src/os/linux/vm/os_linux.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3783
7432b9db36ff
child 3903
65906dc96aa1
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

duke@435 1 /*
phh@3481 2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 // no precompiled headers
stefank@2314 26 #include "classfile/classLoader.hpp"
stefank@2314 27 #include "classfile/systemDictionary.hpp"
stefank@2314 28 #include "classfile/vmSymbols.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "compiler/compileBroker.hpp"
stefank@2314 32 #include "interpreter/interpreter.hpp"
stefank@2314 33 #include "jvm_linux.h"
stefank@2314 34 #include "memory/allocation.inline.hpp"
stefank@2314 35 #include "memory/filemap.hpp"
stefank@2314 36 #include "mutex_linux.inline.hpp"
stefank@2314 37 #include "oops/oop.inline.hpp"
stefank@2314 38 #include "os_share_linux.hpp"
stefank@2314 39 #include "prims/jniFastGetField.hpp"
stefank@2314 40 #include "prims/jvm.h"
stefank@2314 41 #include "prims/jvm_misc.hpp"
stefank@2314 42 #include "runtime/arguments.hpp"
stefank@2314 43 #include "runtime/extendedPC.hpp"
stefank@2314 44 #include "runtime/globals.hpp"
stefank@2314 45 #include "runtime/interfaceSupport.hpp"
stefank@2314 46 #include "runtime/java.hpp"
stefank@2314 47 #include "runtime/javaCalls.hpp"
stefank@2314 48 #include "runtime/mutexLocker.hpp"
stefank@2314 49 #include "runtime/objectMonitor.hpp"
stefank@2314 50 #include "runtime/osThread.hpp"
stefank@2314 51 #include "runtime/perfMemory.hpp"
stefank@2314 52 #include "runtime/sharedRuntime.hpp"
stefank@2314 53 #include "runtime/statSampler.hpp"
stefank@2314 54 #include "runtime/stubRoutines.hpp"
stefank@2314 55 #include "runtime/threadCritical.hpp"
stefank@2314 56 #include "runtime/timer.hpp"
stefank@2314 57 #include "services/attachListener.hpp"
stefank@2314 58 #include "services/runtimeService.hpp"
stefank@2314 59 #include "thread_linux.inline.hpp"
zgu@2364 60 #include "utilities/decoder.hpp"
stefank@2314 61 #include "utilities/defaultStream.hpp"
stefank@2314 62 #include "utilities/events.hpp"
stefank@2314 63 #include "utilities/growableArray.hpp"
stefank@2314 64 #include "utilities/vmError.hpp"
stefank@2314 65 #ifdef TARGET_ARCH_x86
stefank@2314 66 # include "assembler_x86.inline.hpp"
stefank@2314 67 # include "nativeInst_x86.hpp"
stefank@2314 68 #endif
stefank@2314 69 #ifdef TARGET_ARCH_sparc
stefank@2314 70 # include "assembler_sparc.inline.hpp"
stefank@2314 71 # include "nativeInst_sparc.hpp"
stefank@2314 72 #endif
stefank@2314 73 #ifdef TARGET_ARCH_zero
stefank@2314 74 # include "assembler_zero.inline.hpp"
stefank@2314 75 # include "nativeInst_zero.hpp"
stefank@2314 76 #endif
bobv@2508 77 #ifdef TARGET_ARCH_arm
bobv@2508 78 # include "assembler_arm.inline.hpp"
bobv@2508 79 # include "nativeInst_arm.hpp"
bobv@2508 80 #endif
bobv@2508 81 #ifdef TARGET_ARCH_ppc
bobv@2508 82 # include "assembler_ppc.inline.hpp"
bobv@2508 83 # include "nativeInst_ppc.hpp"
bobv@2508 84 #endif
stefank@2314 85 #ifdef COMPILER1
stefank@2314 86 #include "c1/c1_Runtime1.hpp"
stefank@2314 87 #endif
stefank@2314 88 #ifdef COMPILER2
stefank@2314 89 #include "opto/runtime.hpp"
stefank@2314 90 #endif
duke@435 91
duke@435 92 // put OS-includes here
duke@435 93 # include <sys/types.h>
duke@435 94 # include <sys/mman.h>
bobv@2036 95 # include <sys/stat.h>
bobv@2036 96 # include <sys/select.h>
duke@435 97 # include <pthread.h>
duke@435 98 # include <signal.h>
duke@435 99 # include <errno.h>
duke@435 100 # include <dlfcn.h>
duke@435 101 # include <stdio.h>
duke@435 102 # include <unistd.h>
duke@435 103 # include <sys/resource.h>
duke@435 104 # include <pthread.h>
duke@435 105 # include <sys/stat.h>
duke@435 106 # include <sys/time.h>
duke@435 107 # include <sys/times.h>
duke@435 108 # include <sys/utsname.h>
duke@435 109 # include <sys/socket.h>
duke@435 110 # include <sys/wait.h>
duke@435 111 # include <pwd.h>
duke@435 112 # include <poll.h>
duke@435 113 # include <semaphore.h>
duke@435 114 # include <fcntl.h>
duke@435 115 # include <string.h>
duke@435 116 # include <syscall.h>
duke@435 117 # include <sys/sysinfo.h>
duke@435 118 # include <gnu/libc-version.h>
duke@435 119 # include <sys/ipc.h>
duke@435 120 # include <sys/shm.h>
duke@435 121 # include <link.h>
coleenp@1755 122 # include <stdint.h>
coleenp@1755 123 # include <inttypes.h>
dholmes@2375 124 # include <sys/ioctl.h>
duke@435 125
duke@435 126 #define MAX_PATH (2 * K)
duke@435 127
duke@435 128 // for timer info max values which include all bits
duke@435 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 130
ctornqvi@2520 131 #define LARGEPAGES_BIT (1 << 6)
duke@435 132 ////////////////////////////////////////////////////////////////////////////////
duke@435 133 // global variables
duke@435 134 julong os::Linux::_physical_memory = 0;
duke@435 135
duke@435 136 address os::Linux::_initial_thread_stack_bottom = NULL;
duke@435 137 uintptr_t os::Linux::_initial_thread_stack_size = 0;
duke@435 138
duke@435 139 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
duke@435 140 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
duke@435 141 Mutex* os::Linux::_createThread_lock = NULL;
duke@435 142 pthread_t os::Linux::_main_thread;
duke@435 143 int os::Linux::_page_size = -1;
duke@435 144 bool os::Linux::_is_floating_stack = false;
duke@435 145 bool os::Linux::_is_NPTL = false;
duke@435 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
xlu@634 147 const char * os::Linux::_glibc_version = NULL;
xlu@634 148 const char * os::Linux::_libpthread_version = NULL;
duke@435 149
duke@435 150 static jlong initial_time_count=0;
duke@435 151
duke@435 152 static int clock_tics_per_sec = 100;
duke@435 153
duke@435 154 // For diagnostics to print a message once. see run_periodic_checks
duke@435 155 static sigset_t check_signal_done;
duke@435 156 static bool check_signals = true;;
duke@435 157
duke@435 158 static pid_t _initial_pid = 0;
duke@435 159
duke@435 160 /* Signal number used to suspend/resume a thread */
duke@435 161
duke@435 162 /* do not use any signal number less than SIGSEGV, see 4355769 */
duke@435 163 static int SR_signum = SIGUSR2;
duke@435 164 sigset_t SR_sigset;
duke@435 165
kamg@677 166 /* Used to protect dlsym() calls */
kamg@677 167 static pthread_mutex_t dl_mutex;
kamg@677 168
jcoomes@2999 169 #ifdef JAVASE_EMBEDDED
jcoomes@2999 170 class MemNotifyThread: public Thread {
jcoomes@2999 171 friend class VMStructs;
jcoomes@2999 172 public:
jcoomes@2999 173 virtual void run();
jcoomes@2999 174
jcoomes@2999 175 private:
jcoomes@2999 176 static MemNotifyThread* _memnotify_thread;
jcoomes@2999 177 int _fd;
jcoomes@2999 178
jcoomes@2999 179 public:
jcoomes@2999 180
jcoomes@2999 181 // Constructor
jcoomes@2999 182 MemNotifyThread(int fd);
jcoomes@2999 183
jcoomes@2999 184 // Tester
jcoomes@2999 185 bool is_memnotify_thread() const { return true; }
jcoomes@2999 186
jcoomes@2999 187 // Printing
jcoomes@2999 188 char* name() const { return (char*)"Linux MemNotify Thread"; }
jcoomes@2999 189
jcoomes@2999 190 // Returns the single instance of the MemNotifyThread
jcoomes@2999 191 static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
jcoomes@2999 192
jcoomes@2999 193 // Create and start the single instance of MemNotifyThread
jcoomes@2999 194 static void start();
jcoomes@2999 195 };
jcoomes@2999 196 #endif // JAVASE_EMBEDDED
jcoomes@2999 197
duke@435 198 // utility functions
duke@435 199
duke@435 200 static int SR_initialize();
duke@435 201 static int SR_finalize();
duke@435 202
duke@435 203 julong os::available_memory() {
duke@435 204 return Linux::available_memory();
duke@435 205 }
duke@435 206
duke@435 207 julong os::Linux::available_memory() {
duke@435 208 // values in struct sysinfo are "unsigned long"
duke@435 209 struct sysinfo si;
duke@435 210 sysinfo(&si);
duke@435 211
duke@435 212 return (julong)si.freeram * si.mem_unit;
duke@435 213 }
duke@435 214
duke@435 215 julong os::physical_memory() {
duke@435 216 return Linux::physical_memory();
duke@435 217 }
duke@435 218
phh@455 219 julong os::allocatable_physical_memory(julong size) {
phh@455 220 #ifdef _LP64
phh@455 221 return size;
phh@455 222 #else
phh@455 223 julong result = MIN2(size, (julong)3800*M);
phh@455 224 if (!is_allocatable(result)) {
phh@455 225 // See comments under solaris for alignment considerations
phh@455 226 julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
phh@455 227 result = MIN2(size, reasonable_size);
phh@455 228 }
phh@455 229 return result;
phh@455 230 #endif // _LP64
phh@455 231 }
phh@455 232
duke@435 233 ////////////////////////////////////////////////////////////////////////////////
duke@435 234 // environment support
duke@435 235
duke@435 236 bool os::getenv(const char* name, char* buf, int len) {
duke@435 237 const char* val = ::getenv(name);
duke@435 238 if (val != NULL && strlen(val) < (size_t)len) {
duke@435 239 strcpy(buf, val);
duke@435 240 return true;
duke@435 241 }
duke@435 242 if (len > 0) buf[0] = 0; // return a null string
duke@435 243 return false;
duke@435 244 }
duke@435 245
duke@435 246
duke@435 247 // Return true if user is running as root.
duke@435 248
duke@435 249 bool os::have_special_privileges() {
duke@435 250 static bool init = false;
duke@435 251 static bool privileges = false;
duke@435 252 if (!init) {
duke@435 253 privileges = (getuid() != geteuid()) || (getgid() != getegid());
duke@435 254 init = true;
duke@435 255 }
duke@435 256 return privileges;
duke@435 257 }
duke@435 258
duke@435 259
duke@435 260 #ifndef SYS_gettid
duke@435 261 // i386: 224, ia64: 1105, amd64: 186, sparc 143
duke@435 262 #ifdef __ia64__
duke@435 263 #define SYS_gettid 1105
duke@435 264 #elif __i386__
duke@435 265 #define SYS_gettid 224
duke@435 266 #elif __amd64__
duke@435 267 #define SYS_gettid 186
duke@435 268 #elif __sparc__
duke@435 269 #define SYS_gettid 143
duke@435 270 #else
duke@435 271 #error define gettid for the arch
duke@435 272 #endif
duke@435 273 #endif
duke@435 274
duke@435 275 // Cpu architecture string
never@1445 276 #if defined(ZERO)
never@1445 277 static char cpu_arch[] = ZERO_LIBARCH;
never@1445 278 #elif defined(IA64)
duke@435 279 static char cpu_arch[] = "ia64";
duke@435 280 #elif defined(IA32)
duke@435 281 static char cpu_arch[] = "i386";
duke@435 282 #elif defined(AMD64)
duke@435 283 static char cpu_arch[] = "amd64";
bobv@2036 284 #elif defined(ARM)
bobv@2036 285 static char cpu_arch[] = "arm";
bobv@2036 286 #elif defined(PPC)
bobv@2036 287 static char cpu_arch[] = "ppc";
duke@435 288 #elif defined(SPARC)
duke@435 289 # ifdef _LP64
duke@435 290 static char cpu_arch[] = "sparcv9";
duke@435 291 # else
duke@435 292 static char cpu_arch[] = "sparc";
duke@435 293 # endif
duke@435 294 #else
duke@435 295 #error Add appropriate cpu_arch setting
duke@435 296 #endif
duke@435 297
duke@435 298
duke@435 299 // pid_t gettid()
duke@435 300 //
duke@435 301 // Returns the kernel thread id of the currently running thread. Kernel
duke@435 302 // thread id is used to access /proc.
duke@435 303 //
duke@435 304 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
duke@435 305 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
duke@435 306 //
duke@435 307 pid_t os::Linux::gettid() {
duke@435 308 int rslt = syscall(SYS_gettid);
duke@435 309 if (rslt == -1) {
duke@435 310 // old kernel, no NPTL support
duke@435 311 return getpid();
duke@435 312 } else {
duke@435 313 return (pid_t)rslt;
duke@435 314 }
duke@435 315 }
duke@435 316
duke@435 317 // Most versions of linux have a bug where the number of processors are
duke@435 318 // determined by looking at the /proc file system. In a chroot environment,
duke@435 319 // the system call returns 1. This causes the VM to act as if it is
duke@435 320 // a single processor and elide locking (see is_MP() call).
duke@435 321 static bool unsafe_chroot_detected = false;
xlu@634 322 static const char *unstable_chroot_error = "/proc file system not found.\n"
xlu@634 323 "Java may be unstable running multithreaded in a chroot "
xlu@634 324 "environment on Linux when /proc filesystem is not mounted.";
duke@435 325
duke@435 326 void os::Linux::initialize_system_info() {
phh@1558 327 set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
phh@1558 328 if (processor_count() == 1) {
duke@435 329 pid_t pid = os::Linux::gettid();
duke@435 330 char fname[32];
duke@435 331 jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
duke@435 332 FILE *fp = fopen(fname, "r");
duke@435 333 if (fp == NULL) {
duke@435 334 unsafe_chroot_detected = true;
duke@435 335 } else {
duke@435 336 fclose(fp);
duke@435 337 }
duke@435 338 }
duke@435 339 _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
phh@1558 340 assert(processor_count() > 0, "linux error");
duke@435 341 }
duke@435 342
duke@435 343 void os::init_system_properties_values() {
duke@435 344 // char arch[12];
duke@435 345 // sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
duke@435 346
duke@435 347 // The next steps are taken in the product version:
duke@435 348 //
duke@435 349 // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
duke@435 350 // This library should be located at:
duke@435 351 // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
duke@435 352 //
duke@435 353 // If "/jre/lib/" appears at the right place in the path, then we
duke@435 354 // assume libjvm[_g].so is installed in a JDK and we use this path.
duke@435 355 //
duke@435 356 // Otherwise exit with message: "Could not create the Java virtual machine."
duke@435 357 //
duke@435 358 // The following extra steps are taken in the debugging version:
duke@435 359 //
duke@435 360 // If "/jre/lib/" does NOT appear at the right place in the path
duke@435 361 // instead of exit check for $JAVA_HOME environment variable.
duke@435 362 //
duke@435 363 // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
duke@435 364 // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
duke@435 365 // it looks like libjvm[_g].so is installed there
duke@435 366 // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
duke@435 367 //
duke@435 368 // Otherwise exit.
duke@435 369 //
duke@435 370 // Important note: if the location of libjvm.so changes this
duke@435 371 // code needs to be changed accordingly.
duke@435 372
duke@435 373 // The next few definitions allow the code to be verbatim:
zgu@3900 374 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
duke@435 375 #define getenv(n) ::getenv(n)
duke@435 376
duke@435 377 /*
duke@435 378 * See ld(1):
duke@435 379 * The linker uses the following search paths to locate required
duke@435 380 * shared libraries:
duke@435 381 * 1: ...
duke@435 382 * ...
duke@435 383 * 7: The default directories, normally /lib and /usr/lib.
duke@435 384 */
kvn@944 385 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
kvn@944 386 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
kvn@944 387 #else
duke@435 388 #define DEFAULT_LIBPATH "/lib:/usr/lib"
kvn@944 389 #endif
duke@435 390
duke@435 391 #define EXTENSIONS_DIR "/lib/ext"
duke@435 392 #define ENDORSED_DIR "/lib/endorsed"
duke@435 393 #define REG_DIR "/usr/java/packages"
duke@435 394
duke@435 395 {
duke@435 396 /* sysclasspath, java_home, dll_dir */
duke@435 397 {
duke@435 398 char *home_path;
duke@435 399 char *dll_path;
duke@435 400 char *pslash;
duke@435 401 char buf[MAXPATHLEN];
duke@435 402 os::jvm_path(buf, sizeof(buf));
duke@435 403
duke@435 404 // Found the full path to libjvm.so.
duke@435 405 // Now cut the path to <java_home>/jre if we can.
duke@435 406 *(strrchr(buf, '/')) = '\0'; /* get rid of /libjvm.so */
duke@435 407 pslash = strrchr(buf, '/');
duke@435 408 if (pslash != NULL)
duke@435 409 *pslash = '\0'; /* get rid of /{client|server|hotspot} */
duke@435 410 dll_path = malloc(strlen(buf) + 1);
duke@435 411 if (dll_path == NULL)
duke@435 412 return;
duke@435 413 strcpy(dll_path, buf);
duke@435 414 Arguments::set_dll_dir(dll_path);
duke@435 415
duke@435 416 if (pslash != NULL) {
duke@435 417 pslash = strrchr(buf, '/');
duke@435 418 if (pslash != NULL) {
duke@435 419 *pslash = '\0'; /* get rid of /<arch> */
duke@435 420 pslash = strrchr(buf, '/');
duke@435 421 if (pslash != NULL)
duke@435 422 *pslash = '\0'; /* get rid of /lib */
duke@435 423 }
duke@435 424 }
duke@435 425
duke@435 426 home_path = malloc(strlen(buf) + 1);
duke@435 427 if (home_path == NULL)
duke@435 428 return;
duke@435 429 strcpy(home_path, buf);
duke@435 430 Arguments::set_java_home(home_path);
duke@435 431
duke@435 432 if (!set_boot_path('/', ':'))
duke@435 433 return;
duke@435 434 }
duke@435 435
duke@435 436 /*
duke@435 437 * Where to look for native libraries
duke@435 438 *
duke@435 439 * Note: Due to a legacy implementation, most of the library path
duke@435 440 * is set in the launcher. This was to accomodate linking restrictions
duke@435 441 * on legacy Linux implementations (which are no longer supported).
duke@435 442 * Eventually, all the library path setting will be done here.
duke@435 443 *
duke@435 444 * However, to prevent the proliferation of improperly built native
duke@435 445 * libraries, the new path component /usr/java/packages is added here.
duke@435 446 * Eventually, all the library path setting will be done here.
duke@435 447 */
duke@435 448 {
duke@435 449 char *ld_library_path;
duke@435 450
duke@435 451 /*
duke@435 452 * Construct the invariant part of ld_library_path. Note that the
duke@435 453 * space for the colon and the trailing null are provided by the
duke@435 454 * nulls included by the sizeof operator (so actually we allocate
duke@435 455 * a byte more than necessary).
duke@435 456 */
duke@435 457 ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
duke@435 458 strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
duke@435 459 sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
duke@435 460
duke@435 461 /*
duke@435 462 * Get the user setting of LD_LIBRARY_PATH, and prepended it. It
duke@435 463 * should always exist (until the legacy problem cited above is
duke@435 464 * addressed).
