src/cpu/x86/vm/assembler_x86.hpp

Fri, 20 Mar 2009 23:19:36 -0700

author
jrose
date
Fri, 20 Mar 2009 23:19:36 -0700
changeset 1100
c89f86385056
parent 1079
c517646eef23
child 1106
d0994e5bebce
permissions
-rw-r--r--

6814659: separable cleanups and subroutines for 6655638
Summary: preparatory but separable changes for method handles
Reviewed-by: kvn, never

duke@435 1 /*
twisti@1059 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class BiasedLockingCounters;
duke@435 26
duke@435 27 // Contains all the definitions needed for x86 assembly code generation.
duke@435 28
duke@435 29 // Calling convention
duke@435 30 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 31 public:
duke@435 32 enum {
duke@435 33 #ifdef _LP64
duke@435 34 #ifdef _WIN64
duke@435 35 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 36 n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
duke@435 37 #else
duke@435 38 n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 39 n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
duke@435 40 #endif // _WIN64
duke@435 41 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
duke@435 42 n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
duke@435 43 #else
duke@435 44 n_register_parameters = 0 // 0 registers used to pass arguments
duke@435 45 #endif // _LP64
duke@435 46 };
duke@435 47 };
duke@435 48
duke@435 49
duke@435 50 #ifdef _LP64
duke@435 51 // Symbolically name the register arguments used by the c calling convention.
duke@435 52 // Windows is different from linux/solaris. So much for standards...
duke@435 53
duke@435 54 #ifdef _WIN64
duke@435 55
duke@435 56 REGISTER_DECLARATION(Register, c_rarg0, rcx);
duke@435 57 REGISTER_DECLARATION(Register, c_rarg1, rdx);
duke@435 58 REGISTER_DECLARATION(Register, c_rarg2, r8);
duke@435 59 REGISTER_DECLARATION(Register, c_rarg3, r9);
duke@435 60
never@739 61 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 62 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 63 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 64 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
duke@435 65
duke@435 66 #else
duke@435 67
duke@435 68 REGISTER_DECLARATION(Register, c_rarg0, rdi);
duke@435 69 REGISTER_DECLARATION(Register, c_rarg1, rsi);
duke@435 70 REGISTER_DECLARATION(Register, c_rarg2, rdx);
duke@435 71 REGISTER_DECLARATION(Register, c_rarg3, rcx);
duke@435 72 REGISTER_DECLARATION(Register, c_rarg4, r8);
duke@435 73 REGISTER_DECLARATION(Register, c_rarg5, r9);
duke@435 74
never@739 75 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 76 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 77 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 78 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
never@739 79 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
never@739 80 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
never@739 81 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
never@739 82 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
duke@435 83
duke@435 84 #endif // _WIN64
duke@435 85
duke@435 86 // Symbolically name the register arguments used by the Java calling convention.
duke@435 87 // We have control over the convention for java so we can do what we please.
duke@435 88 // What pleases us is to offset the java calling convention so that when
duke@435 89 // we call a suitable jni method the arguments are lined up and we don't
duke@435 90 // have to do little shuffling. A suitable jni method is non-static and a
duke@435 91 // small number of arguments (two fewer args on windows)
duke@435 92 //
duke@435 93 // |-------------------------------------------------------|
duke@435 94 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
duke@435 95 // |-------------------------------------------------------|
duke@435 96 // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
duke@435 97 // | rdi rsi rdx rcx r8 r9 | solaris/linux
duke@435 98 // |-------------------------------------------------------|
duke@435 99 // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
duke@435 100 // |-------------------------------------------------------|
duke@435 101
duke@435 102 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
duke@435 103 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
duke@435 104 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
duke@435 105 // Windows runs out of register args here
duke@435 106 #ifdef _WIN64
duke@435 107 REGISTER_DECLARATION(Register, j_rarg3, rdi);
duke@435 108 REGISTER_DECLARATION(Register, j_rarg4, rsi);
duke@435 109 #else
duke@435 110 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
duke@435 111 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
duke@435 112 #endif /* _WIN64 */
duke@435 113 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
duke@435 114
never@739 115 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
never@739 116 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
never@739 117 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
never@739 118 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
never@739 119 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
never@739 120 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
never@739 121 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
never@739 122 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
duke@435 123
duke@435 124 REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
duke@435 125 REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
duke@435 126
never@739 127 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
duke@435 128 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
duke@435 129
never@739 130 #else
never@739 131 // rscratch1 will apear in 32bit code that is dead but of course must compile
never@739 132 // Using noreg ensures if the dead code is incorrectly live and executed it
never@739 133 // will cause an assertion failure
never@739 134 #define rscratch1 noreg
never@739 135
duke@435 136 #endif // _LP64
duke@435 137
duke@435 138 // Address is an abstraction used to represent a memory location
duke@435 139 // using any of the amd64 addressing modes with one object.
duke@435 140 //
duke@435 141 // Note: A register location is represented via a Register, not
duke@435 142 // via an address for efficiency & simplicity reasons.
duke@435 143
duke@435 144 class ArrayAddress;
duke@435 145
duke@435 146 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 147 public:
duke@435 148 enum ScaleFactor {
duke@435 149 no_scale = -1,
duke@435 150 times_1 = 0,
duke@435 151 times_2 = 1,
duke@435 152 times_4 = 2,
never@739 153 times_8 = 3,
never@739 154 times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
duke@435 155 };
jrose@1057 156 static ScaleFactor times(int size) {
jrose@1057 157 assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
jrose@1057 158 if (size == 8) return times_8;
jrose@1057 159 if (size == 4) return times_4;
jrose@1057 160 if (size == 2) return times_2;
jrose@1057 161 return times_1;
jrose@1057 162 }
jrose@1057 163 static int scale_size(ScaleFactor scale) {
jrose@1057 164 assert(scale != no_scale, "");
jrose@1057 165 assert(((1 << (int)times_1) == 1 &&
jrose@1057 166 (1 << (int)times_2) == 2 &&
jrose@1057 167 (1 << (int)times_4) == 4 &&
jrose@1057 168 (1 << (int)times_8) == 8), "");
jrose@1057 169 return (1 << (int)scale);
jrose@1057 170 }
duke@435 171
duke@435 172 private:
duke@435 173 Register _base;
duke@435 174 Register _index;
duke@435 175 ScaleFactor _scale;
duke@435 176 int _disp;
duke@435 177 RelocationHolder _rspec;
duke@435 178
never@739 179 // Easily misused constructors make them private
never@739 180 // %%% can we make these go away?
never@739 181 NOT_LP64(Address(address loc, RelocationHolder spec);)
never@739 182 Address(int disp, address loc, relocInfo::relocType rtype);
never@739 183 Address(int disp, address loc, RelocationHolder spec);
duke@435 184
duke@435 185 public:
never@739 186
never@739 187 int disp() { return _disp; }
duke@435 188 // creation
duke@435 189 Address()
duke@435 190 : _base(noreg),
duke@435 191 _index(noreg),
duke@435 192 _scale(no_scale),
duke@435 193 _disp(0) {
duke@435 194 }
duke@435 195
duke@435 196 // No default displacement otherwise Register can be implicitly
duke@435 197 // converted to 0(Register) which is quite a different animal.
duke@435 198
duke@435 199 Address(Register base, int disp)
duke@435 200 : _base(base),
duke@435 201 _index(noreg),
duke@435 202 _scale(no_scale),
duke@435 203 _disp(disp) {
duke@435 204 }
duke@435 205
duke@435 206 Address(Register base, Register index, ScaleFactor scale, int disp = 0)
duke@435 207 : _base (base),
duke@435 208 _index(index),
duke@435 209 _scale(scale),
duke@435 210 _disp (disp) {
duke@435 211 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 212 "inconsistent address");
duke@435 213 }
duke@435 214
jrose@1100 215 Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
jrose@1057 216 : _base (base),
jrose@1057 217 _index(index.register_or_noreg()),
jrose@1057 218 _scale(scale),
jrose@1057 219 _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 220 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 221 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 222 "inconsistent address");
jrose@1057 223 }
jrose@1057 224
jrose@1057 225 Address plus_disp(int disp) const {
jrose@1057 226 Address a = (*this);
jrose@1057 227 a._disp += disp;
jrose@1057 228 return a;
jrose@1057 229 }
jrose@1057 230
duke@435 231 // The following two overloads are used in connection with the
duke@435 232 // ByteSize type (see sizes.hpp). They simplify the use of
duke@435 233 // ByteSize'd arguments in assembly code. Note that their equivalent
duke@435 234 // for the optimized build are the member functions with int disp
duke@435 235 // argument since ByteSize is mapped to an int type in that case.
duke@435 236 //
duke@435 237 // Note: DO NOT introduce similar overloaded functions for WordSize
duke@435 238 // arguments as in the optimized mode, both ByteSize and WordSize
duke@435 239 // are mapped to the same type and thus the compiler cannot make a
duke@435 240 // distinction anymore (=> compiler errors).
duke@435 241
duke@435 242 #ifdef ASSERT
duke@435 243 Address(Register base, ByteSize disp)
duke@435 244 : _base(base),
duke@435 245 _index(noreg),
duke@435 246 _scale(no_scale),
duke@435 247 _disp(in_bytes(disp)) {
duke@435 248 }
duke@435 249
duke@435 250 Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
duke@435 251 : _base(base),
duke@435 252 _index(index),
duke@435 253 _scale(scale),
duke@435 254 _disp(in_bytes(disp)) {
duke@435 255 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 256 "inconsistent address");
duke@435 257 }
jrose@1057 258
jrose@1100 259 Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
jrose@1057 260 : _base (base),
jrose@1057 261 _index(index.register_or_noreg()),
jrose@1057 262 _scale(scale),
jrose@1057 263 _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 264 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 265 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 266 "inconsistent address");
jrose@1057 267 }
jrose@1057 268
duke@435 269 #endif // ASSERT
duke@435 270
duke@435 271 // accessors
ysr@777 272 bool uses(Register reg) const { return _base == reg || _index == reg; }
ysr@777 273 Register base() const { return _base; }
ysr@777 274 Register index() const { return _index; }
ysr@777 275 ScaleFactor scale() const { return _scale; }
ysr@777 276 int disp() const { return _disp; }
duke@435 277
duke@435 278 // Convert the raw encoding form into the form expected by the constructor for
duke@435 279 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 280 // that to noreg for the Address constructor.
twisti@1059 281 static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
duke@435 282
duke@435 283 static Address make_array(ArrayAddress);
duke@435 284
duke@435 285 private:
duke@435 286 bool base_needs_rex() const {
duke@435 287 return _base != noreg && _base->encoding() >= 8;
duke@435 288 }
duke@435 289
duke@435 290 bool index_needs_rex() const {
duke@435 291 return _index != noreg &&_index->encoding() >= 8;
duke@435 292 }
duke@435 293
duke@435 294 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 295
duke@435 296 friend class Assembler;
duke@435 297 friend class MacroAssembler;
duke@435 298 friend class LIR_Assembler; // base/index/scale/disp
duke@435 299 };
duke@435 300
duke@435 301 //
duke@435 302 // AddressLiteral has been split out from Address because operands of this type
duke@435 303 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
duke@435 304 // the few instructions that need to deal with address literals are unique and the
duke@435 305 // MacroAssembler does not have to implement every instruction in the Assembler
duke@435 306 // in order to search for address literals that may need special handling depending
duke@435 307 // on the instruction and the platform. As small step on the way to merging i486/amd64
duke@435 308 // directories.
