src/share/vm/opto/type.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 2658
c7f3d0b4570f
child 3901
24b9c7f4cae6
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciTypeFlow.hpp"
    27 #include "classfile/symbolTable.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "libadt/dict.hpp"
    31 #include "memory/gcLocker.hpp"
    32 #include "memory/oopFactory.hpp"
    33 #include "memory/resourceArea.hpp"
    34 #include "oops/instanceKlass.hpp"
    35 #include "oops/instanceMirrorKlass.hpp"
    36 #include "oops/klassKlass.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "oops/typeArrayKlass.hpp"
    39 #include "opto/matcher.hpp"
    40 #include "opto/node.hpp"
    41 #include "opto/opcodes.hpp"
    42 #include "opto/type.hpp"
    44 // Portions of code courtesy of Clifford Click
    46 // Optimization - Graph Style
    48 // Dictionary of types shared among compilations.
    49 Dict* Type::_shared_type_dict = NULL;
    51 // Array which maps compiler types to Basic Types
    52 const BasicType Type::_basic_type[Type::lastype] = {
    53   T_ILLEGAL,    // Bad
    54   T_ILLEGAL,    // Control
    55   T_VOID,       // Top
    56   T_INT,        // Int
    57   T_LONG,       // Long
    58   T_VOID,       // Half
    59   T_NARROWOOP,  // NarrowOop
    61   T_ILLEGAL,    // Tuple
    62   T_ARRAY,      // Array
    64   T_ADDRESS,    // AnyPtr   // shows up in factory methods for NULL_PTR
    65   T_ADDRESS,    // RawPtr
    66   T_OBJECT,     // OopPtr
    67   T_OBJECT,     // InstPtr
    68   T_OBJECT,     // AryPtr
    69   T_OBJECT,     // KlassPtr
    71   T_OBJECT,     // Function
    72   T_ILLEGAL,    // Abio
    73   T_ADDRESS,    // Return_Address
    74   T_ILLEGAL,    // Memory
    75   T_FLOAT,      // FloatTop
    76   T_FLOAT,      // FloatCon
    77   T_FLOAT,      // FloatBot
    78   T_DOUBLE,     // DoubleTop
    79   T_DOUBLE,     // DoubleCon
    80   T_DOUBLE,     // DoubleBot
    81   T_ILLEGAL,    // Bottom
    82 };
    84 // Map ideal registers (machine types) to ideal types
    85 const Type *Type::mreg2type[_last_machine_leaf];
    87 // Map basic types to canonical Type* pointers.
    88 const Type* Type::     _const_basic_type[T_CONFLICT+1];
    90 // Map basic types to constant-zero Types.
    91 const Type* Type::            _zero_type[T_CONFLICT+1];
    93 // Map basic types to array-body alias types.
    94 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
    96 //=============================================================================
    97 // Convenience common pre-built types.
    98 const Type *Type::ABIO;         // State-of-machine only
    99 const Type *Type::BOTTOM;       // All values
   100 const Type *Type::CONTROL;      // Control only
   101 const Type *Type::DOUBLE;       // All doubles
   102 const Type *Type::FLOAT;        // All floats
   103 const Type *Type::HALF;         // Placeholder half of doublewide type
   104 const Type *Type::MEMORY;       // Abstract store only
   105 const Type *Type::RETURN_ADDRESS;
   106 const Type *Type::TOP;          // No values in set
   108 //------------------------------get_const_type---------------------------
   109 const Type* Type::get_const_type(ciType* type) {
   110   if (type == NULL) {
   111     return NULL;
   112   } else if (type->is_primitive_type()) {
   113     return get_const_basic_type(type->basic_type());
   114   } else {
   115     return TypeOopPtr::make_from_klass(type->as_klass());
   116   }
   117 }
   119 //---------------------------array_element_basic_type---------------------------------
   120 // Mapping to the array element's basic type.
   121 BasicType Type::array_element_basic_type() const {
   122   BasicType bt = basic_type();
   123   if (bt == T_INT) {
   124     if (this == TypeInt::INT)   return T_INT;
   125     if (this == TypeInt::CHAR)  return T_CHAR;
   126     if (this == TypeInt::BYTE)  return T_BYTE;
   127     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   128     if (this == TypeInt::SHORT) return T_SHORT;
   129     return T_VOID;
   130   }
   131   return bt;
   132 }
   134 //---------------------------get_typeflow_type---------------------------------
   135 // Import a type produced by ciTypeFlow.
   136 const Type* Type::get_typeflow_type(ciType* type) {
   137   switch (type->basic_type()) {
   139   case ciTypeFlow::StateVector::T_BOTTOM:
   140     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   141     return Type::BOTTOM;
   143   case ciTypeFlow::StateVector::T_TOP:
   144     assert(type == ciTypeFlow::StateVector::top_type(), "");
   145     return Type::TOP;
   147   case ciTypeFlow::StateVector::T_NULL:
   148     assert(type == ciTypeFlow::StateVector::null_type(), "");
   149     return TypePtr::NULL_PTR;
   151   case ciTypeFlow::StateVector::T_LONG2:
   152     // The ciTypeFlow pass pushes a long, then the half.
   153     // We do the same.
   154     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   155     return TypeInt::TOP;
   157   case ciTypeFlow::StateVector::T_DOUBLE2:
   158     // The ciTypeFlow pass pushes double, then the half.
   159     // Our convention is the same.
   160     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   161     return Type::TOP;
   163   case T_ADDRESS:
   164     assert(type->is_return_address(), "");
   165     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   167   default:
   168     // make sure we did not mix up the cases:
   169     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   170     assert(type != ciTypeFlow::StateVector::top_type(), "");
   171     assert(type != ciTypeFlow::StateVector::null_type(), "");
   172     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   173     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   174     assert(!type->is_return_address(), "");
   176     return Type::get_const_type(type);
   177   }
   178 }
   181 //------------------------------make-------------------------------------------
   182 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   183 // and look for an existing copy in the type dictionary.
   184 const Type *Type::make( enum TYPES t ) {
   185   return (new Type(t))->hashcons();
   186 }
   188 //------------------------------cmp--------------------------------------------
   189 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   190   if( t1->_base != t2->_base )
   191     return 1;                   // Missed badly
   192   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   193   return !t1->eq(t2);           // Return ZERO if equal
   194 }
   196 //------------------------------hash-------------------------------------------
   197 int Type::uhash( const Type *const t ) {
   198   return t->hash();
   199 }
   201 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
   203 //--------------------------Initialize_shared----------------------------------
   204 void Type::Initialize_shared(Compile* current) {
   205   // This method does not need to be locked because the first system
   206   // compilations (stub compilations) occur serially.  If they are
   207   // changed to proceed in parallel, then this section will need
   208   // locking.
   210   Arena* save = current->type_arena();
   211   Arena* shared_type_arena = new (mtCompiler)Arena();
   213   current->set_type_arena(shared_type_arena);
   214   _shared_type_dict =
   215     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   216                                   shared_type_arena, 128 );
   217   current->set_type_dict(_shared_type_dict);
   219   // Make shared pre-built types.
   220   CONTROL = make(Control);      // Control only
   221   TOP     = make(Top);          // No values in set
   222   MEMORY  = make(Memory);       // Abstract store only
   223   ABIO    = make(Abio);         // State-of-machine only
   224   RETURN_ADDRESS=make(Return_Address);
   225   FLOAT   = make(FloatBot);     // All floats
   226   DOUBLE  = make(DoubleBot);    // All doubles
   227   BOTTOM  = make(Bottom);       // Everything
   228   HALF    = make(Half);         // Placeholder half of doublewide type
   230   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   231   TypeF::ONE  = TypeF::make(1.0); // Float 1
   233   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   234   TypeD::ONE  = TypeD::make(1.0); // Double 1
   236   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   237   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   238   TypeInt::ONE     = TypeInt::make( 1);  //  1
   239   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   240   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   241   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   242   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   243   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   244   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   245   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   246   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   247   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   248   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   249   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   250   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   251   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   252   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   253   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   254   // CmpL is overloaded both as the bytecode computation returning
   255   // a trinary (-1,0,+1) integer result AND as an efficient long
   256   // compare returning optimizer ideal-type flags.
   257   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   258   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   259   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   260   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   261   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
   263   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   264   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   265   TypeLong::ONE     = TypeLong::make( 1);        //  1
   266   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   267   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   268   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   269   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   271   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   272   fboth[0] = Type::CONTROL;
   273   fboth[1] = Type::CONTROL;
   274   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   276   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   277   ffalse[0] = Type::CONTROL;
   278   ffalse[1] = Type::TOP;
   279   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   281   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   282   fneither[0] = Type::TOP;
   283   fneither[1] = Type::TOP;
   284   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   286   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   287   ftrue[0] = Type::TOP;
   288   ftrue[1] = Type::CONTROL;
   289   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   291   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   292   floop[0] = Type::CONTROL;
   293   floop[1] = TypeInt::INT;
   294   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   296   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   297   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   298   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   300   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   301   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   303   const Type **fmembar = TypeTuple::fields(0);
   304   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   306   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   307   fsc[0] = TypeInt::CC;
   308   fsc[1] = Type::MEMORY;
   309   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   311   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   312   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   313   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   314   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   315                                            false, 0, oopDesc::mark_offset_in_bytes());
   316   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   317                                            false, 0, oopDesc::klass_offset_in_bytes());
   318   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
   320   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   321   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   323   mreg2type[Op_Node] = Type::BOTTOM;
   324   mreg2type[Op_Set ] = 0;
   325   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   326   mreg2type[Op_RegI] = TypeInt::INT;
   327   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   328   mreg2type[Op_RegF] = Type::FLOAT;
   329   mreg2type[Op_RegD] = Type::DOUBLE;
   330   mreg2type[Op_RegL] = TypeLong::LONG;
   331   mreg2type[Op_RegFlags] = TypeInt::CC;
   333   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
   335   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   337 #ifdef _LP64
   338   if (UseCompressedOops) {
   339     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   340   } else
   341 #endif
   342   {
   343     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   344     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   345   }
   346   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   347   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   348   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   349   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   350   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   351   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   352   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   354   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   355   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   356   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   357   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   358   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   359   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   360   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   361   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   362   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   363   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   364   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   365   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   367   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   368   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   370   const Type **fi2c = TypeTuple::fields(2);
   371   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
   372   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   373   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   375   const Type **intpair = TypeTuple::fields(2);
   376   intpair[0] = TypeInt::INT;
   377   intpair[1] = TypeInt::INT;
   378   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   380   const Type **longpair = TypeTuple::fields(2);
   381   longpair[0] = TypeLong::LONG;
   382   longpair[1] = TypeLong::LONG;
   383   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   385   _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
   386   _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
   387   _const_basic_type[T_CHAR]    = TypeInt::CHAR;
   388   _const_basic_type[T_BYTE]    = TypeInt::BYTE;
   389   _const_basic_type[T_SHORT]   = TypeInt::SHORT;
   390   _const_basic_type[T_INT]     = TypeInt::INT;
   391   _const_basic_type[T_LONG]    = TypeLong::LONG;
   392   _const_basic_type[T_FLOAT]   = Type::FLOAT;
   393   _const_basic_type[T_DOUBLE]  = Type::DOUBLE;
   394   _const_basic_type[T_OBJECT]  = TypeInstPtr::BOTTOM;
   395   _const_basic_type[T_ARRAY]   = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   396   _const_basic_type[T_VOID]    = TypePtr::NULL_PTR;   // reflection represents void this way
   397   _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   398   _const_basic_type[T_CONFLICT]= Type::BOTTOM;        // why not?
   400   _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
   401   _zero_type[T_BOOLEAN] = TypeInt::ZERO;     // false == 0
   402   _zero_type[T_CHAR]    = TypeInt::ZERO;     // '\0' == 0
   403   _zero_type[T_BYTE]    = TypeInt::ZERO;     // 0x00 == 0
   404   _zero_type[T_SHORT]   = TypeInt::ZERO;     // 0x0000 == 0
   405   _zero_type[T_INT]     = TypeInt::ZERO;
   406   _zero_type[T_LONG]    = TypeLong::ZERO;
   407   _zero_type[T_FLOAT]   = TypeF::ZERO;
   408   _zero_type[T_DOUBLE]  = TypeD::ZERO;
   409   _zero_type[T_OBJECT]  = TypePtr::NULL_PTR;
   410   _zero_type[T_ARRAY]   = TypePtr::NULL_PTR; // null array is null oop
   411   _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
   412   _zero_type[T_VOID]    = Type::TOP;         // the only void value is no value at all
   414   // get_zero_type() should not happen for T_CONFLICT
   415   _zero_type[T_CONFLICT]= NULL;
   417   // Restore working type arena.
   418   current->set_type_arena(save);
   419   current->set_type_dict(NULL);
   420 }
   422 //------------------------------Initialize-------------------------------------
   423 void Type::Initialize(Compile* current) {
   424   assert(current->type_arena() != NULL, "must have created type arena");
   426   if (_shared_type_dict == NULL) {
   427     Initialize_shared(current);
   428   }
   430   Arena* type_arena = current->type_arena();
   432   // Create the hash-cons'ing dictionary with top-level storage allocation
   433   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   434   current->set_type_dict(tdic);
   436   // Transfer the shared types.
   437   DictI i(_shared_type_dict);
   438   for( ; i.test(); ++i ) {
   439     Type* t = (Type*)i._value;
   440     tdic->Insert(t,t);  // New Type, insert into Type table
   441   }
   443 #ifdef ASSERT
   444   verify_lastype();
   445 #endif
   446 }
   448 //------------------------------hashcons---------------------------------------
   449 // Do the hash-cons trick.  If the Type already exists in the type table,
   450 // delete the current Type and return the existing Type.  Otherwise stick the
   451 // current Type in the Type table.
   452 const Type *Type::hashcons(void) {
   453   debug_only(base());           // Check the assertion in Type::base().
   454   // Look up the Type in the Type dictionary
   455   Dict *tdic = type_dict();
   456   Type* old = (Type*)(tdic->Insert(this, this, false));
   457   if( old ) {                   // Pre-existing Type?
   458     if( old != this )           // Yes, this guy is not the pre-existing?
   459       delete this;              // Yes, Nuke this guy
   460     assert( old->_dual, "" );
   461     return old;                 // Return pre-existing
   462   }
   464   // Every type has a dual (to make my lattice symmetric).
   465   // Since we just discovered a new Type, compute its dual right now.
   466   assert( !_dual, "" );         // No dual yet
   467   _dual = xdual();              // Compute the dual
   468   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   469     _dual = this;
   470     return this;
   471   }
   472   assert( !_dual->_dual, "" );  // No reverse dual yet
   473   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   474   // New Type, insert into Type table
   475   tdic->Insert((void*)_dual,(void*)_dual);
   476   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   477 #ifdef ASSERT
   478   Type *dual_dual = (Type*)_dual->xdual();
   479   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   480   delete dual_dual;
   481 #endif
   482   return this;                  // Return new Type
   483 }
   485 //------------------------------eq---------------------------------------------
   486 // Structural equality check for Type representations
   487 bool Type::eq( const Type * ) const {
   488   return true;                  // Nothing else can go wrong
   489 }
   491 //------------------------------hash-------------------------------------------
   492 // Type-specific hashing function.
   493 int Type::hash(void) const {
   494   return _base;
   495 }
   497 //------------------------------is_finite--------------------------------------
   498 // Has a finite value
   499 bool Type::is_finite() const {
   500   return false;
   501 }
   503 //------------------------------is_nan-----------------------------------------
   504 // Is not a number (NaN)
   505 bool Type::is_nan()    const {
   506   return false;
   507 }
   509 //----------------------interface_vs_oop---------------------------------------
   510 #ifdef ASSERT
   511 bool Type::interface_vs_oop(const Type *t) const {
   512   bool result = false;
   514   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   515   const TypePtr*    t_ptr =    t->make_ptr();
   516   if( this_ptr == NULL || t_ptr == NULL )
   517     return result;
   519   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   520   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   521   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   522     bool this_interface = this_inst->klass()->is_interface();
   523     bool    t_interface =    t_inst->klass()->is_interface();
   524     result = this_interface ^ t_interface;
   525   }
   527   return result;
   528 }
   529 #endif
   531 //------------------------------meet-------------------------------------------
   532 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   533 // commutative and the lattice is symmetric.
   534 const Type *Type::meet( const Type *t ) const {
   535   if (isa_narrowoop() && t->isa_narrowoop()) {
   536     const Type* result = make_ptr()->meet(t->make_ptr());
   537     return result->make_narrowoop();
   538   }
   540   const Type *mt = xmeet(t);
   541   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   542 #ifdef ASSERT
   543   assert( mt == t->xmeet(this), "meet not commutative" );
   544   const Type* dual_join = mt->_dual;
   545   const Type *t2t    = dual_join->xmeet(t->_dual);
   546   const Type *t2this = dual_join->xmeet(   _dual);
   548   // Interface meet Oop is Not Symmetric:
   549   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   550   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   552   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
   553     tty->print_cr("=== Meet Not Symmetric ===");
   554     tty->print("t   =                   ");         t->dump(); tty->cr();
   555     tty->print("this=                   ");            dump(); tty->cr();
   556     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
   558     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
   559     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
   560     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
   562     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
   563     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
   565     fatal("meet not symmetric" );
   566   }
   567 #endif
   568   return mt;
   569 }
   571 //------------------------------xmeet------------------------------------------
   572 // Compute the MEET of two types.  It returns a new Type object.
