src/cpu/x86/vm/assembler_x86.hpp

Wed, 15 Feb 2012 21:37:49 -0800

author
kvn
date
Wed, 15 Feb 2012 21:37:49 -0800
changeset 3574
fd8114661503
parent 3390
65149e74c706
child 3787
6759698e3140
permissions
-rw-r--r--

7125136: SIGILL on linux amd64 in gc/ArrayJuggle/Juggle29
Summary: For C2 moved saving EBP after ESP adjustment. For C1 generated 5 byte nop instruction first if needed.
Reviewed-by: never, twisti, azeemj

duke@435 1 /*
phh@2423 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
stefank@2314 26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
stefank@2314 27
duke@435 28 class BiasedLockingCounters;
duke@435 29
duke@435 30 // Contains all the definitions needed for x86 assembly code generation.
duke@435 31
duke@435 32 // Calling convention
duke@435 33 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 34 public:
duke@435 35 enum {
duke@435 36 #ifdef _LP64
duke@435 37 #ifdef _WIN64
duke@435 38 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 39 n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
duke@435 40 #else
duke@435 41 n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 42 n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
duke@435 43 #endif // _WIN64
duke@435 44 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
duke@435 45 n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
duke@435 46 #else
duke@435 47 n_register_parameters = 0 // 0 registers used to pass arguments
duke@435 48 #endif // _LP64
duke@435 49 };
duke@435 50 };
duke@435 51
duke@435 52
duke@435 53 #ifdef _LP64
duke@435 54 // Symbolically name the register arguments used by the c calling convention.
duke@435 55 // Windows is different from linux/solaris. So much for standards...
duke@435 56
duke@435 57 #ifdef _WIN64
duke@435 58
duke@435 59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
duke@435 60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
duke@435 61 REGISTER_DECLARATION(Register, c_rarg2, r8);
duke@435 62 REGISTER_DECLARATION(Register, c_rarg3, r9);
duke@435 63
never@739 64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
duke@435 68
duke@435 69 #else
duke@435 70
duke@435 71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
duke@435 72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
duke@435 73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
duke@435 74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
duke@435 75 REGISTER_DECLARATION(Register, c_rarg4, r8);
duke@435 76 REGISTER_DECLARATION(Register, c_rarg5, r9);
duke@435 77
never@739 78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
never@739 82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
never@739 83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
never@739 84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
never@739 85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
duke@435 86
duke@435 87 #endif // _WIN64
duke@435 88
duke@435 89 // Symbolically name the register arguments used by the Java calling convention.
duke@435 90 // We have control over the convention for java so we can do what we please.
duke@435 91 // What pleases us is to offset the java calling convention so that when
duke@435 92 // we call a suitable jni method the arguments are lined up and we don't
duke@435 93 // have to do little shuffling. A suitable jni method is non-static and a
duke@435 94 // small number of arguments (two fewer args on windows)
duke@435 95 //
duke@435 96 // |-------------------------------------------------------|
duke@435 97 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
duke@435 98 // |-------------------------------------------------------|
duke@435 99 // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
duke@435 100 // | rdi rsi rdx rcx r8 r9 | solaris/linux
duke@435 101 // |-------------------------------------------------------|
duke@435 102 // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
duke@435 103 // |-------------------------------------------------------|
duke@435 104
duke@435 105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
duke@435 106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
duke@435 107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
duke@435 108 // Windows runs out of register args here
duke@435 109 #ifdef _WIN64
duke@435 110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
duke@435 111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
duke@435 112 #else
duke@435 113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
duke@435 114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
duke@435 115 #endif /* _WIN64 */
duke@435 116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
duke@435 117
never@739 118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
never@739 119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
never@739 120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
never@739 121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
never@739 122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
never@739 123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
never@739 124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
never@739 125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
duke@435 126
duke@435 127 REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
duke@435 128 REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
duke@435 129
never@739 130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
duke@435 131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
duke@435 132
never@739 133 #else
never@739 134 // rscratch1 will apear in 32bit code that is dead but of course must compile
never@739 135 // Using noreg ensures if the dead code is incorrectly live and executed it
never@739 136 // will cause an assertion failure
never@739 137 #define rscratch1 noreg
iveresov@2344 138 #define rscratch2 noreg
never@739 139
duke@435 140 #endif // _LP64
duke@435 141
twisti@1919 142 // JSR 292 fixed register usages:
twisti@1919 143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
twisti@1919 144
duke@435 145 // Address is an abstraction used to represent a memory location
duke@435 146 // using any of the amd64 addressing modes with one object.
duke@435 147 //
duke@435 148 // Note: A register location is represented via a Register, not
duke@435 149 // via an address for efficiency & simplicity reasons.
duke@435 150
duke@435 151 class ArrayAddress;
duke@435 152
duke@435 153 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 154 public:
duke@435 155 enum ScaleFactor {
duke@435 156 no_scale = -1,
duke@435 157 times_1 = 0,
duke@435 158 times_2 = 1,
duke@435 159 times_4 = 2,
never@739 160 times_8 = 3,
never@739 161 times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
duke@435 162 };
jrose@1057 163 static ScaleFactor times(int size) {
jrose@1057 164 assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
jrose@1057 165 if (size == 8) return times_8;
jrose@1057 166 if (size == 4) return times_4;
jrose@1057 167 if (size == 2) return times_2;
jrose@1057 168 return times_1;
jrose@1057 169 }
jrose@1057 170 static int scale_size(ScaleFactor scale) {
jrose@1057 171 assert(scale != no_scale, "");
jrose@1057 172 assert(((1 << (int)times_1) == 1 &&
jrose@1057 173 (1 << (int)times_2) == 2 &&
jrose@1057 174 (1 << (int)times_4) == 4 &&
jrose@1057 175 (1 << (int)times_8) == 8), "");
jrose@1057 176 return (1 << (int)scale);
jrose@1057 177 }
duke@435 178
duke@435 179 private:
duke@435 180 Register _base;
duke@435 181 Register _index;
duke@435 182 ScaleFactor _scale;
duke@435 183 int _disp;
duke@435 184 RelocationHolder _rspec;
duke@435 185
never@739 186 // Easily misused constructors make them private
never@739 187 // %%% can we make these go away?
never@739 188 NOT_LP64(Address(address loc, RelocationHolder spec);)
never@739 189 Address(int disp, address loc, relocInfo::relocType rtype);
never@739 190 Address(int disp, address loc, RelocationHolder spec);
duke@435 191
duke@435 192 public:
never@739 193
never@739 194 int disp() { return _disp; }
duke@435 195 // creation
duke@435 196 Address()
duke@435 197 : _base(noreg),
duke@435 198 _index(noreg),
duke@435 199 _scale(no_scale),
duke@435 200 _disp(0) {
duke@435 201 }
duke@435 202
duke@435 203 // No default displacement otherwise Register can be implicitly
duke@435 204 // converted to 0(Register) which is quite a different animal.
duke@435 205
duke@435 206 Address(Register base, int disp)
duke@435 207 : _base(base),
duke@435 208 _index(noreg),
duke@435 209 _scale(no_scale),
duke@435 210 _disp(disp) {
duke@435 211 }
duke@435 212
duke@435 213 Address(Register base, Register index, ScaleFactor scale, int disp = 0)
duke@435 214 : _base (base),
duke@435 215 _index(index),
duke@435 216 _scale(scale),
duke@435 217 _disp (disp) {
duke@435 218 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 219 "inconsistent address");
duke@435 220 }
duke@435 221
jrose@1100 222 Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
jrose@1057 223 : _base (base),
jrose@1057 224 _index(index.register_or_noreg()),
jrose@1057 225 _scale(scale),
jrose@1057 226 _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 227 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 228 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 229 "inconsistent address");
jrose@1057 230 }
jrose@1057 231
jrose@1057 232 Address plus_disp(int disp) const {
jrose@1057 233 Address a = (*this);
jrose@1057 234 a._disp += disp;
jrose@1057 235 return a;
jrose@1057 236 }
never@2895 237 Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
never@2895 238 Address a = (*this);
never@2895 239 a._disp += disp.constant_or_zero() * scale_size(scale);
never@2895 240 if (disp.is_register()) {
never@2895 241 assert(!a.index()->is_valid(), "competing indexes");
never@2895 242 a._index = disp.as_register();
never@2895 243 a._scale = scale;
never@2895 244 }
never@2895 245 return a;
never@2895 246 }
never@2895 247 bool is_same_address(Address a) const {
never@2895 248 // disregard _rspec
never@2895 249 return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
never@2895 250 }
jrose@1057 251
duke@435 252 // The following two overloads are used in connection with the
duke@435 253 // ByteSize type (see sizes.hpp). They simplify the use of
duke@435 254 // ByteSize'd arguments in assembly code. Note that their equivalent
duke@435 255 // for the optimized build are the member functions with int disp
duke@435 256 // argument since ByteSize is mapped to an int type in that case.
duke@435 257 //
duke@435 258 // Note: DO NOT introduce similar overloaded functions for WordSize
duke@435 259 // arguments as in the optimized mode, both ByteSize and WordSize
duke@435 260 // are mapped to the same type and thus the compiler cannot make a
duke@435 261 // distinction anymore (=> compiler errors).
duke@435 262
duke@435 263 #ifdef ASSERT
duke@435 264 Address(Register base, ByteSize disp)
duke@435 265 : _base(base),
duke@435 266 _index(noreg),
duke@435 267 _scale(no_scale),
duke@435 268 _disp(in_bytes(disp)) {
duke@435 269 }
duke@435 270
duke@435 271 Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
duke@435 272 : _base(base),
duke@435 273 _index(index),
duke@435 274 _scale(scale),
duke@435 275 _disp(in_bytes(disp)) {
duke@435 276 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 277 "inconsistent address");
duke@435 278 }
jrose@1057 279
jrose@1100 280 Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
jrose@1057 281 : _base (base),
jrose@1057 282 _index(index.register_or_noreg()),
jrose@1057 283 _scale(scale),
jrose@1057 284 _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 285 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 286 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 287 "inconsistent address");
jrose@1057 288 }
jrose@1057 289
duke@435 290 #endif // ASSERT
duke@435 291
duke@435 292 // accessors
ysr@777 293 bool uses(Register reg) const { return _base == reg || _index == reg; }
ysr@777 294 Register base() const { return _base; }
ysr@777 295 Register index() const { return _index; }
ysr@777 296 ScaleFactor scale() const { return _scale; }
ysr@777 297 int disp() const { return _disp; }
duke@435 298
duke@435 299 // Convert the raw encoding form into the form expected by the constructor for
duke@435 300 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 301 // that to noreg for the Address constructor.
twisti@1059 302 static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
duke@435 303
duke@435 304 static Address make_array(ArrayAddress);
duke@435 305
duke@435 306 private:
duke@435 307 bool base_needs_rex() const {
duke@435 308 return _base != noreg && _base->encoding() >= 8;
duke@435 309 }
duke@435 310
duke@435 311 bool index_needs_rex() const {
duke@435 312 return _index != noreg &&_index->encoding() >= 8;
duke@435 313 }
duke@435 314
duke@435 315 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 316
duke@435 317 friend class Assembler;
duke@435 318 friend class MacroAssembler;
duke@435 319 friend class LIR_Assembler; // base/index/scale/disp
duke@435 320 };
duke@435 321
duke@435 322 //
duke@435 323 // AddressLiteral has been split out from Address because operands of this type
duke@435 324 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
duke@435 325 // the few instructions that need to deal with address literals are unique and the
duke@435 326 // MacroAssembler does not have to implement every instruction in the Assembler
duke@435 327 // in order to search for address literals that may need special handling depending
duke@435 328 // on the instruction and the platform. As small step on the way to merging i486/amd64
duke@435 329 // directories.
duke@435 330 //
duke@435 331 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
duke@435 332 friend class ArrayAddress;
duke@435 333 RelocationHolder _rspec;
duke@435 334 // Typically we use AddressLiterals we want to use their rval
duke@435 335 // However in some situations we want the lval (effect address) of the item.
duke@435 336 // We provide a special factory for making those lvals.
duke@435 337 bool _is_lval;
duke@435 338
duke@435 339 // If the target is far we'll need to load the ea of this to
duke@435 340 // a register to reach it. Otherwise if near we can do rip
duke@435 341 // relative addressing.
duke@435 342
duke@435 343 address _target;
duke@435 344
duke@435 345 protected:
duke@435 346 // creation
duke@435 347 AddressLiteral()
duke@435 348 : _is_lval(false),
duke@435 349 _target(NULL)
duke@435 350 {}
duke@435 351
duke@435 352 public:
duke@435 353
duke@435 354
duke@435 355 AddressLiteral(address target, relocInfo::relocType rtype);
duke@435 356
duke@435 357 AddressLiteral(address target, RelocationHolder const& rspec)
duke@435 358 : _rspec(rspec),
duke@435 359 _is_lval(false),
duke@435 360 _target(target)
duke@435 361 {}
duke@435 362
duke@435 363 AddressLiteral addr() {
duke@435 364 AddressLiteral ret = *this;
duke@435 365 ret._is_lval = true;
duke@435 366 return ret;
duke@435 367 }
duke@435 368
duke@435 369
duke@435 370 private:
duke@435 371
duke@435 372 address target() { return _target; }
duke@435 373 bool is_lval() { return _is_lval; }
duke@435 374
duke@435 375 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 376 const RelocationHolder& rspec() const { return _rspec; }
duke@435 377
duke@435 378 friend class Assembler;
duke@435 379 friend class MacroAssembler;
duke@435 380 friend class Address;
duke@435 381 friend class LIR_Assembler;
duke@435 382 };
duke@435 383
duke@435 384 // Convience classes
duke@435 385 class RuntimeAddress: public AddressLiteral {
duke@435 386
duke@435 387 public:
duke@435 388
duke@435 389 RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
duke@435 390
duke@435 391 };
duke@435 392
duke@435 393 class OopAddress: public AddressLiteral {
duke@435 394
duke@435 395 public:
duke@435 396
duke@435 397 OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
duke@435 398
duke@435 399 };
duke@435 400
duke@435 401 class ExternalAddress: public AddressLiteral {
never@2737 402 private:
never@2737 403 static relocInfo::relocType reloc_for_target(address target) {
never@2737 404 // Sometimes ExternalAddress is used for values which aren't
never@2737 405 // exactly addresses, like the card table base.