duke@435 309 //
duke@435 310 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
duke@435 311 friend class ArrayAddress;
duke@435 312 RelocationHolder _rspec;
duke@435 313 // Typically we use AddressLiterals we want to use their rval
duke@435 314 // However in some situations we want the lval (effect address) of the item.
duke@435 315 // We provide a special factory for making those lvals.
duke@435 316 bool _is_lval;
duke@435 317
duke@435 318 // If the target is far we'll need to load the ea of this to
duke@435 319 // a register to reach it. Otherwise if near we can do rip
duke@435 320 // relative addressing.
duke@435 321
duke@435 322 address _target;
duke@435 323
duke@435 324 protected:
duke@435 325 // creation
duke@435 326 AddressLiteral()
duke@435 327 : _is_lval(false),
duke@435 328 _target(NULL)
duke@435 329 {}
duke@435 330
duke@435 331 public:
duke@435 332
duke@435 333
duke@435 334 AddressLiteral(address target, relocInfo::relocType rtype);
duke@435 335
duke@435 336 AddressLiteral(address target, RelocationHolder const& rspec)
duke@435 337 : _rspec(rspec),
duke@435 338 _is_lval(false),
duke@435 339 _target(target)
duke@435 340 {}
duke@435 341
duke@435 342 AddressLiteral addr() {
duke@435 343 AddressLiteral ret = *this;
duke@435 344 ret._is_lval = true;
duke@435 345 return ret;
duke@435 346 }
duke@435 347
duke@435 348
duke@435 349 private:
duke@435 350
duke@435 351 address target() { return _target; }
duke@435 352 bool is_lval() { return _is_lval; }
duke@435 353
duke@435 354 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 355 const RelocationHolder& rspec() const { return _rspec; }
duke@435 356
duke@435 357 friend class Assembler;
duke@435 358 friend class MacroAssembler;
duke@435 359 friend class Address;
duke@435 360 friend class LIR_Assembler;
duke@435 361 };
duke@435 362
duke@435 363 // Convience classes
duke@435 364 class RuntimeAddress: public AddressLiteral {
duke@435 365
duke@435 366 public:
duke@435 367
duke@435 368 RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
duke@435 369
duke@435 370 };
duke@435 371
duke@435 372 class OopAddress: public AddressLiteral {
duke@435 373
duke@435 374 public:
duke@435 375
duke@435 376 OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
duke@435 377
duke@435 378 };
duke@435 379
duke@435 380 class ExternalAddress: public AddressLiteral {
duke@435 381
duke@435 382 public:
duke@435 383
duke@435 384 ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
duke@435 385
duke@435 386 };
duke@435 387
duke@435 388 class InternalAddress: public AddressLiteral {
duke@435 389
duke@435 390 public:
duke@435 391
duke@435 392 InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
duke@435 393
duke@435 394 };
duke@435 395
duke@435 396 // x86 can do array addressing as a single operation since disp can be an absolute
duke@435 397 // address amd64 can't. We create a class that expresses the concept but does extra
duke@435 398 // magic on amd64 to get the final result
duke@435 399
duke@435 400 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
duke@435 401 private:
duke@435 402
duke@435 403 AddressLiteral _base;
duke@435 404 Address _index;
duke@435 405
duke@435 406 public:
duke@435 407
duke@435 408 ArrayAddress() {};
duke@435 409 ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
duke@435 410 AddressLiteral base() { return _base; }
duke@435 411 Address index() { return _index; }
duke@435 412
duke@435 413 };
duke@435 414
never@739 415 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
duke@435 416
duke@435 417 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 418 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
duke@435 419 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 420
duke@435 421 class Assembler : public AbstractAssembler {
duke@435 422 friend class AbstractAssembler; // for the non-virtual hack
duke@435 423 friend class LIR_Assembler; // as_Address()
never@739 424 friend class StubGenerator;
duke@435 425
duke@435 426 public:
duke@435 427 enum Condition { // The x86 condition codes used for conditional jumps/moves.
duke@435 428 zero = 0x4,
duke@435 429 notZero = 0x5,
duke@435 430 equal = 0x4,
duke@435 431 notEqual = 0x5,
duke@435 432 less = 0xc,
duke@435 433 lessEqual = 0xe,
duke@435 434 greater = 0xf,
duke@435 435 greaterEqual = 0xd,
duke@435 436 below = 0x2,
duke@435 437 belowEqual = 0x6,
duke@435 438 above = 0x7,
duke@435 439 aboveEqual = 0x3,
duke@435 440 overflow = 0x0,
duke@435 441 noOverflow = 0x1,
duke@435 442 carrySet = 0x2,
duke@435 443 carryClear = 0x3,
duke@435 444 negative = 0x8,
duke@435 445 positive = 0x9,
duke@435 446 parity = 0xa,
duke@435 447 noParity = 0xb
duke@435 448 };
duke@435 449
duke@435 450 enum Prefix {
duke@435 451 // segment overrides
duke@435 452 CS_segment = 0x2e,
duke@435 453 SS_segment = 0x36,
duke@435 454 DS_segment = 0x3e,
duke@435 455 ES_segment = 0x26,
duke@435 456 FS_segment = 0x64,
duke@435 457 GS_segment = 0x65,
duke@435 458
duke@435 459 REX = 0x40,
duke@435 460
duke@435 461 REX_B = 0x41,
duke@435 462 REX_X = 0x42,
duke@435 463 REX_XB = 0x43,
duke@435 464 REX_R = 0x44,
duke@435 465 REX_RB = 0x45,
duke@435 466 REX_RX = 0x46,
duke@435 467 REX_RXB = 0x47,
duke@435 468
duke@435 469 REX_W = 0x48,
duke@435 470
duke@435 471 REX_WB = 0x49,
duke@435 472 REX_WX = 0x4A,
duke@435 473 REX_WXB = 0x4B,
duke@435 474 REX_WR = 0x4C,
duke@435 475 REX_WRB = 0x4D,
duke@435 476 REX_WRX = 0x4E,
duke@435 477 REX_WRXB = 0x4F
duke@435 478 };
duke@435 479
duke@435 480 enum WhichOperand {
duke@435 481 // input to locate_operand, and format code for relocations
never@739 482 imm_operand = 0, // embedded 32-bit|64-bit immediate operand
duke@435 483 disp32_operand = 1, // embedded 32-bit displacement or address
duke@435 484 call32_operand = 2, // embedded 32-bit self-relative displacement
never@739 485 #ifndef _LP64
duke@435 486 _WhichOperand_limit = 3
never@739 487 #else
never@739 488 narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
never@739 489 _WhichOperand_limit = 4
never@739 490 #endif
duke@435 491 };
duke@435 492
never@739 493
never@739 494
never@739 495 // NOTE: The general philopsophy of the declarations here is that 64bit versions
never@739 496 // of instructions are freely declared without the need for wrapping them an ifdef.
never@739 497 // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
never@739 498 // In the .cpp file the implementations are wrapped so that they are dropped out
never@739 499 // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
never@739 500 // to the size it was prior to merging up the 32bit and 64bit assemblers.
never@739 501 //
never@739 502 // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
never@739 503 // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
never@739 504
never@739 505 private:
never@739 506
never@739 507
never@739 508 // 64bit prefixes
never@739 509 int prefix_and_encode(int reg_enc, bool byteinst = false);
never@739 510 int prefixq_and_encode(int reg_enc);
never@739 511
never@739 512 int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
never@739 513 int prefixq_and_encode(int dst_enc, int src_enc);
never@739 514
never@739 515 void prefix(Register reg);
never@739 516 void prefix(Address adr);
never@739 517 void prefixq(Address adr);
never@739 518
never@739 519 void prefix(Address adr, Register reg, bool byteinst = false);
never@739 520 void prefixq(Address adr, Register reg);
never@739 521
never@739 522 void prefix(Address adr, XMMRegister reg);
never@739 523
never@739 524 void prefetch_prefix(Address src);
never@739 525
never@739 526 // Helper functions for groups of instructions
never@739 527 void emit_arith_b(int op1, int op2, Register dst, int imm8);
never@739 528
never@739 529 void emit_arith(int op1, int op2, Register dst, int32_t imm32);
never@739 530 // only 32bit??
never@739 531 void emit_arith(int op1, int op2, Register dst, jobject obj);
never@739 532 void emit_arith(int op1, int op2, Register dst, Register src);
never@739 533
never@739 534 void emit_operand(Register reg,
never@739 535 Register base, Register index, Address::ScaleFactor scale,
never@739 536 int disp,
never@739 537 RelocationHolder const& rspec,
never@739 538 int rip_relative_correction = 0);
never@739 539
never@739 540 void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
never@739 541
never@739 542 // operands that only take the original 32bit registers
never@739 543 void emit_operand32(Register reg, Address adr);
never@739 544
never@739 545 void emit_operand(XMMRegister reg,
never@739 546 Register base, Register index, Address::ScaleFactor scale,
never@739 547 int disp,
never@739 548 RelocationHolder const& rspec);
never@739 549
never@739 550 void emit_operand(XMMRegister reg, Address adr);
never@739 551
never@739 552 void emit_operand(MMXRegister reg, Address adr);
never@739 553
never@739 554 // workaround gcc (3.2.1-7) bug
never@739 555 void emit_operand(Address adr, MMXRegister reg);
never@739 556
never@739 557
never@739 558 // Immediate-to-memory forms
never@739 559 void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
never@739 560
never@739 561 void emit_farith(int b1, int b2, int i);
never@739 562
duke@435 563
duke@435 564 protected:
never@739 565 #ifdef ASSERT
never@739 566 void check_relocation(RelocationHolder const& rspec, int format);
never@739 567 #endif
never@739 568
never@739 569 inline void emit_long64(jlong x);
never@739 570
never@739 571 void emit_data(jint data, relocInfo::relocType rtype, int format);
never@739 572 void emit_data(jint data, RelocationHolder const& rspec, int format);
never@739 573 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
never@739 574 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
never@739 575
never@739 576
never@739 577 bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
never@739 578
never@739 579 // These are all easily abused and hence protected
never@739 580
never@739 581 // 32BIT ONLY SECTION
never@739 582 #ifndef _LP64
never@739 583 // Make these disappear in 64bit mode since they would never be correct
never@739 584 void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 585 void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 586
kvn@1077 587 void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 588 void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 589
never@739 590 void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 591 #else
never@739 592 // 64BIT ONLY SECTION
never@739 593 void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
kvn@1077 594
kvn@1077 595 void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 596 void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 597
kvn@1077 598 void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 599 void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
never@739 600 #endif // _LP64
never@739 601
never@739 602 // These are unique in that we are ensured by the caller that the 32bit
never@739 603 // relative in these instructions will always be able to reach the potentially
never@739 604 // 64bit address described by entry. Since they can take a 64bit address they
never@739 605 // don't have the 32 suffix like the other instructions in this class.