duke@435 465 */
duke@435 466 char *v = getenv("LD_LIBRARY_PATH");
duke@435 467 if (v != NULL) {
duke@435 468 char *t = ld_library_path;
duke@435 469 /* That's +1 for the colon and +1 for the trailing '\0' */
duke@435 470 ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
duke@435 471 sprintf(ld_library_path, "%s:%s", v, t);
duke@435 472 }
duke@435 473 Arguments::set_library_path(ld_library_path);
duke@435 474 }
duke@435 475
duke@435 476 /*
duke@435 477 * Extensions directories.
duke@435 478 *
duke@435 479 * Note that the space for the colon and the trailing null are provided
duke@435 480 * by the nulls included by the sizeof operator (so actually one byte more
duke@435 481 * than necessary is allocated).
duke@435 482 */
duke@435 483 {
duke@435 484 char *buf = malloc(strlen(Arguments::get_java_home()) +
duke@435 485 sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
duke@435 486 sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
duke@435 487 Arguments::get_java_home());
duke@435 488 Arguments::set_ext_dirs(buf);
duke@435 489 }
duke@435 490
duke@435 491 /* Endorsed standards default directory. */
duke@435 492 {
duke@435 493 char * buf;
duke@435 494 buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
duke@435 495 sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
duke@435 496 Arguments::set_endorsed_dirs(buf);
duke@435 497 }
duke@435 498 }
duke@435 499
duke@435 500 #undef malloc
duke@435 501 #undef getenv
duke@435 502 #undef EXTENSIONS_DIR
duke@435 503 #undef ENDORSED_DIR
duke@435 504
duke@435 505 // Done
duke@435 506 return;
duke@435 507 }
duke@435 508
duke@435 509 ////////////////////////////////////////////////////////////////////////////////
duke@435 510 // breakpoint support
duke@435 511
duke@435 512 void os::breakpoint() {
duke@435 513 BREAKPOINT;
duke@435 514 }
duke@435 515
duke@435 516 extern "C" void breakpoint() {
duke@435 517 // use debugger to set breakpoint here
duke@435 518 }
duke@435 519
duke@435 520 ////////////////////////////////////////////////////////////////////////////////
duke@435 521 // signal support
duke@435 522
duke@435 523 debug_only(static bool signal_sets_initialized = false);
duke@435 524 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
duke@435 525
duke@435 526 bool os::Linux::is_sig_ignored(int sig) {
duke@435 527 struct sigaction oact;
duke@435 528 sigaction(sig, (struct sigaction*)NULL, &oact);
duke@435 529 void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
duke@435 530 : CAST_FROM_FN_PTR(void*, oact.sa_handler);
duke@435 531 if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
duke@435 532 return true;
duke@435 533 else
duke@435 534 return false;
duke@435 535 }
duke@435 536
duke@435 537 void os::Linux::signal_sets_init() {
duke@435 538 // Should also have an assertion stating we are still single-threaded.
duke@435 539 assert(!signal_sets_initialized, "Already initialized");
duke@435 540 // Fill in signals that are necessarily unblocked for all threads in
duke@435 541 // the VM. Currently, we unblock the following signals:
duke@435 542 // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
duke@435 543 // by -Xrs (=ReduceSignalUsage));
duke@435 544 // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
duke@435 545 // other threads. The "ReduceSignalUsage" boolean tells us not to alter
duke@435 546 // the dispositions or masks wrt these signals.
duke@435 547 // Programs embedding the VM that want to use the above signals for their
duke@435 548 // own purposes must, at this time, use the "-Xrs" option to prevent
duke@435 549 // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
duke@435 550 // (See bug 4345157, and other related bugs).
duke@435 551 // In reality, though, unblocking these signals is really a nop, since
duke@435 552 // these signals are not blocked by default.
duke@435 553 sigemptyset(&unblocked_sigs);
duke@435 554 sigemptyset(&allowdebug_blocked_sigs);
duke@435 555 sigaddset(&unblocked_sigs, SIGILL);
duke@435 556 sigaddset(&unblocked_sigs, SIGSEGV);
duke@435 557 sigaddset(&unblocked_sigs, SIGBUS);
duke@435 558 sigaddset(&unblocked_sigs, SIGFPE);
duke@435 559 sigaddset(&unblocked_sigs, SR_signum);
duke@435 560
duke@435 561 if (!ReduceSignalUsage) {
duke@435 562 if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
duke@435 563 sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 564 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 565 }
duke@435 566 if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
duke@435 567 sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 568 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 569 }
duke@435 570 if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
duke@435 571 sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 572 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 573 }
duke@435 574 }
duke@435 575 // Fill in signals that are blocked by all but the VM thread.
duke@435 576 sigemptyset(&vm_sigs);
duke@435 577 if (!ReduceSignalUsage)
duke@435 578 sigaddset(&vm_sigs, BREAK_SIGNAL);
duke@435 579 debug_only(signal_sets_initialized = true);
duke@435 580
duke@435 581 }
duke@435 582
duke@435 583 // These are signals that are unblocked while a thread is running Java.
duke@435 584 // (For some reason, they get blocked by default.)
duke@435 585 sigset_t* os::Linux::unblocked_signals() {
duke@435 586 assert(signal_sets_initialized, "Not initialized");
duke@435 587 return &unblocked_sigs;
duke@435 588 }
duke@435 589
duke@435 590 // These are the signals that are blocked while a (non-VM) thread is
duke@435 591 // running Java. Only the VM thread handles these signals.
duke@435 592 sigset_t* os::Linux::vm_signals() {
duke@435 593 assert(signal_sets_initialized, "Not initialized");
duke@435 594 return &vm_sigs;
duke@435 595 }
duke@435 596
duke@435 597 // These are signals that are blocked during cond_wait to allow debugger in
duke@435 598 sigset_t* os::Linux::allowdebug_blocked_signals() {
duke@435 599 assert(signal_sets_initialized, "Not initialized");
duke@435 600 return &allowdebug_blocked_sigs;
duke@435 601 }
duke@435 602
duke@435 603 void os::Linux::hotspot_sigmask(Thread* thread) {
duke@435 604
duke@435 605 //Save caller's signal mask before setting VM signal mask
duke@435 606 sigset_t caller_sigmask;
duke@435 607 pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
duke@435 608
duke@435 609 OSThread* osthread = thread->osthread();
duke@435 610 osthread->set_caller_sigmask(caller_sigmask);
duke@435 611
duke@435 612 pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
duke@435 613
duke@435 614 if (!ReduceSignalUsage) {
duke@435 615 if (thread->is_VM_thread()) {
duke@435 616 // Only the VM thread handles BREAK_SIGNAL ...
duke@435 617 pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
duke@435 618 } else {
duke@435 619 // ... all other threads block BREAK_SIGNAL
duke@435 620 pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
duke@435 621 }
duke@435 622 }
duke@435 623 }
duke@435 624
duke@435 625 //////////////////////////////////////////////////////////////////////////////
duke@435 626 // detecting pthread library
duke@435 627
duke@435 628 void os::Linux::libpthread_init() {
duke@435 629 // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
duke@435 630 // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
duke@435 631 // generic name for earlier versions.
duke@435 632 // Define macros here so we can build HotSpot on old systems.
duke@435 633 # ifndef _CS_GNU_LIBC_VERSION
duke@435 634 # define _CS_GNU_LIBC_VERSION 2
duke@435 635 # endif
duke@435 636 # ifndef _CS_GNU_LIBPTHREAD_VERSION
duke@435 637 # define _CS_GNU_LIBPTHREAD_VERSION 3
duke@435 638 # endif
duke@435 639
duke@435 640 size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
duke@435 641 if (n > 0) {
zgu@3900 642 char *str = (char *)malloc(n, mtInternal);
duke@435 643 confstr(_CS_GNU_LIBC_VERSION, str, n);
duke@435 644 os::Linux::set_glibc_version(str);
duke@435 645 } else {
duke@435 646 // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
duke@435 647 static char _gnu_libc_version[32];
duke@435 648 jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
duke@435 649 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
duke@435 650 os::Linux::set_glibc_version(_gnu_libc_version);
duke@435 651 }
duke@435 652
duke@435 653 n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
duke@435 654 if (n > 0) {
zgu@3900 655 char *str = (char *)malloc(n, mtInternal);
duke@435 656 confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
duke@435 657 // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
duke@435 658 // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
xlu@634 659 // is the case. LinuxThreads has a hard limit on max number of threads.
xlu@634 660 // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
xlu@634 661 // On the other hand, NPTL does not have such a limit, sysconf()
xlu@634 662 // will return -1 and errno is not changed. Check if it is really NPTL.
duke@435 663 if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
xlu@634 664 strstr(str, "NPTL") &&
xlu@634 665 sysconf(_SC_THREAD_THREADS_MAX) > 0) {
xlu@634 666 free(str);
xlu@634 667 os::Linux::set_libpthread_version("linuxthreads");
xlu@634 668 } else {
xlu@634 669 os::Linux::set_libpthread_version(str);
duke@435 670 }
duke@435 671 } else {
xlu@634 672 // glibc before 2.3.2 only has LinuxThreads.
xlu@634 673 os::Linux::set_libpthread_version("linuxthreads");
duke@435 674 }
duke@435 675
duke@435 676 if (strstr(libpthread_version(), "NPTL")) {
duke@435 677 os::Linux::set_is_NPTL();
duke@435 678 } else {
duke@435 679 os::Linux::set_is_LinuxThreads();
duke@435 680 }
duke@435 681
duke@435 682 // LinuxThreads have two flavors: floating-stack mode, which allows variable
duke@435 683 // stack size; and fixed-stack mode. NPTL is always floating-stack.
duke@435 684 if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
duke@435 685 os::Linux::set_is_floating_stack();
duke@435 686 }
duke@435 687 }
duke@435 688
duke@435 689 /////////////////////////////////////////////////////////////////////////////
duke@435 690 // thread stack
duke@435 691
duke@435 692 // Force Linux kernel to expand current thread stack. If "bottom" is close
duke@435 693 // to the stack guard, caller should block all signals.
duke@435 694 //
duke@435 695 // MAP_GROWSDOWN:
duke@435 696 // A special mmap() flag that is used to implement thread stacks. It tells
duke@435 697 // kernel that the memory region should extend downwards when needed. This
duke@435 698 // allows early versions of LinuxThreads to only mmap the first few pages
duke@435 699 // when creating a new thread. Linux kernel will automatically expand thread
duke@435 700 // stack as needed (on page faults).
duke@435 701 //
duke@435 702 // However, because the memory region of a MAP_GROWSDOWN stack can grow on
duke@435 703 // demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
duke@435 704 // region, it's hard to tell if the fault is due to a legitimate stack
duke@435 705 // access or because of reading/writing non-exist memory (e.g. buffer
duke@435 706 // overrun). As a rule, if the fault happens below current stack pointer,
duke@435 707 // Linux kernel does not expand stack, instead a SIGSEGV is sent to the
duke@435 708 // application (see Linux kernel fault.c).
duke@435 709 //
duke@435 710 // This Linux feature can cause SIGSEGV when VM bangs thread stack for
duke@435 711 // stack overflow detection.
duke@435 712 //
duke@435 713 // Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
duke@435 714 // not use this flag. However, the stack of initial thread is not created
duke@435 715 // by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
duke@435 716 // unlikely) that user code can create a thread with MAP_GROWSDOWN stack
duke@435 717 // and then attach the thread to JVM.
duke@435 718 //
duke@435 719 // To get around the problem and allow stack banging on Linux, we need to
duke@435 720 // manually expand thread stack after receiving the SIGSEGV.
duke@435 721 //
duke@435 722 // There are two ways to expand thread stack to address "bottom", we used
duke@435 723 // both of them in JVM before 1.5:
duke@435 724 // 1. adjust stack pointer first so that it is below "bottom", and then
duke@435 725 // touch "bottom"
duke@435 726 // 2. mmap() the page in question
duke@435 727 //
duke@435 728 // Now alternate signal stack is gone, it's harder to use 2. For instance,
duke@435 729 // if current sp is already near the lower end of page 101, and we need to
duke@435 730 // call mmap() to map page 100, it is possible that part of the mmap() frame
duke@435 731 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
duke@435 732 // That will destroy the mmap() frame and cause VM to crash.
duke@435 733 //
duke@435 734 // The following code works by adjusting sp first, then accessing the "bottom"
duke@435 735 // page to force a page fault. Linux kernel will then automatically expand the
duke@435 736 // stack mapping.
duke@435 737 //
duke@435 738 // _expand_stack_to() assumes its frame size is less than page size, which
duke@435 739 // should always be true if the function is not inlined.
duke@435 740
duke@435 741 #if __GNUC__ < 3 // gcc 2.x does not support noinline attribute
duke@435 742 #define NOINLINE
duke@435 743 #else
duke@435 744 #define NOINLINE __attribute__ ((noinline))
duke@435 745 #endif
duke@435 746
duke@435 747 static void _expand_stack_to(address bottom) NOINLINE;
duke@435 748
duke@435 749 static void _expand_stack_to(address bottom) {
duke@435 750 address sp;
duke@435 751 size_t size;
duke@435 752 volatile char *p;
duke@435 753
duke@435 754 // Adjust bottom to point to the largest address within the same page, it
duke@435 755 // gives us a one-page buffer if alloca() allocates slightly more memory.
duke@435 756 bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
duke@435 757 bottom += os::Linux::page_size() - 1;
duke@435 758
duke@435 759 // sp might be slightly above current stack pointer; if that's the case, we
duke@435 760 // will alloca() a little more space than necessary, which is OK. Don't use
duke@435 761 // os::current_stack_pointer(), as its result can be slightly below current
duke@435 762 // stack pointer, causing us to not alloca enough to reach "bottom".
duke@435 763 sp = (address)&sp;
duke@435 764
duke@435 765 if (sp > bottom) {
duke@435 766 size = sp - bottom;
duke@435 767 p = (volatile char *)alloca(size);
duke@435 768 assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
duke@435 769 p[0] = '\0';
duke@435 770 }
duke@435 771 }
duke@435 772
duke@435 773 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
duke@435 774 assert(t!=NULL, "just checking");
duke@435 775 assert(t->osthread()->expanding_stack(), "expand should be set");
duke@435 776 assert(t->stack_base() != NULL, "stack_base was not initialized");
duke@435 777
duke@435 778 if (addr < t->stack_base() && addr >= t->stack_yellow_zone_base()) {
duke@435 779 sigset_t mask_all, old_sigset;
duke@435 780 sigfillset(&mask_all);
duke@435 781 pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
duke@435 782 _expand_stack_to(addr);
duke@435 783 pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
duke@435 784 return true;
duke@435 785 }
duke@435 786 return false;
duke@435 787 }
duke@435 788
duke@435 789 //////////////////////////////////////////////////////////////////////////////
duke@435 790 // create new thread
duke@435 791
duke@435 792 static address highest_vm_reserved_address();
duke@435 793
duke@435 794 // check if it's safe to start a new thread
duke@435 795 static bool _thread_safety_check(Thread* thread) {
duke@435 796 if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
duke@435 797 // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
duke@435 798 // Heap is mmap'ed at lower end of memory space. Thread stacks are
duke@435 799 // allocated (MAP_FIXED) from high address space. Every thread stack
duke@435 800 // occupies a fixed size slot (usually 2Mbytes, but user can change
duke@435 801 // it to other values if they rebuild LinuxThreads).
duke@435 802 //
duke@435 803 // Problem with MAP_FIXED is that mmap() can still succeed even part of
duke@435 804 // the memory region has already been mmap'ed. That means if we have too
duke@435 805 // many threads and/or very large heap, eventually thread stack will
duke@435 806 // collide with heap.
duke@435 807 //
duke@435 808 // Here we try to prevent heap/stack collision by comparing current
duke@435 809 // stack bottom with the highest address that has been mmap'ed by JVM
duke@435 810 // plus a safety margin for memory maps created by native code.
duke@435 811 //
duke@435 812 // This feature can be disabled by setting ThreadSafetyMargin to 0
duke@435 813 //
duke@435 814 if (ThreadSafetyMargin > 0) {
duke@435 815 address stack_bottom = os::current_stack_base() - os::current_stack_size();
duke@435 816
duke@435 817 // not safe if our stack extends below the safety margin
duke@435 818 return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
duke@435 819 } else {
duke@435 820 return true;
duke@435 821 }
duke@435 822 } else {
duke@435 823 // Floating stack LinuxThreads or NPTL:
duke@435 824 // Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
duke@435 825 // there's not enough space left, pthread_create() will fail. If we come
duke@435 826 // here, that means enough space has been reserved for stack.
duke@435 827 return true;
duke@435 828 }
duke@435 829 }
duke@435 830
duke@435 831 // Thread start routine for all newly created threads
duke@435 832 static void *java_start(Thread *thread) {
duke@435 833 // Try to randomize the cache line index of hot stack frames.
duke@435 834 // This helps when threads of the same stack traces evict each other's
duke@435 835 // cache lines. The threads can be either from the same JVM instance, or
duke@435 836 // from different JVM instances. The benefit is especially true for
duke@435 837 // processors with hyperthreading technology.
duke@435 838 static int counter = 0;
duke@435 839 int pid = os::current_process_id();
duke@435 840 alloca(((pid ^ counter++) & 7) * 128);
duke@435 841
duke@435 842 ThreadLocalStorage::set_thread(thread);
duke@435 843
duke@435 844 OSThread* osthread = thread->osthread();
duke@435 845 Monitor* sync = osthread->startThread_lock();
duke@435 846
duke@435 847 // non floating stack LinuxThreads needs extra check, see above
duke@435 848 if (!_thread_safety_check(thread)) {
duke@435 849 // notify parent thread
duke@435 850 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 851 osthread->set_state(ZOMBIE);
duke@435 852 sync->notify_all();
duke@435 853 return NULL;
duke@435 854 }
duke@435 855
duke@435 856 // thread_id is kernel thread id (similar to Solaris LWP id)
duke@435 857 osthread->set_thread_id(os::Linux::gettid());
duke@435 858
duke@435 859 if (UseNUMA) {
duke@435 860 int lgrp_id = os::numa_get_group_id();
duke@435 861 if (lgrp_id != -1) {
duke@435 862 thread->set_lgrp_id(lgrp_id);
duke@435 863 }
duke@435 864 }
duke@435 865 // initialize signal mask for this thread
duke@435 866 os::Linux::hotspot_sigmask(thread);
duke@435 867
duke@435 868 // initialize floating point control register
duke@435 869 os::Linux::init_thread_fpu_state();
duke@435 870
duke@435 871 // handshaking with parent thread
duke@435 872 {
duke@435 873 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 874
duke@435 875 // notify parent thread
duke@435 876 osthread->set_state(INITIALIZED);
duke@435 877 sync->notify_all();
duke@435 878
duke@435 879 // wait until os::start_thread()
duke@435 880 while (osthread->get_state() == INITIALIZED) {
duke@435 881 sync->wait(Mutex::_no_safepoint_check_flag);
duke@435 882 }
duke@435 883 }
duke@435 884
duke@435 885 // call one more level start routine
duke@435 886 thread->run();
duke@435 887
duke@435 888 return 0;
duke@435 889 }
duke@435 890
duke@435 891 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 892 assert(thread->osthread() == NULL, "caller responsible");
duke@435 893
duke@435 894 // Allocate the OSThread object
duke@435 895 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 896 if (osthread == NULL) {
duke@435 897 return false;
duke@435 898 }
duke@435 899
duke@435 900 // set the correct thread state
duke@435 901 osthread->set_thread_type(thr_type);
duke@435 902
duke@435 903 // Initial state is ALLOCATED but not INITIALIZED
duke@435 904 osthread->set_state(ALLOCATED);
duke@435 905
duke@435 906 thread->set_osthread(osthread);
duke@435 907
duke@435 908 // init thread attributes
duke@435 909 pthread_attr_t attr;
duke@435 910 pthread_attr_init(&attr);
duke@435 911 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
duke@435 912
duke@435 913 // stack size
duke@435 914 if (os::Linux::supports_variable_stack_size()) {
duke@435 915 // calculate stack size if it's not specified by caller
duke@435 916 if (stack_size == 0) {
duke@435 917 stack_size = os::Linux::default_stack_size(thr_type);
duke@435 918
duke@435 919 switch (thr_type) {
duke@435 920 case os::java_thread:
coleenp@2222 921 // Java threads use ThreadStackSize which default value can be
coleenp@2222 922 // changed with the flag -Xss
coleenp@2222 923 assert (JavaThread::stack_size_at_create() > 0, "this should be set");
coleenp@2222 924 stack_size = JavaThread::stack_size_at_create();
duke@435 925 break;
duke@435 926 case os::compiler_thread:
duke@435 927 if (CompilerThreadStackSize > 0) {
duke@435 928 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 929 break;
duke@435 930 } // else fall through:
duke@435 931 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 932 case os::vm_thread:
duke@435 933 case os::pgc_thread:
duke@435 934 case os::cgc_thread:
duke@435 935 case os::watcher_thread:
duke@435 936 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 937 break;
duke@435 938 }
duke@435 939 }
duke@435 940
duke@435 941 stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
duke@435 942 pthread_attr_setstacksize(&attr, stack_size);
duke@435 943 } else {
duke@435 944 // let pthread_create() pick the default value.
