src/cpu/x86/vm/assembler_x86.hpp

Wed, 09 Feb 2011 15:02:23 -0800

author
never
date
Wed, 09 Feb 2011 15:02:23 -0800
changeset 2569
6bbaedb03534
parent 2565
28bf941f445e
child 2602
41d4973cf100
permissions
-rw-r--r--

7016474: string compare intrinsic improvements
Reviewed-by: kvn

duke@435 1 /*
phh@2423 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
stefank@2314 26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
stefank@2314 27
duke@435 28 class BiasedLockingCounters;
duke@435 29
duke@435 30 // Contains all the definitions needed for x86 assembly code generation.
duke@435 31
duke@435 32 // Calling convention
duke@435 33 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 34 public:
duke@435 35 enum {
duke@435 36 #ifdef _LP64
duke@435 37 #ifdef _WIN64
duke@435 38 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 39 n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
duke@435 40 #else
duke@435 41 n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 42 n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
duke@435 43 #endif // _WIN64
duke@435 44 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
duke@435 45 n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
duke@435 46 #else
duke@435 47 n_register_parameters = 0 // 0 registers used to pass arguments
duke@435 48 #endif // _LP64
duke@435 49 };
duke@435 50 };
duke@435 51
duke@435 52
duke@435 53 #ifdef _LP64
duke@435 54 // Symbolically name the register arguments used by the c calling convention.
duke@435 55 // Windows is different from linux/solaris. So much for standards...
duke@435 56
duke@435 57 #ifdef _WIN64
duke@435 58
duke@435 59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
duke@435 60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
duke@435 61 REGISTER_DECLARATION(Register, c_rarg2, r8);
duke@435 62 REGISTER_DECLARATION(Register, c_rarg3, r9);
duke@435 63
never@739 64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
duke@435 68
duke@435 69 #else
duke@435 70
duke@435 71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
duke@435 72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
duke@435 73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
duke@435 74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
duke@435 75 REGISTER_DECLARATION(Register, c_rarg4, r8);
duke@435 76 REGISTER_DECLARATION(Register, c_rarg5, r9);
duke@435 77
never@739 78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
never@739 82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
never@739 83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
never@739 84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
never@739 85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
duke@435 86
duke@435 87 #endif // _WIN64
duke@435 88
duke@435 89 // Symbolically name the register arguments used by the Java calling convention.
duke@435 90 // We have control over the convention for java so we can do what we please.
duke@435 91 // What pleases us is to offset the java calling convention so that when
duke@435 92 // we call a suitable jni method the arguments are lined up and we don't
duke@435 93 // have to do little shuffling. A suitable jni method is non-static and a
duke@435 94 // small number of arguments (two fewer args on windows)
duke@435 95 //
duke@435 96 // |-------------------------------------------------------|
duke@435 97 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
duke@435 98 // |-------------------------------------------------------|
duke@435 99 // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
duke@435 100 // | rdi rsi rdx rcx r8 r9 | solaris/linux
duke@435 101 // |-------------------------------------------------------|
duke@435 102 // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
duke@435 103 // |-------------------------------------------------------|
duke@435 104
duke@435 105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
duke@435 106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
duke@435 107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
duke@435 108 // Windows runs out of register args here
duke@435 109 #ifdef _WIN64
duke@435 110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
duke@435 111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
duke@435 112 #else
duke@435 113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
duke@435 114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
duke@435 115 #endif /* _WIN64 */
duke@435 116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
duke@435 117
never@739 118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
never@739 119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
never@739 120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
never@739 121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
never@739 122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
never@739 123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
never@739 124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
never@739 125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
duke@435 126
duke@435 127 REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
duke@435 128 REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
duke@435 129
never@739 130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
duke@435 131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
duke@435 132
never@739 133 #else
never@739 134 // rscratch1 will apear in 32bit code that is dead but of course must compile
never@739 135 // Using noreg ensures if the dead code is incorrectly live and executed it
never@739 136 // will cause an assertion failure
never@739 137 #define rscratch1 noreg
iveresov@2344 138 #define rscratch2 noreg
never@739 139
duke@435 140 #endif // _LP64
duke@435 141
twisti@1919 142 // JSR 292 fixed register usages:
twisti@1919 143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
twisti@1919 144
duke@435 145 // Address is an abstraction used to represent a memory location
duke@435 146 // using any of the amd64 addressing modes with one object.
duke@435 147 //
duke@435 148 // Note: A register location is represented via a Register, not
duke@435 149 // via an address for efficiency & simplicity reasons.
duke@435 150
duke@435 151 class ArrayAddress;
duke@435 152
duke@435 153 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 154 public:
duke@435 155 enum ScaleFactor {
duke@435 156 no_scale = -1,
duke@435 157 times_1 = 0,
duke@435 158 times_2 = 1,
duke@435 159 times_4 = 2,
never@739 160 times_8 = 3,
never@739 161 times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
duke@435 162 };
jrose@1057 163 static ScaleFactor times(int size) {
jrose@1057 164 assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
jrose@1057 165 if (size == 8) return times_8;
jrose@1057 166 if (size == 4) return times_4;
jrose@1057 167 if (size == 2) return times_2;
jrose@1057 168 return times_1;
jrose@1057 169 }
jrose@1057 170 static int scale_size(ScaleFactor scale) {
jrose@1057 171 assert(scale != no_scale, "");
jrose@1057 172 assert(((1 << (int)times_1) == 1 &&
jrose@1057 173 (1 << (int)times_2) == 2 &&
jrose@1057 174 (1 << (int)times_4) == 4 &&
jrose@1057 175 (1 << (int)times_8) == 8), "");
jrose@1057 176 return (1 << (int)scale);
jrose@1057 177 }
duke@435 178
duke@435 179 private:
duke@435 180 Register _base;
duke@435 181 Register _index;
duke@435 182 ScaleFactor _scale;
duke@435 183 int _disp;
duke@435 184 RelocationHolder _rspec;
duke@435 185
never@739 186 // Easily misused constructors make them private
never@739 187 // %%% can we make these go away?
never@739 188 NOT_LP64(Address(address loc, RelocationHolder spec);)
never@739 189 Address(int disp, address loc, relocInfo::relocType rtype);
never@739 190 Address(int disp, address loc, RelocationHolder spec);
duke@435 191
duke@435 192 public:
never@739 193
never@739 194 int disp() { return _disp; }
duke@435 195 // creation
duke@435 196 Address()
duke@435 197 : _base(noreg),
duke@435 198 _index(noreg),
duke@435 199 _scale(no_scale),
duke@435 200 _disp(0) {
duke@435 201 }
duke@435 202
duke@435 203 // No default displacement otherwise Register can be implicitly
duke@435 204 // converted to 0(Register) which is quite a different animal.
duke@435 205
duke@435 206 Address(Register base, int disp)
duke@435 207 : _base(base),
duke@435 208 _index(noreg),
duke@435 209 _scale(no_scale),
duke@435 210 _disp(disp) {
duke@435 211 }
duke@435 212
duke@435 213 Address(Register base, Register index, ScaleFactor scale, int disp = 0)
duke@435 214 : _base (base),
duke@435 215 _index(index),
duke@435 216 _scale(scale),
duke@435 217 _disp (disp) {
duke@435 218 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 219 "inconsistent address");
duke@435 220 }
duke@435 221
jrose@1100 222 Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
jrose@1057 223 : _base (base),
jrose@1057 224 _index(index.register_or_noreg()),
jrose@1057 225 _scale(scale),
jrose@1057 226 _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 227 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 228 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 229 "inconsistent address");
jrose@1057 230 }
jrose@1057 231
jrose@1057 232 Address plus_disp(int disp) const {
jrose@1057 233 Address a = (*this);
jrose@1057 234 a._disp += disp;
jrose@1057 235 return a;
jrose@1057 236 }
jrose@1057 237
duke@435 238 // The following two overloads are used in connection with the
duke@435 239 // ByteSize type (see sizes.hpp). They simplify the use of
duke@435 240 // ByteSize'd arguments in assembly code. Note that their equivalent
duke@435 241 // for the optimized build are the member functions with int disp
duke@435 242 // argument since ByteSize is mapped to an int type in that case.
duke@435 243 //
duke@435 244 // Note: DO NOT introduce similar overloaded functions for WordSize
duke@435 245 // arguments as in the optimized mode, both ByteSize and WordSize
duke@435 246 // are mapped to the same type and thus the compiler cannot make a
duke@435 247 // distinction anymore (=> compiler errors).
duke@435 248
duke@435 249 #ifdef ASSERT
duke@435 250 Address(Register base, ByteSize disp)
duke@435 251 : _base(base),
duke@435 252 _index(noreg),
duke@435 253 _scale(no_scale),
duke@435 254 _disp(in_bytes(disp)) {
duke@435 255 }
duke@435 256
duke@435 257 Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
duke@435 258 : _base(base),
duke@435 259 _index(index),
duke@435 260 _scale(scale),
duke@435 261 _disp(in_bytes(disp)) {
duke@435 262 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 263 "inconsistent address");
duke@435 264 }
jrose@1057 265
jrose@1100 266 Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
jrose@1057 267 : _base (base),
jrose@1057 268 _index(index.register_or_noreg()),
jrose@1057 269 _scale(scale),
jrose@1057 270 _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 271 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 272 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 273 "inconsistent address");
jrose@1057 274 }
jrose@1057 275
duke@435 276 #endif // ASSERT
duke@435 277
duke@435 278 // accessors
ysr@777 279 bool uses(Register reg) const { return _base == reg || _index == reg; }
ysr@777 280 Register base() const { return _base; }
ysr@777 281 Register index() const { return _index; }
ysr@777 282 ScaleFactor scale() const { return _scale; }
ysr@777 283 int disp() const { return _disp; }
duke@435 284
duke@435 285 // Convert the raw encoding form into the form expected by the constructor for
duke@435 286 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 287 // that to noreg for the Address constructor.
twisti@1059 288 static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
duke@435 289
duke@435 290 static Address make_array(ArrayAddress);
duke@435 291
duke@435 292 private:
duke@435 293 bool base_needs_rex() const {
duke@435 294 return _base != noreg && _base->encoding() >= 8;
duke@435 295 }
duke@435 296
duke@435 297 bool index_needs_rex() const {
duke@435 298 return _index != noreg &&_index->encoding() >= 8;
duke@435 299 }
duke@435 300
duke@435 301 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 302
duke@435 303 friend class Assembler;
duke@435 304 friend class MacroAssembler;
duke@435 305 friend class LIR_Assembler; // base/index/scale/disp
duke@435 306 };
duke@435 307
duke@435 308 //
duke@435 309 // AddressLiteral has been split out from Address because operands of this type
duke@435 310 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
duke@435 311 // the few instructions that need to deal with address literals are unique and the
duke@435 312 // MacroAssembler does not have to implement every instruction in the Assembler
duke@435 313 // in order to search for address literals that may need special handling depending
duke@435 314 // on the instruction and the platform. As small step on the way to merging i486/amd64
duke@435 315 // directories.
duke@435 316 //
duke@435 317 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
duke@435 318 friend class ArrayAddress;
duke@435 319 RelocationHolder _rspec;
duke@435 320 // Typically we use AddressLiterals we want to use their rval
duke@435 321 // However in some situations we want the lval (effect address) of the item.
duke@435 322 // We provide a special factory for making those lvals.
duke@435 323 bool _is_lval;
duke@435 324
duke@435 325 // If the target is far we'll need to load the ea of this to
duke@435 326 // a register to reach it. Otherwise if near we can do rip
duke@435 327 // relative addressing.