never@739 606
never@739 607 void call_literal(address entry, RelocationHolder const& rspec);
never@739 608 void jmp_literal(address entry, RelocationHolder const& rspec);
never@739 609
never@739 610 // Avoid using directly section
never@739 611 // Instructions in this section are actually usable by anyone without danger
never@739 612 // of failure but have performance issues that are addressed my enhanced
never@739 613 // instructions which will do the proper thing base on the particular cpu.
never@739 614 // We protect them because we don't trust you...
never@739 615
duke@435 616 // Don't use next inc() and dec() methods directly. INC & DEC instructions
duke@435 617 // could cause a partial flag stall since they don't set CF flag.
duke@435 618 // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
duke@435 619 // which call inc() & dec() or add() & sub() in accordance with
duke@435 620 // the product flag UseIncDec value.
duke@435 621
duke@435 622 void decl(Register dst);
duke@435 623 void decl(Address dst);
never@739 624 void decq(Register dst);
never@739 625 void decq(Address dst);
duke@435 626
duke@435 627 void incl(Register dst);
duke@435 628 void incl(Address dst);
never@739 629 void incq(Register dst);
never@739 630 void incq(Address dst);
never@739 631
never@739 632 // New cpus require use of movsd and movss to avoid partial register stall
never@739 633 // when loading from memory. But for old Opteron use movlpd instead of movsd.
never@739 634 // The selection is done in MacroAssembler::movdbl() and movflt().
never@739 635
never@739 636 // Move Scalar Single-Precision Floating-Point Values
never@739 637 void movss(XMMRegister dst, Address src);
never@739 638 void movss(XMMRegister dst, XMMRegister src);
never@739 639 void movss(Address dst, XMMRegister src);
never@739 640
never@739 641 // Move Scalar Double-Precision Floating-Point Values
never@739 642 void movsd(XMMRegister dst, Address src);
never@739 643 void movsd(XMMRegister dst, XMMRegister src);
never@739 644 void movsd(Address dst, XMMRegister src);
never@739 645 void movlpd(XMMRegister dst, Address src);
never@739 646
never@739 647 // New cpus require use of movaps and movapd to avoid partial register stall
never@739 648 // when moving between registers.
never@739 649 void movaps(XMMRegister dst, XMMRegister src);
never@739 650 void movapd(XMMRegister dst, XMMRegister src);
never@739 651
never@739 652 // End avoid using directly
never@739 653
never@739 654
never@739 655 // Instruction prefixes
never@739 656 void prefix(Prefix p);
never@739 657
never@739 658 public:
never@739 659
never@739 660 // Creation
never@739 661 Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
never@739 662
never@739 663 // Decoding
never@739 664 static address locate_operand(address inst, WhichOperand which);
never@739 665 static address locate_next_instruction(address inst);
never@739 666
never@739 667 // Utilities
never@739 668
never@739 669 #ifdef _LP64
never@739 670 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) ) <= x && x < ( CONST64(1) << (nbits-1) ); }
never@739 671 static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
never@739 672 #else
never@739 673 static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) ) <= x && x < ( 1 << (nbits-1) ); }
never@739 674 static bool is_simm32(int32_t x) { return true; }
never@739 675 #endif // LP64
never@739 676
never@739 677 // Generic instructions
never@739 678 // Does 32bit or 64bit as needed for the platform. In some sense these
never@739 679 // belong in macro assembler but there is no need for both varieties to exist
never@739 680
never@739 681 void lea(Register dst, Address src);
never@739 682
never@739 683 void mov(Register dst, Register src);
never@739 684
never@739 685 void pusha();
never@739 686 void popa();
never@739 687
never@739 688 void pushf();
never@739 689 void popf();
never@739 690
never@739 691 void push(int32_t imm32);
never@739 692
never@739 693 void push(Register src);
never@739 694
never@739 695 void pop(Register dst);
never@739 696
never@739 697 // These are dummies to prevent surprise implicit conversions to Register
never@739 698 void push(void* v);
never@739 699 void pop(void* v);
never@739 700
never@739 701
never@739 702 // These do register sized moves/scans
never@739 703 void rep_mov();
never@739 704 void rep_set();
never@739 705 void repne_scan();
never@739 706 #ifdef _LP64
never@739 707 void repne_scanl();
never@739 708 #endif
never@739 709
never@739 710 // Vanilla instructions in lexical order
never@739 711
never@739 712 void adcl(Register dst, int32_t imm32);
never@739 713 void adcl(Register dst, Address src);
never@739 714 void adcl(Register dst, Register src);
never@739 715
never@739 716 void adcq(Register dst, int32_t imm32);
never@739 717 void adcq(Register dst, Address src);
never@739 718 void adcq(Register dst, Register src);
never@739 719
never@739 720
never@739 721 void addl(Address dst, int32_t imm32);
never@739 722 void addl(Address dst, Register src);
never@739 723 void addl(Register dst, int32_t imm32);
never@739 724 void addl(Register dst, Address src);
never@739 725 void addl(Register dst, Register src);
never@739 726
never@739 727 void addq(Address dst, int32_t imm32);
never@739 728 void addq(Address dst, Register src);
never@739 729 void addq(Register dst, int32_t imm32);
never@739 730 void addq(Register dst, Address src);
never@739 731 void addq(Register dst, Register src);
never@739 732
never@739 733
duke@435 734 void addr_nop_4();
duke@435 735 void addr_nop_5();
duke@435 736 void addr_nop_7();
duke@435 737 void addr_nop_8();
duke@435 738
never@739 739 // Add Scalar Double-Precision Floating-Point Values
never@739 740 void addsd(XMMRegister dst, Address src);
never@739 741 void addsd(XMMRegister dst, XMMRegister src);
never@739 742
never@739 743 // Add Scalar Single-Precision Floating-Point Values
never@739 744 void addss(XMMRegister dst, Address src);
never@739 745 void addss(XMMRegister dst, XMMRegister src);
never@739 746
never@739 747 void andl(Register dst, int32_t imm32);
never@739 748 void andl(Register dst, Address src);
never@739 749 void andl(Register dst, Register src);
never@739 750
never@739 751 void andq(Register dst, int32_t imm32);
never@739 752 void andq(Register dst, Address src);
never@739 753 void andq(Register dst, Register src);
never@739 754
never@739 755
never@739 756 // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
never@739 757 void andpd(XMMRegister dst, Address src);
never@739 758 void andpd(XMMRegister dst, XMMRegister src);
never@739 759
never@739 760 void bswapl(Register reg);
never@739 761
never@739 762 void bswapq(Register reg);
never@739 763
duke@435 764 void call(Label& L, relocInfo::relocType rtype);
duke@435 765 void call(Register reg); // push pc; pc <- reg
duke@435 766 void call(Address adr); // push pc; pc <- adr
duke@435 767
never@739 768 void cdql();
never@739 769
never@739 770 void cdqq();
never@739 771
never@739 772 void cld() { emit_byte(0xfc); }
never@739 773
never@739 774 void clflush(Address adr);
never@739 775
never@739 776 void cmovl(Condition cc, Register dst, Register src);
never@739 777 void cmovl(Condition cc, Register dst, Address src);
never@739 778
never@739 779 void cmovq(Condition cc, Register dst, Register src);
never@739 780 void cmovq(Condition cc, Register dst, Address src);
never@739 781
never@739 782
never@739 783 void cmpb(Address dst, int imm8);
never@739 784
never@739 785 void cmpl(Address dst, int32_t imm32);
never@739 786
never@739 787 void cmpl(Register dst, int32_t imm32);
never@739 788 void cmpl(Register dst, Register src);
never@739 789 void cmpl(Register dst, Address src);
never@739 790
never@739 791 void cmpq(Address dst, int32_t imm32);
never@739 792 void cmpq(Address dst, Register src);
never@739 793
never@739 794 void cmpq(Register dst, int32_t imm32);
never@739 795 void cmpq(Register dst, Register src);
never@739 796 void cmpq(Register dst, Address src);
never@739 797
never@739 798 // these are dummies used to catch attempting to convert NULL to Register
never@739 799 void cmpl(Register dst, void* junk); // dummy
never@739 800 void cmpq(Register dst, void* junk); // dummy
never@739 801
never@739 802 void cmpw(Address dst, int imm16);
never@739 803
never@739 804 void cmpxchg8 (Address adr);
never@739 805
never@739 806 void cmpxchgl(Register reg, Address adr);
never@739 807
never@739 808 void cmpxchgq(Register reg, Address adr);
never@739 809
never@739 810 // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 811 void comisd(XMMRegister dst, Address src);
never@739 812
never@739 813 // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 814 void comiss(XMMRegister dst, Address src);
never@739 815
never@739 816 // Identify processor type and features
never@739 817 void cpuid() {
never@739 818 emit_byte(0x0F);
never@739 819 emit_byte(0xA2);
never@739 820 }
never@739 821
never@739 822 // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
never@739 823 void cvtsd2ss(XMMRegister dst, XMMRegister src);
never@739 824
never@739 825 // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
never@739 826 void cvtsi2sdl(XMMRegister dst, Register src);
never@739 827 void cvtsi2sdq(XMMRegister dst, Register src);
never@739 828
never@739 829 // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
never@739 830 void cvtsi2ssl(XMMRegister dst, Register src);
never@739 831 void cvtsi2ssq(XMMRegister dst, Register src);
never@739 832
never@739 833 // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
never@739 834 void cvtdq2pd(XMMRegister dst, XMMRegister src);
never@739 835
never@739 836 // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
never@739 837 void cvtdq2ps(XMMRegister dst, XMMRegister src);
never@739 838
never@739 839 // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
never@739 840 void cvtss2sd(XMMRegister dst, XMMRegister src);
never@739 841
never@739 842 // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
never@739 843 void cvttsd2sil(Register dst, Address src);
never@739 844 void cvttsd2sil(Register dst, XMMRegister src);
never@739 845 void cvttsd2siq(Register dst, XMMRegister src);
never@739 846
never@739 847 // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
never@739 848 void cvttss2sil(Register dst, XMMRegister src);
never@739 849 void cvttss2siq(Register dst, XMMRegister src);
never@739 850
never@739 851 // Divide Scalar Double-Precision Floating-Point Values
never@739 852 void divsd(XMMRegister dst, Address src);
never@739 853 void divsd(XMMRegister dst, XMMRegister src);
never@739 854
never@739 855 // Divide Scalar Single-Precision Floating-Point Values
never@739 856 void divss(XMMRegister dst, Address src);