duke@435 945 }
duke@435 946
duke@435 947 // glibc guard page
duke@435 948 pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
duke@435 949
duke@435 950 ThreadState state;
duke@435 951
duke@435 952 {
duke@435 953 // Serialize thread creation if we are running with fixed stack LinuxThreads
duke@435 954 bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
duke@435 955 if (lock) {
duke@435 956 os::Linux::createThread_lock()->lock_without_safepoint_check();
duke@435 957 }
duke@435 958
duke@435 959 pthread_t tid;
duke@435 960 int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
duke@435 961
duke@435 962 pthread_attr_destroy(&attr);
duke@435 963
duke@435 964 if (ret != 0) {
duke@435 965 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 966 perror("pthread_create()");
duke@435 967 }
duke@435 968 // Need to clean up stuff we've allocated so far
duke@435 969 thread->set_osthread(NULL);
duke@435 970 delete osthread;
duke@435 971 if (lock) os::Linux::createThread_lock()->unlock();
duke@435 972 return false;
duke@435 973 }
duke@435 974
duke@435 975 // Store pthread info into the OSThread
duke@435 976 osthread->set_pthread_id(tid);
duke@435 977
duke@435 978 // Wait until child thread is either initialized or aborted
duke@435 979 {
duke@435 980 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 981 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 982 while ((state = osthread->get_state()) == ALLOCATED) {
duke@435 983 sync_with_child->wait(Mutex::_no_safepoint_check_flag);
duke@435 984 }
duke@435 985 }
duke@435 986
duke@435 987 if (lock) {
duke@435 988 os::Linux::createThread_lock()->unlock();
duke@435 989 }
duke@435 990 }
duke@435 991
duke@435 992 // Aborted due to thread limit being reached
duke@435 993 if (state == ZOMBIE) {
duke@435 994 thread->set_osthread(NULL);
duke@435 995 delete osthread;
duke@435 996 return false;
duke@435 997 }
duke@435 998
duke@435 999 // The thread is returned suspended (in state INITIALIZED),
duke@435 1000 // and is started higher up in the call chain
duke@435 1001 assert(state == INITIALIZED, "race condition");
duke@435 1002 return true;
duke@435 1003 }
duke@435 1004
duke@435 1005 /////////////////////////////////////////////////////////////////////////////
duke@435 1006 // attach existing thread
duke@435 1007
duke@435 1008 // bootstrap the main thread
duke@435 1009 bool os::create_main_thread(JavaThread* thread) {
duke@435 1010 assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
duke@435 1011 return create_attached_thread(thread);
duke@435 1012 }
duke@435 1013
duke@435 1014 bool os::create_attached_thread(JavaThread* thread) {
duke@435 1015 #ifdef ASSERT
duke@435 1016 thread->verify_not_published();
duke@435 1017 #endif
duke@435 1018
duke@435 1019 // Allocate the OSThread object
duke@435 1020 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 1021
duke@435 1022 if (osthread == NULL) {
duke@435 1023 return false;
duke@435 1024 }
duke@435 1025
duke@435 1026 // Store pthread info into the OSThread
duke@435 1027 osthread->set_thread_id(os::Linux::gettid());
duke@435 1028 osthread->set_pthread_id(::pthread_self());
duke@435 1029
duke@435 1030 // initialize floating point control register
duke@435 1031 os::Linux::init_thread_fpu_state();
duke@435 1032
duke@435 1033 // Initial thread state is RUNNABLE
duke@435 1034 osthread->set_state(RUNNABLE);
duke@435 1035
duke@435 1036 thread->set_osthread(osthread);
duke@435 1037
duke@435 1038 if (UseNUMA) {
duke@435 1039 int lgrp_id = os::numa_get_group_id();
duke@435 1040 if (lgrp_id != -1) {
duke@435 1041 thread->set_lgrp_id(lgrp_id);
duke@435 1042 }
duke@435 1043 }
duke@435 1044
duke@435 1045 if (os::Linux::is_initial_thread()) {
duke@435 1046 // If current thread is initial thread, its stack is mapped on demand,
duke@435 1047 // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
duke@435 1048 // the entire stack region to avoid SEGV in stack banging.
duke@435 1049 // It is also useful to get around the heap-stack-gap problem on SuSE
duke@435 1050 // kernel (see 4821821 for details). We first expand stack to the top
duke@435 1051 // of yellow zone, then enable stack yellow zone (order is significant,
duke@435 1052 // enabling yellow zone first will crash JVM on SuSE Linux), so there
duke@435 1053 // is no gap between the last two virtual memory regions.
duke@435 1054
duke@435 1055 JavaThread *jt = (JavaThread *)thread;
duke@435 1056 address addr = jt->stack_yellow_zone_base();
duke@435 1057 assert(addr != NULL, "initialization problem?");
duke@435 1058 assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
duke@435 1059
duke@435 1060 osthread->set_expanding_stack();
duke@435 1061 os::Linux::manually_expand_stack(jt, addr);
duke@435 1062 osthread->clear_expanding_stack();
duke@435 1063 }
duke@435 1064
duke@435 1065 // initialize signal mask for this thread
duke@435 1066 // and save the caller's signal mask
duke@435 1067 os::Linux::hotspot_sigmask(thread);
duke@435 1068
duke@435 1069 return true;
duke@435 1070 }
duke@435 1071
duke@435 1072 void os::pd_start_thread(Thread* thread) {
duke@435 1073 OSThread * osthread = thread->osthread();
duke@435 1074 assert(osthread->get_state() != INITIALIZED, "just checking");
duke@435 1075 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 1076 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 1077 sync_with_child->notify();
duke@435 1078 }
duke@435 1079
duke@435 1080 // Free Linux resources related to the OSThread
duke@435 1081 void os::free_thread(OSThread* osthread) {
duke@435 1082 assert(osthread != NULL, "osthread not set");
duke@435 1083
duke@435 1084 if (Thread::current()->osthread() == osthread) {
duke@435 1085 // Restore caller's signal mask
duke@435 1086 sigset_t sigmask = osthread->caller_sigmask();
duke@435 1087 pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
duke@435 1088 }
duke@435 1089
duke@435 1090 delete osthread;
duke@435 1091 }
duke@435 1092
duke@435 1093 //////////////////////////////////////////////////////////////////////////////
duke@435 1094 // thread local storage
duke@435 1095
duke@435 1096 int os::allocate_thread_local_storage() {
duke@435 1097 pthread_key_t key;
duke@435 1098 int rslt = pthread_key_create(&key, NULL);
duke@435 1099 assert(rslt == 0, "cannot allocate thread local storage");
duke@435 1100 return (int)key;
duke@435 1101 }
duke@435 1102
duke@435 1103 // Note: This is currently not used by VM, as we don't destroy TLS key
duke@435 1104 // on VM exit.
duke@435 1105 void os::free_thread_local_storage(int index) {
duke@435 1106 int rslt = pthread_key_delete((pthread_key_t)index);
duke@435 1107 assert(rslt == 0, "invalid index");
duke@435 1108 }
duke@435 1109
duke@435 1110 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 1111 int rslt = pthread_setspecific((pthread_key_t)index, value);
duke@435 1112 assert(rslt == 0, "pthread_setspecific failed");
duke@435 1113 }
duke@435 1114
duke@435 1115 extern "C" Thread* get_thread() {
duke@435 1116 return ThreadLocalStorage::thread();
duke@435 1117 }
duke@435 1118
duke@435 1119 //////////////////////////////////////////////////////////////////////////////
duke@435 1120 // initial thread
duke@435 1121
duke@435 1122 // Check if current thread is the initial thread, similar to Solaris thr_main.
duke@435 1123 bool os::Linux::is_initial_thread(void) {
duke@435 1124 char dummy;
duke@435 1125 // If called before init complete, thread stack bottom will be null.
duke@435 1126 // Can be called if fatal error occurs before initialization.
duke@435 1127 if (initial_thread_stack_bottom() == NULL) return false;
duke@435 1128 assert(initial_thread_stack_bottom() != NULL &&
duke@435 1129 initial_thread_stack_size() != 0,
duke@435 1130 "os::init did not locate initial thread's stack region");
duke@435 1131 if ((address)&dummy >= initial_thread_stack_bottom() &&
duke@435 1132 (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
duke@435 1133 return true;
duke@435 1134 else return false;
duke@435 1135 }
duke@435 1136
duke@435 1137 // Find the virtual memory area that contains addr
duke@435 1138 static bool find_vma(address addr, address* vma_low, address* vma_high) {
duke@435 1139 FILE *fp = fopen("/proc/self/maps", "r");
duke@435 1140 if (fp) {
duke@435 1141 address low, high;
duke@435 1142 while (!feof(fp)) {
duke@435 1143 if (fscanf(fp, "%p-%p", &low, &high) == 2) {
duke@435 1144 if (low <= addr && addr < high) {
duke@435 1145 if (vma_low) *vma_low = low;
duke@435 1146 if (vma_high) *vma_high = high;
duke@435 1147 fclose (fp);
duke@435 1148 return true;
duke@435 1149 }
duke@435 1150 }
duke@435 1151 for (;;) {
duke@435 1152 int ch = fgetc(fp);
duke@435 1153 if (ch == EOF || ch == (int)'\n') break;
duke@435 1154 }
duke@435 1155 }
duke@435 1156 fclose(fp);
duke@435 1157 }
duke@435 1158 return false;
duke@435 1159 }
duke@435 1160
duke@435 1161 // Locate initial thread stack. This special handling of initial thread stack
duke@435 1162 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
duke@435 1163 // bogus value for initial thread.
duke@435 1164 void os::Linux::capture_initial_stack(size_t max_size) {
duke@435 1165 // stack size is the easy part, get it from RLIMIT_STACK
duke@435 1166 size_t stack_size;
duke@435 1167 struct rlimit rlim;
duke@435 1168 getrlimit(RLIMIT_STACK, &rlim);
duke@435 1169 stack_size = rlim.rlim_cur;
duke@435 1170
duke@435 1171 // 6308388: a bug in ld.so will relocate its own .data section to the
duke@435 1172 // lower end of primordial stack; reduce ulimit -s value a little bit
duke@435 1173 // so we won't install guard page on ld.so's data section.
duke@435 1174 stack_size -= 2 * page_size();
duke@435 1175
duke@435 1176 // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
duke@435 1177 // 7.1, in both cases we will get 2G in return value.
duke@435 1178 // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
duke@435 1179 // SuSE 7.2, Debian) can not handle alternate signal stack correctly
duke@435 1180 // for initial thread if its stack size exceeds 6M. Cap it at 2M,
duke@435 1181 // in case other parts in glibc still assumes 2M max stack size.
duke@435 1182 // FIXME: alt signal stack is gone, maybe we can relax this constraint?
duke@435 1183 #ifndef IA64
duke@435 1184 if (stack_size > 2 * K * K) stack_size = 2 * K * K;
duke@435 1185 #else
duke@435 1186 // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
duke@435 1187 if (stack_size > 4 * K * K) stack_size = 4 * K * K;
duke@435 1188 #endif
duke@435 1189
duke@435 1190 // Try to figure out where the stack base (top) is. This is harder.
duke@435 1191 //
duke@435 1192 // When an application is started, glibc saves the initial stack pointer in
duke@435 1193 // a global variable "__libc_stack_end", which is then used by system
duke@435 1194 // libraries. __libc_stack_end should be pretty close to stack top. The
duke@435 1195 // variable is available since the very early days. However, because it is
duke@435 1196 // a private interface, it could disappear in the future.
duke@435 1197 //
duke@435 1198 // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
duke@435 1199 // to __libc_stack_end, it is very close to stack top, but isn't the real
duke@435 1200 // stack top. Note that /proc may not exist if VM is running as a chroot
duke@435 1201 // program, so reading /proc/<pid>/stat could fail. Also the contents of
duke@435 1202 // /proc/<pid>/stat could change in the future (though unlikely).
duke@435 1203 //
duke@435 1204 // We try __libc_stack_end first. If that doesn't work, look for
duke@435 1205 // /proc/<pid>/stat. If neither of them works, we use current stack pointer
duke@435 1206 // as a hint, which should work well in most cases.
duke@435 1207
duke@435 1208 uintptr_t stack_start;
duke@435 1209
duke@435 1210 // try __libc_stack_end first
duke@435 1211 uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
duke@435 1212 if (p && *p) {
duke@435 1213 stack_start = *p;
duke@435 1214 } else {
duke@435 1215 // see if we can get the start_stack field from /proc/self/stat
duke@435 1216 FILE *fp;
duke@435 1217 int pid;
duke@435 1218 char state;
duke@435 1219 int ppid;
duke@435 1220 int pgrp;
duke@435 1221 int session;
duke@435 1222 int nr;
duke@435 1223 int tpgrp;
duke@435 1224 unsigned long flags;
duke@435 1225 unsigned long minflt;
duke@435 1226 unsigned long cminflt;
duke@435 1227 unsigned long majflt;
duke@435 1228 unsigned long cmajflt;
duke@435 1229 unsigned long utime;
duke@435 1230 unsigned long stime;
duke@435 1231 long cutime;
duke@435 1232 long cstime;
duke@435 1233 long prio;
duke@435 1234 long nice;
duke@435 1235 long junk;
duke@435 1236 long it_real;
duke@435 1237 uintptr_t start;
duke@435 1238 uintptr_t vsize;
bobv@2036 1239 intptr_t rss;
bobv@2036 1240 uintptr_t rsslim;
duke@435 1241 uintptr_t scodes;
duke@435 1242 uintptr_t ecode;
duke@435 1243 int i;
duke@435 1244
duke@435 1245 // Figure what the primordial thread stack base is. Code is inspired
duke@435 1246 // by email from Hans Boehm. /proc/self/stat begins with current pid,
duke@435 1247 // followed by command name surrounded by parentheses, state, etc.
duke@435 1248 char stat[2048];
duke@435 1249 int statlen;
duke@435 1250
duke@435 1251 fp = fopen("/proc/self/stat", "r");
duke@435 1252 if (fp) {
duke@435 1253 statlen = fread(stat, 1, 2047, fp);
duke@435 1254 stat[statlen] = '\0';
duke@435 1255 fclose(fp);
duke@435 1256
duke@435 1257 // Skip pid and the command string. Note that we could be dealing with
duke@435 1258 // weird command names, e.g. user could decide to rename java launcher
duke@435 1259 // to "java 1.4.2 :)", then the stat file would look like
duke@435 1260 // 1234 (java 1.4.2 :)) R ... ...
duke@435 1261 // We don't really need to know the command string, just find the last
duke@435 1262 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 1263 char * s = strrchr(stat, ')');
duke@435 1264
duke@435 1265 i = 0;
duke@435 1266 if (s) {
duke@435 1267 // Skip blank chars
duke@435 1268 do s++; while (isspace(*s));
duke@435 1269
bobv@2036 1270 #define _UFM UINTX_FORMAT
bobv@2036 1271 #define _DFM INTX_FORMAT
bobv@2036 1272
bobv@2036 1273 /* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 */
bobv@2036 1274 /* 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 */
bobv@2036 1275 i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
duke@435 1276 &state, /* 3 %c */
duke@435 1277 &ppid, /* 4 %d */
duke@435 1278 &pgrp, /* 5 %d */
duke@435 1279 &session, /* 6 %d */
duke@435 1280 &nr, /* 7 %d */
duke@435 1281 &tpgrp, /* 8 %d */
duke@435 1282 &flags, /* 9 %lu */
duke@435 1283 &minflt, /* 10 %lu */
duke@435 1284 &cminflt, /* 11 %lu */
duke@435 1285 &majflt, /* 12 %lu */
duke@435 1286 &cmajflt, /* 13 %lu */
duke@435 1287 &utime, /* 14 %lu */
duke@435 1288 &stime, /* 15 %lu */
duke@435 1289 &cutime, /* 16 %ld */
duke@435 1290 &cstime, /* 17 %ld */
duke@435 1291 &prio, /* 18 %ld */
duke@435 1292 &nice, /* 19 %ld */
duke@435 1293 &junk, /* 20 %ld */
duke@435 1294 &it_real, /* 21 %ld */
bobv@2036 1295 &start, /* 22 UINTX_FORMAT */
bobv@2036 1296 &vsize, /* 23 UINTX_FORMAT */
bobv@2036 1297 &rss, /* 24 INTX_FORMAT */
bobv@2036 1298 &rsslim, /* 25 UINTX_FORMAT */
bobv@2036 1299 &scodes, /* 26 UINTX_FORMAT */
bobv@2036 1300 &ecode, /* 27 UINTX_FORMAT */
bobv@2036 1301 &stack_start); /* 28 UINTX_FORMAT */
duke@435 1302 }
duke@435 1303
bobv@2036 1304 #undef _UFM
bobv@2036 1305 #undef _DFM
bobv@2036 1306
duke@435 1307 if (i != 28 - 2) {
duke@435 1308 assert(false, "Bad conversion from /proc/self/stat");
duke@435 1309 // product mode - assume we are the initial thread, good luck in the
duke@435 1310 // embedded case.
duke@435 1311 warning("Can't detect initial thread stack location - bad conversion");
duke@435 1312 stack_start = (uintptr_t) &rlim;
duke@435 1313 }
duke@435 1314 } else {
duke@435 1315 // For some reason we can't open /proc/self/stat (for example, running on
duke@435 1316 // FreeBSD with a Linux emulator, or inside chroot), this should work for
duke@435 1317 // most cases, so don't abort:
duke@435 1318 warning("Can't detect initial thread stack location - no /proc/self/stat");
duke@435 1319 stack_start = (uintptr_t) &rlim;
duke@435 1320 }
duke@435 1321 }
duke@435 1322
duke@435 1323 // Now we have a pointer (stack_start) very close to the stack top, the
duke@435 1324 // next thing to do is to figure out the exact location of stack top. We
duke@435 1325 // can find out the virtual memory area that contains stack_start by
duke@435 1326 // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
duke@435 1327 // and its upper limit is the real stack top. (again, this would fail if
duke@435 1328 // running inside chroot, because /proc may not exist.)
duke@435 1329
duke@435 1330 uintptr_t stack_top;
duke@435 1331 address low, high;
duke@435 1332 if (find_vma((address)stack_start, &low, &high)) {
duke@435 1333 // success, "high" is the true stack top. (ignore "low", because initial
duke@435 1334 // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
duke@435 1335 stack_top = (uintptr_t)high;
duke@435 1336 } else {
duke@435 1337 // failed, likely because /proc/self/maps does not exist
duke@435 1338 warning("Can't detect initial thread stack location - find_vma failed");
duke@435 1339 // best effort: stack_start is normally within a few pages below the real
duke@435 1340 // stack top, use it as stack top, and reduce stack size so we won't put
duke@435 1341 // guard page outside stack.
