit();
never@739 921
never@739 922 void fist_s (Address adr);
never@739 923 void fistp_d(Address adr);
never@739 924 void fistp_s(Address adr);
never@739 925
never@739 926 void fld1();
never@739 927
never@739 928 void fld_d(Address adr);
never@739 929 void fld_s(Address adr);
never@739 930 void fld_s(int index);
never@739 931 void fld_x(Address adr); // extended-precision (80-bit) format
never@739 932
never@739 933 void fldcw(Address src);
never@739 934
never@739 935 void fldenv(Address src);
never@739 936
never@739 937 void fldlg2();
never@739 938
never@739 939 void fldln2();
never@739 940
never@739 941 void fldz();
never@739 942
never@739 943 void flog();
never@739 944 void flog10();
never@739 945
never@739 946 void fmul(int i);
never@739 947
never@739 948 void fmul_d(Address src);
never@739 949 void fmul_s(Address src);
never@739 950
never@739 951 void fmula(int i); // "alternate" fmul
never@739 952
never@739 953 void fmulp(int i = 1);
never@739 954
never@739 955 void fnsave(Address dst);
never@739 956
never@739 957 void fnstcw(Address src);
never@739 958
never@739 959 void fnstsw_ax();
never@739 960
never@739 961 void fprem();
never@739 962 void fprem1();
never@739 963
never@739 964 void frstor(Address src);
never@739 965
never@739 966 void fsin();
never@739 967
never@739 968 void fsqrt();
never@739 969
never@739 970 void fst_d(Address adr);
never@739 971 void fst_s(Address adr);
never@739 972
never@739 973 void fstp_d(Address adr);
never@739 974 void fstp_d(int index);
never@739 975 void fstp_s(Address adr);
never@739 976 void fstp_x(Address adr); // extended-precision (80-bit) format
never@739 977
never@739 978 void fsub(int i);
never@739 979 void fsub_d(Address src);
never@739 980 void fsub_s(Address src);
never@739 981
never@739 982 void fsuba(int i); // "alternate" fsub
never@739 983
never@739 984 void fsubp(int i = 1);
never@739 985
never@739 986 void fsubr(int i);
never@739 987 void fsubr_d(Address src);
never@739 988 void fsubr_s(Address src);
never@739 989
never@739 990 void fsubra(int i); // "alternate" reversed fsub
never@739 991
never@739 992 void fsubrp(int i = 1);
never@739 993
never@739 994 void ftan();
never@739 995
never@739 996 void ftst();
never@739 997
never@739 998 void fucomi(int i = 1);
never@739 999 void fucomip(int i = 1);
never@739 1000
never@739 1001 void fwait();
never@739 1002
never@739 1003 void fxch(int i = 1);
never@739 1004
never@739 1005 void fxrstor(Address src);
never@739 1006
never@739 1007 void fxsave(Address dst);
never@739 1008
never@739 1009 void fyl2x();
never@739 1010
never@739 1011 void hlt();
never@739 1012
never@739 1013 void idivl(Register src);
never@739 1014
never@739 1015 void idivq(Register src);
never@739 1016
never@739 1017 void imull(Register dst, Register src);
never@739 1018 void imull(Register dst, Register src, int value);
never@739 1019
never@739 1020 void imulq(Register dst, Register src);
never@739 1021 void imulq(Register dst, Register src, int value);
never@739 1022
duke@435 1023
duke@435 1024 // jcc is the generic conditional branch generator to run-
duke@435 1025 // time routines, jcc is used for branches to labels. jcc
duke@435 1026 // takes a branch opcode (cc) and a label (L) and generates
duke@435 1027 // either a backward branch or a forward branch and links it
duke@435 1028 // to the label fixup chain. Usage:
duke@435 1029 //
duke@435 1030 // Label L; // unbound label
duke@435 1031 // jcc(cc, L); // forward branch to unbound label
duke@435 1032 // bind(L); // bind label to the current pc
duke@435 1033 // jcc(cc, L); // backward branch to bound label
duke@435 1034 // bind(L); // illegal: a label may be bound only once
duke@435 1035 //
duke@435 1036 // Note: The same Label can be used for forward and backward branches
duke@435 1037 // but it may be bound only once.
duke@435 1038
duke@435 1039 void jcc(Condition cc, Label& L,
duke@435 1040 relocInfo::relocType rtype = relocInfo::none);
duke@435 1041
duke@435 1042 // Conditional jump to a 8-bit offset to L.
duke@435 1043 // WARNING: be very careful using this for forward jumps. If the label is
duke@435 1044 // not bound within an 8-bit offset of this instruction, a run-time error
duke@435 1045 // will occur.
duke@435 1046 void jccb(Condition cc, Label& L);
duke@435 1047
never@739 1048 void jmp(Address entry); // pc <- entry
never@739 1049
never@739 1050 // Label operations & relative jumps (PPUM Appendix D)
never@739 1051 void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none); // unconditional jump to L
never@739 1052
never@739 1053 void jmp(Register entry); // pc <- entry
never@739 1054
never@739 1055 // Unconditional 8-bit offset jump to L.
never@739 1056 // WARNING: be very careful using this for forward jumps. If the label is
never@739 1057 // not bound within an 8-bit offset of this instruction, a run-time error
never@739 1058 // will occur.
never@739 1059 void jmpb(Label& L);
never@739 1060
never@739 1061 void ldmxcsr( Address src );
never@739 1062
never@739 1063 void leal(Register dst, Address src);
never@739 1064
never@739 1065 void leaq(Register dst, Address src);
never@739 1066
never@739 1067 void lfence() {
never@739 1068 emit_byte(0x0F);
never@739 1069 emit_byte(0xAE);
never@739 1070 emit_byte(0xE8);
never@739 1071 }
never@739 1072
never@739 1073 void lock();
never@739 1074
twisti@1210 1075 void lzcntl(Register dst, Register src);
twisti@1210 1076
twisti@1210 1077 #ifdef _LP64
twisti@1210 1078 void lzcntq(Register dst, Register src);
twisti@1210 1079 #endif
twisti@1210 1080
never@739 1081 enum Membar_mask_bits {
never@739 1082 StoreStore = 1 << 3,
never@739 1083 LoadStore = 1 << 2,
never@739 1084 StoreLoad = 1 << 1,
never@739 1085 LoadLoad = 1 << 0
never@739 1086 };
never@739 1087
never@1106 1088 // Serializes memory and blows flags
never@739 1089 void membar(Membar_mask_bits order_constraint) {
never@1106 1090 if (os::is_MP()) {
never@1106 1091 // We only have to handle StoreLoad
never@1106 1092 if (order_constraint & StoreLoad) {
never@1106 1093 // All usable chips support "locked" instructions which suffice
never@1106 1094 // as barriers, and are much faster than the alternative of
never@1106 1095 // using cpuid instruction. We use here a locked add [esp],0.
never@1106 1096 // This is conveniently otherwise a no-op except for blowing
never@1106 1097 // flags.
never@1106 1098 // Any change to this code may need to revisit other places in
never@1106 1099 // the code where this idiom is used, in particular the
never@1106 1100 // orderAccess code.