never@739 857 void divss(XMMRegister dst, XMMRegister src);
never@739 858
never@739 859 void emms();
never@739 860
never@739 861 void fabs();
never@739 862
never@739 863 void fadd(int i);
never@739 864
never@739 865 void fadd_d(Address src);
never@739 866 void fadd_s(Address src);
never@739 867
never@739 868 // "Alternate" versions of x87 instructions place result down in FPU
never@739 869 // stack instead of on TOS
never@739 870
never@739 871 void fadda(int i); // "alternate" fadd
never@739 872 void faddp(int i = 1);
never@739 873
never@739 874 void fchs();
never@739 875
never@739 876 void fcom(int i);
never@739 877
never@739 878 void fcomp(int i = 1);
never@739 879 void fcomp_d(Address src);
never@739 880 void fcomp_s(Address src);
never@739 881
never@739 882 void fcompp();
never@739 883
never@739 884 void fcos();
never@739 885
never@739 886 void fdecstp();
never@739 887
never@739 888 void fdiv(int i);
never@739 889 void fdiv_d(Address src);
never@739 890 void fdivr_s(Address src);
never@739 891 void fdiva(int i); // "alternate" fdiv
never@739 892 void fdivp(int i = 1);
never@739 893
never@739 894 void fdivr(int i);
never@739 895 void fdivr_d(Address src);
never@739 896 void fdiv_s(Address src);
never@739 897
never@739 898 void fdivra(int i); // "alternate" reversed fdiv
never@739 899
never@739 900 void fdivrp(int i = 1);
never@739 901
never@739 902 void ffree(int i = 0);
never@739 903
never@739 904 void fild_d(Address adr);
never@739 905 void fild_s(Address adr);
never@739 906
never@739 907 void fincstp();
never@739 908
never@739 909 void finit();
never@739 910
never@739 911 void fist_s (Address adr);
never@739 912 void fistp_d(Address adr);
never@739 913 void fistp_s(Address adr);
never@739 914
never@739 915 void fld1();
never@739 916
never@739 917 void fld_d(Address adr);
never@739 918 void fld_s(Address adr);
never@739 919 void fld_s(int index);
never@739 920 void fld_x(Address adr); // extended-precision (80-bit) format
never@739 921
never@739 922 void fldcw(Address src);
never@739 923
never@739 924 void fldenv(Address src);
never@739 925
never@739 926 void fldlg2();
never@739 927
never@739 928 void fldln2();
never@739 929
never@739 930 void fldz();
never@739 931
never@739 932 void flog();
never@739 933 void flog10();
never@739 934
never@739 935 void fmul(int i);
never@739 936
never@739 937 void fmul_d(Address src);
never@739 938 void fmul_s(Address src);
never@739 939
never@739 940 void fmula(int i); // "alternate" fmul
never@739 941
never@739 942 void fmulp(int i = 1);
never@739 943
never@739 944 void fnsave(Address dst);
never@739 945
never@739 946 void fnstcw(Address src);
never@739 947
never@739 948 void fnstsw_ax();
never@739 949
never@739 950 void fprem();
never@739 951 void fprem1();
never@739 952
never@739 953 void frstor(Address src);
never@739 954
never@739 955 void fsin();
never@739 956
never@739 957 void fsqrt();
never@739 958
never@739 959 void fst_d(Address adr);
never@739 960 void fst_s(Address adr);
never@739 961
never@739 962 void fstp_d(Address adr);
never@739 963 void fstp_d(int index);
never@739 964 void fstp_s(Address adr);
never@739 965 void fstp_x(Address adr); // extended-precision (80-bit) format
never@739 966
never@739 967 void fsub(int i);
never@739 968 void fsub_d(Address src);
never@739 969 void fsub_s(Address src);
never@739 970
never@739 971 void fsuba(int i); // "alternate" fsub
never@739 972
never@739 973 void fsubp(int i = 1);
never@739 974
never@739 975 void fsubr(int i);
never@739 976 void fsubr_d(Address src);
never@739 977 void fsubr_s(Address src);
never@739 978
never@739 979 void fsubra(int i); // "alternate" reversed fsub
never@739 980
never@739 981 void fsubrp(int i = 1);
never@739 982
never@739 983 void ftan();
never@739 984
never@739 985 void ftst();
never@739 986
never@739 987 void fucomi(int i = 1);
never@739 988 void fucomip(int i = 1);
never@739 989
never@739 990 void fwait();
never@739 991
never@739 992 void fxch(int i = 1);
never@739 993
never@739 994 void fxrstor(Address src);
never@739 995
never@739 996 void fxsave(Address dst);
never@739 997
never@739 998 void fyl2x();
never@739 999
never@739 1000 void hlt();
never@739 1001
never@739 1002 void idivl(Register src);
never@739 1003
never@739 1004 void idivq(Register src);
never@739 1005
never@739 1006 void imull(Register dst, Register src);
never@739 1007 void imull(Register dst, Register src, int value);
never@739 1008
never@739 1009 void imulq(Register dst, Register src);
never@739 1010 void imulq(Register dst, Register src, int value);
never@739 1011
duke@435 1012
duke@435 1013 // jcc is the generic conditional branch generator to run-
duke@435 1014 // time routines, jcc is used for branches to labels. jcc
duke@435 1015 // takes a branch opcode (cc) and a label (L) and generates
duke@435 1016 // either a backward branch or a forward branch and links it
duke@435 1017 // to the label fixup chain. Usage:
duke@435 1018 //
duke@435 1019 // Label L; // unbound label
duke@435 1020 // jcc(cc, L); // forward branch to unbound label
duke@435 1021 // bind(L); // bind label to the current pc
duke@435 1022 // jcc(cc, L); // backward branch to bound label
duke@435 1023 // bind(L); // illegal: a label may be bound only once
duke@435 1024 //
duke@435 1025 // Note: The same Label can be used for forward and backward branches
duke@435 1026 // but it may be bound only once.
duke@435 1027
duke@435 1028 void jcc(Condition cc, Label& L,
duke@435 1029 relocInfo::relocType rtype = relocInfo::none);
duke@435 1030
duke@435 1031 // Conditional jump to a 8-bit offset to L.
duke@435 1032 // WARNING: be very careful using this for forward jumps. If the label is
duke@435 1033 // not bound within an 8-bit offset of this instruction, a run-time error
duke@435 1034 // will occur.
duke@435 1035 void jccb(Condition cc, Label& L);
duke@435 1036
never@739 1037 void jmp(Address entry); // pc <- entry
never@739 1038
never@739 1039 // Label operations & relative jumps (PPUM Appendix D)
never@739 1040 void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none); // unconditional jump to L
never@739 1041
never@739 1042 void jmp(Register entry); // pc <- entry
never@739 1043
never@739 1044 // Unconditional 8-bit offset jump to L.
never@739 1045 // WARNING: be very careful using this for forward jumps. If the label is
never@739 1046 // not bound within an 8-bit offset of this instruction, a run-time error
never@739 1047 // will occur.
never@739 1048 void jmpb(Label& L);
never@739 1049
never@739 1050 void ldmxcsr( Address src );
never@739 1051
never@739 1052 void leal(Register dst, Address src);
never@739 1053
never@739 1054 void leaq(Register dst, Address src);
never@739 1055
never@739 1056 void lfence() {
never@739 1057 emit_byte(0x0F);
never@739 1058 emit_byte(0xAE);
never@739 1059 emit_byte(0xE8);
never@739 1060 }
never@739 1061
never@739 1062 void lock();
never@739 1063
never@739 1064 enum Membar_mask_bits {
never@739 1065 StoreStore = 1 << 3,
never@739 1066 LoadStore = 1 << 2,
never@739 1067 StoreLoad = 1 << 1,
never@739 1068 LoadLoad = 1 << 0
never@739 1069 };
never@739 1070
never@739 1071 // Serializes memory.
never@739 1072 void membar(Membar_mask_bits order_constraint) {
never@739 1073 // We only have to handle StoreLoad and LoadLoad
never@739 1074 if (order_constraint & StoreLoad) {
never@739 1075 // MFENCE subsumes LFENCE
never@739 1076 mfence();
never@739 1077 } /* [jk] not needed currently: else if (order_constraint & LoadLoad) {
never@739 1078 lfence();
never@739 1079 } */
never@739 1080 }
never@739 1081
never@739 1082 void mfence();
never@739 1083
never@739 1084 // Moves
never@739 1085
never@739 1086 void mov64(Register dst, int64_t imm64);
never@739 1087
never@739 1088 void movb(Address dst, Register src);
never@739 1089 void movb(Address dst, int imm8);
never@739 1090 void movb(Register dst, Address src);
never@739 1091
never@739 1092 void movdl(XMMRegister dst, Register src);
never@739 1093 void movdl(Register dst, XMMRegister src);
never@739 1094
never@739 1095 // Move Double Quadword
never@739 1096 void movdq(XMMRegister dst, Register src);
never@739 1097 void movdq(Register dst, XMMRegister src);
never@739 1098
never@739 1099 // Move Aligned Double Quadword
never@739 1100 void movdqa(Address dst, XMMRegister src);
never@739 1101 void movdqa(XMMRegister dst, Address src);
never@739 1102 void movdqa(XMMRegister dst, XMMRegister src);
never@739 1103
kvn@840 1104 // Move Unaligned Double Quadword
kvn@840 1105 void movdqu(Address dst, XMMRegister src);
kvn@840 1106 void movdqu(XMMRegister dst, Address src);
kvn@840 1107 void movdqu(XMMRegister dst, XMMRegister src);
kvn@840 1108
never@739 1109 void movl(Register dst, int32_t imm32);
never@739 1110 void movl(Address dst, int32_t imm32);
never@739 1111 void movl(Register dst, Register src);
never@739 1112 void movl(Register dst, Address src);
never@739 1113 void movl(Address dst, Register src);
never@739 1114
never@739 1115 // These dummies prevent using movl from converting a zero (like NULL) into Register
never@739 1116 // by giving the compiler two choices it can't resolve
never@739 1117
never@739 1118 void movl(Address dst, void* junk);
never@739 1119 void movl(Register dst, void* junk);
never@739 1120
never@739 1121 #ifdef _LP64
never@739 1122 void movq(Register dst, Register src);
never@739 1123 void movq(Register dst, Address src);
never@739 1124 void movq(Address dst, Register src);
never@739 1125 #endif
never@739 1126
never@739 1127 void movq(Address dst, MMXRegister src );
never@739 1128 void movq(MMXRegister dst, Address src );
never@739 1129
never@739 1130 #ifdef _LP64
never@739 1131 // These dummies prevent using movq from converting a zero (like NULL) into Register
never@739 1132 // by giving the compiler two choices it can't resolve
never@739 1133
never@739 1134 void movq(Address dst, void* dummy);
never@739 1135 void movq(Register dst, void* dummy);
never@739 1136 #endif
never@739 1137
never@739 1138 // Move Quadword
never@739 1139 void movq(Address dst, XMMRegister src);
never@739 1140 void movq(XMMRegister dst, Address src);
never@739 1141
never@739 1142 void movsbl(Register dst, Address src);
never@739 1143 void movsbl(Register dst, Register src);
never@739 1144
never@739 1145 #ifdef _LP64
twisti@1059 1146 void movsbq(Register dst, Address src);
twisti@1059 1147 void movsbq(Register dst, Register src);
twisti@1059 1148
never@739 1149 // Move signed 32bit immediate to 64bit extending sign
never@739 1150 void movslq(Address dst, int32_t imm64);
never@739 1151 void movslq(Register dst, int32_t imm64);
never@739 1152
never@739 1153 void movslq(Register dst, Address src);
never@739 1154 void movslq(Register dst, Register src);