never@2737 406 // external_word_type can't be used for values in the first page
never@2737 407 // so just skip the reloc in that case.
never@2737 408 return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
never@2737 409 }
never@2737 410
never@2737 411 public:
never@2737 412
never@2737 413 ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
duke@435 414
duke@435 415 };
duke@435 416
duke@435 417 class InternalAddress: public AddressLiteral {
duke@435 418
duke@435 419 public:
duke@435 420
duke@435 421 InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
duke@435 422
duke@435 423 };
duke@435 424
duke@435 425 // x86 can do array addressing as a single operation since disp can be an absolute
duke@435 426 // address amd64 can't. We create a class that expresses the concept but does extra
duke@435 427 // magic on amd64 to get the final result
duke@435 428
duke@435 429 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
duke@435 430 private:
duke@435 431
duke@435 432 AddressLiteral _base;
duke@435 433 Address _index;
duke@435 434
duke@435 435 public:
duke@435 436
duke@435 437 ArrayAddress() {};
duke@435 438 ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
duke@435 439 AddressLiteral base() { return _base; }
duke@435 440 Address index() { return _index; }
duke@435 441
duke@435 442 };
duke@435 443
never@739 444 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
duke@435 445
duke@435 446 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 447 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
duke@435 448 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 449
duke@435 450 class Assembler : public AbstractAssembler {
duke@435 451 friend class AbstractAssembler; // for the non-virtual hack
duke@435 452 friend class LIR_Assembler; // as_Address()
never@739 453 friend class StubGenerator;
duke@435 454
duke@435 455 public:
duke@435 456 enum Condition { // The x86 condition codes used for conditional jumps/moves.
duke@435 457 zero = 0x4,
duke@435 458 notZero = 0x5,
duke@435 459 equal = 0x4,
duke@435 460 notEqual = 0x5,
duke@435 461 less = 0xc,
duke@435 462 lessEqual = 0xe,
duke@435 463 greater = 0xf,
duke@435 464 greaterEqual = 0xd,
duke@435 465 below = 0x2,
duke@435 466 belowEqual = 0x6,
duke@435 467 above = 0x7,
duke@435 468 aboveEqual = 0x3,
duke@435 469 overflow = 0x0,
duke@435 470 noOverflow = 0x1,
duke@435 471 carrySet = 0x2,
duke@435 472 carryClear = 0x3,
duke@435 473 negative = 0x8,
duke@435 474 positive = 0x9,
duke@435 475 parity = 0xa,
duke@435 476 noParity = 0xb
duke@435 477 };
duke@435 478
duke@435 479 enum Prefix {
duke@435 480 // segment overrides
duke@435 481 CS_segment = 0x2e,
duke@435 482 SS_segment = 0x36,
duke@435 483 DS_segment = 0x3e,
duke@435 484 ES_segment = 0x26,
duke@435 485 FS_segment = 0x64,
duke@435 486 GS_segment = 0x65,
duke@435 487
duke@435 488 REX = 0x40,
duke@435 489
duke@435 490 REX_B = 0x41,
duke@435 491 REX_X = 0x42,
duke@435 492 REX_XB = 0x43,
duke@435 493 REX_R = 0x44,
duke@435 494 REX_RB = 0x45,
duke@435 495 REX_RX = 0x46,
duke@435 496 REX_RXB = 0x47,
duke@435 497
duke@435 498 REX_W = 0x48,
duke@435 499
duke@435 500 REX_WB = 0x49,
duke@435 501 REX_WX = 0x4A,
duke@435 502 REX_WXB = 0x4B,
duke@435 503 REX_WR = 0x4C,
duke@435 504 REX_WRB = 0x4D,
duke@435 505 REX_WRX = 0x4E,
kvn@3388 506 REX_WRXB = 0x4F,
kvn@3388 507
kvn@3388 508 VEX_3bytes = 0xC4,
kvn@3388 509 VEX_2bytes = 0xC5
kvn@3388 510 };
kvn@3388 511
kvn@3388 512 enum VexPrefix {
kvn@3388 513 VEX_B = 0x20,
kvn@3388 514 VEX_X = 0x40,
kvn@3388 515 VEX_R = 0x80,
kvn@3388 516 VEX_W = 0x80
kvn@3388 517 };
kvn@3388 518
kvn@3388 519 enum VexSimdPrefix {
kvn@3388 520 VEX_SIMD_NONE = 0x0,
kvn@3388 521 VEX_SIMD_66 = 0x1,
kvn@3388 522 VEX_SIMD_F3 = 0x2,
kvn@3388 523 VEX_SIMD_F2 = 0x3
kvn@3388 524 };
kvn@3388 525
kvn@3388 526 enum VexOpcode {
kvn@3388 527 VEX_OPCODE_NONE = 0x0,
kvn@3388 528 VEX_OPCODE_0F = 0x1,
kvn@3388 529 VEX_OPCODE_0F_38 = 0x2,
kvn@3388 530 VEX_OPCODE_0F_3A = 0x3
duke@435 531 };
duke@435 532
duke@435 533 enum WhichOperand {
duke@435 534 // input to locate_operand, and format code for relocations
never@739 535 imm_operand = 0, // embedded 32-bit|64-bit immediate operand
duke@435 536 disp32_operand = 1, // embedded 32-bit displacement or address
duke@435 537 call32_operand = 2, // embedded 32-bit self-relative displacement
never@739 538 #ifndef _LP64
duke@435 539 _WhichOperand_limit = 3
never@739 540 #else
never@739 541 narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
never@739 542 _WhichOperand_limit = 4
never@739 543 #endif
duke@435 544 };
duke@435 545
never@739 546
never@739 547
never@739 548 // NOTE: The general philopsophy of the declarations here is that 64bit versions
never@739 549 // of instructions are freely declared without the need for wrapping them an ifdef.
never@739 550 // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
never@739 551 // In the .cpp file the implementations are wrapped so that they are dropped out
never@739 552 // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
never@739 553 // to the size it was prior to merging up the 32bit and 64bit assemblers.
never@739 554 //
never@739 555 // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
never@739 556 // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
never@739 557
never@739 558 private:
never@739 559
never@739 560
never@739 561 // 64bit prefixes
never@739 562 int prefix_and_encode(int reg_enc, bool byteinst = false);
never@739 563 int prefixq_and_encode(int reg_enc);
never@739 564
never@739 565 int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
never@739 566 int prefixq_and_encode(int dst_enc, int src_enc);
never@739 567
never@739 568 void prefix(Register reg);
never@739 569 void prefix(Address adr);
never@739 570 void prefixq(Address adr);
never@739 571
never@739 572 void prefix(Address adr, Register reg, bool byteinst = false);
kvn@3388 573 void prefix(Address adr, XMMRegister reg);
never@739 574 void prefixq(Address adr, Register reg);
kvn@3388 575 void prefixq(Address adr, XMMRegister reg);
never@739 576
never@739 577 void prefetch_prefix(Address src);
never@739 578
kvn@3388 579 void rex_prefix(Address adr, XMMRegister xreg,
kvn@3388 580 VexSimdPrefix pre, VexOpcode opc, bool rex_w);
kvn@3388 581 int rex_prefix_and_encode(int dst_enc, int src_enc,
kvn@3388 582 VexSimdPrefix pre, VexOpcode opc, bool rex_w);
kvn@3388 583
kvn@3388 584 void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
kvn@3388 585 int nds_enc, VexSimdPrefix pre, VexOpcode opc,
kvn@3388 586 bool vector256);
kvn@3388 587
kvn@3388 588 void vex_prefix(Address adr, int nds_enc, int xreg_enc,
kvn@3388 589 VexSimdPrefix pre, VexOpcode opc,
kvn@3388 590 bool vex_w, bool vector256);
kvn@3388 591
kvn@3390 592 void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
kvn@3390 593 VexSimdPrefix pre, bool vector256 = false) {
kvn@3390 594 vex_prefix(src, nds->encoding(), dst->encoding(),
kvn@3390 595 pre, VEX_OPCODE_0F, false, vector256);
kvn@3390 596 }
kvn@3390 597
kvn@3388 598 int vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
kvn@3388 599 VexSimdPrefix pre, VexOpcode opc,
kvn@3388 600 bool vex_w, bool vector256);
kvn@3388 601
kvn@3390 602 int vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
kvn@3390 603 VexSimdPrefix pre, bool vector256 = false) {
kvn@3390 604 return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
kvn@3390 605 pre, VEX_OPCODE_0F, false, vector256);
kvn@3390 606 }
kvn@3388 607
kvn@3388 608 void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
kvn@3388 609 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
kvn@3388 610 bool rex_w = false, bool vector256 = false);
kvn@3388 611
kvn@3388 612 void simd_prefix(XMMRegister dst, Address src,
kvn@3388 613 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
kvn@3388 614 simd_prefix(dst, xnoreg, src, pre, opc);
kvn@3388 615 }
kvn@3388 616 void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
kvn@3388 617 simd_prefix(src, dst, pre);
kvn@3388 618 }
kvn@3388 619 void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
kvn@3388 620 VexSimdPrefix pre) {
kvn@3388 621 bool rex_w = true;
kvn@3388 622 simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
kvn@3388 623 }
kvn@3388 624
kvn@3388 625
kvn@3388 626 int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
kvn@3388 627 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
kvn@3388 628 bool rex_w = false, bool vector256 = false);
kvn@3388 629
kvn@3388 630 int simd_prefix_and_encode(XMMRegister dst, XMMRegister src,
kvn@3388 631 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
kvn@3388 632 return simd_prefix_and_encode(dst, xnoreg, src, pre, opc);
kvn@3388 633 }
kvn@3388 634
kvn@3388 635 // Move/convert 32-bit integer value.
kvn@3388 636 int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
kvn@3388 637 VexSimdPrefix pre) {
kvn@3388 638 // It is OK to cast from Register to XMMRegister to pass argument here
kvn@3388 639 // since only encoding is used in simd_prefix_and_encode() and number of
kvn@3388 640 // Gen and Xmm registers are the same.
kvn@3388 641 return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre);
kvn@3388 642 }
kvn@3388 643 int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
kvn@3388 644 return simd_prefix_and_encode(dst, xnoreg, src, pre);
kvn@3388 645 }
kvn@3388 646 int simd_prefix_and_encode(Register dst, XMMRegister src,
kvn@3388 647 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
kvn@3388 648 return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc);
kvn@3388 649 }
kvn@3388 650
kvn@3388 651 // Move/convert 64-bit integer value.
kvn@3388 652 int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
kvn@3388 653 VexSimdPrefix pre) {
kvn@3388 654 bool rex_w = true;
kvn@3388 655 return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, VEX_OPCODE_0F, rex_w);
kvn@3388 656 }
kvn@3388 657 int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
kvn@3388 658 return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
kvn@3388 659 }
kvn@3388 660 int simd_prefix_and_encode_q(Register dst, XMMRegister src,
kvn@3388 661 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
kvn@3388 662 bool rex_w = true;
kvn@3388 663 return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc, rex_w);
kvn@3388 664 }
kvn@3388 665
never@739 666 // Helper functions for groups of instructions
never@739 667 void emit_arith_b(int op1, int op2, Register dst, int imm8);
never@739 668
never@739 669 void emit_arith(int op1, int op2, Register dst, int32_t imm32);
kvn@3574 670 // Force generation of a 4 byte immediate value even if it fits into 8bit
kvn@3574 671 void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
never@739 672 // only 32bit??
never@739 673 void emit_arith(int op1, int op2, Register dst, jobject obj);
never@739 674 void emit_arith(int op1, int op2, Register dst, Register src);
never@739 675
never@739 676 void emit_operand(Register reg,
never@739 677 Register base, Register index, Address::ScaleFactor scale,
never@739 678 int disp,
never@739 679 RelocationHolder const& rspec,
never@739 680 int rip_relative_correction = 0);
never@739 681
never@739 682 void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
never@739 683
never@739 684 // operands that only take the original 32bit registers
never@739 685 void emit_operand32(Register reg, Address adr);
never@739 686
never@739 687 void emit_operand(XMMRegister reg,
never@739 688 Register base, Register index, Address::ScaleFactor scale,
never@739 689 int disp,
never@739 690 RelocationHolder const& rspec);
never@739 691
never@739 692 void emit_operand(XMMRegister reg, Address adr);
never@739 693
never@739 694 void emit_operand(MMXRegister reg, Address adr);
never@739 695
never@739 696 // workaround gcc (3.2.1-7) bug
never@739 697 void emit_operand(Address adr, MMXRegister reg);
never@739 698
never@739 699
never@739 700 // Immediate-to-memory forms
never@739 701 void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
never@739 702
never@739 703 void emit_farith(int b1, int b2, int i);
never@739 704
duke@435 705
duke@435 706 protected:
never@739 707 #ifdef ASSERT
never@739 708 void check_relocation(RelocationHolder const& rspec, int format);
never@739 709 #endif
never@739 710
never@739 711 inline void emit_long64(jlong x);
never@739 712
never@739 713 void emit_data(jint data, relocInfo::relocType rtype, int format);
never@739 714 void emit_data(jint data, RelocationHolder const& rspec, int format);
never@739 715 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
never@739 716 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
never@739 717
never@739 718 bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
never@739 719
never@739 720 // These are all easily abused and hence protected
never@739 721
never@739 722 // 32BIT ONLY SECTION
never@739 723 #ifndef _LP64
never@739 724 // Make these disappear in 64bit mode since they would never be correct
never@739 725 void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 726 void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 727
kvn@1077 728 void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 729 void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 730
never@739 731 void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 732 #else
never@739 733 // 64BIT ONLY SECTION
never@739 734 void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
kvn@1077 735
kvn@1077 736 void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 737 void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 738
kvn@1077 739 void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 740 void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
never@739 741 #endif // _LP64
never@739 742
never@739 743 // These are unique in that we are ensured by the caller that the 32bit
never@739 744 // relative in these instructions will always be able to reach the potentially
never@739 745 // 64bit address described by entry. Since they can take a 64bit address they
never@739 746 // don't have the 32 suffix like the other instructions in this class.
