src/cpu/x86/vm/assembler_x86.hpp

Thu, 11 Aug 2011 12:08:11 -0700

author
kvn
date
Thu, 11 Aug 2011 12:08:11 -0700
changeset 3049
95134e034042
parent 2980
de6a837d75cf
child 3310
6729bbc1fcd6
permissions
-rw-r--r--

7063629: use cbcond in C2 generated code on T4
Summary: Use new short branch instruction in C2 generated code.
Reviewed-by: never

duke@435 1 /*
phh@2423 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
stefank@2314 26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
stefank@2314 27
duke@435 28 class BiasedLockingCounters;
duke@435 29
duke@435 30 // Contains all the definitions needed for x86 assembly code generation.
duke@435 31
duke@435 32 // Calling convention
duke@435 33 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 34 public:
duke@435 35 enum {
duke@435 36 #ifdef _LP64
duke@435 37 #ifdef _WIN64
duke@435 38 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 39 n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
duke@435 40 #else
duke@435 41 n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 42 n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
duke@435 43 #endif // _WIN64
duke@435 44 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
duke@435 45 n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
duke@435 46 #else
duke@435 47 n_register_parameters = 0 // 0 registers used to pass arguments
duke@435 48 #endif // _LP64
duke@435 49 };
duke@435 50 };
duke@435 51
duke@435 52
duke@435 53 #ifdef _LP64
duke@435 54 // Symbolically name the register arguments used by the c calling convention.
duke@435 55 // Windows is different from linux/solaris. So much for standards...
duke@435 56
duke@435 57 #ifdef _WIN64
duke@435 58
duke@435 59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
duke@435 60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
duke@435 61 REGISTER_DECLARATION(Register, c_rarg2, r8);
duke@435 62 REGISTER_DECLARATION(Register, c_rarg3, r9);
duke@435 63
never@739 64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
duke@435 68
duke@435 69 #else
duke@435 70
duke@435 71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
duke@435 72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
duke@435 73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
duke@435 74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
duke@435 75 REGISTER_DECLARATION(Register, c_rarg4, r8);
duke@435 76 REGISTER_DECLARATION(Register, c_rarg5, r9);
duke@435 77
never@739 78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
never@739 82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
never@739 83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
never@739 84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
never@739 85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
duke@435 86
duke@435 87 #endif // _WIN64
duke@435 88
duke@435 89 // Symbolically name the register arguments used by the Java calling convention.
duke@435 90 // We have control over the convention for java so we can do what we please.
duke@435 91 // What pleases us is to offset the java calling convention so that when
duke@435 92 // we call a suitable jni method the arguments are lined up and we don't
duke@435 93 // have to do little shuffling. A suitable jni method is non-static and a
duke@435 94 // small number of arguments (two fewer args on windows)
duke@435 95 //
duke@435 96 // |-------------------------------------------------------|
duke@435 97 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
duke@435 98 // |-------------------------------------------------------|
duke@435 99 // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
duke@435 100 // | rdi rsi rdx rcx r8 r9 | solaris/linux
duke@435 101 // |-------------------------------------------------------|
duke@435 102 // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
duke@435 103 // |-------------------------------------------------------|
duke@435 104
duke@435 105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
duke@435 106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
duke@435 107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
duke@435 108 // Windows runs out of register args here
duke@435 109 #ifdef _WIN64
duke@435 110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
duke@435 111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
duke@435 112 #else
duke@435 113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
duke@435 114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
duke@435 115 #endif /* _WIN64 */
duke@435 116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
duke@435 117
never@739 118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
never@739 119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
never@739 120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
never@739 121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
never@739 122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
never@739 123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
never@739 124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
never@739 125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
duke@435 126
duke@435 127 REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
duke@435 128 REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
duke@435 129
never@739 130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
duke@435 131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
duke@435 132
never@739 133 #else
never@739 134 // rscratch1 will apear in 32bit code that is dead but of course must compile
never@739 135 // Using noreg ensures if the dead code is incorrectly live and executed it
never@739 136 // will cause an assertion failure
never@739 137 #define rscratch1 noreg
iveresov@2344 138 #define rscratch2 noreg
never@739 139
duke@435 140 #endif // _LP64
duke@435 141
twisti@1919 142 // JSR 292 fixed register usages:
twisti@1919 143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
twisti@1919 144
duke@435 145 // Address is an abstraction used to represent a memory location
duke@435 146 // using any of the amd64 addressing modes with one object.
duke@435 147 //
duke@435 148 // Note: A register location is represented via a Register, not
duke@435 149 // via an address for efficiency & simplicity reasons.
duke@435 150
duke@435 151 class ArrayAddress;
duke@435 152
duke@435 153 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 154 public:
duke@435 155 enum ScaleFactor {
duke@435 156 no_scale = -1,
duke@435 157 times_1 = 0,
duke@435 158 times_2 = 1,
duke@435 159 times_4 = 2,
never@739 160 times_8 = 3,
never@739 161 times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
duke@435 162 };
jrose@1057 163 static ScaleFactor times(int size) {
jrose@1057 164 assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
jrose@1057 165 if (size == 8) return times_8;
jrose@1057 166 if (size == 4) return times_4;
jrose@1057 167 if (size == 2) return times_2;
jrose@1057 168 return times_1;
jrose@1057 169 }
jrose@1057 170 static int scale_size(ScaleFactor scale) {
jrose@1057 171 assert(scale != no_scale, "");
jrose@1057 172 assert(((1 << (int)times_1) == 1 &&
jrose@1057 173 (1 << (int)times_2) == 2 &&
jrose@1057 174 (1 << (int)times_4) == 4 &&
jrose@1057 175 (1 << (int)times_8) == 8), "");
jrose@1057 176 return (1 << (int)scale);
jrose@1057 177 }
duke@435 178
duke@435 179 private:
duke@435 180 Register _base;
duke@435 181 Register _index;
duke@435 182 ScaleFactor _scale;
duke@435 183 int _disp;
duke@435 184 RelocationHolder _rspec;
duke@435 185
never@739 186 // Easily misused constructors make them private
never@739 187 // %%% can we make these go away?
never@739 188 NOT_LP64(Address(address loc, RelocationHolder spec);)
never@739 189 Address(int disp, address loc, relocInfo::relocType rtype);
never@739 190 Address(int disp, address loc, RelocationHolder spec);
duke@435 191
duke@435 192 public:
never@739 193
never@739 194 int disp() { return _disp; }
duke@435 195 // creation
duke@435 196 Address()
duke@435 197 : _base(noreg),
duke@435 198 _index(noreg),
duke@435 199 _scale(no_scale),
duke@435 200 _disp(0) {
duke@435 201 }
duke@435 202
duke@435 203 // No default displacement otherwise Register can be implicitly
duke@435 204 // converted to 0(Register) which is quite a different animal.
duke@435 205
duke@435 206 Address(Register base, int disp)
duke@435 207 : _base(base),
duke@435 208 _index(noreg),
duke@435 209 _scale(no_scale),
duke@435 210 _disp(disp) {
duke@435 211 }
duke@435 212
duke@435 213 Address(Register base, Register index, ScaleFactor scale, int disp = 0)
duke@435 214 : _base (base),
duke@435 215 _index(index),
duke@435 216 _scale(scale),
duke@435 217 _disp (disp) {
duke@435 218 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 219 "inconsistent address");
duke@435 220 }
duke@435 221
jrose@1100 222 Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
jrose@1057 223 : _base (base),
jrose@1057 224 _index(index.register_or_noreg()),
jrose@1057 225 _scale(scale),
jrose@1057 226 _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 227 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 228 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 229 "inconsistent address");
jrose@1057 230 }
jrose@1057 231
jrose@1057 232 Address plus_disp(int disp) const {
jrose@1057 233 Address a = (*this);
jrose@1057 234 a._disp += disp;
jrose@1057 235 return a;
jrose@1057 236 }
never@2895 237 Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
never@2895 238 Address a = (*this);
never@2895 239 a._disp += disp.constant_or_zero() * scale_size(scale);
never@2895 240 if (disp.is_register()) {
never@2895 241 assert(!a.index()->is_valid(), "competing indexes");
never@2895 242 a._index = disp.as_register();
never@2895 243 a._scale = scale;
never@2895 244 }
never@2895 245 return a;
never@2895 246 }
never@2895 247 bool is_same_address(Address a) const {
never@2895 248 // disregard _rspec
never@2895 249 return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
never@2895 250 }
jrose@1057 251
duke@435 252 // The following two overloads are used in connection with the
duke@435 253 // ByteSize type (see sizes.hpp). They simplify the use of
duke@435 254 // ByteSize'd arguments in assembly code. Note that their equivalent
duke@435 255 // for the optimized build are the member functions with int disp
duke@435 256 // argument since ByteSize is mapped to an int type in that case.
duke@435 257 //
duke@435 258 // Note: DO NOT introduce similar overloaded functions for WordSize
duke@435 259 // arguments as in the optimized mode, both ByteSize and WordSize
duke@435 260 // are mapped to the same type and thus the compiler cannot make a
duke@435 261 // distinction anymore (=> compiler errors).
duke@435 262
duke@435 263 #ifdef ASSERT
duke@435 264 Address(Register base, ByteSize disp)
duke@435 265 : _base(base),
duke@435 266 _index(noreg),
duke@435 267 _scale(no_scale),
duke@435 268 _disp(in_bytes(disp)) {
duke@435 269 }
duke@435 270
duke@435 271 Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
duke@435 272 : _base(base),
duke@435 273 _index(index),
duke@435 274 _scale(scale),
duke@435 275 _disp(in_bytes(disp)) {
duke@435 276 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 277 "inconsistent address");
duke@435 278 }
jrose@1057 279
jrose@1100 280 Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
jrose@1057 281 : _base (base),
jrose@1057 282 _index(index.register_or_noreg()),
jrose@1057 283 _scale(scale),
jrose@1057 284 _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 285 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 286 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 287 "inconsistent address");
jrose@1057 288 }
jrose@1057 289
duke@435 290 #endif // ASSERT
duke@435 291
duke@435 292 // accessors
ysr@777 293 bool uses(Register reg) const { return _base == reg || _index == reg; }
ysr@777 294 Register base() const { return _base; }
ysr@777 295 Register index() const { return _index; }
ysr@777 296 ScaleFactor scale() const { return _scale; }
ysr@777 297 int disp() const { return _disp; }
duke@435 298
duke@435 299 // Convert the raw encoding form into the form expected by the constructor for
duke@435 300 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 301 // that to noreg for the Address constructor.
twisti@1059 302 static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
duke@435 303
duke@435 304 static Address make_array(ArrayAddress);
duke@435 305
duke@435 306 private:
duke@435 307 bool base_needs_rex() const {
duke@435 308 return _base != noreg && _base->encoding() >= 8;
duke@435 309 }
duke@435 310
duke@435 311 bool index_needs_rex() const {
duke@435 312 return _index != noreg &&_index->encoding() >= 8;
duke@435 313 }
duke@435 314
duke@435 315 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 316
duke@435 317 friend class Assembler;
duke@435 318 friend class MacroAssembler;
duke@435 319 friend class LIR_Assembler; // base/index/scale/disp
duke@435 320 };
duke@435 321
duke@435 322 //
duke@435 323 // AddressLiteral has been split out from Address because operands of this type
duke@435 324 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
duke@435 325 // the few instructions that need to deal with address literals are unique and the
duke@435 326 // MacroAssembler does not have to implement every instruction in the Assembler
duke@435 327 // in order to search for address literals that may need special handling depending
duke@435 328 // on the instruction and the platform. As small step on the way to merging i486/amd64
duke@435 329 // directories.
duke@435 330 //
duke@435 331 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
duke@435 332 friend class ArrayAddress;
duke@435 333 RelocationHolder _rspec;
duke@435 334 // Typically we use AddressLiterals we want to use their rval
duke@435 335 // However in some situations we want the lval (effect address) of the item.
duke@435 336 // We provide a special factory for making those lvals.
duke@435 337 bool _is_lval;
duke@435 338
duke@435 339 // If the target is far we'll need to load the ea of this to
duke@435 340 // a register to reach it. Otherwise if near we can do rip
duke@435 341 // relative addressing.