   573 const Type *Type::xmeet( const Type *t ) const {
   574   // Perform a fast test for common case; meeting the same types together.
   575   if( this == t ) return this;  // Meeting same type-rep?
   577   // Meeting TOP with anything?
   578   if( _base == Top ) return t;
   580   // Meeting BOTTOM with anything?
   581   if( _base == Bottom ) return BOTTOM;
   583   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   584   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   585   switch (t->base()) {  // Switch on original type
   587   // Cut in half the number of cases I must handle.  Only need cases for when
   588   // the given enum "t->type" is less than or equal to the local enum "type".
   589   case FloatCon:
   590   case DoubleCon:
   591   case Int:
   592   case Long:
   593     return t->xmeet(this);
   595   case OopPtr:
   596     return t->xmeet(this);
   598   case InstPtr:
   599     return t->xmeet(this);
   601   case KlassPtr:
   602     return t->xmeet(this);
   604   case AryPtr:
   605     return t->xmeet(this);
   607   case NarrowOop:
   608     return t->xmeet(this);
   610   case Bad:                     // Type check
   611   default:                      // Bogus type not in lattice
   612     typerr(t);
   613     return Type::BOTTOM;
   615   case Bottom:                  // Ye Olde Default
   616     return t;
   618   case FloatTop:
   619     if( _base == FloatTop ) return this;
   620   case FloatBot:                // Float
   621     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   622     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   623     typerr(t);
   624     return Type::BOTTOM;
   626   case DoubleTop:
   627     if( _base == DoubleTop ) return this;
   628   case DoubleBot:               // Double
   629     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   630     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   631     typerr(t);
   632     return Type::BOTTOM;
   634   // These next few cases must match exactly or it is a compile-time error.
   635   case Control:                 // Control of code
   636   case Abio:                    // State of world outside of program
   637   case Memory:
   638     if( _base == t->_base )  return this;
   639     typerr(t);
   640     return Type::BOTTOM;
   642   case Top:                     // Top of the lattice
   643     return this;
   644   }
   646   // The type is unchanged
   647   return this;
   648 }
   650 //-----------------------------filter------------------------------------------
   651 const Type *Type::filter( const Type *kills ) const {
   652   const Type* ft = join(kills);
   653   if (ft->empty())
   654     return Type::TOP;           // Canonical empty value
   655   return ft;
   656 }
   658 //------------------------------xdual------------------------------------------
   659 // Compute dual right now.
   660 const Type::TYPES Type::dual_type[Type::lastype] = {
   661   Bad,          // Bad
   662   Control,      // Control
   663   Bottom,       // Top
   664   Bad,          // Int - handled in v-call
   665   Bad,          // Long - handled in v-call
   666   Half,         // Half
   667   Bad,          // NarrowOop - handled in v-call
   669   Bad,          // Tuple - handled in v-call
   670   Bad,          // Array - handled in v-call
   672   Bad,          // AnyPtr - handled in v-call
   673   Bad,          // RawPtr - handled in v-call
   674   Bad,          // OopPtr - handled in v-call
   675   Bad,          // InstPtr - handled in v-call
   676   Bad,          // AryPtr - handled in v-call
   677   Bad,          // KlassPtr - handled in v-call
   679   Bad,          // Function - handled in v-call
   680   Abio,         // Abio
   681   Return_Address,// Return_Address
   682   Memory,       // Memory
   683   FloatBot,     // FloatTop
   684   FloatCon,     // FloatCon
   685   FloatTop,     // FloatBot
   686   DoubleBot,    // DoubleTop
   687   DoubleCon,    // DoubleCon
   688   DoubleTop,    // DoubleBot
   689   Top           // Bottom
   690 };
   692 const Type *Type::xdual() const {
   693   // Note: the base() accessor asserts the sanity of _base.
   694   assert(dual_type[base()] != Bad, "implement with v-call");
   695   return new Type(dual_type[_base]);
   696 }
   698 //------------------------------has_memory-------------------------------------
   699 bool Type::has_memory() const {
   700   Type::TYPES tx = base();
   701   if (tx == Memory) return true;
   702   if (tx == Tuple) {
   703     const TypeTuple *t = is_tuple();
   704     for (uint i=0; i < t->cnt(); i++) {
   705       tx = t->field_at(i)->base();
   706       if (tx == Memory)  return true;
   707     }
   708   }
   709   return false;
   710 }
   712 #ifndef PRODUCT
   713 //------------------------------dump2------------------------------------------
   714 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   715   st->print(msg[_base]);
   716 }
   718 //------------------------------dump-------------------------------------------
   719 void Type::dump_on(outputStream *st) const {
   720   ResourceMark rm;
   721   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   722   dump2(d,1, st);
   723   if (is_ptr_to_narrowoop()) {
   724     st->print(" [narrow]");
   725   }
   726 }
   728 //------------------------------data-------------------------------------------
   729 const char * const Type::msg[Type::lastype] = {
   730   "bad","control","top","int:","long:","half", "narrowoop:",
   731   "tuple:", "aryptr",
   732   "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
   733   "func", "abIO", "return_address", "memory",
   734   "float_top", "ftcon:", "float",
   735   "double_top", "dblcon:", "double",
   736   "bottom"
   737 };
   738 #endif
   740 //------------------------------singleton--------------------------------------
   741 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   742 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   743 bool Type::singleton(void) const {
   744   return _base == Top || _base == Half;
   745 }
   747 //------------------------------empty------------------------------------------
   748 // TRUE if Type is a type with no values, FALSE otherwise.
   749 bool Type::empty(void) const {
   750   switch (_base) {
   751   case DoubleTop:
   752   case FloatTop:
   753   case Top:
   754     return true;
   756   case Half:
   757   case Abio:
   758   case Return_Address:
   759   case Memory:
   760   case Bottom:
   761   case FloatBot:
   762   case DoubleBot:
   763     return false;  // never a singleton, therefore never empty
   764   }
   766   ShouldNotReachHere();
   767   return false;
   768 }
   770 //------------------------------dump_stats-------------------------------------
   771 // Dump collected statistics to stderr
   772 #ifndef PRODUCT
   773 void Type::dump_stats() {
   774   tty->print("Types made: %d\n", type_dict()->Size());
   775 }
   776 #endif
   778 //------------------------------typerr-----------------------------------------
   779 void Type::typerr( const Type *t ) const {
   780 #ifndef PRODUCT
   781   tty->print("\nError mixing types: ");
   782   dump();
   783   tty->print(" and ");
   784   t->dump();
   785   tty->print("\n");
   786 #endif
   787   ShouldNotReachHere();
   788 }
   790 //------------------------------isa_oop_ptr------------------------------------
   791 // Return true if type is an oop pointer type.  False for raw pointers.
   792 static char isa_oop_ptr_tbl[Type::lastype] = {
   793   0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
   794   0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
   795   0/*func*/,0,0/*return_address*/,0,
   796   /*floats*/0,0,0, /*doubles*/0,0,0,
   797   0
   798 };
   799 bool Type::isa_oop_ptr() const {
   800   return isa_oop_ptr_tbl[_base] != 0;
   801 }
   803 //------------------------------dump_stats-------------------------------------
   804 // // Check that arrays match type enum
   805 #ifndef PRODUCT
   806 void Type::verify_lastype() {
   807   // Check that arrays match enumeration
   808   assert( Type::dual_type  [Type::lastype - 1] == Type::Top, "did not update array");
   809   assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
   810   // assert( PhiNode::tbl     [Type::lastype - 1] == NULL,    "did not update array");
   811   assert( Matcher::base2reg[Type::lastype - 1] == 0,      "did not update array");
   812   assert( isa_oop_ptr_tbl  [Type::lastype - 1] == (char)0,  "did not update array");
   813 }
   814 #endif
   816 //=============================================================================
   817 // Convenience common pre-built types.
   818 const TypeF *TypeF::ZERO;       // Floating point zero
   819 const TypeF *TypeF::ONE;        // Floating point one
   821 //------------------------------make-------------------------------------------
   822 // Create a float constant
   823 const TypeF *TypeF::make(float f) {
   824   return (TypeF*)(new TypeF(f))->hashcons();
   825 }
   827 //------------------------------meet-------------------------------------------
   828 // Compute the MEET of two types.  It returns a new Type object.
   829 const Type *TypeF::xmeet( const Type *t ) const {
   830   // Perform a fast test for common case; meeting the same types together.
   831   if( this == t ) return this;  // Meeting same type-rep?
   833   // Current "this->_base" is FloatCon
   834   switch (t->base()) {          // Switch on original type
   835   case AnyPtr:                  // Mixing with oops happens when javac
   836   case RawPtr:                  // reuses local variables
   837   case OopPtr:
   838   case InstPtr:
   839   case KlassPtr:
   840   case AryPtr:
   841   case NarrowOop:
   842   case Int:
   843   case Long:
   844   case DoubleTop:
   845   case DoubleCon:
   846   case DoubleBot:
   847   case Bottom:                  // Ye Olde Default
   848     return Type::BOTTOM;
   850   case FloatBot:
   851     return t;
   853   default:                      // All else is a mistake
   854     typerr(t);
   856   case FloatCon:                // Float-constant vs Float-constant?
   857     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   858                                 // must compare bitwise as positive zero, negative zero and NaN have
   859                                 // all the same representation in C++
   860       return FLOAT;             // Return generic float
   861                                 // Equal constants
   862   case Top:
   863   case FloatTop:
   864     break;                      // Return the float constant
   865   }
   866   return this;                  // Return the float constant
   867 }
   869 //------------------------------xdual------------------------------------------
   870 // Dual: symmetric
   871 const Type *TypeF::xdual() const {
   872   return this;
   873 }
   875 //------------------------------eq---------------------------------------------
   876 // Structural equality check for Type representations
   877 bool TypeF::eq( const Type *t ) const {
   878   if( g_isnan(_f) ||
   879       g_isnan(t->getf()) ) {
   880     // One or both are NANs.  If both are NANs return true, else false.
   881     return (g_isnan(_f) && g_isnan(t->getf()));
   882   }
   883   if (_f == t->getf()) {
   884     // (NaN is impossible at this point, since it is not equal even to itself)
   885     if (_f == 0.0) {
   886       // difference between positive and negative zero
   887       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
   888     }
   889     return true;
   890   }
   891   return false;
   892 }
   894 //------------------------------hash-------------------------------------------
   895 // Type-specific hashing function.
   896 int TypeF::hash(void) const {
   897   return *(int*)(&_f);
   898 }
   900 //------------------------------is_finite--------------------------------------
   901 // Has a finite value
   902 bool TypeF::is_finite() const {
   903   return g_isfinite(getf()) != 0;
   904 }
   906 //------------------------------is_nan-----------------------------------------
   907 // Is not a number (NaN)
   908 bool TypeF::is_nan()    const {
   909   return g_isnan(getf()) != 0;
   910 }
   912 //------------------------------dump2------------------------------------------
   913 // Dump float constant Type
   914 #ifndef PRODUCT
   915 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
   916   Type::dump2(d,depth, st);
   917   st->print("%f", _f);
   918 }
   919 #endif
   921 //------------------------------singleton--------------------------------------
   922 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   923 // constants (Ldi nodes).  Singletons are integer, float or double constants
   924 // or a single symbol.
   925 bool TypeF::singleton(void) const {
   926   return true;                  // Always a singleton
   927 }
   929 bool TypeF::empty(void) const {
   930   return false;                 // always exactly a singleton
   931 }
   933 //=============================================================================
   934 // Convenience common pre-built types.
   935 const TypeD *TypeD::ZERO;       // Floating point zero
   936 const TypeD *TypeD::ONE;        // Floating point one
   938 //------------------------------make-------------------------------------------
   939 const TypeD *TypeD::make(double d) {
   940   return (TypeD*)(new TypeD(d))->hashcons();
   941 }
   943 //------------------------------meet-------------------------------------------
   944 // Compute the MEET of two types.  It returns a new Type object.
   945 const Type *TypeD::xmeet( const Type *t ) const {
   946   // Perform a fast test for common case; meeting the same types together.
   947   if( this == t ) return this;  // Meeting same type-rep?
   949   // Current "this->_base" is DoubleCon
   950   switch (t->base()) {          // Switch on original type
   951   case AnyPtr:                  // Mixing with oops happens when javac
   952   case RawPtr:                  // reuses local variables
   953   case OopPtr:
   954   case InstPtr:
   955   case KlassPtr:
   956   case AryPtr:
   957   case NarrowOop:
   958   case Int:
   959   case Long:
   960   case FloatTop:
   961   case FloatCon:
   962   case FloatBot:
   963   case Bottom:                  // Ye Olde Default
   964     return Type::BOTTOM;
   966   case DoubleBot:
   967     return t;
   969   default:                      // All else is a mistake
   970     typerr(t);
   972   case DoubleCon:               // Double-constant vs Double-constant?
   973     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
   974       return DOUBLE;            // Return generic double
   975   case Top:
   976   case DoubleTop:
   977     break;
   978   }
   979   return this;                  // Return the double constant
   980 }
   982 //------------------------------xdual------------------------------------------
   983 // Dual: symmetric
   984 const Type *TypeD::xdual() const {
   985   return this;
   986 }
   988 //------------------------------eq---------------------------------------------
   989 // Structural equality check for Type representations
   990 bool TypeD::eq( const Type *t ) const {
   991   if( g_isnan(_d) ||
   992       g_isnan(t->getd()) ) {
   993     // One or both are NANs.  If both are NANs return true, else false.
   994     return (g_isnan(_d) && g_isnan(t->getd()));
   995   }
   996   if (_d == t->getd()) {
   997     // (NaN is impossible at this point, since it is not equal even to itself)
   998     if (_d == 0.0) {
   999       // difference between positive and negative zero
  1000       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
  1002     return true;
  1004   return false;
  1007 //------------------------------hash-------------------------------------------
  1008 // Type-specific hashing function.
  1009 int TypeD::hash(void) const {
  1010   return *(int*)(&_d);
  1013 //------------------------------is_finite--------------------------------------
  1014 // Has a finite value
  1015 bool TypeD::is_finite() const {
  1016   return g_isfinite(getd()) != 0;
  1019 //------------------------------is_nan-----------------------------------------
  1020 // Is not a number (NaN)
  1021 bool TypeD::is_nan()    const {
  1022   return g_isnan(getd()) != 0;
  1025 //------------------------------dump2------------------------------------------
  1026 // Dump double constant Type
  1027 #ifndef PRODUCT
  1028 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1029   Type::dump2(d,depth,st);
  1030   st->print("%f", _d);
  1032 #endif
  1034 //------------------------------singleton--------------------------------------
  1035 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1036 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1037 // or a single symbol.
  1038 bool TypeD::singleton(void) const {
  1039   return true;                  // Always a singleton
  1042 bool TypeD::empty(void) const {
  1043   return false;                 // always exactly a singleton
  1046 //=============================================================================
  1047 // Convience common pre-built types.
  1048 const TypeInt *TypeInt::MINUS_1;// -1
  1049 const TypeInt *TypeInt::ZERO;   // 0
  1050 const TypeInt *TypeInt::ONE;    // 1
  1051 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1052 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1053 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1054 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1055 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1056 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1057 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1058 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1059 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1060 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1061 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1062 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1063 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1064 const TypeInt *TypeInt::INT;    // 32-bit integers
  1065 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1067 //------------------------------TypeInt----------------------------------------
  1068 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1071 //------------------------------make-------------------------------------------
  1072 const TypeInt *TypeInt::make( jint lo ) {
  1073   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1076 static int normalize_int_widen( jint lo, jint hi, int w ) {
  1077   // Certain normalizations keep us sane when comparing types.
  1078   // The 'SMALLINT' covers constants and also CC and its relatives.
  1079   if (lo <= hi) {
  1080     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
  1081     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  1082   } else {
  1083     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
  1084     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  1086   return w;
  1089 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1090   w = normalize_int_widen(lo, hi, w);
  1091   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1094 //------------------------------meet-------------------------------------------
  1095 // Compute the MEET of two types.  It returns a new Type representation object
  1096 // with reference count equal to the number of Types pointing at it.
  1097 // Caller should wrap a Types around it.
  1098 const Type *TypeInt::xmeet( const Type *t ) const {
  1099   // Perform a fast test for common case; meeting the same types together.
  1100   if( this == t ) return this;  // Meeting same type?