never@739 747
never@739 748 void call_literal(address entry, RelocationHolder const& rspec);
never@739 749 void jmp_literal(address entry, RelocationHolder const& rspec);
never@739 750
never@739 751 // Avoid using directly section
never@739 752 // Instructions in this section are actually usable by anyone without danger
never@739 753 // of failure but have performance issues that are addressed my enhanced
never@739 754 // instructions which will do the proper thing base on the particular cpu.
never@739 755 // We protect them because we don't trust you...
never@739 756
duke@435 757 // Don't use next inc() and dec() methods directly. INC & DEC instructions
duke@435 758 // could cause a partial flag stall since they don't set CF flag.
duke@435 759 // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
duke@435 760 // which call inc() & dec() or add() & sub() in accordance with
duke@435 761 // the product flag UseIncDec value.
duke@435 762
duke@435 763 void decl(Register dst);
duke@435 764 void decl(Address dst);
never@739 765 void decq(Register dst);
never@739 766 void decq(Address dst);
duke@435 767
duke@435 768 void incl(Register dst);
duke@435 769 void incl(Address dst);
never@739 770 void incq(Register dst);
never@739 771 void incq(Address dst);
never@739 772
never@739 773 // New cpus require use of movsd and movss to avoid partial register stall
never@739 774 // when loading from memory. But for old Opteron use movlpd instead of movsd.
never@739 775 // The selection is done in MacroAssembler::movdbl() and movflt().
never@739 776
never@739 777 // Move Scalar Single-Precision Floating-Point Values
never@739 778 void movss(XMMRegister dst, Address src);
never@739 779 void movss(XMMRegister dst, XMMRegister src);
never@739 780 void movss(Address dst, XMMRegister src);
never@739 781
never@739 782 // Move Scalar Double-Precision Floating-Point Values
never@739 783 void movsd(XMMRegister dst, Address src);
never@739 784 void movsd(XMMRegister dst, XMMRegister src);
never@739 785 void movsd(Address dst, XMMRegister src);
never@739 786 void movlpd(XMMRegister dst, Address src);
never@739 787
never@739 788 // New cpus require use of movaps and movapd to avoid partial register stall
never@739 789 // when moving between registers.
never@739 790 void movaps(XMMRegister dst, XMMRegister src);
never@739 791 void movapd(XMMRegister dst, XMMRegister src);
never@739 792
never@739 793 // End avoid using directly
never@739 794
never@739 795
never@739 796 // Instruction prefixes
never@739 797 void prefix(Prefix p);
never@739 798
never@739 799 public:
never@739 800
never@739 801 // Creation
never@739 802 Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
never@739 803
never@739 804 // Decoding
never@739 805 static address locate_operand(address inst, WhichOperand which);
never@739 806 static address locate_next_instruction(address inst);
never@739 807
never@739 808 // Utilities
iveresov@2686 809 static bool is_polling_page_far() NOT_LP64({ return false;});
iveresov@2686 810
never@739 811 // Generic instructions
never@739 812 // Does 32bit or 64bit as needed for the platform. In some sense these
never@739 813 // belong in macro assembler but there is no need for both varieties to exist
never@739 814
never@739 815 void lea(Register dst, Address src);
never@739 816
never@739 817 void mov(Register dst, Register src);
never@739 818
never@739 819 void pusha();
never@739 820 void popa();
never@739 821
never@739 822 void pushf();
never@739 823 void popf();
never@739 824
never@739 825 void push(int32_t imm32);
never@739 826
never@739 827 void push(Register src);
never@739 828
never@739 829 void pop(Register dst);
never@739 830
never@739 831 // These are dummies to prevent surprise implicit conversions to Register
never@739 832 void push(void* v);
never@739 833 void pop(void* v);
never@739 834
never@739 835 // These do register sized moves/scans
never@739 836 void rep_mov();
never@739 837 void rep_set();
never@739 838 void repne_scan();
never@739 839 #ifdef _LP64
never@739 840 void repne_scanl();
never@739 841 #endif
never@739 842
never@739 843 // Vanilla instructions in lexical order
never@739 844
phh@2423 845 void adcl(Address dst, int32_t imm32);
phh@2423 846 void adcl(Address dst, Register src);
never@739 847 void adcl(Register dst, int32_t imm32);
never@739 848 void adcl(Register dst, Address src);
never@739 849 void adcl(Register dst, Register src);
never@739 850
never@739 851 void adcq(Register dst, int32_t imm32);
never@739 852 void adcq(Register dst, Address src);
never@739 853 void adcq(Register dst, Register src);
never@739 854
never@739 855 void addl(Address dst, int32_t imm32);
never@739 856 void addl(Address dst, Register src);
never@739 857 void addl(Register dst, int32_t imm32);
never@739 858 void addl(Register dst, Address src);
never@739 859 void addl(Register dst, Register src);
never@739 860
never@739 861 void addq(Address dst, int32_t imm32);
never@739 862 void addq(Address dst, Register src);
never@739 863 void addq(Register dst, int32_t imm32);
never@739 864 void addq(Register dst, Address src);
never@739 865 void addq(Register dst, Register src);
never@739 866
duke@435 867 void addr_nop_4();
duke@435 868 void addr_nop_5();
duke@435 869 void addr_nop_7();
duke@435 870 void addr_nop_8();
duke@435 871
never@739 872 // Add Scalar Double-Precision Floating-Point Values
never@739 873 void addsd(XMMRegister dst, Address src);
never@739 874 void addsd(XMMRegister dst, XMMRegister src);
never@739 875
never@739 876 // Add Scalar Single-Precision Floating-Point Values
never@739 877 void addss(XMMRegister dst, Address src);
never@739 878 void addss(XMMRegister dst, XMMRegister src);
never@739 879
kvn@3388 880 void andl(Address dst, int32_t imm32);
never@739 881 void andl(Register dst, int32_t imm32);
never@739 882 void andl(Register dst, Address src);
never@739 883 void andl(Register dst, Register src);
never@739 884
never@2980 885 void andq(Address dst, int32_t imm32);
never@739 886 void andq(Register dst, int32_t imm32);
never@739 887 void andq(Register dst, Address src);
never@739 888 void andq(Register dst, Register src);
never@739 889
never@739 890 // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
never@739 891 void andpd(XMMRegister dst, XMMRegister src);
never@739 892
kvn@3388 893 // Bitwise Logical AND of Packed Single-Precision Floating-Point Values
kvn@3388 894 void andps(XMMRegister dst, XMMRegister src);
kvn@3388 895
twisti@1210 896 void bsfl(Register dst, Register src);
twisti@1210 897 void bsrl(Register dst, Register src);
twisti@1210 898
twisti@1210 899 #ifdef _LP64
twisti@1210 900 void bsfq(Register dst, Register src);
twisti@1210 901 void bsrq(Register dst, Register src);
twisti@1210 902 #endif
twisti@1210 903
never@739 904 void bswapl(Register reg);
never@739 905
never@739 906 void bswapq(Register reg);
never@739 907
duke@435 908 void call(Label& L, relocInfo::relocType rtype);
duke@435 909 void call(Register reg); // push pc; pc <- reg
duke@435 910 void call(Address adr); // push pc; pc <- adr
duke@435 911
never@739 912 void cdql();
never@739 913
never@739 914 void cdqq();
never@739 915
never@739 916 void cld() { emit_byte(0xfc); }
never@739 917
never@739 918 void clflush(Address adr);
never@739 919
never@739 920 void cmovl(Condition cc, Register dst, Register src);
never@739 921 void cmovl(Condition cc, Register dst, Address src);
never@739 922
never@739 923 void cmovq(Condition cc, Register dst, Register src);
never@739 924 void cmovq(Condition cc, Register dst, Address src);
never@739 925
never@739 926
never@739 927 void cmpb(Address dst, int imm8);
never@739 928
never@739 929 void cmpl(Address dst, int32_t imm32);
never@739 930
never@739 931 void cmpl(Register dst, int32_t imm32);
never@739 932 void cmpl(Register dst, Register src);
never@739 933 void cmpl(Register dst, Address src);
never@739 934
never@739 935 void cmpq(Address dst, int32_t imm32);
never@739 936 void cmpq(Address dst, Register src);
never@739 937
never@739 938 void cmpq(Register dst, int32_t imm32);
never@739 939 void cmpq(Register dst, Register src);
never@739 940 void cmpq(Register dst, Address src);
never@739 941
never@739 942 // these are dummies used to catch attempting to convert NULL to Register
never@739 943 void cmpl(Register dst, void* junk); // dummy
never@739 944 void cmpq(Register dst, void* junk); // dummy
never@739 945
never@739 946 void cmpw(Address dst, int imm16);
never@739 947
never@739 948 void cmpxchg8 (Address adr);
never@739 949
never@739 950 void cmpxchgl(Register reg, Address adr);
never@739 951
never@739 952 void cmpxchgq(Register reg, Address adr);
never@739 953
never@739 954 // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 955 void comisd(XMMRegister dst, Address src);
kvn@3388 956 void comisd(XMMRegister dst, XMMRegister src);
never@739 957
never@739 958 // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 959 void comiss(XMMRegister dst, Address src);
kvn@3388 960 void comiss(XMMRegister dst, XMMRegister src);
never@739 961
never@739 962 // Identify processor type and features
never@739 963 void cpuid() {
never@739 964 emit_byte(0x0F);
never@739 965 emit_byte(0xA2);
never@739 966 }
never@739 967
never@739 968 // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
never@739 969 void cvtsd2ss(XMMRegister dst, XMMRegister src);
kvn@3388 970 void cvtsd2ss(XMMRegister dst, Address src);
never@739 971
never@739 972 // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
never@739 973 void cvtsi2sdl(XMMRegister dst, Register src);
kvn@3388 974 void cvtsi2sdl(XMMRegister dst, Address src);
never@739 975 void cvtsi2sdq(XMMRegister dst, Register src);
kvn@3388 976 void cvtsi2sdq(XMMRegister dst, Address src);
never@739 977
never@739 978 // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
never@739 979 void cvtsi2ssl(XMMRegister dst, Register src);
kvn@3388 980 void cvtsi2ssl(XMMRegister dst, Address src);
never@739 981 void cvtsi2ssq(XMMRegister dst, Register src);
kvn@3388 982 void cvtsi2ssq(XMMRegister dst, Address src);
never@739 983
never@739 984 // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
never@739 985 void cvtdq2pd(XMMRegister dst, XMMRegister src);
never@739 986
never@739 987 // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
never@739 988 void cvtdq2ps(XMMRegister dst, XMMRegister src);
never@739 989
never@739 990 // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
never@739 991 void cvtss2sd(XMMRegister dst, XMMRegister src);
kvn@3388 992 void cvtss2sd(XMMRegister dst, Address src);
never@739 993
never@739 994 // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
never@739 995 void cvttsd2sil(Register dst, Address src);
never@739 996 void cvttsd2sil(Register dst, XMMRegister src);
never@739 997 void cvttsd2siq(Register dst, XMMRegister src);
never@739 998
never@739 999 // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
never@739 1000 void cvttss2sil(Register dst, XMMRegister src);
never@739 1001 void cvttss2siq(Register dst, XMMRegister src);
never@739 1002
never@739 1003 // Divide Scalar Double-Precision Floating-Point Values
never@739 1004 void divsd(XMMRegister dst, Address src);
never@739 1005 void divsd(XMMRegister dst, XMMRegister src);
never@739 1006
never@739 1007 // Divide Scalar Single-Precision Floating-Point Values
never@739 1008 void divss(XMMRegister dst, Address src);
never@739 1009 void divss(XMMRegister dst, XMMRegister src);
never@739 1010
never@739 1011 void emms();
never@739 1012
never@739 1013 void fabs();
never@739 1014
never@739 1015 void fadd(int i);
never@739 1016
never@739 1017 void fadd_d(Address src);
never@739 1018 void fadd_s(Address src);
never@739 1019
never@739 1020 // "Alternate" versions of x87 instructions place result down in FPU
never@739 1021 // stack instead of on TOS
never@739 1022
never@739 1023 void fadda(int i); // "alternate" fadd
never@739 1024 void faddp(int i = 1);
never@739 1025
never@739 1026 void fchs();
never@739 1027
never@739 1028 void fcom(int i);
never@739 1029
never@739 1030 void fcomp(int i = 1);
never@739 1031 void fcomp_d(Address src);
never@739 1032 void fcomp_s(Address src);
never@739 1033
never@739 1034 void fcompp();
never@739 1035
never@739 1036 void fcos();
never@739 1037
never@739 1038 void fdecstp();
never@739 1039
never@739 1040 void fdiv(int i);
never@739 1041 void fdiv_d(Address src);
never@739 1042 void fdivr_s(Address src);
never@739 1043 void fdiva(int i); // "alternate" fdiv
never@739 1044 void fdivp(int i = 1);
never@739 1045
never@739 1046 void fdivr(int i);
never@739 1047 void fdivr_d(Address src);
never@739 1048 void fdiv_s(Address src);
never@739 1049
never@739 1050 void fdivra(int i); // "alternate" reversed fdiv
never@739 1051
never@739 1052 void fdivrp(int i = 1);
never@739 1053
never@739 1054 void ffree(int i = 0);
never@739 1055
never@739 1056 void fild_d(Address adr);
never@739 1057 void fild_s(Address adr);
never@739 1058
never@739 1059 void fincstp();
never@739 1060
never@739 1061 void finit();
never@739 1062
never@739 1063 void fist_s (Address adr);
never@739 1064 void fistp_d(Address adr);