never@1106 1101 lock();
never@1106 1102 addl(Address(rsp, 0), 0);// Assert the lock# signal here
never@1106 1103 }
never@1106 1104 }
never@739 1105 }
never@739 1106
never@739 1107 void mfence();
never@739 1108
never@739 1109 // Moves
never@739 1110
never@739 1111 void mov64(Register dst, int64_t imm64);
never@739 1112
never@739 1113 void movb(Address dst, Register src);
never@739 1114 void movb(Address dst, int imm8);
never@739 1115 void movb(Register dst, Address src);
never@739 1116
never@739 1117 void movdl(XMMRegister dst, Register src);
never@739 1118 void movdl(Register dst, XMMRegister src);
never@739 1119
never@739 1120 // Move Double Quadword
never@739 1121 void movdq(XMMRegister dst, Register src);
never@739 1122 void movdq(Register dst, XMMRegister src);
never@739 1123
never@739 1124 // Move Aligned Double Quadword
never@739 1125 void movdqa(Address dst, XMMRegister src);
never@739 1126 void movdqa(XMMRegister dst, Address src);
never@739 1127 void movdqa(XMMRegister dst, XMMRegister src);
never@739 1128
kvn@840 1129 // Move Unaligned Double Quadword
kvn@840 1130 void movdqu(Address dst, XMMRegister src);
kvn@840 1131 void movdqu(XMMRegister dst, Address src);
kvn@840 1132 void movdqu(XMMRegister dst, XMMRegister src);
kvn@840 1133
never@739 1134 void movl(Register dst, int32_t imm32);
never@739 1135 void movl(Address dst, int32_t imm32);
never@739 1136 void movl(Register dst, Register src);
never@739 1137 void movl(Register dst, Address src);
never@739 1138 void movl(Address dst, Register src);
never@739 1139
never@739 1140 // These dummies prevent using movl from converting a zero (like NULL) into Register
never@739 1141 // by giving the compiler two choices it can't resolve
never@739 1142
never@739 1143 void movl(Address dst, void* junk);
never@739 1144 void movl(Register dst, void* junk);
never@739 1145
never@739 1146 #ifdef _LP64
never@739 1147 void movq(Register dst, Register src);
never@739 1148 void movq(Register dst, Address src);
never@739 1149 void movq(Address dst, Register src);
never@739 1150 #endif
never@739 1151
never@739 1152 void movq(Address dst, MMXRegister src );
never@739 1153 void movq(MMXRegister dst, Address src );
never@739 1154
never@739 1155 #ifdef _LP64
never@739 1156 // These dummies prevent using movq from converting a zero (like NULL) into Register
never@739 1157 // by giving the compiler two choices it can't resolve
never@739 1158
never@739 1159 void movq(Address dst, void* dummy);
never@739 1160 void movq(Register dst, void* dummy);
never@739 1161 #endif
never@739 1162
never@739 1163 // Move Quadword
never@739 1164 void movq(Address dst, XMMRegister src);
never@739 1165 void movq(XMMRegister dst, Address src);
never@739 1166
never@739 1167 void movsbl(Register dst, Address src);
never@739 1168 void movsbl(Register dst, Register src);
never@739 1169
never@739 1170 #ifdef _LP64
twisti@1059 1171 void movsbq(Register dst, Address src);
twisti@1059 1172 void movsbq(Register dst, Register src);
twisti@1059 1173
never@739 1174 // Move signed 32bit immediate to 64bit extending sign
never@739 1175 void movslq(Address dst, int32_t imm64);
never@739 1176 void movslq(Register dst, int32_t imm64);
never@739 1177
never@739 1178 void movslq(Register dst, Address src);
never@739 1179 void movslq(Register dst, Register src);
never@739 1180 void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
never@739 1181 #endif
never@739 1182
never@739 1183 void movswl(Register dst, Address src);
never@739 1184 void movswl(Register dst, Register src);
never@739 1185
twisti@1059 1186 #ifdef _LP64
twisti@1059 1187 void movswq(Register dst, Address src);
twisti@1059 1188 void movswq(Register dst, Register src);
twisti@1059 1189 #endif
twisti@1059 1190
never@739 1191 void movw(Address dst, int imm16);
never@739 1192 void movw(Register dst, Address src);
never@739 1193 void movw(Address dst, Register src);
never@739 1194
never@739 1195 void movzbl(Register dst, Address src);
never@739 1196 void movzbl(Register dst, Register src);
never@739 1197
twisti@1059 1198 #ifdef _LP64
twisti@1059 1199 void movzbq(Register dst, Address src);
twisti@1059 1200 void movzbq(Register dst, Register src);
twisti@1059 1201 #endif
twisti@1059 1202
never@739 1203 void movzwl(Register dst, Address src);
never@739 1204 void movzwl(Register dst, Register src);
never@739 1205
twisti@1059 1206 #ifdef _LP64
twisti@1059 1207 void movzwq(Register dst, Address src);
twisti@1059 1208 void movzwq(Register dst, Register src);
twisti@1059 1209 #endif
twisti@1059 1210
never@739 1211 void mull(Address src);
never@739 1212 void mull(Register src);
never@739 1213
never@739 1214 // Multiply Scalar Double-Precision Floating-Point Values
never@739 1215 void mulsd(XMMRegister dst, Address src);
never@739 1216 void mulsd(XMMRegister dst, XMMRegister src);
never@739 1217
never@739 1218 // Multiply Scalar Single-Precision Floating-Point Values
never@739 1219 void mulss(XMMRegister dst, Address src);
never@739 1220 void mulss(XMMRegister dst, XMMRegister src);
never@739 1221
never@739 1222 void negl(Register dst);
never@739 1223
never@739 1224 #ifdef _LP64
never@739 1225 void negq(Register dst);
never@739 1226 #endif
never@739 1227
never@739 1228 void nop(int i = 1);
never@739 1229
never@739 1230 void notl(Register dst);
never@739 1231
never@739 1232 #ifdef _LP64
never@739 1233 void notq(Register dst);
never@739 1234 #endif
never@739 1235
never@739 1236 void orl(Address dst, int32_t imm32);
never@739 1237 void orl(Register dst, int32_t imm32);
never@739 1238 void orl(Register dst, Address src);
never@739 1239 void orl(Register dst, Register src);
never@739 1240
never@739 1241 void orq(Address dst, int32_t imm32);
never@739 1242 void orq(Register dst, int32_t imm32);
never@739 1243 void orq(Register dst, Address src);
never@739 1244 void orq(Register dst, Register src);
never@739 1245
cfang@1116 1246 // SSE4.2 string instructions
cfang@1116 1247 void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
cfang@1116 1248 void pcmpestri(XMMRegister xmm1, Address src, int imm8);
cfang@1116 1249
roland@1495 1250 #ifndef _LP64 // no 32bit push/pop on amd64
never@739 1251 void popl(Address dst);
roland@1495 1252 #endif
never@739 1253
never@739 1254 #ifdef _LP64
never@739 1255 void popq(Address dst);
never@739 1256 #endif
never@739 1257
twisti@1078 1258 void popcntl(Register dst, Address src);
twisti@1078 1259 void popcntl(Register dst, Register src);
twisti@1078 1260
twisti@1078 1261 #ifdef _LP64
twisti@1078 1262 void popcntq(Register dst, Address src);
twisti@1078 1263 void popcntq(Register dst, Register src);
twisti@1078 1264 #endif
twisti@1078 1265
never@739 1266 // Prefetches (SSE, SSE2, 3DNOW only)