  1102   // Currently "this->_base" is a TypeInt
  1103   switch (t->base()) {          // Switch on original type
  1104   case AnyPtr:                  // Mixing with oops happens when javac
  1105   case RawPtr:                  // reuses local variables
  1106   case OopPtr:
  1107   case InstPtr:
  1108   case KlassPtr:
  1109   case AryPtr:
  1110   case NarrowOop:
  1111   case Long:
  1112   case FloatTop:
  1113   case FloatCon:
  1114   case FloatBot:
  1115   case DoubleTop:
  1116   case DoubleCon:
  1117   case DoubleBot:
  1118   case Bottom:                  // Ye Olde Default
  1119     return Type::BOTTOM;
  1120   default:                      // All else is a mistake
  1121     typerr(t);
  1122   case Top:                     // No change
  1123     return this;
  1124   case Int:                     // Int vs Int?
  1125     break;
  1128   // Expand covered set
  1129   const TypeInt *r = t->is_int();
  1130   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1133 //------------------------------xdual------------------------------------------
  1134 // Dual: reverse hi & lo; flip widen
  1135 const Type *TypeInt::xdual() const {
  1136   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  1137   return new TypeInt(_hi,_lo,w);
  1140 //------------------------------widen------------------------------------------
  1141 // Only happens for optimistic top-down optimizations.
  1142 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1143   // Coming from TOP or such; no widening
  1144   if( old->base() != Int ) return this;
  1145   const TypeInt *ot = old->is_int();
  1147   // If new guy is equal to old guy, no widening
  1148   if( _lo == ot->_lo && _hi == ot->_hi )
  1149     return old;
  1151   // If new guy contains old, then we widened
  1152   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1153     // New contains old
  1154     // If new guy is already wider than old, no widening
  1155     if( _widen > ot->_widen ) return this;
  1156     // If old guy was a constant, do not bother
  1157     if (ot->_lo == ot->_hi)  return this;
  1158     // Now widen new guy.
  1159     // Check for widening too far
  1160     if (_widen == WidenMax) {
  1161       int max = max_jint;
  1162       int min = min_jint;
  1163       if (limit->isa_int()) {
  1164         max = limit->is_int()->_hi;
  1165         min = limit->is_int()->_lo;
  1167       if (min < _lo && _hi < max) {
  1168         // If neither endpoint is extremal yet, push out the endpoint
  1169         // which is closer to its respective limit.
  1170         if (_lo >= 0 ||                 // easy common case
  1171             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1172           // Try to widen to an unsigned range type of 31 bits:
  1173           return make(_lo, max, WidenMax);
  1174         } else {
  1175           return make(min, _hi, WidenMax);
  1178       return TypeInt::INT;
  1180     // Returned widened new guy
  1181     return make(_lo,_hi,_widen+1);
  1184   // If old guy contains new, then we probably widened too far & dropped to
  1185   // bottom.  Return the wider fellow.
  1186   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1187     return old;
  1189   //fatal("Integer value range is not subset");
  1190   //return this;
  1191   return TypeInt::INT;
  1194 //------------------------------narrow---------------------------------------
  1195 // Only happens for pessimistic optimizations.
  1196 const Type *TypeInt::narrow( const Type *old ) const {
  1197   if (_lo >= _hi)  return this;   // already narrow enough
  1198   if (old == NULL)  return this;
  1199   const TypeInt* ot = old->isa_int();
  1200   if (ot == NULL)  return this;
  1201   jint olo = ot->_lo;
  1202   jint ohi = ot->_hi;
  1204   // If new guy is equal to old guy, no narrowing
  1205   if (_lo == olo && _hi == ohi)  return old;
  1207   // If old guy was maximum range, allow the narrowing
  1208   if (olo == min_jint && ohi == max_jint)  return this;
  1210   if (_lo < olo || _hi > ohi)
  1211     return this;                // doesn't narrow; pretty wierd
  1213   // The new type narrows the old type, so look for a "death march".
  1214   // See comments on PhaseTransform::saturate.
  1215   juint nrange = _hi - _lo;
  1216   juint orange = ohi - olo;
  1217   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1218     // Use the new type only if the range shrinks a lot.
  1219     // We do not want the optimizer computing 2^31 point by point.
  1220     return old;
  1223   return this;
  1226 //-----------------------------filter------------------------------------------
  1227 const Type *TypeInt::filter( const Type *kills ) const {
  1228   const TypeInt* ft = join(kills)->isa_int();
  1229   if (ft == NULL || ft->empty())
  1230     return Type::TOP;           // Canonical empty value
  1231   if (ft->_widen < this->_widen) {
  1232     // Do not allow the value of kill->_widen to affect the outcome.
  1233     // The widen bits must be allowed to run freely through the graph.
  1234     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1236   return ft;
  1239 //------------------------------eq---------------------------------------------
  1240 // Structural equality check for Type representations
  1241 bool TypeInt::eq( const Type *t ) const {
  1242   const TypeInt *r = t->is_int(); // Handy access
  1243   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1246 //------------------------------hash-------------------------------------------
  1247 // Type-specific hashing function.
  1248 int TypeInt::hash(void) const {
  1249   return _lo+_hi+_widen+(int)Type::Int;
  1252 //------------------------------is_finite--------------------------------------
  1253 // Has a finite value
  1254 bool TypeInt::is_finite() const {
  1255   return true;
  1258 //------------------------------dump2------------------------------------------
  1259 // Dump TypeInt
  1260 #ifndef PRODUCT
  1261 static const char* intname(char* buf, jint n) {
  1262   if (n == min_jint)
  1263     return "min";
  1264   else if (n < min_jint + 10000)
  1265     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1266   else if (n == max_jint)
  1267     return "max";
  1268   else if (n > max_jint - 10000)
  1269     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1270   else
  1271     sprintf(buf, INT32_FORMAT, n);
  1272   return buf;
  1275 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1276   char buf[40], buf2[40];
  1277   if (_lo == min_jint && _hi == max_jint)
  1278     st->print("int");
  1279   else if (is_con())
  1280     st->print("int:%s", intname(buf, get_con()));
  1281   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1282     st->print("bool");
  1283   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1284     st->print("byte");
  1285   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1286     st->print("char");
  1287   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1288     st->print("short");
  1289   else if (_hi == max_jint)
  1290     st->print("int:>=%s", intname(buf, _lo));
  1291   else if (_lo == min_jint)
  1292     st->print("int:<=%s", intname(buf, _hi));
  1293   else
  1294     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1296   if (_widen != 0 && this != TypeInt::INT)
  1297     st->print(":%.*s", _widen, "wwww");
  1299 #endif
  1301 //------------------------------singleton--------------------------------------
  1302 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1303 // constants.
  1304 bool TypeInt::singleton(void) const {
  1305   return _lo >= _hi;
  1308 bool TypeInt::empty(void) const {
  1309   return _lo > _hi;
  1312 //=============================================================================
  1313 // Convenience common pre-built types.
  1314 const TypeLong *TypeLong::MINUS_1;// -1
  1315 const TypeLong *TypeLong::ZERO; // 0
  1316 const TypeLong *TypeLong::ONE;  // 1
  1317 const TypeLong *TypeLong::POS;  // >=0
  1318 const TypeLong *TypeLong::LONG; // 64-bit integers
  1319 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1320 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1322 //------------------------------TypeLong---------------------------------------
  1323 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1326 //------------------------------make-------------------------------------------
  1327 const TypeLong *TypeLong::make( jlong lo ) {
  1328   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1331 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  1332   // Certain normalizations keep us sane when comparing types.
  1333   // The 'SMALLINT' covers constants.
  1334   if (lo <= hi) {
  1335     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1336     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  1337   } else {
  1338     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
  1339     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  1341   return w;
  1344 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1345   w = normalize_long_widen(lo, hi, w);
  1346   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1350 //------------------------------meet-------------------------------------------
  1351 // Compute the MEET of two types.  It returns a new Type representation object
  1352 // with reference count equal to the number of Types pointing at it.
  1353 // Caller should wrap a Types around it.
  1354 const Type *TypeLong::xmeet( const Type *t ) const {
  1355   // Perform a fast test for common case; meeting the same types together.
  1356   if( this == t ) return this;  // Meeting same type?
  1358   // Currently "this->_base" is a TypeLong
  1359   switch (t->base()) {          // Switch on original type
  1360   case AnyPtr:                  // Mixing with oops happens when javac
  1361   case RawPtr:                  // reuses local variables
  1362   case OopPtr:
  1363   case InstPtr:
  1364   case KlassPtr:
  1365   case AryPtr:
  1366   case NarrowOop:
  1367   case Int:
  1368   case FloatTop:
  1369   case FloatCon:
  1370   case FloatBot:
  1371   case DoubleTop:
  1372   case DoubleCon:
  1373   case DoubleBot:
  1374   case Bottom:                  // Ye Olde Default
  1375     return Type::BOTTOM;
  1376   default:                      // All else is a mistake
  1377     typerr(t);
  1378   case Top:                     // No change
  1379     return this;
  1380   case Long:                    // Long vs Long?
  1381     break;
  1384   // Expand covered set
  1385   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1386   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1389 //------------------------------xdual------------------------------------------
  1390 // Dual: reverse hi & lo; flip widen
  1391 const Type *TypeLong::xdual() const {
  1392   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  1393   return new TypeLong(_hi,_lo,w);
  1396 //------------------------------widen------------------------------------------
  1397 // Only happens for optimistic top-down optimizations.
  1398 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1399   // Coming from TOP or such; no widening
  1400   if( old->base() != Long ) return this;
  1401   const TypeLong *ot = old->is_long();
  1403   // If new guy is equal to old guy, no widening
  1404   if( _lo == ot->_lo && _hi == ot->_hi )
  1405     return old;
  1407   // If new guy contains old, then we widened
  1408   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1409     // New contains old
  1410     // If new guy is already wider than old, no widening
  1411     if( _widen > ot->_widen ) return this;
  1412     // If old guy was a constant, do not bother
  1413     if (ot->_lo == ot->_hi)  return this;
  1414     // Now widen new guy.
  1415     // Check for widening too far
  1416     if (_widen == WidenMax) {
  1417       jlong max = max_jlong;
  1418       jlong min = min_jlong;
  1419       if (limit->isa_long()) {
  1420         max = limit->is_long()->_hi;
  1421         min = limit->is_long()->_lo;
  1423       if (min < _lo && _hi < max) {
  1424         // If neither endpoint is extremal yet, push out the endpoint
  1425         // which is closer to its respective limit.
  1426         if (_lo >= 0 ||                 // easy common case
  1427             (julong)(_lo - min) >= (julong)(max - _hi)) {
  1428           // Try to widen to an unsigned range type of 32/63 bits:
  1429           if (max >= max_juint && _hi < max_juint)
  1430             return make(_lo, max_juint, WidenMax);
  1431           else
  1432             return make(_lo, max, WidenMax);
  1433         } else {
  1434           return make(min, _hi, WidenMax);
  1437       return TypeLong::LONG;
  1439     // Returned widened new guy
  1440     return make(_lo,_hi,_widen+1);
  1443   // If old guy contains new, then we probably widened too far & dropped to
  1444   // bottom.  Return the wider fellow.
  1445   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1446     return old;
  1448   //  fatal("Long value range is not subset");
  1449   // return this;
  1450   return TypeLong::LONG;
  1453 //------------------------------narrow----------------------------------------
  1454 // Only happens for pessimistic optimizations.
  1455 const Type *TypeLong::narrow( const Type *old ) const {
  1456   if (_lo >= _hi)  return this;   // already narrow enough
  1457   if (old == NULL)  return this;
  1458   const TypeLong* ot = old->isa_long();
  1459   if (ot == NULL)  return this;
  1460   jlong olo = ot->_lo;
  1461   jlong ohi = ot->_hi;
  1463   // If new guy is equal to old guy, no narrowing
  1464   if (_lo == olo && _hi == ohi)  return old;
  1466   // If old guy was maximum range, allow the narrowing
  1467   if (olo == min_jlong && ohi == max_jlong)  return this;
  1469   if (_lo < olo || _hi > ohi)
  1470     return this;                // doesn't narrow; pretty wierd
  1472   // The new type narrows the old type, so look for a "death march".
  1473   // See comments on PhaseTransform::saturate.
  1474   julong nrange = _hi - _lo;
  1475   julong orange = ohi - olo;
  1476   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1477     // Use the new type only if the range shrinks a lot.
  1478     // We do not want the optimizer computing 2^31 point by point.
  1479     return old;
  1482   return this;
  1485 //-----------------------------filter------------------------------------------
  1486 const Type *TypeLong::filter( const Type *kills ) const {
  1487   const TypeLong* ft = join(kills)->isa_long();
  1488   if (ft == NULL || ft->empty())
  1489     return Type::TOP;           // Canonical empty value
  1490   if (ft->_widen < this->_widen) {
  1491     // Do not allow the value of kill->_widen to affect the outcome.
  1492     // The widen bits must be allowed to run freely through the graph.
  1493     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1495   return ft;
  1498 //------------------------------eq---------------------------------------------
  1499 // Structural equality check for Type representations
  1500 bool TypeLong::eq( const Type *t ) const {
  1501   const TypeLong *r = t->is_long(); // Handy access
  1502   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1505 //------------------------------hash-------------------------------------------
  1506 // Type-specific hashing function.
  1507 int TypeLong::hash(void) const {
  1508   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1511 //------------------------------is_finite--------------------------------------
  1512 // Has a finite value
  1513 bool TypeLong::is_finite() const {
  1514   return true;
  1517 //------------------------------dump2------------------------------------------
  1518 // Dump TypeLong
  1519 #ifndef PRODUCT
  1520 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1521   if (n > x) {
  1522     if (n >= x + 10000)  return NULL;
  1523     sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
  1524   } else if (n < x) {
  1525     if (n <= x - 10000)  return NULL;
  1526     sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
  1527   } else {
  1528     return xname;
  1530   return buf;
  1533 static const char* longname(char* buf, jlong n) {
  1534   const char* str;
  1535   if (n == min_jlong)
  1536     return "min";
  1537   else if (n < min_jlong + 10000)
  1538     sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
  1539   else if (n == max_jlong)
  1540     return "max";
  1541   else if (n > max_jlong - 10000)
  1542     sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
  1543   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1544     return str;
  1545   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1546     return str;
  1547   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1548     return str;
  1549   else
  1550     sprintf(buf, INT64_FORMAT, n);
  1551   return buf;
  1554 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1555   char buf[80], buf2[80];
  1556   if (_lo == min_jlong && _hi == max_jlong)
  1557     st->print("long");
  1558   else if (is_con())
  1559     st->print("long:%s", longname(buf, get_con()));
  1560   else if (_hi == max_jlong)
  1561     st->print("long:>=%s", longname(buf, _lo));
  1562   else if (_lo == min_jlong)
  1563     st->print("long:<=%s", longname(buf, _hi));
  1564   else
  1565     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1567   if (_widen != 0 && this != TypeLong::LONG)
  1568     st->print(":%.*s", _widen, "wwww");
  1570 #endif
  1572 //------------------------------singleton--------------------------------------
  1573 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1574 // constants
  1575 bool TypeLong::singleton(void) const {
  1576   return _lo >= _hi;
  1579 bool TypeLong::empty(void) const {
  1580   return _lo > _hi;
  1583 //=============================================================================
  1584 // Convenience common pre-built types.
  1585 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1586 const TypeTuple *TypeTuple::IFFALSE;
  1587 const TypeTuple *TypeTuple::IFTRUE;
  1588 const TypeTuple *TypeTuple::IFNEITHER;
  1589 const TypeTuple *TypeTuple::LOOPBODY;
  1590 const TypeTuple *TypeTuple::MEMBAR;
  1591 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1592 const TypeTuple *TypeTuple::START_I2C;
  1593 const TypeTuple *TypeTuple::INT_PAIR;
  1594 const TypeTuple *TypeTuple::LONG_PAIR;
  1597 //------------------------------make-------------------------------------------
  1598 // Make a TypeTuple from the range of a method signature
  1599 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1600   ciType* return_type = sig->return_type();
  1601   uint total_fields = TypeFunc::Parms + return_type->size();
  1602   const Type **field_array = fields(total_fields);
  1603   switch (return_type->basic_type()) {
  1604   case T_LONG:
  1605     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1606     field_array[TypeFunc::Parms+1] = Type::HALF;
  1607     break;
  1608   case T_DOUBLE:
  1609     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1610     field_array[TypeFunc::Parms+1] = Type::HALF;
  1611     break;
  1612   case T_OBJECT:
  1613   case T_ARRAY:
  1614   case T_BOOLEAN:
  1615   case T_CHAR:
  1616   case T_FLOAT:
  1617   case T_BYTE:
  1618   case T_SHORT:
  1619   case T_INT:
  1620     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1621     break;
  1622   case T_VOID:
  1623     break;
  1624   default:
  1625     ShouldNotReachHere();
  1627   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1630 // Make a TypeTuple from the domain of a method signature
  1631 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1632   uint total_fields = TypeFunc::Parms + sig->size();
  1634   uint pos = TypeFunc::Parms;
  1635   const Type **field_array;
  1636   if (recv != NULL) {
  1637     total_fields++;
  1638     field_array = fields(total_fields);
  1639     // Use get_const_type here because it respects UseUniqueSubclasses:
  1640     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
  1641   } else {
  1642     field_array = fields(total_fields);
  1645   int i = 0;
  1646   while (pos < total_fields) {
  1647     ciType* type = sig->type_at(i);
  1649     switch (type->basic_type()) {
  1650     case T_LONG:
  1651       field_array[pos++] = TypeLong::LONG;
  1652       field_array[pos++] = Type::HALF;
  1653       break;
  1654     case T_DOUBLE:
  1655       field_array[pos++] = Type::DOUBLE;
  1656       field_array[pos++] = Type::HALF;
  1657       break;
  1658     case T_OBJECT:
  1659     case T_ARRAY:
  1660     case T_BOOLEAN:
  1661     case T_CHAR:
  1662     case T_FLOAT:
  1663     case T_BYTE:
  1664     case T_SHORT:
  1665     case T_INT:
  1666       field_array[pos++] = get_const_type(type);
  1667       break;
  1668     default:
  1669       ShouldNotReachHere();
  1671     i++;
  1673   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1676 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1677   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1680 //------------------------------fields-----------------------------------------
  1681 // Subroutine call type with space allocated for argument types
  1682 const Type **TypeTuple::fields( uint arg_cnt ) {
  1683   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1684   flds[TypeFunc::Control  ] = Type::CONTROL;
  1685   flds[TypeFunc::I_O      ] = Type::ABIO;
  1686   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1687   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1688   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1690   return flds;
  1693 //------------------------------meet-------------------------------------------
  1694 // Compute the MEET of two types.  It returns a new Type object.