never@739 1065 void fistp_s(Address adr);
never@739 1066
never@739 1067 void fld1();
never@739 1068
never@739 1069 void fld_d(Address adr);
never@739 1070 void fld_s(Address adr);
never@739 1071 void fld_s(int index);
never@739 1072 void fld_x(Address adr); // extended-precision (80-bit) format
never@739 1073
never@739 1074 void fldcw(Address src);
never@739 1075
never@739 1076 void fldenv(Address src);
never@739 1077
never@739 1078 void fldlg2();
never@739 1079
never@739 1080 void fldln2();
never@739 1081
never@739 1082 void fldz();
never@739 1083
never@739 1084 void flog();
never@739 1085 void flog10();
never@739 1086
never@739 1087 void fmul(int i);
never@739 1088
never@739 1089 void fmul_d(Address src);
never@739 1090 void fmul_s(Address src);
never@739 1091
never@739 1092 void fmula(int i); // "alternate" fmul
never@739 1093
never@739 1094 void fmulp(int i = 1);
never@739 1095
never@739 1096 void fnsave(Address dst);
never@739 1097
never@739 1098 void fnstcw(Address src);
never@739 1099
never@739 1100 void fnstsw_ax();
never@739 1101
never@739 1102 void fprem();
never@739 1103 void fprem1();
never@739 1104
never@739 1105 void frstor(Address src);
never@739 1106
never@739 1107 void fsin();
never@739 1108
never@739 1109 void fsqrt();
never@739 1110
never@739 1111 void fst_d(Address adr);
never@739 1112 void fst_s(Address adr);
never@739 1113
never@739 1114 void fstp_d(Address adr);
never@739 1115 void fstp_d(int index);
never@739 1116 void fstp_s(Address adr);
never@739 1117 void fstp_x(Address adr); // extended-precision (80-bit) format
never@739 1118
never@739 1119 void fsub(int i);
never@739 1120 void fsub_d(Address src);
never@739 1121 void fsub_s(Address src);
never@739 1122
never@739 1123 void fsuba(int i); // "alternate" fsub
never@739 1124
never@739 1125 void fsubp(int i = 1);
never@739 1126
never@739 1127 void fsubr(int i);
never@739 1128 void fsubr_d(Address src);
never@739 1129 void fsubr_s(Address src);
never@739 1130
never@739 1131 void fsubra(int i); // "alternate" reversed fsub
never@739 1132
never@739 1133 void fsubrp(int i = 1);
never@739 1134
never@739 1135 void ftan();
never@739 1136
never@739 1137 void ftst();
never@739 1138
never@739 1139 void fucomi(int i = 1);
never@739 1140 void fucomip(int i = 1);
never@739 1141
never@739 1142 void fwait();
never@739 1143
never@739 1144 void fxch(int i = 1);
never@739 1145
never@739 1146 void fxrstor(Address src);
never@739 1147
never@739 1148 void fxsave(Address dst);
never@739 1149
never@739 1150 void fyl2x();
never@739 1151
never@739 1152 void hlt();
never@739 1153
never@739 1154 void idivl(Register src);
kvn@2275 1155 void divl(Register src); // Unsigned division
never@739 1156
never@739 1157 void idivq(Register src);
never@739 1158
never@739 1159 void imull(Register dst, Register src);
never@739 1160 void imull(Register dst, Register src, int value);
never@739 1161
never@739 1162 void imulq(Register dst, Register src);
never@739 1163 void imulq(Register dst, Register src, int value);
never@739 1164
duke@435 1165
duke@435 1166 // jcc is the generic conditional branch generator to run-
duke@435 1167 // time routines, jcc is used for branches to labels. jcc
duke@435 1168 // takes a branch opcode (cc) and a label (L) and generates
duke@435 1169 // either a backward branch or a forward branch and links it
duke@435 1170 // to the label fixup chain. Usage:
duke@435 1171 //
duke@435 1172 // Label L; // unbound label
duke@435 1173 // jcc(cc, L); // forward branch to unbound label
duke@435 1174 // bind(L); // bind label to the current pc
duke@435 1175 // jcc(cc, L); // backward branch to bound label
duke@435 1176 // bind(L); // illegal: a label may be bound only once
duke@435 1177 //
duke@435 1178 // Note: The same Label can be used for forward and backward branches
duke@435 1179 // but it may be bound only once.
duke@435 1180
kvn@3049 1181 void jcc(Condition cc, Label& L, bool maybe_short = true);
duke@435 1182
duke@435 1183 // Conditional jump to a 8-bit offset to L.
duke@435 1184 // WARNING: be very careful using this for forward jumps. If the label is
duke@435 1185 // not bound within an 8-bit offset of this instruction, a run-time error
duke@435 1186 // will occur.
duke@435 1187 void jccb(Condition cc, Label& L);
duke@435 1188
never@739 1189 void jmp(Address entry); // pc <- entry
never@739 1190
never@739 1191 // Label operations & relative jumps (PPUM Appendix D)
kvn@3049 1192 void jmp(Label& L, bool maybe_short = true); // unconditional jump to L
never@739 1193
never@739 1194 void jmp(Register entry); // pc <- entry
never@739 1195
never@739 1196 // Unconditional 8-bit offset jump to L.
never@739 1197 // WARNING: be very careful using this for forward jumps. If the label is
never@739 1198 // not bound within an 8-bit offset of this instruction, a run-time error
never@739 1199 // will occur.
never@739 1200 void jmpb(Label& L);
never@739 1201
never@739 1202 void ldmxcsr( Address src );
never@739 1203
never@739 1204 void leal(Register dst, Address src);
never@739 1205
never@739 1206 void leaq(Register dst, Address src);
never@739 1207
never@739 1208 void lfence() {
never@739 1209 emit_byte(0x0F);
never@739 1210 emit_byte(0xAE);
never@739 1211 emit_byte(0xE8);
never@739 1212 }
never@739 1213
never@739 1214 void lock();
never@739 1215
twisti@1210 1216 void lzcntl(Register dst, Register src);
twisti@1210 1217
twisti@1210 1218 #ifdef _LP64
twisti@1210 1219 void lzcntq(Register dst, Register src);
twisti@1210 1220 #endif
twisti@1210 1221
never@739 1222 enum Membar_mask_bits {
never@739 1223 StoreStore = 1 << 3,
never@739 1224 LoadStore = 1 << 2,
never@739 1225 StoreLoad = 1 << 1,
never@739 1226 LoadLoad = 1 << 0
never@739 1227 };
never@739 1228
never@1106 1229 // Serializes memory and blows flags
never@739 1230 void membar(Membar_mask_bits order_constraint) {
never@1106 1231 if (os::is_MP()) {
never@1106 1232 // We only have to handle StoreLoad
never@1106 1233 if (order_constraint & StoreLoad) {
never@1106 1234 // All usable chips support "locked" instructions which suffice
never@1106 1235 // as barriers, and are much faster than the alternative of
never@1106 1236 // using cpuid instruction. We use here a locked add [esp],0.
never@1106 1237 // This is conveniently otherwise a no-op except for blowing
never@1106 1238 // flags.
never@1106 1239 // Any change to this code may need to revisit other places in
never@1106 1240 // the code where this idiom is used, in particular the
never@1106 1241 // orderAccess code.
never@1106 1242 lock();
never@1106 1243 addl(Address(rsp, 0), 0);// Assert the lock# signal here
never@1106 1244 }
never@1106 1245 }
never@739 1246 }
never@739 1247
never@739 1248 void mfence();
never@739 1249
never@739 1250 // Moves
never@739 1251
never@739 1252 void mov64(Register dst, int64_t imm64);
never@739 1253
never@739 1254 void movb(Address dst, Register src);
never@739 1255 void movb(Address dst, int imm8);
never@739 1256 void movb(Register dst, Address src);
never@739 1257
never@739 1258 void movdl(XMMRegister dst, Register src);
never@739 1259 void movdl(Register dst, XMMRegister src);
kvn@2602 1260 void movdl(XMMRegister dst, Address src);
never@739 1261
never@739 1262 // Move Double Quadword
never@739 1263 void movdq(XMMRegister dst, Register src);
never@739 1264 void movdq(Register dst, XMMRegister src);
never@739 1265
never@739 1266 // Move Aligned Double Quadword
never@739 1267 void movdqa(XMMRegister dst, XMMRegister src);
never@739 1268
kvn@840 1269 // Move Unaligned Double Quadword
kvn@840 1270 void movdqu(Address dst, XMMRegister src);
kvn@840 1271 void movdqu(XMMRegister dst, Address src);
kvn@840 1272 void movdqu(XMMRegister dst, XMMRegister src);
kvn@840 1273
never@739 1274 void movl(Register dst, int32_t imm32);
never@739 1275 void movl(Address dst, int32_t imm32);
never@739 1276 void movl(Register dst, Register src);
never@739 1277 void movl(Register dst, Address src);
never@739 1278 void movl(Address dst, Register src);
never@739 1279
never@739 1280 // These dummies prevent using movl from converting a zero (like NULL) into Register
never@739 1281 // by giving the compiler two choices it can't resolve
never@739 1282
never@739 1283 void movl(Address dst, void* junk);
never@739 1284 void movl(Register dst, void* junk);
never@739 1285
never@739 1286 #ifdef _LP64
never@739 1287 void movq(Register dst, Register src);
never@739 1288 void movq(Register dst, Address src);
phh@2423 1289 void movq(Address dst, Register src);
never@739 1290 #endif
never@739 1291
never@739 1292 void movq(Address dst, MMXRegister src );
never@739 1293 void movq(MMXRegister dst, Address src );
never@739 1294
never@739 1295 #ifdef _LP64
never@739 1296 // These dummies prevent using movq from converting a zero (like NULL) into Register
never@739 1297 // by giving the compiler two choices it can't resolve
never@739 1298
never@739 1299 void movq(Address dst, void* dummy);
never@739 1300 void movq(Register dst, void* dummy);
never@739 1301 #endif
never@739 1302
never@739 1303 // Move Quadword
never@739 1304 void movq(Address dst, XMMRegister src);
never@739 1305 void movq(XMMRegister dst, Address src);
never@739 1306
never@739 1307 void movsbl(Register dst, Address src);
never@739 1308 void movsbl(Register dst, Register src);
never@739 1309
never@739 1310 #ifdef _LP64
twisti@1059 1311 void movsbq(Register dst, Address src);
twisti@1059 1312 void movsbq(Register dst, Register src);
twisti@1059 1313
never@739 1314 // Move signed 32bit immediate to 64bit extending sign
phh@2423 1315 void movslq(Address dst, int32_t imm64);
never@739 1316 void movslq(Register dst, int32_t imm64);
never@739 1317
never@739 1318 void movslq(Register dst, Address src);
never@739 1319 void movslq(Register dst, Register src);
never@739 1320 void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
never@739 1321 #endif
never@739 1322
never@739 1323 void movswl(Register dst, Address src);
never@739 1324 void movswl(Register dst, Register src);
never@739 1325
twisti@1059 1326 #ifdef _LP64
twisti@1059 1327 void movswq(Register dst, Address src);
twisti@1059 1328 void movswq(Register dst, Register src);
twisti@1059 1329 #endif
twisti@1059 1330
never@739 1331 void movw(Address dst, int imm16);
never@739 1332 void movw(Register dst, Address src);
never@739 1333 void movw(Address dst, Register src);
never@739 1334
never@739 1335 void movzbl(Register dst, Address src);
never@739 1336 void movzbl(Register dst, Register src);
never@739 1337
twisti@1059 1338 #ifdef _LP64
twisti@1059 1339 void movzbq(Register dst, Address src);
twisti@1059 1340 void movzbq(Register dst, Register src);
twisti@1059 1341 #endif
twisti@1059 1342
never@739 1343 void movzwl(Register dst, Address src);
never@739 1344 void movzwl(Register dst, Register src);
never@739 1345
twisti@1059 1346 #ifdef _LP64
twisti@1059 1347 void movzwq(Register dst, Address src);
twisti@1059 1348 void movzwq(Register dst, Register src);
twisti@1059 1349 #endif
twisti@1059 1350
never@739 1351 void mull(Address src);
never@739 1352 void mull(Register src);
never@739 1353
never@739 1354 // Multiply Scalar Double-Precision Floating-Point Values
never@739 1355 void mulsd(XMMRegister dst, Address src);
never@739 1356 void mulsd(XMMRegister dst, XMMRegister src);
never@739 1357
never@739 1358 // Multiply Scalar Single-Precision Floating-Point Values
never@739 1359 void mulss(XMMRegister dst, Address src);
never@739 1360 void mulss(XMMRegister dst, XMMRegister src);
never@739 1361
never@739 1362 void negl(Register dst);
never@739 1363
never@739 1364 #ifdef _LP64
never@739 1365 void negq(Register dst);
never@739 1366 #endif
never@739 1367
never@739 1368 void nop(int i = 1);
never@739 1369
never@739 1370 void notl(Register dst);
never@739 1371
never@739 1372 #ifdef _LP64
never@739 1373 void notq(Register dst);
never@739 1374 #endif
never@739 1375
never@739 1376 void orl(Address dst, int32_t imm32);
never@739 1377 void orl(Register dst, int32_t imm32);
never@739 1378 void orl(Register dst, Address src);
never@739 1379 void orl(Register dst, Register src);
never@739 1380
never@739 1381 void orq(Address dst, int32_t imm32);
never@739 1382 void orq(Register dst, int32_t imm32);
never@739 1383 void orq(Register dst, Address src);
never@739 1384 void orq(Register dst, Register src);
never@739 1385
kvn@3388 1386 // Pack with unsigned saturation
kvn@3388 1387 void packuswb(XMMRegister dst, XMMRegister src);
kvn@3388 1388 void packuswb(XMMRegister dst, Address src);
kvn@3388 1389
cfang@1116 1390 // SSE4.2 string instructions
cfang@1116 1391 void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
cfang@1116 1392 void pcmpestri(XMMRegister xmm1, Address src, int imm8);
cfang@1116 1393
kvn@3388 1394 // SSE4.1 packed move
kvn@3388 1395 void pmovzxbw(XMMRegister dst, XMMRegister src);
kvn@3388 1396 void pmovzxbw(XMMRegister dst, Address src);
kvn@3388 1397
roland@1495 1398 #ifndef _LP64 // no 32bit push/pop on amd64
never@739 1399 void popl(Address dst);
roland@1495 1400 #endif
never@739 1401
never@739 1402 #ifdef _LP64
never@739 1403 void popq(Address dst);
never@739 1404 #endif
never@739 1405