duke@435 342
duke@435 343 address _target;
duke@435 344
duke@435 345 protected:
duke@435 346 // creation
duke@435 347 AddressLiteral()
duke@435 348 : _is_lval(false),
duke@435 349 _target(NULL)
duke@435 350 {}
duke@435 351
duke@435 352 public:
duke@435 353
duke@435 354
duke@435 355 AddressLiteral(address target, relocInfo::relocType rtype);
duke@435 356
duke@435 357 AddressLiteral(address target, RelocationHolder const& rspec)
duke@435 358 : _rspec(rspec),
duke@435 359 _is_lval(false),
duke@435 360 _target(target)
duke@435 361 {}
duke@435 362
duke@435 363 AddressLiteral addr() {
duke@435 364 AddressLiteral ret = *this;
duke@435 365 ret._is_lval = true;
duke@435 366 return ret;
duke@435 367 }
duke@435 368
duke@435 369
duke@435 370 private:
duke@435 371
duke@435 372 address target() { return _target; }
duke@435 373 bool is_lval() { return _is_lval; }
duke@435 374
duke@435 375 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 376 const RelocationHolder& rspec() const { return _rspec; }
duke@435 377
duke@435 378 friend class Assembler;
duke@435 379 friend class MacroAssembler;
duke@435 380 friend class Address;
duke@435 381 friend class LIR_Assembler;
duke@435 382 };
duke@435 383
duke@435 384 // Convience classes
duke@435 385 class RuntimeAddress: public AddressLiteral {
duke@435 386
duke@435 387 public:
duke@435 388
duke@435 389 RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
duke@435 390
duke@435 391 };
duke@435 392
duke@435 393 class OopAddress: public AddressLiteral {
duke@435 394
duke@435 395 public:
duke@435 396
duke@435 397 OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
duke@435 398
duke@435 399 };
duke@435 400
duke@435 401 class ExternalAddress: public AddressLiteral {
never@2737 402 private:
never@2737 403 static relocInfo::relocType reloc_for_target(address target) {
never@2737 404 // Sometimes ExternalAddress is used for values which aren't
never@2737 405 // exactly addresses, like the card table base.
never@2737 406 // external_word_type can't be used for values in the first page
never@2737 407 // so just skip the reloc in that case.
never@2737 408 return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
never@2737 409 }
never@2737 410
never@2737 411 public:
never@2737 412
never@2737 413 ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
duke@435 414
duke@435 415 };
duke@435 416
duke@435 417 class InternalAddress: public AddressLiteral {
duke@435 418
duke@435 419 public:
duke@435 420
duke@435 421 InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
duke@435 422
duke@435 423 };
duke@435 424
duke@435 425 // x86 can do array addressing as a single operation since disp can be an absolute
duke@435 426 // address amd64 can't. We create a class that expresses the concept but does extra
duke@435 427 // magic on amd64 to get the final result
duke@435 428
duke@435 429 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
duke@435 430 private:
duke@435 431
duke@435 432 AddressLiteral _base;
duke@435 433 Address _index;
duke@435 434
duke@435 435 public:
duke@435 436
duke@435 437 ArrayAddress() {};
duke@435 438 ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
duke@435 439 AddressLiteral base() { return _base; }
duke@435 440 Address index() { return _index; }
duke@435 441
duke@435 442 };
duke@435 443
never@739 444 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
duke@435 445
duke@435 446 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 447 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
duke@435 448 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 449
duke@435 450 class Assembler : public AbstractAssembler {
duke@435 451 friend class AbstractAssembler; // for the non-virtual hack
duke@435 452 friend class LIR_Assembler; // as_Address()
never@739 453 friend class StubGenerator;
duke@435 454
duke@435 455 public:
duke@435 456 enum Condition { // The x86 condition codes used for conditional jumps/moves.
duke@435 457 zero = 0x4,
duke@435 458 notZero = 0x5,
duke@435 459 equal = 0x4,
duke@435 460 notEqual = 0x5,
duke@435 461 less = 0xc,
duke@435 462 lessEqual = 0xe,
duke@435 463 greater = 0xf,
duke@435 464 greaterEqual = 0xd,
duke@435 465 below = 0x2,
duke@435 466 belowEqual = 0x6,
duke@435 467 above = 0x7,
duke@435 468 aboveEqual = 0x3,
duke@435 469 overflow = 0x0,
duke@435 470 noOverflow = 0x1,
duke@435 471 carrySet = 0x2,
duke@435 472 carryClear = 0x3,
duke@435 473 negative = 0x8,
duke@435 474 positive = 0x9,
duke@435 475 parity = 0xa,
duke@435 476 noParity = 0xb
duke@435 477 };
duke@435 478
duke@435 479 enum Prefix {
duke@435 480 // segment overrides
duke@435 481 CS_segment = 0x2e,
duke@435 482 SS_segment = 0x36,
duke@435 483 DS_segment = 0x3e,
duke@435 484 ES_segment = 0x26,
duke@435 485 FS_segment = 0x64,
duke@435 486 GS_segment = 0x65,
duke@435 487
duke@435 488 REX = 0x40,
duke@435 489
duke@435 490 REX_B = 0x41,
duke@435 491 REX_X = 0x42,
duke@435 492 REX_XB = 0x43,
duke@435 493 REX_R = 0x44,
duke@435 494 REX_RB = 0x45,
duke@435 495 REX_RX = 0x46,
duke@435 496 REX_RXB = 0x47,
duke@435 497
duke@435 498 REX_W = 0x48,
duke@435 499
duke@435 500 REX_WB = 0x49,
duke@435 501 REX_WX = 0x4A,
duke@435 502 REX_WXB = 0x4B,
duke@435 503 REX_WR = 0x4C,
duke@435 504 REX_WRB = 0x4D,
duke@435 505 REX_WRX = 0x4E,
duke@435 506 REX_WRXB = 0x4F
duke@435 507 };
duke@435 508
duke@435 509 enum WhichOperand {
duke@435 510 // input to locate_operand, and format code for relocations
never@739 511 imm_operand = 0, // embedded 32-bit|64-bit immediate operand
duke@435 512 disp32_operand = 1, // embedded 32-bit displacement or address
duke@435 513 call32_operand = 2, // embedded 32-bit self-relative displacement
never@739 514 #ifndef _LP64
duke@435 515 _WhichOperand_limit = 3
never@739 516 #else
never@739 517 narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
never@739 518 _WhichOperand_limit = 4
never@739 519 #endif
duke@435 520 };
duke@435 521
never@739 522
never@739 523
never@739 524 // NOTE: The general philopsophy of the declarations here is that 64bit versions
never@739 525 // of instructions are freely declared without the need for wrapping them an ifdef.
never@739 526 // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
never@739 527 // In the .cpp file the implementations are wrapped so that they are dropped out
never@739 528 // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
never@739 529 // to the size it was prior to merging up the 32bit and 64bit assemblers.
never@739 530 //
never@739 531 // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
never@739 532 // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
never@739 533
never@739 534 private:
never@739 535
never@739 536
never@739 537 // 64bit prefixes
never@739 538 int prefix_and_encode(int reg_enc, bool byteinst = false);
never@739 539 int prefixq_and_encode(int reg_enc);
never@739 540
never@739 541 int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
never@739 542 int prefixq_and_encode(int dst_enc, int src_enc);
never@739 543
never@739 544 void prefix(Register reg);
never@739 545 void prefix(Address adr);
never@739 546 void prefixq(Address adr);
never@739 547
never@739 548 void prefix(Address adr, Register reg, bool byteinst = false);
never@739 549 void prefixq(Address adr, Register reg);
never@739 550
never@739 551 void prefix(Address adr, XMMRegister reg);
never@739 552
never@739 553 void prefetch_prefix(Address src);
never@739 554
never@739 555 // Helper functions for groups of instructions
never@739 556 void emit_arith_b(int op1, int op2, Register dst, int imm8);
never@739 557
never@739 558 void emit_arith(int op1, int op2, Register dst, int32_t imm32);
never@739 559 // only 32bit??
never@739 560 void emit_arith(int op1, int op2, Register dst, jobject obj);
never@739 561 void emit_arith(int op1, int op2, Register dst, Register src);
never@739 562
never@739 563 void emit_operand(Register reg,
never@739 564 Register base, Register index, Address::ScaleFactor scale,
never@739 565 int disp,
never@739 566 RelocationHolder const& rspec,
never@739 567 int rip_relative_correction = 0);
never@739 568
never@739 569 void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
never@739 570
never@739 571 // operands that only take the original 32bit registers
never@739 572 void emit_operand32(Register reg, Address adr);
never@739 573
never@739 574 void emit_operand(XMMRegister reg,
never@739 575 Register base, Register index, Address::ScaleFactor scale,
never@739 576 int disp,
never@739 577 RelocationHolder const& rspec);
never@739 578
never@739 579 void emit_operand(XMMRegister reg, Address adr);
never@739 580
never@739 581 void emit_operand(MMXRegister reg, Address adr);
never@739 582
never@739 583 // workaround gcc (3.2.1-7) bug
never@739 584 void emit_operand(Address adr, MMXRegister reg);
never@739 585
never@739 586
never@739 587 // Immediate-to-memory forms
never@739 588 void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
never@739 589
never@739 590 void emit_farith(int b1, int b2, int i);
never@739 591
duke@435 592
duke@435 593 protected:
never@739 594 #ifdef ASSERT
never@739 595 void check_relocation(RelocationHolder const& rspec, int format);
never@739 596 #endif
never@739 597
never@739 598 inline void emit_long64(jlong x);
never@739 599
never@739 600 void emit_data(jint data, relocInfo::relocType rtype, int format);
never@739 601 void emit_data(jint data, RelocationHolder const& rspec, int format);
never@739 602 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
never@739 603 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
never@739 604
never@739 605 bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
never@739 606
never@739 607 // These are all easily abused and hence protected
never@739 608
never@739 609 // 32BIT ONLY SECTION
never@739 610 #ifndef _LP64
never@739 611 // Make these disappear in 64bit mode since they would never be correct
never@739 612 void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 613 void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 614
kvn@1077 615 void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 616 void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 617
never@739 618 void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 619 #else
never@739 620 // 64BIT ONLY SECTION
never@739 621 void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
kvn@1077 622
kvn@1077 623 void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 624 void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 625
kvn@1077 626 void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 627 void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
never@739 628 #endif // _LP64
never@739 629
never@739 630 // These are unique in that we are ensured by the caller that the 32bit
never@739 631 // relative in these instructions will always be able to reach the potentially
never@739 632 // 64bit address described by entry. Since they can take a 64bit address they
never@739 633 // don't have the 32 suffix like the other instructions in this class.
never@739 634
never@739 635 void call_literal(address entry, RelocationHolder const& rspec);
never@739 636 void jmp_literal(address entry, RelocationHolder const& rspec);
never@739 637
never@739 638 // Avoid using directly section
never@739 639 // Instructions in this section are actually usable by anyone without danger
never@739 640 // of failure but have performance issues that are addressed my enhanced
never@739 641 // instructions which will do the proper thing base on the particular cpu.
never@739 642 // We protect them because we don't trust you...
never@739 643
duke@435 644 // Don't use next inc() and dec() methods directly. INC & DEC instructions
duke@435 645 // could cause a partial flag stall since they don't set CF flag.
duke@435 646 // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
duke@435 647 // which call inc() & dec() or add() & sub() in accordance with
duke@435 648 // the product flag UseIncDec value.
duke@435 649
duke@435 650 void decl(Register dst);
duke@435 651 void decl(Address dst);
never@739 652 void decq(Register dst);
never@739 653 void decq(Address dst);
duke@435 654
duke@435 655 void incl(Register dst);
duke@435 656 void incl(Address dst);
never@739 657 void incq(Register dst);
never@739 658 void incq(Address dst);
never@739 659
never@739 660 // New cpus require use of movsd and movss to avoid partial register stall
never@739 661 // when loading from memory. But for old Opteron use movlpd instead of movsd.
never@739 662 // The selection is done in MacroAssembler::movdbl() and movflt().
never@739 663
never@739 664 // Move Scalar Single-Precision Floating-Point Values
never@739 665 void movss(XMMRegister dst, Address src);
never@739 666 void movss(XMMRegister dst, XMMRegister src);
never@739 667 void movss(Address dst, XMMRegister src);
never@739 668
never@739 669 // Move Scalar Double-Precision Floating-Point Values
never@739 670 void movsd(XMMRegister dst, Address src);
never@739 671 void movsd(XMMRegister dst, XMMRegister src);
never@739 672 void movsd(Address dst, XMMRegister src);
never@739 673 void movlpd(XMMRegister dst, Address src);
never@739 674
never@739 675 // New cpus require use of movaps and movapd to avoid partial register stall
never@739 676 // when moving between registers.