duke@435 1342 stack_top = stack_start;
duke@435 1343 stack_size -= 16 * page_size();
duke@435 1344 }
duke@435 1345
duke@435 1346 // stack_top could be partially down the page so align it
duke@435 1347 stack_top = align_size_up(stack_top, page_size());
duke@435 1348
duke@435 1349 if (max_size && stack_size > max_size) {
duke@435 1350 _initial_thread_stack_size = max_size;
duke@435 1351 } else {
duke@435 1352 _initial_thread_stack_size = stack_size;
duke@435 1353 }
duke@435 1354
duke@435 1355 _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
duke@435 1356 _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
duke@435 1357 }
duke@435 1358
duke@435 1359 ////////////////////////////////////////////////////////////////////////////////
duke@435 1360 // time support
duke@435 1361
duke@435 1362 // Time since start-up in seconds to a fine granularity.
duke@435 1363 // Used by VMSelfDestructTimer and the MemProfiler.
duke@435 1364 double os::elapsedTime() {
duke@435 1365
duke@435 1366 return (double)(os::elapsed_counter()) * 0.000001;
duke@435 1367 }
duke@435 1368
duke@435 1369 jlong os::elapsed_counter() {
duke@435 1370 timeval time;
duke@435 1371 int status = gettimeofday(&time, NULL);
duke@435 1372 return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
duke@435 1373 }
duke@435 1374
duke@435 1375 jlong os::elapsed_frequency() {
duke@435 1376 return (1000 * 1000);
duke@435 1377 }
duke@435 1378
ysr@777 1379 // For now, we say that linux does not support vtime. I have no idea
ysr@777 1380 // whether it can actually be made to (DLD, 9/13/05).
ysr@777 1381
ysr@777 1382 bool os::supports_vtime() { return false; }
ysr@777 1383 bool os::enable_vtime() { return false; }
ysr@777 1384 bool os::vtime_enabled() { return false; }
ysr@777 1385 double os::elapsedVTime() {
ysr@777 1386 // better than nothing, but not much
ysr@777 1387 return elapsedTime();
ysr@777 1388 }
ysr@777 1389
sbohne@496 1390 jlong os::javaTimeMillis() {
duke@435 1391 timeval time;
duke@435 1392 int status = gettimeofday(&time, NULL);
duke@435 1393 assert(status != -1, "linux error");
duke@435 1394 return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
duke@435 1395 }
duke@435 1396
duke@435 1397 #ifndef CLOCK_MONOTONIC
duke@435 1398 #define CLOCK_MONOTONIC (1)
duke@435 1399 #endif
duke@435 1400
duke@435 1401 void os::Linux::clock_init() {
duke@435 1402 // we do dlopen's in this particular order due to bug in linux
duke@435 1403 // dynamical loader (see 6348968) leading to crash on exit
duke@435 1404 void* handle = dlopen("librt.so.1", RTLD_LAZY);
duke@435 1405 if (handle == NULL) {
duke@435 1406 handle = dlopen("librt.so", RTLD_LAZY);
duke@435 1407 }
duke@435 1408
duke@435 1409 if (handle) {
duke@435 1410 int (*clock_getres_func)(clockid_t, struct timespec*) =
duke@435 1411 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
duke@435 1412 int (*clock_gettime_func)(clockid_t, struct timespec*) =
duke@435 1413 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
duke@435 1414 if (clock_getres_func && clock_gettime_func) {
duke@435 1415 // See if monotonic clock is supported by the kernel. Note that some
duke@435 1416 // early implementations simply return kernel jiffies (updated every
duke@435 1417 // 1/100 or 1/1000 second). It would be bad to use such a low res clock
duke@435 1418 // for nano time (though the monotonic property is still nice to have).
duke@435 1419 // It's fixed in newer kernels, however clock_getres() still returns
duke@435 1420 // 1/HZ. We check if clock_getres() works, but will ignore its reported
duke@435 1421 // resolution for now. Hopefully as people move to new kernels, this
duke@435 1422 // won't be a problem.
duke@435 1423 struct timespec res;
duke@435 1424 struct timespec tp;
duke@435 1425 if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
duke@435 1426 clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
duke@435 1427 // yes, monotonic clock is supported
duke@435 1428 _clock_gettime = clock_gettime_func;
duke@435 1429 } else {
duke@435 1430 // close librt if there is no monotonic clock
duke@435 1431 dlclose(handle);
duke@435 1432 }
duke@435 1433 }
duke@435 1434 }
duke@435 1435 }
duke@435 1436
duke@435 1437 #ifndef SYS_clock_getres
duke@435 1438
duke@435 1439 #if defined(IA32) || defined(AMD64)
duke@435 1440 #define SYS_clock_getres IA32_ONLY(266) AMD64_ONLY(229)
bobv@2036 1441 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1442 #else
bobv@2036 1443 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
bobv@2036 1444 #define sys_clock_getres(x,y) -1
duke@435 1445 #endif
duke@435 1446
bobv@2036 1447 #else
bobv@2036 1448 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1449 #endif
duke@435 1450
duke@435 1451 void os::Linux::fast_thread_clock_init() {
duke@435 1452 if (!UseLinuxPosixThreadCPUClocks) {
duke@435 1453 return;
duke@435 1454 }
duke@435 1455 clockid_t clockid;
duke@435 1456 struct timespec tp;
duke@435 1457 int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
duke@435 1458 (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
duke@435 1459
duke@435 1460 // Switch to using fast clocks for thread cpu time if
duke@435 1461 // the sys_clock_getres() returns 0 error code.
duke@435 1462 // Note, that some kernels may support the current thread
duke@435 1463 // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
duke@435 1464 // returned by the pthread_getcpuclockid().
duke@435 1465 // If the fast Posix clocks are supported then the sys_clock_getres()
duke@435 1466 // must return at least tp.tv_sec == 0 which means a resolution
duke@435 1467 // better than 1 sec. This is extra check for reliability.
duke@435 1468
duke@435 1469 if(pthread_getcpuclockid_func &&
duke@435 1470 pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
duke@435 1471 sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
duke@435 1472
duke@435 1473 _supports_fast_thread_cpu_time = true;
duke@435 1474 _pthread_getcpuclockid = pthread_getcpuclockid_func;
duke@435 1475 }
duke@435 1476 }
duke@435 1477
duke@435 1478 jlong os::javaTimeNanos() {
duke@435 1479 if (Linux::supports_monotonic_clock()) {
duke@435 1480 struct timespec tp;
duke@435 1481 int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
duke@435 1482 assert(status == 0, "gettime error");
duke@435 1483 jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
duke@435 1484 return result;
duke@435 1485 } else {
duke@435 1486 timeval time;
duke@435 1487 int status = gettimeofday(&time, NULL);
duke@435 1488 assert(status != -1, "linux error");
duke@435 1489 jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
duke@435 1490 return 1000 * usecs;
duke@435 1491 }
duke@435 1492 }
duke@435 1493
duke@435 1494 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 1495 if (Linux::supports_monotonic_clock()) {
duke@435 1496 info_ptr->max_value = ALL_64_BITS;
duke@435 1497
duke@435 1498 // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
duke@435 1499 info_ptr->may_skip_backward = false; // not subject to resetting or drifting
duke@435 1500 info_ptr->may_skip_forward = false; // not subject to resetting or drifting
duke@435 1501 } else {
duke@435 1502 // gettimeofday - based on time in seconds since the Epoch thus does not wrap
duke@435 1503 info_ptr->max_value = ALL_64_BITS;
duke@435 1504
duke@435 1505 // gettimeofday is a real time clock so it skips
duke@435 1506 info_ptr->may_skip_backward = true;
duke@435 1507 info_ptr->may_skip_forward = true;
duke@435 1508 }
duke@435 1509
duke@435 1510 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 1511 }
duke@435 1512
duke@435 1513 // Return the real, user, and system times in seconds from an
duke@435 1514 // arbitrary fixed point in the past.
duke@435 1515 bool os::getTimesSecs(double* process_real_time,
duke@435 1516 double* process_user_time,
duke@435 1517 double* process_system_time) {
duke@435 1518 struct tms ticks;
duke@435 1519 clock_t real_ticks = times(&ticks);
duke@435 1520
duke@435 1521 if (real_ticks == (clock_t) (-1)) {
duke@435 1522 return false;
duke@435 1523 } else {
duke@435 1524 double ticks_per_second = (double) clock_tics_per_sec;
duke@435 1525 *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
duke@435 1526 *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
duke@435 1527 *process_real_time = ((double) real_ticks) / ticks_per_second;
duke@435 1528
duke@435 1529 return true;
duke@435 1530 }
duke@435 1531 }
duke@435 1532
duke@435 1533
duke@435 1534 char * os::local_time_string(char *buf, size_t buflen) {
duke@435 1535 struct tm t;
duke@435 1536 time_t long_time;
duke@435 1537 time(&long_time);
duke@435 1538 localtime_r(&long_time, &t);
duke@435 1539 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 1540 t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
duke@435 1541 t.tm_hour, t.tm_min, t.tm_sec);
duke@435 1542 return buf;
duke@435 1543 }
duke@435 1544
ysr@983 1545 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 1546 return localtime_r(clock, res);
ysr@983 1547 }
ysr@983 1548
duke@435 1549 ////////////////////////////////////////////////////////////////////////////////
duke@435 1550 // runtime exit support
duke@435 1551
duke@435 1552 // Note: os::shutdown() might be called very early during initialization, or
duke@435 1553 // called from signal handler. Before adding something to os::shutdown(), make
duke@435 1554 // sure it is async-safe and can handle partially initialized VM.
duke@435 1555 void os::shutdown() {
duke@435 1556
duke@435 1557 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 1558 perfMemory_exit();
duke@435 1559
duke@435 1560 // needs to remove object in file system
duke@435 1561 AttachListener::abort();
duke@435 1562
duke@435 1563 // flush buffered output, finish log files
duke@435 1564 ostream_abort();
duke@435 1565
duke@435 1566 // Check for abort hook
duke@435 1567 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 1568 if (abort_hook != NULL) {
duke@435 1569 abort_hook();
duke@435 1570 }
duke@435 1571
duke@435 1572 }
duke@435 1573
duke@435 1574 // Note: os::abort() might be called very early during initialization, or
duke@435 1575 // called from signal handler. Before adding something to os::abort(), make
duke@435 1576 // sure it is async-safe and can handle partially initialized VM.
duke@435 1577 void os::abort(bool dump_core) {
duke@435 1578 os::shutdown();
duke@435 1579 if (dump_core) {
duke@435 1580 #ifndef PRODUCT
duke@435 1581 fdStream out(defaultStream::output_fd());
duke@435 1582 out.print_raw("Current thread is ");
duke@435 1583 char buf[16];
duke@435 1584 jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
duke@435 1585 out.print_raw_cr(buf);
duke@435 1586 out.print_raw_cr("Dumping core ...");
duke@435 1587 #endif
duke@435 1588 ::abort(); // dump core
duke@435 1589 }
duke@435 1590
duke@435 1591 ::exit(1);
duke@435 1592 }
duke@435 1593
duke@435 1594 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1595 void os::die() {
duke@435 1596 // _exit() on LinuxThreads only kills current thread
duke@435 1597 ::abort();
duke@435 1598 }
duke@435 1599
duke@435 1600 // unused on linux for now.
duke@435 1601 void os::set_error_file(const char *logfile) {}
duke@435 1602
ikrylov@2322 1603
ikrylov@2322 1604 // This method is a copy of JDK's sysGetLastErrorString
ikrylov@2322 1605 // from src/solaris/hpi/src/system_md.c
ikrylov@2322 1606
ikrylov@2322 1607 size_t os::lasterror(char *buf, size_t len) {
ikrylov@2322 1608
ikrylov@2322 1609 if (errno == 0) return 0;
ikrylov@2322 1610
ikrylov@2322 1611 const char *s = ::strerror(errno);
ikrylov@2322 1612 size_t n = ::strlen(s);
ikrylov@2322 1613 if (n >= len) {
ikrylov@2322 1614 n = len - 1;
ikrylov@2322 1615 }
ikrylov@2322 1616 ::strncpy(buf, s, n);
ikrylov@2322 1617 buf[n] = '\0';
ikrylov@2322 1618 return n;
ikrylov@2322 1619 }
ikrylov@2322 1620
duke@435 1621 intx os::current_thread_id() { return (intx)pthread_self(); }
duke@435 1622 int os::current_process_id() {
duke@435 1623
duke@435 1624 // Under the old linux thread library, linux gives each thread
duke@435 1625 // its own process id. Because of this each thread will return
duke@435 1626 // a different pid if this method were to return the result
duke@435 1627 // of getpid(2). Linux provides no api that returns the pid
duke@435 1628 // of the launcher thread for the vm. This implementation
duke@435 1629 // returns a unique pid, the pid of the launcher thread
duke@435 1630 // that starts the vm 'process'.
duke@435 1631
duke@435 1632 // Under the NPTL, getpid() returns the same pid as the
duke@435 1633 // launcher thread rather than a unique pid per thread.
duke@435 1634 // Use gettid() if you want the old pre NPTL behaviour.
duke@435 1635
duke@435 1636 // if you are looking for the result of a call to getpid() that
duke@435 1637 // returns a unique pid for the calling thread, then look at the
duke@435 1638 // OSThread::thread_id() method in osThread_linux.hpp file
duke@435 1639
duke@435 1640 return (int)(_initial_pid ? _initial_pid : getpid());
duke@435 1641 }
duke@435 1642
duke@435 1643 // DLL functions
duke@435 1644
duke@435 1645 const char* os::dll_file_extension() { return ".so"; }
duke@435 1646
coleenp@2450 1647 // This must be hard coded because it's the system's temporary
coleenp@2450 1648 // directory not the java application's temp directory, ala java.io.tmpdir.
coleenp@2450 1649 const char* os::get_temp_directory() { return "/tmp"; }
duke@435 1650
phh@1126 1651 static bool file_exists(const char* filename) {
phh@1126 1652 struct stat statbuf;
phh@1126 1653 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1654 return false;
phh@1126 1655 }
phh@1126 1656 return os::stat(filename, &statbuf) == 0;
phh@1126 1657 }
phh@1126 1658
phh@1126 1659 void os::dll_build_name(char* buffer, size_t buflen,
phh@1126 1660 const char* pname, const char* fname) {
phh@1126 1661 // Copied from libhpi
kamg@677 1662 const size_t pnamelen = pname ? strlen(pname) : 0;
kamg@677 1663
phh@1126 1664 // Quietly truncate on buffer overflow. Should be an error.
kamg@677 1665 if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
kamg@677 1666 *buffer = '\0';
kamg@677 1667 return;
kamg@677 1668 }
kamg@677 1669
kamg@677 1670 if (pnamelen == 0) {
phh@1126 1671 snprintf(buffer, buflen, "lib%s.so", fname);
phh@1126 1672 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1673 int n;
phh@1126 1674 char** pelements = split_path(pname, &n);
phh@1126 1675 for (int i = 0 ; i < n ; i++) {
phh@1126 1676 // Really shouldn't be NULL, but check can't hurt
phh@1126 1677 if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
phh@1126 1678 continue; // skip the empty path values
phh@1126 1679 }
phh@1126 1680 snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
phh@1126 1681 if (file_exists(buffer)) {
phh@1126 1682 break;
phh@1126 1683 }
phh@1126 1684 }
phh@1126 1685 // release the storage
phh@1126 1686 for (int i = 0 ; i < n ; i++) {
phh@1126 1687 if (pelements[i] != NULL) {
zgu@3900 1688 FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
phh@1126 1689 }
phh@1126 1690 }
phh@1126 1691 if (pelements != NULL) {
zgu@3900 1692 FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
phh@1126 1693 }
kamg@677 1694 } else {
phh@1126 1695 snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
kamg@677 1696 }
kamg@677 1697 }
kamg@677 1698
duke@435 1699 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1700 return getcwd(buf, buflen);
duke@435 1701 }
duke@435 1702
duke@435 1703 // check if addr is inside libjvm[_g].so
duke@435 1704 bool os::address_is_in_vm(address addr) {
duke@435 1705 static address libjvm_base_addr;
duke@435 1706 Dl_info dlinfo;
duke@435 1707
duke@435 1708 if (libjvm_base_addr == NULL) {
duke@435 1709 dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
duke@435 1710 libjvm_base_addr = (address)dlinfo.dli_fbase;
duke@435 1711 assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
duke@435 1712 }
duke@435 1713
duke@435 1714 if (dladdr((void *)addr, &dlinfo)) {
duke@435 1715 if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
duke@435 1716 }
duke@435 1717
duke@435 1718 return false;
duke@435 1719 }
duke@435 1720
duke@435 1721 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1722 int buflen, int *offset) {
duke@435 1723 Dl_info dlinfo;
duke@435 1724
duke@435 1725 if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
zgu@2364 1726 if (buf != NULL) {
zgu@2364 1727 if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
zgu@2364 1728 jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
zgu@2364 1729 }
zgu@2364 1730 }
zgu@2364 1731 if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
duke@435 1732 return true;
zgu@2364 1733 } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
zgu@2364 1734 if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
zgu@3430 1735 buf, buflen, offset, dlinfo.dli_fname)) {
zgu@2364 1736 return true;
zgu@2364 1737 }
duke@435 1738 }
zgu@2364 1739
zgu@2364 1740 if (buf != NULL) buf[0] = '\0';
zgu@2364 1741 if (offset != NULL) *offset = -1;
zgu@2364 1742 return false;
duke@435 1743 }
duke@435 1744
duke@435 1745 struct _address_to_library_name {
duke@435 1746 address addr; // input : memory address
duke@435 1747 size_t buflen; // size of fname
duke@435 1748 char* fname; // output: library name
duke@435 1749 address base; // library base addr
duke@435 1750 };
duke@435 1751
duke@435 1752 static int address_to_library_name_callback(struct dl_phdr_info *info,
duke@435 1753 size_t size, void *data) {
duke@435 1754 int i;
duke@435 1755 bool found = false;
duke@435 1756 address libbase = NULL;
duke@435 1757 struct _address_to_library_name * d = (struct _address_to_library_name *)data;
duke@435 1758
duke@435 1759 // iterate through all loadable segments
duke@435 1760 for (i = 0; i < info->dlpi_phnum; i++) {
duke@435 1761 address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
duke@435 1762 if (info->dlpi_phdr[i].p_type == PT_LOAD) {
duke@435 1763 // base address of a library is the lowest address of its loaded
duke@435 1764 // segments.
duke@435 1765 if (libbase == NULL || libbase > segbase) {
duke@435 1766 libbase = segbase;
duke@435 1767 }
duke@435 1768 // see if 'addr' is within current segment
duke@435 1769 if (segbase <= d->addr &&
duke@435 1770 d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
duke@435 1771 found = true;
duke@435 1772 }
duke@435 1773 }
duke@435 1774 }
duke@435 1775
duke@435 1776 // dlpi_name is NULL or empty if the ELF file is executable, return 0
duke@435 1777 // so dll_address_to_library_name() can fall through to use dladdr() which
duke@435 1778 // can figure out executable name from argv[0].
duke@435 1779 if (found && info->dlpi_name && info->dlpi_name[0]) {
duke@435 1780 d->base = libbase;
duke@435 1781 if (d->fname) {
duke@435 1782 jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
duke@435 1783 }
duke@435 1784 return 1;
duke@435 1785 }
duke@435 1786 return 0;
duke@435 1787 }
duke@435 1788
duke@435 1789 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1790 int buflen, int* offset) {
duke@435 1791 Dl_info dlinfo;
duke@435 1792 struct _address_to_library_name data;
duke@435 1793
duke@435 1794 // There is a bug in old glibc dladdr() implementation that it could resolve
duke@435 1795 // to wrong library name if the .so file has a base address != NULL. Here
duke@435 1796 // we iterate through the program headers of all loaded libraries to find
duke@435 1797 // out which library 'addr' really belongs to. This workaround can be
duke@435 1798 // removed once the minimum requirement for glibc is moved to 2.3.x.