never@739 1155 void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
never@739 1156 #endif
never@739 1157
never@739 1158 void movswl(Register dst, Address src);
never@739 1159 void movswl(Register dst, Register src);
never@739 1160
twisti@1059 1161 #ifdef _LP64
twisti@1059 1162 void movswq(Register dst, Address src);
twisti@1059 1163 void movswq(Register dst, Register src);
twisti@1059 1164 #endif
twisti@1059 1165
never@739 1166 void movw(Address dst, int imm16);
never@739 1167 void movw(Register dst, Address src);
never@739 1168 void movw(Address dst, Register src);
never@739 1169
never@739 1170 void movzbl(Register dst, Address src);
never@739 1171 void movzbl(Register dst, Register src);
never@739 1172
twisti@1059 1173 #ifdef _LP64
twisti@1059 1174 void movzbq(Register dst, Address src);
twisti@1059 1175 void movzbq(Register dst, Register src);
twisti@1059 1176 #endif
twisti@1059 1177
never@739 1178 void movzwl(Register dst, Address src);
never@739 1179 void movzwl(Register dst, Register src);
never@739 1180
twisti@1059 1181 #ifdef _LP64
twisti@1059 1182 void movzwq(Register dst, Address src);
twisti@1059 1183 void movzwq(Register dst, Register src);
twisti@1059 1184 #endif
twisti@1059 1185
never@739 1186 void mull(Address src);
never@739 1187 void mull(Register src);
never@739 1188
never@739 1189 // Multiply Scalar Double-Precision Floating-Point Values
never@739 1190 void mulsd(XMMRegister dst, Address src);
never@739 1191 void mulsd(XMMRegister dst, XMMRegister src);
never@739 1192
never@739 1193 // Multiply Scalar Single-Precision Floating-Point Values
never@739 1194 void mulss(XMMRegister dst, Address src);
never@739 1195 void mulss(XMMRegister dst, XMMRegister src);
never@739 1196
never@739 1197 void negl(Register dst);
never@739 1198
never@739 1199 #ifdef _LP64
never@739 1200 void negq(Register dst);
never@739 1201 #endif
never@739 1202
never@739 1203 void nop(int i = 1);
never@739 1204
never@739 1205 void notl(Register dst);
never@739 1206
never@739 1207 #ifdef _LP64
never@739 1208 void notq(Register dst);
never@739 1209 #endif
never@739 1210
never@739 1211 void orl(Address dst, int32_t imm32);
never@739 1212 void orl(Register dst, int32_t imm32);
never@739 1213 void orl(Register dst, Address src);
never@739 1214 void orl(Register dst, Register src);
never@739 1215
never@739 1216 void orq(Address dst, int32_t imm32);
never@739 1217 void orq(Register dst, int32_t imm32);
never@739 1218 void orq(Register dst, Address src);
never@739 1219 void orq(Register dst, Register src);
never@739 1220
never@739 1221 void popl(Address dst);
never@739 1222
never@739 1223 #ifdef _LP64
never@739 1224 void popq(Address dst);
never@739 1225 #endif
never@739 1226
twisti@1078 1227 void popcntl(Register dst, Address src);
twisti@1078 1228 void popcntl(Register dst, Register src);
twisti@1078 1229
twisti@1078 1230 #ifdef _LP64
twisti@1078 1231 void popcntq(Register dst, Address src);
twisti@1078 1232 void popcntq(Register dst, Register src);
twisti@1078 1233 #endif
twisti@1078 1234
never@739 1235 // Prefetches (SSE, SSE2, 3DNOW only)
never@739 1236
never@739 1237 void prefetchnta(Address src);
never@739 1238 void prefetchr(Address src);
never@739 1239 void prefetcht0(Address src);
never@739 1240 void prefetcht1(Address src);
never@739 1241 void prefetcht2(Address src);
never@739 1242 void prefetchw(Address src);
never@739 1243
never@739 1244 // Shuffle Packed Doublewords
never@739 1245 void pshufd(XMMRegister dst, XMMRegister src, int mode);
never@739 1246 void pshufd(XMMRegister dst, Address src, int mode);
never@739 1247
never@739 1248 // Shuffle Packed Low Words
never@739 1249 void pshuflw(XMMRegister dst, XMMRegister src, int mode);
never@739 1250 void pshuflw(XMMRegister dst, Address src, int mode);
never@739 1251
never@739 1252 // Shift Right Logical Quadword Immediate
never@739 1253 void psrlq(XMMRegister dst, int shift);
never@739 1254
never@739 1255 // Interleave Low Bytes
never@739 1256 void punpcklbw(XMMRegister dst, XMMRegister src);
never@739 1257
never@739 1258 void pushl(Address src);
never@739 1259
never@739 1260 void pushq(Address src);
never@739 1261
never@739 1262 // Xor Packed Byte Integer Values
never@739 1263 void pxor(XMMRegister dst, Address src);
never@739 1264 void pxor(XMMRegister dst, XMMRegister src);
never@739 1265
never@739 1266 void rcll(Register dst, int imm8);
never@739 1267
never@739 1268 void rclq(Register dst, int imm8);
never@739 1269
never@739 1270 void ret(int imm16);
duke@435 1271
duke@435 1272 void sahf();
duke@435 1273
never@739 1274 void sarl(Register dst, int imm8);
never@739 1275 void sarl(Register dst);
never@739 1276
never@739 1277 void sarq(Register dst, int imm8);
never@739 1278 void sarq(Register dst);
never@739 1279
never@739 1280 void sbbl(Address dst, int32_t imm32);
never@739 1281 void sbbl(Register dst, int32_t imm32);
never@739 1282 void sbbl(Register dst, Address src);
never@739 1283 void sbbl(Register dst, Register src);
never@739 1284
never@739 1285 void sbbq(Address dst, int32_t imm32);
never@739 1286 void sbbq(Register dst, int32_t imm32);
never@739 1287 void sbbq(Register dst, Address src);
never@739 1288 void sbbq(Register dst, Register src);
never@739 1289
never@739 1290 void setb(Condition cc, Register dst);
never@739 1291
never@739 1292 void shldl(Register dst, Register src);
never@739 1293
never@739 1294 void shll(Register dst, int imm8);
never@739 1295 void shll(Register dst);
never@739 1296
never@739 1297 void shlq(Register dst, int imm8);
never@739 1298 void shlq(Register dst);
never@739 1299
never@739 1300 void shrdl(Register dst, Register src);
never@739 1301
never@739 1302 void shrl(Register dst, int imm8);
never@739 1303 void shrl(Register dst);
never@739 1304
never@739 1305 void shrq(Register dst, int imm8);
never@739 1306 void shrq(Register dst);
never@739 1307
never@739 1308 void smovl(); // QQQ generic?
never@739 1309
never@739 1310 // Compute Square Root of Scalar Double-Precision Floating-Point Value
never@739 1311 void sqrtsd(XMMRegister dst, Address src);
never@739 1312 void sqrtsd(XMMRegister dst, XMMRegister src);
never@739 1313
never@739 1314 void std() { emit_byte(0xfd); }
never@739 1315
never@739 1316 void stmxcsr( Address dst );
never@739 1317
never@739 1318 void subl(Address dst, int32_t imm32);
never@739 1319 void subl(Address dst, Register src);
never@739 1320 void subl(Register dst, int32_t imm32);
never@739 1321 void subl(Register dst, Address src);
never@739 1322 void subl(Register dst, Register src);
never@739 1323
never@739 1324 void subq(Address dst, int32_t imm32);
never@739 1325 void subq(Address dst, Register src);
never@739 1326 void subq(Register dst, int32_t imm32);
never@739 1327 void subq(Register dst, Address src);
never@739 1328 void subq(Register dst, Register src);
never@739 1329
never@739 1330
never@739 1331 // Subtract Scalar Double-Precision Floating-Point Values
never@739 1332 void subsd(XMMRegister dst, Address src);
never@739 1333 void subsd(XMMRegister dst, XMMRegister src);
never@739 1334
never@739 1335 // Subtract Scalar Single-Precision Floating-Point Values
never@739 1336 void subss(XMMRegister dst, Address src);
duke@435 1337 void subss(XMMRegister dst, XMMRegister src);
never@739 1338
never@739 1339 void testb(Register dst, int imm8);
never@739 1340
never@739 1341 void testl(Register dst, int32_t imm32);
never@739 1342 void testl(Register dst, Register src);
never@739 1343 void testl(Register dst, Address src);
never@739 1344
never@739 1345 void testq(Register dst, int32_t imm32);
never@739 1346 void testq(Register dst, Register src);
never@739 1347
never@739 1348
never@739 1349 // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 1350 void ucomisd(XMMRegister dst, Address src);
never@739 1351 void ucomisd(XMMRegister dst, XMMRegister src);
never@739 1352
never@739 1353 // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 1354 void ucomiss(XMMRegister dst, Address src);
duke@435 1355 void ucomiss(XMMRegister dst, XMMRegister src);
never@739 1356
never@739 1357 void xaddl(Address dst, Register src);
never@739 1358
never@739 1359 void xaddq(Address dst, Register src);
never@739 1360
never@739 1361 void xchgl(Register reg, Address adr);
never@739 1362 void xchgl(Register dst, Register src);
never@739 1363
never@739 1364 void xchgq(Register reg, Address adr);
never@739 1365 void xchgq(Register dst, Register src);
never@739 1366
never@739 1367 void xorl(Register dst, int32_t imm32);
never@739 1368 void xorl(Register dst, Address src);
never@739 1369 void xorl(Register dst, Register src);
never@739 1370
never@739 1371 void xorq(Register dst, Address src);
never@739 1372 void xorq(Register dst, Register src);
never@739 1373
never@739 1374 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
never@739 1375 void xorpd(XMMRegister dst, Address src);
never@739 1376 void xorpd(XMMRegister dst, XMMRegister src);
never@739 1377
never@739 1378 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
never@739 1379 void xorps(XMMRegister dst, Address src);
duke@435 1380 void xorps(XMMRegister dst, XMMRegister src);
never@739 1381
never@739 1382 void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
duke@435 1383 };
duke@435 1384
duke@435 1385
duke@435 1386 // MacroAssembler extends Assembler by frequently used macros.
duke@435 1387 //
duke@435 1388 // Instructions for which a 'better' code sequence exists depending
duke@435 1389 // on arguments should also go in here.
duke@435 1390
duke@435 1391 class MacroAssembler: public Assembler {
ysr@777 1392 friend class LIR_Assembler;
ysr@777 1393 friend class Runtime1; // as_Address()
duke@435 1394 protected:
duke@435 1395
duke@435 1396 Address as_Address(AddressLiteral adr);
duke@435 1397 Address as_Address(ArrayAddress adr);
duke@435 1398
duke@435 1399 // Support for VM calls
duke@435 1400 //
duke@435 1401 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
duke@435 1402 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1403 // additional registers when doing a VM call).
duke@435 1404 #ifdef CC_INTERP
duke@435 1405 // c++ interpreter never wants to use interp_masm version of call_VM
duke@435 1406 #define VIRTUAL
duke@435 1407 #else
duke@435 1408 #define VIRTUAL virtual
duke@435 1409 #endif
duke@435 1410
duke@435 1411 VIRTUAL void call_VM_leaf_base(
duke@435 1412 address entry_point, // the entry point
duke@435 1413 int number_of_arguments // the number of arguments to pop after the call
duke@435 1414 );
duke@435 1415
duke@435 1416 // This is the base routine called by the different versions of call_VM. The interpreter
duke@435 1417 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1418 // additional registers when doing a VM call).