never@739 677 void movaps(XMMRegister dst, XMMRegister src);
never@739 678 void movapd(XMMRegister dst, XMMRegister src);
never@739 679
never@739 680 // End avoid using directly
never@739 681
never@739 682
never@739 683 // Instruction prefixes
never@739 684 void prefix(Prefix p);
never@739 685
never@739 686 public:
never@739 687
never@739 688 // Creation
never@739 689 Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
never@739 690
never@739 691 // Decoding
never@739 692 static address locate_operand(address inst, WhichOperand which);
never@739 693 static address locate_next_instruction(address inst);
never@739 694
never@739 695 // Utilities
never@739 696
never@739 697 #ifdef _LP64
phh@2423 698 static bool is_simm(int64_t x, int nbits) { return -(CONST64(1) << (nbits-1)) <= x &&
phh@2423 699 x < (CONST64(1) << (nbits-1)); }
never@739 700 static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
never@739 701 #else
phh@2423 702 static bool is_simm(int32_t x, int nbits) { return -(1 << (nbits-1)) <= x &&
phh@2423 703 x < (1 << (nbits-1)); }
never@739 704 static bool is_simm32(int32_t x) { return true; }
phh@2423 705 #endif // _LP64
never@739 706
iveresov@2686 707 static bool is_polling_page_far() NOT_LP64({ return false;});
iveresov@2686 708
never@739 709 // Generic instructions
never@739 710 // Does 32bit or 64bit as needed for the platform. In some sense these
never@739 711 // belong in macro assembler but there is no need for both varieties to exist
never@739 712
never@739 713 void lea(Register dst, Address src);
never@739 714
never@739 715 void mov(Register dst, Register src);
never@739 716
never@739 717 void pusha();
never@739 718 void popa();
never@739 719
never@739 720 void pushf();
never@739 721 void popf();
never@739 722
never@739 723 void push(int32_t imm32);
never@739 724
never@739 725 void push(Register src);
never@739 726
never@739 727 void pop(Register dst);
never@739 728
never@739 729 // These are dummies to prevent surprise implicit conversions to Register
never@739 730 void push(void* v);
never@739 731 void pop(void* v);
never@739 732
never@739 733 // These do register sized moves/scans
never@739 734 void rep_mov();
never@739 735 void rep_set();
never@739 736 void repne_scan();
never@739 737 #ifdef _LP64
never@739 738 void repne_scanl();
never@739 739 #endif
never@739 740
never@739 741 // Vanilla instructions in lexical order
never@739 742
phh@2423 743 void adcl(Address dst, int32_t imm32);
phh@2423 744 void adcl(Address dst, Register src);
never@739 745 void adcl(Register dst, int32_t imm32);
never@739 746 void adcl(Register dst, Address src);
never@739 747 void adcl(Register dst, Register src);
never@739 748
never@739 749 void adcq(Register dst, int32_t imm32);
never@739 750 void adcq(Register dst, Address src);
never@739 751 void adcq(Register dst, Register src);
never@739 752
never@739 753 void addl(Address dst, int32_t imm32);
never@739 754 void addl(Address dst, Register src);
never@739 755 void addl(Register dst, int32_t imm32);
never@739 756 void addl(Register dst, Address src);
never@739 757 void addl(Register dst, Register src);
never@739 758
never@739 759 void addq(Address dst, int32_t imm32);
never@739 760 void addq(Address dst, Register src);
never@739 761 void addq(Register dst, int32_t imm32);
never@739 762 void addq(Register dst, Address src);
never@739 763 void addq(Register dst, Register src);
never@739 764
duke@435 765 void addr_nop_4();
duke@435 766 void addr_nop_5();
duke@435 767 void addr_nop_7();
duke@435 768 void addr_nop_8();
duke@435 769
never@739 770 // Add Scalar Double-Precision Floating-Point Values
never@739 771 void addsd(XMMRegister dst, Address src);
never@739 772 void addsd(XMMRegister dst, XMMRegister src);
never@739 773
never@739 774 // Add Scalar Single-Precision Floating-Point Values
never@739 775 void addss(XMMRegister dst, Address src);
never@739 776 void addss(XMMRegister dst, XMMRegister src);
never@739 777
never@739 778 void andl(Register dst, int32_t imm32);
never@739 779 void andl(Register dst, Address src);
never@739 780 void andl(Register dst, Register src);
never@739 781
never@2980 782 void andq(Address dst, int32_t imm32);
never@739 783 void andq(Register dst, int32_t imm32);
never@739 784 void andq(Register dst, Address src);
never@739 785 void andq(Register dst, Register src);
never@739 786
never@739 787 // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
never@739 788 void andpd(XMMRegister dst, Address src);
never@739 789 void andpd(XMMRegister dst, XMMRegister src);
never@739 790
twisti@1210 791 void bsfl(Register dst, Register src);
twisti@1210 792 void bsrl(Register dst, Register src);
twisti@1210 793
twisti@1210 794 #ifdef _LP64
twisti@1210 795 void bsfq(Register dst, Register src);
twisti@1210 796 void bsrq(Register dst, Register src);
twisti@1210 797 #endif
twisti@1210 798
never@739 799 void bswapl(Register reg);
never@739 800
never@739 801 void bswapq(Register reg);
never@739 802
duke@435 803 void call(Label& L, relocInfo::relocType rtype);
duke@435 804 void call(Register reg); // push pc; pc <- reg
duke@435 805 void call(Address adr); // push pc; pc <- adr
duke@435 806
never@739 807 void cdql();
never@739 808
never@739 809 void cdqq();
never@739 810
never@739 811 void cld() { emit_byte(0xfc); }
never@739 812
never@739 813 void clflush(Address adr);
never@739 814
never@739 815 void cmovl(Condition cc, Register dst, Register src);
never@739 816 void cmovl(Condition cc, Register dst, Address src);
never@739 817
never@739 818 void cmovq(Condition cc, Register dst, Register src);
never@739 819 void cmovq(Condition cc, Register dst, Address src);
never@739 820
never@739 821
never@739 822 void cmpb(Address dst, int imm8);
never@739 823
never@739 824 void cmpl(Address dst, int32_t imm32);
never@739 825
never@739 826 void cmpl(Register dst, int32_t imm32);
never@739 827 void cmpl(Register dst, Register src);
never@739 828 void cmpl(Register dst, Address src);
never@739 829
never@739 830 void cmpq(Address dst, int32_t imm32);
never@739 831 void cmpq(Address dst, Register src);
never@739 832
never@739 833 void cmpq(Register dst, int32_t imm32);
never@739 834 void cmpq(Register dst, Register src);
never@739 835 void cmpq(Register dst, Address src);
never@739 836
never@739 837 // these are dummies used to catch attempting to convert NULL to Register
never@739 838 void cmpl(Register dst, void* junk); // dummy
never@739 839 void cmpq(Register dst, void* junk); // dummy
never@739 840
never@739 841 void cmpw(Address dst, int imm16);
never@739 842
never@739 843 void cmpxchg8 (Address adr);
never@739 844
never@739 845 void cmpxchgl(Register reg, Address adr);
never@739 846
never@739 847 void cmpxchgq(Register reg, Address adr);
never@739 848
never@739 849 // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 850 void comisd(XMMRegister dst, Address src);
never@739 851
never@739 852 // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 853 void comiss(XMMRegister dst, Address src);
never@739 854
never@739 855 // Identify processor type and features
never@739 856 void cpuid() {
never@739 857 emit_byte(0x0F);
never@739 858 emit_byte(0xA2);
never@739 859 }
never@739 860
never@739 861 // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
never@739 862 void cvtsd2ss(XMMRegister dst, XMMRegister src);
never@739 863
never@739 864 // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
never@739 865 void cvtsi2sdl(XMMRegister dst, Register src);
never@739 866 void cvtsi2sdq(XMMRegister dst, Register src);
never@739 867
never@739 868 // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
never@739 869 void cvtsi2ssl(XMMRegister dst, Register src);
never@739 870 void cvtsi2ssq(XMMRegister dst, Register src);
never@739 871
never@739 872 // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
never@739 873 void cvtdq2pd(XMMRegister dst, XMMRegister src);
never@739 874
never@739 875 // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
never@739 876 void cvtdq2ps(XMMRegister dst, XMMRegister src);
never@739 877
never@739 878 // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
never@739 879 void cvtss2sd(XMMRegister dst, XMMRegister src);
never@739 880
never@739 881 // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
never@739 882 void cvttsd2sil(Register dst, Address src);
never@739 883 void cvttsd2sil(Register dst, XMMRegister src);
never@739 884 void cvttsd2siq(Register dst, XMMRegister src);
never@739 885
never@739 886 // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
never@739 887 void cvttss2sil(Register dst, XMMRegister src);
never@739 888 void cvttss2siq(Register dst, XMMRegister src);
never@739 889
never@739 890 // Divide Scalar Double-Precision Floating-Point Values
never@739 891 void divsd(XMMRegister dst, Address src);
never@739 892 void divsd(XMMRegister dst, XMMRegister src);
never@739 893
never@739 894 // Divide Scalar Single-Precision Floating-Point Values
never@739 895 void divss(XMMRegister dst, Address src);
never@739 896 void divss(XMMRegister dst, XMMRegister src);
never@739 897
never@739 898 void emms();
never@739 899
never@739 900 void fabs();
never@739 901
never@739 902 void fadd(int i);
never@739 903
never@739 904 void fadd_d(Address src);
never@739 905 void fadd_s(Address src);
never@739 906
never@739 907 // "Alternate" versions of x87 instructions place result down in FPU
never@739 908 // stack instead of on TOS
never@739 909
never@739 910 void fadda(int i); // "alternate" fadd
never@739 911 void faddp(int i = 1);
never@739 912
never@739 913 void fchs();
never@739 914
never@739 915 void fcom(int i);
never@739 916
never@739 917 void fcomp(int i = 1);
never@739 918 void fcomp_d(Address src);
never@739 919 void fcomp_s(Address src);
never@739 920
never@739 921 void fcompp();
never@739 922
never@739 923 void fcos();
never@739 924
never@739 925 void fdecstp();
never@739 926
never@739 927 void fdiv(int i);
never@739 928 void fdiv_d(Address src);
never@739 929 void fdivr_s(Address src);
never@739 930 void fdiva(int i); // "alternate" fdiv
never@739 931 void fdivp(int i = 1);
never@739 932
never@739 933 void fdivr(int i);
never@739 934 void fdivr_d(Address src);
never@739 935 void fdiv_s(Address src);
never@739 936
never@739 937 void fdivra(int i); // "alternate" reversed fdiv
never@739 938
never@739 939 void fdivrp(int i = 1);
never@739 940
never@739 941 void ffree(int i = 0);
never@739 942
never@739 943 void fild_d(Address adr);
never@739 944 void fild_s(Address adr);
never@739 945
never@739 946 void fincstp();
never@739 947
never@739 948 void finit();
never@739 949
never@739 950 void fist_s (Address adr);
never@739 951 void fistp_d(Address adr);
never@739 952 void fistp_s(Address adr);
never@739 953
never@739 954 void fld1();
never@739 955
never@739 956 void fld_d(Address adr);
never@739 957 void fld_s(Address adr);
never@739 958 void fld_s(int index);
never@739 959 void fld_x(Address adr); // extended-precision (80-bit) format
never@739 960
never@739 961 void fldcw(Address src);
never@739 962
never@739 963 void fldenv(Address src);
never@739 964
never@739 965 void fldlg2();
never@739 966
never@739 967 void fldln2();
never@739 968
never@739 969 void fldz();
never@739 970
never@739 971 void flog();
never@739 972 void flog10();
never@739 973
never@739 974 void fmul(int i);
never@739 975
never@739 976 void fmul_d(Address src);
never@739 977 void fmul_s(Address src);
never@739 978
never@739 979 void fmula(int i); // "alternate" fmul
never@739 980
never@739 981 void fmulp(int i = 1);
never@739 982
never@739 983 void fnsave(Address dst);
never@739 984
never@739 985 void fnstcw(Address src);
never@739 986
never@739 987 void fnstsw_ax();
never@739 988
never@739 989 void fprem();
never@739 990 void fprem1();
never@739 991
never@739 992 void frstor(Address src);
never@739 993
never@739 994 void fsin();
never@739 995
never@739 996 void fsqrt();
never@739 997
never@739 998 void fst_d(Address adr);
never@739 999 void fst_s(Address adr);
never@739 1000
never@739 1001 void fstp_d(Address adr);
never@739 1002 void fstp_d(int index);
never@739 1003 void fstp_s(Address adr);
never@739 1004 void fstp_x(Address adr); // extended-precision (80-bit) format
never@739 1005
never@739 1006 void fsub(int i);
never@739 1007 void fsub_d(Address src);
never@739 1008 void fsub_s(Address src);
never@739 1009
never@739 1010 void fsuba(int i); // "alternate" fsub
never@739 1011
never@739 1012 void fsubp(int i = 1);
never@739 1013
never@739 1014 void fsubr(int i);
never@739 1015 void fsubr_d(Address src);
never@739 1016 void fsubr_s(Address src);
never@739 1017
never@739 1018 void fsubra(int i); // "alternate" reversed fsub
never@739 1019
never@739 1020 void fsubrp(int i = 1);
never@739 1021
never@739 1022 void ftan();
never@739 1023
never@739 1024 void ftst();
never@739 1025
never@739 1026 void fucomi(int i = 1);
never@739 1027 void fucomip(int i = 1);
never@739 1028
never@739 1029 void fwait();
never@739 1030
never@739 1031 void fxch(int i = 1);
never@739 1032
never@739 1033 void fxrstor(Address src);
never@739 1034
never@739 1035 void fxsave(Address dst);
never@739 1036
never@739 1037 void fyl2x();
never@739 1038
never@739 1039 void hlt();
never@739 1040
never@739 1041 void idivl(Register src);
kvn@2275 1042 void divl(Register src); // Unsigned division
never@739 1043
never@739 1044 void idivq(Register src);
never@739 1045
never@739 1046 void imull(Register dst, Register src);
never@739 1047 void imull(Register dst, Register src, int value);
never@739 1048
never@739 1049 void imulq(Register dst, Register src);
never@739 1050 void imulq(Register dst, Register src, int value);
never@739 1051
duke@435 1052
duke@435 1053 // jcc is the generic conditional branch generator to run-
duke@435 1054 // time routines, jcc is used for branches to labels. jcc
duke@435 1055 // takes a branch opcode (cc) and a label (L) and generates
duke@435 1056 // either a backward branch or a forward branch and links it
duke@435 1057 // to the label fixup chain. Usage:
duke@435 1058 //
duke@435 1059 // Label L; // unbound label
duke@435 1060 // jcc(cc, L); // forward branch to unbound label
duke@435 1061 // bind(L); // bind label to the current pc
duke@435 1062 // jcc(cc, L); // backward branch to bound label
duke@435 1063 // bind(L); // illegal: a label may be bound only once
duke@435 1064 //
duke@435 1065 // Note: The same Label can be used for forward and backward branches
duke@435 1066 // but it may be bound only once.