  1695 const Type *TypeTuple::xmeet( const Type *t ) const {
  1696   // Perform a fast test for common case; meeting the same types together.
  1697   if( this == t ) return this;  // Meeting same type-rep?
  1699   // Current "this->_base" is Tuple
  1700   switch (t->base()) {          // switch on original type
  1702   case Bottom:                  // Ye Olde Default
  1703     return t;
  1705   default:                      // All else is a mistake
  1706     typerr(t);
  1708   case Tuple: {                 // Meeting 2 signatures?
  1709     const TypeTuple *x = t->is_tuple();
  1710     assert( _cnt == x->_cnt, "" );
  1711     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1712     for( uint i=0; i<_cnt; i++ )
  1713       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1714     return TypeTuple::make(_cnt,fields);
  1716   case Top:
  1717     break;
  1719   return this;                  // Return the double constant
  1722 //------------------------------xdual------------------------------------------
  1723 // Dual: compute field-by-field dual
  1724 const Type *TypeTuple::xdual() const {
  1725   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1726   for( uint i=0; i<_cnt; i++ )
  1727     fields[i] = _fields[i]->dual();
  1728   return new TypeTuple(_cnt,fields);
  1731 //------------------------------eq---------------------------------------------
  1732 // Structural equality check for Type representations
  1733 bool TypeTuple::eq( const Type *t ) const {
  1734   const TypeTuple *s = (const TypeTuple *)t;
  1735   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1736   for (uint i = 0; i < _cnt; i++)
  1737     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1738       return false;             // Missed
  1739   return true;
  1742 //------------------------------hash-------------------------------------------
  1743 // Type-specific hashing function.
  1744 int TypeTuple::hash(void) const {
  1745   intptr_t sum = _cnt;
  1746   for( uint i=0; i<_cnt; i++ )
  1747     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1748   return sum;
  1751 //------------------------------dump2------------------------------------------
  1752 // Dump signature Type
  1753 #ifndef PRODUCT
  1754 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1755   st->print("{");
  1756   if( !depth || d[this] ) {     // Check for recursive print
  1757     st->print("...}");
  1758     return;
  1760   d.Insert((void*)this, (void*)this);   // Stop recursion
  1761   if( _cnt ) {
  1762     uint i;
  1763     for( i=0; i<_cnt-1; i++ ) {
  1764       st->print("%d:", i);
  1765       _fields[i]->dump2(d, depth-1, st);
  1766       st->print(", ");
  1768     st->print("%d:", i);
  1769     _fields[i]->dump2(d, depth-1, st);
  1771   st->print("}");
  1773 #endif
  1775 //------------------------------singleton--------------------------------------
  1776 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1777 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1778 // or a single symbol.
  1779 bool TypeTuple::singleton(void) const {
  1780   return false;                 // Never a singleton
  1783 bool TypeTuple::empty(void) const {
  1784   for( uint i=0; i<_cnt; i++ ) {
  1785     if (_fields[i]->empty())  return true;
  1787   return false;
  1790 //=============================================================================
  1791 // Convenience common pre-built types.
  1793 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1794   // Certain normalizations keep us sane when comparing types.
  1795   // We do not want arrayOop variables to differ only by the wideness
  1796   // of their index types.  Pick minimum wideness, since that is the
  1797   // forced wideness of small ranges anyway.
  1798   if (size->_widen != Type::WidenMin)
  1799     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1800   else
  1801     return size;
  1804 //------------------------------make-------------------------------------------
  1805 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
  1806   if (UseCompressedOops && elem->isa_oopptr()) {
  1807     elem = elem->make_narrowoop();
  1809   size = normalize_array_size(size);
  1810   return (TypeAry*)(new TypeAry(elem,size))->hashcons();
  1813 //------------------------------meet-------------------------------------------
  1814 // Compute the MEET of two types.  It returns a new Type object.
  1815 const Type *TypeAry::xmeet( const Type *t ) const {
  1816   // Perform a fast test for common case; meeting the same types together.
  1817   if( this == t ) return this;  // Meeting same type-rep?
  1819   // Current "this->_base" is Ary
  1820   switch (t->base()) {          // switch on original type
  1822   case Bottom:                  // Ye Olde Default
  1823     return t;
  1825   default:                      // All else is a mistake
  1826     typerr(t);
  1828   case Array: {                 // Meeting 2 arrays?
  1829     const TypeAry *a = t->is_ary();
  1830     return TypeAry::make(_elem->meet(a->_elem),
  1831                          _size->xmeet(a->_size)->is_int());
  1833   case Top:
  1834     break;
  1836   return this;                  // Return the double constant
  1839 //------------------------------xdual------------------------------------------
  1840 // Dual: compute field-by-field dual
  1841 const Type *TypeAry::xdual() const {
  1842   const TypeInt* size_dual = _size->dual()->is_int();
  1843   size_dual = normalize_array_size(size_dual);
  1844   return new TypeAry( _elem->dual(), size_dual);
  1847 //------------------------------eq---------------------------------------------
  1848 // Structural equality check for Type representations
  1849 bool TypeAry::eq( const Type *t ) const {
  1850   const TypeAry *a = (const TypeAry*)t;
  1851   return _elem == a->_elem &&
  1852     _size == a->_size;
  1855 //------------------------------hash-------------------------------------------
  1856 // Type-specific hashing function.
  1857 int TypeAry::hash(void) const {
  1858   return (intptr_t)_elem + (intptr_t)_size;
  1861 //----------------------interface_vs_oop---------------------------------------
  1862 #ifdef ASSERT
  1863 bool TypeAry::interface_vs_oop(const Type *t) const {
  1864   const TypeAry* t_ary = t->is_ary();
  1865   if (t_ary) {
  1866     return _elem->interface_vs_oop(t_ary->_elem);
  1868   return false;
  1870 #endif
  1872 //------------------------------dump2------------------------------------------
  1873 #ifndef PRODUCT
  1874 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  1875   _elem->dump2(d, depth, st);
  1876   st->print("[");
  1877   _size->dump2(d, depth, st);
  1878   st->print("]");
  1880 #endif
  1882 //------------------------------singleton--------------------------------------
  1883 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1884 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1885 // or a single symbol.
  1886 bool TypeAry::singleton(void) const {
  1887   return false;                 // Never a singleton
  1890 bool TypeAry::empty(void) const {
  1891   return _elem->empty() || _size->empty();
  1894 //--------------------------ary_must_be_exact----------------------------------
  1895 bool TypeAry::ary_must_be_exact() const {
  1896   if (!UseExactTypes)       return false;
  1897   // This logic looks at the element type of an array, and returns true
  1898   // if the element type is either a primitive or a final instance class.
  1899   // In such cases, an array built on this ary must have no subclasses.
  1900   if (_elem == BOTTOM)      return false;  // general array not exact
  1901   if (_elem == TOP   )      return false;  // inverted general array not exact
  1902   const TypeOopPtr*  toop = NULL;
  1903   if (UseCompressedOops && _elem->isa_narrowoop()) {
  1904     toop = _elem->make_ptr()->isa_oopptr();
  1905   } else {
  1906     toop = _elem->isa_oopptr();
  1908   if (!toop)                return true;   // a primitive type, like int
  1909   ciKlass* tklass = toop->klass();
  1910   if (tklass == NULL)       return false;  // unloaded class
  1911   if (!tklass->is_loaded()) return false;  // unloaded class
  1912   const TypeInstPtr* tinst;
  1913   if (_elem->isa_narrowoop())
  1914     tinst = _elem->make_ptr()->isa_instptr();
  1915   else
  1916     tinst = _elem->isa_instptr();
  1917   if (tinst)
  1918     return tklass->as_instance_klass()->is_final();
  1919   const TypeAryPtr*  tap;
  1920   if (_elem->isa_narrowoop())
  1921     tap = _elem->make_ptr()->isa_aryptr();
  1922   else
  1923     tap = _elem->isa_aryptr();
  1924   if (tap)
  1925     return tap->ary()->ary_must_be_exact();
  1926   return false;
  1929 //=============================================================================
  1930 // Convenience common pre-built types.
  1931 const TypePtr *TypePtr::NULL_PTR;
  1932 const TypePtr *TypePtr::NOTNULL;
  1933 const TypePtr *TypePtr::BOTTOM;
  1935 //------------------------------meet-------------------------------------------
  1936 // Meet over the PTR enum
  1937 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  1938   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  1939   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  1940   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  1941   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  1942   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  1943   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  1944   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  1945 };
  1947 //------------------------------make-------------------------------------------
  1948 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  1949   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  1952 //------------------------------cast_to_ptr_type-------------------------------
  1953 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  1954   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  1955   if( ptr == _ptr ) return this;
  1956   return make(_base, ptr, _offset);
  1959 //------------------------------get_con----------------------------------------
  1960 intptr_t TypePtr::get_con() const {
  1961   assert( _ptr == Null, "" );
  1962   return _offset;
  1965 //------------------------------meet-------------------------------------------
  1966 // Compute the MEET of two types.  It returns a new Type object.
  1967 const Type *TypePtr::xmeet( const Type *t ) const {
  1968   // Perform a fast test for common case; meeting the same types together.
  1969   if( this == t ) return this;  // Meeting same type-rep?
  1971   // Current "this->_base" is AnyPtr
  1972   switch (t->base()) {          // switch on original type
  1973   case Int:                     // Mixing ints & oops happens when javac
  1974   case Long:                    // reuses local variables
  1975   case FloatTop:
  1976   case FloatCon:
  1977   case FloatBot:
  1978   case DoubleTop:
  1979   case DoubleCon:
  1980   case DoubleBot:
  1981   case NarrowOop:
  1982   case Bottom:                  // Ye Olde Default
  1983     return Type::BOTTOM;
  1984   case Top:
  1985     return this;
  1987   case AnyPtr: {                // Meeting to AnyPtrs
  1988     const TypePtr *tp = t->is_ptr();
  1989     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  1991   case RawPtr:                  // For these, flip the call around to cut down
  1992   case OopPtr:
  1993   case InstPtr:                 // on the cases I have to handle.
  1994   case KlassPtr:
  1995   case AryPtr:
  1996     return t->xmeet(this);      // Call in reverse direction
  1997   default:                      // All else is a mistake
  1998     typerr(t);
  2001   return this;
  2004 //------------------------------meet_offset------------------------------------
  2005 int TypePtr::meet_offset( int offset ) const {
  2006   // Either is 'TOP' offset?  Return the other offset!
  2007   if( _offset == OffsetTop ) return offset;
  2008   if( offset == OffsetTop ) return _offset;
  2009   // If either is different, return 'BOTTOM' offset
  2010   if( _offset != offset ) return OffsetBot;
  2011   return _offset;
  2014 //------------------------------dual_offset------------------------------------
  2015 int TypePtr::dual_offset( ) const {
  2016   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  2017   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  2018   return _offset;               // Map everything else into self
  2021 //------------------------------xdual------------------------------------------
  2022 // Dual: compute field-by-field dual
  2023 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  2024   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  2025 };
  2026 const Type *TypePtr::xdual() const {
  2027   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  2030 //------------------------------xadd_offset------------------------------------
  2031 int TypePtr::xadd_offset( intptr_t offset ) const {
  2032   // Adding to 'TOP' offset?  Return 'TOP'!
  2033   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2034   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2035   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2036   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2037   offset += (intptr_t)_offset;
  2038   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2040   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2041   // It is possible to construct a negative offset during PhaseCCP
  2043   return (int)offset;        // Sum valid offsets
  2046 //------------------------------add_offset-------------------------------------
  2047 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2048   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2051 //------------------------------eq---------------------------------------------
  2052 // Structural equality check for Type representations
  2053 bool TypePtr::eq( const Type *t ) const {
  2054   const TypePtr *a = (const TypePtr*)t;
  2055   return _ptr == a->ptr() && _offset == a->offset();
  2058 //------------------------------hash-------------------------------------------
  2059 // Type-specific hashing function.
  2060 int TypePtr::hash(void) const {
  2061   return _ptr + _offset;
  2064 //------------------------------dump2------------------------------------------
  2065 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2066   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2067 };
  2069 #ifndef PRODUCT
  2070 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2071   if( _ptr == Null ) st->print("NULL");
  2072   else st->print("%s *", ptr_msg[_ptr]);
  2073   if( _offset == OffsetTop ) st->print("+top");
  2074   else if( _offset == OffsetBot ) st->print("+bot");
  2075   else if( _offset ) st->print("+%d", _offset);
  2077 #endif
  2079 //------------------------------singleton--------------------------------------
  2080 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2081 // constants
  2082 bool TypePtr::singleton(void) const {
  2083   // TopPTR, Null, AnyNull, Constant are all singletons
  2084   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2087 bool TypePtr::empty(void) const {
  2088   return (_offset == OffsetTop) || above_centerline(_ptr);
  2091 //=============================================================================
  2092 // Convenience common pre-built types.
  2093 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2094 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2096 //------------------------------make-------------------------------------------
  2097 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2098   assert( ptr != Constant, "what is the constant?" );
  2099   assert( ptr != Null, "Use TypePtr for NULL" );
  2100   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2103 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2104   assert( bits, "Use TypePtr for NULL" );
  2105   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2108 //------------------------------cast_to_ptr_type-------------------------------
  2109 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2110   assert( ptr != Constant, "what is the constant?" );
  2111   assert( ptr != Null, "Use TypePtr for NULL" );
  2112   assert( _bits==0, "Why cast a constant address?");
  2113   if( ptr == _ptr ) return this;
  2114   return make(ptr);
  2117 //------------------------------get_con----------------------------------------
  2118 intptr_t TypeRawPtr::get_con() const {
  2119   assert( _ptr == Null || _ptr == Constant, "" );
  2120   return (intptr_t)_bits;
  2123 //------------------------------meet-------------------------------------------
  2124 // Compute the MEET of two types.  It returns a new Type object.
  2125 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2126   // Perform a fast test for common case; meeting the same types together.
  2127   if( this == t ) return this;  // Meeting same type-rep?
  2129   // Current "this->_base" is RawPtr
  2130   switch( t->base() ) {         // switch on original type
  2131   case Bottom:                  // Ye Olde Default
  2132     return t;
  2133   case Top:
  2134     return this;
  2135   case AnyPtr:                  // Meeting to AnyPtrs
  2136     break;
  2137   case RawPtr: {                // might be top, bot, any/not or constant
  2138     enum PTR tptr = t->is_ptr()->ptr();
  2139     enum PTR ptr = meet_ptr( tptr );
  2140     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2141       if( tptr == Constant && _ptr != Constant)  return t;
  2142       if( _ptr == Constant && tptr != Constant)  return this;
  2143       ptr = NotNull;            // Fall down in lattice
  2145     return make( ptr );
  2148   case OopPtr:
  2149   case InstPtr:
  2150   case KlassPtr:
  2151   case AryPtr:
  2152     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2153   default:                      // All else is a mistake
  2154     typerr(t);
  2157   // Found an AnyPtr type vs self-RawPtr type
  2158   const TypePtr *tp = t->is_ptr();
  2159   switch (tp->ptr()) {
  2160   case TypePtr::TopPTR:  return this;
  2161   case TypePtr::BotPTR:  return t;
  2162   case TypePtr::Null:
  2163     if( _ptr == TypePtr::TopPTR ) return t;
  2164     return TypeRawPtr::BOTTOM;
  2165   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2166   case TypePtr::AnyNull:
  2167     if( _ptr == TypePtr::Constant) return this;
  2168     return make( meet_ptr(TypePtr::AnyNull) );
  2169   default: ShouldNotReachHere();
  2171   return this;
  2174 //------------------------------xdual------------------------------------------
  2175 // Dual: compute field-by-field dual
  2176 const Type *TypeRawPtr::xdual() const {
  2177   return new TypeRawPtr( dual_ptr(), _bits );
  2180 //------------------------------add_offset-------------------------------------
  2181 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2182   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2183   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2184   if( offset == 0 ) return this; // No change
  2185   switch (_ptr) {
  2186   case TypePtr::TopPTR:
  2187   case TypePtr::BotPTR:
  2188   case TypePtr::NotNull:
  2189     return this;
  2190   case TypePtr::Null:
  2191   case TypePtr::Constant: {
  2192     address bits = _bits+offset;
  2193     if ( bits == 0 ) return TypePtr::NULL_PTR;
  2194     return make( bits );
  2196   default:  ShouldNotReachHere();
  2198   return NULL;                  // Lint noise
  2201 //------------------------------eq---------------------------------------------
  2202 // Structural equality check for Type representations
  2203 bool TypeRawPtr::eq( const Type *t ) const {
  2204   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2205   return _bits == a->_bits && TypePtr::eq(t);
  2208 //------------------------------hash-------------------------------------------
  2209 // Type-specific hashing function.