duke@435 328
duke@435 329 address _target;
duke@435 330
duke@435 331 protected:
duke@435 332 // creation
duke@435 333 AddressLiteral()
duke@435 334 : _is_lval(false),
duke@435 335 _target(NULL)
duke@435 336 {}
duke@435 337
duke@435 338 public:
duke@435 339
duke@435 340
duke@435 341 AddressLiteral(address target, relocInfo::relocType rtype);
duke@435 342
duke@435 343 AddressLiteral(address target, RelocationHolder const& rspec)
duke@435 344 : _rspec(rspec),
duke@435 345 _is_lval(false),
duke@435 346 _target(target)
duke@435 347 {}
duke@435 348
duke@435 349 AddressLiteral addr() {
duke@435 350 AddressLiteral ret = *this;
duke@435 351 ret._is_lval = true;
duke@435 352 return ret;
duke@435 353 }
duke@435 354
duke@435 355
duke@435 356 private:
duke@435 357
duke@435 358 address target() { return _target; }
duke@435 359 bool is_lval() { return _is_lval; }
duke@435 360
duke@435 361 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 362 const RelocationHolder& rspec() const { return _rspec; }
duke@435 363
duke@435 364 friend class Assembler;
duke@435 365 friend class MacroAssembler;
duke@435 366 friend class Address;
duke@435 367 friend class LIR_Assembler;
duke@435 368 };
duke@435 369
duke@435 370 // Convience classes
duke@435 371 class RuntimeAddress: public AddressLiteral {
duke@435 372
duke@435 373 public:
duke@435 374
duke@435 375 RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
duke@435 376
duke@435 377 };
duke@435 378
duke@435 379 class OopAddress: public AddressLiteral {
duke@435 380
duke@435 381 public:
duke@435 382
duke@435 383 OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
duke@435 384
duke@435 385 };
duke@435 386
duke@435 387 class ExternalAddress: public AddressLiteral {
duke@435 388
duke@435 389 public:
duke@435 390
duke@435 391 ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
duke@435 392
duke@435 393 };
duke@435 394
duke@435 395 class InternalAddress: public AddressLiteral {
duke@435 396
duke@435 397 public:
duke@435 398
duke@435 399 InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
duke@435 400
duke@435 401 };
duke@435 402
duke@435 403 // x86 can do array addressing as a single operation since disp can be an absolute
duke@435 404 // address amd64 can't. We create a class that expresses the concept but does extra
duke@435 405 // magic on amd64 to get the final result
duke@435 406
duke@435 407 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
duke@435 408 private:
duke@435 409
duke@435 410 AddressLiteral _base;
duke@435 411 Address _index;
duke@435 412
duke@435 413 public:
duke@435 414
duke@435 415 ArrayAddress() {};
duke@435 416 ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
duke@435 417 AddressLiteral base() { return _base; }
duke@435 418 Address index() { return _index; }
duke@435 419
duke@435 420 };
duke@435 421
never@739 422 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
duke@435 423
duke@435 424 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 425 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
duke@435 426 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 427
duke@435 428 class Assembler : public AbstractAssembler {
duke@435 429 friend class AbstractAssembler; // for the non-virtual hack
duke@435 430 friend class LIR_Assembler; // as_Address()
never@739 431 friend class StubGenerator;
duke@435 432
duke@435 433 public:
duke@435 434 enum Condition { // The x86 condition codes used for conditional jumps/moves.
duke@435 435 zero = 0x4,
duke@435 436 notZero = 0x5,
duke@435 437 equal = 0x4,
duke@435 438 notEqual = 0x5,
duke@435 439 less = 0xc,
duke@435 440 lessEqual = 0xe,
duke@435 441 greater = 0xf,
duke@435 442 greaterEqual = 0xd,
duke@435 443 below = 0x2,
duke@435 444 belowEqual = 0x6,
duke@435 445 above = 0x7,
duke@435 446 aboveEqual = 0x3,
duke@435 447 overflow = 0x0,
duke@435 448 noOverflow = 0x1,
duke@435 449 carrySet = 0x2,
duke@435 450 carryClear = 0x3,
duke@435 451 negative = 0x8,
duke@435 452 positive = 0x9,
duke@435 453 parity = 0xa,
duke@435 454 noParity = 0xb
duke@435 455 };
duke@435 456
duke@435 457 enum Prefix {
duke@435 458 // segment overrides
duke@435 459 CS_segment = 0x2e,
duke@435 460 SS_segment = 0x36,
duke@435 461 DS_segment = 0x3e,
duke@435 462 ES_segment = 0x26,
duke@435 463 FS_segment = 0x64,
duke@435 464 GS_segment = 0x65,
duke@435 465
duke@435 466 REX = 0x40,
duke@435 467
duke@435 468 REX_B = 0x41,
duke@435 469 REX_X = 0x42,
duke@435 470 REX_XB = 0x43,
duke@435 471 REX_R = 0x44,
duke@435 472 REX_RB = 0x45,
duke@435 473 REX_RX = 0x46,
duke@435 474 REX_RXB = 0x47,
duke@435 475
duke@435 476 REX_W = 0x48,
duke@435 477
duke@435 478 REX_WB = 0x49,
duke@435 479 REX_WX = 0x4A,
duke@435 480 REX_WXB = 0x4B,
duke@435 481 REX_WR = 0x4C,
duke@435 482 REX_WRB = 0x4D,
duke@435 483 REX_WRX = 0x4E,
duke@435 484 REX_WRXB = 0x4F
duke@435 485 };
duke@435 486
duke@435 487 enum WhichOperand {
duke@435 488 // input to locate_operand, and format code for relocations
never@739 489 imm_operand = 0, // embedded 32-bit|64-bit immediate operand
duke@435 490 disp32_operand = 1, // embedded 32-bit displacement or address
duke@435 491 call32_operand = 2, // embedded 32-bit self-relative displacement
never@739 492 #ifndef _LP64
duke@435 493 _WhichOperand_limit = 3
never@739 494 #else
never@739 495 narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
never@739 496 _WhichOperand_limit = 4
never@739 497 #endif
duke@435 498 };
duke@435 499
never@739 500
never@739 501
never@739 502 // NOTE: The general philopsophy of the declarations here is that 64bit versions
never@739 503 // of instructions are freely declared without the need for wrapping them an ifdef.
never@739 504 // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
never@739 505 // In the .cpp file the implementations are wrapped so that they are dropped out
never@739 506 // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
never@739 507 // to the size it was prior to merging up the 32bit and 64bit assemblers.
never@739 508 //
never@739 509 // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
never@739 510 // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
never@739 511
never@739 512 private:
never@739 513
never@739 514
never@739 515 // 64bit prefixes
never@739 516 int prefix_and_encode(int reg_enc, bool byteinst = false);
never@739 517 int prefixq_and_encode(int reg_enc);
never@739 518
never@739 519 int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
never@739 520 int prefixq_and_encode(int dst_enc, int src_enc);
never@739 521
never@739 522 void prefix(Register reg);
never@739 523 void prefix(Address adr);
never@739 524 void prefixq(Address adr);
never@739 525
never@739 526 void prefix(Address adr, Register reg, bool byteinst = false);
never@739 527 void prefixq(Address adr, Register reg);
never@739 528
never@739 529 void prefix(Address adr, XMMRegister reg);
never@739 530
never@739 531 void prefetch_prefix(Address src);
never@739 532
never@739 533 // Helper functions for groups of instructions
never@739 534 void emit_arith_b(int op1, int op2, Register dst, int imm8);
never@739 535
never@739 536 void emit_arith(int op1, int op2, Register dst, int32_t imm32);
never@739 537 // only 32bit??
never@739 538 void emit_arith(int op1, int op2, Register dst, jobject obj);
never@739 539 void emit_arith(int op1, int op2, Register dst, Register src);
never@739 540
never@739 541 void emit_operand(Register reg,
never@739 542 Register base, Register index, Address::ScaleFactor scale,
never@739 543 int disp,
never@739 544 RelocationHolder const& rspec,
never@739 545 int rip_relative_correction = 0);
never@739 546
never@739 547 void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
never@739 548
never@739 549 // operands that only take the original 32bit registers
never@739 550 void emit_operand32(Register reg, Address adr);
never@739 551
never@739 552 void emit_operand(XMMRegister reg,
never@739 553 Register base, Register index, Address::ScaleFactor scale,
never@739 554 int disp,
never@739 555 RelocationHolder const& rspec);
never@739 556
never@739 557 void emit_operand(XMMRegister reg, Address adr);
never@739 558
never@739 559 void emit_operand(MMXRegister reg, Address adr);
never@739 560
never@739 561 // workaround gcc (3.2.1-7) bug
never@739 562 void emit_operand(Address adr, MMXRegister reg);
never@739 563
never@739 564
never@739 565 // Immediate-to-memory forms
never@739 566 void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
never@739 567
never@739 568 void emit_farith(int b1, int b2, int i);
never@739 569
duke@435 570
duke@435 571 protected:
never@739 572 #ifdef ASSERT
never@739 573 void check_relocation(RelocationHolder const& rspec, int format);
never@739 574 #endif
never@739 575
never@739 576 inline void emit_long64(jlong x);
never@739 577
never@739 578 void emit_data(jint data, relocInfo::relocType rtype, int format);
never@739 579 void emit_data(jint data, RelocationHolder const& rspec, int format);
never@739 580 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
never@739 581 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
never@739 582
never@739 583
never@739 584 bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
never@739 585
never@739 586 // These are all easily abused and hence protected
never@739 587
never@739 588 // 32BIT ONLY SECTION
never@739 589 #ifndef _LP64
never@739 590 // Make these disappear in 64bit mode since they would never be correct
never@739 591 void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 592 void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 593
kvn@1077 594 void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 595 void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 596
never@739 597 void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 598 #else
never@739 599 // 64BIT ONLY SECTION
never@739 600 void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
kvn@1077 601
kvn@1077 602 void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 603 void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 604
kvn@1077 605 void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 606 void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
never@739 607 #endif // _LP64
never@739 608
never@739 609 // These are unique in that we are ensured by the caller that the 32bit
never@739 610 // relative in these instructions will always be able to reach the potentially
never@739 611 // 64bit address described by entry. Since they can take a 64bit address they
never@739 612 // don't have the 32 suffix like the other instructions in this class.
never@739 613
never@739 614 void call_literal(address entry, RelocationHolder const& rspec);
never@739 615 void jmp_literal(address entry, RelocationHolder const& rspec);
never@739 616
never@739 617 // Avoid using directly section
never@739 618 // Instructions in this section are actually usable by anyone without danger
never@739 619 // of failure but have performance issues that are addressed my enhanced
never@739 620 // instructions which will do the proper thing base on the particular cpu.
never@739 621 // We protect them because we don't trust you...
never@739 622
duke@435 623 // Don't use next inc() and dec() methods directly. INC & DEC instructions
duke@435 624 // could cause a partial flag stall since they don't set CF flag.
duke@435 625 // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
duke@435 626 // which call inc() & dec() or add() & sub() in accordance with
duke@435 627 // the product flag UseIncDec value.
duke@435 628
duke@435 629 void decl(Register dst);
duke@435 630 void decl(Address dst);
never@739 631 void decq(Register dst);
never@739 632 void decq(Address dst);
duke@435 633
duke@435 634 void incl(Register dst);
duke@435 635 void incl(Address dst);
never@739 636 void incq(Register dst);
never@739 637 void incq(Address dst);
never@739 638
never@739 639 // New cpus require use of movsd and movss to avoid partial register stall
never@739 640 // when loading from memory. But for old Opteron use movlpd instead of movsd.
never@739 641 // The selection is done in MacroAssembler::movdbl() and movflt().
never@739 642
never@739 643 // Move Scalar Single-Precision Floating-Point Values
never@739 644 void movss(XMMRegister dst, Address src);
never@739 645 void movss(XMMRegister dst, XMMRegister src);
never@739 646 void movss(Address dst, XMMRegister src);
never@739 647
never@739 648 // Move Scalar Double-Precision Floating-Point Values
never@739 649 void movsd(XMMRegister dst, Address src);
never@739 650 void movsd(XMMRegister dst, XMMRegister src);
never@739 651 void movsd(Address dst, XMMRegister src);
never@739 652 void movlpd(XMMRegister dst, Address src);
never@739 653
never@739 654 // New cpus require use of movaps and movapd to avoid partial register stall
never@739 655 // when moving between registers.