duke@435 1067
kvn@3049 1068 void jcc(Condition cc, Label& L, bool maybe_short = true);
duke@435 1069
duke@435 1070 // Conditional jump to a 8-bit offset to L.
duke@435 1071 // WARNING: be very careful using this for forward jumps. If the label is
duke@435 1072 // not bound within an 8-bit offset of this instruction, a run-time error
duke@435 1073 // will occur.
duke@435 1074 void jccb(Condition cc, Label& L);
duke@435 1075
never@739 1076 void jmp(Address entry); // pc <- entry
never@739 1077
never@739 1078 // Label operations & relative jumps (PPUM Appendix D)
kvn@3049 1079 void jmp(Label& L, bool maybe_short = true); // unconditional jump to L
never@739 1080
never@739 1081 void jmp(Register entry); // pc <- entry
never@739 1082
never@739 1083 // Unconditional 8-bit offset jump to L.
never@739 1084 // WARNING: be very careful using this for forward jumps. If the label is
never@739 1085 // not bound within an 8-bit offset of this instruction, a run-time error
never@739 1086 // will occur.
never@739 1087 void jmpb(Label& L);
never@739 1088
never@739 1089 void ldmxcsr( Address src );
never@739 1090
never@739 1091 void leal(Register dst, Address src);
never@739 1092
never@739 1093 void leaq(Register dst, Address src);
never@739 1094
never@739 1095 void lfence() {
never@739 1096 emit_byte(0x0F);
never@739 1097 emit_byte(0xAE);
never@739 1098 emit_byte(0xE8);
never@739 1099 }
never@739 1100
never@739 1101 void lock();
never@739 1102
twisti@1210 1103 void lzcntl(Register dst, Register src);
twisti@1210 1104
twisti@1210 1105 #ifdef _LP64
twisti@1210 1106 void lzcntq(Register dst, Register src);
twisti@1210 1107 #endif
twisti@1210 1108
never@739 1109 enum Membar_mask_bits {
never@739 1110 StoreStore = 1 << 3,
never@739 1111 LoadStore = 1 << 2,
never@739 1112 StoreLoad = 1 << 1,
never@739 1113 LoadLoad = 1 << 0
never@739 1114 };
never@739 1115
never@1106 1116 // Serializes memory and blows flags
never@739 1117 void membar(Membar_mask_bits order_constraint) {
never@1106 1118 if (os::is_MP()) {
never@1106 1119 // We only have to handle StoreLoad
never@1106 1120 if (order_constraint & StoreLoad) {
never@1106 1121 // All usable chips support "locked" instructions which suffice
never@1106 1122 // as barriers, and are much faster than the alternative of
never@1106 1123 // using cpuid instruction. We use here a locked add [esp],0.
never@1106 1124 // This is conveniently otherwise a no-op except for blowing
never@1106 1125 // flags.
never@1106 1126 // Any change to this code may need to revisit other places in
never@1106 1127 // the code where this idiom is used, in particular the
never@1106 1128 // orderAccess code.
never@1106 1129 lock();
never@1106 1130 addl(Address(rsp, 0), 0);// Assert the lock# signal here
never@1106 1131 }
never@1106 1132 }
never@739 1133 }
never@739 1134
never@739 1135 void mfence();
never@739 1136
never@739 1137 // Moves
never@739 1138
never@739 1139 void mov64(Register dst, int64_t imm64);
never@739 1140
never@739 1141 void movb(Address dst, Register src);
never@739 1142 void movb(Address dst, int imm8);
never@739 1143 void movb(Register dst, Address src);
never@739 1144
never@739 1145 void movdl(XMMRegister dst, Register src);
never@739 1146 void movdl(Register dst, XMMRegister src);
kvn@2602 1147 void movdl(XMMRegister dst, Address src);
never@739 1148
never@739 1149 // Move Double Quadword
never@739 1150 void movdq(XMMRegister dst, Register src);
never@739 1151 void movdq(Register dst, XMMRegister src);
never@739 1152
never@739 1153 // Move Aligned Double Quadword
never@739 1154 void movdqa(Address dst, XMMRegister src);
never@739 1155 void movdqa(XMMRegister dst, Address src);
never@739 1156 void movdqa(XMMRegister dst, XMMRegister src);
never@739 1157
kvn@840 1158 // Move Unaligned Double Quadword
kvn@840 1159 void movdqu(Address dst, XMMRegister src);
kvn@840 1160 void movdqu(XMMRegister dst, Address src);
kvn@840 1161 void movdqu(XMMRegister dst, XMMRegister src);
kvn@840 1162
never@739 1163 void movl(Register dst, int32_t imm32);
never@739 1164 void movl(Address dst, int32_t imm32);
never@739 1165 void movl(Register dst, Register src);
never@739 1166 void movl(Register dst, Address src);
never@739 1167 void movl(Address dst, Register src);
never@739 1168
never@739 1169 // These dummies prevent using movl from converting a zero (like NULL) into Register
never@739 1170 // by giving the compiler two choices it can't resolve
never@739 1171
never@739 1172 void movl(Address dst, void* junk);
never@739 1173 void movl(Register dst, void* junk);
never@739 1174
never@739 1175 #ifdef _LP64
never@739 1176 void movq(Register dst, Register src);
never@739 1177 void movq(Register dst, Address src);
phh@2423 1178 void movq(Address dst, Register src);
never@739 1179 #endif
never@739 1180
never@739 1181 void movq(Address dst, MMXRegister src );
never@739 1182 void movq(MMXRegister dst, Address src );
never@739 1183
never@739 1184 #ifdef _LP64
never@739 1185 // These dummies prevent using movq from converting a zero (like NULL) into Register
never@739 1186 // by giving the compiler two choices it can't resolve
never@739 1187
never@739 1188 void movq(Address dst, void* dummy);
never@739 1189 void movq(Register dst, void* dummy);
never@739 1190 #endif
never@739 1191
never@739 1192 // Move Quadword
never@739 1193 void movq(Address dst, XMMRegister src);
never@739 1194 void movq(XMMRegister dst, Address src);
never@739 1195
never@739 1196 void movsbl(Register dst, Address src);
never@739 1197 void movsbl(Register dst, Register src);
never@739 1198
never@739 1199 #ifdef _LP64
twisti@1059 1200 void movsbq(Register dst, Address src);
twisti@1059 1201 void movsbq(Register dst, Register src);
twisti@1059 1202
never@739 1203 // Move signed 32bit immediate to 64bit extending sign
phh@2423 1204 void movslq(Address dst, int32_t imm64);
never@739 1205 void movslq(Register dst, int32_t imm64);
never@739 1206
never@739 1207 void movslq(Register dst, Address src);
never@739 1208 void movslq(Register dst, Register src);
never@739 1209 void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
never@739 1210 #endif
never@739 1211
never@739 1212 void movswl(Register dst, Address src);
never@739 1213 void movswl(Register dst, Register src);
never@739 1214
twisti@1059 1215 #ifdef _LP64
twisti@1059 1216 void movswq(Register dst, Address src);
twisti@1059 1217 void movswq(Register dst, Register src);
twisti@1059 1218 #endif
twisti@1059 1219
never@739 1220 void movw(Address dst, int imm16);
never@739 1221 void movw(Register dst, Address src);
never@739 1222 void movw(Address dst, Register src);
never@739 1223
never@739 1224 void movzbl(Register dst, Address src);
never@739 1225 void movzbl(Register dst, Register src);
never@739 1226
twisti@1059 1227 #ifdef _LP64
twisti@1059 1228 void movzbq(Register dst, Address src);
twisti@1059 1229 void movzbq(Register dst, Register src);
twisti@1059 1230 #endif
twisti@1059 1231
never@739 1232 void movzwl(Register dst, Address src);
never@739 1233 void movzwl(Register dst, Register src);
never@739 1234
twisti@1059 1235 #ifdef _LP64
twisti@1059 1236 void movzwq(Register dst, Address src);
twisti@1059 1237 void movzwq(Register dst, Register src);
twisti@1059 1238 #endif
twisti@1059 1239
never@739 1240 void mull(Address src);
never@739 1241 void mull(Register src);
never@739 1242
never@739 1243 // Multiply Scalar Double-Precision Floating-Point Values
never@739 1244 void mulsd(XMMRegister dst, Address src);
never@739 1245 void mulsd(XMMRegister dst, XMMRegister src);
never@739 1246
never@739 1247 // Multiply Scalar Single-Precision Floating-Point Values
never@739 1248 void mulss(XMMRegister dst, Address src);
never@739 1249 void mulss(XMMRegister dst, XMMRegister src);
never@739 1250
never@739 1251 void negl(Register dst);
never@739 1252
never@739 1253 #ifdef _LP64
never@739 1254 void negq(Register dst);
never@739 1255 #endif
never@739 1256
never@739 1257 void nop(int i = 1);
never@739 1258
never@739 1259 void notl(Register dst);
never@739 1260
never@739 1261 #ifdef _LP64
never@739 1262 void notq(Register dst);
never@739 1263 #endif
never@739 1264
never@739 1265 void orl(Address dst, int32_t imm32);
never@739 1266 void orl(Register dst, int32_t imm32);
never@739 1267 void orl(Register dst, Address src);
never@739 1268 void orl(Register dst, Register src);
never@739 1269
never@739 1270 void orq(Address dst, int32_t imm32);
never@739 1271 void orq(Register dst, int32_t imm32);
never@739 1272 void orq(Register dst, Address src);
never@739 1273 void orq(Register dst, Register src);
never@739 1274
cfang@1116 1275 // SSE4.2 string instructions
cfang@1116 1276 void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
cfang@1116 1277 void pcmpestri(XMMRegister xmm1, Address src, int imm8);
cfang@1116 1278
roland@1495 1279 #ifndef _LP64 // no 32bit push/pop on amd64
never@739 1280 void popl(Address dst);
roland@1495 1281 #endif
never@739 1282
never@739 1283 #ifdef _LP64
never@739 1284 void popq(Address dst);
never@739 1285 #endif
never@739 1286
twisti@1078 1287 void popcntl(Register dst, Address src);
twisti@1078 1288 void popcntl(Register dst, Register src);
twisti@1078 1289
twisti@1078 1290 #ifdef _LP64
twisti@1078 1291 void popcntq(Register dst, Address src);
twisti@1078 1292 void popcntq(Register dst, Register src);
twisti@1078 1293 #endif
twisti@1078 1294
never@739 1295 // Prefetches (SSE, SSE2, 3DNOW only)
never@739 1296
never@739 1297 void prefetchnta(Address src);
never@739 1298 void prefetchr(Address src);
never@739 1299 void prefetcht0(Address src);
never@739 1300 void prefetcht1(Address src);
never@739 1301 void prefetcht2(Address src);
never@739 1302 void prefetchw(Address src);
never@739 1303
never@2569 1304 // POR - Bitwise logical OR
never@2569 1305 void por(XMMRegister dst, XMMRegister src);
never@2569 1306
never@739 1307 // Shuffle Packed Doublewords
never@739 1308 void pshufd(XMMRegister dst, XMMRegister src, int mode);
never@739 1309 void pshufd(XMMRegister dst, Address src, int mode);
never@739 1310
never@739 1311 // Shuffle Packed Low Words
never@739 1312 void pshuflw(XMMRegister dst, XMMRegister src, int mode);
never@739 1313 void pshuflw(XMMRegister dst, Address src, int mode);
never@739 1314
kvn@2602 1315 // Shift Right by bits Logical Quadword Immediate
never@739 1316 void psrlq(XMMRegister dst, int shift);
never@739 1317
kvn@2602 1318 // Shift Right by bytes Logical DoubleQuadword Immediate
kvn@2602 1319 void psrldq(XMMRegister dst, int shift);
kvn@2602 1320
cfang@1116 1321 // Logical Compare Double Quadword
cfang@1116 1322 void ptest(XMMRegister dst, XMMRegister src);
cfang@1116 1323 void ptest(XMMRegister dst, Address src);
cfang@1116 1324
never@739 1325 // Interleave Low Bytes
never@739 1326 void punpcklbw(XMMRegister dst, XMMRegister src);
never@739 1327
roland@1495 1328 #ifndef _LP64 // no 32bit push/pop on amd64
never@739 1329 void pushl(Address src);
roland@1495 1330 #endif
never@739 1331
never@739 1332 void pushq(Address src);
never@739 1333
never@739 1334 // Xor Packed Byte Integer Values
never@739 1335 void pxor(XMMRegister dst, Address src);