duke@435 1799 data.addr = addr;
duke@435 1800 data.fname = buf;
duke@435 1801 data.buflen = buflen;
duke@435 1802 data.base = NULL;
duke@435 1803 int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
duke@435 1804
duke@435 1805 if (rslt) {
duke@435 1806 // buf already contains library name
duke@435 1807 if (offset) *offset = addr - data.base;
duke@435 1808 return true;
duke@435 1809 } else if (dladdr((void*)addr, &dlinfo)){
duke@435 1810 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
duke@435 1811 if (offset) *offset = addr - (address)dlinfo.dli_fbase;
duke@435 1812 return true;
duke@435 1813 } else {
duke@435 1814 if (buf) buf[0] = '\0';
duke@435 1815 if (offset) *offset = -1;
duke@435 1816 return false;
duke@435 1817 }
duke@435 1818 }
duke@435 1819
duke@435 1820 // Loads .dll/.so and
duke@435 1821 // in case of error it checks if .dll/.so was built for the
duke@435 1822 // same architecture as Hotspot is running on
duke@435 1823
duke@435 1824 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
duke@435 1825 {
duke@435 1826 void * result= ::dlopen(filename, RTLD_LAZY);
duke@435 1827 if (result != NULL) {
duke@435 1828 // Successful loading
duke@435 1829 return result;
duke@435 1830 }
duke@435 1831
duke@435 1832 Elf32_Ehdr elf_head;
duke@435 1833
duke@435 1834 // Read system error message into ebuf
duke@435 1835 // It may or may not be overwritten below
duke@435 1836 ::strncpy(ebuf, ::dlerror(), ebuflen-1);
duke@435 1837 ebuf[ebuflen-1]='\0';
duke@435 1838 int diag_msg_max_length=ebuflen-strlen(ebuf);
duke@435 1839 char* diag_msg_buf=ebuf+strlen(ebuf);
duke@435 1840
duke@435 1841 if (diag_msg_max_length==0) {
duke@435 1842 // No more space in ebuf for additional diagnostics message
duke@435 1843 return NULL;
duke@435 1844 }
duke@435 1845
duke@435 1846
duke@435 1847 int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
duke@435 1848
duke@435 1849 if (file_descriptor < 0) {
duke@435 1850 // Can't open library, report dlerror() message
duke@435 1851 return NULL;
duke@435 1852 }
duke@435 1853
duke@435 1854 bool failed_to_read_elf_head=
duke@435 1855 (sizeof(elf_head)!=
duke@435 1856 (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
duke@435 1857
duke@435 1858 ::close(file_descriptor);
duke@435 1859 if (failed_to_read_elf_head) {
duke@435 1860 // file i/o error - report dlerror() msg
duke@435 1861 return NULL;
duke@435 1862 }
duke@435 1863
duke@435 1864 typedef struct {
duke@435 1865 Elf32_Half code; // Actual value as defined in elf.h
duke@435 1866 Elf32_Half compat_class; // Compatibility of archs at VM's sense
duke@435 1867 char elf_class; // 32 or 64 bit
duke@435 1868 char endianess; // MSB or LSB
duke@435 1869 char* name; // String representation
duke@435 1870 } arch_t;
duke@435 1871
duke@435 1872 #ifndef EM_486
duke@435 1873 #define EM_486 6 /* Intel 80486 */
duke@435 1874 #endif
duke@435 1875
duke@435 1876 static const arch_t arch_array[]={
duke@435 1877 {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1878 {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1879 {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
duke@435 1880 {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
duke@435 1881 {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1882 {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1883 {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
duke@435 1884 {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
never@1445 1885 {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
never@1445 1886 {EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
never@1445 1887 {EM_S390, EM_S390, ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
never@1445 1888 {EM_ALPHA, EM_ALPHA, ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
never@1445 1889 {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
never@1445 1890 {EM_MIPS, EM_MIPS, ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
never@1445 1891 {EM_PARISC, EM_PARISC, ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
never@1445 1892 {EM_68K, EM_68K, ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
duke@435 1893 };
duke@435 1894
duke@435 1895 #if (defined IA32)
duke@435 1896 static Elf32_Half running_arch_code=EM_386;
duke@435 1897 #elif (defined AMD64)
duke@435 1898 static Elf32_Half running_arch_code=EM_X86_64;
duke@435 1899 #elif (defined IA64)
duke@435 1900 static Elf32_Half running_arch_code=EM_IA_64;
duke@435 1901 #elif (defined __sparc) && (defined _LP64)
duke@435 1902 static Elf32_Half running_arch_code=EM_SPARCV9;
duke@435 1903 #elif (defined __sparc) && (!defined _LP64)
duke@435 1904 static Elf32_Half running_arch_code=EM_SPARC;
duke@435 1905 #elif (defined __powerpc64__)
duke@435 1906 static Elf32_Half running_arch_code=EM_PPC64;
duke@435 1907 #elif (defined __powerpc__)
duke@435 1908 static Elf32_Half running_arch_code=EM_PPC;
never@1445 1909 #elif (defined ARM)
never@1445 1910 static Elf32_Half running_arch_code=EM_ARM;
never@1445 1911 #elif (defined S390)
never@1445 1912 static Elf32_Half running_arch_code=EM_S390;
never@1445 1913 #elif (defined ALPHA)
never@1445 1914 static Elf32_Half running_arch_code=EM_ALPHA;
never@1445 1915 #elif (defined MIPSEL)
never@1445 1916 static Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
never@1445 1917 #elif (defined PARISC)
never@1445 1918 static Elf32_Half running_arch_code=EM_PARISC;
never@1445 1919 #elif (defined MIPS)
never@1445 1920 static Elf32_Half running_arch_code=EM_MIPS;
never@1445 1921 #elif (defined M68K)
never@1445 1922 static Elf32_Half running_arch_code=EM_68K;
duke@435 1923 #else
duke@435 1924 #error Method os::dll_load requires that one of following is defined:\
never@1445 1925 IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
duke@435 1926 #endif
duke@435 1927
duke@435 1928 // Identify compatability class for VM's architecture and library's architecture
duke@435 1929 // Obtain string descriptions for architectures
duke@435 1930
duke@435 1931 arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
duke@435 1932 int running_arch_index=-1;
duke@435 1933
duke@435 1934 for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
duke@435 1935 if (running_arch_code == arch_array[i].code) {
duke@435 1936 running_arch_index = i;
duke@435 1937 }
duke@435 1938 if (lib_arch.code == arch_array[i].code) {
duke@435 1939 lib_arch.compat_class = arch_array[i].compat_class;
duke@435 1940 lib_arch.name = arch_array[i].name;
duke@435 1941 }
duke@435 1942 }
duke@435 1943
duke@435 1944 assert(running_arch_index != -1,
duke@435 1945 "Didn't find running architecture code (running_arch_code) in arch_array");
duke@435 1946 if (running_arch_index == -1) {
duke@435 1947 // Even though running architecture detection failed
duke@435 1948 // we may still continue with reporting dlerror() message
duke@435 1949 return NULL;
duke@435 1950 }
duke@435 1951
duke@435 1952 if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
duke@435 1953 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
duke@435 1954 return NULL;
duke@435 1955 }
duke@435 1956
never@1445 1957 #ifndef S390
duke@435 1958 if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
duke@435 1959 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
duke@435 1960 return NULL;
duke@435 1961 }
never@1445 1962 #endif // !S390
duke@435 1963
duke@435 1964 if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
duke@435 1965 if ( lib_arch.name!=NULL ) {
duke@435 1966 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1967 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
duke@435 1968 lib_arch.name, arch_array[running_arch_index].name);
duke@435 1969 } else {
duke@435 1970 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1971 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
duke@435 1972 lib_arch.code,
duke@435 1973 arch_array[running_arch_index].name);
duke@435 1974 }
duke@435 1975 }
duke@435 1976
duke@435 1977 return NULL;
duke@435 1978 }
duke@435 1979
kamg@677 1980 /*
kamg@677 1981 * glibc-2.0 libdl is not MT safe. If you are building with any glibc,
kamg@677 1982 * chances are you might want to run the generated bits against glibc-2.0
kamg@677 1983 * libdl.so, so always use locking for any version of glibc.
kamg@677 1984 */
kamg@677 1985 void* os::dll_lookup(void* handle, const char* name) {
kamg@677 1986 pthread_mutex_lock(&dl_mutex);
kamg@677 1987 void* res = dlsym(handle, name);
kamg@677 1988 pthread_mutex_unlock(&dl_mutex);
kamg@677 1989 return res;
kamg@677 1990 }
duke@435 1991
duke@435 1992
ikrylov@2322 1993 static bool _print_ascii_file(const char* filename, outputStream* st) {
ikrylov@2322 1994 int fd = ::open(filename, O_RDONLY);
duke@435 1995 if (fd == -1) {
duke@435 1996 return false;
duke@435 1997 }
duke@435 1998
duke@435 1999 char buf[32];
duke@435 2000 int bytes;
ikrylov@2322 2001 while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
duke@435 2002 st->print_raw(buf, bytes);
duke@435 2003 }
duke@435 2004
ikrylov@2322 2005 ::close(fd);
duke@435 2006
duke@435 2007 return true;
duke@435 2008 }
duke@435 2009
duke@435 2010 void os::print_dll_info(outputStream *st) {
duke@435 2011 st->print_cr("Dynamic libraries:");
duke@435 2012
duke@435 2013 char fname[32];
duke@435 2014 pid_t pid = os::Linux::gettid();
duke@435 2015
duke@435 2016 jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
duke@435 2017
duke@435 2018 if (!_print_ascii_file(fname, st)) {
duke@435 2019 st->print("Can not get library information for pid = %d\n", pid);
duke@435 2020 }
duke@435 2021 }
duke@435 2022
nloodin@3783 2023 void os::print_os_info_brief(outputStream* st) {
nloodin@3783 2024 os::Linux::print_distro_info(st);
nloodin@3783 2025
nloodin@3783 2026 os::Posix::print_uname_info(st);
nloodin@3783 2027
nloodin@3783 2028 os::Linux::print_libversion_info(st);
nloodin@3783 2029
nloodin@3783 2030 }
duke@435 2031
duke@435 2032 void os::print_os_info(outputStream* st) {
duke@435 2033 st->print("OS:");
duke@435 2034
nloodin@3783 2035 os::Linux::print_distro_info(st);
nloodin@3783 2036
nloodin@3783 2037 os::Posix::print_uname_info(st);
nloodin@3783 2038
nloodin@3783 2039 // Print warning if unsafe chroot environment detected
nloodin@3783 2040 if (unsafe_chroot_detected) {
nloodin@3783 2041 st->print("WARNING!! ");
nloodin@3783 2042 st->print_cr(unstable_chroot_error);
nloodin@3783 2043 }
nloodin@3783 2044
nloodin@3783 2045 os::Linux::print_libversion_info(st);
nloodin@3783 2046
nloodin@3783 2047 os::Posix::print_rlimit_info(st);
nloodin@3783 2048
nloodin@3783 2049 os::Posix::print_load_average(st);
nloodin@3783 2050
nloodin@3783 2051 os::Linux::print_full_memory_info(st);
nloodin@3783 2052 }
nloodin@3783 2053
nloodin@3783 2054 // Try to identify popular distros.
nloodin@3783 2055 // Most Linux distributions have /etc/XXX-release file, which contains
nloodin@3783 2056 // the OS version string. Some have more than one /etc/XXX-release file
nloodin@3783 2057 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
nloodin@3783 2058 // so the order is important.
nloodin@3783 2059 void os::Linux::print_distro_info(outputStream* st) {
duke@435 2060 if (!_print_ascii_file("/etc/mandrake-release", st) &&
duke@435 2061 !_print_ascii_file("/etc/sun-release", st) &&
duke@435 2062 !_print_ascii_file("/etc/redhat-release", st) &&
duke@435 2063 !_print_ascii_file("/etc/SuSE-release", st) &&
duke@435 2064 !_print_ascii_file("/etc/turbolinux-release", st) &&
duke@435 2065 !_print_ascii_file("/etc/gentoo-release", st) &&
bobv@2036 2066 !_print_ascii_file("/etc/debian_version", st) &&
bobv@2036 2067 !_print_ascii_file("/etc/ltib-release", st) &&
bobv@2036 2068 !_print_ascii_file("/etc/angstrom-version", st)) {
duke@435 2069 st->print("Linux");
duke@435 2070 }
duke@435 2071 st->cr();
nloodin@3783 2072 }
nloodin@3783 2073
nloodin@3783 2074 void os::Linux::print_libversion_info(outputStream* st) {
duke@435 2075 // libc, pthread
duke@435 2076 st->print("libc:");
duke@435 2077 st->print(os::Linux::glibc_version()); st->print(" ");
duke@435 2078 st->print(os::Linux::libpthread_version()); st->print(" ");
duke@435 2079 if (os::Linux::is_LinuxThreads()) {
duke@435 2080 st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
duke@435 2081 }
duke@435 2082 st->cr();
nloodin@3783 2083 }
nloodin@3783 2084
nloodin@3783 2085 void os::Linux::print_full_memory_info(outputStream* st) {
nloodin@3783 2086 st->print("\n/proc/meminfo:\n");
nloodin@3783 2087 _print_ascii_file("/proc/meminfo", st);
nloodin@3783 2088 st->cr();
jcoomes@2997 2089 }
jcoomes@2997 2090
duke@435 2091 void os::print_memory_info(outputStream* st) {
duke@435 2092
duke@435 2093 st->print("Memory:");
duke@435 2094 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 2095
duke@435 2096 // values in struct sysinfo are "unsigned long"
duke@435 2097 struct sysinfo si;
duke@435 2098 sysinfo(&si);
duke@435 2099
duke@435 2100 st->print(", physical " UINT64_FORMAT "k",
duke@435 2101 os::physical_memory() >> 10);
duke@435 2102 st->print("(" UINT64_FORMAT "k free)",
duke@435 2103 os::available_memory() >> 10);
duke@435 2104 st->print(", swap " UINT64_FORMAT "k",
duke@435 2105 ((jlong)si.totalswap * si.mem_unit) >> 10);
duke@435 2106 st->print("(" UINT64_FORMAT "k free)",
duke@435 2107 ((jlong)si.freeswap * si.mem_unit) >> 10);
duke@435 2108 st->cr();
duke@435 2109 }
duke@435 2110
nloodin@3783 2111 void os::pd_print_cpu_info(outputStream* st) {
nloodin@3783 2112 st->print("\n/proc/cpuinfo:\n");
nloodin@3783 2113 if (!_print_ascii_file("/proc/cpuinfo", st)) {
nloodin@3783 2114 st->print(" <Not Available>");
nloodin@3783 2115 }
nloodin@3783 2116 st->cr();
nloodin@3783 2117 }
nloodin@3783 2118
duke@435 2119 // Taken from /usr/include/bits/siginfo.h Supposed to be architecture specific
duke@435 2120 // but they're the same for all the linux arch that we support
duke@435 2121 // and they're the same for solaris but there's no common place to put this.
duke@435 2122 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
duke@435 2123 "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
duke@435 2124 "ILL_COPROC", "ILL_BADSTK" };
duke@435 2125
duke@435 2126 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
duke@435 2127 "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
duke@435 2128 "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
duke@435 2129
duke@435 2130 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
duke@435 2131
duke@435 2132 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
duke@435 2133
duke@435 2134 void os::print_siginfo(outputStream* st, void* siginfo) {
duke@435 2135 st->print("siginfo:");
duke@435 2136
duke@435 2137 const int buflen = 100;
duke@435 2138 char buf[buflen];
duke@435 2139 siginfo_t *si = (siginfo_t*)siginfo;
duke@435 2140 st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
duke@435 2141 if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
duke@435 2142 st->print("si_errno=%s", buf);
duke@435 2143 } else {
duke@435 2144 st->print("si_errno=%d", si->si_errno);
duke@435 2145 }
duke@435 2146 const int c = si->si_code;
duke@435 2147 assert(c > 0, "unexpected si_code");
duke@435 2148 switch (si->si_signo) {
duke@435 2149 case SIGILL:
duke@435 2150 st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
duke@435 2151 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2152 break;
duke@435 2153 case SIGFPE:
duke@435 2154 st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
duke@435 2155 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2156 break;
duke@435 2157 case SIGSEGV:
duke@435 2158 st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
duke@435 2159 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2160 break;
duke@435 2161 case SIGBUS:
duke@435 2162 st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
duke@435 2163 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2164 break;
duke@435 2165 default:
duke@435 2166 st->print(", si_code=%d", si->si_code);
duke@435 2167 // no si_addr
duke@435 2168 }
duke@435 2169
duke@435 2170 if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
duke@435 2171 UseSharedSpaces) {
duke@435 2172 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 2173 if (mapinfo->is_in_shared_space(si->si_addr)) {
duke@435 2174 st->print("\n\nError accessing class data sharing archive." \
duke@435 2175 " Mapped file inaccessible during execution, " \
duke@435 2176 " possible disk/network problem.");
duke@435 2177 }
duke@435 2178 }
duke@435 2179 st->cr();
duke@435 2180 }
duke@435 2181
duke@435 2182
duke@435 2183 static void print_signal_handler(outputStream* st, int sig,
duke@435 2184 char* buf, size_t buflen);
duke@435 2185
duke@435 2186 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 2187 st->print_cr("Signal Handlers:");
duke@435 2188 print_signal_handler(st, SIGSEGV, buf, buflen);
duke@435 2189 print_signal_handler(st, SIGBUS , buf, buflen);
duke@435 2190 print_signal_handler(st, SIGFPE , buf, buflen);
duke@435 2191 print_signal_handler(st, SIGPIPE, buf, buflen);
duke@435 2192 print_signal_handler(st, SIGXFSZ, buf, buflen);
duke@435 2193 print_signal_handler(st, SIGILL , buf, buflen);
duke@435 2194 print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
duke@435 2195 print_signal_handler(st, SR_signum, buf, buflen);
duke@435 2196 print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
duke@435 2197 print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
duke@435 2198 print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
duke@435 2199 print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
duke@435 2200 }
duke@435 2201
duke@435 2202 static char saved_jvm_path[MAXPATHLEN] = {0};
duke@435 2203
duke@435 2204 // Find the full path to the current module, libjvm.so or libjvm_g.so
mchung@1997 2205 void os::jvm_path(char *buf, jint buflen) {
duke@435 2206 // Error checking.
mchung@1997 2207 if (buflen < MAXPATHLEN) {
duke@435 2208 assert(false, "must use a large-enough buffer");
duke@435 2209 buf[0] = '\0';
duke@435 2210 return;
duke@435 2211 }
duke@435 2212 // Lazy resolve the path to current module.
duke@435 2213 if (saved_jvm_path[0] != 0) {
duke@435 2214 strcpy(buf, saved_jvm_path);
duke@435 2215 return;
duke@435 2216 }
duke@435 2217
duke@435 2218 char dli_fname[MAXPATHLEN];
duke@435 2219 bool ret = dll_address_to_library_name(
duke@435 2220 CAST_FROM_FN_PTR(address, os::jvm_path),
duke@435 2221 dli_fname, sizeof(dli_fname), NULL);
duke@435 2222 assert(ret != 0, "cannot locate libjvm");
bobv@2036 2223 char *rp = realpath(dli_fname, buf);
bobv@2036 2224 if (rp == NULL)
xlu@948 2225 return;
duke@435 2226
sla@2584 2227 if (Arguments::created_by_gamma_launcher()) {
duke@435 2228 // Support for the gamma launcher. Typical value for buf is
duke@435 2229 // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so". If "/jre/lib/" appears at
duke@435 2230 // the right place in the string, then assume we are installed in a JDK and
duke@435 2231 // we're done. Otherwise, check for a JAVA_HOME environment variable and fix
duke@435 2232 // up the path so it looks like libjvm.so is installed there (append a
duke@435 2233 // fake suffix hotspot/libjvm.so).
duke@435 2234 const char *p = buf + strlen(buf) - 1;
duke@435 2235 for (int count = 0; p > buf && count < 5; ++count) {
duke@435 2236 for (--p; p > buf && *p != '/'; --p)
duke@435 2237 /* empty */ ;
duke@435 2238 }
duke@435 2239
duke@435 2240 if (strncmp(p, "/jre/lib/", 9) != 0) {
duke@435 2241 // Look for JAVA_HOME in the environment.