duke@435 1419 //
duke@435 1420 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
duke@435 1421 // returns the register which contains the thread upon return. If a thread register has been
duke@435 1422 // specified, the return value will correspond to that register. If no last_java_sp is specified
duke@435 1423 // (noreg) than rsp will be used instead.
duke@435 1424 VIRTUAL void call_VM_base( // returns the register containing the thread upon return
duke@435 1425 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
duke@435 1426 Register java_thread, // the thread if computed before ; use noreg otherwise
duke@435 1427 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
duke@435 1428 address entry_point, // the entry point
duke@435 1429 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
duke@435 1430 bool check_exceptions // whether to check for pending exceptions after return
duke@435 1431 );
duke@435 1432
duke@435 1433 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
duke@435 1434 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1435 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
duke@435 1436 virtual void check_and_handle_popframe(Register java_thread);
duke@435 1437 virtual void check_and_handle_earlyret(Register java_thread);
duke@435 1438
duke@435 1439 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
duke@435 1440
duke@435 1441 // helpers for FPU flag access
duke@435 1442 // tmp is a temporary register, if none is available use noreg
duke@435 1443 void save_rax (Register tmp);
duke@435 1444 void restore_rax(Register tmp);
duke@435 1445
duke@435 1446 public:
duke@435 1447 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1448
duke@435 1449 // Support for NULL-checks
duke@435 1450 //
duke@435 1451 // Generates code that causes a NULL OS exception if the content of reg is NULL.
duke@435 1452 // If the accessed location is M[reg + offset] and the offset is known, provide the
duke@435 1453 // offset. No explicit code generation is needed if the offset is within a certain
duke@435 1454 // range (0 <= offset <= page_size).
duke@435 1455
duke@435 1456 void null_check(Register reg, int offset = -1);
kvn@603 1457 static bool needs_explicit_null_check(intptr_t offset);
duke@435 1458
duke@435 1459 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1460 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1461 void pd_patch_instruction(address branch, address target);
duke@435 1462 #ifndef PRODUCT
duke@435 1463 static void pd_print_patched_instruction(address branch);
duke@435 1464 #endif
duke@435 1465
duke@435 1466 // The following 4 methods return the offset of the appropriate move instruction
duke@435 1467
jrose@1057 1468 // Support for fast byte/short loading with zero extension (depending on particular CPU)
duke@435 1469 int load_unsigned_byte(Register dst, Address src);
jrose@1057 1470 int load_unsigned_short(Register dst, Address src);
jrose@1057 1471
jrose@1057 1472 // Support for fast byte/short loading with sign extension (depending on particular CPU)
duke@435 1473 int load_signed_byte(Register dst, Address src);
jrose@1057 1474 int load_signed_short(Register dst, Address src);
duke@435 1475
duke@435 1476 // Support for sign-extension (hi:lo = extend_sign(lo))
duke@435 1477 void extend_sign(Register hi, Register lo);
duke@435 1478
jrose@1057 1479 // Loading values by size and signed-ness
jrose@1057 1480 void load_sized_value(Register dst, Address src, int size_in_bytes, bool is_signed);
jrose@1057 1481
duke@435 1482 // Support for inc/dec with optimal instruction selection depending on value
never@739 1483
never@739 1484 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
never@739 1485 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
never@739 1486
never@739 1487 void decrementl(Address dst, int value = 1);
never@739 1488 void decrementl(Register reg, int value = 1);
never@739 1489
never@739 1490 void decrementq(Register reg, int value = 1);
never@739 1491 void decrementq(Address dst, int value = 1);
never@739 1492
never@739 1493 void incrementl(Address dst, int value = 1);
never@739 1494 void incrementl(Register reg, int value = 1);
never@739 1495
never@739 1496 void incrementq(Register reg, int value = 1);
never@739 1497 void incrementq(Address dst, int value = 1);
never@739 1498
duke@435 1499
duke@435 1500 // Support optimal SSE move instructions.
duke@435 1501 void movflt(XMMRegister dst, XMMRegister src) {
duke@435 1502 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
duke@435 1503 else { movss (dst, src); return; }
duke@435 1504 }
duke@435 1505 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
duke@435 1506 void movflt(XMMRegister dst, AddressLiteral src);
duke@435 1507 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
duke@435 1508
duke@435 1509 void movdbl(XMMRegister dst, XMMRegister src) {
duke@435 1510 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
duke@435 1511 else { movsd (dst, src); return; }
duke@435 1512 }
duke@435 1513
duke@435 1514 void movdbl(XMMRegister dst, AddressLiteral src);
duke@435 1515
duke@435 1516 void movdbl(XMMRegister dst, Address src) {
duke@435 1517 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
duke@435 1518 else { movlpd(dst, src); return; }
duke@435 1519 }
duke@435 1520 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
duke@435 1521
never@739 1522 void incrementl(AddressLiteral dst);
never@739 1523 void incrementl(ArrayAddress dst);
duke@435 1524
duke@435 1525 // Alignment
duke@435 1526 void align(int modulus);
duke@435 1527
duke@435 1528 // Misc
duke@435 1529 void fat_nop(); // 5 byte nop
duke@435 1530
duke@435 1531 // Stack frame creation/removal
duke@435 1532 void enter();
duke@435 1533 void leave();
duke@435 1534
duke@435 1535 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
duke@435 1536 // The pointer will be loaded into the thread register.
duke@435 1537 void get_thread(Register thread);
duke@435 1538
apetrusenko@797 1539
duke@435 1540 // Support for VM calls
duke@435 1541 //
duke@435 1542 // It is imperative that all calls into the VM are handled via the call_VM macros.
duke@435 1543 // They make sure that the stack linkage is setup correctly. call_VM's correspond
duke@435 1544 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
duke@435 1545
never@739 1546
never@739 1547 void call_VM(Register oop_result,
never@739 1548 address entry_point,
never@739 1549 bool check_exceptions = true);
never@739 1550 void call_VM(Register oop_result,
never@739 1551 address entry_point,
never@739 1552 Register arg_1,
never@739 1553 bool check_exceptions = true);
never@739 1554 void call_VM(Register oop_result,
never@739 1555 address entry_point,
never@739 1556 Register arg_1, Register arg_2,
never@739 1557 bool check_exceptions = true);
never@739 1558 void call_VM(Register oop_result,
never@739 1559 address entry_point,
never@739 1560 Register arg_1, Register arg_2, Register arg_3,
never@739 1561 bool check_exceptions = true);
never@739 1562
never@739 1563 // Overloadings with last_Java_sp
never@739 1564 void call_VM(Register oop_result,
never@739 1565 Register last_java_sp,
never@739 1566 address entry_point,
never@739 1567 int number_of_arguments = 0,
never@739 1568 bool check_exceptions = true);
never@739 1569 void call_VM(Register oop_result,
never@739 1570 Register last_java_sp,
never@739 1571 address entry_point,
never@739 1572 Register arg_1, bool
never@739 1573 check_exceptions = true);
never@739 1574 void call_VM(Register oop_result,
never@739 1575 Register last_java_sp,
never@739 1576 address entry_point,
never@739 1577 Register arg_1, Register arg_2,
never@739 1578 bool check_exceptions = true);
never@739 1579 void call_VM(Register oop_result,
never@739 1580 Register last_java_sp,
never@739 1581 address entry_point,
never@739 1582 Register arg_1, Register arg_2, Register arg_3,
never@739 1583 bool check_exceptions = true);
never@739 1584
never@739 1585 void call_VM_leaf(address entry_point,
never@739 1586 int number_of_arguments = 0);
never@739 1587 void call_VM_leaf(address entry_point,
never@739 1588 Register arg_1);
never@739 1589 void call_VM_leaf(address entry_point,
never@739 1590 Register arg_1, Register arg_2);
never@739 1591 void call_VM_leaf(address entry_point,
never@739 1592 Register arg_1, Register arg_2, Register arg_3);
duke@435 1593
duke@435 1594 // last Java Frame (fills frame anchor)
never@739 1595 void set_last_Java_frame(Register thread,
never@739 1596 Register last_java_sp,
never@739 1597 Register last_java_fp,
never@739 1598 address last_java_pc);
never@739 1599
never@739 1600 // thread in the default location (r15_thread on 64bit)
never@739 1601 void set_last_Java_frame(Register last_java_sp,
never@739 1602 Register last_java_fp,
never@739 1603 address last_java_pc);
never@739 1604
duke@435 1605 void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
duke@435 1606
never@739 1607 // thread in the default location (r15_thread on 64bit)
never@739 1608 void reset_last_Java_frame(bool clear_fp, bool clear_pc);
never@739 1609
duke@435 1610 // Stores
duke@435 1611 void store_check(Register obj); // store check for obj - register is destroyed afterwards
duke@435 1612 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
duke@435 1613
apetrusenko@797 1614 void g1_write_barrier_pre(Register obj,
apetrusenko@797 1615 #ifndef _LP64
apetrusenko@797 1616 Register thread,
apetrusenko@797 1617 #endif
apetrusenko@797 1618 Register tmp,
apetrusenko@797 1619 Register tmp2,
apetrusenko@797 1620 bool tosca_live);
apetrusenko@797 1621 void g1_write_barrier_post(Register store_addr,
apetrusenko@797 1622 Register new_val,
apetrusenko@797 1623 #ifndef _LP64
apetrusenko@797 1624 Register thread,
apetrusenko@797 1625 #endif
apetrusenko@797 1626 Register tmp,
apetrusenko@797 1627 Register tmp2);
ysr@777 1628
ysr@777 1629
duke@435 1630 // split store_check(Register obj) to enhance instruction interleaving
duke@435 1631 void store_check_part_1(Register obj);
duke@435 1632 void store_check_part_2(Register obj);
duke@435 1633
duke@435 1634 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
duke@435 1635 void c2bool(Register x);
duke@435 1636
duke@435 1637 // C++ bool manipulation
duke@435 1638
duke@435 1639 void movbool(Register dst, Address src);
duke@435 1640 void movbool(Address dst, bool boolconst);
duke@435 1641 void movbool(Address dst, Register src);
duke@435 1642 void testbool(Register dst);
duke@435 1643
never@739 1644 // oop manipulations
never@739 1645 void load_klass(Register dst, Register src);
never@739 1646 void store_klass(Register dst, Register src);
never@739 1647
never@739 1648 void load_prototype_header(Register dst, Register src);
never@739 1649
never@739 1650 #ifdef _LP64
never@739 1651 void store_klass_gap(Register dst, Register src);
never@739 1652
never@739 1653 void load_heap_oop(Register dst, Address src);
never@739 1654 void store_heap_oop(Address dst, Register src);
never@739 1655 void encode_heap_oop(Register r);
never@739 1656 void decode_heap_oop(Register r);
never@739 1657 void encode_heap_oop_not_null(Register r);
never@739 1658 void decode_heap_oop_not_null(Register r);
never@739 1659 void encode_heap_oop_not_null(Register dst, Register src);
never@739 1660 void decode_heap_oop_not_null(Register dst, Register src);
never@739 1661
never@739 1662 void set_narrow_oop(Register dst, jobject obj);
kvn@1077 1663 void set_narrow_oop(Address dst, jobject obj);
kvn@1077 1664 void cmp_narrow_oop(Register dst, jobject obj);
kvn@1077 1665 void cmp_narrow_oop(Address dst, jobject obj);
never@739 1666
never@739 1667 // if heap base register is used - reinit it with the correct value
never@739 1668 void reinit_heapbase();
never@739 1669 #endif // _LP64
never@739 1670
never@739 1671 // Int division/remainder for Java
duke@435 1672 // (as idivl, but checks for special case as described in JVM spec.)