never@739 1267
never@739 1268 void prefetchnta(Address src);
never@739 1269 void prefetchr(Address src);
never@739 1270 void prefetcht0(Address src);
never@739 1271 void prefetcht1(Address src);
never@739 1272 void prefetcht2(Address src);
never@739 1273 void prefetchw(Address src);
never@739 1274
never@739 1275 // Shuffle Packed Doublewords
never@739 1276 void pshufd(XMMRegister dst, XMMRegister src, int mode);
never@739 1277 void pshufd(XMMRegister dst, Address src, int mode);
never@739 1278
never@739 1279 // Shuffle Packed Low Words
never@739 1280 void pshuflw(XMMRegister dst, XMMRegister src, int mode);
never@739 1281 void pshuflw(XMMRegister dst, Address src, int mode);
never@739 1282
never@739 1283 // Shift Right Logical Quadword Immediate
never@739 1284 void psrlq(XMMRegister dst, int shift);
never@739 1285
cfang@1116 1286 // Logical Compare Double Quadword
cfang@1116 1287 void ptest(XMMRegister dst, XMMRegister src);
cfang@1116 1288 void ptest(XMMRegister dst, Address src);
cfang@1116 1289
never@739 1290 // Interleave Low Bytes
never@739 1291 void punpcklbw(XMMRegister dst, XMMRegister src);
never@739 1292
roland@1495 1293 #ifndef _LP64 // no 32bit push/pop on amd64
never@739 1294 void pushl(Address src);
roland@1495 1295 #endif
never@739 1296
never@739 1297 void pushq(Address src);
never@739 1298
never@739 1299 // Xor Packed Byte Integer Values
never@739 1300 void pxor(XMMRegister dst, Address src);
never@739 1301 void pxor(XMMRegister dst, XMMRegister src);
never@739 1302
never@739 1303 void rcll(Register dst, int imm8);
never@739 1304
never@739 1305 void rclq(Register dst, int imm8);
never@739 1306
never@739 1307 void ret(int imm16);
duke@435 1308
duke@435 1309 void sahf();
duke@435 1310
never@739 1311 void sarl(Register dst, int imm8);
never@739 1312 void sarl(Register dst);
never@739 1313
never@739 1314 void sarq(Register dst, int imm8);
never@739 1315 void sarq(Register dst);
never@739 1316
never@739 1317 void sbbl(Address dst, int32_t imm32);
never@739 1318 void sbbl(Register dst, int32_t imm32);
never@739 1319 void sbbl(Register dst, Address src);
never@739 1320 void sbbl(Register dst, Register src);
never@739 1321
never@739 1322 void sbbq(Address dst, int32_t imm32);
never@739 1323 void sbbq(Register dst, int32_t imm32);
never@739 1324 void sbbq(Register dst, Address src);
never@739 1325 void sbbq(Register dst, Register src);
never@739 1326
never@739 1327 void setb(Condition cc, Register dst);
never@739 1328
never@739 1329 void shldl(Register dst, Register src);
never@739 1330
never@739 1331 void shll(Register dst, int imm8);
never@739 1332 void shll(Register dst);
never@739 1333
never@739 1334 void shlq(Register dst, int imm8);
never@739 1335 void shlq(Register dst);
never@739 1336
never@739 1337 void shrdl(Register dst, Register src);
never@739 1338
never@739 1339 void shrl(Register dst, int imm8);
never@739 1340 void shrl(Register dst);
never@739 1341
never@739 1342 void shrq(Register dst, int imm8);
never@739 1343 void shrq(Register dst);
never@739 1344
never@739 1345 void smovl(); // QQQ generic?
never@739 1346
never@739 1347 // Compute Square Root of Scalar Double-Precision Floating-Point Value
never@739 1348 void sqrtsd(XMMRegister dst, Address src);
never@739 1349 void sqrtsd(XMMRegister dst, XMMRegister src);
never@739 1350
never@739 1351 void std() { emit_byte(0xfd); }
never@739 1352
never@739 1353 void stmxcsr( Address dst );
never@739 1354
never@739 1355 void subl(Address dst, int32_t imm32);
never@739 1356 void subl(Address dst, Register src);
never@739 1357 void subl(Register dst, int32_t imm32);
never@739 1358 void subl(Register dst, Address src);
never@739 1359 void subl(Register dst, Register src);
never@739 1360
never@739 1361 void subq(Address dst, int32_t imm32);
never@739 1362 void subq(Address dst, Register src);
never@739 1363 void subq(Register dst, int32_t imm32);
never@739 1364 void subq(Register dst, Address src);
never@739 1365 void subq(Register dst, Register src);
never@739 1366
never@739 1367
never@739 1368 // Subtract Scalar Double-Precision Floating-Point Values
never@739 1369 void subsd(XMMRegister dst, Address src);
never@739 1370 void subsd(XMMRegister dst, XMMRegister src);
never@739 1371
never@739 1372 // Subtract Scalar Single-Precision Floating-Point Values
never@739 1373 void subss(XMMRegister dst, Address src);
duke@435 1374 void subss(XMMRegister dst, XMMRegister src);
never@739 1375
never@739 1376 void testb(Register dst, int imm8);
never@739 1377
never@739 1378 void testl(Register dst, int32_t imm32);
never@739 1379 void testl(Register dst, Register src);
never@739 1380 void testl(Register dst, Address src);
never@739 1381
never@739 1382 void testq(Register dst, int32_t imm32);
never@739 1383 void testq(Register dst, Register src);
never@739 1384
never@739 1385
never@739 1386 // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 1387 void ucomisd(XMMRegister dst, Address src);
never@739 1388 void ucomisd(XMMRegister dst, XMMRegister src);
never@739 1389
never@739 1390 // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 1391 void ucomiss(XMMRegister dst, Address src);
duke@435 1392 void ucomiss(XMMRegister dst, XMMRegister src);
never@739 1393
never@739 1394 void xaddl(Address dst, Register src);
never@739 1395
never@739 1396 void xaddq(Address dst, Register src);
never@739 1397
never@739 1398 void xchgl(Register reg, Address adr);
never@739 1399 void xchgl(Register dst, Register src);
never@739 1400
never@739 1401 void xchgq(Register reg, Address adr);
never@739 1402 void xchgq(Register dst, Register src);
never@739 1403
never@739 1404 void xorl(Register dst, int32_t imm32);
never@739 1405 void xorl(Register dst, Address src);
never@739 1406 void xorl(Register dst, Register src);
never@739 1407
never@739 1408 void xorq(Register dst, Address src);
never@739 1409 void xorq(Register dst, Register src);
never@739 1410
never@739 1411 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
never@739 1412 void xorpd(XMMRegister dst, Address src);
never@739 1413 void xorpd(XMMRegister dst, XMMRegister src);
never@739 1414
never@739 1415 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
never@739 1416 void xorps(XMMRegister dst, Address src);
duke@435 1417 void xorps(XMMRegister dst, XMMRegister src);
never@739 1418
never@739 1419 void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
duke@435 1420 };
duke@435 1421
duke@435 1422
duke@435 1423 // MacroAssembler extends Assembler by frequently used macros.
duke@435 1424 //
duke@435 1425 // Instructions for which a 'better' code sequence exists depending
duke@435 1426 // on arguments should also go in here.