never@739 656 void movaps(XMMRegister dst, XMMRegister src);
never@739 657 void movapd(XMMRegister dst, XMMRegister src);
never@739 658
never@739 659 // End avoid using directly
never@739 660
never@739 661
never@739 662 // Instruction prefixes
never@739 663 void prefix(Prefix p);
never@739 664
never@739 665 public:
never@739 666
never@739 667 // Creation
never@739 668 Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
never@739 669
never@739 670 // Decoding
never@739 671 static address locate_operand(address inst, WhichOperand which);
never@739 672 static address locate_next_instruction(address inst);
never@739 673
never@739 674 // Utilities
never@739 675
never@739 676 #ifdef _LP64
phh@2423 677 static bool is_simm(int64_t x, int nbits) { return -(CONST64(1) << (nbits-1)) <= x &&
phh@2423 678 x < (CONST64(1) << (nbits-1)); }
never@739 679 static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
never@739 680 #else
phh@2423 681 static bool is_simm(int32_t x, int nbits) { return -(1 << (nbits-1)) <= x &&
phh@2423 682 x < (1 << (nbits-1)); }
never@739 683 static bool is_simm32(int32_t x) { return true; }
phh@2423 684 #endif // _LP64
never@739 685
never@739 686 // Generic instructions
never@739 687 // Does 32bit or 64bit as needed for the platform. In some sense these
never@739 688 // belong in macro assembler but there is no need for both varieties to exist
never@739 689
never@739 690 void lea(Register dst, Address src);
never@739 691
never@739 692 void mov(Register dst, Register src);
never@739 693
never@739 694 void pusha();
never@739 695 void popa();
never@739 696
never@739 697 void pushf();
never@739 698 void popf();
never@739 699
never@739 700 void push(int32_t imm32);
never@739 701
never@739 702 void push(Register src);
never@739 703
never@739 704 void pop(Register dst);
never@739 705
never@739 706 // These are dummies to prevent surprise implicit conversions to Register
never@739 707 void push(void* v);
never@739 708 void pop(void* v);
never@739 709
never@739 710 // These do register sized moves/scans
never@739 711 void rep_mov();
never@739 712 void rep_set();
never@739 713 void repne_scan();
never@739 714 #ifdef _LP64
never@739 715 void repne_scanl();
never@739 716 #endif
never@739 717
never@739 718 // Vanilla instructions in lexical order
never@739 719
phh@2423 720 void adcl(Address dst, int32_t imm32);
phh@2423 721 void adcl(Address dst, Register src);
never@739 722 void adcl(Register dst, int32_t imm32);
never@739 723 void adcl(Register dst, Address src);
never@739 724 void adcl(Register dst, Register src);
never@739 725
never@739 726 void adcq(Register dst, int32_t imm32);
never@739 727 void adcq(Register dst, Address src);
never@739 728 void adcq(Register dst, Register src);
never@739 729
never@739 730 void addl(Address dst, int32_t imm32);
never@739 731 void addl(Address dst, Register src);
never@739 732 void addl(Register dst, int32_t imm32);
never@739 733 void addl(Register dst, Address src);
never@739 734 void addl(Register dst, Register src);
never@739 735
never@739 736 void addq(Address dst, int32_t imm32);
never@739 737 void addq(Address dst, Register src);
never@739 738 void addq(Register dst, int32_t imm32);
never@739 739 void addq(Register dst, Address src);
never@739 740 void addq(Register dst, Register src);
never@739 741
duke@435 742 void addr_nop_4();
duke@435 743 void addr_nop_5();
duke@435 744 void addr_nop_7();
duke@435 745 void addr_nop_8();
duke@435 746
never@739 747 // Add Scalar Double-Precision Floating-Point Values
never@739 748 void addsd(XMMRegister dst, Address src);
never@739 749 void addsd(XMMRegister dst, XMMRegister src);
never@739 750
never@739 751 // Add Scalar Single-Precision Floating-Point Values
never@739 752 void addss(XMMRegister dst, Address src);
never@739 753 void addss(XMMRegister dst, XMMRegister src);
never@739 754
never@739 755 void andl(Register dst, int32_t imm32);
never@739 756 void andl(Register dst, Address src);
never@739 757 void andl(Register dst, Register src);
never@739 758
never@739 759 void andq(Register dst, int32_t imm32);
never@739 760 void andq(Register dst, Address src);
never@739 761 void andq(Register dst, Register src);
never@739 762
never@739 763 // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
never@739 764 void andpd(XMMRegister dst, Address src);
never@739 765 void andpd(XMMRegister dst, XMMRegister src);
never@739 766
twisti@1210 767 void bsfl(Register dst, Register src);
twisti@1210 768 void bsrl(Register dst, Register src);
twisti@1210 769
twisti@1210 770 #ifdef _LP64
twisti@1210 771 void bsfq(Register dst, Register src);
twisti@1210 772 void bsrq(Register dst, Register src);
twisti@1210 773 #endif
twisti@1210 774
never@739 775 void bswapl(Register reg);
never@739 776
never@739 777 void bswapq(Register reg);
never@739 778
duke@435 779 void call(Label& L, relocInfo::relocType rtype);
duke@435 780 void call(Register reg); // push pc; pc <- reg
duke@435 781 void call(Address adr); // push pc; pc <- adr
duke@435 782
never@739 783 void cdql();
never@739 784
never@739 785 void cdqq();
never@739 786
never@739 787 void cld() { emit_byte(0xfc); }
never@739 788
never@739 789 void clflush(Address adr);
never@739 790
never@739 791 void cmovl(Condition cc, Register dst, Register src);
never@739 792 void cmovl(Condition cc, Register dst, Address src);
never@739 793
never@739 794 void cmovq(Condition cc, Register dst, Register src);
never@739 795 void cmovq(Condition cc, Register dst, Address src);
never@739 796
never@739 797
never@739 798 void cmpb(Address dst, int imm8);
never@739 799
never@739 800 void cmpl(Address dst, int32_t imm32);
never@739 801
never@739 802 void cmpl(Register dst, int32_t imm32);
never@739 803 void cmpl(Register dst, Register src);
never@739 804 void cmpl(Register dst, Address src);
never@739 805
never@739 806 void cmpq(Address dst, int32_t imm32);
never@739 807 void cmpq(Address dst, Register src);
never@739 808
never@739 809 void cmpq(Register dst, int32_t imm32);
never@739 810 void cmpq(Register dst, Register src);
never@739 811 void cmpq(Register dst, Address src);
never@739 812
never@739 813 // these are dummies used to catch attempting to convert NULL to Register
never@739 814 void cmpl(Register dst, void* junk); // dummy
never@739 815 void cmpq(Register dst, void* junk); // dummy
never@739 816
never@739 817 void cmpw(Address dst, int imm16);
never@739 818
never@739 819 void cmpxchg8 (Address adr);
never@739 820
never@739 821 void cmpxchgl(Register reg, Address adr);
never@739 822
never@739 823 void cmpxchgq(Register reg, Address adr);
never@739 824
never@739 825 // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 826 void comisd(XMMRegister dst, Address src);
never@739 827
never@739 828 // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 829 void comiss(XMMRegister dst, Address src);
never@739 830
never@739 831 // Identify processor type and features
never@739 832 void cpuid() {
never@739 833 emit_byte(0x0F);
never@739 834 emit_byte(0xA2);
never@739 835 }
never@739 836
never@739 837 // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
never@739 838 void cvtsd2ss(XMMRegister dst, XMMRegister src);
never@739 839
never@739 840 // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
never@739 841 void cvtsi2sdl(XMMRegister dst, Register src);
never@739 842 void cvtsi2sdq(XMMRegister dst, Register src);
never@739 843
never@739 844 // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
never@739 845 void cvtsi2ssl(XMMRegister dst, Register src);
never@739 846 void cvtsi2ssq(XMMRegister dst, Register src);
never@739 847
never@739 848 // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
never@739 849 void cvtdq2pd(XMMRegister dst, XMMRegister src);
never@739 850
never@739 851 // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
never@739 852 void cvtdq2ps(XMMRegister dst, XMMRegister src);
never@739 853
never@739 854 // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
never@739 855 void cvtss2sd(XMMRegister dst, XMMRegister src);
never@739 856
never@739 857 // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
never@739 858 void cvttsd2sil(Register dst, Address src);
never@739 859 void cvttsd2sil(Register dst, XMMRegister src);
never@739 860 void cvttsd2siq(Register dst, XMMRegister src);
never@739 861
never@739 862 // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
never@739 863 void cvttss2sil(Register dst, XMMRegister src);
never@739 864 void cvttss2siq(Register dst, XMMRegister src);
never@739 865
never@739 866 // Divide Scalar Double-Precision Floating-Point Values
never@739 867 void divsd(XMMRegister dst, Address src);
never@739 868 void divsd(XMMRegister dst, XMMRegister src);
never@739 869
never@739 870 // Divide Scalar Single-Precision Floating-Point Values
never@739 871 void divss(XMMRegister dst, Address src);
never@739 872 void divss(XMMRegister dst, XMMRegister src);
never@739 873
never@739 874 void emms();
never@739 875
never@739 876 void fabs();
never@739 877
never@739 878 void fadd(int i);
never@739 879
never@739 880 void fadd_d(Address src);
never@739 881 void fadd_s(Address src);
never@739 882
never@739 883 // "Alternate" versions of x87 instructions place result down in FPU
never@739 884 // stack instead of on TOS
never@739 885
never@739 886 void fadda(int i); // "alternate" fadd
never@739 887 void faddp(int i = 1);
never@739 888
never@739 889 void fchs();
never@739 890
never@739 891 void fcom(int i);
never@739 892
never@739 893 void fcomp(int i = 1);
never@739 894 void fcomp_d(Address src);
never@739 895 void fcomp_s(Address src);
never@739 896
never@739 897 void fcompp();
never@739 898
never@739 899 void fcos();
never@739 900
never@739 901 void fdecstp();
never@739 902
never@739 903 void fdiv(int i);
never@739 904 void fdiv_d(Address src);
never@739 905 void fdivr_s(Address src);
never@739 906 void fdiva(int i); // "alternate" fdiv
never@739 907 void fdivp(int i = 1);
never@739 908
never@739 909 void fdivr(int i);
never@739 910 void fdivr_d(Address src);
never@739 911 void fdiv_s(Address src);
never@739 912
never@739 913 void fdivra(int i); // "alternate" reversed fdiv
never@739 914
never@739 915 void fdivrp(int i = 1);
never@739 916
never@739 917 void ffree(int i = 0);
never@739 918
never@739 919 void fild_d(Address adr);
never@739 920 void fild_s(Address adr);
never@739 921
never@739 922 void fincstp();
never@739 923
never@739 924 void finit();
never@739 925
never@739 926 void fist_s (Address adr);
never@739 927 void fistp_d(Address adr);
never@739 928 void fistp_s(Address adr);
never@739 929
never@739 930 void fld1();
never@739 931
never@739 932 void fld_d(Address adr);
never@739 933 void fld_s(Address adr);
never@739 934 void fld_s(int index);
never@739 935 void fld_x(Address adr); // extended-precision (80-bit) format
never@739 936
never@739 937 void fldcw(Address src);
never@739 938
never@739 939 void fldenv(Address src);
never@739 940
never@739 941 void fldlg2();
never@739 942
never@739 943 void fldln2();
never@739 944
never@739 945 void fldz();
never@739 946
never@739 947 void flog();
never@739 948 void flog10();
never@739 949
never@739 950 void fmul(int i);
never@739 951
never@739 952 void fmul_d(Address src);
never@739 953 void fmul_s(Address src);
never@739 954
never@739 955 void fmula(int i); // "alternate" fmul
never@739 956
never@739 957 void fmulp(int i = 1);
never@739 958
never@739 959 void fnsave(Address dst);
never@739 960
never@739 961 void fnstcw(Address src);
never@739 962
never@739 963 void fnstsw_ax();
never@739 964
never@739 965 void fprem();
never@739 966 void fprem1();
never@739 967
never@739 968 void frstor(Address src);
never@739 969
never@739 970 void fsin();
never@739 971
never@739 972 void fsqrt();
never@739 973
never@739 974 void fst_d(Address adr);
never@739 975 void fst_s(Address adr);
never@739 976
never@739 977 void fstp_d(Address adr);
never@739 978 void fstp_d(int index);
never@739 979 void fstp_s(Address adr);
never@739 980 void fstp_x(Address adr); // extended-precision (80-bit) format
never@739 981
never@739 982 void fsub(int i);
never@739 983 void fsub_d(Address src);
never@739 984 void fsub_s(Address src);
never@739 985
never@739 986 void fsuba(int i); // "alternate" fsub
never@739 987
never@739 988 void fsubp(int i = 1);
never@739 989
never@739 990 void fsubr(int i);
never@739 991 void fsubr_d(Address src);
never@739 992 void fsubr_s(Address src);
never@739 993
never@739 994 void fsubra(int i); // "alternate" reversed fsub
never@739 995
never@739 996 void fsubrp(int i = 1);
never@739 997
never@739 998 void ftan();
never@739 999
never@739 1000 void ftst();
never@739 1001
never@739 1002 void fucomi(int i = 1);
never@739 1003 void fucomip(int i = 1);
never@739 1004
never@739 1005 void fwait();
never@739 1006
never@739 1007 void fxch(int i = 1);
never@739 1008
never@739 1009 void fxrstor(Address src);
never@739 1010
never@739 1011 void fxsave(Address dst);
never@739 1012
never@739 1013 void fyl2x();
never@739 1014
never@739 1015 void hlt();
never@739 1016
never@739 1017 void idivl(Register src);
kvn@2275 1018 void divl(Register src); // Unsigned division
never@739 1019
never@739 1020 void idivq(Register src);
never@739 1021
never@739 1022 void imull(Register dst, Register src);
never@739 1023 void imull(Register dst, Register src, int value);
never@739 1024
never@739 1025 void imulq(Register dst, Register src);
never@739 1026 void imulq(Register dst, Register src, int value);
never@739 1027
duke@435 1028
duke@435 1029 // jcc is the generic conditional branch generator to run-
duke@435 1030 // time routines, jcc is used for branches to labels. jcc
duke@435 1031 // takes a branch opcode (cc) and a label (L) and generates
duke@435 1032 // either a backward branch or a forward branch and links it
duke@435 1033 // to the label fixup chain. Usage:
duke@435 1034 //
duke@435 1035 // Label L; // unbound label
duke@435 1036 // jcc(cc, L); // forward branch to unbound label
duke@435 1037 // bind(L); // bind label to the current pc
duke@435 1038 // jcc(cc, L); // backward branch to bound label
duke@435 1039 // bind(L); // illegal: a label may be bound only once
duke@435 1040 //
duke@435 1041 // Note: The same Label can be used for forward and backward branches
duke@435 1042 // but it may be bound only once.