twisti@1078 1406 void popcntl(Register dst, Address src);
twisti@1078 1407 void popcntl(Register dst, Register src);
twisti@1078 1408
twisti@1078 1409 #ifdef _LP64
twisti@1078 1410 void popcntq(Register dst, Address src);
twisti@1078 1411 void popcntq(Register dst, Register src);
twisti@1078 1412 #endif
twisti@1078 1413
never@739 1414 // Prefetches (SSE, SSE2, 3DNOW only)
never@739 1415
never@739 1416 void prefetchnta(Address src);
never@739 1417 void prefetchr(Address src);
never@739 1418 void prefetcht0(Address src);
never@739 1419 void prefetcht1(Address src);
never@739 1420 void prefetcht2(Address src);
never@739 1421 void prefetchw(Address src);
never@739 1422
never@2569 1423 // POR - Bitwise logical OR
never@2569 1424 void por(XMMRegister dst, XMMRegister src);
kvn@3388 1425 void por(XMMRegister dst, Address src);
never@2569 1426
never@739 1427 // Shuffle Packed Doublewords
never@739 1428 void pshufd(XMMRegister dst, XMMRegister src, int mode);
never@739 1429 void pshufd(XMMRegister dst, Address src, int mode);
never@739 1430
never@739 1431 // Shuffle Packed Low Words
never@739 1432 void pshuflw(XMMRegister dst, XMMRegister src, int mode);
never@739 1433 void pshuflw(XMMRegister dst, Address src, int mode);
never@739 1434
kvn@2602 1435 // Shift Right by bits Logical Quadword Immediate
never@739 1436 void psrlq(XMMRegister dst, int shift);
never@739 1437
kvn@2602 1438 // Shift Right by bytes Logical DoubleQuadword Immediate
kvn@2602 1439 void psrldq(XMMRegister dst, int shift);
kvn@2602 1440
cfang@1116 1441 // Logical Compare Double Quadword
cfang@1116 1442 void ptest(XMMRegister dst, XMMRegister src);
cfang@1116 1443 void ptest(XMMRegister dst, Address src);
cfang@1116 1444
never@739 1445 // Interleave Low Bytes
never@739 1446 void punpcklbw(XMMRegister dst, XMMRegister src);
kvn@3388 1447 void punpcklbw(XMMRegister dst, Address src);
kvn@3388 1448
kvn@3388 1449 // Interleave Low Doublewords
kvn@3388 1450 void punpckldq(XMMRegister dst, XMMRegister src);
kvn@3388 1451 void punpckldq(XMMRegister dst, Address src);
never@739 1452
roland@1495 1453 #ifndef _LP64 // no 32bit push/pop on amd64
never@739 1454 void pushl(Address src);
roland@1495 1455 #endif
never@739 1456
never@739 1457 void pushq(Address src);
never@739 1458
never@739 1459 // Xor Packed Byte Integer Values
never@739 1460 void pxor(XMMRegister dst, Address src);
never@739 1461 void pxor(XMMRegister dst, XMMRegister src);
never@739 1462
never@739 1463 void rcll(Register dst, int imm8);
never@739 1464
never@739 1465 void rclq(Register dst, int imm8);
never@739 1466
never@739 1467 void ret(int imm16);
duke@435 1468
duke@435 1469 void sahf();
duke@435 1470
never@739 1471 void sarl(Register dst, int imm8);
never@739 1472 void sarl(Register dst);
never@739 1473
never@739 1474 void sarq(Register dst, int imm8);
never@739 1475 void sarq(Register dst);
never@739 1476
never@739 1477 void sbbl(Address dst, int32_t imm32);
never@739 1478 void sbbl(Register dst, int32_t imm32);
never@739 1479 void sbbl(Register dst, Address src);
never@739 1480 void sbbl(Register dst, Register src);
never@739 1481
never@739 1482 void sbbq(Address dst, int32_t imm32);
never@739 1483 void sbbq(Register dst, int32_t imm32);
never@739 1484 void sbbq(Register dst, Address src);
never@739 1485 void sbbq(Register dst, Register src);
never@739 1486
never@739 1487 void setb(Condition cc, Register dst);
never@739 1488
never@739 1489 void shldl(Register dst, Register src);
never@739 1490
never@739 1491 void shll(Register dst, int imm8);
never@739 1492 void shll(Register dst);
never@739 1493
never@739 1494 void shlq(Register dst, int imm8);
never@739 1495 void shlq(Register dst);
never@739 1496
never@739 1497 void shrdl(Register dst, Register src);
never@739 1498
never@739 1499 void shrl(Register dst, int imm8);
never@739 1500 void shrl(Register dst);
never@739 1501
never@739 1502 void shrq(Register dst, int imm8);
never@739 1503 void shrq(Register dst);
never@739 1504
never@739 1505 void smovl(); // QQQ generic?
never@739 1506
never@739 1507 // Compute Square Root of Scalar Double-Precision Floating-Point Value
never@739 1508 void sqrtsd(XMMRegister dst, Address src);
never@739 1509 void sqrtsd(XMMRegister dst, XMMRegister src);
never@739 1510
twisti@2350 1511 // Compute Square Root of Scalar Single-Precision Floating-Point Value
twisti@2350 1512 void sqrtss(XMMRegister dst, Address src);
twisti@2350 1513 void sqrtss(XMMRegister dst, XMMRegister src);
twisti@2350 1514
never@739 1515 void std() { emit_byte(0xfd); }
never@739 1516
never@739 1517 void stmxcsr( Address dst );
never@739 1518
never@739 1519 void subl(Address dst, int32_t imm32);
never@739 1520 void subl(Address dst, Register src);
never@739 1521 void subl(Register dst, int32_t imm32);
never@739 1522 void subl(Register dst, Address src);
never@739 1523 void subl(Register dst, Register src);
never@739 1524
never@739 1525 void subq(Address dst, int32_t imm32);
never@739 1526 void subq(Address dst, Register src);
never@739 1527 void subq(Register dst, int32_t imm32);
never@739 1528 void subq(Register dst, Address src);
never@739 1529 void subq(Register dst, Register src);
never@739 1530
kvn@3574 1531 // Force generation of a 4 byte immediate value even if it fits into 8bit
kvn@3574 1532 void subl_imm32(Register dst, int32_t imm32);
kvn@3574 1533 void subq_imm32(Register dst, int32_t imm32);
never@739 1534
never@739 1535 // Subtract Scalar Double-Precision Floating-Point Values
never@739 1536 void subsd(XMMRegister dst, Address src);
never@739 1537 void subsd(XMMRegister dst, XMMRegister src);
never@739 1538
never@739 1539 // Subtract Scalar Single-Precision Floating-Point Values
never@739 1540 void subss(XMMRegister dst, Address src);
duke@435 1541 void subss(XMMRegister dst, XMMRegister src);
never@739 1542
never@739 1543 void testb(Register dst, int imm8);
never@739 1544
never@739 1545 void testl(Register dst, int32_t imm32);
never@739 1546 void testl(Register dst, Register src);
never@739 1547 void testl(Register dst, Address src);
never@739 1548
never@739 1549 void testq(Register dst, int32_t imm32);
never@739 1550 void testq(Register dst, Register src);
never@739 1551
never@739 1552
never@739 1553 // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 1554 void ucomisd(XMMRegister dst, Address src);
never@739 1555 void ucomisd(XMMRegister dst, XMMRegister src);
never@739 1556
never@739 1557 // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 1558 void ucomiss(XMMRegister dst, Address src);
duke@435 1559 void ucomiss(XMMRegister dst, XMMRegister src);
never@739 1560
never@739 1561 void xaddl(Address dst, Register src);
never@739 1562
never@739 1563 void xaddq(Address dst, Register src);
never@739 1564
never@739 1565 void xchgl(Register reg, Address adr);
never@739 1566 void xchgl(Register dst, Register src);
never@739 1567
never@739 1568 void xchgq(Register reg, Address adr);
never@739 1569 void xchgq(Register dst, Register src);
never@739 1570
kvn@3388 1571 // Get Value of Extended Control Register
kvn@3388 1572 void xgetbv() {
kvn@3388 1573 emit_byte(0x0F);
kvn@3388 1574 emit_byte(0x01);
kvn@3388 1575 emit_byte(0xD0);
kvn@3388 1576 }
kvn@3388 1577
never@739 1578 void xorl(Register dst, int32_t imm32);
never@739 1579 void xorl(Register dst, Address src);
never@739 1580 void xorl(Register dst, Register src);
never@739 1581
never@739 1582 void xorq(Register dst, Address src);
never@739 1583 void xorq(Register dst, Register src);
never@739 1584
never@739 1585 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
kvn@3388 1586 void xorpd(XMMRegister dst, XMMRegister src);
kvn@3388 1587
kvn@3388 1588 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
kvn@3388 1589 void xorps(XMMRegister dst, XMMRegister src);
kvn@3388 1590
kvn@3388 1591 void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
kvn@3388 1592
kvn@3390 1593 // AVX 3-operands instructions (encoded with VEX prefix)
kvn@3390 1594 void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1595 void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1596 void vaddss(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1597 void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1598 void vandpd(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1599 void vandps(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1600 void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1601 void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1602 void vdivss(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1603 void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1604 void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1605 void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1606 void vmulss(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1607 void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1608 void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1609 void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1610 void vsubss(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1611 void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
kvn@3390 1612 void vxorpd(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1613 void vxorps(XMMRegister dst, XMMRegister nds, Address src);
kvn@3390 1614
kvn@3390 1615
kvn@3388 1616 protected:
kvn@3388 1617 // Next instructions require address alignment 16 bytes SSE mode.
kvn@3388 1618 // They should be called only from corresponding MacroAssembler instructions.
kvn@3388 1619 void andpd(XMMRegister dst, Address src);
kvn@3388 1620 void andps(XMMRegister dst, Address src);
never@739 1621 void xorpd(XMMRegister dst, Address src);
never@739 1622 void xorps(XMMRegister dst, Address src);
kvn@3388 1623
duke@435 1624 };
duke@435 1625
duke@435 1626
duke@435 1627 // MacroAssembler extends Assembler by frequently used macros.
duke@435 1628 //
duke@435 1629 // Instructions for which a 'better' code sequence exists depending
duke@435 1630 // on arguments should also go in here.
duke@435 1631
duke@435 1632 class MacroAssembler: public Assembler {
ysr@777 1633 friend class LIR_Assembler;
ysr@777 1634 friend class Runtime1; // as_Address()
johnc@2781 1635
duke@435 1636 protected:
duke@435 1637
duke@435 1638 Address as_Address(AddressLiteral adr);
duke@435 1639 Address as_Address(ArrayAddress adr);
duke@435 1640
duke@435 1641 // Support for VM calls
duke@435 1642 //
duke@435 1643 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
duke@435 1644 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1645 // additional registers when doing a VM call).
duke@435 1646 #ifdef CC_INTERP
duke@435 1647 // c++ interpreter never wants to use interp_masm version of call_VM
duke@435 1648 #define VIRTUAL
duke@435 1649 #else
duke@435 1650 #define VIRTUAL virtual
duke@435 1651 #endif
duke@435 1652
duke@435 1653 VIRTUAL void call_VM_leaf_base(
duke@435 1654 address entry_point, // the entry point
duke@435 1655 int number_of_arguments // the number of arguments to pop after the call
duke@435 1656 );
duke@435 1657
duke@435 1658 // This is the base routine called by the different versions of call_VM. The interpreter
duke@435 1659 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1660 // additional registers when doing a VM call).
duke@435 1661 //
duke@435 1662 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
duke@435 1663 // returns the register which contains the thread upon return. If a thread register has been
duke@435 1664 // specified, the return value will correspond to that register. If no last_java_sp is specified
duke@435 1665 // (noreg) than rsp will be used instead.
duke@435 1666 VIRTUAL void call_VM_base( // returns the register containing the thread upon return
duke@435 1667 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
duke@435 1668 Register java_thread, // the thread if computed before ; use noreg otherwise
duke@435 1669 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
duke@435 1670 address entry_point, // the entry point
duke@435 1671 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
duke@435 1672 bool check_exceptions // whether to check for pending exceptions after return
duke@435 1673 );
duke@435 1674
duke@435 1675 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
duke@435 1676 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1677 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
duke@435 1678 virtual void check_and_handle_popframe(Register java_thread);
duke@435 1679 virtual void check_and_handle_earlyret(Register java_thread);
duke@435 1680
duke@435 1681 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
duke@435 1682
duke@435 1683 // helpers for FPU flag access
duke@435 1684 // tmp is a temporary register, if none is available use noreg
duke@435 1685 void save_rax (Register tmp);
duke@435 1686 void restore_rax(Register tmp);
duke@435 1687
duke@435 1688 public:
duke@435 1689 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1690
duke@435 1691 // Support for NULL-checks
duke@435 1692 //
duke@435 1693 // Generates code that causes a NULL OS exception if the content of reg is NULL.