  2210 int TypeRawPtr::hash(void) const {
  2211   return (intptr_t)_bits + TypePtr::hash();
  2214 //------------------------------dump2------------------------------------------
  2215 #ifndef PRODUCT
  2216 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2217   if( _ptr == Constant )
  2218     st->print(INTPTR_FORMAT, _bits);
  2219   else
  2220     st->print("rawptr:%s", ptr_msg[_ptr]);
  2222 #endif
  2224 //=============================================================================
  2225 // Convenience common pre-built type.
  2226 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2228 //------------------------------TypeOopPtr-------------------------------------
  2229 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
  2230   : TypePtr(t, ptr, offset),
  2231     _const_oop(o), _klass(k),
  2232     _klass_is_exact(xk),
  2233     _is_ptr_to_narrowoop(false),
  2234     _instance_id(instance_id) {
  2235 #ifdef _LP64
  2236   if (UseCompressedOops && _offset != 0) {
  2237     if (klass() == NULL) {
  2238       assert(this->isa_aryptr(), "only arrays without klass");
  2239       _is_ptr_to_narrowoop = true;
  2240     } else if (_offset == oopDesc::klass_offset_in_bytes()) {
  2241       _is_ptr_to_narrowoop = true;
  2242     } else if (this->isa_aryptr()) {
  2243       _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
  2244                              _offset != arrayOopDesc::length_offset_in_bytes());
  2245     } else if (klass()->is_instance_klass()) {
  2246       ciInstanceKlass* ik = klass()->as_instance_klass();
  2247       ciField* field = NULL;
  2248       if (this->isa_klassptr()) {
  2249         // Perm objects don't use compressed references
  2250       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2251         // unsafe access
  2252         _is_ptr_to_narrowoop = true;
  2253       } else { // exclude unsafe ops
  2254         assert(this->isa_instptr(), "must be an instance ptr.");
  2256         if (klass() == ciEnv::current()->Class_klass() &&
  2257             (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2258              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2259           // Special hidden fields from the Class.
  2260           assert(this->isa_instptr(), "must be an instance ptr.");
  2261           _is_ptr_to_narrowoop = true;
  2262         } else if (klass() == ciEnv::current()->Class_klass() &&
  2263                    _offset >= instanceMirrorKlass::offset_of_static_fields()) {
  2264           // Static fields
  2265           assert(o != NULL, "must be constant");
  2266           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
  2267           ciField* field = k->get_field_by_offset(_offset, true);
  2268           assert(field != NULL, "missing field");
  2269           BasicType basic_elem_type = field->layout_type();
  2270           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
  2271                                   basic_elem_type == T_ARRAY);
  2272         } else {
  2273           // Instance fields which contains a compressed oop references.
  2274           field = ik->get_field_by_offset(_offset, false);
  2275           if (field != NULL) {
  2276             BasicType basic_elem_type = field->layout_type();
  2277             _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
  2278                                     basic_elem_type == T_ARRAY);
  2279           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2280             // Compile::find_alias_type() cast exactness on all types to verify
  2281             // that it does not affect alias type.
  2282             _is_ptr_to_narrowoop = true;
  2283           } else {
  2284             // Type for the copy start in LibraryCallKit::inline_native_clone().
  2285             assert(!klass_is_exact(), "only non-exact klass");
  2286             _is_ptr_to_narrowoop = true;
  2292 #endif
  2295 //------------------------------make-------------------------------------------
  2296 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2297                                    int offset, int instance_id) {
  2298   assert(ptr != Constant, "no constant generic pointers");
  2299   ciKlass*  k = ciKlassKlass::make();
  2300   bool      xk = false;
  2301   ciObject* o = NULL;
  2302   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
  2306 //------------------------------cast_to_ptr_type-------------------------------
  2307 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2308   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2309   if( ptr == _ptr ) return this;
  2310   return make(ptr, _offset, _instance_id);
  2313 //-----------------------------cast_to_instance_id----------------------------
  2314 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2315   // There are no instances of a general oop.
  2316   // Return self unchanged.
  2317   return this;
  2320 //-----------------------------cast_to_exactness-------------------------------
  2321 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2322   // There is no such thing as an exact general oop.
  2323   // Return self unchanged.
  2324   return this;
  2328 //------------------------------as_klass_type----------------------------------
  2329 // Return the klass type corresponding to this instance or array type.
  2330 // It is the type that is loaded from an object of this type.
  2331 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2332   ciKlass* k = klass();
  2333   bool    xk = klass_is_exact();
  2334   if (k == NULL || !k->is_java_klass())
  2335     return TypeKlassPtr::OBJECT;
  2336   else
  2337     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2341 //------------------------------meet-------------------------------------------
  2342 // Compute the MEET of two types.  It returns a new Type object.
  2343 const Type *TypeOopPtr::xmeet( const Type *t ) const {
  2344   // Perform a fast test for common case; meeting the same types together.
  2345   if( this == t ) return this;  // Meeting same type-rep?
  2347   // Current "this->_base" is OopPtr
  2348   switch (t->base()) {          // switch on original type
  2350   case Int:                     // Mixing ints & oops happens when javac
  2351   case Long:                    // reuses local variables
  2352   case FloatTop:
  2353   case FloatCon:
  2354   case FloatBot:
  2355   case DoubleTop:
  2356   case DoubleCon:
  2357   case DoubleBot:
  2358   case NarrowOop:
  2359   case Bottom:                  // Ye Olde Default
  2360     return Type::BOTTOM;
  2361   case Top:
  2362     return this;
  2364   default:                      // All else is a mistake
  2365     typerr(t);
  2367   case RawPtr:
  2368     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2370   case AnyPtr: {
  2371     // Found an AnyPtr type vs self-OopPtr type
  2372     const TypePtr *tp = t->is_ptr();
  2373     int offset = meet_offset(tp->offset());
  2374     PTR ptr = meet_ptr(tp->ptr());
  2375     switch (tp->ptr()) {
  2376     case Null:
  2377       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2378       // else fall through:
  2379     case TopPTR:
  2380     case AnyNull: {
  2381       int instance_id = meet_instance_id(InstanceTop);
  2382       return make(ptr, offset, instance_id);
  2384     case BotPTR:
  2385     case NotNull:
  2386       return TypePtr::make(AnyPtr, ptr, offset);
  2387     default: typerr(t);
  2391   case OopPtr: {                 // Meeting to other OopPtrs
  2392     const TypeOopPtr *tp = t->is_oopptr();
  2393     int instance_id = meet_instance_id(tp->instance_id());
  2394     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
  2397   case InstPtr:                  // For these, flip the call around to cut down
  2398   case KlassPtr:                 // on the cases I have to handle.
  2399   case AryPtr:
  2400     return t->xmeet(this);      // Call in reverse direction
  2402   } // End of switch
  2403   return this;                  // Return the double constant
  2407 //------------------------------xdual------------------------------------------
  2408 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2409 const Type *TypeOopPtr::xdual() const {
  2410   assert(klass() == ciKlassKlass::make(), "no klasses here");
  2411   assert(const_oop() == NULL,             "no constants here");
  2412   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  2415 //--------------------------make_from_klass_common-----------------------------
  2416 // Computes the element-type given a klass.
  2417 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2418   assert(klass->is_java_klass(), "must be java language klass");
  2419   if (klass->is_instance_klass()) {
  2420     Compile* C = Compile::current();
  2421     Dependencies* deps = C->dependencies();
  2422     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2423     // Element is an instance
  2424     bool klass_is_exact = false;
  2425     if (klass->is_loaded()) {
  2426       // Try to set klass_is_exact.
  2427       ciInstanceKlass* ik = klass->as_instance_klass();
  2428       klass_is_exact = ik->is_final();
  2429       if (!klass_is_exact && klass_change
  2430           && deps != NULL && UseUniqueSubclasses) {
  2431         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2432         if (sub != NULL) {
  2433           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2434           klass = ik = sub;
  2435           klass_is_exact = sub->is_final();
  2438       if (!klass_is_exact && try_for_exact
  2439           && deps != NULL && UseExactTypes) {
  2440         if (!ik->is_interface() && !ik->has_subklass()) {
  2441           // Add a dependence; if concrete subclass added we need to recompile
  2442           deps->assert_leaf_type(ik);
  2443           klass_is_exact = true;
  2447     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2448   } else if (klass->is_obj_array_klass()) {
  2449     // Element is an object array. Recursively call ourself.
  2450     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2451     bool xk = etype->klass_is_exact();
  2452     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2453     // We used to pass NotNull in here, asserting that the sub-arrays
  2454     // are all not-null.  This is not true in generally, as code can
  2455     // slam NULLs down in the subarrays.
  2456     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2457     return arr;
  2458   } else if (klass->is_type_array_klass()) {
  2459     // Element is an typeArray
  2460     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2461     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2462     // We used to pass NotNull in here, asserting that the array pointer
  2463     // is not-null. That was not true in general.
  2464     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2465     return arr;
  2466   } else {
  2467     ShouldNotReachHere();
  2468     return NULL;
  2472 //------------------------------make_from_constant-----------------------------
  2473 // Make a java pointer from an oop constant
  2474 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
  2475   if (o->is_method_data() || o->is_method() || o->is_cpcache()) {
  2476     // Treat much like a typeArray of bytes, like below, but fake the type...
  2477     const Type* etype = (Type*)get_const_basic_type(T_BYTE);
  2478     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2479     ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
  2480     assert(o->can_be_constant(), "method data oops should be tenured");
  2481     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2482     return arr;
  2483   } else {
  2484     assert(o->is_java_object(), "must be java language object");
  2485     assert(!o->is_null_object(), "null object not yet handled here.");
  2486     ciKlass *klass = o->klass();
  2487     if (klass->is_instance_klass()) {
  2488       // Element is an instance
  2489       if (require_constant) {
  2490         if (!o->can_be_constant())  return NULL;
  2491       } else if (!o->should_be_constant()) {
  2492         return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2494       return TypeInstPtr::make(o);
  2495     } else if (klass->is_obj_array_klass()) {
  2496       // Element is an object array. Recursively call ourself.
  2497       const Type *etype =
  2498         TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2499       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2500       // We used to pass NotNull in here, asserting that the sub-arrays
  2501       // are all not-null.  This is not true in generally, as code can
  2502       // slam NULLs down in the subarrays.
  2503       if (require_constant) {
  2504         if (!o->can_be_constant())  return NULL;
  2505       } else if (!o->should_be_constant()) {
  2506         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2508       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2509       return arr;
  2510     } else if (klass->is_type_array_klass()) {
  2511       // Element is an typeArray
  2512       const Type* etype =
  2513         (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2514       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2515       // We used to pass NotNull in here, asserting that the array pointer
  2516       // is not-null. That was not true in general.
  2517       if (require_constant) {
  2518         if (!o->can_be_constant())  return NULL;
  2519       } else if (!o->should_be_constant()) {
  2520         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2522       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2523       return arr;
  2527   ShouldNotReachHere();
  2528   return NULL;
  2531 //------------------------------get_con----------------------------------------
  2532 intptr_t TypeOopPtr::get_con() const {
  2533   assert( _ptr == Null || _ptr == Constant, "" );
  2534   assert( _offset >= 0, "" );
  2536   if (_offset != 0) {
  2537     // After being ported to the compiler interface, the compiler no longer
  2538     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2539     // to a handle at compile time.  This handle is embedded in the generated
  2540     // code and dereferenced at the time the nmethod is made.  Until that time,
  2541     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2542     // have access to the addresses!).  This does not seem to currently happen,
  2543     // but this assertion here is to help prevent its occurence.
  2544     tty->print_cr("Found oop constant with non-zero offset");
  2545     ShouldNotReachHere();
  2548   return (intptr_t)const_oop()->constant_encoding();
  2552 //-----------------------------filter------------------------------------------
  2553 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2554 const Type *TypeOopPtr::filter( const Type *kills ) const {
  2556   const Type* ft = join(kills);
  2557   const TypeInstPtr* ftip = ft->isa_instptr();
  2558   const TypeInstPtr* ktip = kills->isa_instptr();
  2559   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  2560   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  2562   if (ft->empty()) {
  2563     // Check for evil case of 'this' being a class and 'kills' expecting an
  2564     // interface.  This can happen because the bytecodes do not contain
  2565     // enough type info to distinguish a Java-level interface variable
  2566     // from a Java-level object variable.  If we meet 2 classes which
  2567     // both implement interface I, but their meet is at 'j/l/O' which
  2568     // doesn't implement I, we have no way to tell if the result should
  2569     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2570     // into a Phi which "knows" it's an Interface type we'll have to
  2571     // uplift the type.
  2572     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
  2573       return kills;             // Uplift to interface
  2574     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  2575       return kills;             // Uplift to interface
  2577     return Type::TOP;           // Canonical empty value
  2580   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2581   // the join should report back the class.  However, if we have a J/L/Object
  2582   // class-typed Phi and an interface flows in, it's possible that the meet &
  2583   // join report an interface back out.  This isn't possible but happens
  2584   // because the type system doesn't interact well with interfaces.
  2585   if (ftip != NULL && ktip != NULL &&
  2586       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2587       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2588     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2589     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2590     return ktip->cast_to_ptr_type(ftip->ptr());
  2592   // Interface klass type could be exact in opposite to interface type,
  2593   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  2594   if (ftkp != NULL && ktkp != NULL &&
  2595       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  2596       !ftkp->klass_is_exact() && // Keep exact interface klass
  2597       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  2598     return ktkp->cast_to_ptr_type(ftkp->ptr());
  2601   return ft;
  2604 //------------------------------eq---------------------------------------------
  2605 // Structural equality check for Type representations
  2606 bool TypeOopPtr::eq( const Type *t ) const {
  2607   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2608   if (_klass_is_exact != a->_klass_is_exact ||
  2609       _instance_id != a->_instance_id)  return false;
  2610   ciObject* one = const_oop();
  2611   ciObject* two = a->const_oop();
  2612   if (one == NULL || two == NULL) {
  2613     return (one == two) && TypePtr::eq(t);
  2614   } else {
  2615     return one->equals(two) && TypePtr::eq(t);
  2619 //------------------------------hash-------------------------------------------
  2620 // Type-specific hashing function.
  2621 int TypeOopPtr::hash(void) const {
  2622   return
  2623     (const_oop() ? const_oop()->hash() : 0) +
  2624     _klass_is_exact +
  2625     _instance_id +
  2626     TypePtr::hash();
  2629 //------------------------------dump2------------------------------------------
  2630 #ifndef PRODUCT
  2631 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2632   st->print("oopptr:%s", ptr_msg[_ptr]);
  2633   if( _klass_is_exact ) st->print(":exact");
  2634   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2635   switch( _offset ) {
  2636   case OffsetTop: st->print("+top"); break;
  2637   case OffsetBot: st->print("+any"); break;
  2638   case         0: break;
  2639   default:        st->print("+%d",_offset); break;
  2641   if (_instance_id == InstanceTop)
  2642     st->print(",iid=top");
  2643   else if (_instance_id != InstanceBot)
  2644     st->print(",iid=%d",_instance_id);
  2646 #endif
  2648 //------------------------------singleton--------------------------------------
  2649 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2650 // constants
  2651 bool TypeOopPtr::singleton(void) const {
  2652   // detune optimizer to not generate constant oop + constant offset as a constant!
  2653   // TopPTR, Null, AnyNull, Constant are all singletons
  2654   return (_offset == 0) && !below_centerline(_ptr);
  2657 //------------------------------add_offset-------------------------------------
  2658 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
  2659   return make( _ptr, xadd_offset(offset), _instance_id);
  2662 //------------------------------meet_instance_id--------------------------------
  2663 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  2664   // Either is 'TOP' instance?  Return the other instance!