duke@435 2242 char* java_home_var = ::getenv("JAVA_HOME");
duke@435 2243 if (java_home_var != NULL && java_home_var[0] != 0) {
mchung@1997 2244 char* jrelib_p;
mchung@1997 2245 int len;
mchung@1997 2246
duke@435 2247 // Check the current module name "libjvm.so" or "libjvm_g.so".
duke@435 2248 p = strrchr(buf, '/');
duke@435 2249 assert(strstr(p, "/libjvm") == p, "invalid library name");
duke@435 2250 p = strstr(p, "_g") ? "_g" : "";
duke@435 2251
bobv@2036 2252 rp = realpath(java_home_var, buf);
bobv@2036 2253 if (rp == NULL)
xlu@948 2254 return;
mchung@1997 2255
mchung@1997 2256 // determine if this is a legacy image or modules image
mchung@1997 2257 // modules image doesn't have "jre" subdirectory
mchung@1997 2258 len = strlen(buf);
mchung@1997 2259 jrelib_p = buf + len;
mchung@1997 2260 snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
mchung@1997 2261 if (0 != access(buf, F_OK)) {
mchung@1997 2262 snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
mchung@1997 2263 }
mchung@1997 2264
duke@435 2265 if (0 == access(buf, F_OK)) {
duke@435 2266 // Use current module name "libjvm[_g].so" instead of
duke@435 2267 // "libjvm"debug_only("_g")".so" since for fastdebug version
duke@435 2268 // we should have "libjvm.so" but debug_only("_g") adds "_g"!
mchung@1997 2269 len = strlen(buf);
mchung@1997 2270 snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
duke@435 2271 } else {
duke@435 2272 // Go back to path of .so
bobv@2036 2273 rp = realpath(dli_fname, buf);
bobv@2036 2274 if (rp == NULL)
xlu@948 2275 return;
duke@435 2276 }
duke@435 2277 }
duke@435 2278 }
duke@435 2279 }
duke@435 2280
duke@435 2281 strcpy(saved_jvm_path, buf);
duke@435 2282 }
duke@435 2283
duke@435 2284 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 2285 // no prefix required, not even "_"
duke@435 2286 }
duke@435 2287
duke@435 2288 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 2289 // no suffix required
duke@435 2290 }
duke@435 2291
duke@435 2292 ////////////////////////////////////////////////////////////////////////////////
duke@435 2293 // sun.misc.Signal support
duke@435 2294
duke@435 2295 static volatile jint sigint_count = 0;
duke@435 2296
duke@435 2297 static void
duke@435 2298 UserHandler(int sig, void *siginfo, void *context) {
duke@435 2299 // 4511530 - sem_post is serialized and handled by the manager thread. When
duke@435 2300 // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
duke@435 2301 // don't want to flood the manager thread with sem_post requests.
duke@435 2302 if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
duke@435 2303 return;
duke@435 2304
duke@435 2305 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 2306 // handler fails to abort. Let VM die immediately.
duke@435 2307 if (sig == SIGINT && is_error_reported()) {
duke@435 2308 os::die();
duke@435 2309 }
duke@435 2310
duke@435 2311 os::signal_notify(sig);
duke@435 2312 }
duke@435 2313
duke@435 2314 void* os::user_handler() {
duke@435 2315 return CAST_FROM_FN_PTR(void*, UserHandler);
duke@435 2316 }
duke@435 2317
duke@435 2318 extern "C" {
duke@435 2319 typedef void (*sa_handler_t)(int);
duke@435 2320 typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
duke@435 2321 }
duke@435 2322
duke@435 2323 void* os::signal(int signal_number, void* handler) {
duke@435 2324 struct sigaction sigAct, oldSigAct;
duke@435 2325
duke@435 2326 sigfillset(&(sigAct.sa_mask));
duke@435 2327 sigAct.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 2328 sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
duke@435 2329
duke@435 2330 if (sigaction(signal_number, &sigAct, &oldSigAct)) {
duke@435 2331 // -1 means registration failed
duke@435 2332 return (void *)-1;
duke@435 2333 }
duke@435 2334
duke@435 2335 return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
duke@435 2336 }
duke@435 2337
duke@435 2338 void os::signal_raise(int signal_number) {
duke@435 2339 ::raise(signal_number);
duke@435 2340 }
duke@435 2341
duke@435 2342 /*
duke@435 2343 * The following code is moved from os.cpp for making this
duke@435 2344 * code platform specific, which it is by its very nature.
duke@435 2345 */
duke@435 2346
duke@435 2347 // Will be modified when max signal is changed to be dynamic
duke@435 2348 int os::sigexitnum_pd() {
duke@435 2349 return NSIG;
duke@435 2350 }
duke@435 2351
duke@435 2352 // a counter for each possible signal value
duke@435 2353 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 2354
duke@435 2355 // Linux(POSIX) specific hand shaking semaphore.
duke@435 2356 static sem_t sig_sem;
duke@435 2357
duke@435 2358 void os::signal_init_pd() {
duke@435 2359 // Initialize signal structures
duke@435 2360 ::memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 2361
duke@435 2362 // Initialize signal semaphore
duke@435 2363 ::sem_init(&sig_sem, 0, 0);
duke@435 2364 }
duke@435 2365
duke@435 2366 void os::signal_notify(int sig) {
duke@435 2367 Atomic::inc(&pending_signals[sig]);
duke@435 2368 ::sem_post(&sig_sem);
duke@435 2369 }
duke@435 2370
duke@435 2371 static int check_pending_signals(bool wait) {
duke@435 2372 Atomic::store(0, &sigint_count);
duke@435 2373 for (;;) {
duke@435 2374 for (int i = 0; i < NSIG + 1; i++) {
duke@435 2375 jint n = pending_signals[i];
duke@435 2376 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 2377 return i;
duke@435 2378 }
duke@435 2379 }
duke@435 2380 if (!wait) {
duke@435 2381 return -1;
duke@435 2382 }
duke@435 2383 JavaThread *thread = JavaThread::current();
duke@435 2384 ThreadBlockInVM tbivm(thread);
duke@435 2385
duke@435 2386 bool threadIsSuspended;
duke@435 2387 do {
duke@435 2388 thread->set_suspend_equivalent();
duke@435 2389 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 2390 ::sem_wait(&sig_sem);
duke@435 2391
duke@435 2392 // were we externally suspended while we were waiting?
duke@435 2393 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 2394 if (threadIsSuspended) {
duke@435 2395 //
duke@435 2396 // The semaphore has been incremented, but while we were waiting
duke@435 2397 // another thread suspended us. We don't want to continue running
duke@435 2398 // while suspended because that would surprise the thread that
duke@435 2399 // suspended us.
duke@435 2400 //
duke@435 2401 ::sem_post(&sig_sem);
duke@435 2402
duke@435 2403 thread->java_suspend_self();
duke@435 2404 }
duke@435 2405 } while (threadIsSuspended);
duke@435 2406 }
duke@435 2407 }
duke@435 2408
duke@435 2409 int os::signal_lookup() {
duke@435 2410 return check_pending_signals(false);
duke@435 2411 }
duke@435 2412
duke@435 2413 int os::signal_wait() {
duke@435 2414 return check_pending_signals(true);
duke@435 2415 }
duke@435 2416
duke@435 2417 ////////////////////////////////////////////////////////////////////////////////
duke@435 2418 // Virtual Memory
duke@435 2419
duke@435 2420 int os::vm_page_size() {
duke@435 2421 // Seems redundant as all get out
duke@435 2422 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2423 return os::Linux::page_size();
duke@435 2424 }
duke@435 2425
duke@435 2426 // Solaris allocates memory by pages.
duke@435 2427 int os::vm_allocation_granularity() {
duke@435 2428 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2429 return os::Linux::page_size();
duke@435 2430 }
duke@435 2431
duke@435 2432 // Rationale behind this function:
duke@435 2433 // current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
duke@435 2434 // mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
duke@435 2435 // samples for JITted code. Here we create private executable mapping over the code cache
duke@435 2436 // and then we can use standard (well, almost, as mapping can change) way to provide
duke@435 2437 // info for the reporting script by storing timestamp and location of symbol
duke@435 2438 void linux_wrap_code(char* base, size_t size) {
duke@435 2439 static volatile jint cnt = 0;
duke@435 2440
duke@435 2441 if (!UseOprofile) {
duke@435 2442 return;
duke@435 2443 }
duke@435 2444
coleenp@1852 2445 char buf[PATH_MAX+1];
duke@435 2446 int num = Atomic::add(1, &cnt);
duke@435 2447
coleenp@1788 2448 snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
coleenp@1788 2449 os::get_temp_directory(), os::current_process_id(), num);
duke@435 2450 unlink(buf);
duke@435 2451
ikrylov@2322 2452 int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
duke@435 2453
duke@435 2454 if (fd != -1) {
ikrylov@2322 2455 off_t rv = ::lseek(fd, size-2, SEEK_SET);
duke@435 2456 if (rv != (off_t)-1) {
ikrylov@2322 2457 if (::write(fd, "", 1) == 1) {
duke@435 2458 mmap(base, size,
duke@435 2459 PROT_READ|PROT_WRITE|PROT_EXEC,
duke@435 2460 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
duke@435 2461 }
duke@435 2462 }
ikrylov@2322 2463 ::close(fd);
duke@435 2464 unlink(buf);
duke@435 2465 }
duke@435 2466 }
duke@435 2467
duke@435 2468 // NOTE: Linux kernel does not really reserve the pages for us.
duke@435 2469 // All it does is to check if there are enough free pages
duke@435 2470 // left at the time of mmap(). This could be a potential
duke@435 2471 // problem.
zgu@3900 2472 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
coleenp@1091 2473 int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
coleenp@1091 2474 uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
duke@435 2475 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
iveresov@3085 2476 if (res != (uintptr_t) MAP_FAILED) {
iveresov@3085 2477 if (UseNUMAInterleaving) {
iveresov@3085 2478 numa_make_global(addr, size);
iveresov@3085 2479 }
iveresov@3085 2480 return true;
iveresov@3085 2481 }
iveresov@3085 2482 return false;
duke@435 2483 }
duke@435 2484
iveresov@2818 2485 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
iveresov@2818 2486 #ifndef MAP_HUGETLB
iveresov@2818 2487 #define MAP_HUGETLB 0x40000
iveresov@2818 2488 #endif
iveresov@2818 2489
iveresov@2818 2490 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
iveresov@2818 2491 #ifndef MADV_HUGEPAGE
iveresov@2818 2492 #define MADV_HUGEPAGE 14
iveresov@2818 2493 #endif
iveresov@2818 2494
zgu@3900 2495 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
coleenp@1091 2496 bool exec) {
iveresov@2818 2497 if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
iveresov@2818 2498 int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
iveresov@2818 2499 uintptr_t res =
iveresov@2818 2500 (uintptr_t) ::mmap(addr, size, prot,
iveresov@2818 2501 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
iveresov@2818 2502 -1, 0);
iveresov@3085 2503 if (res != (uintptr_t) MAP_FAILED) {
iveresov@3085 2504 if (UseNUMAInterleaving) {
iveresov@3085 2505 numa_make_global(addr, size);
iveresov@3085 2506 }
iveresov@3085 2507 return true;
iveresov@3085 2508 }
iveresov@3113 2509 // Fall through and try to use small pages
iveresov@3113 2510 }
iveresov@3113 2511
iveresov@3113 2512 if (commit_memory(addr, size, exec)) {
iveresov@3113 2513 realign_memory(addr, size, alignment_hint);
iveresov@3113 2514 return true;
iveresov@3113 2515 }
iveresov@3113 2516 return false;
duke@435 2517 }
duke@435 2518
zgu@3900 2519 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
iveresov@2818 2520 if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
iveresov@2818 2521 // We don't check the return value: madvise(MADV_HUGEPAGE) may not
iveresov@2818 2522 // be supported or the memory may already be backed by huge pages.
iveresov@2818 2523 ::madvise(addr, bytes, MADV_HUGEPAGE);
iveresov@2818 2524 }
iveresov@2818 2525 }
iveresov@576 2526
zgu@3900 2527 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
iveresov@3640 2528 // This method works by doing an mmap over an existing mmaping and effectively discarding
iveresov@3640 2529 // the existing pages. However it won't work for SHM-based large pages that cannot be
iveresov@3640 2530 // uncommitted at all. We don't do anything in this case to avoid creating a segment with
iveresov@3640 2531 // small pages on top of the SHM segment. This method always works for small pages, so we
iveresov@3640 2532 // allow that in any case.
iveresov@3640 2533 if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
iveresov@3640 2534 commit_memory(addr, bytes, alignment_hint, false);
iveresov@3640 2535 }
iveresov@576 2536 }
iveresov@576 2537
iveresov@897 2538 void os::numa_make_global(char *addr, size_t bytes) {
iveresov@897 2539 Linux::numa_interleave_memory(addr, bytes);
iveresov@897 2540 }
iveresov@576 2541
iveresov@576 2542 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
iveresov@576 2543 Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
iveresov@576 2544 }
iveresov@576 2545
iveresov@576 2546 bool os::numa_topology_changed() { return false; }
iveresov@576 2547
iveresov@576 2548 size_t os::numa_get_groups_num() {
iveresov@576 2549 int max_node = Linux::numa_max_node();
iveresov@576 2550 return max_node > 0 ? max_node + 1 : 1;
iveresov@576 2551 }
iveresov@576 2552
iveresov@576 2553 int os::numa_get_group_id() {
iveresov@576 2554 int cpu_id = Linux::sched_getcpu();
iveresov@576 2555 if (cpu_id != -1) {
iveresov@576 2556 int lgrp_id = Linux::get_node_by_cpu(cpu_id);
iveresov@576 2557 if (lgrp_id != -1) {
iveresov@576 2558 return lgrp_id;
iveresov@576 2559 }
duke@435 2560 }
duke@435 2561 return 0;
duke@435 2562 }
duke@435 2563
iveresov@576 2564 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
iveresov@576 2565 for (size_t i = 0; i < size; i++) {
iveresov@576 2566 ids[i] = i;
iveresov@576 2567 }
iveresov@576 2568 return size;
iveresov@576 2569 }
iveresov@576 2570
duke@435 2571 bool os::get_page_info(char *start, page_info* info) {
duke@435 2572 return false;
duke@435 2573 }
duke@435 2574
duke@435 2575 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 2576 return end;
duke@435 2577 }
duke@435 2578
iveresov@3024 2579
iveresov@3024 2580 int os::Linux::sched_getcpu_syscall(void) {
iveresov@3024 2581 unsigned int cpu;
iveresov@3024 2582 int retval = -1;
iveresov@3024 2583
iveresov@3024 2584 #if defined(IA32)
iveresov@3087 2585 # ifndef SYS_getcpu
iveresov@3087 2586 # define SYS_getcpu 318
iveresov@3087 2587 # endif
iveresov@3024 2588 retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
iveresov@3024 2589 #elif defined(AMD64)
iveresov@3087 2590 // Unfortunately we have to bring all these macros here from vsyscall.h
iveresov@3087 2591 // to be able to compile on old linuxes.
iveresov@3087 2592 # define __NR_vgetcpu 2
iveresov@3087 2593 # define VSYSCALL_START (-10UL << 20)
iveresov@3087 2594 # define VSYSCALL_SIZE 1024
iveresov@3087 2595 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
iveresov@3024 2596 typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
iveresov@3024 2597 vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
iveresov@3024 2598 retval = vgetcpu(&cpu, NULL, NULL);
iveresov@3024 2599 #endif
iveresov@3024 2600
iveresov@3024 2601 return (retval == -1) ? retval : cpu;
iveresov@3024 2602 }
iveresov@3024 2603
coleenp@2507 2604 // Something to do with the numa-aware allocator needs these symbols
coleenp@2507 2605 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
coleenp@2507 2606 extern "C" JNIEXPORT void numa_error(char *where) { }
coleenp@2507 2607 extern "C" JNIEXPORT int fork1() { return fork(); }
iveresov@576 2608
iveresov@1198 2609
iveresov@1198 2610 // If we are running with libnuma version > 2, then we should
iveresov@1198 2611 // be trying to use symbols with versions 1.1
iveresov@1198 2612 // If we are running with earlier version, which did not have symbol versions,
iveresov@1198 2613 // we should use the base version.
iveresov@1198 2614 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
iveresov@1198 2615 void *f = dlvsym(handle, name, "libnuma_1.1");
iveresov@1198 2616 if (f == NULL) {
iveresov@1198 2617 f = dlsym(handle, name);
iveresov@1198 2618 }
iveresov@1198 2619 return f;
iveresov@1198 2620 }
iveresov@1198 2621
iveresov@897 2622 bool os::Linux::libnuma_init() {
iveresov@576 2623 // sched_getcpu() should be in libc.
iveresov@576 2624 set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
iveresov@576 2625 dlsym(RTLD_DEFAULT, "sched_getcpu")));
iveresov@576 2626
iveresov@3024 2627 // If it's not, try a direct syscall.
iveresov@3024 2628 if (sched_getcpu() == -1)
iveresov@3024 2629 set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
iveresov@3024 2630
iveresov@576 2631 if (sched_getcpu() != -1) { // Does it work?
iveresov@702 2632 void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
iveresov@576 2633 if (handle != NULL) {
iveresov@576 2634 set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
iveresov@1198 2635 libnuma_dlsym(handle, "numa_node_to_cpus")));
iveresov@576 2636 set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
iveresov@1198 2637 libnuma_dlsym(handle, "numa_max_node")));
iveresov@576 2638 set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
iveresov@1198 2639 libnuma_dlsym(handle, "numa_available")));
iveresov@576 2640 set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
iveresov@1198 2641 libnuma_dlsym(handle, "numa_tonode_memory")));
iveresov@897 2642 set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
iveresov@1198 2643 libnuma_dlsym(handle, "numa_interleave_memory")));
iveresov@897 2644
iveresov@897 2645
iveresov@576 2646 if (numa_available() != -1) {
iveresov@1198 2647 set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
iveresov@576 2648 // Create a cpu -> node mapping
zgu@3900 2649 _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
iveresov@576 2650 rebuild_cpu_to_node_map();
iveresov@897 2651 return true;
iveresov@576 2652 }
iveresov@576 2653 }
iveresov@576 2654 }
iveresov@897 2655 return false;
iveresov@576 2656 }
iveresov@576 2657
iveresov@576 2658 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
iveresov@576 2659 // The table is later used in get_node_by_cpu().
iveresov@576 2660 void os::Linux::rebuild_cpu_to_node_map() {
iveresov@897 2661 const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
iveresov@897 2662 // in libnuma (possible values are starting from 16,
iveresov@897 2663 // and continuing up with every other power of 2, but less
iveresov@897 2664 // than the maximum number of CPUs supported by kernel), and
iveresov@897 2665 // is a subject to change (in libnuma version 2 the requirements
iveresov@897 2666 // are more reasonable) we'll just hardcode the number they use
iveresov@897 2667 // in the library.