duke@435 1043
duke@435 1044 void jcc(Condition cc, Label& L,
duke@435 1045 relocInfo::relocType rtype = relocInfo::none);
duke@435 1046
duke@435 1047 // Conditional jump to a 8-bit offset to L.
duke@435 1048 // WARNING: be very careful using this for forward jumps. If the label is
duke@435 1049 // not bound within an 8-bit offset of this instruction, a run-time error
duke@435 1050 // will occur.
duke@435 1051 void jccb(Condition cc, Label& L);
duke@435 1052
never@739 1053 void jmp(Address entry); // pc <- entry
never@739 1054
never@739 1055 // Label operations & relative jumps (PPUM Appendix D)
never@739 1056 void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none); // unconditional jump to L
never@739 1057
never@739 1058 void jmp(Register entry); // pc <- entry
never@739 1059
never@739 1060 // Unconditional 8-bit offset jump to L.
never@739 1061 // WARNING: be very careful using this for forward jumps. If the label is
never@739 1062 // not bound within an 8-bit offset of this instruction, a run-time error
never@739 1063 // will occur.
never@739 1064 void jmpb(Label& L);
never@739 1065
never@739 1066 void ldmxcsr( Address src );
never@739 1067
never@739 1068 void leal(Register dst, Address src);
never@739 1069
never@739 1070 void leaq(Register dst, Address src);
never@739 1071
never@739 1072 void lfence() {
never@739 1073 emit_byte(0x0F);
never@739 1074 emit_byte(0xAE);
never@739 1075 emit_byte(0xE8);
never@739 1076 }
never@739 1077
never@739 1078 void lock();
never@739 1079
twisti@1210 1080 void lzcntl(Register dst, Register src);
twisti@1210 1081
twisti@1210 1082 #ifdef _LP64
twisti@1210 1083 void lzcntq(Register dst, Register src);
twisti@1210 1084 #endif
twisti@1210 1085
never@739 1086 enum Membar_mask_bits {
never@739 1087 StoreStore = 1 << 3,
never@739 1088 LoadStore = 1 << 2,
never@739 1089 StoreLoad = 1 << 1,
never@739 1090 LoadLoad = 1 << 0
never@739 1091 };
never@739 1092
never@1106 1093 // Serializes memory and blows flags
never@739 1094 void membar(Membar_mask_bits order_constraint) {
never@1106 1095 if (os::is_MP()) {
never@1106 1096 // We only have to handle StoreLoad
never@1106 1097 if (order_constraint & StoreLoad) {
never@1106 1098 // All usable chips support "locked" instructions which suffice
never@1106 1099 // as barriers, and are much faster than the alternative of
never@1106 1100 // using cpuid instruction. We use here a locked add [esp],0.
never@1106 1101 // This is conveniently otherwise a no-op except for blowing
never@1106 1102 // flags.
never@1106 1103 // Any change to this code may need to revisit other places in
never@1106 1104 // the code where this idiom is used, in particular the
never@1106 1105 // orderAccess code.
never@1106 1106 lock();
never@1106 1107 addl(Address(rsp, 0), 0);// Assert the lock# signal here
never@1106 1108 }
never@1106 1109 }
never@739 1110 }
never@739 1111
never@739 1112 void mfence();
never@739 1113
never@739 1114 // Moves
never@739 1115
never@739 1116 void mov64(Register dst, int64_t imm64);
never@739 1117
never@739 1118 void movb(Address dst, Register src);
never@739 1119 void movb(Address dst, int imm8);
never@739 1120 void movb(Register dst, Address src);
never@739 1121
never@739 1122 void movdl(XMMRegister dst, Register src);
never@739 1123 void movdl(Register dst, XMMRegister src);
never@739 1124
never@739 1125 // Move Double Quadword
never@739 1126 void movdq(XMMRegister dst, Register src);
never@739 1127 void movdq(Register dst, XMMRegister src);
never@739 1128
never@739 1129 // Move Aligned Double Quadword
never@739 1130 void movdqa(Address dst, XMMRegister src);
never@739 1131 void movdqa(XMMRegister dst, Address src);
never@739 1132 void movdqa(XMMRegister dst, XMMRegister src);
never@739 1133
kvn@840 1134 // Move Unaligned Double Quadword
kvn@840 1135 void movdqu(Address dst, XMMRegister src);
kvn@840 1136 void movdqu(XMMRegister dst, Address src);
kvn@840 1137 void movdqu(XMMRegister dst, XMMRegister src);
kvn@840 1138
never@739 1139 void movl(Register dst, int32_t imm32);
never@739 1140 void movl(Address dst, int32_t imm32);
never@739 1141 void movl(Register dst, Register src);
never@739 1142 void movl(Register dst, Address src);
never@739 1143 void movl(Address dst, Register src);
never@739 1144
never@739 1145 // These dummies prevent using movl from converting a zero (like NULL) into Register
never@739 1146 // by giving the compiler two choices it can't resolve
never@739 1147
never@739 1148 void movl(Address dst, void* junk);
never@739 1149 void movl(Register dst, void* junk);
never@739 1150
never@739 1151 #ifdef _LP64
never@739 1152 void movq(Register dst, Register src);
never@739 1153 void movq(Register dst, Address src);
phh@2423 1154 void movq(Address dst, Register src);
never@739 1155 #endif
never@739 1156
never@739 1157 void movq(Address dst, MMXRegister src );
never@739 1158 void movq(MMXRegister dst, Address src );
never@739 1159
never@739 1160 #ifdef _LP64
never@739 1161 // These dummies prevent using movq from converting a zero (like NULL) into Register
never@739 1162 // by giving the compiler two choices it can't resolve
never@739 1163
never@739 1164 void movq(Address dst, void* dummy);
never@739 1165 void movq(Register dst, void* dummy);
never@739 1166 #endif
never@739 1167
never@739 1168 // Move Quadword
never@739 1169 void movq(Address dst, XMMRegister src);
never@739 1170 void movq(XMMRegister dst, Address src);
never@739 1171
never@739 1172 void movsbl(Register dst, Address src);
never@739 1173 void movsbl(Register dst, Register src);
never@739 1174
never@739 1175 #ifdef _LP64
twisti@1059 1176 void movsbq(Register dst, Address src);
twisti@1059 1177 void movsbq(Register dst, Register src);
twisti@1059 1178
never@739 1179 // Move signed 32bit immediate to 64bit extending sign
phh@2423 1180 void movslq(Address dst, int32_t imm64);
never@739 1181 void movslq(Register dst, int32_t imm64);
never@739 1182
never@739 1183 void movslq(Register dst, Address src);
never@739 1184 void movslq(Register dst, Register src);
never@739 1185 void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
never@739 1186 #endif
never@739 1187
never@739 1188 void movswl(Register dst, Address src);
never@739 1189 void movswl(Register dst, Register src);
never@739 1190
twisti@1059 1191 #ifdef _LP64
twisti@1059 1192 void movswq(Register dst, Address src);
twisti@1059 1193 void movswq(Register dst, Register src);
twisti@1059 1194 #endif
twisti@1059 1195
never@739 1196 void movw(Address dst, int imm16);
never@739 1197 void movw(Register dst, Address src);
never@739 1198 void movw(Address dst, Register src);
never@739 1199
never@739 1200 void movzbl(Register dst, Address src);
never@739 1201 void movzbl(Register dst, Register src);
never@739 1202
twisti@1059 1203 #ifdef _LP64
twisti@1059 1204 void movzbq(Register dst, Address src);
twisti@1059 1205 void movzbq(Register dst, Register src);
twisti@1059 1206 #endif
twisti@1059 1207
never@739 1208 void movzwl(Register dst, Address src);
never@739 1209 void movzwl(Register dst, Register src);
never@739 1210
twisti@1059 1211 #ifdef _LP64
twisti@1059 1212 void movzwq(Register dst, Address src);
twisti@1059 1213 void movzwq(Register dst, Register src);
twisti@1059 1214 #endif
twisti@1059 1215
never@739 1216 void mull(Address src);
never@739 1217 void mull(Register src);
never@739 1218
never@739 1219 // Multiply Scalar Double-Precision Floating-Point Values
never@739 1220 void mulsd(XMMRegister dst, Address src);
never@739 1221 void mulsd(XMMRegister dst, XMMRegister src);
never@739 1222
never@739 1223 // Multiply Scalar Single-Precision Floating-Point Values
never@739 1224 void mulss(XMMRegister dst, Address src);
never@739 1225 void mulss(XMMRegister dst, XMMRegister src);
never@739 1226
never@739 1227 void negl(Register dst);
never@739 1228
never@739 1229 #ifdef _LP64
never@739 1230 void negq(Register dst);
never@739 1231 #endif
never@739 1232
never@739 1233 void nop(int i = 1);
never@739 1234
never@739 1235 void notl(Register dst);
never@739 1236
never@739 1237 #ifdef _LP64
never@739 1238 void notq(Register dst);
never@739 1239 #endif
never@739 1240
never@739 1241 void orl(Address dst, int32_t imm32);
never@739 1242 void orl(Register dst, int32_t imm32);
never@739 1243 void orl(Register dst, Address src);
never@739 1244 void orl(Register dst, Register src);
never@739 1245
never@739 1246 void orq(Address dst, int32_t imm32);
never@739 1247 void orq(Register dst, int32_t imm32);
never@739 1248 void orq(Register dst, Address src);
never@739 1249 void orq(Register dst, Register src);
never@739 1250
cfang@1116 1251 // SSE4.2 string instructions
cfang@1116 1252 void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
cfang@1116 1253 void pcmpestri(XMMRegister xmm1, Address src, int imm8);
cfang@1116 1254
roland@1495 1255 #ifndef _LP64 // no 32bit push/pop on amd64
never@739 1256 void popl(Address dst);
roland@1495 1257 #endif
never@739 1258
never@739 1259 #ifdef _LP64
never@739 1260 void popq(Address dst);
never@739 1261 #endif
never@739 1262
twisti@1078 1263 void popcntl(Register dst, Address src);
twisti@1078 1264 void popcntl(Register dst, Register src);
twisti@1078 1265
twisti@1078 1266 #ifdef _LP64
twisti@1078 1267 void popcntq(Register dst, Address src);
twisti@1078 1268 void popcntq(Register dst, Register src);
twisti@1078 1269 #endif
twisti@1078 1270
never@739 1271 // Prefetches (SSE, SSE2, 3DNOW only)
never@739 1272
never@739 1273 void prefetchnta(Address src);
never@739 1274 void prefetchr(Address src);
never@739 1275 void prefetcht0(Address src);
never@739 1276 void prefetcht1(Address src);
never@739 1277 void prefetcht2(Address src);
never@739 1278 void prefetchw(Address src);
never@739 1279
never@2569 1280 // POR - Bitwise logical OR
never@2569 1281 void por(XMMRegister dst, XMMRegister src);
never@2569 1282
never@739 1283 // Shuffle Packed Doublewords