never@739 1336 void pxor(XMMRegister dst, XMMRegister src);
never@739 1337
never@739 1338 void rcll(Register dst, int imm8);
never@739 1339
never@739 1340 void rclq(Register dst, int imm8);
never@739 1341
never@739 1342 void ret(int imm16);
duke@435 1343
duke@435 1344 void sahf();
duke@435 1345
never@739 1346 void sarl(Register dst, int imm8);
never@739 1347 void sarl(Register dst);
never@739 1348
never@739 1349 void sarq(Register dst, int imm8);
never@739 1350 void sarq(Register dst);
never@739 1351
never@739 1352 void sbbl(Address dst, int32_t imm32);
never@739 1353 void sbbl(Register dst, int32_t imm32);
never@739 1354 void sbbl(Register dst, Address src);
never@739 1355 void sbbl(Register dst, Register src);
never@739 1356
never@739 1357 void sbbq(Address dst, int32_t imm32);
never@739 1358 void sbbq(Register dst, int32_t imm32);
never@739 1359 void sbbq(Register dst, Address src);
never@739 1360 void sbbq(Register dst, Register src);
never@739 1361
never@739 1362 void setb(Condition cc, Register dst);
never@739 1363
never@739 1364 void shldl(Register dst, Register src);
never@739 1365
never@739 1366 void shll(Register dst, int imm8);
never@739 1367 void shll(Register dst);
never@739 1368
never@739 1369 void shlq(Register dst, int imm8);
never@739 1370 void shlq(Register dst);
never@739 1371
never@739 1372 void shrdl(Register dst, Register src);
never@739 1373
never@739 1374 void shrl(Register dst, int imm8);
never@739 1375 void shrl(Register dst);
never@739 1376
never@739 1377 void shrq(Register dst, int imm8);
never@739 1378 void shrq(Register dst);
never@739 1379
never@739 1380 void smovl(); // QQQ generic?
never@739 1381
never@739 1382 // Compute Square Root of Scalar Double-Precision Floating-Point Value
never@739 1383 void sqrtsd(XMMRegister dst, Address src);
never@739 1384 void sqrtsd(XMMRegister dst, XMMRegister src);
never@739 1385
twisti@2350 1386 // Compute Square Root of Scalar Single-Precision Floating-Point Value
twisti@2350 1387 void sqrtss(XMMRegister dst, Address src);
twisti@2350 1388 void sqrtss(XMMRegister dst, XMMRegister src);
twisti@2350 1389
never@739 1390 void std() { emit_byte(0xfd); }
never@739 1391
never@739 1392 void stmxcsr( Address dst );
never@739 1393
never@739 1394 void subl(Address dst, int32_t imm32);
never@739 1395 void subl(Address dst, Register src);
never@739 1396 void subl(Register dst, int32_t imm32);
never@739 1397 void subl(Register dst, Address src);
never@739 1398 void subl(Register dst, Register src);
never@739 1399
never@739 1400 void subq(Address dst, int32_t imm32);
never@739 1401 void subq(Address dst, Register src);
never@739 1402 void subq(Register dst, int32_t imm32);
never@739 1403 void subq(Register dst, Address src);
never@739 1404 void subq(Register dst, Register src);
never@739 1405
never@739 1406
never@739 1407 // Subtract Scalar Double-Precision Floating-Point Values
never@739 1408 void subsd(XMMRegister dst, Address src);
never@739 1409 void subsd(XMMRegister dst, XMMRegister src);
never@739 1410
never@739 1411 // Subtract Scalar Single-Precision Floating-Point Values
never@739 1412 void subss(XMMRegister dst, Address src);
duke@435 1413 void subss(XMMRegister dst, XMMRegister src);
never@739 1414
never@739 1415 void testb(Register dst, int imm8);
never@739 1416
never@739 1417 void testl(Register dst, int32_t imm32);
never@739 1418 void testl(Register dst, Register src);
never@739 1419 void testl(Register dst, Address src);
never@739 1420
never@739 1421 void testq(Register dst, int32_t imm32);
never@739 1422 void testq(Register dst, Register src);
never@739 1423
never@739 1424
never@739 1425 // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 1426 void ucomisd(XMMRegister dst, Address src);
never@739 1427 void ucomisd(XMMRegister dst, XMMRegister src);
never@739 1428
never@739 1429 // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 1430 void ucomiss(XMMRegister dst, Address src);
duke@435 1431 void ucomiss(XMMRegister dst, XMMRegister src);
never@739 1432
never@739 1433 void xaddl(Address dst, Register src);
never@739 1434
never@739 1435 void xaddq(Address dst, Register src);
never@739 1436
never@739 1437 void xchgl(Register reg, Address adr);
never@739 1438 void xchgl(Register dst, Register src);
never@739 1439
never@739 1440 void xchgq(Register reg, Address adr);
never@739 1441 void xchgq(Register dst, Register src);
never@739 1442
never@739 1443 void xorl(Register dst, int32_t imm32);
never@739 1444 void xorl(Register dst, Address src);
never@739 1445 void xorl(Register dst, Register src);
never@739 1446
never@739 1447 void xorq(Register dst, Address src);
never@739 1448 void xorq(Register dst, Register src);
never@739 1449
never@739 1450 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
never@739 1451 void xorpd(XMMRegister dst, Address src);
never@739 1452 void xorpd(XMMRegister dst, XMMRegister src);
never@739 1453
never@739 1454 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
never@739 1455 void xorps(XMMRegister dst, Address src);
duke@435 1456 void xorps(XMMRegister dst, XMMRegister src);
never@739 1457
never@739 1458 void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
duke@435 1459 };
duke@435 1460
duke@435 1461
duke@435 1462 // MacroAssembler extends Assembler by frequently used macros.
duke@435 1463 //
duke@435 1464 // Instructions for which a 'better' code sequence exists depending
duke@435 1465 // on arguments should also go in here.
duke@435 1466
duke@435 1467 class MacroAssembler: public Assembler {
ysr@777 1468 friend class LIR_Assembler;
ysr@777 1469 friend class Runtime1; // as_Address()
johnc@2781 1470
duke@435 1471 protected:
duke@435 1472
duke@435 1473 Address as_Address(AddressLiteral adr);
duke@435 1474 Address as_Address(ArrayAddress adr);
duke@435 1475
duke@435 1476 // Support for VM calls
duke@435 1477 //
duke@435 1478 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
duke@435 1479 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1480 // additional registers when doing a VM call).
duke@435 1481 #ifdef CC_INTERP
duke@435 1482 // c++ interpreter never wants to use interp_masm version of call_VM
duke@435 1483 #define VIRTUAL
duke@435 1484 #else
duke@435 1485 #define VIRTUAL virtual
duke@435 1486 #endif
duke@435 1487
duke@435 1488 VIRTUAL void call_VM_leaf_base(
duke@435 1489 address entry_point, // the entry point
duke@435 1490 int number_of_arguments // the number of arguments to pop after the call
duke@435 1491 );
duke@435 1492
duke@435 1493 // This is the base routine called by the different versions of call_VM. The interpreter
duke@435 1494 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1495 // additional registers when doing a VM call).
duke@435 1496 //
duke@435 1497 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
duke@435 1498 // returns the register which contains the thread upon return. If a thread register has been
duke@435 1499 // specified, the return value will correspond to that register. If no last_java_sp is specified
duke@435 1500 // (noreg) than rsp will be used instead.
duke@435 1501 VIRTUAL void call_VM_base( // returns the register containing the thread upon return
duke@435 1502 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
duke@435 1503 Register java_thread, // the thread if computed before ; use noreg otherwise
duke@435 1504 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
duke@435 1505 address entry_point, // the entry point
duke@435 1506 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
duke@435 1507 bool check_exceptions // whether to check for pending exceptions after return
duke@435 1508 );
duke@435 1509
duke@435 1510 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
duke@435 1511 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1512 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
duke@435 1513 virtual void check_and_handle_popframe(Register java_thread);
duke@435 1514 virtual void check_and_handle_earlyret(Register java_thread);
duke@435 1515
duke@435 1516 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
duke@435 1517
duke@435 1518 // helpers for FPU flag access
duke@435 1519 // tmp is a temporary register, if none is available use noreg
duke@435 1520 void save_rax (Register tmp);
duke@435 1521 void restore_rax(Register tmp);
duke@435 1522
duke@435 1523 public:
duke@435 1524 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1525
duke@435 1526 // Support for NULL-checks
duke@435 1527 //
duke@435 1528 // Generates code that causes a NULL OS exception if the content of reg is NULL.
duke@435 1529 // If the accessed location is M[reg + offset] and the offset is known, provide the
duke@435 1530 // offset. No explicit code generation is needed if the offset is within a certain
duke@435 1531 // range (0 <= offset <= page_size).
duke@435 1532
duke@435 1533 void null_check(Register reg, int offset = -1);
kvn@603 1534 static bool needs_explicit_null_check(intptr_t offset);
duke@435 1535
duke@435 1536 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1537 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1538 void pd_patch_instruction(address branch, address target);
duke@435 1539 #ifndef PRODUCT
duke@435 1540 static void pd_print_patched_instruction(address branch);
duke@435 1541 #endif
duke@435 1542
duke@435 1543 // The following 4 methods return the offset of the appropriate move instruction
duke@435 1544
jrose@1057 1545 // Support for fast byte/short loading with zero extension (depending on particular CPU)
duke@435 1546 int load_unsigned_byte(Register dst, Address src);
jrose@1057 1547 int load_unsigned_short(Register dst, Address src);
jrose@1057 1548
jrose@1057 1549 // Support for fast byte/short loading with sign extension (depending on particular CPU)
duke@435 1550 int load_signed_byte(Register dst, Address src);
jrose@1057 1551 int load_signed_short(Register dst, Address src);
duke@435 1552
duke@435 1553 // Support for sign-extension (hi:lo = extend_sign(lo))
duke@435 1554 void extend_sign(Register hi, Register lo);
duke@435 1555
twisti@2565 1556 // Load and store values by size and signed-ness
twisti@2565 1557 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
twisti@2565 1558 void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
jrose@1057 1559
duke@435 1560 // Support for inc/dec with optimal instruction selection depending on value
never@739 1561
never@739 1562 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
never@739 1563 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
never@739 1564
never@739 1565 void decrementl(Address dst, int value = 1);
never@739 1566 void decrementl(Register reg, int value = 1);
never@739 1567
never@739 1568 void decrementq(Register reg, int value = 1);
never@739 1569 void decrementq(Address dst, int value = 1);
never@739 1570
never@739 1571 void incrementl(Address dst, int value = 1);
never@739 1572 void incrementl(Register reg, int value = 1);
never@739 1573
never@739 1574 void incrementq(Register reg, int value = 1);
never@739 1575 void incrementq(Address dst, int value = 1);
never@739 1576
duke@435 1577
duke@435 1578 // Support optimal SSE move instructions.
duke@435 1579 void movflt(XMMRegister dst, XMMRegister src) {
duke@435 1580 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
duke@435 1581 else { movss (dst, src); return; }
duke@435 1582 }
duke@435 1583 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
duke@435 1584 void movflt(XMMRegister dst, AddressLiteral src);
duke@435 1585 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
duke@435 1586
duke@435 1587 void movdbl(XMMRegister dst, XMMRegister src) {
duke@435 1588 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
duke@435 1589 else { movsd (dst, src); return; }
duke@435 1590 }
duke@435 1591
duke@435 1592 void movdbl(XMMRegister dst, AddressLiteral src);
duke@435 1593
duke@435 1594 void movdbl(XMMRegister dst, Address src) {
duke@435 1595 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
duke@435 1596 else { movlpd(dst, src); return; }
duke@435 1597 }
duke@435 1598 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
duke@435 1599
never@739 1600 void incrementl(AddressLiteral dst);
never@739 1601 void incrementl(ArrayAddress dst);
duke@435 1602
duke@435 1603 // Alignment
duke@435 1604 void align(int modulus);
duke@435 1605
duke@435 1606 // Misc
duke@435 1607 void fat_nop(); // 5 byte nop
duke@435 1608
duke@435 1609 // Stack frame creation/removal
duke@435 1610 void enter();
duke@435 1611 void leave();
duke@435 1612
duke@435 1613 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
duke@435 1614 // The pointer will be loaded into the thread register.
duke@435 1615 void get_thread(Register thread);
duke@435 1616
apetrusenko@797 1617
duke@435 1618 // Support for VM calls
duke@435 1619 //
duke@435 1620 // It is imperative that all calls into the VM are handled via the call_VM macros.
duke@435 1621 // They make sure that the stack linkage is setup correctly. call_VM's correspond
duke@435 1622 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
duke@435 1623
never@739 1624
never@739 1625 void call_VM(Register oop_result,
never@739 1626 address entry_point,
never@739 1627 bool check_exceptions = true);
never@739 1628 void call_VM(Register oop_result,
never@739 1629 address entry_point,
never@739 1630 Register arg_1,
never@739 1631 bool check_exceptions = true);
never@739 1632 void call_VM(Register oop_result,
never@739 1633 address entry_point,
never@739 1634 Register arg_1, Register arg_2,
never@739 1635 bool check_exceptions = true);
never@739 1636 void call_VM(Register oop_result,
never@739 1637 address entry_point,
never@739 1638 Register arg_1, Register arg_2, Register arg_3,
never@739 1639 bool check_exceptions = true);
never@739 1640
never@739 1641 // Overloadings with last_Java_sp
never@739 1642 void call_VM(Register oop_result,
never@739 1643 Register last_java_sp,
never@739 1644 address entry_point,
never@739 1645 int number_of_arguments = 0,
never@739 1646 bool check_exceptions = true);
never@739 1647 void call_VM(Register oop_result,
never@739 1648 Register last_java_sp,
never@739 1649 address entry_point,
never@739 1650 Register arg_1, bool
never@739 1651 check_exceptions = true);
never@739 1652 void call_VM(Register oop_result,
never@739 1653 Register last_java_sp,
never@739 1654 address entry_point,
never@739 1655 Register arg_1, Register arg_2,
never@739 1656 bool check_exceptions = true);
never@739 1657 void call_VM(Register oop_result,
never@739 1658 Register last_java_sp,
never@739 1659 address entry_point,
never@739 1660 Register arg_1, Register arg_2, Register arg_3,
never@739 1661 bool check_exceptions = true);
never@739 1662
jrose@2952 1663 // These always tightly bind to MacroAssembler::call_VM_base
jrose@2952 1664 // bypassing the virtual implementation
jrose@2952 1665 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
jrose@2952 1666 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
jrose@2952 1667 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
jrose@2952 1668 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
jrose@2952 1669 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
jrose@2952 1670
never@739 1671 void call_VM_leaf(address entry_point,
never@739 1672 int number_of_arguments = 0);
never@739 1673 void call_VM_leaf(address entry_point,
never@739 1674 Register arg_1);
never@739 1675 void call_VM_leaf(address entry_point,
never@739 1676 Register arg_1, Register arg_2);
never@739 1677 void call_VM_leaf(address entry_point,
never@739 1678 Register arg_1, Register arg_2, Register arg_3);
duke@435 1679
never@2868 1680 // These always tightly bind to MacroAssembler::call_VM_leaf_base
never@2868 1681 // bypassing the virtual implementation
never@2868 1682 void super_call_VM_leaf(address entry_point);
never@2868 1683 void super_call_VM_leaf(address entry_point, Register arg_1);
never@2868 1684 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
never@2868 1685 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
never@2868 1686 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
never@2868 1687
duke@435 1688 // last Java Frame (fills frame anchor)
never@739 1689 void set_last_Java_frame(Register thread,
never@739 1690 Register last_java_sp,
never@739 1691 Register last_java_fp,
never@739 1692 address last_java_pc);
never@739 1693
never@739 1694 // thread in the default location (r15_thread on 64bit)
never@739 1695 void set_last_Java_frame(Register last_java_sp,
never@739 1696 Register last_java_fp,
never@739 1697 address last_java_pc);
never@739 1698
duke@435 1699 void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
duke@435 1700
never@739 1701 // thread in the default location (r15_thread on 64bit)
never@739 1702 void reset_last_Java_frame(bool clear_fp, bool clear_pc);
never@739 1703
duke@435 1704 // Stores
duke@435 1705 void store_check(Register obj); // store check for obj - register is destroyed afterwards
duke@435 1706 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
duke@435 1707
johnc@2781 1708 #ifndef SERIALGC
johnc@2781 1709
apetrusenko@797 1710 void g1_write_barrier_pre(Register obj,
johnc@2781 1711 Register pre_val,
apetrusenko@797 1712 Register thread,
apetrusenko@797 1713 Register tmp,
johnc@2781 1714 bool tosca_live,
johnc@2781 1715 bool expand_call);
johnc@2781 1716
apetrusenko@797 1717 void g1_write_barrier_post(Register store_addr,
apetrusenko@797 1718 Register new_val,
apetrusenko@797 1719 Register thread,
apetrusenko@797 1720 Register tmp,
apetrusenko@797 1721 Register tmp2);
ysr@777 1722
johnc@2781 1723 #endif // SERIALGC
ysr@777 1724
duke@435 1725 // split store_check(Register obj) to enhance instruction interleaving
duke@435 1726 void store_check_part_1(Register obj);
duke@435 1727 void store_check_part_2(Register obj);
duke@435 1728
duke@435 1729 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
duke@435 1730 void c2bool(Register x);
duke@435 1731
duke@435 1732 // C++ bool manipulation
duke@435 1733
duke@435 1734 void movbool(Register dst, Address src);
duke@435 1735 void movbool(Address dst, bool boolconst);
duke@435 1736 void movbool(Address dst, Register src);
duke@435 1737 void testbool(Register dst);
duke@435 1738
never@739 1739 // oop manipulations
never@739 1740 void load_klass(Register dst, Register src);
never@739 1741 void store_klass(Register dst, Register src);
never@739 1742
twisti@2201 1743 void load_heap_oop(Register dst, Address src);
iveresov@2746 1744 void load_heap_oop_not_null(Register dst, Address src);
twisti@2201 1745 void store_heap_oop(Address dst, Register src);
twisti@2201 1746
twisti@2201 1747 // Used for storing NULL. All other oop constants should be
twisti@2201 1748 // stored using routines that take a jobject.
twisti@2201 1749 void store_heap_oop_null(Address dst);
twisti@2201 1750
never@739 1751 void load_prototype_header(Register dst, Register src);
never@739 1752
never@739 1753 #ifdef _LP64
never@739 1754 void store_klass_gap(Register dst, Register src);
never@739 1755
johnc@1482 1756 // This dummy is to prevent a call to store_heap_oop from
johnc@1482 1757 // converting a zero (like NULL) into a Register by giving
johnc@1482 1758 // the compiler two choices it can't resolve
johnc@1482 1759
johnc@1482 1760 void store_heap_oop(Address dst, void* dummy);
johnc@1482 1761
never@739 1762 void encode_heap_oop(Register r);
never@739 1763 void decode_heap_oop(Register r);
never@739 1764 void encode_heap_oop_not_null(Register r);
never@739 1765 void decode_heap_oop_not_null(Register r);
never@739 1766 void encode_heap_oop_not_null(Register dst, Register src);
never@739 1767 void decode_heap_oop_not_null(Register dst, Register src);
never@739 1768
never@739 1769 void set_narrow_oop(Register dst, jobject obj);
kvn@1077 1770 void set_narrow_oop(Address dst, jobject obj);
kvn@1077 1771 void cmp_narrow_oop(Register dst, jobject obj);
kvn@1077 1772 void cmp_narrow_oop(Address dst, jobject obj);
never@739 1773
never@739 1774 // if heap base register is used - reinit it with the correct value
never@739 1775 void reinit_heapbase();
kvn@2039 1776
kvn@2039 1777 DEBUG_ONLY(void verify_heapbase(const char* msg);)
kvn@2039 1778
never@739 1779 #endif // _LP64
never@739 1780
never@739 1781 // Int division/remainder for Java
duke@435 1782 // (as idivl, but checks for special case as described in JVM spec.)
duke@435 1783 // returns idivl instruction offset for implicit exception handling
duke@435 1784 int corrected_idivl(Register reg);
duke@435 1785
never@739 1786 // Long division/remainder for Java
never@739 1787 // (as idivq, but checks for special case as described in JVM spec.)
never@739 1788 // returns idivq instruction offset for implicit exception handling
never@739 1789 int corrected_idivq(Register reg);
never@739 1790
duke@435 1791 void int3();
duke@435 1792
never@739 1793 // Long operation macros for a 32bit cpu
duke@435 1794 // Long negation for Java
duke@435 1795 void lneg(Register hi, Register lo);
duke@435 1796
duke@435 1797 // Long multiplication for Java
never@739 1798 // (destroys contents of eax, ebx, ecx and edx)
duke@435 1799 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
duke@435 1800
duke@435 1801 // Long shifts for Java
duke@435 1802 // (semantics as described in JVM spec.)
duke@435 1803 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
duke@435 1804 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
duke@435 1805
duke@435 1806 // Long compare for Java
duke@435 1807 // (semantics as described in JVM spec.)
duke@435 1808 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
duke@435 1809
never@739 1810
never@739 1811 // misc
never@739 1812
never@739 1813 // Sign extension
never@739 1814 void sign_extend_short(Register reg);
never@739 1815 void sign_extend_byte(Register reg);
never@739 1816
never@739 1817 // Division by power of 2, rounding towards 0
never@739 1818 void division_with_shift(Register reg, int shift_value);
never@739 1819
duke@435 1820 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
duke@435 1821 //
duke@435 1822 // CF (corresponds to C0) if x < y
duke@435 1823 // PF (corresponds to C2) if unordered
duke@435 1824 // ZF (corresponds to C3) if x = y
duke@435 1825 //
duke@435 1826 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1827 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
duke@435 1828 void fcmp(Register tmp);
duke@435 1829 // Variant of the above which allows y to be further down the stack
duke@435 1830 // and which only pops x and y if specified. If pop_right is
duke@435 1831 // specified then pop_left must also be specified.
duke@435 1832 void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
duke@435 1833
duke@435 1834 // Floating-point comparison for Java
duke@435 1835 // Compares the top-most stack entries on the FPU stack and stores the result in dst.
duke@435 1836 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1837 // (semantics as described in JVM spec.)
duke@435 1838 void fcmp2int(Register dst, bool unordered_is_less);
duke@435 1839 // Variant of the above which allows y to be further down the stack
duke@435 1840 // and which only pops x and y if specified. If pop_right is
duke@435 1841 // specified then pop_left must also be specified.
duke@435 1842 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
duke@435 1843
duke@435 1844 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
duke@435 1845 // tmp is a temporary register, if none is available use noreg
duke@435 1846 void fremr(Register tmp);
duke@435 1847
duke@435 1848
duke@435 1849 // same as fcmp2int, but using SSE2
duke@435 1850 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1851 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1852
duke@435 1853 // Inlined sin/cos generator for Java; must not use CPU instruction
duke@435 1854 // directly on Intel as it does not have high enough precision
duke@435 1855 // outside of the range [-pi/4, pi/4]. Extra argument indicate the
duke@435 1856 // number of FPU stack slots in use; all but the topmost will
duke@435 1857 // require saving if a slow case is necessary. Assumes argument is
duke@435 1858 // on FP TOS; result is on FP TOS. No cpu registers are changed by
duke@435 1859 // this code.
duke@435 1860 void trigfunc(char trig, int num_fpu_regs_in_use = 1);
duke@435 1861
duke@435 1862 // branch to L if FPU flag C2 is set/not set
duke@435 1863 // tmp is a temporary register, if none is available use noreg
duke@435 1864 void jC2 (Register tmp, Label& L);
duke@435 1865 void jnC2(Register tmp, Label& L);
duke@435 1866
duke@435 1867 // Pop ST (ffree & fincstp combined)
duke@435 1868 void fpop();
duke@435 1869
duke@435 1870 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1871 void push_fTOS();
duke@435 1872
duke@435 1873 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1874 void pop_fTOS();
duke@435 1875
duke@435 1876 void empty_FPU_stack();
duke@435 1877
duke@435 1878 void push_IU_state();
duke@435 1879 void pop_IU_state();
duke@435 1880
duke@435 1881 void push_FPU_state();
duke@435 1882 void pop_FPU_state();
duke@435 1883
duke@435 1884 void push_CPU_state();
duke@435 1885 void pop_CPU_state();
duke@435 1886
duke@435 1887 // Round up to a power of two
duke@435 1888 void round_to(Register reg, int modulus);
duke@435 1889
duke@435 1890 // Callee saved registers handling
duke@435 1891 void push_callee_saved_registers();
duke@435 1892 void pop_callee_saved_registers();
duke@435 1893
duke@435 1894 // allocation
duke@435 1895 void eden_allocate(
duke@435 1896 Register obj, // result: pointer to object after successful allocation
duke@435 1897 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1898 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1899 Register t1, // temp register
duke@435 1900 Label& slow_case // continuation point if fast allocation fails
duke@435 1901 );
duke@435 1902 void tlab_allocate(
duke@435 1903 Register obj, // result: pointer to object after successful allocation
duke@435 1904 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1905 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1906 Register t1, // temp register
duke@435 1907 Register t2, // temp register
duke@435 1908 Label& slow_case // continuation point if fast allocation fails
duke@435 1909 );
phh@2423 1910 Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
phh@2423 1911 void incr_allocated_bytes(Register thread,
phh@2423 1912 Register var_size_in_bytes, int con_size_in_bytes,
phh@2423 1913 Register t1 = noreg);
duke@435 1914
jrose@1058 1915 // interface method calling
jrose@1058 1916 void lookup_interface_method(Register recv_klass,
jrose@1058 1917 Register intf_klass,
jrose@1100 1918 RegisterOrConstant itable_index,
jrose@1058 1919 Register method_result,
jrose@1058 1920 Register scan_temp,
jrose@1058 1921 Label& no_such_interface);
jrose@1058 1922
jrose@1079 1923 // Test sub_klass against super_klass, with fast and slow paths.
jrose@1079 1924
jrose@1079 1925 // The fast path produces a tri-state answer: yes / no / maybe-slow.
jrose@1079 1926 // One of the three labels can be NULL, meaning take the fall-through.
jrose@1079 1927 // If super_check_offset is -1, the value is loaded up from super_klass.
jrose@1079 1928 // No registers are killed, except temp_reg.
jrose@1079 1929 void check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 1930 Register super_klass,
jrose@1079 1931 Register temp_reg,
jrose@1079 1932 Label* L_success,
jrose@1079 1933 Label* L_failure,
jrose@1079 1934 Label* L_slow_path,
jrose@1100 1935 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
jrose@1079 1936
jrose@1079 1937 // The rest of the type check; must be wired to a corresponding fast path.
jrose@1079 1938 // It does not repeat the fast path logic, so don't use it standalone.
jrose@1079 1939 // The temp_reg and temp2_reg can be noreg, if no temps are available.
jrose@1079 1940 // Updates the sub's secondary super cache as necessary.
jrose@1079 1941 // If set_cond_codes, condition codes will be Z on success, NZ on failure.
jrose@1079 1942 void check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 1943 Register super_klass,
jrose@1079 1944 Register temp_reg,
jrose@1079 1945 Register temp2_reg,
jrose@1079 1946 Label* L_success,
jrose@1079 1947 Label* L_failure,
jrose@1079 1948 bool set_cond_codes = false);
jrose@1079 1949
jrose@1079 1950 // Simplified, combined version, good for typical uses.
jrose@1079 1951 // Falls through on failure.
jrose@1079 1952 void check_klass_subtype(Register sub_klass,
jrose@1079 1953 Register super_klass,
jrose@1079 1954 Register temp_reg,
jrose@1079 1955 Label& L_success);
jrose@1079 1956
jrose@1145 1957 // method handles (JSR 292)
jrose@1145 1958 void check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 1959 Register temp_reg,
jrose@1145 1960 Label& wrong_method_type);
jrose@1145 1961 void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
jrose@1145 1962 Register temp_reg);
jrose@1145 1963 void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
jrose@1145 1964 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
jrose@1145 1965
jrose@1145 1966
duke@435 1967 //----
duke@435 1968 void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
duke@435 1969
duke@435 1970 // Debugging
never@739 1971
never@739 1972 // only if +VerifyOops
never@739 1973 void verify_oop(Register reg, const char* s = "broken oop");
duke@435 1974 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
duke@435 1975
never@739 1976 // only if +VerifyFPU
never@739 1977 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
never@739 1978
never@739 1979 // prints msg, dumps registers and stops execution
never@739 1980 void stop(const char* msg);
never@739 1981
never@739 1982 // prints msg and continues
never@739 1983 void warn(const char* msg);
never@739 1984
never@739 1985 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
never@739 1986 static void debug64(char* msg, int64_t pc, int64_t regs[]);
never@739 1987
duke@435 1988 void os_breakpoint();
never@739 1989
duke@435 1990 void untested() { stop("untested"); }
never@739 1991
twisti@2201 1992 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
never@739 1993
duke@435 1994 void should_not_reach_here() { stop("should not reach here"); }
never@739 1995
duke@435 1996 void print_CPU_state();
duke@435 1997
duke@435 1998 // Stack overflow checking
duke@435 1999 void bang_stack_with_offset(int offset) {
duke@435 2000 // stack grows down, caller passes positive offset
duke@435 2001 assert(offset > 0, "must bang with negative offset");
duke@435 2002 movl(Address(rsp, (-offset)), rax);
duke@435 2003 }
duke@435 2004
duke@435 2005 // Writes to stack successive pages until offset reached to check for
duke@435 2006 // stack overflow + shadow pages. Also, clobbers tmp
duke@435 2007 void bang_stack_size(Register size, Register tmp);
duke@435 2008
jrose@1100 2009 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 2010 Register tmp,
jrose@1100 2011 int offset);
jrose@1057 2012
duke@435 2013 // Support for serializing memory accesses between threads
duke@435 2014 void serialize_memory(Register thread, Register tmp);
duke@435 2015
duke@435 2016 void verify_tlab();
duke@435 2017
duke@435 2018 // Biased locking support
duke@435 2019 // lock_reg and obj_reg must be loaded up with the appropriate values.
duke@435 2020 // swap_reg must be rax, and is killed.
duke@435 2021 // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
duke@435 2022 // be killed; if not supplied, push/pop will be used internally to
duke@435 2023 // allocate a temporary (inefficient, avoid if possible).
duke@435 2024 // Optional slow case is for implementations (interpreter and C1) which branch to
duke@435 2025 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
duke@435 2026 // Returns offset of first potentially-faulting instruction for null
duke@435 2027 // check info (currently consumed only by C1). If
duke@435 2028 // swap_reg_contains_mark is true then returns -1 as it is assumed
duke@435 2029 // the calling code has already passed any potential faults.
kvn@855 2030 int biased_locking_enter(Register lock_reg, Register obj_reg,
kvn@855 2031 Register swap_reg, Register tmp_reg,
duke@435 2032 bool swap_reg_contains_mark,
duke@435 2033 Label& done, Label* slow_case = NULL,
duke@435 2034 BiasedLockingCounters* counters = NULL);
duke@435 2035 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
duke@435 2036
duke@435 2037
duke@435 2038 Condition negate_condition(Condition cond);
duke@435 2039
duke@435 2040 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
duke@435 2041 // operands. In general the names are modified to avoid hiding the instruction in Assembler
duke@435 2042 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
duke@435 2043 // here in MacroAssembler. The major exception to this rule is call
duke@435 2044
duke@435 2045 // Arithmetics
duke@435 2046
never@739 2047
never@739 2048 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
never@739 2049 void addptr(Address dst, Register src);
never@739 2050
never@739 2051 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
never@739 2052 void addptr(Register dst, int32_t src);
never@739 2053 void addptr(Register dst, Register src);
never@2895 2054 void addptr(Register dst, RegisterOrConstant src) {
never@2895 2055 if (src.is_constant()) addptr(dst, (int) src.as_constant());
never@2895 2056 else addptr(dst, src.as_register());
never@2895 2057 }
never@739 2058
never@739 2059 void andptr(Register dst, int32_t src);
never@739 2060 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
never@739 2061
never@739 2062 void cmp8(AddressLiteral src1, int imm);
never@739 2063
never@739 2064 // renamed to drag out the casting of address to int32_t/intptr_t
duke@435 2065 void cmp32(Register src1, int32_t imm);
duke@435 2066
duke@435 2067 void cmp32(AddressLiteral src1, int32_t imm);
duke@435 2068 // compare reg - mem, or reg - &mem
duke@435 2069 void cmp32(Register src1, AddressLiteral src2);
duke@435 2070
duke@435 2071 void cmp32(Register src1, Address src2);
duke@435 2072
never@739 2073 #ifndef _LP64
never@739 2074 void cmpoop(Address dst, jobject obj);
never@739 2075 void cmpoop(Register dst, jobject obj);
never@739 2076 #endif // _LP64
never@739 2077
duke@435 2078 // NOTE src2 must be the lval. This is NOT an mem-mem compare
duke@435 2079 void cmpptr(Address src1, AddressLiteral src2);
duke@435 2080
duke@435 2081 void cmpptr(Register src1, AddressLiteral src2);
duke@435 2082
never@739 2083 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2084 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2085 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2086
never@739 2087 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2088 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2089
never@739 2090 // cmp64 to avoild hiding cmpq
never@739 2091 void cmp64(Register src1, AddressLiteral src);
never@739 2092
never@739 2093 void cmpxchgptr(Register reg, Address adr);
never@739 2094
never@739 2095 void locked_cmpxchgptr(Register reg, AddressLiteral adr);
never@739 2096
never@739 2097
never@739 2098 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
never@739 2099
never@739 2100
never@739 2101 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
never@739 2102
never@739 2103 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
never@739 2104
never@739 2105 void shlptr(Register dst, int32_t shift);
never@739 2106 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
never@739 2107
never@739 2108 void shrptr(Register dst, int32_t shift);
never@739 2109 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
never@739 2110
never@739 2111 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
never@739 2112 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
never@739 2113
never@739 2114 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 2115
never@739 2116 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 2117 void subptr(Register dst, int32_t src);
never@739 2118 void subptr(Register dst, Register src);
never@2895 2119 void subptr(Register dst, RegisterOrConstant src) {
never@2895 2120 if (src.is_constant()) subptr(dst, (int) src.as_constant());
never@2895 2121 else subptr(dst, src.as_register());
never@2895 2122 }
never@739 2123
never@739 2124 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 2125 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 2126
never@739 2127 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 2128 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 2129
never@739 2130 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
never@739 2131
never@739 2132
duke@435 2133
duke@435 2134 // Helper functions for statistics gathering.
duke@435 2135 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
duke@435 2136 void cond_inc32(Condition cond, AddressLiteral counter_addr);
duke@435 2137 // Unconditional atomic increment.