duke@435 1673 // returns idivl instruction offset for implicit exception handling
duke@435 1674 int corrected_idivl(Register reg);
duke@435 1675
never@739 1676 // Long division/remainder for Java
never@739 1677 // (as idivq, but checks for special case as described in JVM spec.)
never@739 1678 // returns idivq instruction offset for implicit exception handling
never@739 1679 int corrected_idivq(Register reg);
never@739 1680
duke@435 1681 void int3();
duke@435 1682
never@739 1683 // Long operation macros for a 32bit cpu
duke@435 1684 // Long negation for Java
duke@435 1685 void lneg(Register hi, Register lo);
duke@435 1686
duke@435 1687 // Long multiplication for Java
never@739 1688 // (destroys contents of eax, ebx, ecx and edx)
duke@435 1689 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
duke@435 1690
duke@435 1691 // Long shifts for Java
duke@435 1692 // (semantics as described in JVM spec.)
duke@435 1693 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
duke@435 1694 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
duke@435 1695
duke@435 1696 // Long compare for Java
duke@435 1697 // (semantics as described in JVM spec.)
duke@435 1698 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
duke@435 1699
never@739 1700
never@739 1701 // misc
never@739 1702
never@739 1703 // Sign extension
never@739 1704 void sign_extend_short(Register reg);
never@739 1705 void sign_extend_byte(Register reg);
never@739 1706
never@739 1707 // Division by power of 2, rounding towards 0
never@739 1708 void division_with_shift(Register reg, int shift_value);
never@739 1709
duke@435 1710 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
duke@435 1711 //
duke@435 1712 // CF (corresponds to C0) if x < y
duke@435 1713 // PF (corresponds to C2) if unordered
duke@435 1714 // ZF (corresponds to C3) if x = y
duke@435 1715 //
duke@435 1716 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1717 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
duke@435 1718 void fcmp(Register tmp);
duke@435 1719 // Variant of the above which allows y to be further down the stack
duke@435 1720 // and which only pops x and y if specified. If pop_right is
duke@435 1721 // specified then pop_left must also be specified.
duke@435 1722 void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
duke@435 1723
duke@435 1724 // Floating-point comparison for Java
duke@435 1725 // Compares the top-most stack entries on the FPU stack and stores the result in dst.
duke@435 1726 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1727 // (semantics as described in JVM spec.)
duke@435 1728 void fcmp2int(Register dst, bool unordered_is_less);
duke@435 1729 // Variant of the above which allows y to be further down the stack
duke@435 1730 // and which only pops x and y if specified. If pop_right is
duke@435 1731 // specified then pop_left must also be specified.
duke@435 1732 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
duke@435 1733
duke@435 1734 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
duke@435 1735 // tmp is a temporary register, if none is available use noreg
duke@435 1736 void fremr(Register tmp);
duke@435 1737
duke@435 1738
duke@435 1739 // same as fcmp2int, but using SSE2
duke@435 1740 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1741 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1742
duke@435 1743 // Inlined sin/cos generator for Java; must not use CPU instruction
duke@435 1744 // directly on Intel as it does not have high enough precision
duke@435 1745 // outside of the range [-pi/4, pi/4]. Extra argument indicate the
duke@435 1746 // number of FPU stack slots in use; all but the topmost will
duke@435 1747 // require saving if a slow case is necessary. Assumes argument is
duke@435 1748 // on FP TOS; result is on FP TOS. No cpu registers are changed by
duke@435 1749 // this code.
duke@435 1750 void trigfunc(char trig, int num_fpu_regs_in_use = 1);
duke@435 1751
duke@435 1752 // branch to L if FPU flag C2 is set/not set
duke@435 1753 // tmp is a temporary register, if none is available use noreg
duke@435 1754 void jC2 (Register tmp, Label& L);
duke@435 1755 void jnC2(Register tmp, Label& L);
duke@435 1756
duke@435 1757 // Pop ST (ffree & fincstp combined)
duke@435 1758 void fpop();
duke@435 1759
duke@435 1760 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1761 void push_fTOS();
duke@435 1762
duke@435 1763 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1764 void pop_fTOS();
duke@435 1765
duke@435 1766 void empty_FPU_stack();
duke@435 1767
duke@435 1768 void push_IU_state();
duke@435 1769 void pop_IU_state();
duke@435 1770
duke@435 1771 void push_FPU_state();
duke@435 1772 void pop_FPU_state();
duke@435 1773
duke@435 1774 void push_CPU_state();
duke@435 1775 void pop_CPU_state();
duke@435 1776
duke@435 1777 // Round up to a power of two
duke@435 1778 void round_to(Register reg, int modulus);
duke@435 1779
duke@435 1780 // Callee saved registers handling
duke@435 1781 void push_callee_saved_registers();
duke@435 1782 void pop_callee_saved_registers();
duke@435 1783
duke@435 1784 // allocation
duke@435 1785 void eden_allocate(
duke@435 1786 Register obj, // result: pointer to object after successful allocation
duke@435 1787 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1788 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1789 Register t1, // temp register
duke@435 1790 Label& slow_case // continuation point if fast allocation fails
duke@435 1791 );
duke@435 1792 void tlab_allocate(
duke@435 1793 Register obj, // result: pointer to object after successful allocation
duke@435 1794 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1795 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1796 Register t1, // temp register
duke@435 1797 Register t2, // temp register
duke@435 1798 Label& slow_case // continuation point if fast allocation fails
duke@435 1799 );
duke@435 1800 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
duke@435 1801
jrose@1058 1802 // interface method calling
jrose@1058 1803 void lookup_interface_method(Register recv_klass,
jrose@1058 1804 Register intf_klass,
jrose@1100 1805 RegisterOrConstant itable_index,
jrose@1058 1806 Register method_result,
jrose@1058 1807 Register scan_temp,
jrose@1058 1808 Label& no_such_interface);
jrose@1058 1809
jrose@1079 1810 // Test sub_klass against super_klass, with fast and slow paths.
jrose@1079 1811
jrose@1079 1812 // The fast path produces a tri-state answer: yes / no / maybe-slow.
jrose@1079 1813 // One of the three labels can be NULL, meaning take the fall-through.
jrose@1079 1814 // If super_check_offset is -1, the value is loaded up from super_klass.
jrose@1079 1815 // No registers are killed, except temp_reg.
jrose@1079 1816 void check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 1817 Register super_klass,
jrose@1079 1818 Register temp_reg,
jrose@1079 1819 Label* L_success,
jrose@1079 1820 Label* L_failure,
jrose@1079 1821 Label* L_slow_path,
jrose@1100 1822 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
jrose@1079 1823
jrose@1079 1824 // The rest of the type check; must be wired to a corresponding fast path.
jrose@1079 1825 // It does not repeat the fast path logic, so don't use it standalone.
jrose@1079 1826 // The temp_reg and temp2_reg can be noreg, if no temps are available.
jrose@1079 1827 // Updates the sub's secondary super cache as necessary.
jrose@1079 1828 // If set_cond_codes, condition codes will be Z on success, NZ on failure.
jrose@1079 1829 void check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 1830 Register super_klass,
jrose@1079 1831 Register temp_reg,
jrose@1079 1832 Register temp2_reg,
jrose@1079 1833 Label* L_success,
jrose@1079 1834 Label* L_failure,
jrose@1079 1835 bool set_cond_codes = false);
jrose@1079 1836
jrose@1079 1837 // Simplified, combined version, good for typical uses.
jrose@1079 1838 // Falls through on failure.
jrose@1079 1839 void check_klass_subtype(Register sub_klass,
jrose@1079 1840 Register super_klass,
jrose@1079 1841 Register temp_reg,
jrose@1079 1842 Label& L_success);
jrose@1079 1843
duke@435 1844 //----
duke@435 1845 void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
duke@435 1846
duke@435 1847 // Debugging
never@739 1848
never@739 1849 // only if +VerifyOops
never@739 1850 void verify_oop(Register reg, const char* s = "broken oop");
duke@435 1851 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
duke@435 1852
never@739 1853 // only if +VerifyFPU
never@739 1854 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
never@739 1855
never@739 1856 // prints msg, dumps registers and stops execution
never@739 1857 void stop(const char* msg);
never@739 1858
never@739 1859 // prints msg and continues
never@739 1860 void warn(const char* msg);
never@739 1861
never@739 1862 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
never@739 1863 static void debug64(char* msg, int64_t pc, int64_t regs[]);
never@739 1864
duke@435 1865 void os_breakpoint();
never@739 1866
duke@435 1867 void untested() { stop("untested"); }
never@739 1868
duke@435 1869 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, sizeof(b), "unimplemented: %s", what); stop(b); }
never@739 1870
duke@435 1871 void should_not_reach_here() { stop("should not reach here"); }
never@739 1872
duke@435 1873 void print_CPU_state();
duke@435 1874
duke@435 1875 // Stack overflow checking
duke@435 1876 void bang_stack_with_offset(int offset) {
duke@435 1877 // stack grows down, caller passes positive offset
duke@435 1878 assert(offset > 0, "must bang with negative offset");
duke@435 1879 movl(Address(rsp, (-offset)), rax);
duke@435 1880 }
duke@435 1881
duke@435 1882 // Writes to stack successive pages until offset reached to check for
duke@435 1883 // stack overflow + shadow pages. Also, clobbers tmp
duke@435 1884 void bang_stack_size(Register size, Register tmp);
duke@435 1885
jrose@1100 1886 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 1887 Register tmp,
jrose@1100 1888 int offset);
jrose@1057 1889
duke@435 1890 // Support for serializing memory accesses between threads
duke@435 1891 void serialize_memory(Register thread, Register tmp);
duke@435 1892
duke@435 1893 void verify_tlab();
duke@435 1894
duke@435 1895 // Biased locking support
duke@435 1896 // lock_reg and obj_reg must be loaded up with the appropriate values.
duke@435 1897 // swap_reg must be rax, and is killed.
duke@435 1898 // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
duke@435 1899 // be killed; if not supplied, push/pop will be used internally to
duke@435 1900 // allocate a temporary (inefficient, avoid if possible).
duke@435 1901 // Optional slow case is for implementations (interpreter and C1) which branch to
duke@435 1902 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
duke@435 1903 // Returns offset of first potentially-faulting instruction for null
duke@435 1904 // check info (currently consumed only by C1). If
duke@435 1905 // swap_reg_contains_mark is true then returns -1 as it is assumed
duke@435 1906 // the calling code has already passed any potential faults.