iveresov@897 2668 const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
iveresov@897 2669
iveresov@897 2670 size_t cpu_num = os::active_processor_count();
iveresov@897 2671 size_t cpu_map_size = NCPUS / BitsPerCLong;
iveresov@897 2672 size_t cpu_map_valid_size =
iveresov@897 2673 MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
iveresov@897 2674
iveresov@576 2675 cpu_to_node()->clear();
iveresov@576 2676 cpu_to_node()->at_grow(cpu_num - 1);
iveresov@897 2677 size_t node_num = numa_get_groups_num();
iveresov@897 2678
zgu@3900 2679 unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
iveresov@897 2680 for (size_t i = 0; i < node_num; i++) {
iveresov@576 2681 if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
iveresov@897 2682 for (size_t j = 0; j < cpu_map_valid_size; j++) {
iveresov@576 2683 if (cpu_map[j] != 0) {
iveresov@897 2684 for (size_t k = 0; k < BitsPerCLong; k++) {
iveresov@576 2685 if (cpu_map[j] & (1UL << k)) {
iveresov@897 2686 cpu_to_node()->at_put(j * BitsPerCLong + k, i);
iveresov@576 2687 }
iveresov@576 2688 }
iveresov@576 2689 }
iveresov@576 2690 }
iveresov@576 2691 }
iveresov@576 2692 }
zgu@3900 2693 FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
iveresov@576 2694 }
iveresov@576 2695
iveresov@576 2696 int os::Linux::get_node_by_cpu(int cpu_id) {
iveresov@576 2697 if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
iveresov@576 2698 return cpu_to_node()->at(cpu_id);
iveresov@576 2699 }
iveresov@576 2700 return -1;
iveresov@576 2701 }
iveresov@576 2702
iveresov@576 2703 GrowableArray<int>* os::Linux::_cpu_to_node;
iveresov@576 2704 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
iveresov@576 2705 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
iveresov@576 2706 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
iveresov@576 2707 os::Linux::numa_available_func_t os::Linux::_numa_available;
iveresov@576 2708 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
iveresov@897 2709 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
iveresov@897 2710 unsigned long* os::Linux::_numa_all_nodes;
iveresov@576 2711
zgu@3900 2712 bool os::pd_uncommit_memory(char* addr, size_t size) {
bobv@2036 2713 uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
bobv@2036 2714 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
bobv@2036 2715 return res != (uintptr_t) MAP_FAILED;
duke@435 2716 }
duke@435 2717
coleenp@1755 2718 // Linux uses a growable mapping for the stack, and if the mapping for
coleenp@1755 2719 // the stack guard pages is not removed when we detach a thread the
coleenp@1755 2720 // stack cannot grow beyond the pages where the stack guard was
coleenp@1755 2721 // mapped. If at some point later in the process the stack expands to
coleenp@1755 2722 // that point, the Linux kernel cannot expand the stack any further
coleenp@1755 2723 // because the guard pages are in the way, and a segfault occurs.
coleenp@1755 2724 //
coleenp@1755 2725 // However, it's essential not to split the stack region by unmapping
coleenp@1755 2726 // a region (leaving a hole) that's already part of the stack mapping,
coleenp@1755 2727 // so if the stack mapping has already grown beyond the guard pages at
coleenp@1755 2728 // the time we create them, we have to truncate the stack mapping.
coleenp@1755 2729 // So, we need to know the extent of the stack mapping when
coleenp@1755 2730 // create_stack_guard_pages() is called.
coleenp@1755 2731
coleenp@1755 2732 // Find the bounds of the stack mapping. Return true for success.
coleenp@1755 2733 //
coleenp@1755 2734 // We only need this for stacks that are growable: at the time of
coleenp@1755 2735 // writing thread stacks don't use growable mappings (i.e. those
coleenp@1755 2736 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
coleenp@1755 2737 // only applies to the main thread.
dsamersoff@2751 2738
dsamersoff@2751 2739 static
dsamersoff@2751 2740 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
dsamersoff@2751 2741
dsamersoff@2751 2742 char buf[128];
dsamersoff@2751 2743 int fd, sz;
dsamersoff@2751 2744
dsamersoff@2751 2745 if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
coleenp@1755 2746 return false;
dsamersoff@2751 2747 }
dsamersoff@2751 2748
dsamersoff@2751 2749 const char kw[] = "[stack]";
dsamersoff@2751 2750 const int kwlen = sizeof(kw)-1;
dsamersoff@2751 2751
dsamersoff@2751 2752 // Address part of /proc/self/maps couldn't be more than 128 bytes
dsamersoff@2751 2753 while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
dsamersoff@2751 2754 if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
dsamersoff@2751 2755 // Extract addresses
dsamersoff@2751 2756 if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
dsamersoff@2751 2757 uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
dsamersoff@2751 2758 if (sp >= *bottom && sp <= *top) {
dsamersoff@2751 2759 ::close(fd);
dsamersoff@2751 2760 return true;
dsamersoff@2751 2761 }
coleenp@1755 2762 }
dsamersoff@2751 2763 }
sla@2584 2764 }
dsamersoff@2751 2765
dsamersoff@2751 2766 ::close(fd);
coleenp@1755 2767 return false;
coleenp@1755 2768 }
coleenp@1755 2769
dsamersoff@2751 2770
coleenp@1755 2771 // If the (growable) stack mapping already extends beyond the point
coleenp@1755 2772 // where we're going to put our guard pages, truncate the mapping at
coleenp@1755 2773 // that point by munmap()ping it. This ensures that when we later
coleenp@1755 2774 // munmap() the guard pages we don't leave a hole in the stack
dholmes@2105 2775 // mapping. This only affects the main/initial thread, but guard
dholmes@2105 2776 // against future OS changes
zgu@3900 2777 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2778 uintptr_t stack_extent, stack_base;
dholmes@2105 2779 bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
dholmes@2105 2780 if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
dholmes@2105 2781 assert(os::Linux::is_initial_thread(),
dholmes@2105 2782 "growable stack in non-initial thread");
coleenp@1755 2783 if (stack_extent < (uintptr_t)addr)
coleenp@1755 2784 ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
coleenp@1755 2785 }
coleenp@1755 2786
coleenp@1755 2787 return os::commit_memory(addr, size);
coleenp@1755 2788 }
coleenp@1755 2789
coleenp@1755 2790 // If this is a growable mapping, remove the guard pages entirely by
dholmes@2105 2791 // munmap()ping them. If not, just call uncommit_memory(). This only
dholmes@2105 2792 // affects the main/initial thread, but guard against future OS changes
coleenp@1755 2793 bool os::remove_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2794 uintptr_t stack_extent, stack_base;
dholmes@2105 2795 bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
dholmes@2105 2796 if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
dholmes@2105 2797 assert(os::Linux::is_initial_thread(),
dholmes@2105 2798 "growable stack in non-initial thread");
dholmes@2105 2799
coleenp@1755 2800 return ::munmap(addr, size) == 0;
coleenp@1755 2801 }
coleenp@1755 2802
coleenp@1755 2803 return os::uncommit_memory(addr, size);
coleenp@1755 2804 }
coleenp@1755 2805
duke@435 2806 static address _highest_vm_reserved_address = NULL;
duke@435 2807
duke@435 2808 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
duke@435 2809 // at 'requested_addr'. If there are existing memory mappings at the same
duke@435 2810 // location, however, they will be overwritten. If 'fixed' is false,
duke@435 2811 // 'requested_addr' is only treated as a hint, the return value may or
duke@435 2812 // may not start from the requested address. Unlike Linux mmap(), this
duke@435 2813 // function returns NULL to indicate failure.
duke@435 2814 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
duke@435 2815 char * addr;
duke@435 2816 int flags;
duke@435 2817
duke@435 2818 flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
duke@435 2819 if (fixed) {
duke@435 2820 assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
duke@435 2821 flags |= MAP_FIXED;
duke@435 2822 }
duke@435 2823
coleenp@1091 2824 // Map uncommitted pages PROT_READ and PROT_WRITE, change access
coleenp@1091 2825 // to PROT_EXEC if executable when we commit the page.
coleenp@1091 2826 addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
duke@435 2827 flags, -1, 0);
duke@435 2828
duke@435 2829 if (addr != MAP_FAILED) {
duke@435 2830 // anon_mmap() should only get called during VM initialization,
duke@435 2831 // don't need lock (actually we can skip locking even it can be called
duke@435 2832 // from multiple threads, because _highest_vm_reserved_address is just a
duke@435 2833 // hint about the upper limit of non-stack memory regions.)
duke@435 2834 if ((address)addr + bytes > _highest_vm_reserved_address) {
duke@435 2835 _highest_vm_reserved_address = (address)addr + bytes;
duke@435 2836 }
duke@435 2837 }
duke@435 2838
duke@435 2839 return addr == MAP_FAILED ? NULL : addr;
duke@435 2840 }
duke@435 2841
duke@435 2842 // Don't update _highest_vm_reserved_address, because there might be memory
duke@435 2843 // regions above addr + size. If so, releasing a memory region only creates
duke@435 2844 // a hole in the address space, it doesn't help prevent heap-stack collision.
duke@435 2845 //
duke@435 2846 static int anon_munmap(char * addr, size_t size) {
duke@435 2847 return ::munmap(addr, size) == 0;
duke@435 2848 }
duke@435 2849
zgu@3900 2850 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
duke@435 2851 size_t alignment_hint) {
duke@435 2852 return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
duke@435 2853 }
duke@435 2854
zgu@3900 2855 bool os::pd_release_memory(char* addr, size_t size) {
duke@435 2856 return anon_munmap(addr, size);
duke@435 2857 }
duke@435 2858
duke@435 2859 static address highest_vm_reserved_address() {
duke@435 2860 return _highest_vm_reserved_address;
duke@435 2861 }
duke@435 2862
duke@435 2863 static bool linux_mprotect(char* addr, size_t size, int prot) {
duke@435 2864 // Linux wants the mprotect address argument to be page aligned.
duke@435 2865 char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
duke@435 2866
duke@435 2867 // According to SUSv3, mprotect() should only be used with mappings
duke@435 2868 // established by mmap(), and mmap() always maps whole pages. Unaligned
duke@435 2869 // 'addr' likely indicates problem in the VM (e.g. trying to change
duke@435 2870 // protection of malloc'ed or statically allocated memory). Check the
duke@435 2871 // caller if you hit this assert.
duke@435 2872 assert(addr == bottom, "sanity check");
duke@435 2873
duke@435 2874 size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
duke@435 2875 return ::mprotect(bottom, size, prot) == 0;
duke@435 2876 }
duke@435 2877
coleenp@672 2878 // Set protections specified
coleenp@672 2879 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 2880 bool is_committed) {
coleenp@672 2881 unsigned int p = 0;
coleenp@672 2882 switch (prot) {
coleenp@672 2883 case MEM_PROT_NONE: p = PROT_NONE; break;
coleenp@672 2884 case MEM_PROT_READ: p = PROT_READ; break;
coleenp@672 2885 case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
coleenp@672 2886 case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
coleenp@672 2887 default:
coleenp@672 2888 ShouldNotReachHere();
coleenp@672 2889 }
coleenp@672 2890 // is_committed is unused.
coleenp@672 2891 return linux_mprotect(addr, bytes, p);
duke@435 2892 }
duke@435 2893
duke@435 2894 bool os::guard_memory(char* addr, size_t size) {
duke@435 2895 return linux_mprotect(addr, size, PROT_NONE);
duke@435 2896 }
duke@435 2897
duke@435 2898 bool os::unguard_memory(char* addr, size_t size) {
coleenp@912 2899 return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
duke@435 2900 }
duke@435 2901
iveresov@2818 2902 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
iveresov@2818 2903 bool result = false;
iveresov@2818 2904 void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
iveresov@2818 2905 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
iveresov@2818 2906 -1, 0);
iveresov@2818 2907
iveresov@2818 2908 if (p != (void *) -1) {
iveresov@2818 2909 // We don't know if this really is a huge page or not.
iveresov@2818 2910 FILE *fp = fopen("/proc/self/maps", "r");
iveresov@2818 2911 if (fp) {
iveresov@2818 2912 while (!feof(fp)) {
iveresov@2818 2913 char chars[257];
iveresov@2818 2914 long x = 0;
iveresov@2818 2915 if (fgets(chars, sizeof(chars), fp)) {
iveresov@2890 2916 if (sscanf(chars, "%lx-%*x", &x) == 1
iveresov@2818 2917 && x == (long)p) {
iveresov@2818 2918 if (strstr (chars, "hugepage")) {
iveresov@2818 2919 result = true;
iveresov@2818 2920 break;
iveresov@2818 2921 }
iveresov@2818 2922 }
iveresov@2818 2923 }
iveresov@2818 2924 }
iveresov@2818 2925 fclose(fp);
iveresov@2818 2926 }
iveresov@2818 2927 munmap (p, page_size);
iveresov@2818 2928 if (result)
iveresov@2818 2929 return true;
iveresov@2818 2930 }
iveresov@2818 2931
iveresov@2818 2932 if (warn) {
iveresov@2818 2933 warning("HugeTLBFS is not supported by the operating system.");
iveresov@2818 2934 }
iveresov@2818 2935
iveresov@2818 2936 return result;
iveresov@2818 2937 }
iveresov@2818 2938
ctornqvi@2520 2939 /*
ctornqvi@2520 2940 * Set the coredump_filter bits to include largepages in core dump (bit 6)
ctornqvi@2520 2941 *
ctornqvi@2520 2942 * From the coredump_filter documentation:
ctornqvi@2520 2943 *
ctornqvi@2520 2944 * - (bit 0) anonymous private memory
ctornqvi@2520 2945 * - (bit 1) anonymous shared memory
ctornqvi@2520 2946 * - (bit 2) file-backed private memory
ctornqvi@2520 2947 * - (bit 3) file-backed shared memory
ctornqvi@2520 2948 * - (bit 4) ELF header pages in file-backed private memory areas (it is
ctornqvi@2520 2949 * effective only if the bit 2 is cleared)
ctornqvi@2520 2950 * - (bit 5) hugetlb private memory
ctornqvi@2520 2951 * - (bit 6) hugetlb shared memory
ctornqvi@2520 2952 */
ctornqvi@2520 2953 static void set_coredump_filter(void) {
ctornqvi@2520 2954 FILE *f;
ctornqvi@2520 2955 long cdm;
ctornqvi@2520 2956
ctornqvi@2520 2957 if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
ctornqvi@2520 2958 return;
ctornqvi@2520 2959 }
ctornqvi@2520 2960
ctornqvi@2520 2961 if (fscanf(f, "%lx", &cdm) != 1) {
ctornqvi@2520 2962 fclose(f);
ctornqvi@2520 2963 return;
ctornqvi@2520 2964 }
ctornqvi@2520 2965
ctornqvi@2520 2966 rewind(f);
ctornqvi@2520 2967
ctornqvi@2520 2968 if ((cdm & LARGEPAGES_BIT) == 0) {
ctornqvi@2520 2969 cdm |= LARGEPAGES_BIT;
ctornqvi@2520 2970 fprintf(f, "%#lx", cdm);
ctornqvi@2520 2971 }
ctornqvi@2520 2972
ctornqvi@2520 2973 fclose(f);
ctornqvi@2520 2974 }
ctornqvi@2520 2975
duke@435 2976 // Large page support
duke@435 2977
duke@435 2978 static size_t _large_page_size = 0;
duke@435 2979
iveresov@2850 2980 void os::large_page_init() {
iveresov@2818 2981 if (!UseLargePages) {
iveresov@2818 2982 UseHugeTLBFS = false;
iveresov@2818 2983 UseSHM = false;
iveresov@2850 2984 return;
iveresov@2818 2985 }
iveresov@2818 2986
iveresov@2818 2987 if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
iveresov@2850 2988 // If UseLargePages is specified on the command line try both methods,
iveresov@2850 2989 // if it's default, then try only HugeTLBFS.
iveresov@2850 2990 if (FLAG_IS_DEFAULT(UseLargePages)) {
iveresov@2850 2991 UseHugeTLBFS = true;
iveresov@2850 2992 } else {
iveresov@2850 2993 UseHugeTLBFS = UseSHM = true;
iveresov@2850 2994 }
iveresov@2818 2995 }
duke@435 2996
duke@435 2997 if (LargePageSizeInBytes) {
duke@435 2998 _large_page_size = LargePageSizeInBytes;
duke@435 2999 } else {
duke@435 3000 // large_page_size on Linux is used to round up heap size. x86 uses either
duke@435 3001 // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
duke@435 3002 // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
duke@435 3003 // page as large as 256M.
duke@435 3004 //
duke@435 3005 // Here we try to figure out page size by parsing /proc/meminfo and looking
duke@435 3006 // for a line with the following format:
duke@435 3007 // Hugepagesize: 2048 kB
duke@435 3008 //
duke@435 3009 // If we can't determine the value (e.g. /proc is not mounted, or the text
duke@435 3010 // format has been changed), we'll use the largest page size supported by
duke@435 3011 // the processor.
duke@435 3012
never@1445 3013 #ifndef ZERO
bobv@2036 3014 _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
bobv@2036 3015 ARM_ONLY(2 * M) PPC_ONLY(4 * M);
never@1445 3016 #endif // ZERO
duke@435 3017
duke@435 3018 FILE *fp = fopen("/proc/meminfo", "r");
duke@435 3019 if (fp) {
duke@435 3020 while (!feof(fp)) {
duke@435 3021 int x = 0;
duke@435 3022 char buf[16];
duke@435 3023 if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
duke@435 3024 if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
duke@435 3025 _large_page_size = x * K;
duke@435 3026 break;
duke@435 3027 }
duke@435 3028 } else {
duke@435 3029 // skip to next line
duke@435 3030 for (;;) {
duke@435 3031 int ch = fgetc(fp);
duke@435 3032 if (ch == EOF || ch == (int)'\n') break;
duke@435 3033 }
duke@435 3034 }
duke@435 3035 }
duke@435 3036 fclose(fp);
duke@435 3037 }
duke@435 3038 }
duke@435 3039
iveresov@2818 3040 // print a warning if any large page related flag is specified on command line
iveresov@2818 3041 bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
iveresov@2818 3042
duke@435 3043 const size_t default_page_size = (size_t)Linux::page_size();
duke@435 3044 if (_large_page_size > default_page_size) {
duke@435 3045 _page_sizes[0] = _large_page_size;
duke@435 3046 _page_sizes[1] = default_page_size;
duke@435 3047 _page_sizes[2] = 0;
duke@435 3048 }
iveresov@2818 3049 UseHugeTLBFS = UseHugeTLBFS &&
iveresov@2818 3050 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
iveresov@2818 3051
iveresov@2818 3052 if (UseHugeTLBFS)
iveresov@2818 3053 UseSHM = false;
iveresov@2818 3054
iveresov@2818 3055 UseLargePages = UseHugeTLBFS || UseSHM;
iveresov@2818 3056
ctornqvi@2520 3057 set_coredump_filter();
duke@435 3058 }
duke@435 3059
duke@435 3060 #ifndef SHM_HUGETLB
duke@435 3061 #define SHM_HUGETLB 04000
duke@435 3062 #endif
duke@435 3063
coleenp@1091 3064 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
coleenp@1091 3065 // "exec" is passed in but not used. Creating the shared image for
coleenp@1091 3066 // the code cache doesn't have an SHM_X executable permission to check.
iveresov@2818 3067 assert(UseLargePages && UseSHM, "only for SHM large pages");
duke@435 3068
duke@435 3069 key_t key = IPC_PRIVATE;
duke@435 3070 char *addr;
duke@435 3071
duke@435 3072 bool warn_on_failure = UseLargePages &&
duke@435 3073 (!FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 3074 !FLAG_IS_DEFAULT(LargePageSizeInBytes)
duke@435 3075 );
duke@435 3076 char msg[128];
duke@435 3077
duke@435 3078 // Create a large shared memory region to attach to based on size.
duke@435 3079 // Currently, size is the total size of the heap
duke@435 3080 int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
duke@435 3081 if (shmid == -1) {
duke@435 3082 // Possible reasons for shmget failure:
duke@435 3083 // 1. shmmax is too small for Java heap.
duke@435 3084 // > check shmmax value: cat /proc/sys/kernel/shmmax
duke@435 3085 // > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
duke@435 3086 // 2. not enough large page memory.
duke@435 3087 // > check available large pages: cat /proc/meminfo
duke@435 3088 // > increase amount of large pages:
duke@435 3089 // echo new_value > /proc/sys/vm/nr_hugepages
duke@435 3090 // Note 1: different Linux may use different name for this property,
duke@435 3091 // e.g. on Redhat AS-3 it is "hugetlb_pool".
duke@435 3092 // Note 2: it's possible there's enough physical memory available but
duke@435 3093 // they are so fragmented after a long run that they can't
duke@435 3094 // coalesce into large pages. Try to reserve large pages when
duke@435 3095 // the system is still "fresh".