never@739 1284 void pshufd(XMMRegister dst, XMMRegister src, int mode);
never@739 1285 void pshufd(XMMRegister dst, Address src, int mode);
never@739 1286
never@739 1287 // Shuffle Packed Low Words
never@739 1288 void pshuflw(XMMRegister dst, XMMRegister src, int mode);
never@739 1289 void pshuflw(XMMRegister dst, Address src, int mode);
never@739 1290
never@739 1291 // Shift Right Logical Quadword Immediate
never@739 1292 void psrlq(XMMRegister dst, int shift);
never@739 1293
cfang@1116 1294 // Logical Compare Double Quadword
cfang@1116 1295 void ptest(XMMRegister dst, XMMRegister src);
cfang@1116 1296 void ptest(XMMRegister dst, Address src);
cfang@1116 1297
never@739 1298 // Interleave Low Bytes
never@739 1299 void punpcklbw(XMMRegister dst, XMMRegister src);
never@739 1300
roland@1495 1301 #ifndef _LP64 // no 32bit push/pop on amd64
never@739 1302 void pushl(Address src);
roland@1495 1303 #endif
never@739 1304
never@739 1305 void pushq(Address src);
never@739 1306
never@739 1307 // Xor Packed Byte Integer Values
never@739 1308 void pxor(XMMRegister dst, Address src);
never@739 1309 void pxor(XMMRegister dst, XMMRegister src);
never@739 1310
never@739 1311 void rcll(Register dst, int imm8);
never@739 1312
never@739 1313 void rclq(Register dst, int imm8);
never@739 1314
never@739 1315 void ret(int imm16);
duke@435 1316
duke@435 1317 void sahf();
duke@435 1318
never@739 1319 void sarl(Register dst, int imm8);
never@739 1320 void sarl(Register dst);
never@739 1321
never@739 1322 void sarq(Register dst, int imm8);
never@739 1323 void sarq(Register dst);
never@739 1324
never@739 1325 void sbbl(Address dst, int32_t imm32);
never@739 1326 void sbbl(Register dst, int32_t imm32);
never@739 1327 void sbbl(Register dst, Address src);
never@739 1328 void sbbl(Register dst, Register src);
never@739 1329
never@739 1330 void sbbq(Address dst, int32_t imm32);
never@739 1331 void sbbq(Register dst, int32_t imm32);
never@739 1332 void sbbq(Register dst, Address src);
never@739 1333 void sbbq(Register dst, Register src);
never@739 1334
never@739 1335 void setb(Condition cc, Register dst);
never@739 1336
never@739 1337 void shldl(Register dst, Register src);
never@739 1338
never@739 1339 void shll(Register dst, int imm8);
never@739 1340 void shll(Register dst);
never@739 1341
never@739 1342 void shlq(Register dst, int imm8);
never@739 1343 void shlq(Register dst);
never@739 1344
never@739 1345 void shrdl(Register dst, Register src);
never@739 1346
never@739 1347 void shrl(Register dst, int imm8);
never@739 1348 void shrl(Register dst);
never@739 1349
never@739 1350 void shrq(Register dst, int imm8);
never@739 1351 void shrq(Register dst);
never@739 1352
never@739 1353 void smovl(); // QQQ generic?
never@739 1354
never@739 1355 // Compute Square Root of Scalar Double-Precision Floating-Point Value
never@739 1356 void sqrtsd(XMMRegister dst, Address src);
never@739 1357 void sqrtsd(XMMRegister dst, XMMRegister src);
never@739 1358
twisti@2350 1359 // Compute Square Root of Scalar Single-Precision Floating-Point Value
twisti@2350 1360 void sqrtss(XMMRegister dst, Address src);
twisti@2350 1361 void sqrtss(XMMRegister dst, XMMRegister src);
twisti@2350 1362
never@739 1363 void std() { emit_byte(0xfd); }
never@739 1364
never@739 1365 void stmxcsr( Address dst );
never@739 1366
never@739 1367 void subl(Address dst, int32_t imm32);
never@739 1368 void subl(Address dst, Register src);
never@739 1369 void subl(Register dst, int32_t imm32);
never@739 1370 void subl(Register dst, Address src);
never@739 1371 void subl(Register dst, Register src);
never@739 1372
never@739 1373 void subq(Address dst, int32_t imm32);
never@739 1374 void subq(Address dst, Register src);
never@739 1375 void subq(Register dst, int32_t imm32);
never@739 1376 void subq(Register dst, Address src);
never@739 1377 void subq(Register dst, Register src);
never@739 1378
never@739 1379
never@739 1380 // Subtract Scalar Double-Precision Floating-Point Values
never@739 1381 void subsd(XMMRegister dst, Address src);
never@739 1382 void subsd(XMMRegister dst, XMMRegister src);
never@739 1383
never@739 1384 // Subtract Scalar Single-Precision Floating-Point Values
never@739 1385 void subss(XMMRegister dst, Address src);
duke@435 1386 void subss(XMMRegister dst, XMMRegister src);
never@739 1387
never@739 1388 void testb(Register dst, int imm8);
never@739 1389
never@739 1390 void testl(Register dst, int32_t imm32);
never@739 1391 void testl(Register dst, Register src);
never@739 1392 void testl(Register dst, Address src);
never@739 1393
never@739 1394 void testq(Register dst, int32_t imm32);
never@739 1395 void testq(Register dst, Register src);
never@739 1396
never@739 1397
never@739 1398 // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 1399 void ucomisd(XMMRegister dst, Address src);
never@739 1400 void ucomisd(XMMRegister dst, XMMRegister src);
never@739 1401
never@739 1402 // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 1403 void ucomiss(XMMRegister dst, Address src);
duke@435 1404 void ucomiss(XMMRegister dst, XMMRegister src);
never@739 1405
never@739 1406 void xaddl(Address dst, Register src);
never@739 1407
never@739 1408 void xaddq(Address dst, Register src);
never@739 1409
never@739 1410 void xchgl(Register reg, Address adr);
never@739 1411 void xchgl(Register dst, Register src);
never@739 1412
never@739 1413 void xchgq(Register reg, Address adr);
never@739 1414 void xchgq(Register dst, Register src);
never@739 1415
never@739 1416 void xorl(Register dst, int32_t imm32);
never@739 1417 void xorl(Register dst, Address src);
never@739 1418 void xorl(Register dst, Register src);
never@739 1419
never@739 1420 void xorq(Register dst, Address src);
never@739 1421 void xorq(Register dst, Register src);
never@739 1422
never@739 1423 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
never@739 1424 void xorpd(XMMRegister dst, Address src);
never@739 1425 void xorpd(XMMRegister dst, XMMRegister src);
never@739 1426
never@739 1427 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
never@739 1428 void xorps(XMMRegister dst, Address src);
duke@435 1429 void xorps(XMMRegister dst, XMMRegister src);
never@739 1430
never@739 1431 void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
duke@435 1432 };
duke@435 1433
duke@435 1434
duke@435 1435 // MacroAssembler extends Assembler by frequently used macros.
duke@435 1436 //
duke@435 1437 // Instructions for which a 'better' code sequence exists depending
duke@435 1438 // on arguments should also go in here.
duke@435 1439
duke@435 1440 class MacroAssembler: public Assembler {
ysr@777 1441 friend class LIR_Assembler;
ysr@777 1442 friend class Runtime1; // as_Address()
duke@435 1443 protected:
duke@435 1444
duke@435 1445 Address as_Address(AddressLiteral adr);
duke@435 1446 Address as_Address(ArrayAddress adr);
duke@435 1447
duke@435 1448 // Support for VM calls
duke@435 1449 //
duke@435 1450 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
duke@435 1451 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1452 // additional registers when doing a VM call).
duke@435 1453 #ifdef CC_INTERP
duke@435 1454 // c++ interpreter never wants to use interp_masm version of call_VM
duke@435 1455 #define VIRTUAL
duke@435 1456 #else
duke@435 1457 #define VIRTUAL virtual
duke@435 1458 #endif
duke@435 1459
duke@435 1460 VIRTUAL void call_VM_leaf_base(
duke@435 1461 address entry_point, // the entry point
duke@435 1462 int number_of_arguments // the number of arguments to pop after the call
duke@435 1463 );
duke@435 1464
duke@435 1465 // This is the base routine called by the different versions of call_VM. The interpreter
duke@435 1466 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1467 // additional registers when doing a VM call).
duke@435 1468 //
duke@435 1469 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
duke@435 1470 // returns the register which contains the thread upon return. If a thread register has been
duke@435 1471 // specified, the return value will correspond to that register. If no last_java_sp is specified
duke@435 1472 // (noreg) than rsp will be used instead.
duke@435 1473 VIRTUAL void call_VM_base( // returns the register containing the thread upon return
duke@435 1474 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
duke@435 1475 Register java_thread, // the thread if computed before ; use noreg otherwise
duke@435 1476 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
duke@435 1477 address entry_point, // the entry point
duke@435 1478 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
duke@435 1479 bool check_exceptions // whether to check for pending exceptions after return
duke@435 1480 );
duke@435 1481
duke@435 1482 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
duke@435 1483 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1484 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
duke@435 1485 virtual void check_and_handle_popframe(Register java_thread);
duke@435 1486 virtual void check_and_handle_earlyret(Register java_thread);
duke@435 1487
duke@435 1488 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
duke@435 1489
duke@435 1490 // helpers for FPU flag access
duke@435 1491 // tmp is a temporary register, if none is available use noreg
duke@435 1492 void save_rax (Register tmp);
duke@435 1493 void restore_rax(Register tmp);
duke@435 1494
duke@435 1495 public:
duke@435 1496 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1497
duke@435 1498 // Support for NULL-checks
duke@435 1499 //
duke@435 1500 // Generates code that causes a NULL OS exception if the content of reg is NULL.
duke@435 1501 // If the accessed location is M[reg + offset] and the offset is known, provide the
duke@435 1502 // offset. No explicit code generation is needed if the offset is within a certain
duke@435 1503 // range (0 <= offset <= page_size).