duke@435 1694 // If the accessed location is M[reg + offset] and the offset is known, provide the
duke@435 1695 // offset. No explicit code generation is needed if the offset is within a certain
duke@435 1696 // range (0 <= offset <= page_size).
duke@435 1697
duke@435 1698 void null_check(Register reg, int offset = -1);
kvn@603 1699 static bool needs_explicit_null_check(intptr_t offset);
duke@435 1700
duke@435 1701 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1702 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1703 void pd_patch_instruction(address branch, address target);
duke@435 1704 #ifndef PRODUCT
duke@435 1705 static void pd_print_patched_instruction(address branch);
duke@435 1706 #endif
duke@435 1707
duke@435 1708 // The following 4 methods return the offset of the appropriate move instruction
duke@435 1709
jrose@1057 1710 // Support for fast byte/short loading with zero extension (depending on particular CPU)
duke@435 1711 int load_unsigned_byte(Register dst, Address src);
jrose@1057 1712 int load_unsigned_short(Register dst, Address src);
jrose@1057 1713
jrose@1057 1714 // Support for fast byte/short loading with sign extension (depending on particular CPU)
duke@435 1715 int load_signed_byte(Register dst, Address src);
jrose@1057 1716 int load_signed_short(Register dst, Address src);
duke@435 1717
duke@435 1718 // Support for sign-extension (hi:lo = extend_sign(lo))
duke@435 1719 void extend_sign(Register hi, Register lo);
duke@435 1720
twisti@2565 1721 // Load and store values by size and signed-ness
twisti@2565 1722 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
twisti@2565 1723 void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
jrose@1057 1724
duke@435 1725 // Support for inc/dec with optimal instruction selection depending on value
never@739 1726
never@739 1727 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
never@739 1728 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
never@739 1729
never@739 1730 void decrementl(Address dst, int value = 1);
never@739 1731 void decrementl(Register reg, int value = 1);
never@739 1732
never@739 1733 void decrementq(Register reg, int value = 1);
never@739 1734 void decrementq(Address dst, int value = 1);
never@739 1735
never@739 1736 void incrementl(Address dst, int value = 1);
never@739 1737 void incrementl(Register reg, int value = 1);
never@739 1738
never@739 1739 void incrementq(Register reg, int value = 1);
never@739 1740 void incrementq(Address dst, int value = 1);
never@739 1741
duke@435 1742
duke@435 1743 // Support optimal SSE move instructions.
duke@435 1744 void movflt(XMMRegister dst, XMMRegister src) {
duke@435 1745 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
duke@435 1746 else { movss (dst, src); return; }
duke@435 1747 }
duke@435 1748 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
duke@435 1749 void movflt(XMMRegister dst, AddressLiteral src);
duke@435 1750 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
duke@435 1751
duke@435 1752 void movdbl(XMMRegister dst, XMMRegister src) {
duke@435 1753 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
duke@435 1754 else { movsd (dst, src); return; }
duke@435 1755 }
duke@435 1756
duke@435 1757 void movdbl(XMMRegister dst, AddressLiteral src);
duke@435 1758
duke@435 1759 void movdbl(XMMRegister dst, Address src) {
duke@435 1760 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
duke@435 1761 else { movlpd(dst, src); return; }
duke@435 1762 }
duke@435 1763 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
duke@435 1764
never@739 1765 void incrementl(AddressLiteral dst);
never@739 1766 void incrementl(ArrayAddress dst);
duke@435 1767
duke@435 1768 // Alignment
duke@435 1769 void align(int modulus);
duke@435 1770
kvn@3574 1771 // A 5 byte nop that is safe for patching (see patch_verified_entry)
kvn@3574 1772 void fat_nop();
duke@435 1773
duke@435 1774 // Stack frame creation/removal
duke@435 1775 void enter();
duke@435 1776 void leave();
duke@435 1777
duke@435 1778 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
duke@435 1779 // The pointer will be loaded into the thread register.
duke@435 1780 void get_thread(Register thread);
duke@435 1781
apetrusenko@797 1782
duke@435 1783 // Support for VM calls
duke@435 1784 //
duke@435 1785 // It is imperative that all calls into the VM are handled via the call_VM macros.
duke@435 1786 // They make sure that the stack linkage is setup correctly. call_VM's correspond
duke@435 1787 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
duke@435 1788
never@739 1789
never@739 1790 void call_VM(Register oop_result,
never@739 1791 address entry_point,
never@739 1792 bool check_exceptions = true);
never@739 1793 void call_VM(Register oop_result,
never@739 1794 address entry_point,
never@739 1795 Register arg_1,
never@739 1796 bool check_exceptions = true);
never@739 1797 void call_VM(Register oop_result,
never@739 1798 address entry_point,
never@739 1799 Register arg_1, Register arg_2,
never@739 1800 bool check_exceptions = true);
never@739 1801 void call_VM(Register oop_result,
never@739 1802 address entry_point,
never@739 1803 Register arg_1, Register arg_2, Register arg_3,
never@739 1804 bool check_exceptions = true);
never@739 1805
never@739 1806 // Overloadings with last_Java_sp
never@739 1807 void call_VM(Register oop_result,
never@739 1808 Register last_java_sp,
never@739 1809 address entry_point,
never@739 1810 int number_of_arguments = 0,
never@739 1811 bool check_exceptions = true);
never@739 1812 void call_VM(Register oop_result,
never@739 1813 Register last_java_sp,
never@739 1814 address entry_point,
never@739 1815 Register arg_1, bool
never@739 1816 check_exceptions = true);
never@739 1817 void call_VM(Register oop_result,
never@739 1818 Register last_java_sp,
never@739 1819 address entry_point,
never@739 1820 Register arg_1, Register arg_2,
never@739 1821 bool check_exceptions = true);
never@739 1822 void call_VM(Register oop_result,
never@739 1823 Register last_java_sp,
never@739 1824 address entry_point,
never@739 1825 Register arg_1, Register arg_2, Register arg_3,
never@739 1826 bool check_exceptions = true);
never@739 1827
jrose@2952 1828 // These always tightly bind to MacroAssembler::call_VM_base
jrose@2952 1829 // bypassing the virtual implementation
jrose@2952 1830 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
jrose@2952 1831 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
jrose@2952 1832 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
jrose@2952 1833 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
jrose@2952 1834 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
jrose@2952 1835
never@739 1836 void call_VM_leaf(address entry_point,
never@739 1837 int number_of_arguments = 0);
never@739 1838 void call_VM_leaf(address entry_point,
never@739 1839 Register arg_1);
never@739 1840 void call_VM_leaf(address entry_point,
never@739 1841 Register arg_1, Register arg_2);
never@739 1842 void call_VM_leaf(address entry_point,
never@739 1843 Register arg_1, Register arg_2, Register arg_3);
duke@435 1844
never@2868 1845 // These always tightly bind to MacroAssembler::call_VM_leaf_base
never@2868 1846 // bypassing the virtual implementation
never@2868 1847 void super_call_VM_leaf(address entry_point);
never@2868 1848 void super_call_VM_leaf(address entry_point, Register arg_1);
never@2868 1849 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
never@2868 1850 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
never@2868 1851 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
never@2868 1852
duke@435 1853 // last Java Frame (fills frame anchor)
never@739 1854 void set_last_Java_frame(Register thread,
never@739 1855 Register last_java_sp,
never@739 1856 Register last_java_fp,
never@739 1857 address last_java_pc);
never@739 1858
never@739 1859 // thread in the default location (r15_thread on 64bit)
never@739 1860 void set_last_Java_frame(Register last_java_sp,
never@739 1861 Register last_java_fp,
never@739 1862 address last_java_pc);
never@739 1863
duke@435 1864 void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
duke@435 1865
never@739 1866 // thread in the default location (r15_thread on 64bit)
never@739 1867 void reset_last_Java_frame(bool clear_fp, bool clear_pc);
never@739 1868
duke@435 1869 // Stores
duke@435 1870 void store_check(Register obj); // store check for obj - register is destroyed afterwards
duke@435 1871 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
duke@435 1872
johnc@2781 1873 #ifndef SERIALGC
johnc@2781 1874
apetrusenko@797 1875 void g1_write_barrier_pre(Register obj,
johnc@2781 1876 Register pre_val,
apetrusenko@797 1877 Register thread,
apetrusenko@797 1878 Register tmp,
johnc@2781 1879 bool tosca_live,
johnc@2781 1880 bool expand_call);
johnc@2781 1881
apetrusenko@797 1882 void g1_write_barrier_post(Register store_addr,
apetrusenko@797 1883 Register new_val,
apetrusenko@797 1884 Register thread,
apetrusenko@797 1885 Register tmp,
apetrusenko@797 1886 Register tmp2);
ysr@777 1887
johnc@2781 1888 #endif // SERIALGC
ysr@777 1889
duke@435 1890 // split store_check(Register obj) to enhance instruction interleaving
duke@435 1891 void store_check_part_1(Register obj);
duke@435 1892 void store_check_part_2(Register obj);
duke@435 1893
duke@435 1894 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
duke@435 1895 void c2bool(Register x);
duke@435 1896
duke@435 1897 // C++ bool manipulation
duke@435 1898
duke@435 1899 void movbool(Register dst, Address src);
duke@435 1900 void movbool(Address dst, bool boolconst);
duke@435 1901 void movbool(Address dst, Register src);
duke@435 1902 void testbool(Register dst);
duke@435 1903
never@739 1904 // oop manipulations
never@739 1905 void load_klass(Register dst, Register src);
never@739 1906 void store_klass(Register dst, Register src);
never@739 1907
twisti@2201 1908 void load_heap_oop(Register dst, Address src);
iveresov@2746 1909 void load_heap_oop_not_null(Register dst, Address src);
twisti@2201 1910 void store_heap_oop(Address dst, Register src);
twisti@2201 1911
twisti@2201 1912 // Used for storing NULL. All other oop constants should be
twisti@2201 1913 // stored using routines that take a jobject.
twisti@2201 1914 void store_heap_oop_null(Address dst);
twisti@2201 1915
never@739 1916 void load_prototype_header(Register dst, Register src);
never@739 1917
never@739 1918 #ifdef _LP64
never@739 1919 void store_klass_gap(Register dst, Register src);
never@739 1920
johnc@1482 1921 // This dummy is to prevent a call to store_heap_oop from
johnc@1482 1922 // converting a zero (like NULL) into a Register by giving
johnc@1482 1923 // the compiler two choices it can't resolve
johnc@1482 1924
johnc@1482 1925 void store_heap_oop(Address dst, void* dummy);
johnc@1482 1926
never@739 1927 void encode_heap_oop(Register r);
never@739 1928 void decode_heap_oop(Register r);
never@739 1929 void encode_heap_oop_not_null(Register r);
never@739 1930 void decode_heap_oop_not_null(Register r);
never@739 1931 void encode_heap_oop_not_null(Register dst, Register src);
never@739 1932 void decode_heap_oop_not_null(Register dst, Register src);
never@739 1933
never@739 1934 void set_narrow_oop(Register dst, jobject obj);
kvn@1077 1935 void set_narrow_oop(Address dst, jobject obj);
kvn@1077 1936 void cmp_narrow_oop(Register dst, jobject obj);
kvn@1077 1937 void cmp_narrow_oop(Address dst, jobject obj);
never@739 1938
never@739 1939 // if heap base register is used - reinit it with the correct value
never@739 1940 void reinit_heapbase();
kvn@2039 1941
kvn@2039 1942 DEBUG_ONLY(void verify_heapbase(const char* msg);)
kvn@2039 1943
never@739 1944 #endif // _LP64
never@739 1945
never@739 1946 // Int division/remainder for Java
duke@435 1947 // (as idivl, but checks for special case as described in JVM spec.)
duke@435 1948 // returns idivl instruction offset for implicit exception handling
duke@435 1949 int corrected_idivl(Register reg);
duke@435 1950
never@739 1951 // Long division/remainder for Java
never@739 1952 // (as idivq, but checks for special case as described in JVM spec.)
never@739 1953 // returns idivq instruction offset for implicit exception handling
never@739 1954 int corrected_idivq(Register reg);
never@739 1955
duke@435 1956 void int3();
duke@435 1957
never@739 1958 // Long operation macros for a 32bit cpu
duke@435 1959 // Long negation for Java
duke@435 1960 void lneg(Register hi, Register lo);
duke@435 1961
duke@435 1962 // Long multiplication for Java
never@739 1963 // (destroys contents of eax, ebx, ecx and edx)
duke@435 1964 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
duke@435 1965
duke@435 1966 // Long shifts for Java
duke@435 1967 // (semantics as described in JVM spec.)
duke@435 1968 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
duke@435 1969 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
duke@435 1970
duke@435 1971 // Long compare for Java
duke@435 1972 // (semantics as described in JVM spec.)
duke@435 1973 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
duke@435 1974
never@739 1975
never@739 1976 // misc
never@739 1977
never@739 1978 // Sign extension
never@739 1979 void sign_extend_short(Register reg);
never@739 1980 void sign_extend_byte(Register reg);
never@739 1981
never@739 1982 // Division by power of 2, rounding towards 0
never@739 1983 void division_with_shift(Register reg, int shift_value);
never@739 1984
duke@435 1985 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
duke@435 1986 //
duke@435 1987 // CF (corresponds to C0) if x < y
duke@435 1988 // PF (corresponds to C2) if unordered
duke@435 1989 // ZF (corresponds to C3) if x = y
duke@435 1990 //
duke@435 1991 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1992 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
duke@435 1993 void fcmp(Register tmp);
duke@435 1994 // Variant of the above which allows y to be further down the stack
duke@435 1995 // and which only pops x and y if specified. If pop_right is
duke@435 1996 // specified then pop_left must also be specified.