  2665   if( _instance_id == InstanceTop ) return  instance_id;
  2666   if(  instance_id == InstanceTop ) return _instance_id;
  2667   // If either is different, return 'BOTTOM' instance
  2668   if( _instance_id != instance_id ) return InstanceBot;
  2669   return _instance_id;
  2672 //------------------------------dual_instance_id--------------------------------
  2673 int TypeOopPtr::dual_instance_id( ) const {
  2674   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  2675   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  2676   return _instance_id;              // Map everything else into self
  2680 //=============================================================================
  2681 // Convenience common pre-built types.
  2682 const TypeInstPtr *TypeInstPtr::NOTNULL;
  2683 const TypeInstPtr *TypeInstPtr::BOTTOM;
  2684 const TypeInstPtr *TypeInstPtr::MIRROR;
  2685 const TypeInstPtr *TypeInstPtr::MARK;
  2686 const TypeInstPtr *TypeInstPtr::KLASS;
  2688 //------------------------------TypeInstPtr-------------------------------------
  2689 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
  2690  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
  2691    assert(k != NULL &&
  2692           (k->is_loaded() || o == NULL),
  2693           "cannot have constants with non-loaded klass");
  2694 };
  2696 //------------------------------make-------------------------------------------
  2697 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  2698                                      ciKlass* k,
  2699                                      bool xk,
  2700                                      ciObject* o,
  2701                                      int offset,
  2702                                      int instance_id) {
  2703   assert( !k->is_loaded() || k->is_instance_klass() ||
  2704           k->is_method_klass(), "Must be for instance or method");
  2705   // Either const_oop() is NULL or else ptr is Constant
  2706   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  2707           "constant pointers must have a value supplied" );
  2708   // Ptr is never Null
  2709   assert( ptr != Null, "NULL pointers are not typed" );
  2711   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  2712   if (!UseExactTypes)  xk = false;
  2713   if (ptr == Constant) {
  2714     // Note:  This case includes meta-object constants, such as methods.
  2715     xk = true;
  2716   } else if (k->is_loaded()) {
  2717     ciInstanceKlass* ik = k->as_instance_klass();
  2718     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  2719     if (xk && ik->is_interface())  xk = false;  // no exact interface
  2722   // Now hash this baby
  2723   TypeInstPtr *result =
  2724     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
  2726   return result;
  2730 //------------------------------cast_to_ptr_type-------------------------------
  2731 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  2732   if( ptr == _ptr ) return this;
  2733   // Reconstruct _sig info here since not a problem with later lazy
  2734   // construction, _sig will show up on demand.
  2735   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
  2739 //-----------------------------cast_to_exactness-------------------------------
  2740 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  2741   if( klass_is_exact == _klass_is_exact ) return this;
  2742   if (!UseExactTypes)  return this;
  2743   if (!_klass->is_loaded())  return this;
  2744   ciInstanceKlass* ik = _klass->as_instance_klass();
  2745   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  2746   if( ik->is_interface() )              return this;  // cannot set xk
  2747   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
  2750 //-----------------------------cast_to_instance_id----------------------------
  2751 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  2752   if( instance_id == _instance_id ) return this;
  2753   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
  2756 //------------------------------xmeet_unloaded---------------------------------
  2757 // Compute the MEET of two InstPtrs when at least one is unloaded.
  2758 // Assume classes are different since called after check for same name/class-loader
  2759 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  2760     int off = meet_offset(tinst->offset());
  2761     PTR ptr = meet_ptr(tinst->ptr());
  2762     int instance_id = meet_instance_id(tinst->instance_id());
  2764     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  2765     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  2766     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  2767       //
  2768       // Meet unloaded class with java/lang/Object
  2769       //
  2770       // Meet
  2771       //          |                     Unloaded Class
  2772       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  2773       //  ===================================================================
  2774       //   TOP    | ..........................Unloaded......................|
  2775       //  AnyNull |  U-AN    |................Unloaded......................|
  2776       // Constant | ... O-NN .................................. |   O-BOT   |
  2777       //  NotNull | ... O-NN .................................. |   O-BOT   |
  2778       //  BOTTOM  | ........................Object-BOTTOM ..................|
  2779       //
  2780       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  2781       //
  2782       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  2783       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
  2784       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  2785       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  2786         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  2787         else                                      { return TypeInstPtr::NOTNULL; }
  2789       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  2791       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  2794     // Both are unloaded, not the same class, not Object
  2795     // Or meet unloaded with a different loaded class, not java/lang/Object
  2796     if( ptr != TypePtr::BotPTR ) {
  2797       return TypeInstPtr::NOTNULL;
  2799     return TypeInstPtr::BOTTOM;
  2803 //------------------------------meet-------------------------------------------
  2804 // Compute the MEET of two types.  It returns a new Type object.
  2805 const Type *TypeInstPtr::xmeet( const Type *t ) const {
  2806   // Perform a fast test for common case; meeting the same types together.
  2807   if( this == t ) return this;  // Meeting same type-rep?
  2809   // Current "this->_base" is Pointer
  2810   switch (t->base()) {          // switch on original type
  2812   case Int:                     // Mixing ints & oops happens when javac
  2813   case Long:                    // reuses local variables
  2814   case FloatTop:
  2815   case FloatCon:
  2816   case FloatBot:
  2817   case DoubleTop:
  2818   case DoubleCon:
  2819   case DoubleBot:
  2820   case NarrowOop:
  2821   case Bottom:                  // Ye Olde Default
  2822     return Type::BOTTOM;
  2823   case Top:
  2824     return this;
  2826   default:                      // All else is a mistake
  2827     typerr(t);
  2829   case RawPtr: return TypePtr::BOTTOM;
  2831   case AryPtr: {                // All arrays inherit from Object class
  2832     const TypeAryPtr *tp = t->is_aryptr();
  2833     int offset = meet_offset(tp->offset());
  2834     PTR ptr = meet_ptr(tp->ptr());
  2835     int instance_id = meet_instance_id(tp->instance_id());
  2836     switch (ptr) {
  2837     case TopPTR:
  2838     case AnyNull:                // Fall 'down' to dual of object klass
  2839       if (klass()->equals(ciEnv::current()->Object_klass())) {
  2840         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  2841       } else {
  2842         // cannot subclass, so the meet has to fall badly below the centerline
  2843         ptr = NotNull;
  2844         instance_id = InstanceBot;
  2845         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
  2847     case Constant:
  2848     case NotNull:
  2849     case BotPTR:                // Fall down to object klass
  2850       // LCA is object_klass, but if we subclass from the top we can do better
  2851       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  2852         // If 'this' (InstPtr) is above the centerline and it is Object class
  2853         // then we can subclass in the Java class hierarchy.
  2854         if (klass()->equals(ciEnv::current()->Object_klass())) {
  2855           // that is, tp's array type is a subtype of my klass
  2856           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
  2857                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  2860       // The other case cannot happen, since I cannot be a subtype of an array.
  2861       // The meet falls down to Object class below centerline.
  2862       if( ptr == Constant )
  2863          ptr = NotNull;
  2864       instance_id = InstanceBot;
  2865       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
  2866     default: typerr(t);
  2870   case OopPtr: {                // Meeting to OopPtrs
  2871     // Found a OopPtr type vs self-InstPtr type
  2872     const TypeOopPtr *tp = t->is_oopptr();
  2873     int offset = meet_offset(tp->offset());
  2874     PTR ptr = meet_ptr(tp->ptr());
  2875     switch (tp->ptr()) {
  2876     case TopPTR:
  2877     case AnyNull: {
  2878       int instance_id = meet_instance_id(InstanceTop);
  2879       return make(ptr, klass(), klass_is_exact(),
  2880                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  2882     case NotNull:
  2883     case BotPTR: {
  2884       int instance_id = meet_instance_id(tp->instance_id());
  2885       return TypeOopPtr::make(ptr, offset, instance_id);
  2887     default: typerr(t);
  2891   case AnyPtr: {                // Meeting to AnyPtrs
  2892     // Found an AnyPtr type vs self-InstPtr type
  2893     const TypePtr *tp = t->is_ptr();
  2894     int offset = meet_offset(tp->offset());
  2895     PTR ptr = meet_ptr(tp->ptr());
  2896     switch (tp->ptr()) {
  2897     case Null:
  2898       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  2899       // else fall through to AnyNull
  2900     case TopPTR:
  2901     case AnyNull: {
  2902       int instance_id = meet_instance_id(InstanceTop);
  2903       return make( ptr, klass(), klass_is_exact(),
  2904                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  2906     case NotNull:
  2907     case BotPTR:
  2908       return TypePtr::make( AnyPtr, ptr, offset );
  2909     default: typerr(t);
  2913   /*
  2914                  A-top         }
  2915                /   |   \       }  Tops
  2916            B-top A-any C-top   }
  2917               | /  |  \ |      }  Any-nulls
  2918            B-any   |   C-any   }
  2919               |    |    |
  2920            B-con A-con C-con   } constants; not comparable across classes
  2921               |    |    |
  2922            B-not   |   C-not   }
  2923               | \  |  / |      }  not-nulls
  2924            B-bot A-not C-bot   }
  2925                \   |   /       }  Bottoms
  2926                  A-bot         }
  2927   */
  2929   case InstPtr: {                // Meeting 2 Oops?
  2930     // Found an InstPtr sub-type vs self-InstPtr type
  2931     const TypeInstPtr *tinst = t->is_instptr();
  2932     int off = meet_offset( tinst->offset() );
  2933     PTR ptr = meet_ptr( tinst->ptr() );
  2934     int instance_id = meet_instance_id(tinst->instance_id());
  2936     // Check for easy case; klasses are equal (and perhaps not loaded!)
  2937     // If we have constants, then we created oops so classes are loaded
  2938     // and we can handle the constants further down.  This case handles
  2939     // both-not-loaded or both-loaded classes
  2940     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  2941       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
  2944     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  2945     ciKlass* tinst_klass = tinst->klass();
  2946     ciKlass* this_klass  = this->klass();
  2947     bool tinst_xk = tinst->klass_is_exact();
  2948     bool this_xk  = this->klass_is_exact();
  2949     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  2950       // One of these classes has not been loaded
  2951       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  2952 #ifndef PRODUCT
  2953       if( PrintOpto && Verbose ) {
  2954         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  2955         tty->print("  this == "); this->dump(); tty->cr();
  2956         tty->print(" tinst == "); tinst->dump(); tty->cr();
  2958 #endif
  2959       return unloaded_meet;
  2962     // Handle mixing oops and interfaces first.
  2963     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
  2964       ciKlass *tmp = tinst_klass; // Swap interface around
  2965       tinst_klass = this_klass;
  2966       this_klass = tmp;
  2967       bool tmp2 = tinst_xk;
  2968       tinst_xk = this_xk;
  2969       this_xk = tmp2;
  2971     if (tinst_klass->is_interface() &&
  2972         !(this_klass->is_interface() ||
  2973           // Treat java/lang/Object as an honorary interface,
  2974           // because we need a bottom for the interface hierarchy.
  2975           this_klass == ciEnv::current()->Object_klass())) {
  2976       // Oop meets interface!
  2978       // See if the oop subtypes (implements) interface.
  2979       ciKlass *k;
  2980       bool xk;
  2981       if( this_klass->is_subtype_of( tinst_klass ) ) {
  2982         // Oop indeed subtypes.  Now keep oop or interface depending
  2983         // on whether we are both above the centerline or either is
  2984         // below the centerline.  If we are on the centerline
  2985         // (e.g., Constant vs. AnyNull interface), use the constant.
  2986         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  2987         // If we are keeping this_klass, keep its exactness too.
  2988         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  2989       } else {                  // Does not implement, fall to Object
  2990         // Oop does not implement interface, so mixing falls to Object
  2991         // just like the verifier does (if both are above the
  2992         // centerline fall to interface)
  2993         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  2994         xk = above_centerline(ptr) ? tinst_xk : false;
  2995         // Watch out for Constant vs. AnyNull interface.
  2996         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  2997         instance_id = InstanceBot;
  2999       ciObject* o = NULL;  // the Constant value, if any
  3000       if (ptr == Constant) {
  3001         // Find out which constant.
  3002         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  3004       return make( ptr, k, xk, o, off, instance_id );
  3007     // Either oop vs oop or interface vs interface or interface vs Object
  3009     // !!! Here's how the symmetry requirement breaks down into invariants:
  3010     // If we split one up & one down AND they subtype, take the down man.
  3011     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3012     // If both are up and they subtype, take the subtype class.
  3013     // If both are up and they do NOT subtype, "fall hard".
  3014     // If both are down and they subtype, take the supertype class.
  3015     // If both are down and they do NOT subtype, "fall hard".
  3016     // Constants treated as down.
  3018     // Now, reorder the above list; observe that both-down+subtype is also
  3019     // "fall hard"; "fall hard" becomes the default case:
  3020     // If we split one up & one down AND they subtype, take the down man.
  3021     // If both are up and they subtype, take the subtype class.
  3023     // If both are down and they subtype, "fall hard".
  3024     // If both are down and they do NOT subtype, "fall hard".
  3025     // If both are up and they do NOT subtype, "fall hard".
  3026     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3028     // If a proper subtype is exact, and we return it, we return it exactly.
  3029     // If a proper supertype is exact, there can be no subtyping relationship!
  3030     // If both types are equal to the subtype, exactness is and-ed below the
  3031     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  3033     // Check for subtyping:
  3034     ciKlass *subtype = NULL;
  3035     bool subtype_exact = false;
  3036     if( tinst_klass->equals(this_klass) ) {
  3037       subtype = this_klass;
  3038       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  3039     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  3040       subtype = this_klass;     // Pick subtyping class
  3041       subtype_exact = this_xk;
  3042     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3043       subtype = tinst_klass;    // Pick subtyping class
  3044       subtype_exact = tinst_xk;
  3047     if( subtype ) {
  3048       if( above_centerline(ptr) ) { // both are up?
  3049         this_klass = tinst_klass = subtype;
  3050         this_xk = tinst_xk = subtype_exact;
  3051       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3052         this_klass = tinst_klass; // tinst is down; keep down man
  3053         this_xk = tinst_xk;
  3054       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3055         tinst_klass = this_klass; // this is down; keep down man
  3056         tinst_xk = this_xk;
  3057       } else {
  3058         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3062     // Check for classes now being equal
  3063     if (tinst_klass->equals(this_klass)) {
  3064       // If the klasses are equal, the constants may still differ.  Fall to
  3065       // NotNull if they do (neither constant is NULL; that is a special case
  3066       // handled elsewhere).
  3067       ciObject* o = NULL;             // Assume not constant when done
  3068       ciObject* this_oop  = const_oop();
  3069       ciObject* tinst_oop = tinst->const_oop();
  3070       if( ptr == Constant ) {
  3071         if (this_oop != NULL && tinst_oop != NULL &&
  3072             this_oop->equals(tinst_oop) )
  3073           o = this_oop;
  3074         else if (above_centerline(this ->_ptr))
  3075           o = tinst_oop;
  3076         else if (above_centerline(tinst ->_ptr))
  3077           o = this_oop;
  3078         else
  3079           ptr = NotNull;
  3081       return make( ptr, this_klass, this_xk, o, off, instance_id );
  3082     } // Else classes are not equal
  3084     // Since klasses are different, we require a LCA in the Java
  3085     // class hierarchy - which means we have to fall to at least NotNull.
  3086     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3087       ptr = NotNull;
  3088     instance_id = InstanceBot;
  3090     // Now we find the LCA of Java classes
  3091     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3092     return make( ptr, k, false, NULL, off, instance_id );
  3093   } // End of case InstPtr
  3095   case KlassPtr:
  3096     return TypeInstPtr::BOTTOM;
  3098   } // End of switch
  3099   return this;                  // Return the double constant
  3103 //------------------------java_mirror_type--------------------------------------
  3104 ciType* TypeInstPtr::java_mirror_type() const {
  3105   // must be a singleton type
  3106   if( const_oop() == NULL )  return NULL;
  3108   // must be of type java.lang.Class
  3109   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3111   return const_oop()->as_instance()->java_mirror_type();
  3115 //------------------------------xdual------------------------------------------
  3116 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3117 // inheritance mechanism.
  3118 const Type *TypeInstPtr::xdual() const {
  3119   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  3122 //------------------------------eq---------------------------------------------
  3123 // Structural equality check for Type representations
  3124 bool TypeInstPtr::eq( const Type *t ) const {
  3125   const TypeInstPtr *p = t->is_instptr();
  3126   return
  3127     klass()->equals(p->klass()) &&
  3128     TypeOopPtr::eq(p);          // Check sub-type stuff
  3131 //------------------------------hash-------------------------------------------
  3132 // Type-specific hashing function.
  3133 int TypeInstPtr::hash(void) const {
  3134   int hash = klass()->hash() + TypeOopPtr::hash();
  3135   return hash;
  3138 //------------------------------dump2------------------------------------------
  3139 // Dump oop Type
  3140 #ifndef PRODUCT
  3141 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3142   // Print the name of the klass.
  3143   klass()->print_name_on(st);
  3145   switch( _ptr ) {
  3146   case Constant:
  3147     // TO DO: Make CI print the hex address of the underlying oop.