kvn@855 1907 int biased_locking_enter(Register lock_reg, Register obj_reg,
kvn@855 1908 Register swap_reg, Register tmp_reg,
duke@435 1909 bool swap_reg_contains_mark,
duke@435 1910 Label& done, Label* slow_case = NULL,
duke@435 1911 BiasedLockingCounters* counters = NULL);
duke@435 1912 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
duke@435 1913
duke@435 1914
duke@435 1915 Condition negate_condition(Condition cond);
duke@435 1916
duke@435 1917 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
duke@435 1918 // operands. In general the names are modified to avoid hiding the instruction in Assembler
duke@435 1919 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
duke@435 1920 // here in MacroAssembler. The major exception to this rule is call
duke@435 1921
duke@435 1922 // Arithmetics
duke@435 1923
never@739 1924
never@739 1925 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
never@739 1926 void addptr(Address dst, Register src);
never@739 1927
never@739 1928 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
never@739 1929 void addptr(Register dst, int32_t src);
never@739 1930 void addptr(Register dst, Register src);
never@739 1931
never@739 1932 void andptr(Register dst, int32_t src);
never@739 1933 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
never@739 1934
never@739 1935 void cmp8(AddressLiteral src1, int imm);
never@739 1936
never@739 1937 // renamed to drag out the casting of address to int32_t/intptr_t
duke@435 1938 void cmp32(Register src1, int32_t imm);
duke@435 1939
duke@435 1940 void cmp32(AddressLiteral src1, int32_t imm);
duke@435 1941 // compare reg - mem, or reg - &mem
duke@435 1942 void cmp32(Register src1, AddressLiteral src2);
duke@435 1943
duke@435 1944 void cmp32(Register src1, Address src2);
duke@435 1945
never@739 1946 #ifndef _LP64
never@739 1947 void cmpoop(Address dst, jobject obj);
never@739 1948 void cmpoop(Register dst, jobject obj);
never@739 1949 #endif // _LP64
never@739 1950
duke@435 1951 // NOTE src2 must be the lval. This is NOT an mem-mem compare
duke@435 1952 void cmpptr(Address src1, AddressLiteral src2);
duke@435 1953
duke@435 1954 void cmpptr(Register src1, AddressLiteral src2);
duke@435 1955
never@739 1956 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1957 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1958 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1959
never@739 1960 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1961 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1962
never@739 1963 // cmp64 to avoild hiding cmpq
never@739 1964 void cmp64(Register src1, AddressLiteral src);
never@739 1965
never@739 1966 void cmpxchgptr(Register reg, Address adr);
never@739 1967
never@739 1968 void locked_cmpxchgptr(Register reg, AddressLiteral adr);
never@739 1969
never@739 1970
never@739 1971 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
never@739 1972
never@739 1973
never@739 1974 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
never@739 1975
never@739 1976 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
never@739 1977
never@739 1978 void shlptr(Register dst, int32_t shift);
never@739 1979 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
never@739 1980
never@739 1981 void shrptr(Register dst, int32_t shift);
never@739 1982 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
never@739 1983
never@739 1984 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
never@739 1985 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
never@739 1986
never@739 1987 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 1988
never@739 1989 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 1990 void subptr(Register dst, int32_t src);
never@739 1991 void subptr(Register dst, Register src);
never@739 1992
never@739 1993
never@739 1994 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 1995 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 1996
never@739 1997 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 1998 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 1999
never@739 2000 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
never@739 2001
never@739 2002
duke@435 2003
duke@435 2004 // Helper functions for statistics gathering.
duke@435 2005 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
duke@435 2006 void cond_inc32(Condition cond, AddressLiteral counter_addr);
duke@435 2007 // Unconditional atomic increment.
duke@435 2008 void atomic_incl(AddressLiteral counter_addr);
duke@435 2009
duke@435 2010 void lea(Register dst, AddressLiteral adr);
duke@435 2011 void lea(Address dst, AddressLiteral adr);
never@739 2012 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
never@739 2013
never@739 2014 void leal32(Register dst, Address src) { leal(dst, src); }
never@739 2015
never@739 2016 void test32(Register src1, AddressLiteral src2);
never@739 2017
never@739 2018 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2019 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2020 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2021
never@739 2022 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
never@739 2023 void testptr(Register src1, Register src2);
never@739 2024
never@739 2025 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
never@739 2026 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
duke@435 2027
duke@435 2028 // Calls
duke@435 2029
duke@435 2030 void call(Label& L, relocInfo::relocType rtype);
duke@435 2031 void call(Register entry);
duke@435 2032
duke@435 2033 // NOTE: this call tranfers to the effective address of entry NOT
duke@435 2034 // the address contained by entry. This is because this is more natural
duke@435 2035 // for jumps/calls.
duke@435 2036 void call(AddressLiteral entry);
duke@435 2037
duke@435 2038 // Jumps
duke@435 2039
duke@435 2040 // NOTE: these jumps tranfer to the effective address of dst NOT
duke@435 2041 // the address contained by dst. This is because this is more natural
duke@435 2042 // for jumps/calls.
duke@435 2043 void jump(AddressLiteral dst);
duke@435 2044 void jump_cc(Condition cc, AddressLiteral dst);
duke@435 2045
duke@435 2046 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 2047 // to be installed in the Address class. This jump will tranfers to the address
duke@435 2048 // contained in the location described by entry (not the address of entry)
duke@435 2049 void jump(ArrayAddress entry);
duke@435 2050
duke@435 2051 // Floating
duke@435 2052
duke@435 2053 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
duke@435 2054 void andpd(XMMRegister dst, AddressLiteral src);
duke@435 2055
duke@435 2056 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
duke@435 2057 void comiss(XMMRegister dst, AddressLiteral src);
duke@435 2058
duke@435 2059 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
duke@435 2060 void comisd(XMMRegister dst, AddressLiteral src);
duke@435 2061
duke@435 2062 void fldcw(Address src) { Assembler::fldcw(src); }
duke@435 2063 void fldcw(AddressLiteral src);
duke@435 2064
duke@435 2065 void fld_s(int index) { Assembler::fld_s(index); }
duke@435 2066 void fld_s(Address src) { Assembler::fld_s(src); }
duke@435 2067 void fld_s(AddressLiteral src);
duke@435 2068
duke@435 2069 void fld_d(Address src) { Assembler::fld_d(src); }
duke@435 2070 void fld_d(AddressLiteral src);
duke@435 2071
duke@435 2072 void fld_x(Address src) { Assembler::fld_x(src); }
duke@435 2073 void fld_x(AddressLiteral src);
duke@435 2074
duke@435 2075 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
duke@435 2076 void ldmxcsr(AddressLiteral src);
duke@435 2077
never@739 2078 private:
never@739 2079 // these are private because users should be doing movflt/movdbl
never@739 2080
duke@435 2081 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2082 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2083 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
duke@435 2084 void movss(XMMRegister dst, AddressLiteral src);
duke@435 2085
never@739 2086 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
never@739 2087 void movlpd(XMMRegister dst, AddressLiteral src);
never@739 2088
never@739 2089 public:
never@739 2090
duke@435 2091 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
duke@435 2092 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
duke@435 2093 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
duke@435 2094 void movsd(XMMRegister dst, AddressLiteral src);
duke@435 2095
duke@435 2096 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
duke@435 2097 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
duke@435 2098 void ucomiss(XMMRegister dst, AddressLiteral src);
duke@435 2099
duke@435 2100 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
duke@435 2101 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
duke@435 2102 void ucomisd(XMMRegister dst, AddressLiteral src);
duke@435 2103
duke@435 2104 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
duke@435 2105 void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
duke@435 2106 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
duke@435 2107 void xorpd(XMMRegister dst, AddressLiteral src);
duke@435 2108
duke@435 2109 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
duke@435 2110 void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
duke@435 2111 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
duke@435 2112 void xorps(XMMRegister dst, AddressLiteral src);
duke@435 2113
duke@435 2114 // Data
duke@435 2115
never@739 2116 void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2117
never@739 2118 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2119 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2120
duke@435 2121 void movoop(Register dst, jobject obj);
duke@435 2122 void movoop(Address dst, jobject obj);
duke@435 2123
duke@435 2124 void movptr(ArrayAddress dst, Register src);
duke@435 2125 // can this do an lea?
duke@435 2126 void movptr(Register dst, ArrayAddress src);
duke@435 2127
never@739 2128 void movptr(Register dst, Address src);
never@739 2129
duke@435 2130 void movptr(Register dst, AddressLiteral src);
duke@435 2131
never@739 2132 void movptr(Register dst, intptr_t src);
never@739 2133 void movptr(Register dst, Register src);
never@739 2134 void movptr(Address dst, intptr_t src);
never@739 2135
never@739 2136 void movptr(Address dst, Register src);
never@739 2137
never@739 2138 #ifdef _LP64
never@739 2139 // Generally the next two are only used for moving NULL
never@739 2140 // Although there are situations in initializing the mark word where
never@739 2141 // they could be used. They are dangerous.
never@739 2142
never@739 2143 // They only exist on LP64 so that int32_t and intptr_t are not the same
never@739 2144 // and we have ambiguous declarations.
never@739 2145
never@739 2146 void movptr(Address dst, int32_t imm32);
never@739 2147 void movptr(Register dst, int32_t imm32);
never@739 2148 #endif // _LP64
never@739 2149
duke@435 2150 // to avoid hiding movl
duke@435 2151 void mov32(AddressLiteral dst, Register src);
duke@435 2152 void mov32(Register dst, AddressLiteral src);
never@739 2153
duke@435 2154 // to avoid hiding movb
duke@435 2155 void movbyte(ArrayAddress dst, int src);
duke@435 2156
duke@435 2157 // Can push value or effective address
duke@435 2158 void pushptr(AddressLiteral src);
duke@435 2159
never@739 2160 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
never@739 2161 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
never@739 2162
never@739 2163 void pushoop(jobject obj);
never@739 2164
never@739 2165 // sign extend as need a l to ptr sized element
never@739 2166 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
never@739 2167 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
never@739 2168
never@739 2169
duke@435 2170 #undef VIRTUAL
duke@435 2171
duke@435 2172 };
duke@435 2173
duke@435 2174 /**
duke@435 2175 * class SkipIfEqual:
duke@435 2176 *
duke@435 2177 * Instantiating this class will result in assembly code being output that will
duke@435 2178 * jump around any code emitted between the creation of the instance and it's
duke@435 2179 * automatic destruction at the end of a scope block, depending on the value of
duke@435 2180 * the flag passed to the constructor, which will be checked at run-time.
duke@435 2181 */
duke@435 2182 class SkipIfEqual {
duke@435 2183 private:
duke@435 2184 MacroAssembler* _masm;
duke@435 2185 Label _label;
duke@435 2186
duke@435 2187 public:
duke@435 2188 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
duke@435 2189 ~SkipIfEqual();
duke@435 2190 };
duke@435 2191
duke@435 2192 #ifdef ASSERT
duke@435 2193 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
duke@435 2194 #endif

mercurial