duke@435 1997 void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
duke@435 1998
duke@435 1999 // Floating-point comparison for Java
duke@435 2000 // Compares the top-most stack entries on the FPU stack and stores the result in dst.
duke@435 2001 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 2002 // (semantics as described in JVM spec.)
duke@435 2003 void fcmp2int(Register dst, bool unordered_is_less);
duke@435 2004 // Variant of the above which allows y to be further down the stack
duke@435 2005 // and which only pops x and y if specified. If pop_right is
duke@435 2006 // specified then pop_left must also be specified.
duke@435 2007 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
duke@435 2008
duke@435 2009 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
duke@435 2010 // tmp is a temporary register, if none is available use noreg
duke@435 2011 void fremr(Register tmp);
duke@435 2012
duke@435 2013
duke@435 2014 // same as fcmp2int, but using SSE2
duke@435 2015 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 2016 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 2017
duke@435 2018 // Inlined sin/cos generator for Java; must not use CPU instruction
duke@435 2019 // directly on Intel as it does not have high enough precision
duke@435 2020 // outside of the range [-pi/4, pi/4]. Extra argument indicate the
duke@435 2021 // number of FPU stack slots in use; all but the topmost will
duke@435 2022 // require saving if a slow case is necessary. Assumes argument is
duke@435 2023 // on FP TOS; result is on FP TOS. No cpu registers are changed by
duke@435 2024 // this code.
duke@435 2025 void trigfunc(char trig, int num_fpu_regs_in_use = 1);
duke@435 2026
duke@435 2027 // branch to L if FPU flag C2 is set/not set
duke@435 2028 // tmp is a temporary register, if none is available use noreg
duke@435 2029 void jC2 (Register tmp, Label& L);
duke@435 2030 void jnC2(Register tmp, Label& L);
duke@435 2031
duke@435 2032 // Pop ST (ffree & fincstp combined)
duke@435 2033 void fpop();
duke@435 2034
duke@435 2035 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 2036 void push_fTOS();
duke@435 2037
duke@435 2038 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 2039 void pop_fTOS();
duke@435 2040
duke@435 2041 void empty_FPU_stack();
duke@435 2042
duke@435 2043 void push_IU_state();
duke@435 2044 void pop_IU_state();
duke@435 2045
duke@435 2046 void push_FPU_state();
duke@435 2047 void pop_FPU_state();
duke@435 2048
duke@435 2049 void push_CPU_state();
duke@435 2050 void pop_CPU_state();
duke@435 2051
duke@435 2052 // Round up to a power of two
duke@435 2053 void round_to(Register reg, int modulus);
duke@435 2054
duke@435 2055 // Callee saved registers handling
duke@435 2056 void push_callee_saved_registers();
duke@435 2057 void pop_callee_saved_registers();
duke@435 2058
duke@435 2059 // allocation
duke@435 2060 void eden_allocate(
duke@435 2061 Register obj, // result: pointer to object after successful allocation
duke@435 2062 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 2063 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 2064 Register t1, // temp register
duke@435 2065 Label& slow_case // continuation point if fast allocation fails
duke@435 2066 );
duke@435 2067 void tlab_allocate(
duke@435 2068 Register obj, // result: pointer to object after successful allocation
duke@435 2069 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 2070 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 2071 Register t1, // temp register
duke@435 2072 Register t2, // temp register
duke@435 2073 Label& slow_case // continuation point if fast allocation fails
duke@435 2074 );
phh@2423 2075 Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
phh@2423 2076 void incr_allocated_bytes(Register thread,
phh@2423 2077 Register var_size_in_bytes, int con_size_in_bytes,
phh@2423 2078 Register t1 = noreg);
duke@435 2079
jrose@1058 2080 // interface method calling
jrose@1058 2081 void lookup_interface_method(Register recv_klass,
jrose@1058 2082 Register intf_klass,
jrose@1100 2083 RegisterOrConstant itable_index,
jrose@1058 2084 Register method_result,
jrose@1058 2085 Register scan_temp,
jrose@1058 2086 Label& no_such_interface);
jrose@1058 2087
jrose@1079 2088 // Test sub_klass against super_klass, with fast and slow paths.
jrose@1079 2089
jrose@1079 2090 // The fast path produces a tri-state answer: yes / no / maybe-slow.
jrose@1079 2091 // One of the three labels can be NULL, meaning take the fall-through.
jrose@1079 2092 // If super_check_offset is -1, the value is loaded up from super_klass.
jrose@1079 2093 // No registers are killed, except temp_reg.
jrose@1079 2094 void check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 2095 Register super_klass,
jrose@1079 2096 Register temp_reg,
jrose@1079 2097 Label* L_success,
jrose@1079 2098 Label* L_failure,
jrose@1079 2099 Label* L_slow_path,
jrose@1100 2100 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
jrose@1079 2101
jrose@1079 2102 // The rest of the type check; must be wired to a corresponding fast path.
jrose@1079 2103 // It does not repeat the fast path logic, so don't use it standalone.
jrose@1079 2104 // The temp_reg and temp2_reg can be noreg, if no temps are available.
jrose@1079 2105 // Updates the sub's secondary super cache as necessary.
jrose@1079 2106 // If set_cond_codes, condition codes will be Z on success, NZ on failure.
jrose@1079 2107 void check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 2108 Register super_klass,
jrose@1079 2109 Register temp_reg,
jrose@1079 2110 Register temp2_reg,
jrose@1079 2111 Label* L_success,
jrose@1079 2112 Label* L_failure,
jrose@1079 2113 bool set_cond_codes = false);
jrose@1079 2114
jrose@1079 2115 // Simplified, combined version, good for typical uses.
jrose@1079 2116 // Falls through on failure.
jrose@1079 2117 void check_klass_subtype(Register sub_klass,
jrose@1079 2118 Register super_klass,
jrose@1079 2119 Register temp_reg,
jrose@1079 2120 Label& L_success);
jrose@1079 2121
jrose@1145 2122 // method handles (JSR 292)
jrose@1145 2123 void check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 2124 Register temp_reg,
jrose@1145 2125 Label& wrong_method_type);
jrose@1145 2126 void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
jrose@1145 2127 Register temp_reg);
jrose@1145 2128 void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
jrose@1145 2129 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
jrose@1145 2130
jrose@1145 2131
duke@435 2132 //----
duke@435 2133 void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
duke@435 2134
duke@435 2135 // Debugging
never@739 2136
never@739 2137 // only if +VerifyOops
never@739 2138 void verify_oop(Register reg, const char* s = "broken oop");
duke@435 2139 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
duke@435 2140
never@739 2141 // only if +VerifyFPU
never@739 2142 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
never@739 2143
never@739 2144 // prints msg, dumps registers and stops execution
never@739 2145 void stop(const char* msg);
never@739 2146
never@739 2147 // prints msg and continues
never@739 2148 void warn(const char* msg);
never@739 2149
never@739 2150 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
never@739 2151 static void debug64(char* msg, int64_t pc, int64_t regs[]);
never@739 2152
duke@435 2153 void os_breakpoint();
never@739 2154
duke@435 2155 void untested() { stop("untested"); }
never@739 2156
twisti@2201 2157 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
never@739 2158
duke@435 2159 void should_not_reach_here() { stop("should not reach here"); }
never@739 2160
duke@435 2161 void print_CPU_state();
duke@435 2162
duke@435 2163 // Stack overflow checking
duke@435 2164 void bang_stack_with_offset(int offset) {
duke@435 2165 // stack grows down, caller passes positive offset
duke@435 2166 assert(offset > 0, "must bang with negative offset");
duke@435 2167 movl(Address(rsp, (-offset)), rax);
duke@435 2168 }
duke@435 2169
duke@435 2170 // Writes to stack successive pages until offset reached to check for
duke@435 2171 // stack overflow + shadow pages. Also, clobbers tmp
duke@435 2172 void bang_stack_size(Register size, Register tmp);
duke@435 2173
jrose@1100 2174 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 2175 Register tmp,
jrose@1100 2176 int offset);
jrose@1057 2177
duke@435 2178 // Support for serializing memory accesses between threads
duke@435 2179 void serialize_memory(Register thread, Register tmp);
duke@435 2180
duke@435 2181 void verify_tlab();
duke@435 2182
duke@435 2183 // Biased locking support
duke@435 2184 // lock_reg and obj_reg must be loaded up with the appropriate values.
duke@435 2185 // swap_reg must be rax, and is killed.
duke@435 2186 // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
duke@435 2187 // be killed; if not supplied, push/pop will be used internally to
duke@435 2188 // allocate a temporary (inefficient, avoid if possible).
duke@435 2189 // Optional slow case is for implementations (interpreter and C1) which branch to
duke@435 2190 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
duke@435 2191 // Returns offset of first potentially-faulting instruction for null
duke@435 2192 // check info (currently consumed only by C1). If
duke@435 2193 // swap_reg_contains_mark is true then returns -1 as it is assumed
duke@435 2194 // the calling code has already passed any potential faults.
kvn@855 2195 int biased_locking_enter(Register lock_reg, Register obj_reg,
kvn@855 2196 Register swap_reg, Register tmp_reg,
duke@435 2197 bool swap_reg_contains_mark,
duke@435 2198 Label& done, Label* slow_case = NULL,
duke@435 2199 BiasedLockingCounters* counters = NULL);
duke@435 2200 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
duke@435 2201
duke@435 2202
duke@435 2203 Condition negate_condition(Condition cond);
duke@435 2204
duke@435 2205 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
duke@435 2206 // operands. In general the names are modified to avoid hiding the instruction in Assembler
duke@435 2207 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
duke@435 2208 // here in MacroAssembler. The major exception to this rule is call
duke@435 2209
duke@435 2210 // Arithmetics
duke@435 2211
never@739 2212
never@739 2213 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
never@739 2214 void addptr(Address dst, Register src);
never@739 2215
never@739 2216 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
never@739 2217 void addptr(Register dst, int32_t src);
never@739 2218 void addptr(Register dst, Register src);
never@2895 2219 void addptr(Register dst, RegisterOrConstant src) {
never@2895 2220 if (src.is_constant()) addptr(dst, (int) src.as_constant());
never@2895 2221 else addptr(dst, src.as_register());
never@2895 2222 }
never@739 2223
never@739 2224 void andptr(Register dst, int32_t src);
never@739 2225 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
never@739 2226
never@739 2227 void cmp8(AddressLiteral src1, int imm);
never@739 2228
never@739 2229 // renamed to drag out the casting of address to int32_t/intptr_t
duke@435 2230 void cmp32(Register src1, int32_t imm);
duke@435 2231
duke@435 2232 void cmp32(AddressLiteral src1, int32_t imm);
duke@435 2233 // compare reg - mem, or reg - &mem
duke@435 2234 void cmp32(Register src1, AddressLiteral src2);
duke@435 2235
duke@435 2236 void cmp32(Register src1, Address src2);
duke@435 2237
never@739 2238 #ifndef _LP64
never@739 2239 void cmpoop(Address dst, jobject obj);
never@739 2240 void cmpoop(Register dst, jobject obj);
never@739 2241 #endif // _LP64
never@739 2242
duke@435 2243 // NOTE src2 must be the lval. This is NOT an mem-mem compare
duke@435 2244 void cmpptr(Address src1, AddressLiteral src2);
duke@435 2245
duke@435 2246 void cmpptr(Register src1, AddressLiteral src2);
duke@435 2247
never@739 2248 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2249 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2250 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2251
never@739 2252 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2253 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2254
never@739 2255 // cmp64 to avoild hiding cmpq
never@739 2256 void cmp64(Register src1, AddressLiteral src);
never@739 2257
never@739 2258 void cmpxchgptr(Register reg, Address adr);
never@739 2259
never@739 2260 void locked_cmpxchgptr(Register reg, AddressLiteral adr);
never@739 2261
never@739 2262
never@739 2263 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
never@739 2264
never@739 2265
never@739 2266 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
never@739 2267
never@739 2268 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
never@739 2269
never@739 2270 void shlptr(Register dst, int32_t shift);
never@739 2271 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
never@739 2272
never@739 2273 void shrptr(Register dst, int32_t shift);
never@739 2274 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
never@739 2275
never@739 2276 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
never@739 2277 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
never@739 2278
never@739 2279 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 2280
never@739 2281 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 2282 void subptr(Register dst, int32_t src);
kvn@3574 2283 // Force generation of a 4 byte immediate value even if it fits into 8bit
kvn@3574 2284 void subptr_imm32(Register dst, int32_t src);
never@739 2285 void subptr(Register dst, Register src);
never@2895 2286 void subptr(Register dst, RegisterOrConstant src) {
never@2895 2287 if (src.is_constant()) subptr(dst, (int) src.as_constant());
never@2895 2288 else subptr(dst, src.as_register());
never@2895 2289 }
never@739 2290
never@739 2291 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 2292 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 2293
never@739 2294 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 2295 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 2296
never@739 2297 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
never@739 2298
never@739 2299
duke@435 2300
duke@435 2301 // Helper functions for statistics gathering.
duke@435 2302 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
duke@435 2303 void cond_inc32(Condition cond, AddressLiteral counter_addr);
duke@435 2304 // Unconditional atomic increment.
duke@435 2305 void atomic_incl(AddressLiteral counter_addr);
duke@435 2306
duke@435 2307 void lea(Register dst, AddressLiteral adr);
duke@435 2308 void lea(Address dst, AddressLiteral adr);
never@739 2309 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
never@739 2310
never@739 2311 void leal32(Register dst, Address src) { leal(dst, src); }
never@739 2312
iveresov@2686 2313 // Import other testl() methods from the parent class or else
iveresov@2686 2314 // they will be hidden by the following overriding declaration.
iveresov@2686 2315 using Assembler::testl;
iveresov@2686 2316 void testl(Register dst, AddressLiteral src);
never@739 2317
never@739 2318 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2319 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2320 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2321
never@739 2322 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
never@739 2323 void testptr(Register src1, Register src2);
never@739 2324
never@739 2325 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
never@739 2326 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
duke@435 2327
duke@435 2328 // Calls
duke@435 2329
duke@435 2330 void call(Label& L, relocInfo::relocType rtype);
duke@435 2331 void call(Register entry);
duke@435 2332
duke@435 2333 // NOTE: this call tranfers to the effective address of entry NOT
duke@435 2334 // the address contained by entry. This is because this is more natural
duke@435 2335 // for jumps/calls.
duke@435 2336 void call(AddressLiteral entry);
duke@435 2337
duke@435 2338 // Jumps
duke@435 2339
duke@435 2340 // NOTE: these jumps tranfer to the effective address of dst NOT
duke@435 2341 // the address contained by dst. This is because this is more natural
duke@435 2342 // for jumps/calls.
duke@435 2343 void jump(AddressLiteral dst);
duke@435 2344 void jump_cc(Condition cc, AddressLiteral dst);
duke@435 2345
duke@435 2346 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 2347 // to be installed in the Address class. This jump will tranfers to the address
duke@435 2348 // contained in the location described by entry (not the address of entry)
duke@435 2349 void jump(ArrayAddress entry);
duke@435 2350
duke@435 2351 // Floating
duke@435 2352
duke@435 2353 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
duke@435 2354 void andpd(XMMRegister dst, AddressLiteral src);
duke@435 2355
kvn@3388 2356 void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
kvn@3388 2357 void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
kvn@3388 2358 void andps(XMMRegister dst, AddressLiteral src);
kvn@3388 2359
kvn@3388 2360 void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
duke@435 2361 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
duke@435 2362 void comiss(XMMRegister dst, AddressLiteral src);
duke@435 2363
kvn@3388 2364 void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
duke@435 2365 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
duke@435 2366 void comisd(XMMRegister dst, AddressLiteral src);
duke@435 2367
twisti@2350 2368 void fadd_s(Address src) { Assembler::fadd_s(src); }
twisti@2350 2369 void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
twisti@2350 2370
duke@435 2371 void fldcw(Address src) { Assembler::fldcw(src); }
duke@435 2372 void fldcw(AddressLiteral src);
duke@435 2373
duke@435 2374 void fld_s(int index) { Assembler::fld_s(index); }
duke@435 2375 void fld_s(Address src) { Assembler::fld_s(src); }
duke@435 2376 void fld_s(AddressLiteral src);
duke@435 2377
duke@435 2378 void fld_d(Address src) { Assembler::fld_d(src); }
duke@435 2379 void fld_d(AddressLiteral src);
duke@435 2380
duke@435 2381 void fld_x(Address src) { Assembler::fld_x(src); }
duke@435 2382 void fld_x(AddressLiteral src);
duke@435 2383
twisti@2350 2384 void fmul_s(Address src) { Assembler::fmul_s(src); }
twisti@2350 2385 void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
twisti@2350 2386
duke@435 2387 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
duke@435 2388 void ldmxcsr(AddressLiteral src);
duke@435 2389
never@739 2390 private:
never@739 2391 // these are private because users should be doing movflt/movdbl
never@739 2392
duke@435 2393 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2394 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2395 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
duke@435 2396 void movss(XMMRegister dst, AddressLiteral src);
duke@435 2397
kvn@3388 2398 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
never@739 2399 void movlpd(XMMRegister dst, AddressLiteral src);
never@739 2400
never@739 2401 public:
never@739 2402
twisti@2350 2403 void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); }
twisti@2350 2404 void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); }
kvn@3388 2405 void addsd(XMMRegister dst, AddressLiteral src);
twisti@2350 2406
twisti@2350 2407 void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); }
twisti@2350 2408 void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); }
kvn@3388 2409 void addss(XMMRegister dst, AddressLiteral src);
twisti@2350 2410
twisti@2350 2411 void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); }
twisti@2350 2412 void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); }
kvn@3388 2413 void divsd(XMMRegister dst, AddressLiteral src);
twisti@2350 2414
twisti@2350 2415 void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); }
twisti@2350 2416 void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); }
kvn@3388 2417 void divss(XMMRegister dst, AddressLiteral src);
twisti@2350 2418
phh@2423 2419 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
phh@2423 2420 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
phh@2423 2421 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
kvn@3388 2422 void movsd(XMMRegister dst, AddressLiteral src);
twisti@2350 2423
twisti@2350 2424 void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); }
twisti@2350 2425 void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); }
kvn@3388 2426 void mulsd(XMMRegister dst, AddressLiteral src);
twisti@2350 2427
twisti@2350 2428 void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); }
twisti@2350 2429 void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); }
kvn@3388 2430 void mulss(XMMRegister dst, AddressLiteral src);
twisti@2350 2431
twisti@2350 2432 void sqrtsd(XMMRegister dst, XMMRegister src) { Assembler::sqrtsd(dst, src); }
twisti@2350 2433 void sqrtsd(XMMRegister dst, Address src) { Assembler::sqrtsd(dst, src); }
kvn@3388 2434 void sqrtsd(XMMRegister dst, AddressLiteral src);
twisti@2350 2435
twisti@2350 2436 void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); }
twisti@2350 2437 void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); }
kvn@3388 2438 void sqrtss(XMMRegister dst, AddressLiteral src);
twisti@2350 2439
twisti@2350 2440 void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); }
twisti@2350 2441 void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); }
kvn@3388 2442 void subsd(XMMRegister dst, AddressLiteral src);
twisti@2350 2443
twisti@2350 2444 void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); }
twisti@2350 2445 void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); }
kvn@3388 2446 void subss(XMMRegister dst, AddressLiteral src);
duke@435 2447
duke@435 2448 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
kvn@3388 2449 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
duke@435 2450 void ucomiss(XMMRegister dst, AddressLiteral src);
duke@435 2451
duke@435 2452 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
kvn@3388 2453 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
duke@435 2454 void ucomisd(XMMRegister dst, AddressLiteral src);
duke@435 2455
duke@435 2456 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
duke@435 2457 void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
duke@435 2458 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
duke@435 2459 void xorpd(XMMRegister dst, AddressLiteral src);
duke@435 2460
duke@435 2461 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
duke@435 2462 void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
duke@435 2463 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
duke@435 2464 void xorps(XMMRegister dst, AddressLiteral src);
duke@435 2465
kvn@3390 2466 // AVX 3-operands instructions
kvn@3390 2467
kvn@3390 2468 void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
kvn@3390 2469 void vaddsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddsd(dst, nds, src); }
kvn@3390 2470 void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2471
kvn@3390 2472 void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
kvn@3390 2473 void vaddss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddss(dst, nds, src); }
kvn@3390 2474 void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2475
kvn@3390 2476 void vandpd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vandpd(dst, nds, src); }
kvn@3390 2477 void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2478
kvn@3390 2479 void vandps(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vandps(dst, nds, src); }
kvn@3390 2480 void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2481
kvn@3390 2482 void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
kvn@3390 2483 void vdivsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivsd(dst, nds, src); }
kvn@3390 2484 void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2485
kvn@3390 2486 void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
kvn@3390 2487 void vdivss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivss(dst, nds, src); }
kvn@3390 2488 void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2489
kvn@3390 2490 void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
kvn@3390 2491 void vmulsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulsd(dst, nds, src); }
kvn@3390 2492 void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2493
kvn@3390 2494 void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
kvn@3390 2495 void vmulss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulss(dst, nds, src); }
kvn@3390 2496 void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2497
kvn@3390 2498 void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
kvn@3390 2499 void vsubsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubsd(dst, nds, src); }
kvn@3390 2500 void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2501
kvn@3390 2502 void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
kvn@3390 2503 void vsubss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubss(dst, nds, src); }
kvn@3390 2504 void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2505
kvn@3390 2506 void vxorpd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vxorpd(dst, nds, src); }
kvn@3390 2507 void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2508
kvn@3390 2509 void vxorps(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vxorps(dst, nds, src); }
kvn@3390 2510 void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src);
kvn@3390 2511
kvn@3390 2512
duke@435 2513 // Data
duke@435 2514
twisti@2697 2515 void cmov32( Condition cc, Register dst, Address src);
twisti@2697 2516 void cmov32( Condition cc, Register dst, Register src);
twisti@2697 2517
twisti@2697 2518 void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
twisti@2697 2519
twisti@2697 2520 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
twisti@2697 2521 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
never@739 2522
duke@435 2523 void movoop(Register dst, jobject obj);
duke@435 2524 void movoop(Address dst, jobject obj);
duke@435 2525
duke@435 2526 void movptr(ArrayAddress dst, Register src);
duke@435 2527 // can this do an lea?
duke@435 2528 void movptr(Register dst, ArrayAddress src);
duke@435 2529
never@739 2530 void movptr(Register dst, Address src);
never@739 2531
duke@435 2532 void movptr(Register dst, AddressLiteral src);
duke@435 2533
never@739 2534 void movptr(Register dst, intptr_t src);
never@739 2535 void movptr(Register dst, Register src);
never@739 2536 void movptr(Address dst, intptr_t src);
never@739 2537
never@739 2538 void movptr(Address dst, Register src);
never@739 2539
never@2895 2540 void movptr(Register dst, RegisterOrConstant src) {
never@2895 2541 if (src.is_constant()) movptr(dst, src.as_constant());
never@2895 2542 else movptr(dst, src.as_register());
never@2895 2543 }
never@2895 2544
never@739 2545 #ifdef _LP64
never@739 2546 // Generally the next two are only used for moving NULL
never@739 2547 // Although there are situations in initializing the mark word where
never@739 2548 // they could be used. They are dangerous.
never@739 2549
never@739 2550 // They only exist on LP64 so that int32_t and intptr_t are not the same
never@739 2551 // and we have ambiguous declarations.
never@739 2552
never@739 2553 void movptr(Address dst, int32_t imm32);
never@739 2554 void movptr(Register dst, int32_t imm32);
never@739 2555 #endif // _LP64
never@739 2556
duke@435 2557 // to avoid hiding movl
duke@435 2558 void mov32(AddressLiteral dst, Register src);
duke@435 2559 void mov32(Register dst, AddressLiteral src);
never@739 2560
duke@435 2561 // to avoid hiding movb
duke@435 2562 void movbyte(ArrayAddress dst, int src);
duke@435 2563
duke@435 2564 // Can push value or effective address
duke@435 2565 void pushptr(AddressLiteral src);
duke@435 2566
never@739 2567 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
never@739 2568 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
never@739 2569
never@739 2570 void pushoop(jobject obj);
never@739 2571
never@739 2572 // sign extend as need a l to ptr sized element
never@739 2573 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
never@739 2574 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
never@739 2575
kvn@3574 2576 // C2 compiled method's prolog code.
kvn@3574 2577 void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
kvn@3574 2578
kvn@1421 2579 // IndexOf strings.
kvn@2602 2580 // Small strings are loaded through stack if they cross page boundary.
kvn@1421 2581 void string_indexof(Register str1, Register str2,
kvn@2602 2582 Register cnt1, Register cnt2,
kvn@2602 2583 int int_cnt2, Register result,
kvn@1421 2584 XMMRegister vec, Register tmp);
kvn@1421 2585
kvn@2602 2586 // IndexOf for constant substrings with size >= 8 elements
kvn@2602 2587 // which don't need to be loaded through stack.
kvn@2602 2588 void string_indexofC8(Register str1, Register str2,
kvn@2602 2589 Register cnt1, Register cnt2,
kvn@2602 2590 int int_cnt2, Register result,
kvn@2602 2591 XMMRegister vec, Register tmp);
kvn@2602 2592
kvn@2602 2593 // Smallest code: we don't need to load through stack,
kvn@2602 2594 // check string tail.
kvn@2602 2595
kvn@1421 2596 // Compare strings.
kvn@1421 2597 void string_compare(Register str1, Register str2,
kvn@1421 2598 Register cnt1, Register cnt2, Register result,
never@2569 2599 XMMRegister vec1);
kvn@1421 2600
kvn@1421 2601 // Compare char[] arrays.
kvn@1421 2602 void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
kvn@1421 2603 Register limit, Register result, Register chr,
kvn@1421 2604 XMMRegister vec1, XMMRegister vec2);
never@739 2605
never@2118 2606 // Fill primitive arrays
never@2118 2607 void generate_fill(BasicType t, bool aligned,
never@2118 2608 Register to, Register value, Register count,
never@2118 2609 Register rtmp, XMMRegister xtmp);
never@2118 2610
duke@435 2611 #undef VIRTUAL
duke@435 2612
duke@435 2613 };
duke@435 2614
duke@435 2615 /**
duke@435 2616 * class SkipIfEqual:
duke@435 2617 *
duke@435 2618 * Instantiating this class will result in assembly code being output that will
duke@435 2619 * jump around any code emitted between the creation of the instance and it's
duke@435 2620 * automatic destruction at the end of a scope block, depending on the value of
duke@435 2621 * the flag passed to the constructor, which will be checked at run-time.
duke@435 2622 */
duke@435 2623 class SkipIfEqual {
duke@435 2624 private:
duke@435 2625 MacroAssembler* _masm;
duke@435 2626 Label _label;
duke@435 2627
duke@435 2628 public:
duke@435 2629 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
duke@435 2630 ~SkipIfEqual();
duke@435 2631 };
duke@435 2632
duke@435 2633 #ifdef ASSERT
duke@435 2634 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
duke@435 2635 #endif
stefank@2314 2636
stefank@2314 2637 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP

mercurial