  3148     if (WizardMode || Verbose) {
  3149       const_oop()->print_oop(st);
  3151   case BotPTR:
  3152     if (!WizardMode && !Verbose) {
  3153       if( _klass_is_exact ) st->print(":exact");
  3154       break;
  3156   case TopPTR:
  3157   case AnyNull:
  3158   case NotNull:
  3159     st->print(":%s", ptr_msg[_ptr]);
  3160     if( _klass_is_exact ) st->print(":exact");
  3161     break;
  3164   if( _offset ) {               // Dump offset, if any
  3165     if( _offset == OffsetBot )      st->print("+any");
  3166     else if( _offset == OffsetTop ) st->print("+unknown");
  3167     else st->print("+%d", _offset);
  3170   st->print(" *");
  3171   if (_instance_id == InstanceTop)
  3172     st->print(",iid=top");
  3173   else if (_instance_id != InstanceBot)
  3174     st->print(",iid=%d",_instance_id);
  3176 #endif
  3178 //------------------------------add_offset-------------------------------------
  3179 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
  3180   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
  3183 //=============================================================================
  3184 // Convenience common pre-built types.
  3185 const TypeAryPtr *TypeAryPtr::RANGE;
  3186 const TypeAryPtr *TypeAryPtr::OOPS;
  3187 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3188 const TypeAryPtr *TypeAryPtr::BYTES;
  3189 const TypeAryPtr *TypeAryPtr::SHORTS;
  3190 const TypeAryPtr *TypeAryPtr::CHARS;
  3191 const TypeAryPtr *TypeAryPtr::INTS;
  3192 const TypeAryPtr *TypeAryPtr::LONGS;
  3193 const TypeAryPtr *TypeAryPtr::FLOATS;
  3194 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3196 //------------------------------make-------------------------------------------
  3197 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3198   assert(!(k == NULL && ary->_elem->isa_int()),
  3199          "integral arrays must be pre-equipped with a class");
  3200   if (!xk)  xk = ary->ary_must_be_exact();
  3201   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3202   if (!UseExactTypes)  xk = (ptr == Constant);
  3203   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
  3206 //------------------------------make-------------------------------------------
  3207 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3208   assert(!(k == NULL && ary->_elem->isa_int()),
  3209          "integral arrays must be pre-equipped with a class");
  3210   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3211   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3212   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3213   if (!UseExactTypes)  xk = (ptr == Constant);
  3214   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
  3217 //------------------------------cast_to_ptr_type-------------------------------
  3218 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3219   if( ptr == _ptr ) return this;
  3220   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
  3224 //-----------------------------cast_to_exactness-------------------------------
  3225 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3226   if( klass_is_exact == _klass_is_exact ) return this;
  3227   if (!UseExactTypes)  return this;
  3228   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3229   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
  3232 //-----------------------------cast_to_instance_id----------------------------
  3233 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3234   if( instance_id == _instance_id ) return this;
  3235   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
  3238 //-----------------------------narrow_size_type-------------------------------
  3239 // Local cache for arrayOopDesc::max_array_length(etype),
  3240 // which is kind of slow (and cached elsewhere by other users).
  3241 static jint max_array_length_cache[T_CONFLICT+1];
  3242 static jint max_array_length(BasicType etype) {
  3243   jint& cache = max_array_length_cache[etype];
  3244   jint res = cache;
  3245   if (res == 0) {
  3246     switch (etype) {
  3247     case T_NARROWOOP:
  3248       etype = T_OBJECT;
  3249       break;
  3250     case T_CONFLICT:
  3251     case T_ILLEGAL:
  3252     case T_VOID:
  3253       etype = T_BYTE;           // will produce conservatively high value
  3255     cache = res = arrayOopDesc::max_array_length(etype);
  3257   return res;
  3260 // Narrow the given size type to the index range for the given array base type.
  3261 // Return NULL if the resulting int type becomes empty.
  3262 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3263   jint hi = size->_hi;
  3264   jint lo = size->_lo;
  3265   jint min_lo = 0;
  3266   jint max_hi = max_array_length(elem()->basic_type());
  3267   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3268   bool chg = false;
  3269   if (lo < min_lo) { lo = min_lo; chg = true; }
  3270   if (hi > max_hi) { hi = max_hi; chg = true; }
  3271   // Negative length arrays will produce weird intermediate dead fast-path code
  3272   if (lo > hi)
  3273     return TypeInt::ZERO;
  3274   if (!chg)
  3275     return size;
  3276   return TypeInt::make(lo, hi, Type::WidenMin);
  3279 //-------------------------------cast_to_size----------------------------------
  3280 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3281   assert(new_size != NULL, "");
  3282   new_size = narrow_size_type(new_size);
  3283   if (new_size == size())  return this;
  3284   const TypeAry* new_ary = TypeAry::make(elem(), new_size);
  3285   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3289 //------------------------------eq---------------------------------------------
  3290 // Structural equality check for Type representations
  3291 bool TypeAryPtr::eq( const Type *t ) const {
  3292   const TypeAryPtr *p = t->is_aryptr();
  3293   return
  3294     _ary == p->_ary &&  // Check array
  3295     TypeOopPtr::eq(p);  // Check sub-parts
  3298 //------------------------------hash-------------------------------------------
  3299 // Type-specific hashing function.
  3300 int TypeAryPtr::hash(void) const {
  3301   return (intptr_t)_ary + TypeOopPtr::hash();
  3304 //------------------------------meet-------------------------------------------
  3305 // Compute the MEET of two types.  It returns a new Type object.
  3306 const Type *TypeAryPtr::xmeet( const Type *t ) const {
  3307   // Perform a fast test for common case; meeting the same types together.
  3308   if( this == t ) return this;  // Meeting same type-rep?
  3309   // Current "this->_base" is Pointer
  3310   switch (t->base()) {          // switch on original type
  3312   // Mixing ints & oops happens when javac reuses local variables
  3313   case Int:
  3314   case Long:
  3315   case FloatTop:
  3316   case FloatCon:
  3317   case FloatBot:
  3318   case DoubleTop:
  3319   case DoubleCon:
  3320   case DoubleBot:
  3321   case NarrowOop:
  3322   case Bottom:                  // Ye Olde Default
  3323     return Type::BOTTOM;
  3324   case Top:
  3325     return this;
  3327   default:                      // All else is a mistake
  3328     typerr(t);
  3330   case OopPtr: {                // Meeting to OopPtrs
  3331     // Found a OopPtr type vs self-AryPtr type
  3332     const TypeOopPtr *tp = t->is_oopptr();
  3333     int offset = meet_offset(tp->offset());
  3334     PTR ptr = meet_ptr(tp->ptr());
  3335     switch (tp->ptr()) {
  3336     case TopPTR:
  3337     case AnyNull: {
  3338       int instance_id = meet_instance_id(InstanceTop);
  3339       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3340                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3342     case BotPTR:
  3343     case NotNull: {
  3344       int instance_id = meet_instance_id(tp->instance_id());
  3345       return TypeOopPtr::make(ptr, offset, instance_id);
  3347     default: ShouldNotReachHere();
  3351   case AnyPtr: {                // Meeting two AnyPtrs
  3352     // Found an AnyPtr type vs self-AryPtr type
  3353     const TypePtr *tp = t->is_ptr();
  3354     int offset = meet_offset(tp->offset());
  3355     PTR ptr = meet_ptr(tp->ptr());
  3356     switch (tp->ptr()) {
  3357     case TopPTR:
  3358       return this;
  3359     case BotPTR:
  3360     case NotNull:
  3361       return TypePtr::make(AnyPtr, ptr, offset);
  3362     case Null:
  3363       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3364       // else fall through to AnyNull
  3365     case AnyNull: {
  3366       int instance_id = meet_instance_id(InstanceTop);
  3367       return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3368                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3370     default: ShouldNotReachHere();
  3374   case RawPtr: return TypePtr::BOTTOM;
  3376   case AryPtr: {                // Meeting 2 references?
  3377     const TypeAryPtr *tap = t->is_aryptr();
  3378     int off = meet_offset(tap->offset());
  3379     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
  3380     PTR ptr = meet_ptr(tap->ptr());
  3381     int instance_id = meet_instance_id(tap->instance_id());
  3382     ciKlass* lazy_klass = NULL;
  3383     if (tary->_elem->isa_int()) {
  3384       // Integral array element types have irrelevant lattice relations.
  3385       // It is the klass that determines array layout, not the element type.
  3386       if (_klass == NULL)
  3387         lazy_klass = tap->_klass;
  3388       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3389         lazy_klass = _klass;
  3390       } else {
  3391         // Something like byte[int+] meets char[int+].
  3392         // This must fall to bottom, not (int[-128..65535])[int+].
  3393         instance_id = InstanceBot;
  3394         tary = TypeAry::make(Type::BOTTOM, tary->_size);
  3396     } else // Non integral arrays.
  3397     // Must fall to bottom if exact klasses in upper lattice
  3398     // are not equal or super klass is exact.
  3399     if ( above_centerline(ptr) && klass() != tap->klass() &&
  3400          // meet with top[] and bottom[] are processed further down:
  3401          tap ->_klass != NULL  && this->_klass != NULL   &&
  3402          // both are exact and not equal:
  3403         ((tap ->_klass_is_exact && this->_klass_is_exact) ||
  3404          // 'tap'  is exact and super or unrelated:
  3405          (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
  3406          // 'this' is exact and super or unrelated:
  3407          (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
  3408       tary = TypeAry::make(Type::BOTTOM, tary->_size);
  3409       return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
  3412     bool xk = false;
  3413     switch (tap->ptr()) {
  3414     case AnyNull:
  3415     case TopPTR:
  3416       // Compute new klass on demand, do not use tap->_klass
  3417       xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3418       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
  3419     case Constant: {
  3420       ciObject* o = const_oop();
  3421       if( _ptr == Constant ) {
  3422         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3423           xk = (klass() == tap->klass());
  3424           ptr = NotNull;
  3425           o = NULL;
  3426           instance_id = InstanceBot;
  3427         } else {
  3428           xk = true;
  3430       } else if( above_centerline(_ptr) ) {
  3431         o = tap->const_oop();
  3432         xk = true;
  3433       } else {
  3434         // Only precise for identical arrays
  3435         xk = this->_klass_is_exact && (klass() == tap->klass());
  3437       return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
  3439     case NotNull:
  3440     case BotPTR:
  3441       // Compute new klass on demand, do not use tap->_klass
  3442       if (above_centerline(this->_ptr))
  3443             xk = tap->_klass_is_exact;
  3444       else if (above_centerline(tap->_ptr))
  3445             xk = this->_klass_is_exact;
  3446       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  3447               (klass() == tap->klass()); // Only precise for identical arrays
  3448       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
  3449     default: ShouldNotReachHere();
  3453   // All arrays inherit from Object class
  3454   case InstPtr: {
  3455     const TypeInstPtr *tp = t->is_instptr();
  3456     int offset = meet_offset(tp->offset());
  3457     PTR ptr = meet_ptr(tp->ptr());
  3458     int instance_id = meet_instance_id(tp->instance_id());
  3459     switch (ptr) {
  3460     case TopPTR:
  3461     case AnyNull:                // Fall 'down' to dual of object klass
  3462       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3463         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
  3464       } else {
  3465         // cannot subclass, so the meet has to fall badly below the centerline
  3466         ptr = NotNull;
  3467         instance_id = InstanceBot;
  3468         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3470     case Constant:
  3471     case NotNull:
  3472     case BotPTR:                // Fall down to object klass
  3473       // LCA is object_klass, but if we subclass from the top we can do better
  3474       if (above_centerline(tp->ptr())) {
  3475         // If 'tp'  is above the centerline and it is Object class
  3476         // then we can subclass in the Java class hierarchy.
  3477         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3478           // that is, my array type is a subtype of 'tp' klass
  3479           return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3480                        _ary, _klass, _klass_is_exact, offset, instance_id );
  3483       // The other case cannot happen, since t cannot be a subtype of an array.
  3484       // The meet falls down to Object class below centerline.
  3485       if( ptr == Constant )
  3486          ptr = NotNull;
  3487       instance_id = InstanceBot;
  3488       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3489     default: typerr(t);
  3493   case KlassPtr:
  3494     return TypeInstPtr::BOTTOM;
  3497   return this;                  // Lint noise
  3500 //------------------------------xdual------------------------------------------
  3501 // Dual: compute field-by-field dual
  3502 const Type *TypeAryPtr::xdual() const {
  3503   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
  3506 //----------------------interface_vs_oop---------------------------------------
  3507 #ifdef ASSERT
  3508 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  3509   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  3510   if (t_aryptr) {
  3511     return _ary->interface_vs_oop(t_aryptr->_ary);
  3513   return false;
  3515 #endif
  3517 //------------------------------dump2------------------------------------------
  3518 #ifndef PRODUCT
  3519 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3520   _ary->dump2(d,depth,st);
  3521   switch( _ptr ) {
  3522   case Constant:
  3523     const_oop()->print(st);
  3524     break;
  3525   case BotPTR:
  3526     if (!WizardMode && !Verbose) {
  3527       if( _klass_is_exact ) st->print(":exact");
  3528       break;
  3530   case TopPTR:
  3531   case AnyNull:
  3532   case NotNull:
  3533     st->print(":%s", ptr_msg[_ptr]);
  3534     if( _klass_is_exact ) st->print(":exact");
  3535     break;
  3538   if( _offset != 0 ) {
  3539     int header_size = objArrayOopDesc::header_size() * wordSize;
  3540     if( _offset == OffsetTop )       st->print("+undefined");
  3541     else if( _offset == OffsetBot )  st->print("+any");
  3542     else if( _offset < header_size ) st->print("+%d", _offset);
  3543     else {
  3544       BasicType basic_elem_type = elem()->basic_type();
  3545       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  3546       int elem_size = type2aelembytes(basic_elem_type);
  3547       st->print("[%d]", (_offset - array_base)/elem_size);
  3550   st->print(" *");
  3551   if (_instance_id == InstanceTop)
  3552     st->print(",iid=top");
  3553   else if (_instance_id != InstanceBot)
  3554     st->print(",iid=%d",_instance_id);
  3556 #endif
  3558 bool TypeAryPtr::empty(void) const {
  3559   if (_ary->empty())       return true;
  3560   return TypeOopPtr::empty();
  3563 //------------------------------add_offset-------------------------------------
  3564 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
  3565   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
  3569 //=============================================================================
  3570 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  3571 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  3574 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  3575   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  3578 //------------------------------hash-------------------------------------------
  3579 // Type-specific hashing function.
  3580 int TypeNarrowOop::hash(void) const {
  3581   return _ptrtype->hash() + 7;
  3585 bool TypeNarrowOop::eq( const Type *t ) const {
  3586   const TypeNarrowOop* tc = t->isa_narrowoop();
  3587   if (tc != NULL) {
  3588     if (_ptrtype->base() != tc->_ptrtype->base()) {
  3589       return false;
  3591     return tc->_ptrtype->eq(_ptrtype);
  3593   return false;
  3596 bool TypeNarrowOop::singleton(void) const {    // TRUE if type is a singleton
  3597   return _ptrtype->singleton();
  3600 bool TypeNarrowOop::empty(void) const {
  3601   return _ptrtype->empty();
  3604 //------------------------------xmeet------------------------------------------
  3605 // Compute the MEET of two types.  It returns a new Type object.
  3606 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
  3607   // Perform a fast test for common case; meeting the same types together.
  3608   if( this == t ) return this;  // Meeting same type-rep?
  3611   // Current "this->_base" is OopPtr
  3612   switch (t->base()) {          // switch on original type
  3614   case Int:                     // Mixing ints & oops happens when javac
  3615   case Long:                    // reuses local variables
  3616   case FloatTop:
  3617   case FloatCon:
  3618   case FloatBot:
  3619   case DoubleTop:
  3620   case DoubleCon:
  3621   case DoubleBot:
  3622   case AnyPtr:
  3623   case RawPtr:
  3624   case OopPtr:
  3625   case InstPtr:
  3626   case KlassPtr:
  3627   case AryPtr:
  3629   case Bottom:                  // Ye Olde Default
  3630     return Type::BOTTOM;
  3631   case Top:
  3632     return this;
  3634   case NarrowOop: {
  3635     const Type* result = _ptrtype->xmeet(t->make_ptr());
  3636     if (result->isa_ptr()) {
  3637       return TypeNarrowOop::make(result->is_ptr());
  3639     return result;
  3642   default:                      // All else is a mistake
  3643     typerr(t);
  3645   } // End of switch
  3647   return this;
  3650 const Type *TypeNarrowOop::xdual() const {    // Compute dual right now.