duke@435 1427
duke@435 1428 class MacroAssembler: public Assembler {
ysr@777 1429 friend class LIR_Assembler;
ysr@777 1430 friend class Runtime1; // as_Address()
duke@435 1431 protected:
duke@435 1432
duke@435 1433 Address as_Address(AddressLiteral adr);
duke@435 1434 Address as_Address(ArrayAddress adr);
duke@435 1435
duke@435 1436 // Support for VM calls
duke@435 1437 //
duke@435 1438 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
duke@435 1439 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1440 // additional registers when doing a VM call).
duke@435 1441 #ifdef CC_INTERP
duke@435 1442 // c++ interpreter never wants to use interp_masm version of call_VM
duke@435 1443 #define VIRTUAL
duke@435 1444 #else
duke@435 1445 #define VIRTUAL virtual
duke@435 1446 #endif
duke@435 1447
duke@435 1448 VIRTUAL void call_VM_leaf_base(
duke@435 1449 address entry_point, // the entry point
duke@435 1450 int number_of_arguments // the number of arguments to pop after the call
duke@435 1451 );
duke@435 1452
duke@435 1453 // This is the base routine called by the different versions of call_VM. The interpreter
duke@435 1454 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1455 // additional registers when doing a VM call).
duke@435 1456 //
duke@435 1457 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
duke@435 1458 // returns the register which contains the thread upon return. If a thread register has been
duke@435 1459 // specified, the return value will correspond to that register. If no last_java_sp is specified
duke@435 1460 // (noreg) than rsp will be used instead.
duke@435 1461 VIRTUAL void call_VM_base( // returns the register containing the thread upon return
duke@435 1462 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
duke@435 1463 Register java_thread, // the thread if computed before ; use noreg otherwise
duke@435 1464 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
duke@435 1465 address entry_point, // the entry point
duke@435 1466 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
duke@435 1467 bool check_exceptions // whether to check for pending exceptions after return
duke@435 1468 );
duke@435 1469
duke@435 1470 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
duke@435 1471 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1472 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
duke@435 1473 virtual void check_and_handle_popframe(Register java_thread);
duke@435 1474 virtual void check_and_handle_earlyret(Register java_thread);
duke@435 1475
duke@435 1476 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
duke@435 1477
duke@435 1478 // helpers for FPU flag access
duke@435 1479 // tmp is a temporary register, if none is available use noreg
duke@435 1480 void save_rax (Register tmp);
duke@435 1481 void restore_rax(Register tmp);
duke@435 1482
duke@435 1483 public:
duke@435 1484 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1485
duke@435 1486 // Support for NULL-checks
duke@435 1487 //
duke@435 1488 // Generates code that causes a NULL OS exception if the content of reg is NULL.
duke@435 1489 // If the accessed location is M[reg + offset] and the offset is known, provide the
duke@435 1490 // offset. No explicit code generation is needed if the offset is within a certain
duke@435 1491 // range (0 <= offset <= page_size).
duke@435 1492
duke@435 1493 void null_check(Register reg, int offset = -1);
kvn@603 1494 static bool needs_explicit_null_check(intptr_t offset);
duke@435 1495
duke@435 1496 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1497 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1498 void pd_patch_instruction(address branch, address target);
duke@435 1499 #ifndef PRODUCT
duke@435 1500 static void pd_print_patched_instruction(address branch);
duke@435 1501 #endif
duke@435 1502
duke@435 1503 // The following 4 methods return the offset of the appropriate move instruction
duke@435 1504
jrose@1057 1505 // Support for fast byte/short loading with zero extension (depending on particular CPU)
duke@435 1506 int load_unsigned_byte(Register dst, Address src);
jrose@1057 1507 int load_unsigned_short(Register dst, Address src);
jrose@1057 1508
jrose@1057 1509 // Support for fast byte/short loading with sign extension (depending on particular CPU)
duke@435 1510 int load_signed_byte(Register dst, Address src);
jrose@1057 1511 int load_signed_short(Register dst, Address src);
duke@435 1512
duke@435 1513 // Support for sign-extension (hi:lo = extend_sign(lo))
duke@435 1514 void extend_sign(Register hi, Register lo);
duke@435 1515
jrose@1057 1516 // Loading values by size and signed-ness
twisti@1858 1517 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
jrose@1057 1518
duke@435 1519 // Support for inc/dec with optimal instruction selection depending on value
never@739 1520
never@739 1521 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
never@739 1522 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
never@739 1523
never@739 1524 void decrementl(Address dst, int value = 1);
never@739 1525 void decrementl(Register reg, int value = 1);
never@739 1526
never@739 1527 void decrementq(Register reg, int value = 1);
never@739 1528 void decrementq(Address dst, int value = 1);
never@739 1529
never@739 1530 void incrementl(Address dst, int value = 1);
never@739 1531 void incrementl(Register reg, int value = 1);
never@739 1532
never@739 1533 void incrementq(Register reg, int value = 1);
never@739 1534 void incrementq(Address dst, int value = 1);
never@739 1535
duke@435 1536
duke@435 1537 // Support optimal SSE move instructions.
duke@435 1538 void movflt(XMMRegister dst, XMMRegister src) {
duke@435 1539 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
duke@435 1540 else { movss (dst, src); return; }
duke@435 1541 }
duke@435 1542 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
duke@435 1543 void movflt(XMMRegister dst, AddressLiteral src);
duke@435 1544 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
duke@435 1545
duke@435 1546 void movdbl(XMMRegister dst, XMMRegister src) {
duke@435 1547 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
duke@435 1548 else { movsd (dst, src); return; }
duke@435 1549 }
duke@435 1550
duke@435 1551 void movdbl(XMMRegister dst, AddressLiteral src);
duke@435 1552
duke@435 1553 void movdbl(XMMRegister dst, Address src) {
duke@435 1554 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
duke@435 1555 else { movlpd(dst, src); return; }
duke@435 1556 }
duke@435 1557 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
duke@435 1558
never@739 1559 void incrementl(AddressLiteral dst);
never@739 1560 void incrementl(ArrayAddress dst);
duke@435 1561
duke@435 1562 // Alignment
duke@435 1563 void align(int modulus);
duke@435 1564
duke@435 1565 // Misc
duke@435 1566 void fat_nop(); // 5 byte nop
duke@435 1567
duke@435 1568 // Stack frame creation/removal
duke@435 1569 void enter();
duke@435 1570 void leave();
duke@435 1571
duke@435 1572 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
duke@435 1573 // The pointer will be loaded into the thread register.
duke@435 1574 void get_thread(Register thread);
duke@435 1575
apetrusenko@797 1576
duke@435 1577 // Support for VM calls
duke@435 1578 //
duke@435 1579 // It is imperative that all calls into the VM are handled via the call_VM macros.
duke@435 1580 // They make sure that the stack linkage is setup correctly. call_VM's correspond
duke@435 1581 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
duke@435 1582
never@739 1583
never@739 1584 void call_VM(Register oop_result,
never@739 1585 address entry_point,
never@739 1586 bool check_exceptions = true);
never@739 1587 void call_VM(Register oop_result,
never@739 1588 address entry_point,
never@739 1589 Register arg_1,
never@739 1590 bool check_exceptions = true);
never@739 1591 void call_VM(Register oop_result,
never@739 1592 address entry_point,
never@739 1593 Register arg_1, Register arg_2,
never@739 1594 bool check_exceptions = true);
never@739 1595 void call_VM(Register oop_result,
never@739 1596 address entry_point,
never@739 1597 Register arg_1, Register arg_2, Register arg_3,
never@739 1598 bool check_exceptions = true);
never@739 1599
never@739 1600 // Overloadings with last_Java_sp
never@739 1601 void call_VM(Register oop_result,
never@739 1602 Register last_java_sp,
never@739 1603 address entry_point,
never@739 1604 int number_of_arguments = 0,
never@739 1605 bool check_exceptions = true);
never@739 1606 void call_VM(Register oop_result,
never@739 1607 Register last_java_sp,
never@739 1608 address entry_point,
never@739 1609 Register arg_1, bool
never@739 1610 check_exceptions = true);
never@739 1611 void call_VM(Register oop_result,
never@739 1612 Register last_java_sp,
never@739 1613 address entry_point,
never@739 1614 Register arg_1, Register arg_2,
never@739 1615 bool check_exceptions = true);
never@739 1616 void call_VM(Register oop_result,
never@739 1617 Register last_java_sp,
never@739 1618 address entry_point,
never@739 1619 Register arg_1, Register arg_2, Register arg_3,
never@739 1620 bool check_exceptions = true);
never@739 1621
never@739 1622 void call_VM_leaf(address entry_point,
never@739 1623 int number_of_arguments = 0);
never@739 1624 void call_VM_leaf(address entry_point,
never@739 1625 Register arg_1);
never@739 1626 void call_VM_leaf(address entry_point,
never@739 1627 Register arg_1, Register arg_2);
never@739 1628 void call_VM_leaf(address entry_point,
never@739 1629 Register arg_1, Register arg_2, Register arg_3);
duke@435 1630
duke@435 1631 // last Java Frame (fills frame anchor)
never@739 1632 void set_last_Java_frame(Register thread,
never@739 1633 Register last_java_sp,
never@739 1634 Register last_java_fp,
never@739 1635 address last_java_pc);
never@739 1636
never@739 1637 // thread in the default location (r15_thread on 64bit)
never@739 1638 void set_last_Java_frame(Register last_java_sp,
never@739 1639 Register last_java_fp,
never@739 1640 address last_java_pc);
never@739 1641
duke@435 1642 void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
duke@435 1643
never@739 1644 // thread in the default location (r15_thread on 64bit)
never@739 1645 void reset_last_Java_frame(bool clear_fp, bool clear_pc);
never@739 1646
duke@435 1647 // Stores
duke@435 1648 void store_check(Register obj); // store check for obj - register is destroyed afterwards
duke@435 1649 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
duke@435 1650
apetrusenko@797 1651 void g1_write_barrier_pre(Register obj,
apetrusenko@797 1652 #ifndef _LP64
apetrusenko@797 1653 Register thread,
apetrusenko@797 1654 #endif
apetrusenko@797 1655 Register tmp,
apetrusenko@797 1656 Register tmp2,
apetrusenko@797 1657 bool tosca_live);
apetrusenko@797 1658 void g1_write_barrier_post(Register store_addr,
apetrusenko@797 1659 Register new_val,
apetrusenko@797 1660 #ifndef _LP64
apetrusenko@797 1661 Register thread,
apetrusenko@797 1662 #endif
apetrusenko@797 1663 Register tmp,
apetrusenko@797 1664 Register tmp2);
ysr@777 1665
ysr@777 1666
duke@435 1667 // split store_check(Register obj) to enhance instruction interleaving
duke@435 1668 void store_check_part_1(Register obj);
duke@435 1669 void store_check_part_2(Register obj);
duke@435 1670
duke@435 1671 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
duke@435 1672 void c2bool(Register x);
duke@435 1673
duke@435 1674 // C++ bool manipulation
duke@435 1675
duke@435 1676 void movbool(Register dst, Address src);
duke@435 1677 void movbool(Address dst, bool boolconst);
duke@435 1678 void movbool(Address dst, Register src);
duke@435 1679 void testbool(Register dst);
duke@435 1680
never@739 1681 // oop manipulations
never@739 1682 void load_klass(Register dst, Register src);
never@739 1683 void store_klass(Register dst, Register src);
never@739 1684
never@739 1685 void load_prototype_header(Register dst, Register src);
never@739 1686
never@739 1687 #ifdef _LP64
never@739 1688 void store_klass_gap(Register dst, Register src);
never@739 1689
never@739 1690 void load_heap_oop(Register dst, Address src);
never@739 1691 void store_heap_oop(Address dst, Register src);
johnc@1482 1692
johnc@1482 1693 // This dummy is to prevent a call to store_heap_oop from
johnc@1482 1694 // converting a zero (like NULL) into a Register by giving
johnc@1482 1695 // the compiler two choices it can't resolve
johnc@1482 1696
johnc@1482 1697 void store_heap_oop(Address dst, void* dummy);
johnc@1482 1698
johnc@1482 1699 // Used for storing NULL. All other oop constants should be
johnc@1482 1700 // stored using routines that take a jobject.
johnc@1482 1701 void store_heap_oop_null(Address dst);
johnc@1482 1702
never@739 1703 void encode_heap_oop(Register r);
never@739 1704 void decode_heap_oop(Register r);
never@739 1705 void encode_heap_oop_not_null(Register r);
never@739 1706 void decode_heap_oop_not_null(Register r);
never@739 1707 void encode_heap_oop_not_null(Register dst, Register src);
never@739 1708 void decode_heap_oop_not_null(Register dst, Register src);
never@739 1709
never@739 1710 void set_narrow_oop(Register dst, jobject obj);
kvn@1077 1711 void set_narrow_oop(Address dst, jobject obj);
kvn@1077 1712 void cmp_narrow_oop(Register dst, jobject obj);
kvn@1077 1713 void cmp_narrow_oop(Address dst, jobject obj);
never@739 1714
never@739 1715 // if heap base register is used - reinit it with the correct value
never@739 1716 void reinit_heapbase();
kvn@2039 1717
kvn@2039 1718 DEBUG_ONLY(void verify_heapbase(const char* msg);)
kvn@2039 1719
never@739 1720 #endif // _LP64
never@739 1721
never@739 1722 // Int division/remainder for Java
duke@435 1723 // (as idivl, but checks for special case as described in JVM spec.)
duke@435 1724 // returns idivl instruction offset for implicit exception handling
duke@435 1725 int corrected_idivl(Register reg);
duke@435 1726
never@739 1727 // Long division/remainder for Java
never@739 1728 // (as idivq, but checks for special case as described in JVM spec.)
never@739 1729 // returns idivq instruction offset for implicit exception handling
never@739 1730 int corrected_idivq(Register reg);
never@739 1731
duke@435 1732 void int3();
duke@435 1733
never@739 1734 // Long operation macros for a 32bit cpu
duke@435 1735 // Long negation for Java
duke@435 1736 void lneg(Register hi, Register lo);
duke@435 1737
duke@435 1738 // Long multiplication for Java
never@739 1739 // (destroys contents of eax, ebx, ecx and edx)
duke@435 1740 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
duke@435 1741
duke@435 1742 // Long shifts for Java
duke@435 1743 // (semantics as described in JVM spec.)
duke@435 1744 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
duke@435 1745 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
duke@435 1746
duke@435 1747 // Long compare for Java
duke@435 1748 // (semantics as described in JVM spec.)
duke@435 1749 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
duke@435 1750
never@739 1751
never@739 1752 // misc
never@739 1753
never@739 1754 // Sign extension
never@739 1755 void sign_extend_short(Register reg);
never@739 1756 void sign_extend_byte(Register reg);
never@739 1757
never@739 1758 // Division by power of 2, rounding towards 0
never@739 1759 void division_with_shift(Register reg, int shift_value);
never@739 1760
duke@435 1761 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
duke@435 1762 //
duke@435 1763 // CF (corresponds to C0) if x < y
duke@435 1764 // PF (corresponds to C2) if unordered
duke@435 1765 // ZF (corresponds to C3) if x = y
duke@435 1766 //
duke@435 1767 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1768 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
duke@435 1769 void fcmp(Register tmp);
duke@435 1770 // Variant of the above which allows y to be further down the stack
duke@435 1771 // and which only pops x and y if specified. If pop_right is
duke@435 1772 // specified then pop_left must also be specified.
duke@435 1773 void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
duke@435 1774
duke@435 1775 // Floating-point comparison for Java
duke@435 1776 // Compares the top-most stack entries on the FPU stack and stores the result in dst.
duke@435 1777 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1778 // (semantics as described in JVM spec.)
duke@435 1779 void fcmp2int(Register dst, bool unordered_is_less);
duke@435 1780 // Variant of the above which allows y to be further down the stack
duke@435 1781 // and which only pops x and y if specified. If pop_right is
duke@435 1782 // specified then pop_left must also be specified.
duke@435 1783 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
duke@435 1784
duke@435 1785 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
duke@435 1786 // tmp is a temporary register, if none is available use noreg
duke@435 1787 void fremr(Register tmp);
duke@435 1788
duke@435 1789
duke@435 1790 // same as fcmp2int, but using SSE2
duke@435 1791 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1792 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1793
duke@435 1794 // Inlined sin/cos generator for Java; must not use CPU instruction
duke@435 1795 // directly on Intel as it does not have high enough precision
duke@435 1796 // outside of the range [-pi/4, pi/4]. Extra argument indicate the
duke@435 1797 // number of FPU stack slots in use; all but the topmost will
duke@435 1798 // require saving if a slow case is necessary. Assumes argument is
duke@435 1799 // on FP TOS; result is on FP TOS. No cpu registers are changed by
duke@435 1800 // this code.
duke@435 1801 void trigfunc(char trig, int num_fpu_regs_in_use = 1);
duke@435 1802
duke@435 1803 // branch to L if FPU flag C2 is set/not set
duke@435 1804 // tmp is a temporary register, if none is available use noreg
duke@435 1805 void jC2 (Register tmp, Label& L);
duke@435 1806 void jnC2(Register tmp, Label& L);
duke@435 1807
duke@435 1808 // Pop ST (ffree & fincstp combined)
duke@435 1809 void fpop();
duke@435 1810
duke@435 1811 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1812 void push_fTOS();
duke@435 1813
duke@435 1814 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1815 void pop_fTOS();
duke@435 1816
duke@435 1817 void empty_FPU_stack();
duke@435 1818
duke@435 1819 void push_IU_state();
duke@435 1820 void pop_IU_state();
duke@435 1821
duke@435 1822 void push_FPU_state();
duke@435 1823 void pop_FPU_state();
duke@435 1824
duke@435 1825 void push_CPU_state();
duke@435 1826 void pop_CPU_state();
duke@435 1827
duke@435 1828 // Round up to a power of two
duke@435 1829 void round_to(Register reg, int modulus);
duke@435 1830
duke@435 1831 // Callee saved registers handling
duke@435 1832 void push_callee_saved_registers();
duke@435 1833 void pop_callee_saved_registers();
duke@435 1834
duke@435 1835 // allocation
duke@435 1836 void eden_allocate(
duke@435 1837 Register obj, // result: pointer to object after successful allocation
duke@435 1838 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1839 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1840 Register t1, // temp register
duke@435 1841 Label& slow_case // continuation point if fast allocation fails
duke@435 1842 );
duke@435 1843 void tlab_allocate(
duke@435 1844 Register obj, // result: pointer to object after successful allocation
duke@435 1845 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1846 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1847 Register t1, // temp register
duke@435 1848 Register t2, // temp register
duke@435 1849 Label& slow_case // continuation point if fast allocation fails
duke@435 1850 );
duke@435 1851 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
duke@435 1852
jrose@1058 1853 // interface method calling
jrose@1058 1854 void lookup_interface_method(Register recv_klass,
jrose@1058 1855 Register intf_klass,
jrose@1100 1856 RegisterOrConstant itable_index,
jrose@1058 1857 Register method_result,
jrose@1058 1858 Register scan_temp,
jrose@1058 1859 Label& no_such_interface);
jrose@1058 1860
jrose@1079 1861 // Test sub_klass against super_klass, with fast and slow paths.
jrose@1079 1862
jrose@1079 1863 // The fast path produces a tri-state answer: yes / no / maybe-slow.
jrose@1079 1864 // One of the three labels can be NULL, meaning take the fall-through.
jrose@1079 1865 // If super_check_offset is -1, the value is loaded up from super_klass.
jrose@1079 1866 // No registers are killed, except temp_reg.
jrose@1079 1867 void check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 1868 Register super_klass,
jrose@1079 1869 Register temp_reg,
jrose@1079 1870 Label* L_success,
jrose@1079 1871 Label* L_failure,
jrose@1079 1872 Label* L_slow_path,
jrose@1100 1873 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
jrose@1079 1874
jrose@1079 1875 // The rest of the type check; must be wired to a corresponding fast path.
jrose@1079 1876 // It does not repeat the fast path logic, so don't use it standalone.
jrose@1079 1877 // The temp_reg and temp2_reg can be noreg, if no temps are available.
jrose@1079 1878 // Updates the sub's secondary super cache as necessary.
jrose@1079 1879 // If set_cond_codes, condition codes will be Z on success, NZ on failure.
jrose@1079 1880 void check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 1881 Register super_klass,
jrose@1079 1882 Register temp_reg,
jrose@1079 1883 Register temp2_reg,
jrose@1079 1884 Label* L_success,
jrose@1079 1885 Label* L_failure,
jrose@1079 1886 bool set_cond_codes = false);
jrose@1079 1887
jrose@1079 1888 // Simplified, combined version, good for typical uses.
jrose@1079 1889 // Falls through on failure.
jrose@1079 1890 void check_klass_subtype(Register sub_klass,
jrose@1079 1891 Register super_klass,
jrose@1079 1892 Register temp_reg,
jrose@1079 1893 Label& L_success);
jrose@1079 1894
jrose@1145 1895 // method handles (JSR 292)
jrose@1145 1896 void check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 1897 Register temp_reg,
jrose@1145 1898 Label& wrong_method_type);
jrose@1145 1899 void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
jrose@1145 1900 Register temp_reg);
jrose@1145 1901 void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
jrose@1145 1902 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
jrose@1145 1903
jrose@1145 1904
duke@435 1905 //----
duke@435 1906 void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
duke@435 1907
duke@435 1908 // Debugging
never@739 1909
never@739 1910 // only if +VerifyOops
never@739 1911 void verify_oop(Register reg, const char* s = "broken oop");
duke@435 1912 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
duke@435 1913
never@739 1914 // only if +VerifyFPU
never@739 1915 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
never@739 1916
never@739 1917 // prints msg, dumps registers and stops execution
never@739 1918 void stop(const char* msg);
never@739 1919
never@739 1920 // prints msg and continues
never@739 1921 void warn(const char* msg);
never@739 1922
never@739 1923 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
never@739 1924 static void debug64(char* msg, int64_t pc, int64_t regs[]);
never@739 1925
duke@435 1926 void os_breakpoint();
never@739 1927
duke@435 1928 void untested() { stop("untested"); }
never@739 1929
duke@435 1930 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, sizeof(b), "unimplemented: %s", what); stop(b); }
never@739 1931
duke@435 1932 void should_not_reach_here() { stop("should not reach here"); }
never@739 1933
duke@435 1934 void print_CPU_state();
duke@435 1935
duke@435 1936 // Stack overflow checking
duke@435 1937 void bang_stack_with_offset(int offset) {
duke@435 1938 // stack grows down, caller passes positive offset
duke@435 1939 assert(offset > 0, "must bang with negative offset");
duke@435 1940 movl(Address(rsp, (-offset)), rax);
duke@435 1941 }
duke@435 1942
duke@435 1943 // Writes to stack successive pages until offset reached to check for
duke@435 1944 // stack overflow + shadow pages. Also, clobbers tmp
duke@435 1945 void bang_stack_size(Register size, Register tmp);
duke@435 1946
jrose@1100 1947 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 1948 Register tmp,
jrose@1100 1949 int offset);
jrose@1057 1950
duke@435 1951 // Support for serializing memory accesses between threads
duke@435 1952 void serialize_memory(Register thread, Register tmp);
duke@435 1953
duke@435 1954 void verify_tlab();
duke@435 1955
duke@435 1956 // Biased locking support
duke@435 1957 // lock_reg and obj_reg must be loaded up with the appropriate values.
duke@435 1958 // swap_reg must be rax, and is killed.
duke@435 1959 // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
duke@435 1960 // be killed; if not supplied, push/pop will be used internally to
duke@435 1961 // allocate a temporary (inefficient, avoid if possible).
duke@435 1962 // Optional slow case is for implementations (interpreter and C1) which branch to
duke@435 1963 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
duke@435 1964 // Returns offset of first potentially-faulting instruction for null
duke@435 1965 // check info (currently consumed only by C1). If
duke@435 1966 // swap_reg_contains_mark is true then returns -1 as it is assumed
duke@435 1967 // the calling code has already passed any potential faults.
kvn@855 1968 int biased_locking_enter(Register lock_reg, Register obj_reg,
kvn@855 1969 Register swap_reg, Register tmp_reg,
duke@435 1970 bool swap_reg_contains_mark,
duke@435 1971 Label& done, Label* slow_case = NULL,
duke@435 1972 BiasedLockingCounters* counters = NULL);
duke@435 1973 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
duke@435 1974
duke@435 1975
duke@435 1976 Condition negate_condition(Condition cond);
duke@435 1977
duke@435 1978 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
duke@435 1979 // operands. In general the names are modified to avoid hiding the instruction in Assembler
duke@435 1980 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
duke@435 1981 // here in MacroAssembler. The major exception to this rule is call
duke@435 1982
duke@435 1983 // Arithmetics
duke@435 1984
never@739 1985
never@739 1986 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
never@739 1987 void addptr(Address dst, Register src);
never@739 1988
never@739 1989 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
never@739 1990 void addptr(Register dst, int32_t src);
never@739 1991 void addptr(Register dst, Register src);
never@739 1992
never@739 1993 void andptr(Register dst, int32_t src);
never@739 1994 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
never@739 1995
never@739 1996 void cmp8(AddressLiteral src1, int imm);
never@739 1997
never@739 1998 // renamed to drag out the casting of address to int32_t/intptr_t
duke@435 1999 void cmp32(Register src1, int32_t imm);
duke@435 2000
duke@435 2001 void cmp32(AddressLiteral src1, int32_t imm);
duke@435 2002 // compare reg - mem, or reg - &mem
duke@435 2003 void cmp32(Register src1, AddressLiteral src2);
duke@435 2004
duke@435 2005 void cmp32(Register src1, Address src2);
duke@435 2006
never@739 2007 #ifndef _LP64
never@739 2008 void cmpoop(Address dst, jobject obj);
never@739 2009 void cmpoop(Register dst, jobject obj);
never@739 2010 #endif // _LP64
never@739 2011
duke@435 2012 // NOTE src2 must be the lval. This is NOT an mem-mem compare
duke@435 2013 void cmpptr(Address src1, AddressLiteral src2);
duke@435 2014
duke@435 2015 void cmpptr(Register src1, AddressLiteral src2);
duke@435 2016
never@739 2017 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2018 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2019 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2020
never@739 2021 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2022 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2023
never@739 2024 // cmp64 to avoild hiding cmpq
never@739 2025 void cmp64(Register src1, AddressLiteral src);
never@739 2026
never@739 2027 void cmpxchgptr(Register reg, Address adr);
never@739 2028
never@739 2029 void locked_cmpxchgptr(Register reg, AddressLiteral adr);
never@739 2030
never@739 2031
never@739 2032 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
never@739 2033
never@739 2034
never@739 2035 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
never@739 2036
never@739 2037 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
never@739 2038
never@739 2039 void shlptr(Register dst, int32_t shift);
never@739 2040 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
never@739 2041
never@739 2042 void shrptr(Register dst, int32_t shift);
never@739 2043 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
never@739 2044
never@739 2045 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
never@739 2046 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
never@739 2047
never@739 2048 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 2049
never@739 2050 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 2051 void subptr(Register dst, int32_t src);
never@739 2052 void subptr(Register dst, Register src);
never@739 2053
never@739 2054
never@739 2055 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 2056 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 2057
never@739 2058 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 2059 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 2060
never@739 2061 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
never@739 2062
never@739 2063
duke@435 2064
duke@435 2065 // Helper functions for statistics gathering.
duke@435 2066 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
duke@435 2067 void cond_inc32(Condition cond, AddressLiteral counter_addr);
duke@435 2068 // Unconditional atomic increment.
duke@435 2069 void atomic_incl(AddressLiteral counter_addr);
duke@435 2070
duke@435 2071 void lea(Register dst, AddressLiteral adr);
duke@435 2072 void lea(Address dst, AddressLiteral adr);
never@739 2073 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
never@739 2074
never@739 2075 void leal32(Register dst, Address src) { leal(dst, src); }
never@739 2076
never@739 2077 void test32(Register src1, AddressLiteral src2);
never@739 2078
never@739 2079 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2080 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2081 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2082
never@739 2083 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
never@739 2084 void testptr(Register src1, Register src2);
never@739 2085
never@739 2086 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
never@739 2087 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
duke@435 2088
duke@435 2089 // Calls
duke@435 2090
duke@435 2091 void call(Label& L, relocInfo::relocType rtype);
duke@435 2092 void call(Register entry);
duke@435 2093
duke@435 2094 // NOTE: this call tranfers to the effective address of entry NOT
duke@435 2095 // the address contained by entry. This is because this is more natural
duke@435 2096 // for jumps/calls.
duke@435 2097 void call(AddressLiteral entry);
duke@435 2098
duke@435 2099 // Jumps
duke@435 2100
duke@435 2101 // NOTE: these jumps tranfer to the effective address of dst NOT
duke@435 2102 // the address contained by dst. This is because this is more natural
duke@435 2103 // for jumps/calls.
duke@435 2104 void jump(AddressLiteral dst);
duke@435 2105 void jump_cc(Condition cc, AddressLiteral dst);
duke@435 2106
duke@435 2107 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 2108 // to be installed in the Address class. This jump will tranfers to the address
duke@435 2109 // contained in the location described by entry (not the address of entry)
duke@435 2110 void jump(ArrayAddress entry);
duke@435 2111
duke@435 2112 // Floating
duke@435 2113
duke@435 2114 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
duke@435 2115 void andpd(XMMRegister dst, AddressLiteral src);
duke@435 2116
duke@435 2117 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
duke@435 2118 void comiss(XMMRegister dst, AddressLiteral src);
duke@435 2119
duke@435 2120 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
duke@435 2121 void comisd(XMMRegister dst, AddressLiteral src);
duke@435 2122
duke@435 2123 void fldcw(Address src) { Assembler::fldcw(src); }
duke@435 2124 void fldcw(AddressLiteral src);
duke@435 2125
duke@435 2126 void fld_s(int index) { Assembler::fld_s(index); }
duke@435 2127 void fld_s(Address src) { Assembler::fld_s(src); }
duke@435 2128 void fld_s(AddressLiteral src);
duke@435 2129
duke@435 2130 void fld_d(Address src) { Assembler::fld_d(src); }
duke@435 2131 void fld_d(AddressLiteral src);
duke@435 2132
duke@435 2133 void fld_x(Address src) { Assembler::fld_x(src); }
duke@435 2134 void fld_x(AddressLiteral src);
duke@435 2135
duke@435 2136 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
duke@435 2137 void ldmxcsr(AddressLiteral src);
duke@435 2138
never@739 2139 private:
never@739 2140 // these are private because users should be doing movflt/movdbl
never@739 2141
duke@435 2142 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2143 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2144 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
duke@435 2145 void movss(XMMRegister dst, AddressLiteral src);
duke@435 2146
never@739 2147 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
never@739 2148 void movlpd(XMMRegister dst, AddressLiteral src);
never@739 2149
never@739 2150 public:
never@739 2151
duke@435 2152 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
duke@435 2153 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
duke@435 2154 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
duke@435 2155 void movsd(XMMRegister dst, AddressLiteral src);
duke@435 2156
duke@435 2157 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
duke@435 2158 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
duke@435 2159 void ucomiss(XMMRegister dst, AddressLiteral src);
duke@435 2160
duke@435 2161 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
duke@435 2162 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
duke@435 2163 void ucomisd(XMMRegister dst, AddressLiteral src);
duke@435 2164
duke@435 2165 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
duke@435 2166 void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
duke@435 2167 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
duke@435 2168 void xorpd(XMMRegister dst, AddressLiteral src);
duke@435 2169
duke@435 2170 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
duke@435 2171 void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
duke@435 2172 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
duke@435 2173 void xorps(XMMRegister dst, AddressLiteral src);
duke@435 2174
duke@435 2175 // Data
duke@435 2176
never@739 2177 void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2178
never@739 2179 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2180 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2181
duke@435 2182 void movoop(Register dst, jobject obj);
duke@435 2183 void movoop(Address dst, jobject obj);
duke@435 2184
duke@435 2185 void movptr(ArrayAddress dst, Register src);
duke@435 2186 // can this do an lea?
duke@435 2187 void movptr(Register dst, ArrayAddress src);
duke@435 2188
never@739 2189 void movptr(Register dst, Address src);
never@739 2190
duke@435 2191 void movptr(Register dst, AddressLiteral src);
duke@435 2192
never@739 2193 void movptr(Register dst, intptr_t src);
never@739 2194 void movptr(Register dst, Register src);
never@739 2195 void movptr(Address dst, intptr_t src);
never@739 2196
never@739 2197 void movptr(Address dst, Register src);
never@739 2198
never@739 2199 #ifdef _LP64
never@739 2200 // Generally the next two are only used for moving NULL
never@739 2201 // Although there are situations in initializing the mark word where
never@739 2202 // they could be used. They are dangerous.
never@739 2203
never@739 2204 // They only exist on LP64 so that int32_t and intptr_t are not the same
never@739 2205 // and we have ambiguous declarations.
never@739 2206
never@739 2207 void movptr(Address dst, int32_t imm32);
never@739 2208 void movptr(Register dst, int32_t imm32);
never@739 2209 #endif // _LP64
never@739 2210
duke@435 2211 // to avoid hiding movl
duke@435 2212 void mov32(AddressLiteral dst, Register src);
duke@435 2213 void mov32(Register dst, AddressLiteral src);
never@739 2214
duke@435 2215 // to avoid hiding movb
duke@435 2216 void movbyte(ArrayAddress dst, int src);
duke@435 2217
duke@435 2218 // Can push value or effective address
duke@435 2219 void pushptr(AddressLiteral src);
duke@435 2220
never@739 2221 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
never@739 2222 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
never@739 2223
never@739 2224 void pushoop(jobject obj);
never@739 2225
never@739 2226 // sign extend as need a l to ptr sized element
never@739 2227 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
never@739 2228 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
never@739 2229
kvn@1421 2230 // IndexOf strings.
kvn@1421 2231 void string_indexof(Register str1, Register str2,
kvn@1421 2232 Register cnt1, Register cnt2, Register result,
kvn@1421 2233 XMMRegister vec, Register tmp);
kvn@1421 2234
kvn@1421 2235 // Compare strings.
kvn@1421 2236 void string_compare(Register str1, Register str2,
kvn@1421 2237 Register cnt1, Register cnt2, Register result,
kvn@1421 2238 XMMRegister vec1, XMMRegister vec2);
kvn@1421 2239
kvn@1421 2240 // Compare char[] arrays.
kvn@1421 2241 void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
kvn@1421 2242 Register limit, Register result, Register chr,
kvn@1421 2243 XMMRegister vec1, XMMRegister vec2);
never@739 2244
never@2118 2245 // Fill primitive arrays
never@2118 2246 void generate_fill(BasicType t, bool aligned,
never@2118 2247 Register to, Register value, Register count,
never@2118 2248 Register rtmp, XMMRegister xtmp);
never@2118 2249
duke@435 2250 #undef VIRTUAL
duke@435 2251
duke@435 2252 };
duke@435 2253
duke@435 2254 /**
duke@435 2255 * class SkipIfEqual:
duke@435 2256 *
duke@435 2257 * Instantiating this class will result in assembly code being output that will
duke@435 2258 * jump around any code emitted between the creation of the instance and it's
duke@435 2259 * automatic destruction at the end of a scope block, depending on the value of
duke@435 2260 * the flag passed to the constructor, which will be checked at run-time.
duke@435 2261 */
duke@435 2262 class SkipIfEqual {
duke@435 2263 private:
duke@435 2264 MacroAssembler* _masm;
duke@435 2265 Label _label;
duke@435 2266
duke@435 2267 public:
duke@435 2268 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
duke@435 2269 ~SkipIfEqual();
duke@435 2270 };
duke@435 2271
duke@435 2272 #ifdef ASSERT
duke@435 2273 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
duke@435 2274 #endif

mercurial