duke@435 1504
duke@435 1505 void null_check(Register reg, int offset = -1);
kvn@603 1506 static bool needs_explicit_null_check(intptr_t offset);
duke@435 1507
duke@435 1508 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1509 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1510 void pd_patch_instruction(address branch, address target);
duke@435 1511 #ifndef PRODUCT
duke@435 1512 static void pd_print_patched_instruction(address branch);
duke@435 1513 #endif
duke@435 1514
duke@435 1515 // The following 4 methods return the offset of the appropriate move instruction
duke@435 1516
jrose@1057 1517 // Support for fast byte/short loading with zero extension (depending on particular CPU)
duke@435 1518 int load_unsigned_byte(Register dst, Address src);
jrose@1057 1519 int load_unsigned_short(Register dst, Address src);
jrose@1057 1520
jrose@1057 1521 // Support for fast byte/short loading with sign extension (depending on particular CPU)
duke@435 1522 int load_signed_byte(Register dst, Address src);
jrose@1057 1523 int load_signed_short(Register dst, Address src);
duke@435 1524
duke@435 1525 // Support for sign-extension (hi:lo = extend_sign(lo))
duke@435 1526 void extend_sign(Register hi, Register lo);
duke@435 1527
twisti@2565 1528 // Load and store values by size and signed-ness
twisti@2565 1529 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
twisti@2565 1530 void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
jrose@1057 1531
duke@435 1532 // Support for inc/dec with optimal instruction selection depending on value
never@739 1533
never@739 1534 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
never@739 1535 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
never@739 1536
never@739 1537 void decrementl(Address dst, int value = 1);
never@739 1538 void decrementl(Register reg, int value = 1);
never@739 1539
never@739 1540 void decrementq(Register reg, int value = 1);
never@739 1541 void decrementq(Address dst, int value = 1);
never@739 1542
never@739 1543 void incrementl(Address dst, int value = 1);
never@739 1544 void incrementl(Register reg, int value = 1);
never@739 1545
never@739 1546 void incrementq(Register reg, int value = 1);
never@739 1547 void incrementq(Address dst, int value = 1);
never@739 1548
duke@435 1549
duke@435 1550 // Support optimal SSE move instructions.
duke@435 1551 void movflt(XMMRegister dst, XMMRegister src) {
duke@435 1552 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
duke@435 1553 else { movss (dst, src); return; }
duke@435 1554 }
duke@435 1555 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
duke@435 1556 void movflt(XMMRegister dst, AddressLiteral src);
duke@435 1557 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
duke@435 1558
duke@435 1559 void movdbl(XMMRegister dst, XMMRegister src) {
duke@435 1560 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
duke@435 1561 else { movsd (dst, src); return; }
duke@435 1562 }
duke@435 1563
duke@435 1564 void movdbl(XMMRegister dst, AddressLiteral src);
duke@435 1565
duke@435 1566 void movdbl(XMMRegister dst, Address src) {
duke@435 1567 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
duke@435 1568 else { movlpd(dst, src); return; }
duke@435 1569 }
duke@435 1570 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
duke@435 1571
never@739 1572 void incrementl(AddressLiteral dst);
never@739 1573 void incrementl(ArrayAddress dst);
duke@435 1574
duke@435 1575 // Alignment
duke@435 1576 void align(int modulus);
duke@435 1577
duke@435 1578 // Misc
duke@435 1579 void fat_nop(); // 5 byte nop
duke@435 1580
duke@435 1581 // Stack frame creation/removal
duke@435 1582 void enter();
duke@435 1583 void leave();
duke@435 1584
duke@435 1585 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
duke@435 1586 // The pointer will be loaded into the thread register.
duke@435 1587 void get_thread(Register thread);
duke@435 1588
apetrusenko@797 1589
duke@435 1590 // Support for VM calls
duke@435 1591 //
duke@435 1592 // It is imperative that all calls into the VM are handled via the call_VM macros.
duke@435 1593 // They make sure that the stack linkage is setup correctly. call_VM's correspond
duke@435 1594 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
duke@435 1595
never@739 1596
never@739 1597 void call_VM(Register oop_result,
never@739 1598 address entry_point,
never@739 1599 bool check_exceptions = true);
never@739 1600 void call_VM(Register oop_result,
never@739 1601 address entry_point,
never@739 1602 Register arg_1,
never@739 1603 bool check_exceptions = true);
never@739 1604 void call_VM(Register oop_result,
never@739 1605 address entry_point,
never@739 1606 Register arg_1, Register arg_2,
never@739 1607 bool check_exceptions = true);
never@739 1608 void call_VM(Register oop_result,
never@739 1609 address entry_point,
never@739 1610 Register arg_1, Register arg_2, Register arg_3,
never@739 1611 bool check_exceptions = true);
never@739 1612
never@739 1613 // Overloadings with last_Java_sp
never@739 1614 void call_VM(Register oop_result,
never@739 1615 Register last_java_sp,
never@739 1616 address entry_point,
never@739 1617 int number_of_arguments = 0,
never@739 1618 bool check_exceptions = true);
never@739 1619 void call_VM(Register oop_result,
never@739 1620 Register last_java_sp,
never@739 1621 address entry_point,
never@739 1622 Register arg_1, bool
never@739 1623 check_exceptions = true);
never@739 1624 void call_VM(Register oop_result,
never@739 1625 Register last_java_sp,
never@739 1626 address entry_point,
never@739 1627 Register arg_1, Register arg_2,
never@739 1628 bool check_exceptions = true);
never@739 1629 void call_VM(Register oop_result,
never@739 1630 Register last_java_sp,
never@739 1631 address entry_point,
never@739 1632 Register arg_1, Register arg_2, Register arg_3,
never@739 1633 bool check_exceptions = true);
never@739 1634
never@739 1635 void call_VM_leaf(address entry_point,
never@739 1636 int number_of_arguments = 0);
never@739 1637 void call_VM_leaf(address entry_point,
never@739 1638 Register arg_1);
never@739 1639 void call_VM_leaf(address entry_point,
never@739 1640 Register arg_1, Register arg_2);
never@739 1641 void call_VM_leaf(address entry_point,
never@739 1642 Register arg_1, Register arg_2, Register arg_3);
duke@435 1643
duke@435 1644 // last Java Frame (fills frame anchor)
never@739 1645 void set_last_Java_frame(Register thread,
never@739 1646 Register last_java_sp,
never@739 1647 Register last_java_fp,
never@739 1648 address last_java_pc);
never@739 1649
never@739 1650 // thread in the default location (r15_thread on 64bit)
never@739 1651 void set_last_Java_frame(Register last_java_sp,
never@739 1652 Register last_java_fp,
never@739 1653 address last_java_pc);
never@739 1654
duke@435 1655 void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
duke@435 1656
never@739 1657 // thread in the default location (r15_thread on 64bit)
never@739 1658 void reset_last_Java_frame(bool clear_fp, bool clear_pc);
never@739 1659
duke@435 1660 // Stores
duke@435 1661 void store_check(Register obj); // store check for obj - register is destroyed afterwards
duke@435 1662 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
duke@435 1663
apetrusenko@797 1664 void g1_write_barrier_pre(Register obj,
apetrusenko@797 1665 #ifndef _LP64
apetrusenko@797 1666 Register thread,
apetrusenko@797 1667 #endif
apetrusenko@797 1668 Register tmp,
apetrusenko@797 1669 Register tmp2,
apetrusenko@797 1670 bool tosca_live);
apetrusenko@797 1671 void g1_write_barrier_post(Register store_addr,
apetrusenko@797 1672 Register new_val,
apetrusenko@797 1673 #ifndef _LP64
apetrusenko@797 1674 Register thread,
apetrusenko@797 1675 #endif
apetrusenko@797 1676 Register tmp,
apetrusenko@797 1677 Register tmp2);
ysr@777 1678
ysr@777 1679
duke@435 1680 // split store_check(Register obj) to enhance instruction interleaving
duke@435 1681 void store_check_part_1(Register obj);
duke@435 1682 void store_check_part_2(Register obj);
duke@435 1683
duke@435 1684 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
duke@435 1685 void c2bool(Register x);
duke@435 1686
duke@435 1687 // C++ bool manipulation
duke@435 1688
duke@435 1689 void movbool(Register dst, Address src);
duke@435 1690 void movbool(Address dst, bool boolconst);
duke@435 1691 void movbool(Address dst, Register src);
duke@435 1692 void testbool(Register dst);
duke@435 1693
never@739 1694 // oop manipulations
never@739 1695 void load_klass(Register dst, Register src);
never@739 1696 void store_klass(Register dst, Register src);
never@739 1697
twisti@2201 1698 void load_heap_oop(Register dst, Address src);
twisti@2201 1699 void store_heap_oop(Address dst, Register src);
twisti@2201 1700
twisti@2201 1701 // Used for storing NULL. All other oop constants should be
twisti@2201 1702 // stored using routines that take a jobject.
twisti@2201 1703 void store_heap_oop_null(Address dst);
twisti@2201 1704
never@739 1705 void load_prototype_header(Register dst, Register src);
never@739 1706
never@739 1707 #ifdef _LP64
never@739 1708 void store_klass_gap(Register dst, Register src);
never@739 1709
johnc@1482 1710 // This dummy is to prevent a call to store_heap_oop from
johnc@1482 1711 // converting a zero (like NULL) into a Register by giving
johnc@1482 1712 // the compiler two choices it can't resolve
johnc@1482 1713
johnc@1482 1714 void store_heap_oop(Address dst, void* dummy);
johnc@1482 1715
never@739 1716 void encode_heap_oop(Register r);
never@739 1717 void decode_heap_oop(Register r);
never@739 1718 void encode_heap_oop_not_null(Register r);
never@739 1719 void decode_heap_oop_not_null(Register r);
never@739 1720 void encode_heap_oop_not_null(Register dst, Register src);
never@739 1721 void decode_heap_oop_not_null(Register dst, Register src);
never@739 1722
never@739 1723 void set_narrow_oop(Register dst, jobject obj);
kvn@1077 1724 void set_narrow_oop(Address dst, jobject obj);
kvn@1077 1725 void cmp_narrow_oop(Register dst, jobject obj);
kvn@1077 1726 void cmp_narrow_oop(Address dst, jobject obj);
never@739 1727
never@739 1728 // if heap base register is used - reinit it with the correct value
never@739 1729 void reinit_heapbase();
kvn@2039 1730
kvn@2039 1731 DEBUG_ONLY(void verify_heapbase(const char* msg);)
kvn@2039 1732
never@739 1733 #endif // _LP64
never@739 1734
never@739 1735 // Int division/remainder for Java
duke@435 1736 // (as idivl, but checks for special case as described in JVM spec.)
duke@435 1737 // returns idivl instruction offset for implicit exception handling
duke@435 1738 int corrected_idivl(Register reg);
duke@435 1739
never@739 1740 // Long division/remainder for Java
never@739 1741 // (as idivq, but checks for special case as described in JVM spec.)
never@739 1742 // returns idivq instruction offset for implicit exception handling
never@739 1743 int corrected_idivq(Register reg);
never@739 1744
duke@435 1745 void int3();
duke@435 1746
never@739 1747 // Long operation macros for a 32bit cpu
duke@435 1748 // Long negation for Java
duke@435 1749 void lneg(Register hi, Register lo);
duke@435 1750
duke@435 1751 // Long multiplication for Java
never@739 1752 // (destroys contents of eax, ebx, ecx and edx)
duke@435 1753 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
duke@435 1754
duke@435 1755 // Long shifts for Java
duke@435 1756 // (semantics as described in JVM spec.)
duke@435 1757 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
duke@435 1758 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
duke@435 1759
duke@435 1760 // Long compare for Java
duke@435 1761 // (semantics as described in JVM spec.)
duke@435 1762 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
duke@435 1763
never@739 1764
never@739 1765 // misc
never@739 1766
never@739 1767 // Sign extension
never@739 1768 void sign_extend_short(Register reg);
never@739 1769 void sign_extend_byte(Register reg);
never@739 1770
never@739 1771 // Division by power of 2, rounding towards 0
never@739 1772 void division_with_shift(Register reg, int shift_value);
never@739 1773
duke@435 1774 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
duke@435 1775 //
duke@435 1776 // CF (corresponds to C0) if x < y
duke@435 1777 // PF (corresponds to C2) if unordered
duke@435 1778 // ZF (corresponds to C3) if x = y
duke@435 1779 //
duke@435 1780 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1781 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
duke@435 1782 void fcmp(Register tmp);
duke@435 1783 // Variant of the above which allows y to be further down the stack
duke@435 1784 // and which only pops x and y if specified. If pop_right is
duke@435 1785 // specified then pop_left must also be specified.
duke@435 1786 void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
duke@435 1787
duke@435 1788 // Floating-point comparison for Java
duke@435 1789 // Compares the top-most stack entries on the FPU stack and stores the result in dst.
duke@435 1790 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1791 // (semantics as described in JVM spec.)
duke@435 1792 void fcmp2int(Register dst, bool unordered_is_less);
duke@435 1793 // Variant of the above which allows y to be further down the stack
duke@435 1794 // and which only pops x and y if specified. If pop_right is
duke@435 1795 // specified then pop_left must also be specified.
duke@435 1796 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
duke@435 1797
duke@435 1798 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
duke@435 1799 // tmp is a temporary register, if none is available use noreg
duke@435 1800 void fremr(Register tmp);
duke@435 1801
duke@435 1802
duke@435 1803 // same as fcmp2int, but using SSE2
duke@435 1804 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1805 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1806
duke@435 1807 // Inlined sin/cos generator for Java; must not use CPU instruction
duke@435 1808 // directly on Intel as it does not have high enough precision
duke@435 1809 // outside of the range [-pi/4, pi/4]. Extra argument indicate the
duke@435 1810 // number of FPU stack slots in use; all but the topmost will
duke@435 1811 // require saving if a slow case is necessary. Assumes argument is
duke@435 1812 // on FP TOS; result is on FP TOS. No cpu registers are changed by
duke@435 1813 // this code.
duke@435 1814 void trigfunc(char trig, int num_fpu_regs_in_use = 1);
duke@435 1815
duke@435 1816 // branch to L if FPU flag C2 is set/not set
duke@435 1817 // tmp is a temporary register, if none is available use noreg
duke@435 1818 void jC2 (Register tmp, Label& L);
duke@435 1819 void jnC2(Register tmp, Label& L);
duke@435 1820
duke@435 1821 // Pop ST (ffree & fincstp combined)
duke@435 1822 void fpop();
duke@435 1823
duke@435 1824 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1825 void push_fTOS();
duke@435 1826
duke@435 1827 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1828 void pop_fTOS();
duke@435 1829
duke@435 1830 void empty_FPU_stack();
duke@435 1831
duke@435 1832 void push_IU_state();
duke@435 1833 void pop_IU_state();
duke@435 1834
duke@435 1835 void push_FPU_state();
duke@435 1836 void pop_FPU_state();
duke@435 1837
duke@435 1838 void push_CPU_state();
duke@435 1839 void pop_CPU_state();
duke@435 1840
duke@435 1841 // Round up to a power of two
duke@435 1842 void round_to(Register reg, int modulus);
duke@435 1843
duke@435 1844 // Callee saved registers handling
duke@435 1845 void push_callee_saved_registers();
duke@435 1846 void pop_callee_saved_registers();
duke@435 1847
duke@435 1848 // allocation
duke@435 1849 void eden_allocate(
duke@435 1850 Register obj, // result: pointer to object after successful allocation
duke@435 1851 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1852 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1853 Register t1, // temp register
duke@435 1854 Label& slow_case // continuation point if fast allocation fails
duke@435 1855 );
duke@435 1856 void tlab_allocate(
duke@435 1857 Register obj, // result: pointer to object after successful allocation
duke@435 1858 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1859 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1860 Register t1, // temp register
duke@435 1861 Register t2, // temp register
duke@435 1862 Label& slow_case // continuation point if fast allocation fails
duke@435 1863 );
phh@2423 1864 Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
phh@2423 1865 void incr_allocated_bytes(Register thread,
phh@2423 1866 Register var_size_in_bytes, int con_size_in_bytes,
phh@2423 1867 Register t1 = noreg);
duke@435 1868
jrose@1058 1869 // interface method calling
jrose@1058 1870 void lookup_interface_method(Register recv_klass,
jrose@1058 1871 Register intf_klass,
jrose@1100 1872 RegisterOrConstant itable_index,
jrose@1058 1873 Register method_result,
jrose@1058 1874 Register scan_temp,
jrose@1058 1875 Label& no_such_interface);
jrose@1058 1876
jrose@1079 1877 // Test sub_klass against super_klass, with fast and slow paths.
jrose@1079 1878
jrose@1079 1879 // The fast path produces a tri-state answer: yes / no / maybe-slow.
jrose@1079 1880 // One of the three labels can be NULL, meaning take the fall-through.
jrose@1079 1881 // If super_check_offset is -1, the value is loaded up from super_klass.
jrose@1079 1882 // No registers are killed, except temp_reg.
jrose@1079 1883 void check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 1884 Register super_klass,
jrose@1079 1885 Register temp_reg,
jrose@1079 1886 Label* L_success,
jrose@1079 1887 Label* L_failure,
jrose@1079 1888 Label* L_slow_path,
jrose@1100 1889 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
jrose@1079 1890
jrose@1079 1891 // The rest of the type check; must be wired to a corresponding fast path.
jrose@1079 1892 // It does not repeat the fast path logic, so don't use it standalone.
jrose@1079 1893 // The temp_reg and temp2_reg can be noreg, if no temps are available.
jrose@1079 1894 // Updates the sub's secondary super cache as necessary.
jrose@1079 1895 // If set_cond_codes, condition codes will be Z on success, NZ on failure.
jrose@1079 1896 void check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 1897 Register super_klass,
jrose@1079 1898 Register temp_reg,
jrose@1079 1899 Register temp2_reg,
jrose@1079 1900 Label* L_success,
jrose@1079 1901 Label* L_failure,
jrose@1079 1902 bool set_cond_codes = false);
jrose@1079 1903
jrose@1079 1904 // Simplified, combined version, good for typical uses.
jrose@1079 1905 // Falls through on failure.
jrose@1079 1906 void check_klass_subtype(Register sub_klass,
jrose@1079 1907 Register super_klass,
jrose@1079 1908 Register temp_reg,
jrose@1079 1909 Label& L_success);
jrose@1079 1910
jrose@1145 1911 // method handles (JSR 292)
jrose@1145 1912 void check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 1913 Register temp_reg,
jrose@1145 1914 Label& wrong_method_type);
jrose@1145 1915 void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
jrose@1145 1916 Register temp_reg);
jrose@1145 1917 void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
jrose@1145 1918 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
jrose@1145 1919
jrose@1145 1920
duke@435 1921 //----
duke@435 1922 void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
duke@435 1923
duke@435 1924 // Debugging
never@739 1925
never@739 1926 // only if +VerifyOops
never@739 1927 void verify_oop(Register reg, const char* s = "broken oop");
duke@435 1928 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
duke@435 1929
never@739 1930 // only if +VerifyFPU
never@739 1931 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
never@739 1932
never@739 1933 // prints msg, dumps registers and stops execution
never@739 1934 void stop(const char* msg);
never@739 1935
never@739 1936 // prints msg and continues
never@739 1937 void warn(const char* msg);
never@739 1938
never@739 1939 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
never@739 1940 static void debug64(char* msg, int64_t pc, int64_t regs[]);
never@739 1941
duke@435 1942 void os_breakpoint();
never@739 1943
duke@435 1944 void untested() { stop("untested"); }
never@739 1945
twisti@2201 1946 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
never@739 1947
duke@435 1948 void should_not_reach_here() { stop("should not reach here"); }
never@739 1949
duke@435 1950 void print_CPU_state();
duke@435 1951
duke@435 1952 // Stack overflow checking
duke@435 1953 void bang_stack_with_offset(int offset) {
duke@435 1954 // stack grows down, caller passes positive offset
duke@435 1955 assert(offset > 0, "must bang with negative offset");
duke@435 1956 movl(Address(rsp, (-offset)), rax);
duke@435 1957 }
duke@435 1958
duke@435 1959 // Writes to stack successive pages until offset reached to check for
duke@435 1960 // stack overflow + shadow pages. Also, clobbers tmp
duke@435 1961 void bang_stack_size(Register size, Register tmp);
duke@435 1962
jrose@1100 1963 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 1964 Register tmp,
jrose@1100 1965 int offset);
jrose@1057 1966
duke@435 1967 // Support for serializing memory accesses between threads
duke@435 1968 void serialize_memory(Register thread, Register tmp);
duke@435 1969
duke@435 1970 void verify_tlab();
duke@435 1971
duke@435 1972 // Biased locking support
duke@435 1973 // lock_reg and obj_reg must be loaded up with the appropriate values.
duke@435 1974 // swap_reg must be rax, and is killed.
duke@435 1975 // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
duke@435 1976 // be killed; if not supplied, push/pop will be used internally to
duke@435 1977 // allocate a temporary (inefficient, avoid if possible).
duke@435 1978 // Optional slow case is for implementations (interpreter and C1) which branch to
duke@435 1979 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
duke@435 1980 // Returns offset of first potentially-faulting instruction for null
duke@435 1981 // check info (currently consumed only by C1). If
duke@435 1982 // swap_reg_contains_mark is true then returns -1 as it is assumed
duke@435 1983 // the calling code has already passed any potential faults.
kvn@855 1984 int biased_locking_enter(Register lock_reg, Register obj_reg,
kvn@855 1985 Register swap_reg, Register tmp_reg,
duke@435 1986 bool swap_reg_contains_mark,
duke@435 1987 Label& done, Label* slow_case = NULL,
duke@435 1988 BiasedLockingCounters* counters = NULL);
duke@435 1989 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
duke@435 1990
duke@435 1991
duke@435 1992 Condition negate_condition(Condition cond);
duke@435 1993
duke@435 1994 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
duke@435 1995 // operands. In general the names are modified to avoid hiding the instruction in Assembler
duke@435 1996 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
duke@435 1997 // here in MacroAssembler. The major exception to this rule is call
duke@435 1998
duke@435 1999 // Arithmetics
duke@435 2000
never@739 2001
never@739 2002 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
never@739 2003 void addptr(Address dst, Register src);
never@739 2004
never@739 2005 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
never@739 2006 void addptr(Register dst, int32_t src);
never@739 2007 void addptr(Register dst, Register src);
never@739 2008
never@739 2009 void andptr(Register dst, int32_t src);
never@739 2010 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
never@739 2011
never@739 2012 void cmp8(AddressLiteral src1, int imm);
never@739 2013
never@739 2014 // renamed to drag out the casting of address to int32_t/intptr_t
duke@435 2015 void cmp32(Register src1, int32_t imm);
duke@435 2016
duke@435 2017 void cmp32(AddressLiteral src1, int32_t imm);
duke@435 2018 // compare reg - mem, or reg - &mem
duke@435 2019 void cmp32(Register src1, AddressLiteral src2);
duke@435 2020
duke@435 2021 void cmp32(Register src1, Address src2);
duke@435 2022
never@739 2023 #ifndef _LP64
never@739 2024 void cmpoop(Address dst, jobject obj);
never@739 2025 void cmpoop(Register dst, jobject obj);
never@739 2026 #endif // _LP64
never@739 2027
duke@435 2028 // NOTE src2 must be the lval. This is NOT an mem-mem compare
duke@435 2029 void cmpptr(Address src1, AddressLiteral src2);
duke@435 2030
duke@435 2031 void cmpptr(Register src1, AddressLiteral src2);
duke@435 2032
never@739 2033 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2034 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2035 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2036
never@739 2037 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2038 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2039
never@739 2040 // cmp64 to avoild hiding cmpq
never@739 2041 void cmp64(Register src1, AddressLiteral src);
never@739 2042
never@739 2043 void cmpxchgptr(Register reg, Address adr);
never@739 2044
never@739 2045 void locked_cmpxchgptr(Register reg, AddressLiteral adr);
never@739 2046
never@739 2047
never@739 2048 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
never@739 2049
never@739 2050
never@739 2051 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
never@739 2052
never@739 2053 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
never@739 2054
never@739 2055 void shlptr(Register dst, int32_t shift);
never@739 2056 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
never@739 2057
never@739 2058 void shrptr(Register dst, int32_t shift);
never@739 2059 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
never@739 2060
never@739 2061 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
never@739 2062 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
never@739 2063
never@739 2064 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 2065
never@739 2066 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 2067 void subptr(Register dst, int32_t src);
never@739 2068 void subptr(Register dst, Register src);
never@739 2069
never@739 2070
never@739 2071 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 2072 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 2073
never@739 2074 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 2075 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 2076
never@739 2077 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
never@739 2078
never@739 2079
duke@435 2080
duke@435 2081 // Helper functions for statistics gathering.
duke@435 2082 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
duke@435 2083 void cond_inc32(Condition cond, AddressLiteral counter_addr);
duke@435 2084 // Unconditional atomic increment.
duke@435 2085 void atomic_incl(AddressLiteral counter_addr);
duke@435 2086
duke@435 2087 void lea(Register dst, AddressLiteral adr);
duke@435 2088 void lea(Address dst, AddressLiteral adr);
never@739 2089 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
never@739 2090
never@739 2091 void leal32(Register dst, Address src) { leal(dst, src); }
never@739 2092
never@739 2093 void test32(Register src1, AddressLiteral src2);
never@739 2094
never@739 2095 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2096 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2097 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2098
never@739 2099 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
never@739 2100 void testptr(Register src1, Register src2);
never@739 2101
never@739 2102 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
never@739 2103 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
duke@435 2104
duke@435 2105 // Calls
duke@435 2106
duke@435 2107 void call(Label& L, relocInfo::relocType rtype);
duke@435 2108 void call(Register entry);
duke@435 2109
duke@435 2110 // NOTE: this call tranfers to the effective address of entry NOT
duke@435 2111 // the address contained by entry. This is because this is more natural
duke@435 2112 // for jumps/calls.
duke@435 2113 void call(AddressLiteral entry);
duke@435 2114
duke@435 2115 // Jumps
duke@435 2116
duke@435 2117 // NOTE: these jumps tranfer to the effective address of dst NOT
duke@435 2118 // the address contained by dst. This is because this is more natural
duke@435 2119 // for jumps/calls.
duke@435 2120 void jump(AddressLiteral dst);
duke@435 2121 void jump_cc(Condition cc, AddressLiteral dst);
duke@435 2122
duke@435 2123 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 2124 // to be installed in the Address class. This jump will tranfers to the address
duke@435 2125 // contained in the location described by entry (not the address of entry)
duke@435 2126 void jump(ArrayAddress entry);
duke@435 2127
duke@435 2128 // Floating
duke@435 2129
duke@435 2130 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
duke@435 2131 void andpd(XMMRegister dst, AddressLiteral src);
duke@435 2132
duke@435 2133 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
duke@435 2134 void comiss(XMMRegister dst, AddressLiteral src);
duke@435 2135
duke@435 2136 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
duke@435 2137 void comisd(XMMRegister dst, AddressLiteral src);
duke@435 2138
twisti@2350 2139 void fadd_s(Address src) { Assembler::fadd_s(src); }
twisti@2350 2140 void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
twisti@2350 2141
duke@435 2142 void fldcw(Address src) { Assembler::fldcw(src); }
duke@435 2143 void fldcw(AddressLiteral src);
duke@435 2144
duke@435 2145 void fld_s(int index) { Assembler::fld_s(index); }
duke@435 2146 void fld_s(Address src) { Assembler::fld_s(src); }
duke@435 2147 void fld_s(AddressLiteral src);
duke@435 2148
duke@435 2149 void fld_d(Address src) { Assembler::fld_d(src); }
duke@435 2150 void fld_d(AddressLiteral src);
duke@435 2151
duke@435 2152 void fld_x(Address src) { Assembler::fld_x(src); }
duke@435 2153 void fld_x(AddressLiteral src);
duke@435 2154
twisti@2350 2155 void fmul_s(Address src) { Assembler::fmul_s(src); }
twisti@2350 2156 void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
twisti@2350 2157
duke@435 2158 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
duke@435 2159 void ldmxcsr(AddressLiteral src);
duke@435 2160
never@739 2161 private:
never@739 2162 // these are private because users should be doing movflt/movdbl
never@739 2163
duke@435 2164 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2165 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2166 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
duke@435 2167 void movss(XMMRegister dst, AddressLiteral src);
duke@435 2168
never@739 2169 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
never@739 2170 void movlpd(XMMRegister dst, AddressLiteral src);
never@739 2171
never@739 2172 public:
never@739 2173
twisti@2350 2174 void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); }
twisti@2350 2175 void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); }
twisti@2350 2176 void addsd(XMMRegister dst, AddressLiteral src) { Assembler::addsd(dst, as_Address(src)); }
twisti@2350 2177
twisti@2350 2178 void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); }
twisti@2350 2179 void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); }
twisti@2350 2180 void addss(XMMRegister dst, AddressLiteral src) { Assembler::addss(dst, as_Address(src)); }
twisti@2350 2181
twisti@2350 2182 void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); }
twisti@2350 2183 void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); }
twisti@2350 2184 void divsd(XMMRegister dst, AddressLiteral src) { Assembler::divsd(dst, as_Address(src)); }
twisti@2350 2185
twisti@2350 2186 void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); }
twisti@2350 2187 void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); }
twisti@2350 2188 void divss(XMMRegister dst, AddressLiteral src) { Assembler::divss(dst, as_Address(src)); }
twisti@2350 2189
phh@2423 2190 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
phh@2423 2191 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
phh@2423 2192 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
twisti@2350 2193 void movsd(XMMRegister dst, AddressLiteral src) { Assembler::movsd(dst, as_Address(src)); }
twisti@2350 2194
twisti@2350 2195 void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); }
twisti@2350 2196 void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); }
twisti@2350 2197 void mulsd(XMMRegister dst, AddressLiteral src) { Assembler::mulsd(dst, as_Address(src)); }
twisti@2350 2198
twisti@2350 2199 void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); }
twisti@2350 2200 void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); }
twisti@2350 2201 void mulss(XMMRegister dst, AddressLiteral src) { Assembler::mulss(dst, as_Address(src)); }
twisti@2350 2202
twisti@2350 2203 void sqrtsd(XMMRegister dst, XMMRegister src) { Assembler::sqrtsd(dst, src); }
twisti@2350 2204 void sqrtsd(XMMRegister dst, Address src) { Assembler::sqrtsd(dst, src); }
twisti@2350 2205 void sqrtsd(XMMRegister dst, AddressLiteral src) { Assembler::sqrtsd(dst, as_Address(src)); }
twisti@2350 2206
twisti@2350 2207 void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); }
twisti@2350 2208 void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); }
twisti@2350 2209 void sqrtss(XMMRegister dst, AddressLiteral src) { Assembler::sqrtss(dst, as_Address(src)); }
twisti@2350 2210
twisti@2350 2211 void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); }
twisti@2350 2212 void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); }
twisti@2350 2213 void subsd(XMMRegister dst, AddressLiteral src) { Assembler::subsd(dst, as_Address(src)); }
twisti@2350 2214
twisti@2350 2215 void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); }
twisti@2350 2216 void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); }
twisti@2350 2217 void subss(XMMRegister dst, AddressLiteral src) { Assembler::subss(dst, as_Address(src)); }
duke@435 2218
duke@435 2219 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
duke@435 2220 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
duke@435 2221 void ucomiss(XMMRegister dst, AddressLiteral src);
duke@435 2222
duke@435 2223 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
duke@435 2224 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
duke@435 2225 void ucomisd(XMMRegister dst, AddressLiteral src);
duke@435 2226
duke@435 2227 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
duke@435 2228 void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
duke@435 2229 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
duke@435 2230 void xorpd(XMMRegister dst, AddressLiteral src);
duke@435 2231
duke@435 2232 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
duke@435 2233 void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
duke@435 2234 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
duke@435 2235 void xorps(XMMRegister dst, AddressLiteral src);
duke@435 2236
duke@435 2237 // Data
duke@435 2238
never@739 2239 void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2240
never@739 2241 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2242 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2243
duke@435 2244 void movoop(Register dst, jobject obj);
duke@435 2245 void movoop(Address dst, jobject obj);
duke@435 2246
duke@435 2247 void movptr(ArrayAddress dst, Register src);
duke@435 2248 // can this do an lea?
duke@435 2249 void movptr(Register dst, ArrayAddress src);
duke@435 2250
never@739 2251 void movptr(Register dst, Address src);
never@739 2252
duke@435 2253 void movptr(Register dst, AddressLiteral src);
duke@435 2254
never@739 2255 void movptr(Register dst, intptr_t src);
never@739 2256 void movptr(Register dst, Register src);
never@739 2257 void movptr(Address dst, intptr_t src);
never@739 2258
never@739 2259 void movptr(Address dst, Register src);
never@739 2260
never@739 2261 #ifdef _LP64
never@739 2262 // Generally the next two are only used for moving NULL
never@739 2263 // Although there are situations in initializing the mark word where
never@739 2264 // they could be used. They are dangerous.
never@739 2265
never@739 2266 // They only exist on LP64 so that int32_t and intptr_t are not the same
never@739 2267 // and we have ambiguous declarations.
never@739 2268
never@739 2269 void movptr(Address dst, int32_t imm32);
never@739 2270 void movptr(Register dst, int32_t imm32);
never@739 2271 #endif // _LP64
never@739 2272
duke@435 2273 // to avoid hiding movl
duke@435 2274 void mov32(AddressLiteral dst, Register src);
duke@435 2275 void mov32(Register dst, AddressLiteral src);
never@739 2276
duke@435 2277 // to avoid hiding movb
duke@435 2278 void movbyte(ArrayAddress dst, int src);
duke@435 2279
duke@435 2280 // Can push value or effective address
duke@435 2281 void pushptr(AddressLiteral src);
duke@435 2282
never@739 2283 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
never@739 2284 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
never@739 2285
never@739 2286 void pushoop(jobject obj);
never@739 2287
never@739 2288 // sign extend as need a l to ptr sized element
never@739 2289 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
never@739 2290 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
never@739 2291
kvn@1421 2292 // IndexOf strings.
kvn@1421 2293 void string_indexof(Register str1, Register str2,
kvn@1421 2294 Register cnt1, Register cnt2, Register result,
kvn@1421 2295 XMMRegister vec, Register tmp);
kvn@1421 2296
kvn@1421 2297 // Compare strings.
kvn@1421 2298 void string_compare(Register str1, Register str2,
kvn@1421 2299 Register cnt1, Register cnt2, Register result,
never@2569 2300 XMMRegister vec1);
kvn@1421 2301
kvn@1421 2302 // Compare char[] arrays.
kvn@1421 2303 void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
kvn@1421 2304 Register limit, Register result, Register chr,
kvn@1421 2305 XMMRegister vec1, XMMRegister vec2);
never@739 2306
never@2118 2307 // Fill primitive arrays
never@2118 2308 void generate_fill(BasicType t, bool aligned,
never@2118 2309 Register to, Register value, Register count,
never@2118 2310 Register rtmp, XMMRegister xtmp);
never@2118 2311
duke@435 2312 #undef VIRTUAL
duke@435 2313
duke@435 2314 };
duke@435 2315
duke@435 2316 /**
duke@435 2317 * class SkipIfEqual:
duke@435 2318 *
duke@435 2319 * Instantiating this class will result in assembly code being output that will
duke@435 2320 * jump around any code emitted between the creation of the instance and it's
duke@435 2321 * automatic destruction at the end of a scope block, depending on the value of
duke@435 2322 * the flag passed to the constructor, which will be checked at run-time.
duke@435 2323 */
duke@435 2324 class SkipIfEqual {
duke@435 2325 private:
duke@435 2326 MacroAssembler* _masm;
duke@435 2327 Label _label;
duke@435 2328
duke@435 2329 public:
duke@435 2330 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
duke@435 2331 ~SkipIfEqual();
duke@435 2332 };
duke@435 2333
duke@435 2334 #ifdef ASSERT
duke@435 2335 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
duke@435 2336 #endif
stefank@2314 2337
stefank@2314 2338 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP

mercurial