  3651   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  3652   return new TypeNarrowOop(odual);
  3655 const Type *TypeNarrowOop::filter( const Type *kills ) const {
  3656   if (kills->isa_narrowoop()) {
  3657     const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
  3658     if (ft->empty())
  3659       return Type::TOP;           // Canonical empty value
  3660     if (ft->isa_ptr()) {
  3661       return make(ft->isa_ptr());
  3663     return ft;
  3664   } else if (kills->isa_ptr()) {
  3665     const Type* ft = _ptrtype->join(kills);
  3666     if (ft->empty())
  3667       return Type::TOP;           // Canonical empty value
  3668     return ft;
  3669   } else {
  3670     return Type::TOP;
  3675 intptr_t TypeNarrowOop::get_con() const {
  3676   return _ptrtype->get_con();
  3679 #ifndef PRODUCT
  3680 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  3681   st->print("narrowoop: ");
  3682   _ptrtype->dump2(d, depth, st);
  3684 #endif
  3687 //=============================================================================
  3688 // Convenience common pre-built types.
  3690 // Not-null object klass or below
  3691 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  3692 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  3694 //------------------------------TypeKlasPtr------------------------------------
  3695 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  3696   : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
  3699 //------------------------------make-------------------------------------------
  3700 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  3701 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  3702   assert( k != NULL, "Expect a non-NULL klass");
  3703   assert(k->is_instance_klass() || k->is_array_klass() ||
  3704          k->is_method_klass(), "Incorrect type of klass oop");
  3705   TypeKlassPtr *r =
  3706     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  3708   return r;
  3711 //------------------------------eq---------------------------------------------
  3712 // Structural equality check for Type representations
  3713 bool TypeKlassPtr::eq( const Type *t ) const {
  3714   const TypeKlassPtr *p = t->is_klassptr();
  3715   return
  3716     klass()->equals(p->klass()) &&
  3717     TypeOopPtr::eq(p);
  3720 //------------------------------hash-------------------------------------------
  3721 // Type-specific hashing function.
  3722 int TypeKlassPtr::hash(void) const {
  3723   return klass()->hash() + TypeOopPtr::hash();
  3727 //----------------------compute_klass------------------------------------------
  3728 // Compute the defining klass for this class
  3729 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  3730   // Compute _klass based on element type.
  3731   ciKlass* k_ary = NULL;
  3732   const TypeInstPtr *tinst;
  3733   const TypeAryPtr *tary;
  3734   const Type* el = elem();
  3735   if (el->isa_narrowoop()) {
  3736     el = el->make_ptr();
  3739   // Get element klass
  3740   if ((tinst = el->isa_instptr()) != NULL) {
  3741     // Compute array klass from element klass
  3742     k_ary = ciObjArrayKlass::make(tinst->klass());
  3743   } else if ((tary = el->isa_aryptr()) != NULL) {
  3744     // Compute array klass from element klass
  3745     ciKlass* k_elem = tary->klass();
  3746     // If element type is something like bottom[], k_elem will be null.
  3747     if (k_elem != NULL)
  3748       k_ary = ciObjArrayKlass::make(k_elem);
  3749   } else if ((el->base() == Type::Top) ||
  3750              (el->base() == Type::Bottom)) {
  3751     // element type of Bottom occurs from meet of basic type
  3752     // and object; Top occurs when doing join on Bottom.
  3753     // Leave k_ary at NULL.
  3754   } else {
  3755     // Cannot compute array klass directly from basic type,
  3756     // since subtypes of TypeInt all have basic type T_INT.
  3757 #ifdef ASSERT
  3758     if (verify && el->isa_int()) {
  3759       // Check simple cases when verifying klass.
  3760       BasicType bt = T_ILLEGAL;
  3761       if (el == TypeInt::BYTE) {
  3762         bt = T_BYTE;
  3763       } else if (el == TypeInt::SHORT) {
  3764         bt = T_SHORT;
  3765       } else if (el == TypeInt::CHAR) {
  3766         bt = T_CHAR;
  3767       } else if (el == TypeInt::INT) {
  3768         bt = T_INT;
  3769       } else {
  3770         return _klass; // just return specified klass
  3772       return ciTypeArrayKlass::make(bt);
  3774 #endif
  3775     assert(!el->isa_int(),
  3776            "integral arrays must be pre-equipped with a class");
  3777     // Compute array klass directly from basic type
  3778     k_ary = ciTypeArrayKlass::make(el->basic_type());
  3780   return k_ary;
  3783 //------------------------------klass------------------------------------------
  3784 // Return the defining klass for this class
  3785 ciKlass* TypeAryPtr::klass() const {
  3786   if( _klass ) return _klass;   // Return cached value, if possible
  3788   // Oops, need to compute _klass and cache it
  3789   ciKlass* k_ary = compute_klass();
  3791   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
  3792     // The _klass field acts as a cache of the underlying
  3793     // ciKlass for this array type.  In order to set the field,
  3794     // we need to cast away const-ness.
  3795     //
  3796     // IMPORTANT NOTE: we *never* set the _klass field for the
  3797     // type TypeAryPtr::OOPS.  This Type is shared between all
  3798     // active compilations.  However, the ciKlass which represents
  3799     // this Type is *not* shared between compilations, so caching
  3800     // this value would result in fetching a dangling pointer.
  3801     //
  3802     // Recomputing the underlying ciKlass for each request is
  3803     // a bit less efficient than caching, but calls to
  3804     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  3805     ((TypeAryPtr*)this)->_klass = k_ary;
  3806     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  3807         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  3808       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  3811   return k_ary;
  3815 //------------------------------add_offset-------------------------------------
  3816 // Access internals of klass object
  3817 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  3818   return make( _ptr, klass(), xadd_offset(offset) );
  3821 //------------------------------cast_to_ptr_type-------------------------------
  3822 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  3823   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  3824   if( ptr == _ptr ) return this;
  3825   return make(ptr, _klass, _offset);
  3829 //-----------------------------cast_to_exactness-------------------------------
  3830 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  3831   if( klass_is_exact == _klass_is_exact ) return this;
  3832   if (!UseExactTypes)  return this;
  3833   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  3837 //-----------------------------as_instance_type--------------------------------
  3838 // Corresponding type for an instance of the given class.
  3839 // It will be NotNull, and exact if and only if the klass type is exact.
  3840 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  3841   ciKlass* k = klass();
  3842   bool    xk = klass_is_exact();
  3843   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  3844   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  3845   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  3846   return toop->cast_to_exactness(xk)->is_oopptr();
  3850 //------------------------------xmeet------------------------------------------
  3851 // Compute the MEET of two types, return a new Type object.
  3852 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  3853   // Perform a fast test for common case; meeting the same types together.
  3854   if( this == t ) return this;  // Meeting same type-rep?
  3856   // Current "this->_base" is Pointer
  3857   switch (t->base()) {          // switch on original type
  3859   case Int:                     // Mixing ints & oops happens when javac
  3860   case Long:                    // reuses local variables
  3861   case FloatTop:
  3862   case FloatCon:
  3863   case FloatBot:
  3864   case DoubleTop:
  3865   case DoubleCon:
  3866   case DoubleBot:
  3867   case NarrowOop:
  3868   case Bottom:                  // Ye Olde Default
  3869     return Type::BOTTOM;
  3870   case Top:
  3871     return this;
  3873   default:                      // All else is a mistake
  3874     typerr(t);
  3876   case RawPtr: return TypePtr::BOTTOM;
  3878   case OopPtr: {                // Meeting to OopPtrs
  3879     // Found a OopPtr type vs self-KlassPtr type
  3880     const TypePtr *tp = t->is_oopptr();
  3881     int offset = meet_offset(tp->offset());
  3882     PTR ptr = meet_ptr(tp->ptr());
  3883     switch (tp->ptr()) {
  3884     case TopPTR:
  3885     case AnyNull:
  3886       return make(ptr, klass(), offset);
  3887     case BotPTR:
  3888     case NotNull:
  3889       return TypePtr::make(AnyPtr, ptr, offset);
  3890     default: typerr(t);
  3894   case AnyPtr: {                // Meeting to AnyPtrs
  3895     // Found an AnyPtr type vs self-KlassPtr type
  3896     const TypePtr *tp = t->is_ptr();
  3897     int offset = meet_offset(tp->offset());
  3898     PTR ptr = meet_ptr(tp->ptr());
  3899     switch (tp->ptr()) {
  3900     case TopPTR:
  3901       return this;
  3902     case Null:
  3903       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  3904     case AnyNull:
  3905       return make( ptr, klass(), offset );
  3906     case BotPTR:
  3907     case NotNull:
  3908       return TypePtr::make(AnyPtr, ptr, offset);
  3909     default: typerr(t);
  3913   case AryPtr:                  // Meet with AryPtr
  3914   case InstPtr:                 // Meet with InstPtr
  3915     return TypeInstPtr::BOTTOM;
  3917   //
  3918   //             A-top         }
  3919   //           /   |   \       }  Tops
  3920   //       B-top A-any C-top   }
  3921   //          | /  |  \ |      }  Any-nulls
  3922   //       B-any   |   C-any   }
  3923   //          |    |    |
  3924   //       B-con A-con C-con   } constants; not comparable across classes
  3925   //          |    |    |
  3926   //       B-not   |   C-not   }
  3927   //          | \  |  / |      }  not-nulls
  3928   //       B-bot A-not C-bot   }
  3929   //           \   |   /       }  Bottoms
  3930   //             A-bot         }
  3931   //
  3933   case KlassPtr: {  // Meet two KlassPtr types
  3934     const TypeKlassPtr *tkls = t->is_klassptr();
  3935     int  off     = meet_offset(tkls->offset());
  3936     PTR  ptr     = meet_ptr(tkls->ptr());
  3938     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3939     // If we have constants, then we created oops so classes are loaded
  3940     // and we can handle the constants further down.  This case handles
  3941     // not-loaded classes
  3942     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  3943       return make( ptr, klass(), off );
  3946     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3947     ciKlass* tkls_klass = tkls->klass();
  3948     ciKlass* this_klass = this->klass();
  3949     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  3950     assert( this_klass->is_loaded(), "This class should have been loaded.");
  3952     // If 'this' type is above the centerline and is a superclass of the
  3953     // other, we can treat 'this' as having the same type as the other.
  3954     if ((above_centerline(this->ptr())) &&
  3955         tkls_klass->is_subtype_of(this_klass)) {
  3956       this_klass = tkls_klass;
  3958     // If 'tinst' type is above the centerline and is a superclass of the
  3959     // other, we can treat 'tinst' as having the same type as the other.
  3960     if ((above_centerline(tkls->ptr())) &&
  3961         this_klass->is_subtype_of(tkls_klass)) {
  3962       tkls_klass = this_klass;
  3965     // Check for classes now being equal
  3966     if (tkls_klass->equals(this_klass)) {
  3967       // If the klasses are equal, the constants may still differ.  Fall to
  3968       // NotNull if they do (neither constant is NULL; that is a special case
  3969       // handled elsewhere).
  3970       ciObject* o = NULL;             // Assume not constant when done
  3971       ciObject* this_oop = const_oop();
  3972       ciObject* tkls_oop = tkls->const_oop();
  3973       if( ptr == Constant ) {
  3974         if (this_oop != NULL && tkls_oop != NULL &&
  3975             this_oop->equals(tkls_oop) )
  3976           o = this_oop;
  3977         else if (above_centerline(this->ptr()))
  3978           o = tkls_oop;
  3979         else if (above_centerline(tkls->ptr()))
  3980           o = this_oop;
  3981         else
  3982           ptr = NotNull;
  3984       return make( ptr, this_klass, off );
  3985     } // Else classes are not equal
  3987     // Since klasses are different, we require the LCA in the Java
  3988     // class hierarchy - which means we have to fall to at least NotNull.
  3989     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3990       ptr = NotNull;
  3991     // Now we find the LCA of Java classes
  3992     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  3993     return   make( ptr, k, off );
  3994   } // End of case KlassPtr
  3996   } // End of switch
  3997   return this;                  // Return the double constant
  4000 //------------------------------xdual------------------------------------------
  4001 // Dual: compute field-by-field dual
  4002 const Type    *TypeKlassPtr::xdual() const {
  4003   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  4006 //------------------------------dump2------------------------------------------
  4007 // Dump Klass Type
  4008 #ifndef PRODUCT
  4009 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4010   switch( _ptr ) {
  4011   case Constant:
  4012     st->print("precise ");
  4013   case NotNull:
  4015       const char *name = klass()->name()->as_utf8();
  4016       if( name ) {
  4017         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  4018       } else {
  4019         ShouldNotReachHere();
  4022   case BotPTR:
  4023     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  4024   case TopPTR:
  4025   case AnyNull:
  4026     st->print(":%s", ptr_msg[_ptr]);
  4027     if( _klass_is_exact ) st->print(":exact");
  4028     break;
  4031   if( _offset ) {               // Dump offset, if any
  4032     if( _offset == OffsetBot )      { st->print("+any"); }
  4033     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  4034     else                            { st->print("+%d", _offset); }
  4037   st->print(" *");
  4039 #endif
  4043 //=============================================================================
  4044 // Convenience common pre-built types.
  4046 //------------------------------make-------------------------------------------
  4047 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  4048   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  4051 //------------------------------make-------------------------------------------
  4052 const TypeFunc *TypeFunc::make(ciMethod* method) {
  4053   Compile* C = Compile::current();
  4054   const TypeFunc* tf = C->last_tf(method); // check cache
  4055   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  4056   const TypeTuple *domain;
  4057   if (method->is_static()) {
  4058     domain = TypeTuple::make_domain(NULL, method->signature());
  4059   } else {
  4060     domain = TypeTuple::make_domain(method->holder(), method->signature());
  4062   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  4063   tf = TypeFunc::make(domain, range);
  4064   C->set_last_tf(method, tf);  // fill cache
  4065   return tf;
  4068 //------------------------------meet-------------------------------------------
  4069 // Compute the MEET of two types.  It returns a new Type object.
  4070 const Type *TypeFunc::xmeet( const Type *t ) const {
  4071   // Perform a fast test for common case; meeting the same types together.
  4072   if( this == t ) return this;  // Meeting same type-rep?
  4074   // Current "this->_base" is Func
  4075   switch (t->base()) {          // switch on original type
  4077   case Bottom:                  // Ye Olde Default
  4078     return t;
  4080   default:                      // All else is a mistake
  4081     typerr(t);
  4083   case Top:
  4084     break;
  4086   return this;                  // Return the double constant
  4089 //------------------------------xdual------------------------------------------
  4090 // Dual: compute field-by-field dual
  4091 const Type *TypeFunc::xdual() const {
  4092   return this;
  4095 //------------------------------eq---------------------------------------------
  4096 // Structural equality check for Type representations
  4097 bool TypeFunc::eq( const Type *t ) const {
  4098   const TypeFunc *a = (const TypeFunc*)t;
  4099   return _domain == a->_domain &&
  4100     _range == a->_range;
  4103 //------------------------------hash-------------------------------------------
  4104 // Type-specific hashing function.
  4105 int TypeFunc::hash(void) const {
  4106   return (intptr_t)_domain + (intptr_t)_range;
  4109 //------------------------------dump2------------------------------------------
  4110 // Dump Function Type
  4111 #ifndef PRODUCT
  4112 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4113   if( _range->_cnt <= Parms )
  4114     st->print("void");
  4115   else {
  4116     uint i;
  4117     for (i = Parms; i < _range->_cnt-1; i++) {
  4118       _range->field_at(i)->dump2(d,depth,st);
  4119       st->print("/");
  4121     _range->field_at(i)->dump2(d,depth,st);
  4123   st->print(" ");
  4124   st->print("( ");
  4125   if( !depth || d[this] ) {     // Check for recursive dump
  4126     st->print("...)");
  4127     return;
  4129   d.Insert((void*)this,(void*)this);    // Stop recursion
  4130   if (Parms < _domain->_cnt)
  4131     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4132   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4133     st->print(", ");
  4134     _domain->field_at(i)->dump2(d,depth-1,st);
  4136   st->print(" )");
  4139 //------------------------------print_flattened--------------------------------
  4140 // Print a 'flattened' signature
  4141 static const char * const flat_type_msg[Type::lastype] = {
  4142   "bad","control","top","int","long","_", "narrowoop",
  4143   "tuple:", "array:",
  4144   "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
  4145   "func", "abIO", "return_address", "mem",
  4146   "float_top", "ftcon:", "flt",
  4147   "double_top", "dblcon:", "dbl",
  4148   "bottom"
  4149 };
  4151 void TypeFunc::print_flattened() const {
  4152   if( _range->_cnt <= Parms )
  4153     tty->print("void");
  4154   else {
  4155     uint i;
  4156     for (i = Parms; i < _range->_cnt-1; i++)
  4157       tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
  4158     tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
  4160   tty->print(" ( ");
  4161   if (Parms < _domain->_cnt)
  4162     tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
  4163   for (uint i = Parms+1; i < _domain->_cnt; i++)
  4164     tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
  4165   tty->print(" )");
  4167 #endif
  4169 //------------------------------singleton--------------------------------------
  4170 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4171 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4172 // or a single symbol.
  4173 bool TypeFunc::singleton(void) const {
  4174   return false;                 // Never a singleton
  4177 bool TypeFunc::empty(void) const {
  4178   return false;                 // Never empty
  4182 BasicType TypeFunc::return_type() const{
  4183   if (range()->cnt() == TypeFunc::Parms) {
  4184     return T_VOID;
  4186   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial