src/cpu/x86/vm/assembler_x86.hpp

Sun, 27 Mar 2011 13:17:37 -0700

author
iveresov
date
Sun, 27 Mar 2011 13:17:37 -0700
changeset 2686
b40d4fa697bf
parent 2602
41d4973cf100
child 2697
09f96c3ff1ad
permissions
-rw-r--r--

6964776: c2 should ensure the polling page is reachable on 64 bit
Summary: Materialize the pointer to the polling page in a register instead of using rip-relative addressing when the distance from the code cache is larger than disp32.
Reviewed-by: never, kvn

duke@435 1 /*
phh@2423 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
stefank@2314 26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
stefank@2314 27
duke@435 28 class BiasedLockingCounters;
duke@435 29
duke@435 30 // Contains all the definitions needed for x86 assembly code generation.
duke@435 31
duke@435 32 // Calling convention
duke@435 33 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 34 public:
duke@435 35 enum {
duke@435 36 #ifdef _LP64
duke@435 37 #ifdef _WIN64
duke@435 38 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 39 n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
duke@435 40 #else
duke@435 41 n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 42 n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
duke@435 43 #endif // _WIN64
duke@435 44 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
duke@435 45 n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
duke@435 46 #else
duke@435 47 n_register_parameters = 0 // 0 registers used to pass arguments
duke@435 48 #endif // _LP64
duke@435 49 };
duke@435 50 };
duke@435 51
duke@435 52
duke@435 53 #ifdef _LP64
duke@435 54 // Symbolically name the register arguments used by the c calling convention.
duke@435 55 // Windows is different from linux/solaris. So much for standards...
duke@435 56
duke@435 57 #ifdef _WIN64
duke@435 58
duke@435 59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
duke@435 60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
duke@435 61 REGISTER_DECLARATION(Register, c_rarg2, r8);
duke@435 62 REGISTER_DECLARATION(Register, c_rarg3, r9);
duke@435 63
never@739 64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
duke@435 68
duke@435 69 #else
duke@435 70
duke@435 71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
duke@435 72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
duke@435 73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
duke@435 74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
duke@435 75 REGISTER_DECLARATION(Register, c_rarg4, r8);
duke@435 76 REGISTER_DECLARATION(Register, c_rarg5, r9);
duke@435 77
never@739 78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
never@739 82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
never@739 83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
never@739 84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
never@739 85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
duke@435 86
duke@435 87 #endif // _WIN64
duke@435 88
duke@435 89 // Symbolically name the register arguments used by the Java calling convention.
duke@435 90 // We have control over the convention for java so we can do what we please.
duke@435 91 // What pleases us is to offset the java calling convention so that when
duke@435 92 // we call a suitable jni method the arguments are lined up and we don't
duke@435 93 // have to do little shuffling. A suitable jni method is non-static and a
duke@435 94 // small number of arguments (two fewer args on windows)
duke@435 95 //
duke@435 96 // |-------------------------------------------------------|
duke@435 97 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
duke@435 98 // |-------------------------------------------------------|
duke@435 99 // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
duke@435 100 // | rdi rsi rdx rcx r8 r9 | solaris/linux
duke@435 101 // |-------------------------------------------------------|
duke@435 102 // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
duke@435 103 // |-------------------------------------------------------|
duke@435 104
duke@435 105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
duke@435 106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
duke@435 107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
duke@435 108 // Windows runs out of register args here
duke@435 109 #ifdef _WIN64
duke@435 110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
duke@435 111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
duke@435 112 #else
duke@435 113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
duke@435 114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
duke@435 115 #endif /* _WIN64 */
duke@435 116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
duke@435 117
never@739 118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
never@739 119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
never@739 120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
never@739 121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
never@739 122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
never@739 123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
never@739 124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
never@739 125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
duke@435 126
duke@435 127 REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
duke@435 128 REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
duke@435 129
never@739 130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
duke@435 131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
duke@435 132
never@739 133 #else
never@739 134 // rscratch1 will apear in 32bit code that is dead but of course must compile
never@739 135 // Using noreg ensures if the dead code is incorrectly live and executed it
never@739 136 // will cause an assertion failure
never@739 137 #define rscratch1 noreg
iveresov@2344 138 #define rscratch2 noreg
never@739 139
duke@435 140 #endif // _LP64
duke@435 141
twisti@1919 142 // JSR 292 fixed register usages:
twisti@1919 143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
twisti@1919 144
duke@435 145 // Address is an abstraction used to represent a memory location
duke@435 146 // using any of the amd64 addressing modes with one object.
duke@435 147 //
duke@435 148 // Note: A register location is represented via a Register, not
duke@435 149 // via an address for efficiency & simplicity reasons.
duke@435 150
duke@435 151 class ArrayAddress;
duke@435 152
duke@435 153 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 154 public:
duke@435 155 enum ScaleFactor {
duke@435 156 no_scale = -1,
duke@435 157 times_1 = 0,
duke@435 158 times_2 = 1,
duke@435 159 times_4 = 2,
never@739 160 times_8 = 3,
never@739 161 times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
duke@435 162 };
jrose@1057 163 static ScaleFactor times(int size) {
jrose@1057 164 assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
jrose@1057 165 if (size == 8) return times_8;
jrose@1057 166 if (size == 4) return times_4;
jrose@1057 167 if (size == 2) return times_2;
jrose@1057 168 return times_1;
jrose@1057 169 }
jrose@1057 170 static int scale_size(ScaleFactor scale) {
jrose@1057 171 assert(scale != no_scale, "");
jrose@1057 172 assert(((1 << (int)times_1) == 1 &&
jrose@1057 173 (1 << (int)times_2) == 2 &&
jrose@1057 174 (1 << (int)times_4) == 4 &&
jrose@1057 175 (1 << (int)times_8) == 8), "");
jrose@1057 176 return (1 << (int)scale);
jrose@1057 177 }
duke@435 178
duke@435 179 private:
duke@435 180 Register _base;
duke@435 181 Register _index;
duke@435 182 ScaleFactor _scale;
duke@435 183 int _disp;
duke@435 184 RelocationHolder _rspec;
duke@435 185
never@739 186 // Easily misused constructors make them private
never@739 187 // %%% can we make these go away?
never@739 188 NOT_LP64(Address(address loc, RelocationHolder spec);)
never@739 189 Address(int disp, address loc, relocInfo::relocType rtype);
never@739 190 Address(int disp, address loc, RelocationHolder spec);
duke@435 191
duke@435 192 public:
never@739 193
never@739 194 int disp() { return _disp; }
duke@435 195 // creation
duke@435 196 Address()
duke@435 197 : _base(noreg),
duke@435 198 _index(noreg),
duke@435 199 _scale(no_scale),
duke@435 200 _disp(0) {
duke@435 201 }
duke@435 202
duke@435 203 // No default displacement otherwise Register can be implicitly
duke@435 204 // converted to 0(Register) which is quite a different animal.
duke@435 205
duke@435 206 Address(Register base, int disp)
duke@435 207 : _base(base),
duke@435 208 _index(noreg),
duke@435 209 _scale(no_scale),
duke@435 210 _disp(disp) {
duke@435 211 }
duke@435 212
duke@435 213 Address(Register base, Register index, ScaleFactor scale, int disp = 0)
duke@435 214 : _base (base),
duke@435 215 _index(index),
duke@435 216 _scale(scale),
duke@435 217 _disp (disp) {
duke@435 218 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 219 "inconsistent address");
duke@435 220 }
duke@435 221
jrose@1100 222 Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
jrose@1057 223 : _base (base),
jrose@1057 224 _index(index.register_or_noreg()),
jrose@1057 225 _scale(scale),
jrose@1057 226 _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 227 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 228 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 229 "inconsistent address");
jrose@1057 230 }
jrose@1057 231
jrose@1057 232 Address plus_disp(int disp) const {
jrose@1057 233 Address a = (*this);
jrose@1057 234 a._disp += disp;
jrose@1057 235 return a;
jrose@1057 236 }
jrose@1057 237
duke@435 238 // The following two overloads are used in connection with the
duke@435 239 // ByteSize type (see sizes.hpp). They simplify the use of
duke@435 240 // ByteSize'd arguments in assembly code. Note that their equivalent
duke@435 241 // for the optimized build are the member functions with int disp
duke@435 242 // argument since ByteSize is mapped to an int type in that case.
duke@435 243 //
duke@435 244 // Note: DO NOT introduce similar overloaded functions for WordSize
duke@435 245 // arguments as in the optimized mode, both ByteSize and WordSize
duke@435 246 // are mapped to the same type and thus the compiler cannot make a
duke@435 247 // distinction anymore (=> compiler errors).
duke@435 248
duke@435 249 #ifdef ASSERT
duke@435 250 Address(Register base, ByteSize disp)
duke@435 251 : _base(base),
duke@435 252 _index(noreg),
duke@435 253 _scale(no_scale),
duke@435 254 _disp(in_bytes(disp)) {
duke@435 255 }
duke@435 256
duke@435 257 Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
duke@435 258 : _base(base),
duke@435 259 _index(index),
duke@435 260 _scale(scale),
duke@435 261 _disp(in_bytes(disp)) {
duke@435 262 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 263 "inconsistent address");
duke@435 264 }
jrose@1057 265
jrose@1100 266 Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
jrose@1057 267 : _base (base),
jrose@1057 268 _index(index.register_or_noreg()),
jrose@1057 269 _scale(scale),
jrose@1057 270 _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 271 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 272 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 273 "inconsistent address");
jrose@1057 274 }
jrose@1057 275
duke@435 276 #endif // ASSERT
duke@435 277
duke@435 278 // accessors
ysr@777 279 bool uses(Register reg) const { return _base == reg || _index == reg; }
ysr@777 280 Register base() const { return _base; }
ysr@777 281 Register index() const { return _index; }
ysr@777 282 ScaleFactor scale() const { return _scale; }
ysr@777 283 int disp() const { return _disp; }
duke@435 284
duke@435 285 // Convert the raw encoding form into the form expected by the constructor for
duke@435 286 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 287 // that to noreg for the Address constructor.
twisti@1059 288 static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
duke@435 289
duke@435 290 static Address make_array(ArrayAddress);
duke@435 291
duke@435 292 private:
duke@435 293 bool base_needs_rex() const {
duke@435 294 return _base != noreg && _base->encoding() >= 8;
duke@435 295 }
duke@435 296
duke@435 297 bool index_needs_rex() const {
duke@435 298 return _index != noreg &&_index->encoding() >= 8;
duke@435 299 }
duke@435 300
duke@435 301 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 302
duke@435 303 friend class Assembler;
duke@435 304 friend class MacroAssembler;
duke@435 305 friend class LIR_Assembler; // base/index/scale/disp
duke@435 306 };
duke@435 307
duke@435 308 //
duke@435 309 // AddressLiteral has been split out from Address because operands of this type
duke@435 310 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
duke@435 311 // the few instructions that need to deal with address literals are unique and the
duke@435 312 // MacroAssembler does not have to implement every instruction in the Assembler
duke@435 313 // in order to search for address literals that may need special handling depending
duke@435 314 // on the instruction and the platform. As small step on the way to merging i486/amd64
duke@435 315 // directories.
duke@435 316 //
duke@435 317 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
duke@435 318 friend class ArrayAddress;
duke@435 319 RelocationHolder _rspec;
duke@435 320 // Typically we use AddressLiterals we want to use their rval
duke@435 321 // However in some situations we want the lval (effect address) of the item.
duke@435 322 // We provide a special factory for making those lvals.
duke@435 323 bool _is_lval;
duke@435 324
duke@435 325 // If the target is far we'll need to load the ea of this to
duke@435 326 // a register to reach it. Otherwise if near we can do rip
duke@435 327 // relative addressing.
duke@435 328
duke@435 329 address _target;
duke@435 330
duke@435 331 protected:
duke@435 332 // creation
duke@435 333 AddressLiteral()
duke@435 334 : _is_lval(false),
duke@435 335 _target(NULL)
duke@435 336 {}
duke@435 337
duke@435 338 public:
duke@435 339
duke@435 340
duke@435 341 AddressLiteral(address target, relocInfo::relocType rtype);
duke@435 342
duke@435 343 AddressLiteral(address target, RelocationHolder const& rspec)
duke@435 344 : _rspec(rspec),
duke@435 345 _is_lval(false),
duke@435 346 _target(target)
duke@435 347 {}
duke@435 348
duke@435 349 AddressLiteral addr() {
duke@435 350 AddressLiteral ret = *this;
duke@435 351 ret._is_lval = true;
duke@435 352 return ret;
duke@435 353 }
duke@435 354
duke@435 355
duke@435 356 private:
duke@435 357
duke@435 358 address target() { return _target; }
duke@435 359 bool is_lval() { return _is_lval; }
duke@435 360
duke@435 361 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 362 const RelocationHolder& rspec() const { return _rspec; }
duke@435 363
duke@435 364 friend class Assembler;
duke@435 365 friend class MacroAssembler;
duke@435 366 friend class Address;
duke@435 367 friend class LIR_Assembler;
duke@435 368 };
duke@435 369
duke@435 370 // Convience classes
duke@435 371 class RuntimeAddress: public AddressLiteral {
duke@435 372
duke@435 373 public:
duke@435 374
duke@435 375 RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
duke@435 376
duke@435 377 };
duke@435 378
duke@435 379 class OopAddress: public AddressLiteral {
duke@435 380
duke@435 381 public:
duke@435 382
duke@435 383 OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
duke@435 384
duke@435 385 };
duke@435 386
duke@435 387 class ExternalAddress: public AddressLiteral {
duke@435 388
duke@435 389 public:
duke@435 390
duke@435 391 ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
duke@435 392
duke@435 393 };
duke@435 394
duke@435 395 class InternalAddress: public AddressLiteral {
duke@435 396
duke@435 397 public:
duke@435 398
duke@435 399 InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
duke@435 400
duke@435 401 };
duke@435 402
duke@435 403 // x86 can do array addressing as a single operation since disp can be an absolute
duke@435 404 // address amd64 can't. We create a class that expresses the concept but does extra
duke@435 405 // magic on amd64 to get the final result
duke@435 406
duke@435 407 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
duke@435 408 private:
duke@435 409
duke@435 410 AddressLiteral _base;
duke@435 411 Address _index;
duke@435 412
duke@435 413 public:
duke@435 414
duke@435 415 ArrayAddress() {};
duke@435 416 ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
duke@435 417 AddressLiteral base() { return _base; }
duke@435 418 Address index() { return _index; }
duke@435 419
duke@435 420 };
duke@435 421
never@739 422 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
duke@435 423
duke@435 424 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 425 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
duke@435 426 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 427
duke@435 428 class Assembler : public AbstractAssembler {
duke@435 429 friend class AbstractAssembler; // for the non-virtual hack
duke@435 430 friend class LIR_Assembler; // as_Address()
never@739 431 friend class StubGenerator;
duke@435 432
duke@435 433 public:
duke@435 434 enum Condition { // The x86 condition codes used for conditional jumps/moves.
duke@435 435 zero = 0x4,
duke@435 436 notZero = 0x5,
duke@435 437 equal = 0x4,
duke@435 438 notEqual = 0x5,
duke@435 439 less = 0xc,
duke@435 440 lessEqual = 0xe,
duke@435 441 greater = 0xf,
duke@435 442 greaterEqual = 0xd,
duke@435 443 below = 0x2,
duke@435 444 belowEqual = 0x6,
duke@435 445 above = 0x7,
duke@435 446 aboveEqual = 0x3,
duke@435 447 overflow = 0x0,
duke@435 448 noOverflow = 0x1,
duke@435 449 carrySet = 0x2,
duke@435 450 carryClear = 0x3,
duke@435 451 negative = 0x8,
duke@435 452 positive = 0x9,
duke@435 453 parity = 0xa,
duke@435 454 noParity = 0xb
duke@435 455 };
duke@435 456
duke@435 457 enum Prefix {
duke@435 458 // segment overrides
duke@435 459 CS_segment = 0x2e,
duke@435 460 SS_segment = 0x36,
duke@435 461 DS_segment = 0x3e,
duke@435 462 ES_segment = 0x26,
duke@435 463 FS_segment = 0x64,
duke@435 464 GS_segment = 0x65,
duke@435 465
duke@435 466 REX = 0x40,
duke@435 467
duke@435 468 REX_B = 0x41,
duke@435 469 REX_X = 0x42,
duke@435 470 REX_XB = 0x43,
duke@435 471 REX_R = 0x44,
duke@435 472 REX_RB = 0x45,
duke@435 473 REX_RX = 0x46,
duke@435 474 REX_RXB = 0x47,
duke@435 475
duke@435 476 REX_W = 0x48,
duke@435 477
duke@435 478 REX_WB = 0x49,
duke@435 479 REX_WX = 0x4A,
duke@435 480 REX_WXB = 0x4B,
duke@435 481 REX_WR = 0x4C,
duke@435 482 REX_WRB = 0x4D,
duke@435 483 REX_WRX = 0x4E,
duke@435 484 REX_WRXB = 0x4F
duke@435 485 };
duke@435 486
duke@435 487 enum WhichOperand {
duke@435 488 // input to locate_operand, and format code for relocations
never@739 489 imm_operand = 0, // embedded 32-bit|64-bit immediate operand
duke@435 490 disp32_operand = 1, // embedded 32-bit displacement or address
duke@435 491 call32_operand = 2, // embedded 32-bit self-relative displacement
never@739 492 #ifndef _LP64
duke@435 493 _WhichOperand_limit = 3
never@739 494 #else
never@739 495 narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
never@739 496 _WhichOperand_limit = 4
never@739 497 #endif
duke@435 498 };
duke@435 499
never@739 500
never@739 501
never@739 502 // NOTE: The general philopsophy of the declarations here is that 64bit versions
never@739 503 // of instructions are freely declared without the need for wrapping them an ifdef.
never@739 504 // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
never@739 505 // In the .cpp file the implementations are wrapped so that they are dropped out
never@739 506 // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
never@739 507 // to the size it was prior to merging up the 32bit and 64bit assemblers.
never@739 508 //
never@739 509 // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
never@739 510 // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
never@739 511
never@739 512 private:
never@739 513
never@739 514
never@739 515 // 64bit prefixes
never@739 516 int prefix_and_encode(int reg_enc, bool byteinst = false);
never@739 517 int prefixq_and_encode(int reg_enc);
never@739 518
never@739 519 int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
never@739 520 int prefixq_and_encode(int dst_enc, int src_enc);
never@739 521
never@739 522 void prefix(Register reg);
never@739 523 void prefix(Address adr);
never@739 524 void prefixq(Address adr);
never@739 525
never@739 526 void prefix(Address adr, Register reg, bool byteinst = false);
never@739 527 void prefixq(Address adr, Register reg);
never@739 528
never@739 529 void prefix(Address adr, XMMRegister reg);
never@739 530
never@739 531 void prefetch_prefix(Address src);
never@739 532
never@739 533 // Helper functions for groups of instructions
never@739 534 void emit_arith_b(int op1, int op2, Register dst, int imm8);
never@739 535
never@739 536 void emit_arith(int op1, int op2, Register dst, int32_t imm32);
never@739 537 // only 32bit??
never@739 538 void emit_arith(int op1, int op2, Register dst, jobject obj);
never@739 539 void emit_arith(int op1, int op2, Register dst, Register src);
never@739 540
never@739 541 void emit_operand(Register reg,
never@739 542 Register base, Register index, Address::ScaleFactor scale,
never@739 543 int disp,
never@739 544 RelocationHolder const& rspec,
never@739 545 int rip_relative_correction = 0);
never@739 546
never@739 547 void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
never@739 548
never@739 549 // operands that only take the original 32bit registers
never@739 550 void emit_operand32(Register reg, Address adr);
never@739 551
never@739 552 void emit_operand(XMMRegister reg,
never@739 553 Register base, Register index, Address::ScaleFactor scale,
never@739 554 int disp,
never@739 555 RelocationHolder const& rspec);
never@739 556
never@739 557 void emit_operand(XMMRegister reg, Address adr);
never@739 558
never@739 559 void emit_operand(MMXRegister reg, Address adr);
never@739 560
never@739 561 // workaround gcc (3.2.1-7) bug
never@739 562 void emit_operand(Address adr, MMXRegister reg);
never@739 563
never@739 564
never@739 565 // Immediate-to-memory forms
never@739 566 void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
never@739 567
never@739 568 void emit_farith(int b1, int b2, int i);
never@739 569
duke@435 570
duke@435 571 protected:
never@739 572 #ifdef ASSERT
never@739 573 void check_relocation(RelocationHolder const& rspec, int format);
never@739 574 #endif
never@739 575
never@739 576 inline void emit_long64(jlong x);
never@739 577
never@739 578 void emit_data(jint data, relocInfo::relocType rtype, int format);
never@739 579 void emit_data(jint data, RelocationHolder const& rspec, int format);
never@739 580 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
never@739 581 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
never@739 582
never@739 583 bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
never@739 584
never@739 585 // These are all easily abused and hence protected
never@739 586
never@739 587 // 32BIT ONLY SECTION
never@739 588 #ifndef _LP64
never@739 589 // Make these disappear in 64bit mode since they would never be correct
never@739 590 void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 591 void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 592
kvn@1077 593 void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 594 void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 595
never@739 596 void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 597 #else
never@739 598 // 64BIT ONLY SECTION
never@739 599 void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
kvn@1077 600
kvn@1077 601 void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 602 void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 603
kvn@1077 604 void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
kvn@1077 605 void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
never@739 606 #endif // _LP64
never@739 607
never@739 608 // These are unique in that we are ensured by the caller that the 32bit
never@739 609 // relative in these instructions will always be able to reach the potentially
never@739 610 // 64bit address described by entry. Since they can take a 64bit address they
never@739 611 // don't have the 32 suffix like the other instructions in this class.
never@739 612
never@739 613 void call_literal(address entry, RelocationHolder const& rspec);
never@739 614 void jmp_literal(address entry, RelocationHolder const& rspec);
never@739 615
never@739 616 // Avoid using directly section
never@739 617 // Instructions in this section are actually usable by anyone without danger
never@739 618 // of failure but have performance issues that are addressed my enhanced
never@739 619 // instructions which will do the proper thing base on the particular cpu.
never@739 620 // We protect them because we don't trust you...
never@739 621
duke@435 622 // Don't use next inc() and dec() methods directly. INC & DEC instructions
duke@435 623 // could cause a partial flag stall since they don't set CF flag.
duke@435 624 // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
duke@435 625 // which call inc() & dec() or add() & sub() in accordance with
duke@435 626 // the product flag UseIncDec value.
duke@435 627
duke@435 628 void decl(Register dst);
duke@435 629 void decl(Address dst);
never@739 630 void decq(Register dst);
never@739 631 void decq(Address dst);
duke@435 632
duke@435 633 void incl(Register dst);
duke@435 634 void incl(Address dst);
never@739 635 void incq(Register dst);
never@739 636 void incq(Address dst);
never@739 637
never@739 638 // New cpus require use of movsd and movss to avoid partial register stall
never@739 639 // when loading from memory. But for old Opteron use movlpd instead of movsd.
never@739 640 // The selection is done in MacroAssembler::movdbl() and movflt().
never@739 641
never@739 642 // Move Scalar Single-Precision Floating-Point Values
never@739 643 void movss(XMMRegister dst, Address src);
never@739 644 void movss(XMMRegister dst, XMMRegister src);
never@739 645 void movss(Address dst, XMMRegister src);
never@739 646
never@739 647 // Move Scalar Double-Precision Floating-Point Values
never@739 648 void movsd(XMMRegister dst, Address src);
never@739 649 void movsd(XMMRegister dst, XMMRegister src);
never@739 650 void movsd(Address dst, XMMRegister src);
never@739 651 void movlpd(XMMRegister dst, Address src);
never@739 652
never@739 653 // New cpus require use of movaps and movapd to avoid partial register stall
never@739 654 // when moving between registers.
never@739 655 void movaps(XMMRegister dst, XMMRegister src);
never@739 656 void movapd(XMMRegister dst, XMMRegister src);
never@739 657
never@739 658 // End avoid using directly
never@739 659
never@739 660
never@739 661 // Instruction prefixes
never@739 662 void prefix(Prefix p);
never@739 663
never@739 664 public:
never@739 665
never@739 666 // Creation
never@739 667 Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
never@739 668
never@739 669 // Decoding
never@739 670 static address locate_operand(address inst, WhichOperand which);
never@739 671 static address locate_next_instruction(address inst);
never@739 672
never@739 673 // Utilities
never@739 674
never@739 675 #ifdef _LP64
phh@2423 676 static bool is_simm(int64_t x, int nbits) { return -(CONST64(1) << (nbits-1)) <= x &&
phh@2423 677 x < (CONST64(1) << (nbits-1)); }
never@739 678 static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
never@739 679 #else
phh@2423 680 static bool is_simm(int32_t x, int nbits) { return -(1 << (nbits-1)) <= x &&
phh@2423 681 x < (1 << (nbits-1)); }
never@739 682 static bool is_simm32(int32_t x) { return true; }
phh@2423 683 #endif // _LP64
never@739 684
iveresov@2686 685 static bool is_polling_page_far() NOT_LP64({ return false;});
iveresov@2686 686
never@739 687 // Generic instructions
never@739 688 // Does 32bit or 64bit as needed for the platform. In some sense these
never@739 689 // belong in macro assembler but there is no need for both varieties to exist
never@739 690
never@739 691 void lea(Register dst, Address src);
never@739 692
never@739 693 void mov(Register dst, Register src);
never@739 694
never@739 695 void pusha();
never@739 696 void popa();
never@739 697
never@739 698 void pushf();
never@739 699 void popf();
never@739 700
never@739 701 void push(int32_t imm32);
never@739 702
never@739 703 void push(Register src);
never@739 704
never@739 705 void pop(Register dst);
never@739 706
never@739 707 // These are dummies to prevent surprise implicit conversions to Register
never@739 708 void push(void* v);
never@739 709 void pop(void* v);
never@739 710
never@739 711 // These do register sized moves/scans
never@739 712 void rep_mov();
never@739 713 void rep_set();
never@739 714 void repne_scan();
never@739 715 #ifdef _LP64
never@739 716 void repne_scanl();
never@739 717 #endif
never@739 718
never@739 719 // Vanilla instructions in lexical order
never@739 720
phh@2423 721 void adcl(Address dst, int32_t imm32);
phh@2423 722 void adcl(Address dst, Register src);
never@739 723 void adcl(Register dst, int32_t imm32);
never@739 724 void adcl(Register dst, Address src);
never@739 725 void adcl(Register dst, Register src);
never@739 726
never@739 727 void adcq(Register dst, int32_t imm32);
never@739 728 void adcq(Register dst, Address src);
never@739 729 void adcq(Register dst, Register src);
never@739 730
never@739 731 void addl(Address dst, int32_t imm32);
never@739 732 void addl(Address dst, Register src);
never@739 733 void addl(Register dst, int32_t imm32);
never@739 734 void addl(Register dst, Address src);
never@739 735 void addl(Register dst, Register src);
never@739 736
never@739 737 void addq(Address dst, int32_t imm32);
never@739 738 void addq(Address dst, Register src);
never@739 739 void addq(Register dst, int32_t imm32);
never@739 740 void addq(Register dst, Address src);
never@739 741 void addq(Register dst, Register src);
never@739 742
duke@435 743 void addr_nop_4();
duke@435 744 void addr_nop_5();
duke@435 745 void addr_nop_7();
duke@435 746 void addr_nop_8();
duke@435 747
never@739 748 // Add Scalar Double-Precision Floating-Point Values
never@739 749 void addsd(XMMRegister dst, Address src);
never@739 750 void addsd(XMMRegister dst, XMMRegister src);
never@739 751
never@739 752 // Add Scalar Single-Precision Floating-Point Values
never@739 753 void addss(XMMRegister dst, Address src);
never@739 754 void addss(XMMRegister dst, XMMRegister src);
never@739 755
never@739 756 void andl(Register dst, int32_t imm32);
never@739 757 void andl(Register dst, Address src);
never@739 758 void andl(Register dst, Register src);
never@739 759
never@739 760 void andq(Register dst, int32_t imm32);
never@739 761 void andq(Register dst, Address src);
never@739 762 void andq(Register dst, Register src);
never@739 763
never@739 764 // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
never@739 765 void andpd(XMMRegister dst, Address src);
never@739 766 void andpd(XMMRegister dst, XMMRegister src);
never@739 767
twisti@1210 768 void bsfl(Register dst, Register src);
twisti@1210 769 void bsrl(Register dst, Register src);
twisti@1210 770
twisti@1210 771 #ifdef _LP64
twisti@1210 772 void bsfq(Register dst, Register src);
twisti@1210 773 void bsrq(Register dst, Register src);
twisti@1210 774 #endif
twisti@1210 775
never@739 776 void bswapl(Register reg);
never@739 777
never@739 778 void bswapq(Register reg);
never@739 779
duke@435 780 void call(Label& L, relocInfo::relocType rtype);
duke@435 781 void call(Register reg); // push pc; pc <- reg
duke@435 782 void call(Address adr); // push pc; pc <- adr
duke@435 783
never@739 784 void cdql();
never@739 785
never@739 786 void cdqq();
never@739 787
never@739 788 void cld() { emit_byte(0xfc); }
never@739 789
never@739 790 void clflush(Address adr);
never@739 791
never@739 792 void cmovl(Condition cc, Register dst, Register src);
never@739 793 void cmovl(Condition cc, Register dst, Address src);
never@739 794
never@739 795 void cmovq(Condition cc, Register dst, Register src);
never@739 796 void cmovq(Condition cc, Register dst, Address src);
never@739 797
never@739 798
never@739 799 void cmpb(Address dst, int imm8);
never@739 800
never@739 801 void cmpl(Address dst, int32_t imm32);
never@739 802
never@739 803 void cmpl(Register dst, int32_t imm32);
never@739 804 void cmpl(Register dst, Register src);
never@739 805 void cmpl(Register dst, Address src);
never@739 806
never@739 807 void cmpq(Address dst, int32_t imm32);
never@739 808 void cmpq(Address dst, Register src);
never@739 809
never@739 810 void cmpq(Register dst, int32_t imm32);
never@739 811 void cmpq(Register dst, Register src);
never@739 812 void cmpq(Register dst, Address src);
never@739 813
never@739 814 // these are dummies used to catch attempting to convert NULL to Register
never@739 815 void cmpl(Register dst, void* junk); // dummy
never@739 816 void cmpq(Register dst, void* junk); // dummy
never@739 817
never@739 818 void cmpw(Address dst, int imm16);
never@739 819
never@739 820 void cmpxchg8 (Address adr);
never@739 821
never@739 822 void cmpxchgl(Register reg, Address adr);
never@739 823
never@739 824 void cmpxchgq(Register reg, Address adr);
never@739 825
never@739 826 // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 827 void comisd(XMMRegister dst, Address src);
never@739 828
never@739 829 // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 830 void comiss(XMMRegister dst, Address src);
never@739 831
never@739 832 // Identify processor type and features
never@739 833 void cpuid() {
never@739 834 emit_byte(0x0F);
never@739 835 emit_byte(0xA2);
never@739 836 }
never@739 837
never@739 838 // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
never@739 839 void cvtsd2ss(XMMRegister dst, XMMRegister src);
never@739 840
never@739 841 // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
never@739 842 void cvtsi2sdl(XMMRegister dst, Register src);
never@739 843 void cvtsi2sdq(XMMRegister dst, Register src);
never@739 844
never@739 845 // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
never@739 846 void cvtsi2ssl(XMMRegister dst, Register src);
never@739 847 void cvtsi2ssq(XMMRegister dst, Register src);
never@739 848
never@739 849 // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
never@739 850 void cvtdq2pd(XMMRegister dst, XMMRegister src);
never@739 851
never@739 852 // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
never@739 853 void cvtdq2ps(XMMRegister dst, XMMRegister src);
never@739 854
never@739 855 // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
never@739 856 void cvtss2sd(XMMRegister dst, XMMRegister src);
never@739 857
never@739 858 // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
never@739 859 void cvttsd2sil(Register dst, Address src);
never@739 860 void cvttsd2sil(Register dst, XMMRegister src);
never@739 861 void cvttsd2siq(Register dst, XMMRegister src);
never@739 862
never@739 863 // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
never@739 864 void cvttss2sil(Register dst, XMMRegister src);
never@739 865 void cvttss2siq(Register dst, XMMRegister src);
never@739 866
never@739 867 // Divide Scalar Double-Precision Floating-Point Values
never@739 868 void divsd(XMMRegister dst, Address src);
never@739 869 void divsd(XMMRegister dst, XMMRegister src);
never@739 870
never@739 871 // Divide Scalar Single-Precision Floating-Point Values
never@739 872 void divss(XMMRegister dst, Address src);
never@739 873 void divss(XMMRegister dst, XMMRegister src);
never@739 874
never@739 875 void emms();
never@739 876
never@739 877 void fabs();
never@739 878
never@739 879 void fadd(int i);
never@739 880
never@739 881 void fadd_d(Address src);
never@739 882 void fadd_s(Address src);
never@739 883
never@739 884 // "Alternate" versions of x87 instructions place result down in FPU
never@739 885 // stack instead of on TOS
never@739 886
never@739 887 void fadda(int i); // "alternate" fadd
never@739 888 void faddp(int i = 1);
never@739 889
never@739 890 void fchs();
never@739 891
never@739 892 void fcom(int i);
never@739 893
never@739 894 void fcomp(int i = 1);
never@739 895 void fcomp_d(Address src);
never@739 896 void fcomp_s(Address src);
never@739 897
never@739 898 void fcompp();
never@739 899
never@739 900 void fcos();
never@739 901
never@739 902 void fdecstp();
never@739 903
never@739 904 void fdiv(int i);
never@739 905 void fdiv_d(Address src);
never@739 906 void fdivr_s(Address src);
never@739 907 void fdiva(int i); // "alternate" fdiv
never@739 908 void fdivp(int i = 1);
never@739 909
never@739 910 void fdivr(int i);
never@739 911 void fdivr_d(Address src);
never@739 912 void fdiv_s(Address src);
never@739 913
never@739 914 void fdivra(int i); // "alternate" reversed fdiv
never@739 915
never@739 916 void fdivrp(int i = 1);
never@739 917
never@739 918 void ffree(int i = 0);
never@739 919
never@739 920 void fild_d(Address adr);
never@739 921 void fild_s(Address adr);
never@739 922
never@739 923 void fincstp();
never@739 924
never@739 925 void finit();
never@739 926
never@739 927 void fist_s (Address adr);
never@739 928 void fistp_d(Address adr);
never@739 929 void fistp_s(Address adr);
never@739 930
never@739 931 void fld1();
never@739 932
never@739 933 void fld_d(Address adr);
never@739 934 void fld_s(Address adr);
never@739 935 void fld_s(int index);
never@739 936 void fld_x(Address adr); // extended-precision (80-bit) format
never@739 937
never@739 938 void fldcw(Address src);
never@739 939
never@739 940 void fldenv(Address src);
never@739 941
never@739 942 void fldlg2();
never@739 943
never@739 944 void fldln2();
never@739 945
never@739 946 void fldz();
never@739 947
never@739 948 void flog();
never@739 949 void flog10();
never@739 950
never@739 951 void fmul(int i);
never@739 952
never@739 953 void fmul_d(Address src);
never@739 954 void fmul_s(Address src);
never@739 955
never@739 956 void fmula(int i); // "alternate" fmul
never@739 957
never@739 958 void fmulp(int i = 1);
never@739 959
never@739 960 void fnsave(Address dst);
never@739 961
never@739 962 void fnstcw(Address src);
never@739 963
never@739 964 void fnstsw_ax();
never@739 965
never@739 966 void fprem();
never@739 967 void fprem1();
never@739 968
never@739 969 void frstor(Address src);
never@739 970
never@739 971 void fsin();
never@739 972
never@739 973 void fsqrt();
never@739 974
never@739 975 void fst_d(Address adr);
never@739 976 void fst_s(Address adr);
never@739 977
never@739 978 void fstp_d(Address adr);
never@739 979 void fstp_d(int index);
never@739 980 void fstp_s(Address adr);
never@739 981 void fstp_x(Address adr); // extended-precision (80-bit) format
never@739 982
never@739 983 void fsub(int i);
never@739 984 void fsub_d(Address src);
never@739 985 void fsub_s(Address src);
never@739 986
never@739 987 void fsuba(int i); // "alternate" fsub
never@739 988
never@739 989 void fsubp(int i = 1);
never@739 990
never@739 991 void fsubr(int i);
never@739 992 void fsubr_d(Address src);
never@739 993 void fsubr_s(Address src);
never@739 994
never@739 995 void fsubra(int i); // "alternate" reversed fsub
never@739 996
never@739 997 void fsubrp(int i = 1);
never@739 998
never@739 999 void ftan();
never@739 1000
never@739 1001 void ftst();
never@739 1002
never@739 1003 void fucomi(int i = 1);
never@739 1004 void fucomip(int i = 1);
never@739 1005
never@739 1006 void fwait();
never@739 1007
never@739 1008 void fxch(int i = 1);
never@739 1009
never@739 1010 void fxrstor(Address src);
never@739 1011
never@739 1012 void fxsave(Address dst);
never@739 1013
never@739 1014 void fyl2x();
never@739 1015
never@739 1016 void hlt();
never@739 1017
never@739 1018 void idivl(Register src);
kvn@2275 1019 void divl(Register src); // Unsigned division
never@739 1020
never@739 1021 void idivq(Register src);
never@739 1022
never@739 1023 void imull(Register dst, Register src);
never@739 1024 void imull(Register dst, Register src, int value);
never@739 1025
never@739 1026 void imulq(Register dst, Register src);
never@739 1027 void imulq(Register dst, Register src, int value);
never@739 1028
duke@435 1029
duke@435 1030 // jcc is the generic conditional branch generator to run-
duke@435 1031 // time routines, jcc is used for branches to labels. jcc
duke@435 1032 // takes a branch opcode (cc) and a label (L) and generates
duke@435 1033 // either a backward branch or a forward branch and links it
duke@435 1034 // to the label fixup chain. Usage:
duke@435 1035 //
duke@435 1036 // Label L; // unbound label
duke@435 1037 // jcc(cc, L); // forward branch to unbound label
duke@435 1038 // bind(L); // bind label to the current pc
duke@435 1039 // jcc(cc, L); // backward branch to bound label
duke@435 1040 // bind(L); // illegal: a label may be bound only once
duke@435 1041 //
duke@435 1042 // Note: The same Label can be used for forward and backward branches
duke@435 1043 // but it may be bound only once.
duke@435 1044
duke@435 1045 void jcc(Condition cc, Label& L,
duke@435 1046 relocInfo::relocType rtype = relocInfo::none);
duke@435 1047
duke@435 1048 // Conditional jump to a 8-bit offset to L.
duke@435 1049 // WARNING: be very careful using this for forward jumps. If the label is
duke@435 1050 // not bound within an 8-bit offset of this instruction, a run-time error
duke@435 1051 // will occur.
duke@435 1052 void jccb(Condition cc, Label& L);
duke@435 1053
never@739 1054 void jmp(Address entry); // pc <- entry
never@739 1055
never@739 1056 // Label operations & relative jumps (PPUM Appendix D)
never@739 1057 void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none); // unconditional jump to L
never@739 1058
never@739 1059 void jmp(Register entry); // pc <- entry
never@739 1060
never@739 1061 // Unconditional 8-bit offset jump to L.
never@739 1062 // WARNING: be very careful using this for forward jumps. If the label is
never@739 1063 // not bound within an 8-bit offset of this instruction, a run-time error
never@739 1064 // will occur.
never@739 1065 void jmpb(Label& L);
never@739 1066
never@739 1067 void ldmxcsr( Address src );
never@739 1068
never@739 1069 void leal(Register dst, Address src);
never@739 1070
never@739 1071 void leaq(Register dst, Address src);
never@739 1072
never@739 1073 void lfence() {
never@739 1074 emit_byte(0x0F);
never@739 1075 emit_byte(0xAE);
never@739 1076 emit_byte(0xE8);
never@739 1077 }
never@739 1078
never@739 1079 void lock();
never@739 1080
twisti@1210 1081 void lzcntl(Register dst, Register src);
twisti@1210 1082
twisti@1210 1083 #ifdef _LP64
twisti@1210 1084 void lzcntq(Register dst, Register src);
twisti@1210 1085 #endif
twisti@1210 1086
never@739 1087 enum Membar_mask_bits {
never@739 1088 StoreStore = 1 << 3,
never@739 1089 LoadStore = 1 << 2,
never@739 1090 StoreLoad = 1 << 1,
never@739 1091 LoadLoad = 1 << 0
never@739 1092 };
never@739 1093
never@1106 1094 // Serializes memory and blows flags
never@739 1095 void membar(Membar_mask_bits order_constraint) {
never@1106 1096 if (os::is_MP()) {
never@1106 1097 // We only have to handle StoreLoad
never@1106 1098 if (order_constraint & StoreLoad) {
never@1106 1099 // All usable chips support "locked" instructions which suffice
never@1106 1100 // as barriers, and are much faster than the alternative of
never@1106 1101 // using cpuid instruction. We use here a locked add [esp],0.
never@1106 1102 // This is conveniently otherwise a no-op except for blowing
never@1106 1103 // flags.
never@1106 1104 // Any change to this code may need to revisit other places in
never@1106 1105 // the code where this idiom is used, in particular the
never@1106 1106 // orderAccess code.
never@1106 1107 lock();
never@1106 1108 addl(Address(rsp, 0), 0);// Assert the lock# signal here
never@1106 1109 }
never@1106 1110 }
never@739 1111 }
never@739 1112
never@739 1113 void mfence();
never@739 1114
never@739 1115 // Moves
never@739 1116
never@739 1117 void mov64(Register dst, int64_t imm64);
never@739 1118
never@739 1119 void movb(Address dst, Register src);
never@739 1120 void movb(Address dst, int imm8);
never@739 1121 void movb(Register dst, Address src);
never@739 1122
never@739 1123 void movdl(XMMRegister dst, Register src);
never@739 1124 void movdl(Register dst, XMMRegister src);
kvn@2602 1125 void movdl(XMMRegister dst, Address src);
never@739 1126
never@739 1127 // Move Double Quadword
never@739 1128 void movdq(XMMRegister dst, Register src);
never@739 1129 void movdq(Register dst, XMMRegister src);
never@739 1130
never@739 1131 // Move Aligned Double Quadword
never@739 1132 void movdqa(Address dst, XMMRegister src);
never@739 1133 void movdqa(XMMRegister dst, Address src);
never@739 1134 void movdqa(XMMRegister dst, XMMRegister src);
never@739 1135
kvn@840 1136 // Move Unaligned Double Quadword
kvn@840 1137 void movdqu(Address dst, XMMRegister src);
kvn@840 1138 void movdqu(XMMRegister dst, Address src);
kvn@840 1139 void movdqu(XMMRegister dst, XMMRegister src);
kvn@840 1140
never@739 1141 void movl(Register dst, int32_t imm32);
never@739 1142 void movl(Address dst, int32_t imm32);
never@739 1143 void movl(Register dst, Register src);
never@739 1144 void movl(Register dst, Address src);
never@739 1145 void movl(Address dst, Register src);
never@739 1146
never@739 1147 // These dummies prevent using movl from converting a zero (like NULL) into Register
never@739 1148 // by giving the compiler two choices it can't resolve
never@739 1149
never@739 1150 void movl(Address dst, void* junk);
never@739 1151 void movl(Register dst, void* junk);
never@739 1152
never@739 1153 #ifdef _LP64
never@739 1154 void movq(Register dst, Register src);
never@739 1155 void movq(Register dst, Address src);
phh@2423 1156 void movq(Address dst, Register src);
never@739 1157 #endif
never@739 1158
never@739 1159 void movq(Address dst, MMXRegister src );
never@739 1160 void movq(MMXRegister dst, Address src );
never@739 1161
never@739 1162 #ifdef _LP64
never@739 1163 // These dummies prevent using movq from converting a zero (like NULL) into Register
never@739 1164 // by giving the compiler two choices it can't resolve
never@739 1165
never@739 1166 void movq(Address dst, void* dummy);
never@739 1167 void movq(Register dst, void* dummy);
never@739 1168 #endif
never@739 1169
never@739 1170 // Move Quadword
never@739 1171 void movq(Address dst, XMMRegister src);
never@739 1172 void movq(XMMRegister dst, Address src);
never@739 1173
never@739 1174 void movsbl(Register dst, Address src);
never@739 1175 void movsbl(Register dst, Register src);
never@739 1176
never@739 1177 #ifdef _LP64
twisti@1059 1178 void movsbq(Register dst, Address src);
twisti@1059 1179 void movsbq(Register dst, Register src);
twisti@1059 1180
never@739 1181 // Move signed 32bit immediate to 64bit extending sign
phh@2423 1182 void movslq(Address dst, int32_t imm64);
never@739 1183 void movslq(Register dst, int32_t imm64);
never@739 1184
never@739 1185 void movslq(Register dst, Address src);
never@739 1186 void movslq(Register dst, Register src);
never@739 1187 void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
never@739 1188 #endif
never@739 1189
never@739 1190 void movswl(Register dst, Address src);
never@739 1191 void movswl(Register dst, Register src);
never@739 1192
twisti@1059 1193 #ifdef _LP64
twisti@1059 1194 void movswq(Register dst, Address src);
twisti@1059 1195 void movswq(Register dst, Register src);
twisti@1059 1196 #endif
twisti@1059 1197
never@739 1198 void movw(Address dst, int imm16);
never@739 1199 void movw(Register dst, Address src);
never@739 1200 void movw(Address dst, Register src);
never@739 1201
never@739 1202 void movzbl(Register dst, Address src);
never@739 1203 void movzbl(Register dst, Register src);
never@739 1204
twisti@1059 1205 #ifdef _LP64
twisti@1059 1206 void movzbq(Register dst, Address src);
twisti@1059 1207 void movzbq(Register dst, Register src);
twisti@1059 1208 #endif
twisti@1059 1209
never@739 1210 void movzwl(Register dst, Address src);
never@739 1211 void movzwl(Register dst, Register src);
never@739 1212
twisti@1059 1213 #ifdef _LP64
twisti@1059 1214 void movzwq(Register dst, Address src);
twisti@1059 1215 void movzwq(Register dst, Register src);
twisti@1059 1216 #endif
twisti@1059 1217
never@739 1218 void mull(Address src);
never@739 1219 void mull(Register src);
never@739 1220
never@739 1221 // Multiply Scalar Double-Precision Floating-Point Values
never@739 1222 void mulsd(XMMRegister dst, Address src);
never@739 1223 void mulsd(XMMRegister dst, XMMRegister src);
never@739 1224
never@739 1225 // Multiply Scalar Single-Precision Floating-Point Values
never@739 1226 void mulss(XMMRegister dst, Address src);
never@739 1227 void mulss(XMMRegister dst, XMMRegister src);
never@739 1228
never@739 1229 void negl(Register dst);
never@739 1230
never@739 1231 #ifdef _LP64
never@739 1232 void negq(Register dst);
never@739 1233 #endif
never@739 1234
never@739 1235 void nop(int i = 1);
never@739 1236
never@739 1237 void notl(Register dst);
never@739 1238
never@739 1239 #ifdef _LP64
never@739 1240 void notq(Register dst);
never@739 1241 #endif
never@739 1242
never@739 1243 void orl(Address dst, int32_t imm32);
never@739 1244 void orl(Register dst, int32_t imm32);
never@739 1245 void orl(Register dst, Address src);
never@739 1246 void orl(Register dst, Register src);
never@739 1247
never@739 1248 void orq(Address dst, int32_t imm32);
never@739 1249 void orq(Register dst, int32_t imm32);
never@739 1250 void orq(Register dst, Address src);
never@739 1251 void orq(Register dst, Register src);
never@739 1252
cfang@1116 1253 // SSE4.2 string instructions
cfang@1116 1254 void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
cfang@1116 1255 void pcmpestri(XMMRegister xmm1, Address src, int imm8);
cfang@1116 1256
roland@1495 1257 #ifndef _LP64 // no 32bit push/pop on amd64
never@739 1258 void popl(Address dst);
roland@1495 1259 #endif
never@739 1260
never@739 1261 #ifdef _LP64
never@739 1262 void popq(Address dst);
never@739 1263 #endif
never@739 1264
twisti@1078 1265 void popcntl(Register dst, Address src);
twisti@1078 1266 void popcntl(Register dst, Register src);
twisti@1078 1267
twisti@1078 1268 #ifdef _LP64
twisti@1078 1269 void popcntq(Register dst, Address src);
twisti@1078 1270 void popcntq(Register dst, Register src);
twisti@1078 1271 #endif
twisti@1078 1272
never@739 1273 // Prefetches (SSE, SSE2, 3DNOW only)
never@739 1274
never@739 1275 void prefetchnta(Address src);
never@739 1276 void prefetchr(Address src);
never@739 1277 void prefetcht0(Address src);
never@739 1278 void prefetcht1(Address src);
never@739 1279 void prefetcht2(Address src);
never@739 1280 void prefetchw(Address src);
never@739 1281
never@2569 1282 // POR - Bitwise logical OR
never@2569 1283 void por(XMMRegister dst, XMMRegister src);
never@2569 1284
never@739 1285 // Shuffle Packed Doublewords
never@739 1286 void pshufd(XMMRegister dst, XMMRegister src, int mode);
never@739 1287 void pshufd(XMMRegister dst, Address src, int mode);
never@739 1288
never@739 1289 // Shuffle Packed Low Words
never@739 1290 void pshuflw(XMMRegister dst, XMMRegister src, int mode);
never@739 1291 void pshuflw(XMMRegister dst, Address src, int mode);
never@739 1292
kvn@2602 1293 // Shift Right by bits Logical Quadword Immediate
never@739 1294 void psrlq(XMMRegister dst, int shift);
never@739 1295
kvn@2602 1296 // Shift Right by bytes Logical DoubleQuadword Immediate
kvn@2602 1297 void psrldq(XMMRegister dst, int shift);
kvn@2602 1298
cfang@1116 1299 // Logical Compare Double Quadword
cfang@1116 1300 void ptest(XMMRegister dst, XMMRegister src);
cfang@1116 1301 void ptest(XMMRegister dst, Address src);
cfang@1116 1302
never@739 1303 // Interleave Low Bytes
never@739 1304 void punpcklbw(XMMRegister dst, XMMRegister src);
never@739 1305
roland@1495 1306 #ifndef _LP64 // no 32bit push/pop on amd64
never@739 1307 void pushl(Address src);
roland@1495 1308 #endif
never@739 1309
never@739 1310 void pushq(Address src);
never@739 1311
never@739 1312 // Xor Packed Byte Integer Values
never@739 1313 void pxor(XMMRegister dst, Address src);
never@739 1314 void pxor(XMMRegister dst, XMMRegister src);
never@739 1315
never@739 1316 void rcll(Register dst, int imm8);
never@739 1317
never@739 1318 void rclq(Register dst, int imm8);
never@739 1319
never@739 1320 void ret(int imm16);
duke@435 1321
duke@435 1322 void sahf();
duke@435 1323
never@739 1324 void sarl(Register dst, int imm8);
never@739 1325 void sarl(Register dst);
never@739 1326
never@739 1327 void sarq(Register dst, int imm8);
never@739 1328 void sarq(Register dst);
never@739 1329
never@739 1330 void sbbl(Address dst, int32_t imm32);
never@739 1331 void sbbl(Register dst, int32_t imm32);
never@739 1332 void sbbl(Register dst, Address src);
never@739 1333 void sbbl(Register dst, Register src);
never@739 1334
never@739 1335 void sbbq(Address dst, int32_t imm32);
never@739 1336 void sbbq(Register dst, int32_t imm32);
never@739 1337 void sbbq(Register dst, Address src);
never@739 1338 void sbbq(Register dst, Register src);
never@739 1339
never@739 1340 void setb(Condition cc, Register dst);
never@739 1341
never@739 1342 void shldl(Register dst, Register src);
never@739 1343
never@739 1344 void shll(Register dst, int imm8);
never@739 1345 void shll(Register dst);
never@739 1346
never@739 1347 void shlq(Register dst, int imm8);
never@739 1348 void shlq(Register dst);
never@739 1349
never@739 1350 void shrdl(Register dst, Register src);
never@739 1351
never@739 1352 void shrl(Register dst, int imm8);
never@739 1353 void shrl(Register dst);
never@739 1354
never@739 1355 void shrq(Register dst, int imm8);
never@739 1356 void shrq(Register dst);
never@739 1357
never@739 1358 void smovl(); // QQQ generic?
never@739 1359
never@739 1360 // Compute Square Root of Scalar Double-Precision Floating-Point Value
never@739 1361 void sqrtsd(XMMRegister dst, Address src);
never@739 1362 void sqrtsd(XMMRegister dst, XMMRegister src);
never@739 1363
twisti@2350 1364 // Compute Square Root of Scalar Single-Precision Floating-Point Value
twisti@2350 1365 void sqrtss(XMMRegister dst, Address src);
twisti@2350 1366 void sqrtss(XMMRegister dst, XMMRegister src);
twisti@2350 1367
never@739 1368 void std() { emit_byte(0xfd); }
never@739 1369
never@739 1370 void stmxcsr( Address dst );
never@739 1371
never@739 1372 void subl(Address dst, int32_t imm32);
never@739 1373 void subl(Address dst, Register src);
never@739 1374 void subl(Register dst, int32_t imm32);
never@739 1375 void subl(Register dst, Address src);
never@739 1376 void subl(Register dst, Register src);
never@739 1377
never@739 1378 void subq(Address dst, int32_t imm32);
never@739 1379 void subq(Address dst, Register src);
never@739 1380 void subq(Register dst, int32_t imm32);
never@739 1381 void subq(Register dst, Address src);
never@739 1382 void subq(Register dst, Register src);
never@739 1383
never@739 1384
never@739 1385 // Subtract Scalar Double-Precision Floating-Point Values
never@739 1386 void subsd(XMMRegister dst, Address src);
never@739 1387 void subsd(XMMRegister dst, XMMRegister src);
never@739 1388
never@739 1389 // Subtract Scalar Single-Precision Floating-Point Values
never@739 1390 void subss(XMMRegister dst, Address src);
duke@435 1391 void subss(XMMRegister dst, XMMRegister src);
never@739 1392
never@739 1393 void testb(Register dst, int imm8);
never@739 1394
never@739 1395 void testl(Register dst, int32_t imm32);
never@739 1396 void testl(Register dst, Register src);
never@739 1397 void testl(Register dst, Address src);
never@739 1398
never@739 1399 void testq(Register dst, int32_t imm32);
never@739 1400 void testq(Register dst, Register src);
never@739 1401
never@739 1402
never@739 1403 // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 1404 void ucomisd(XMMRegister dst, Address src);
never@739 1405 void ucomisd(XMMRegister dst, XMMRegister src);
never@739 1406
never@739 1407 // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 1408 void ucomiss(XMMRegister dst, Address src);
duke@435 1409 void ucomiss(XMMRegister dst, XMMRegister src);
never@739 1410
never@739 1411 void xaddl(Address dst, Register src);
never@739 1412
never@739 1413 void xaddq(Address dst, Register src);
never@739 1414
never@739 1415 void xchgl(Register reg, Address adr);
never@739 1416 void xchgl(Register dst, Register src);
never@739 1417
never@739 1418 void xchgq(Register reg, Address adr);
never@739 1419 void xchgq(Register dst, Register src);
never@739 1420
never@739 1421 void xorl(Register dst, int32_t imm32);
never@739 1422 void xorl(Register dst, Address src);
never@739 1423 void xorl(Register dst, Register src);
never@739 1424
never@739 1425 void xorq(Register dst, Address src);
never@739 1426 void xorq(Register dst, Register src);
never@739 1427
never@739 1428 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
never@739 1429 void xorpd(XMMRegister dst, Address src);
never@739 1430 void xorpd(XMMRegister dst, XMMRegister src);
never@739 1431
never@739 1432 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
never@739 1433 void xorps(XMMRegister dst, Address src);
duke@435 1434 void xorps(XMMRegister dst, XMMRegister src);
never@739 1435
never@739 1436 void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
duke@435 1437 };
duke@435 1438
duke@435 1439
duke@435 1440 // MacroAssembler extends Assembler by frequently used macros.
duke@435 1441 //
duke@435 1442 // Instructions for which a 'better' code sequence exists depending
duke@435 1443 // on arguments should also go in here.
duke@435 1444
duke@435 1445 class MacroAssembler: public Assembler {
ysr@777 1446 friend class LIR_Assembler;
ysr@777 1447 friend class Runtime1; // as_Address()
duke@435 1448 protected:
duke@435 1449
duke@435 1450 Address as_Address(AddressLiteral adr);
duke@435 1451 Address as_Address(ArrayAddress adr);
duke@435 1452
duke@435 1453 // Support for VM calls
duke@435 1454 //
duke@435 1455 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
duke@435 1456 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1457 // additional registers when doing a VM call).
duke@435 1458 #ifdef CC_INTERP
duke@435 1459 // c++ interpreter never wants to use interp_masm version of call_VM
duke@435 1460 #define VIRTUAL
duke@435 1461 #else
duke@435 1462 #define VIRTUAL virtual
duke@435 1463 #endif
duke@435 1464
duke@435 1465 VIRTUAL void call_VM_leaf_base(
duke@435 1466 address entry_point, // the entry point
duke@435 1467 int number_of_arguments // the number of arguments to pop after the call
duke@435 1468 );
duke@435 1469
duke@435 1470 // This is the base routine called by the different versions of call_VM. The interpreter
duke@435 1471 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1472 // additional registers when doing a VM call).
duke@435 1473 //
duke@435 1474 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
duke@435 1475 // returns the register which contains the thread upon return. If a thread register has been
duke@435 1476 // specified, the return value will correspond to that register. If no last_java_sp is specified
duke@435 1477 // (noreg) than rsp will be used instead.
duke@435 1478 VIRTUAL void call_VM_base( // returns the register containing the thread upon return
duke@435 1479 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
duke@435 1480 Register java_thread, // the thread if computed before ; use noreg otherwise
duke@435 1481 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
duke@435 1482 address entry_point, // the entry point
duke@435 1483 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
duke@435 1484 bool check_exceptions // whether to check for pending exceptions after return
duke@435 1485 );
duke@435 1486
duke@435 1487 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
duke@435 1488 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1489 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
duke@435 1490 virtual void check_and_handle_popframe(Register java_thread);
duke@435 1491 virtual void check_and_handle_earlyret(Register java_thread);
duke@435 1492
duke@435 1493 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
duke@435 1494
duke@435 1495 // helpers for FPU flag access
duke@435 1496 // tmp is a temporary register, if none is available use noreg
duke@435 1497 void save_rax (Register tmp);
duke@435 1498 void restore_rax(Register tmp);
duke@435 1499
duke@435 1500 public:
duke@435 1501 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1502
duke@435 1503 // Support for NULL-checks
duke@435 1504 //
duke@435 1505 // Generates code that causes a NULL OS exception if the content of reg is NULL.
duke@435 1506 // If the accessed location is M[reg + offset] and the offset is known, provide the
duke@435 1507 // offset. No explicit code generation is needed if the offset is within a certain
duke@435 1508 // range (0 <= offset <= page_size).
duke@435 1509
duke@435 1510 void null_check(Register reg, int offset = -1);
kvn@603 1511 static bool needs_explicit_null_check(intptr_t offset);
duke@435 1512
duke@435 1513 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1514 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1515 void pd_patch_instruction(address branch, address target);
duke@435 1516 #ifndef PRODUCT
duke@435 1517 static void pd_print_patched_instruction(address branch);
duke@435 1518 #endif
duke@435 1519
duke@435 1520 // The following 4 methods return the offset of the appropriate move instruction
duke@435 1521
jrose@1057 1522 // Support for fast byte/short loading with zero extension (depending on particular CPU)
duke@435 1523 int load_unsigned_byte(Register dst, Address src);
jrose@1057 1524 int load_unsigned_short(Register dst, Address src);
jrose@1057 1525
jrose@1057 1526 // Support for fast byte/short loading with sign extension (depending on particular CPU)
duke@435 1527 int load_signed_byte(Register dst, Address src);
jrose@1057 1528 int load_signed_short(Register dst, Address src);
duke@435 1529
duke@435 1530 // Support for sign-extension (hi:lo = extend_sign(lo))
duke@435 1531 void extend_sign(Register hi, Register lo);
duke@435 1532
twisti@2565 1533 // Load and store values by size and signed-ness
twisti@2565 1534 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
twisti@2565 1535 void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
jrose@1057 1536
duke@435 1537 // Support for inc/dec with optimal instruction selection depending on value
never@739 1538
never@739 1539 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
never@739 1540 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
never@739 1541
never@739 1542 void decrementl(Address dst, int value = 1);
never@739 1543 void decrementl(Register reg, int value = 1);
never@739 1544
never@739 1545 void decrementq(Register reg, int value = 1);
never@739 1546 void decrementq(Address dst, int value = 1);
never@739 1547
never@739 1548 void incrementl(Address dst, int value = 1);
never@739 1549 void incrementl(Register reg, int value = 1);
never@739 1550
never@739 1551 void incrementq(Register reg, int value = 1);
never@739 1552 void incrementq(Address dst, int value = 1);
never@739 1553
duke@435 1554
duke@435 1555 // Support optimal SSE move instructions.
duke@435 1556 void movflt(XMMRegister dst, XMMRegister src) {
duke@435 1557 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
duke@435 1558 else { movss (dst, src); return; }
duke@435 1559 }
duke@435 1560 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
duke@435 1561 void movflt(XMMRegister dst, AddressLiteral src);
duke@435 1562 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
duke@435 1563
duke@435 1564 void movdbl(XMMRegister dst, XMMRegister src) {
duke@435 1565 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
duke@435 1566 else { movsd (dst, src); return; }
duke@435 1567 }
duke@435 1568
duke@435 1569 void movdbl(XMMRegister dst, AddressLiteral src);
duke@435 1570
duke@435 1571 void movdbl(XMMRegister dst, Address src) {
duke@435 1572 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
duke@435 1573 else { movlpd(dst, src); return; }
duke@435 1574 }
duke@435 1575 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
duke@435 1576
never@739 1577 void incrementl(AddressLiteral dst);
never@739 1578 void incrementl(ArrayAddress dst);
duke@435 1579
duke@435 1580 // Alignment
duke@435 1581 void align(int modulus);
duke@435 1582
duke@435 1583 // Misc
duke@435 1584 void fat_nop(); // 5 byte nop
duke@435 1585
duke@435 1586 // Stack frame creation/removal
duke@435 1587 void enter();
duke@435 1588 void leave();
duke@435 1589
duke@435 1590 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
duke@435 1591 // The pointer will be loaded into the thread register.
duke@435 1592 void get_thread(Register thread);
duke@435 1593
apetrusenko@797 1594
duke@435 1595 // Support for VM calls
duke@435 1596 //
duke@435 1597 // It is imperative that all calls into the VM are handled via the call_VM macros.
duke@435 1598 // They make sure that the stack linkage is setup correctly. call_VM's correspond
duke@435 1599 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
duke@435 1600
never@739 1601
never@739 1602 void call_VM(Register oop_result,
never@739 1603 address entry_point,
never@739 1604 bool check_exceptions = true);
never@739 1605 void call_VM(Register oop_result,
never@739 1606 address entry_point,
never@739 1607 Register arg_1,
never@739 1608 bool check_exceptions = true);
never@739 1609 void call_VM(Register oop_result,
never@739 1610 address entry_point,
never@739 1611 Register arg_1, Register arg_2,
never@739 1612 bool check_exceptions = true);
never@739 1613 void call_VM(Register oop_result,
never@739 1614 address entry_point,
never@739 1615 Register arg_1, Register arg_2, Register arg_3,
never@739 1616 bool check_exceptions = true);
never@739 1617
never@739 1618 // Overloadings with last_Java_sp
never@739 1619 void call_VM(Register oop_result,
never@739 1620 Register last_java_sp,
never@739 1621 address entry_point,
never@739 1622 int number_of_arguments = 0,
never@739 1623 bool check_exceptions = true);
never@739 1624 void call_VM(Register oop_result,
never@739 1625 Register last_java_sp,
never@739 1626 address entry_point,
never@739 1627 Register arg_1, bool
never@739 1628 check_exceptions = true);
never@739 1629 void call_VM(Register oop_result,
never@739 1630 Register last_java_sp,
never@739 1631 address entry_point,
never@739 1632 Register arg_1, Register arg_2,
never@739 1633 bool check_exceptions = true);
never@739 1634 void call_VM(Register oop_result,
never@739 1635 Register last_java_sp,
never@739 1636 address entry_point,
never@739 1637 Register arg_1, Register arg_2, Register arg_3,
never@739 1638 bool check_exceptions = true);
never@739 1639
never@739 1640 void call_VM_leaf(address entry_point,
never@739 1641 int number_of_arguments = 0);
never@739 1642 void call_VM_leaf(address entry_point,
never@739 1643 Register arg_1);
never@739 1644 void call_VM_leaf(address entry_point,
never@739 1645 Register arg_1, Register arg_2);
never@739 1646 void call_VM_leaf(address entry_point,
never@739 1647 Register arg_1, Register arg_2, Register arg_3);
duke@435 1648
duke@435 1649 // last Java Frame (fills frame anchor)
never@739 1650 void set_last_Java_frame(Register thread,
never@739 1651 Register last_java_sp,
never@739 1652 Register last_java_fp,
never@739 1653 address last_java_pc);
never@739 1654
never@739 1655 // thread in the default location (r15_thread on 64bit)
never@739 1656 void set_last_Java_frame(Register last_java_sp,
never@739 1657 Register last_java_fp,
never@739 1658 address last_java_pc);
never@739 1659
duke@435 1660 void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
duke@435 1661
never@739 1662 // thread in the default location (r15_thread on 64bit)
never@739 1663 void reset_last_Java_frame(bool clear_fp, bool clear_pc);
never@739 1664
duke@435 1665 // Stores
duke@435 1666 void store_check(Register obj); // store check for obj - register is destroyed afterwards
duke@435 1667 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
duke@435 1668
apetrusenko@797 1669 void g1_write_barrier_pre(Register obj,
apetrusenko@797 1670 #ifndef _LP64
apetrusenko@797 1671 Register thread,
apetrusenko@797 1672 #endif
apetrusenko@797 1673 Register tmp,
apetrusenko@797 1674 Register tmp2,
apetrusenko@797 1675 bool tosca_live);
apetrusenko@797 1676 void g1_write_barrier_post(Register store_addr,
apetrusenko@797 1677 Register new_val,
apetrusenko@797 1678 #ifndef _LP64
apetrusenko@797 1679 Register thread,
apetrusenko@797 1680 #endif
apetrusenko@797 1681 Register tmp,
apetrusenko@797 1682 Register tmp2);
ysr@777 1683
ysr@777 1684
duke@435 1685 // split store_check(Register obj) to enhance instruction interleaving
duke@435 1686 void store_check_part_1(Register obj);
duke@435 1687 void store_check_part_2(Register obj);
duke@435 1688
duke@435 1689 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
duke@435 1690 void c2bool(Register x);
duke@435 1691
duke@435 1692 // C++ bool manipulation
duke@435 1693
duke@435 1694 void movbool(Register dst, Address src);
duke@435 1695 void movbool(Address dst, bool boolconst);
duke@435 1696 void movbool(Address dst, Register src);
duke@435 1697 void testbool(Register dst);
duke@435 1698
never@739 1699 // oop manipulations
never@739 1700 void load_klass(Register dst, Register src);
never@739 1701 void store_klass(Register dst, Register src);
never@739 1702
twisti@2201 1703 void load_heap_oop(Register dst, Address src);
twisti@2201 1704 void store_heap_oop(Address dst, Register src);
twisti@2201 1705
twisti@2201 1706 // Used for storing NULL. All other oop constants should be
twisti@2201 1707 // stored using routines that take a jobject.
twisti@2201 1708 void store_heap_oop_null(Address dst);
twisti@2201 1709
never@739 1710 void load_prototype_header(Register dst, Register src);
never@739 1711
never@739 1712 #ifdef _LP64
never@739 1713 void store_klass_gap(Register dst, Register src);
never@739 1714
johnc@1482 1715 // This dummy is to prevent a call to store_heap_oop from
johnc@1482 1716 // converting a zero (like NULL) into a Register by giving
johnc@1482 1717 // the compiler two choices it can't resolve
johnc@1482 1718
johnc@1482 1719 void store_heap_oop(Address dst, void* dummy);
johnc@1482 1720
never@739 1721 void encode_heap_oop(Register r);
never@739 1722 void decode_heap_oop(Register r);
never@739 1723 void encode_heap_oop_not_null(Register r);
never@739 1724 void decode_heap_oop_not_null(Register r);
never@739 1725 void encode_heap_oop_not_null(Register dst, Register src);
never@739 1726 void decode_heap_oop_not_null(Register dst, Register src);
never@739 1727
never@739 1728 void set_narrow_oop(Register dst, jobject obj);
kvn@1077 1729 void set_narrow_oop(Address dst, jobject obj);
kvn@1077 1730 void cmp_narrow_oop(Register dst, jobject obj);
kvn@1077 1731 void cmp_narrow_oop(Address dst, jobject obj);
never@739 1732
never@739 1733 // if heap base register is used - reinit it with the correct value
never@739 1734 void reinit_heapbase();
kvn@2039 1735
kvn@2039 1736 DEBUG_ONLY(void verify_heapbase(const char* msg);)
kvn@2039 1737
never@739 1738 #endif // _LP64
never@739 1739
never@739 1740 // Int division/remainder for Java
duke@435 1741 // (as idivl, but checks for special case as described in JVM spec.)
duke@435 1742 // returns idivl instruction offset for implicit exception handling
duke@435 1743 int corrected_idivl(Register reg);
duke@435 1744
never@739 1745 // Long division/remainder for Java
never@739 1746 // (as idivq, but checks for special case as described in JVM spec.)
never@739 1747 // returns idivq instruction offset for implicit exception handling
never@739 1748 int corrected_idivq(Register reg);
never@739 1749
duke@435 1750 void int3();
duke@435 1751
never@739 1752 // Long operation macros for a 32bit cpu
duke@435 1753 // Long negation for Java
duke@435 1754 void lneg(Register hi, Register lo);
duke@435 1755
duke@435 1756 // Long multiplication for Java
never@739 1757 // (destroys contents of eax, ebx, ecx and edx)
duke@435 1758 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
duke@435 1759
duke@435 1760 // Long shifts for Java
duke@435 1761 // (semantics as described in JVM spec.)
duke@435 1762 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
duke@435 1763 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
duke@435 1764
duke@435 1765 // Long compare for Java
duke@435 1766 // (semantics as described in JVM spec.)
duke@435 1767 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
duke@435 1768
never@739 1769
never@739 1770 // misc
never@739 1771
never@739 1772 // Sign extension
never@739 1773 void sign_extend_short(Register reg);
never@739 1774 void sign_extend_byte(Register reg);
never@739 1775
never@739 1776 // Division by power of 2, rounding towards 0
never@739 1777 void division_with_shift(Register reg, int shift_value);
never@739 1778
duke@435 1779 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
duke@435 1780 //
duke@435 1781 // CF (corresponds to C0) if x < y
duke@435 1782 // PF (corresponds to C2) if unordered
duke@435 1783 // ZF (corresponds to C3) if x = y
duke@435 1784 //
duke@435 1785 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1786 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
duke@435 1787 void fcmp(Register tmp);
duke@435 1788 // Variant of the above which allows y to be further down the stack
duke@435 1789 // and which only pops x and y if specified. If pop_right is
duke@435 1790 // specified then pop_left must also be specified.
duke@435 1791 void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
duke@435 1792
duke@435 1793 // Floating-point comparison for Java
duke@435 1794 // Compares the top-most stack entries on the FPU stack and stores the result in dst.
duke@435 1795 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1796 // (semantics as described in JVM spec.)
duke@435 1797 void fcmp2int(Register dst, bool unordered_is_less);
duke@435 1798 // Variant of the above which allows y to be further down the stack
duke@435 1799 // and which only pops x and y if specified. If pop_right is
duke@435 1800 // specified then pop_left must also be specified.
duke@435 1801 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
duke@435 1802
duke@435 1803 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
duke@435 1804 // tmp is a temporary register, if none is available use noreg
duke@435 1805 void fremr(Register tmp);
duke@435 1806
duke@435 1807
duke@435 1808 // same as fcmp2int, but using SSE2
duke@435 1809 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1810 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1811
duke@435 1812 // Inlined sin/cos generator for Java; must not use CPU instruction
duke@435 1813 // directly on Intel as it does not have high enough precision
duke@435 1814 // outside of the range [-pi/4, pi/4]. Extra argument indicate the
duke@435 1815 // number of FPU stack slots in use; all but the topmost will
duke@435 1816 // require saving if a slow case is necessary. Assumes argument is
duke@435 1817 // on FP TOS; result is on FP TOS. No cpu registers are changed by
duke@435 1818 // this code.
duke@435 1819 void trigfunc(char trig, int num_fpu_regs_in_use = 1);
duke@435 1820
duke@435 1821 // branch to L if FPU flag C2 is set/not set
duke@435 1822 // tmp is a temporary register, if none is available use noreg
duke@435 1823 void jC2 (Register tmp, Label& L);
duke@435 1824 void jnC2(Register tmp, Label& L);
duke@435 1825
duke@435 1826 // Pop ST (ffree & fincstp combined)
duke@435 1827 void fpop();
duke@435 1828
duke@435 1829 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1830 void push_fTOS();
duke@435 1831
duke@435 1832 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1833 void pop_fTOS();
duke@435 1834
duke@435 1835 void empty_FPU_stack();
duke@435 1836
duke@435 1837 void push_IU_state();
duke@435 1838 void pop_IU_state();
duke@435 1839
duke@435 1840 void push_FPU_state();
duke@435 1841 void pop_FPU_state();
duke@435 1842
duke@435 1843 void push_CPU_state();
duke@435 1844 void pop_CPU_state();
duke@435 1845
duke@435 1846 // Round up to a power of two
duke@435 1847 void round_to(Register reg, int modulus);
duke@435 1848
duke@435 1849 // Callee saved registers handling
duke@435 1850 void push_callee_saved_registers();
duke@435 1851 void pop_callee_saved_registers();
duke@435 1852
duke@435 1853 // allocation
duke@435 1854 void eden_allocate(
duke@435 1855 Register obj, // result: pointer to object after successful allocation
duke@435 1856 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1857 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1858 Register t1, // temp register
duke@435 1859 Label& slow_case // continuation point if fast allocation fails
duke@435 1860 );
duke@435 1861 void tlab_allocate(
duke@435 1862 Register obj, // result: pointer to object after successful allocation
duke@435 1863 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1864 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1865 Register t1, // temp register
duke@435 1866 Register t2, // temp register
duke@435 1867 Label& slow_case // continuation point if fast allocation fails
duke@435 1868 );
phh@2423 1869 Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
phh@2423 1870 void incr_allocated_bytes(Register thread,
phh@2423 1871 Register var_size_in_bytes, int con_size_in_bytes,
phh@2423 1872 Register t1 = noreg);
duke@435 1873
jrose@1058 1874 // interface method calling
jrose@1058 1875 void lookup_interface_method(Register recv_klass,
jrose@1058 1876 Register intf_klass,
jrose@1100 1877 RegisterOrConstant itable_index,
jrose@1058 1878 Register method_result,
jrose@1058 1879 Register scan_temp,
jrose@1058 1880 Label& no_such_interface);
jrose@1058 1881
jrose@1079 1882 // Test sub_klass against super_klass, with fast and slow paths.
jrose@1079 1883
jrose@1079 1884 // The fast path produces a tri-state answer: yes / no / maybe-slow.
jrose@1079 1885 // One of the three labels can be NULL, meaning take the fall-through.
jrose@1079 1886 // If super_check_offset is -1, the value is loaded up from super_klass.
jrose@1079 1887 // No registers are killed, except temp_reg.
jrose@1079 1888 void check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 1889 Register super_klass,
jrose@1079 1890 Register temp_reg,
jrose@1079 1891 Label* L_success,
jrose@1079 1892 Label* L_failure,
jrose@1079 1893 Label* L_slow_path,
jrose@1100 1894 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
jrose@1079 1895
jrose@1079 1896 // The rest of the type check; must be wired to a corresponding fast path.
jrose@1079 1897 // It does not repeat the fast path logic, so don't use it standalone.
jrose@1079 1898 // The temp_reg and temp2_reg can be noreg, if no temps are available.
jrose@1079 1899 // Updates the sub's secondary super cache as necessary.
jrose@1079 1900 // If set_cond_codes, condition codes will be Z on success, NZ on failure.
jrose@1079 1901 void check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 1902 Register super_klass,
jrose@1079 1903 Register temp_reg,
jrose@1079 1904 Register temp2_reg,
jrose@1079 1905 Label* L_success,
jrose@1079 1906 Label* L_failure,
jrose@1079 1907 bool set_cond_codes = false);
jrose@1079 1908
jrose@1079 1909 // Simplified, combined version, good for typical uses.
jrose@1079 1910 // Falls through on failure.
jrose@1079 1911 void check_klass_subtype(Register sub_klass,
jrose@1079 1912 Register super_klass,
jrose@1079 1913 Register temp_reg,
jrose@1079 1914 Label& L_success);
jrose@1079 1915
jrose@1145 1916 // method handles (JSR 292)
jrose@1145 1917 void check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 1918 Register temp_reg,
jrose@1145 1919 Label& wrong_method_type);
jrose@1145 1920 void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
jrose@1145 1921 Register temp_reg);
jrose@1145 1922 void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
jrose@1145 1923 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
jrose@1145 1924
jrose@1145 1925
duke@435 1926 //----
duke@435 1927 void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
duke@435 1928
duke@435 1929 // Debugging
never@739 1930
never@739 1931 // only if +VerifyOops
never@739 1932 void verify_oop(Register reg, const char* s = "broken oop");
duke@435 1933 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
duke@435 1934
never@739 1935 // only if +VerifyFPU
never@739 1936 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
never@739 1937
never@739 1938 // prints msg, dumps registers and stops execution
never@739 1939 void stop(const char* msg);
never@739 1940
never@739 1941 // prints msg and continues
never@739 1942 void warn(const char* msg);
never@739 1943
never@739 1944 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
never@739 1945 static void debug64(char* msg, int64_t pc, int64_t regs[]);
never@739 1946
duke@435 1947 void os_breakpoint();
never@739 1948
duke@435 1949 void untested() { stop("untested"); }
never@739 1950
twisti@2201 1951 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
never@739 1952
duke@435 1953 void should_not_reach_here() { stop("should not reach here"); }
never@739 1954
duke@435 1955 void print_CPU_state();
duke@435 1956
duke@435 1957 // Stack overflow checking
duke@435 1958 void bang_stack_with_offset(int offset) {
duke@435 1959 // stack grows down, caller passes positive offset
duke@435 1960 assert(offset > 0, "must bang with negative offset");
duke@435 1961 movl(Address(rsp, (-offset)), rax);
duke@435 1962 }
duke@435 1963
duke@435 1964 // Writes to stack successive pages until offset reached to check for
duke@435 1965 // stack overflow + shadow pages. Also, clobbers tmp
duke@435 1966 void bang_stack_size(Register size, Register tmp);
duke@435 1967
jrose@1100 1968 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 1969 Register tmp,
jrose@1100 1970 int offset);
jrose@1057 1971
duke@435 1972 // Support for serializing memory accesses between threads
duke@435 1973 void serialize_memory(Register thread, Register tmp);
duke@435 1974
duke@435 1975 void verify_tlab();
duke@435 1976
duke@435 1977 // Biased locking support
duke@435 1978 // lock_reg and obj_reg must be loaded up with the appropriate values.
duke@435 1979 // swap_reg must be rax, and is killed.
duke@435 1980 // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
duke@435 1981 // be killed; if not supplied, push/pop will be used internally to
duke@435 1982 // allocate a temporary (inefficient, avoid if possible).
duke@435 1983 // Optional slow case is for implementations (interpreter and C1) which branch to
duke@435 1984 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
duke@435 1985 // Returns offset of first potentially-faulting instruction for null
duke@435 1986 // check info (currently consumed only by C1). If
duke@435 1987 // swap_reg_contains_mark is true then returns -1 as it is assumed
duke@435 1988 // the calling code has already passed any potential faults.
kvn@855 1989 int biased_locking_enter(Register lock_reg, Register obj_reg,
kvn@855 1990 Register swap_reg, Register tmp_reg,
duke@435 1991 bool swap_reg_contains_mark,
duke@435 1992 Label& done, Label* slow_case = NULL,
duke@435 1993 BiasedLockingCounters* counters = NULL);
duke@435 1994 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
duke@435 1995
duke@435 1996
duke@435 1997 Condition negate_condition(Condition cond);
duke@435 1998
duke@435 1999 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
duke@435 2000 // operands. In general the names are modified to avoid hiding the instruction in Assembler
duke@435 2001 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
duke@435 2002 // here in MacroAssembler. The major exception to this rule is call
duke@435 2003
duke@435 2004 // Arithmetics
duke@435 2005
never@739 2006
never@739 2007 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
never@739 2008 void addptr(Address dst, Register src);
never@739 2009
never@739 2010 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
never@739 2011 void addptr(Register dst, int32_t src);
never@739 2012 void addptr(Register dst, Register src);
never@739 2013
never@739 2014 void andptr(Register dst, int32_t src);
never@739 2015 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
never@739 2016
never@739 2017 void cmp8(AddressLiteral src1, int imm);
never@739 2018
never@739 2019 // renamed to drag out the casting of address to int32_t/intptr_t
duke@435 2020 void cmp32(Register src1, int32_t imm);
duke@435 2021
duke@435 2022 void cmp32(AddressLiteral src1, int32_t imm);
duke@435 2023 // compare reg - mem, or reg - &mem
duke@435 2024 void cmp32(Register src1, AddressLiteral src2);
duke@435 2025
duke@435 2026 void cmp32(Register src1, Address src2);
duke@435 2027
never@739 2028 #ifndef _LP64
never@739 2029 void cmpoop(Address dst, jobject obj);
never@739 2030 void cmpoop(Register dst, jobject obj);
never@739 2031 #endif // _LP64
never@739 2032
duke@435 2033 // NOTE src2 must be the lval. This is NOT an mem-mem compare
duke@435 2034 void cmpptr(Address src1, AddressLiteral src2);
duke@435 2035
duke@435 2036 void cmpptr(Register src1, AddressLiteral src2);
duke@435 2037
never@739 2038 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2039 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2040 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2041
never@739 2042 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2043 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 2044
never@739 2045 // cmp64 to avoild hiding cmpq
never@739 2046 void cmp64(Register src1, AddressLiteral src);
never@739 2047
never@739 2048 void cmpxchgptr(Register reg, Address adr);
never@739 2049
never@739 2050 void locked_cmpxchgptr(Register reg, AddressLiteral adr);
never@739 2051
never@739 2052
never@739 2053 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
never@739 2054
never@739 2055
never@739 2056 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
never@739 2057
never@739 2058 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
never@739 2059
never@739 2060 void shlptr(Register dst, int32_t shift);
never@739 2061 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
never@739 2062
never@739 2063 void shrptr(Register dst, int32_t shift);
never@739 2064 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
never@739 2065
never@739 2066 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
never@739 2067 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
never@739 2068
never@739 2069 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 2070
never@739 2071 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 2072 void subptr(Register dst, int32_t src);
never@739 2073 void subptr(Register dst, Register src);
never@739 2074
never@739 2075
never@739 2076 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 2077 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 2078
never@739 2079 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 2080 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 2081
never@739 2082 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
never@739 2083
never@739 2084
duke@435 2085
duke@435 2086 // Helper functions for statistics gathering.
duke@435 2087 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
duke@435 2088 void cond_inc32(Condition cond, AddressLiteral counter_addr);
duke@435 2089 // Unconditional atomic increment.
duke@435 2090 void atomic_incl(AddressLiteral counter_addr);
duke@435 2091
duke@435 2092 void lea(Register dst, AddressLiteral adr);
duke@435 2093 void lea(Address dst, AddressLiteral adr);
never@739 2094 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
never@739 2095
never@739 2096 void leal32(Register dst, Address src) { leal(dst, src); }
never@739 2097
iveresov@2686 2098 // Import other testl() methods from the parent class or else
iveresov@2686 2099 // they will be hidden by the following overriding declaration.
iveresov@2686 2100 using Assembler::testl;
iveresov@2686 2101 void testl(Register dst, AddressLiteral src);
never@739 2102
never@739 2103 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2104 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2105 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 2106
never@739 2107 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
never@739 2108 void testptr(Register src1, Register src2);
never@739 2109
never@739 2110 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
never@739 2111 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
duke@435 2112
duke@435 2113 // Calls
duke@435 2114
duke@435 2115 void call(Label& L, relocInfo::relocType rtype);
duke@435 2116 void call(Register entry);
duke@435 2117
duke@435 2118 // NOTE: this call tranfers to the effective address of entry NOT
duke@435 2119 // the address contained by entry. This is because this is more natural
duke@435 2120 // for jumps/calls.
duke@435 2121 void call(AddressLiteral entry);
duke@435 2122
duke@435 2123 // Jumps
duke@435 2124
duke@435 2125 // NOTE: these jumps tranfer to the effective address of dst NOT
duke@435 2126 // the address contained by dst. This is because this is more natural
duke@435 2127 // for jumps/calls.
duke@435 2128 void jump(AddressLiteral dst);
duke@435 2129 void jump_cc(Condition cc, AddressLiteral dst);
duke@435 2130
duke@435 2131 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 2132 // to be installed in the Address class. This jump will tranfers to the address
duke@435 2133 // contained in the location described by entry (not the address of entry)
duke@435 2134 void jump(ArrayAddress entry);
duke@435 2135
duke@435 2136 // Floating
duke@435 2137
duke@435 2138 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
duke@435 2139 void andpd(XMMRegister dst, AddressLiteral src);
duke@435 2140
duke@435 2141 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
duke@435 2142 void comiss(XMMRegister dst, AddressLiteral src);
duke@435 2143
duke@435 2144 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
duke@435 2145 void comisd(XMMRegister dst, AddressLiteral src);
duke@435 2146
twisti@2350 2147 void fadd_s(Address src) { Assembler::fadd_s(src); }
twisti@2350 2148 void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
twisti@2350 2149
duke@435 2150 void fldcw(Address src) { Assembler::fldcw(src); }
duke@435 2151 void fldcw(AddressLiteral src);
duke@435 2152
duke@435 2153 void fld_s(int index) { Assembler::fld_s(index); }
duke@435 2154 void fld_s(Address src) { Assembler::fld_s(src); }
duke@435 2155 void fld_s(AddressLiteral src);
duke@435 2156
duke@435 2157 void fld_d(Address src) { Assembler::fld_d(src); }
duke@435 2158 void fld_d(AddressLiteral src);
duke@435 2159
duke@435 2160 void fld_x(Address src) { Assembler::fld_x(src); }
duke@435 2161 void fld_x(AddressLiteral src);
duke@435 2162
twisti@2350 2163 void fmul_s(Address src) { Assembler::fmul_s(src); }
twisti@2350 2164 void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
twisti@2350 2165
duke@435 2166 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
duke@435 2167 void ldmxcsr(AddressLiteral src);
duke@435 2168
never@739 2169 private:
never@739 2170 // these are private because users should be doing movflt/movdbl
never@739 2171
duke@435 2172 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2173 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2174 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
duke@435 2175 void movss(XMMRegister dst, AddressLiteral src);
duke@435 2176
never@739 2177 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
never@739 2178 void movlpd(XMMRegister dst, AddressLiteral src);
never@739 2179
never@739 2180 public:
never@739 2181
twisti@2350 2182 void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); }
twisti@2350 2183 void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); }
twisti@2350 2184 void addsd(XMMRegister dst, AddressLiteral src) { Assembler::addsd(dst, as_Address(src)); }
twisti@2350 2185
twisti@2350 2186 void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); }
twisti@2350 2187 void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); }
twisti@2350 2188 void addss(XMMRegister dst, AddressLiteral src) { Assembler::addss(dst, as_Address(src)); }
twisti@2350 2189
twisti@2350 2190 void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); }
twisti@2350 2191 void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); }
twisti@2350 2192 void divsd(XMMRegister dst, AddressLiteral src) { Assembler::divsd(dst, as_Address(src)); }
twisti@2350 2193
twisti@2350 2194 void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); }
twisti@2350 2195 void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); }
twisti@2350 2196 void divss(XMMRegister dst, AddressLiteral src) { Assembler::divss(dst, as_Address(src)); }
twisti@2350 2197
phh@2423 2198 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
phh@2423 2199 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
phh@2423 2200 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
twisti@2350 2201 void movsd(XMMRegister dst, AddressLiteral src) { Assembler::movsd(dst, as_Address(src)); }
twisti@2350 2202
twisti@2350 2203 void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); }
twisti@2350 2204 void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); }
twisti@2350 2205 void mulsd(XMMRegister dst, AddressLiteral src) { Assembler::mulsd(dst, as_Address(src)); }
twisti@2350 2206
twisti@2350 2207 void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); }
twisti@2350 2208 void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); }
twisti@2350 2209 void mulss(XMMRegister dst, AddressLiteral src) { Assembler::mulss(dst, as_Address(src)); }
twisti@2350 2210
twisti@2350 2211 void sqrtsd(XMMRegister dst, XMMRegister src) { Assembler::sqrtsd(dst, src); }
twisti@2350 2212 void sqrtsd(XMMRegister dst, Address src) { Assembler::sqrtsd(dst, src); }
twisti@2350 2213 void sqrtsd(XMMRegister dst, AddressLiteral src) { Assembler::sqrtsd(dst, as_Address(src)); }
twisti@2350 2214
twisti@2350 2215 void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); }
twisti@2350 2216 void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); }
twisti@2350 2217 void sqrtss(XMMRegister dst, AddressLiteral src) { Assembler::sqrtss(dst, as_Address(src)); }
twisti@2350 2218
twisti@2350 2219 void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); }
twisti@2350 2220 void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); }
twisti@2350 2221 void subsd(XMMRegister dst, AddressLiteral src) { Assembler::subsd(dst, as_Address(src)); }
twisti@2350 2222
twisti@2350 2223 void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); }
twisti@2350 2224 void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); }
twisti@2350 2225 void subss(XMMRegister dst, AddressLiteral src) { Assembler::subss(dst, as_Address(src)); }
duke@435 2226
duke@435 2227 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
duke@435 2228 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
duke@435 2229 void ucomiss(XMMRegister dst, AddressLiteral src);
duke@435 2230
duke@435 2231 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
duke@435 2232 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
duke@435 2233 void ucomisd(XMMRegister dst, AddressLiteral src);
duke@435 2234
duke@435 2235 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
duke@435 2236 void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
duke@435 2237 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
duke@435 2238 void xorpd(XMMRegister dst, AddressLiteral src);
duke@435 2239
duke@435 2240 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
duke@435 2241 void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
duke@435 2242 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
duke@435 2243 void xorps(XMMRegister dst, AddressLiteral src);
duke@435 2244
duke@435 2245 // Data
duke@435 2246
never@739 2247 void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2248
never@739 2249 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2250 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2251
duke@435 2252 void movoop(Register dst, jobject obj);
duke@435 2253 void movoop(Address dst, jobject obj);
duke@435 2254
duke@435 2255 void movptr(ArrayAddress dst, Register src);
duke@435 2256 // can this do an lea?
duke@435 2257 void movptr(Register dst, ArrayAddress src);
duke@435 2258
never@739 2259 void movptr(Register dst, Address src);
never@739 2260
duke@435 2261 void movptr(Register dst, AddressLiteral src);
duke@435 2262
never@739 2263 void movptr(Register dst, intptr_t src);
never@739 2264 void movptr(Register dst, Register src);
never@739 2265 void movptr(Address dst, intptr_t src);
never@739 2266
never@739 2267 void movptr(Address dst, Register src);
never@739 2268
never@739 2269 #ifdef _LP64
never@739 2270 // Generally the next two are only used for moving NULL
never@739 2271 // Although there are situations in initializing the mark word where
never@739 2272 // they could be used. They are dangerous.
never@739 2273
never@739 2274 // They only exist on LP64 so that int32_t and intptr_t are not the same
never@739 2275 // and we have ambiguous declarations.
never@739 2276
never@739 2277 void movptr(Address dst, int32_t imm32);
never@739 2278 void movptr(Register dst, int32_t imm32);
never@739 2279 #endif // _LP64
never@739 2280
duke@435 2281 // to avoid hiding movl
duke@435 2282 void mov32(AddressLiteral dst, Register src);
duke@435 2283 void mov32(Register dst, AddressLiteral src);
never@739 2284
duke@435 2285 // to avoid hiding movb
duke@435 2286 void movbyte(ArrayAddress dst, int src);
duke@435 2287
duke@435 2288 // Can push value or effective address
duke@435 2289 void pushptr(AddressLiteral src);
duke@435 2290
never@739 2291 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
never@739 2292 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
never@739 2293
never@739 2294 void pushoop(jobject obj);
never@739 2295
never@739 2296 // sign extend as need a l to ptr sized element
never@739 2297 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
never@739 2298 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
never@739 2299
kvn@1421 2300 // IndexOf strings.
kvn@2602 2301 // Small strings are loaded through stack if they cross page boundary.
kvn@1421 2302 void string_indexof(Register str1, Register str2,
kvn@2602 2303 Register cnt1, Register cnt2,
kvn@2602 2304 int int_cnt2, Register result,
kvn@1421 2305 XMMRegister vec, Register tmp);
kvn@1421 2306
kvn@2602 2307 // IndexOf for constant substrings with size >= 8 elements
kvn@2602 2308 // which don't need to be loaded through stack.
kvn@2602 2309 void string_indexofC8(Register str1, Register str2,
kvn@2602 2310 Register cnt1, Register cnt2,
kvn@2602 2311 int int_cnt2, Register result,
kvn@2602 2312 XMMRegister vec, Register tmp);
kvn@2602 2313
kvn@2602 2314 // Smallest code: we don't need to load through stack,
kvn@2602 2315 // check string tail.
kvn@2602 2316
kvn@1421 2317 // Compare strings.
kvn@1421 2318 void string_compare(Register str1, Register str2,
kvn@1421 2319 Register cnt1, Register cnt2, Register result,
never@2569 2320 XMMRegister vec1);
kvn@1421 2321
kvn@1421 2322 // Compare char[] arrays.
kvn@1421 2323 void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
kvn@1421 2324 Register limit, Register result, Register chr,
kvn@1421 2325 XMMRegister vec1, XMMRegister vec2);
never@739 2326
never@2118 2327 // Fill primitive arrays
never@2118 2328 void generate_fill(BasicType t, bool aligned,
never@2118 2329 Register to, Register value, Register count,
never@2118 2330 Register rtmp, XMMRegister xtmp);
never@2118 2331
duke@435 2332 #undef VIRTUAL
duke@435 2333
duke@435 2334 };
duke@435 2335
duke@435 2336 /**
duke@435 2337 * class SkipIfEqual:
duke@435 2338 *
duke@435 2339 * Instantiating this class will result in assembly code being output that will
duke@435 2340 * jump around any code emitted between the creation of the instance and it's
duke@435 2341 * automatic destruction at the end of a scope block, depending on the value of
duke@435 2342 * the flag passed to the constructor, which will be checked at run-time.
duke@435 2343 */
duke@435 2344 class SkipIfEqual {
duke@435 2345 private:
duke@435 2346 MacroAssembler* _masm;
duke@435 2347 Label _label;
duke@435 2348
duke@435 2349 public:
duke@435 2350 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
duke@435 2351 ~SkipIfEqual();
duke@435 2352 };
duke@435 2353
duke@435 2354 #ifdef ASSERT
duke@435 2355 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
duke@435 2356 #endif
stefank@2314 2357
stefank@2314 2358 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP

mercurial