duke@435 2138 void atomic_incl(AddressLiteral counter_addr);
duke@435 2139
duke@435 2140 void lea(Register dst, AddressLiteral adr);
duke@435 2141 void lea(Address dst, AddressLiteral adr);
never@739 2142 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
never@739 2143
never@739 2144 void leal32(Register dst, Address src) { leal(dst, src); }
never@739 2145
iveresov@2686 2146 // Import other testl() methods from the parent class or else
iveresov@2686 2147 // they will be hidden by the following overriding declaration.
iveresov@2686 2148 using Assembler::testl;
iveresov@2686 2149 void testl(Register dst, AddressLiteral src);
never@739 2150
never@739 2151 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2152 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2153 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2154
never@739 2155 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
never@739 2156 void testptr(Register src1, Register src2);
never@739 2157
never@739 2158 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
never@739 2159 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
duke@435 2160
duke@435 2161 // Calls
duke@435 2162
duke@435 2163 void call(Label& L, relocInfo::relocType rtype);
duke@435 2164 void call(Register entry);
duke@435 2165
duke@435 2166 // NOTE: this call tranfers to the effective address of entry NOT
duke@435 2167 // the address contained by entry. This is because this is more natural
duke@435 2168 // for jumps/calls.
duke@435 2169 void call(AddressLiteral entry);
duke@435 2170
duke@435 2171 // Jumps
duke@435 2172
duke@435 2173 // NOTE: these jumps tranfer to the effective address of dst NOT
duke@435 2174 // the address contained by dst. This is because this is more natural
duke@435 2175 // for jumps/calls.
duke@435 2176 void jump(AddressLiteral dst);
duke@435 2177 void jump_cc(Condition cc, AddressLiteral dst);
duke@435 2178
duke@435 2179 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 2180 // to be installed in the Address class. This jump will tranfers to the address
duke@435 2181 // contained in the location described by entry (not the address of entry)
duke@435 2182 void jump(ArrayAddress entry);
duke@435 2183
duke@435 2184 // Floating
duke@435 2185
duke@435 2186 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
duke@435 2187 void andpd(XMMRegister dst, AddressLiteral src);
duke@435 2188
duke@435 2189 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
duke@435 2190 void comiss(XMMRegister dst, AddressLiteral src);
duke@435 2191
duke@435 2192 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
duke@435 2193 void comisd(XMMRegister dst, AddressLiteral src);
duke@435 2194
twisti@2350 2195 void fadd_s(Address src) { Assembler::fadd_s(src); }
twisti@2350 2196 void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
twisti@2350 2197
duke@435 2198 void fldcw(Address src) { Assembler::fldcw(src); }
duke@435 2199 void fldcw(AddressLiteral src);
duke@435 2200
duke@435 2201 void fld_s(int index) { Assembler::fld_s(index); }
duke@435 2202 void fld_s(Address src) { Assembler::fld_s(src); }
duke@435 2203 void fld_s(AddressLiteral src);
duke@435 2204
duke@435 2205 void fld_d(Address src) { Assembler::fld_d(src); }
duke@435 2206 void fld_d(AddressLiteral src);
duke@435 2207
duke@435 2208 void fld_x(Address src) { Assembler::fld_x(src); }
duke@435 2209 void fld_x(AddressLiteral src);
duke@435 2210
twisti@2350 2211 void fmul_s(Address src) { Assembler::fmul_s(src); }
twisti@2350 2212 void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
twisti@2350 2213
duke@435 2214 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
duke@435 2215 void ldmxcsr(AddressLiteral src);
duke@435 2216
never@739 2217 private:
never@739 2218 // these are private because users should be doing movflt/movdbl
never@739 2219
duke@435 2220 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2221 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2222 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
duke@435 2223 void movss(XMMRegister dst, AddressLiteral src);
duke@435 2224
never@739 2225 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
never@739 2226 void movlpd(XMMRegister dst, AddressLiteral src);
never@739 2227
never@739 2228 public:
never@739 2229
twisti@2350 2230 void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); }
twisti@2350 2231 void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); }
twisti@2350 2232 void addsd(XMMRegister dst, AddressLiteral src) { Assembler::addsd(dst, as_Address(src)); }
twisti@2350 2233
twisti@2350 2234 void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); }
twisti@2350 2235 void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); }
twisti@2350 2236 void addss(XMMRegister dst, AddressLiteral src) { Assembler::addss(dst, as_Address(src)); }
twisti@2350 2237
twisti@2350 2238 void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); }
twisti@2350 2239 void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); }
twisti@2350 2240 void divsd(XMMRegister dst, AddressLiteral src) { Assembler::divsd(dst, as_Address(src)); }
twisti@2350 2241
twisti@2350 2242 void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); }
twisti@2350 2243 void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); }
twisti@2350 2244 void divss(XMMRegister dst, AddressLiteral src) { Assembler::divss(dst, as_Address(src)); }
twisti@2350 2245
phh@2423 2246 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
phh@2423 2247 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
phh@2423 2248 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
twisti@2350 2249 void movsd(XMMRegister dst, AddressLiteral src) { Assembler::movsd(dst, as_Address(src)); }
twisti@2350 2250
twisti@2350 2251 void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); }
twisti@2350 2252 void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); }
twisti@2350 2253 void mulsd(XMMRegister dst, AddressLiteral src) { Assembler::mulsd(dst, as_Address(src)); }
twisti@2350 2254
twisti@2350 2255 void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); }
twisti@2350 2256 void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); }
twisti@2350 2257 void mulss(XMMRegister dst, AddressLiteral src) { Assembler::mulss(dst, as_Address(src)); }
twisti@2350 2258
twisti@2350 2259 void sqrtsd(XMMRegister dst, XMMRegister src) { Assembler::sqrtsd(dst, src); }
twisti@2350 2260 void sqrtsd(XMMRegister dst, Address src) { Assembler::sqrtsd(dst, src); }
twisti@2350 2261 void sqrtsd(XMMRegister dst, AddressLiteral src) { Assembler::sqrtsd(dst, as_Address(src)); }
twisti@2350 2262
twisti@2350 2263 void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); }
twisti@2350 2264 void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); }
twisti@2350 2265 void sqrtss(XMMRegister dst, AddressLiteral src) { Assembler::sqrtss(dst, as_Address(src)); }
twisti@2350 2266
twisti@2350 2267 void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); }
twisti@2350 2268 void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); }
twisti@2350 2269 void subsd(XMMRegister dst, AddressLiteral src) { Assembler::subsd(dst, as_Address(src)); }
twisti@2350 2270
twisti@2350 2271 void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); }
twisti@2350 2272 void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); }
twisti@2350 2273 void subss(XMMRegister dst, AddressLiteral src) { Assembler::subss(dst, as_Address(src)); }
duke@435 2274
duke@435 2275 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
duke@435 2276 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
duke@435 2277 void ucomiss(XMMRegister dst, AddressLiteral src);
duke@435 2278
duke@435 2279 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
duke@435 2280 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
duke@435 2281 void ucomisd(XMMRegister dst, AddressLiteral src);
duke@435 2282
duke@435 2283 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
duke@435 2284 void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
duke@435 2285 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
duke@435 2286 void xorpd(XMMRegister dst, AddressLiteral src);
duke@435 2287
duke@435 2288 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
duke@435 2289 void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
duke@435 2290 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
duke@435 2291 void xorps(XMMRegister dst, AddressLiteral src);
duke@435 2292
duke@435 2293 // Data
duke@435 2294
twisti@2697 2295 void cmov32( Condition cc, Register dst, Address src);
twisti@2697 2296 void cmov32( Condition cc, Register dst, Register src);
twisti@2697 2297
twisti@2697 2298 void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
twisti@2697 2299
twisti@2697 2300 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
twisti@2697 2301 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
never@739 2302
duke@435 2303 void movoop(Register dst, jobject obj);
duke@435 2304 void movoop(Address dst, jobject obj);
duke@435 2305
duke@435 2306 void movptr(ArrayAddress dst, Register src);
duke@435 2307 // can this do an lea?
duke@435 2308 void movptr(Register dst, ArrayAddress src);
duke@435 2309
never@739 2310 void movptr(Register dst, Address src);
never@739 2311
duke@435 2312 void movptr(Register dst, AddressLiteral src);
duke@435 2313
never@739 2314 void movptr(Register dst, intptr_t src);
never@739 2315 void movptr(Register dst, Register src);
never@739 2316 void movptr(Address dst, intptr_t src);
never@739 2317
never@739 2318 void movptr(Address dst, Register src);
never@739 2319
never@2895 2320 void movptr(Register dst, RegisterOrConstant src) {
never@2895 2321 if (src.is_constant()) movptr(dst, src.as_constant());
never@2895 2322 else movptr(dst, src.as_register());
never@2895 2323 }
never@2895 2324
never@739 2325 #ifdef _LP64
never@739 2326 // Generally the next two are only used for moving NULL
never@739 2327 // Although there are situations in initializing the mark word where
never@739 2328 // they could be used. They are dangerous.
never@739 2329
never@739 2330 // They only exist on LP64 so that int32_t and intptr_t are not the same
never@739 2331 // and we have ambiguous declarations.
never@739 2332
never@739 2333 void movptr(Address dst, int32_t imm32);
never@739 2334 void movptr(Register dst, int32_t imm32);
never@739 2335 #endif // _LP64
never@739 2336
duke@435 2337 // to avoid hiding movl
duke@435 2338 void mov32(AddressLiteral dst, Register src);
duke@435 2339 void mov32(Register dst, AddressLiteral src);
never@739 2340
duke@435 2341 // to avoid hiding movb
duke@435 2342 void movbyte(ArrayAddress dst, int src);
duke@435 2343
duke@435 2344 // Can push value or effective address
duke@435 2345 void pushptr(AddressLiteral src);
duke@435 2346
never@739 2347 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
never@739 2348 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
never@739 2349
never@739 2350 void pushoop(jobject obj);
never@739 2351
never@739 2352 // sign extend as need a l to ptr sized element
never@739 2353 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
never@739 2354 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
never@739 2355
kvn@1421 2356 // IndexOf strings.
kvn@2602 2357 // Small strings are loaded through stack if they cross page boundary.
kvn@1421 2358 void string_indexof(Register str1, Register str2,
kvn@2602 2359 Register cnt1, Register cnt2,
kvn@2602 2360 int int_cnt2, Register result,
kvn@1421 2361 XMMRegister vec, Register tmp);
kvn@1421 2362
kvn@2602 2363 // IndexOf for constant substrings with size >= 8 elements
kvn@2602 2364 // which don't need to be loaded through stack.
kvn@2602 2365 void string_indexofC8(Register str1, Register str2,
kvn@2602 2366 Register cnt1, Register cnt2,
kvn@2602 2367 int int_cnt2, Register result,
kvn@2602 2368 XMMRegister vec, Register tmp);
kvn@2602 2369
kvn@2602 2370 // Smallest code: we don't need to load through stack,
kvn@2602 2371 // check string tail.
kvn@2602 2372
kvn@1421 2373 // Compare strings.
kvn@1421 2374 void string_compare(Register str1, Register str2,
kvn@1421 2375 Register cnt1, Register cnt2, Register result,
never@2569 2376 XMMRegister vec1);
kvn@1421 2377
kvn@1421 2378 // Compare char[] arrays.
kvn@1421 2379 void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
kvn@1421 2380 Register limit, Register result, Register chr,
kvn@1421 2381 XMMRegister vec1, XMMRegister vec2);
never@739 2382
never@2118 2383 // Fill primitive arrays
never@2118 2384 void generate_fill(BasicType t, bool aligned,
never@2118 2385 Register to, Register value, Register count,
never@2118 2386 Register rtmp, XMMRegister xtmp);
never@2118 2387
duke@435 2388 #undef VIRTUAL
duke@435 2389
duke@435 2390 };
duke@435 2391
duke@435 2392 /**
duke@435 2393 * class SkipIfEqual:
duke@435 2394 *
duke@435 2395 * Instantiating this class will result in assembly code being output that will
duke@435 2396 * jump around any code emitted between the creation of the instance and it's
duke@435 2397 * automatic destruction at the end of a scope block, depending on the value of
duke@435 2398 * the flag passed to the constructor, which will be checked at run-time.
duke@435 2399 */
duke@435 2400 class SkipIfEqual {
duke@435 2401 private:
duke@435 2402 MacroAssembler* _masm;
duke@435 2403 Label _label;
duke@435 2404
duke@435 2405 public:
duke@435 2406 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
duke@435 2407 ~SkipIfEqual();
duke@435 2408 };
duke@435 2409
duke@435 2410 #ifdef ASSERT
duke@435 2411 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
duke@435 2412 #endif
stefank@2314 2413
stefank@2314 2414 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP

mercurial