duke@435 3096 if (warn_on_failure) {
duke@435 3097 jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
duke@435 3098 warning(msg);
duke@435 3099 }
duke@435 3100 return NULL;
duke@435 3101 }
duke@435 3102
duke@435 3103 // attach to the region
kvn@1892 3104 addr = (char*)shmat(shmid, req_addr, 0);
duke@435 3105 int err = errno;
duke@435 3106
duke@435 3107 // Remove shmid. If shmat() is successful, the actual shared memory segment
duke@435 3108 // will be deleted when it's detached by shmdt() or when the process
duke@435 3109 // terminates. If shmat() is not successful this will remove the shared
duke@435 3110 // segment immediately.
duke@435 3111 shmctl(shmid, IPC_RMID, NULL);
duke@435 3112
duke@435 3113 if ((intptr_t)addr == -1) {
duke@435 3114 if (warn_on_failure) {
duke@435 3115 jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
duke@435 3116 warning(msg);
duke@435 3117 }
duke@435 3118 return NULL;
duke@435 3119 }
duke@435 3120
iveresov@3085 3121 if ((addr != NULL) && UseNUMAInterleaving) {
iveresov@3085 3122 numa_make_global(addr, bytes);
iveresov@3085 3123 }
iveresov@3085 3124
duke@435 3125 return addr;
duke@435 3126 }
duke@435 3127
duke@435 3128 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 3129 // detaching the SHM segment will also delete it, see reserve_memory_special()
duke@435 3130 int rslt = shmdt(base);
duke@435 3131 return rslt == 0;
duke@435 3132 }
duke@435 3133
duke@435 3134 size_t os::large_page_size() {
duke@435 3135 return _large_page_size;
duke@435 3136 }
duke@435 3137
iveresov@2818 3138 // HugeTLBFS allows application to commit large page memory on demand;
iveresov@2818 3139 // with SysV SHM the entire memory region must be allocated as shared
iveresov@2818 3140 // memory.
duke@435 3141 bool os::can_commit_large_page_memory() {
iveresov@2818 3142 return UseHugeTLBFS;
duke@435 3143 }
duke@435 3144
jcoomes@514 3145 bool os::can_execute_large_page_memory() {
iveresov@2818 3146 return UseHugeTLBFS;
jcoomes@514 3147 }
jcoomes@514 3148
duke@435 3149 // Reserve memory at an arbitrary address, only if that area is
duke@435 3150 // available (and not reserved for something else).
duke@435 3151
zgu@3900 3152 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 3153 const int max_tries = 10;
duke@435 3154 char* base[max_tries];
duke@435 3155 size_t size[max_tries];
duke@435 3156 const size_t gap = 0x000000;
duke@435 3157
duke@435 3158 // Assert only that the size is a multiple of the page size, since
duke@435 3159 // that's all that mmap requires, and since that's all we really know
duke@435 3160 // about at this low abstraction level. If we need higher alignment,
duke@435 3161 // we can either pass an alignment to this method or verify alignment
duke@435 3162 // in one of the methods further up the call chain. See bug 5044738.
duke@435 3163 assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
duke@435 3164
duke@435 3165 // Repeatedly allocate blocks until the block is allocated at the
duke@435 3166 // right spot. Give up after max_tries. Note that reserve_memory() will
duke@435 3167 // automatically update _highest_vm_reserved_address if the call is
duke@435 3168 // successful. The variable tracks the highest memory address every reserved
duke@435 3169 // by JVM. It is used to detect heap-stack collision if running with
duke@435 3170 // fixed-stack LinuxThreads. Because here we may attempt to reserve more
duke@435 3171 // space than needed, it could confuse the collision detecting code. To
duke@435 3172 // solve the problem, save current _highest_vm_reserved_address and
duke@435 3173 // calculate the correct value before return.
duke@435 3174 address old_highest = _highest_vm_reserved_address;
duke@435 3175
duke@435 3176 // Linux mmap allows caller to pass an address as hint; give it a try first,
duke@435 3177 // if kernel honors the hint then we can return immediately.
duke@435 3178 char * addr = anon_mmap(requested_addr, bytes, false);
duke@435 3179 if (addr == requested_addr) {
duke@435 3180 return requested_addr;
duke@435 3181 }
duke@435 3182
duke@435 3183 if (addr != NULL) {
duke@435 3184 // mmap() is successful but it fails to reserve at the requested address
duke@435 3185 anon_munmap(addr, bytes);
duke@435 3186 }
duke@435 3187
duke@435 3188 int i;
duke@435 3189 for (i = 0; i < max_tries; ++i) {
duke@435 3190 base[i] = reserve_memory(bytes);
duke@435 3191
duke@435 3192 if (base[i] != NULL) {
duke@435 3193 // Is this the block we wanted?
duke@435 3194 if (base[i] == requested_addr) {
duke@435 3195 size[i] = bytes;
duke@435 3196 break;
duke@435 3197 }
duke@435 3198
duke@435 3199 // Does this overlap the block we wanted? Give back the overlapped
duke@435 3200 // parts and try again.
duke@435 3201
duke@435 3202 size_t top_overlap = requested_addr + (bytes + gap) - base[i];
duke@435 3203 if (top_overlap >= 0 && top_overlap < bytes) {
duke@435 3204 unmap_memory(base[i], top_overlap);
duke@435 3205 base[i] += top_overlap;
duke@435 3206 size[i] = bytes - top_overlap;
duke@435 3207 } else {
duke@435 3208 size_t bottom_overlap = base[i] + bytes - requested_addr;
duke@435 3209 if (bottom_overlap >= 0 && bottom_overlap < bytes) {
duke@435 3210 unmap_memory(requested_addr, bottom_overlap);
duke@435 3211 size[i] = bytes - bottom_overlap;
duke@435 3212 } else {
duke@435 3213 size[i] = bytes;
duke@435 3214 }
duke@435 3215 }
duke@435 3216 }
duke@435 3217 }
duke@435 3218
duke@435 3219 // Give back the unused reserved pieces.
duke@435 3220
duke@435 3221 for (int j = 0; j < i; ++j) {
duke@435 3222 if (base[j] != NULL) {
duke@435 3223 unmap_memory(base[j], size[j]);
duke@435 3224 }
duke@435 3225 }
duke@435 3226
duke@435 3227 if (i < max_tries) {
duke@435 3228 _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
duke@435 3229 return requested_addr;
duke@435 3230 } else {
duke@435 3231 _highest_vm_reserved_address = old_highest;
duke@435 3232 return NULL;
duke@435 3233 }
duke@435 3234 }
duke@435 3235
duke@435 3236 size_t os::read(int fd, void *buf, unsigned int nBytes) {
duke@435 3237 return ::read(fd, buf, nBytes);
duke@435 3238 }
duke@435 3239
duke@435 3240 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
duke@435 3241 // Solaris uses poll(), linux uses park().
duke@435 3242 // Poll() is likely a better choice, assuming that Thread.interrupt()
duke@435 3243 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
duke@435 3244 // SIGSEGV, see 4355769.
duke@435 3245
duke@435 3246 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
duke@435 3247 assert(thread == Thread::current(), "thread consistency check");
duke@435 3248
duke@435 3249 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 3250 slp->reset() ;
duke@435 3251 OrderAccess::fence() ;
duke@435 3252
duke@435 3253 if (interruptible) {
duke@435 3254 jlong prevtime = javaTimeNanos();
duke@435 3255
duke@435 3256 for (;;) {
duke@435 3257 if (os::is_interrupted(thread, true)) {
duke@435 3258 return OS_INTRPT;
duke@435 3259 }
duke@435 3260
duke@435 3261 jlong newtime = javaTimeNanos();
duke@435 3262
duke@435 3263 if (newtime - prevtime < 0) {
duke@435 3264 // time moving backwards, should only happen if no monotonic clock
duke@435 3265 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 3266 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 3267 } else {
johnc@3339 3268 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
duke@435 3269 }
duke@435 3270
duke@435 3271 if(millis <= 0) {
duke@435 3272 return OS_OK;
duke@435 3273 }
duke@435 3274
duke@435 3275 prevtime = newtime;
duke@435 3276
duke@435 3277 {
duke@435 3278 assert(thread->is_Java_thread(), "sanity check");
duke@435 3279 JavaThread *jt = (JavaThread *) thread;
duke@435 3280 ThreadBlockInVM tbivm(jt);
duke@435 3281 OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
duke@435 3282
duke@435 3283 jt->set_suspend_equivalent();
duke@435 3284 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 3285 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 3286
duke@435 3287 slp->park(millis);
duke@435 3288
duke@435 3289 // were we externally suspended while we were waiting?
duke@435 3290 jt->check_and_wait_while_suspended();
duke@435 3291 }
duke@435 3292 }
duke@435 3293 } else {
duke@435 3294 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 3295 jlong prevtime = javaTimeNanos();
duke@435 3296
duke@435 3297 for (;;) {
duke@435 3298 // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
duke@435 3299 // the 1st iteration ...
duke@435 3300 jlong newtime = javaTimeNanos();
duke@435 3301
duke@435 3302 if (newtime - prevtime < 0) {
duke@435 3303 // time moving backwards, should only happen if no monotonic clock
duke@435 3304 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 3305 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 3306 } else {
johnc@3339 3307 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
duke@435 3308 }
duke@435 3309
duke@435 3310 if(millis <= 0) break ;
duke@435 3311
duke@435 3312 prevtime = newtime;
duke@435 3313 slp->park(millis);
duke@435 3314 }
duke@435 3315 return OS_OK ;
duke@435 3316 }
duke@435 3317 }
duke@435 3318
duke@435 3319 int os::naked_sleep() {
duke@435 3320 // %% make the sleep time an integer flag. for now use 1 millisec.
duke@435 3321 return os::sleep(Thread::current(), 1, false);
duke@435 3322 }
duke@435 3323
duke@435 3324 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 3325 void os::infinite_sleep() {
duke@435 3326 while (true) { // sleep forever ...
duke@435 3327 ::sleep(100); // ... 100 seconds at a time
duke@435 3328 }
duke@435 3329 }
duke@435 3330
duke@435 3331 // Used to convert frequent JVM_Yield() to nops
duke@435 3332 bool os::dont_yield() {
duke@435 3333 return DontYieldALot;
duke@435 3334 }
duke@435 3335
duke@435 3336 void os::yield() {
duke@435 3337 sched_yield();
duke@435 3338 }
duke@435 3339
duke@435 3340 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
duke@435 3341
duke@435 3342 void os::yield_all(int attempts) {
duke@435 3343 // Yields to all threads, including threads with lower priorities
duke@435 3344 // Threads on Linux are all with same priority. The Solaris style
duke@435 3345 // os::yield_all() with nanosleep(1ms) is not necessary.
duke@435 3346 sched_yield();
duke@435 3347 }
duke@435 3348
duke@435 3349 // Called from the tight loops to possibly influence time-sharing heuristics
duke@435 3350 void os::loop_breaker(int attempts) {
duke@435 3351 os::yield_all(attempts);
duke@435 3352 }
duke@435 3353
duke@435 3354 ////////////////////////////////////////////////////////////////////////////////
duke@435 3355 // thread priority support
duke@435 3356
duke@435 3357 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
duke@435 3358 // only supports dynamic priority, static priority must be zero. For real-time
duke@435 3359 // applications, Linux supports SCHED_RR which allows static priority (1-99).
duke@435 3360 // However, for large multi-threaded applications, SCHED_RR is not only slower
duke@435 3361 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
duke@435 3362 // of 5 runs - Sep 2005).
duke@435 3363 //
duke@435 3364 // The following code actually changes the niceness of kernel-thread/LWP. It
duke@435 3365 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
duke@435 3366 // not the entire user process, and user level threads are 1:1 mapped to kernel
duke@435 3367 // threads. It has always been the case, but could change in the future. For
duke@435 3368 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
duke@435 3369 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
duke@435 3370
phh@3481 3371 int os::java_to_os_priority[CriticalPriority + 1] = {
duke@435 3372 19, // 0 Entry should never be used
duke@435 3373
duke@435 3374 4, // 1 MinPriority
duke@435 3375 3, // 2
duke@435 3376 2, // 3
duke@435 3377
duke@435 3378 1, // 4
duke@435 3379 0, // 5 NormPriority
duke@435 3380 -1, // 6
duke@435 3381
duke@435 3382 -2, // 7
duke@435 3383 -3, // 8
duke@435 3384 -4, // 9 NearMaxPriority
duke@435 3385
phh@3481 3386 -5, // 10 MaxPriority
phh@3481 3387
phh@3481 3388 -5 // 11 CriticalPriority
duke@435 3389 };
duke@435 3390
duke@435 3391 static int prio_init() {
duke@435 3392 if (ThreadPriorityPolicy == 1) {
duke@435 3393 // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
duke@435 3394 // if effective uid is not root. Perhaps, a more elegant way of doing
duke@435 3395 // this is to test CAP_SYS_NICE capability, but that will require libcap.so
duke@435 3396 if (geteuid() != 0) {
duke@435 3397 if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
duke@435 3398 warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
duke@435 3399 }
duke@435 3400 ThreadPriorityPolicy = 0;
duke@435 3401 }
duke@435 3402 }
phh@3481 3403 if (UseCriticalJavaThreadPriority) {
phh@3481 3404 os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
phh@3481 3405 }
duke@435 3406 return 0;
duke@435 3407 }
duke@435 3408
duke@435 3409 OSReturn os::set_native_priority(Thread* thread, int newpri) {
duke@435 3410 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
duke@435 3411
duke@435 3412 int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
duke@435 3413 return (ret == 0) ? OS_OK : OS_ERR;
duke@435 3414 }
duke@435 3415
duke@435 3416 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
duke@435 3417 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
duke@435 3418 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 3419 return OS_OK;
duke@435 3420 }
duke@435 3421
duke@435 3422 errno = 0;
duke@435 3423 *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
duke@435 3424 return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
duke@435 3425 }
duke@435 3426
duke@435 3427 // Hint to the underlying OS that a task switch would not be good.
duke@435 3428 // Void return because it's a hint and can fail.
duke@435 3429 void os::hint_no_preempt() {}
duke@435 3430
duke@435 3431 ////////////////////////////////////////////////////////////////////////////////
duke@435 3432 // suspend/resume support
duke@435 3433
duke@435 3434 // the low-level signal-based suspend/resume support is a remnant from the
duke@435 3435 // old VM-suspension that used to be for java-suspension, safepoints etc,
duke@435 3436 // within hotspot. Now there is a single use-case for this:
duke@435 3437 // - calling get_thread_pc() on the VMThread by the flat-profiler task
duke@435 3438 // that runs in the watcher thread.
duke@435 3439 // The remaining code is greatly simplified from the more general suspension
duke@435 3440 // code that used to be used.
duke@435 3441 //
duke@435 3442 // The protocol is quite simple:
duke@435 3443 // - suspend:
duke@435 3444 // - sends a signal to the target thread
duke@435 3445 // - polls the suspend state of the osthread using a yield loop
duke@435 3446 // - target thread signal handler (SR_handler) sets suspend state
duke@435 3447 // and blocks in sigsuspend until continued
duke@435 3448 // - resume:
duke@435 3449 // - sets target osthread state to continue
duke@435 3450 // - sends signal to end the sigsuspend loop in the SR_handler
duke@435 3451 //
duke@435 3452 // Note that the SR_lock plays no role in this suspend/resume protocol.
duke@435 3453 //
duke@435 3454
duke@435 3455 static void resume_clear_context(OSThread *osthread) {
duke@435 3456 osthread->set_ucontext(NULL);
duke@435 3457 osthread->set_siginfo(NULL);
duke@435 3458
duke@435 3459 // notify the suspend action is completed, we have now resumed
duke@435 3460 osthread->sr.clear_suspended();
duke@435 3461 }
duke@435 3462
duke@435 3463 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3464 osthread->set_ucontext(context);
duke@435 3465 osthread->set_siginfo(siginfo);
duke@435 3466 }
duke@435 3467
duke@435 3468 //
duke@435 3469 // Handler function invoked when a thread's execution is suspended or
duke@435 3470 // resumed. We have to be careful that only async-safe functions are
duke@435 3471 // called here (Note: most pthread functions are not async safe and
duke@435 3472 // should be avoided.)
duke@435 3473 //
duke@435 3474 // Note: sigwait() is a more natural fit than sigsuspend() from an
duke@435 3475 // interface point of view, but sigwait() prevents the signal hander
duke@435 3476 // from being run. libpthread would get very confused by not having
duke@435 3477 // its signal handlers run and prevents sigwait()'s use with the
duke@435 3478 // mutex granting granting signal.
duke@435 3479 //
duke@435 3480 // Currently only ever called on the VMThread
duke@435 3481 //
duke@435 3482 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3483 // Save and restore errno to avoid confusing native code with EINTR
duke@435 3484 // after sigsuspend.
duke@435 3485 int old_errno = errno;
duke@435 3486
duke@435 3487 Thread* thread = Thread::current();
duke@435 3488 OSThread* osthread = thread->osthread();
duke@435 3489 assert(thread->is_VM_thread(), "Must be VMThread");
duke@435 3490 // read current suspend action
duke@435 3491 int action = osthread->sr.suspend_action();
duke@435 3492 if (action == SR_SUSPEND) {
duke@435 3493 suspend_save_context(osthread, siginfo, context);
duke@435 3494
duke@435 3495 // Notify the suspend action is about to be completed. do_suspend()
duke@435 3496 // waits until SR_SUSPENDED is set and then returns. We will wait
duke@435 3497 // here for a resume signal and that completes the suspend-other
duke@435 3498 // action. do_suspend/do_resume is always called as a pair from
duke@435 3499 // the same thread - so there are no races
duke@435 3500
duke@435 3501 // notify the caller
duke@435 3502 osthread->sr.set_suspended();
duke@435 3503
duke@435 3504 sigset_t suspend_set; // signals for sigsuspend()
duke@435 3505
duke@435 3506 // get current set of blocked signals and unblock resume signal
duke@435 3507 pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
duke@435 3508 sigdelset(&suspend_set, SR_signum);
duke@435 3509
duke@435 3510 // wait here until we are resumed
duke@435 3511 do {
duke@435 3512 sigsuspend(&suspend_set);
duke@435 3513 // ignore all returns until we get a resume signal
duke@435 3514 } while (osthread->sr.suspend_action() != SR_CONTINUE);
duke@435 3515
duke@435 3516 resume_clear_context(osthread);
duke@435 3517
duke@435 3518 } else {
duke@435 3519 assert(action == SR_CONTINUE, "unexpected sr action");
duke@435 3520 // nothing special to do - just leave the handler
duke@435 3521 }
duke@435 3522
duke@435 3523 errno = old_errno;
duke@435 3524 }
duke@435 3525
duke@435 3526
duke@435 3527 static int SR_initialize() {
duke@435 3528 struct sigaction act;
duke@435 3529 char *s;
duke@435 3530 /* Get signal number to use for suspend/resume */
duke@435 3531 if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
duke@435 3532 int sig = ::strtol(s, 0, 10);
duke@435 3533 if (sig > 0 || sig < _NSIG) {
duke@435 3534 SR_signum = sig;
duke@435 3535 }
duke@435 3536 }
duke@435 3537
duke@435 3538 assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
duke@435 3539 "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
duke@435 3540
duke@435 3541 sigemptyset(&SR_sigset);
duke@435 3542 sigaddset(&SR_sigset, SR_signum);
duke@435 3543
duke@435 3544 /* Set up signal handler for suspend/resume */
duke@435 3545 act.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 3546 act.sa_handler = (void (*)(int)) SR_handler;
duke@435 3547
duke@435 3548 // SR_signum is blocked by default.
duke@435 3549 // 4528190 - We also need to block pthread restart signal (32 on all
duke@435 3550 // supported Linux platforms). Note that LinuxThreads need to block
duke@435 3551 // this signal for all threads to work properly. So we don't have
duke@435 3552 // to use hard-coded signal number when setting up the mask.
duke@435 3553 pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
duke@435 3554
duke@435 3555 if (sigaction(SR_signum, &act, 0) == -1) {
duke@435 3556 return -1;
duke@435 3557 }
duke@435 3558
duke@435 3559 // Save signal flag
duke@435 3560 os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
duke@435 3561 return 0;
duke@435 3562 }
duke@435 3563
duke@435 3564 static int SR_finalize() {
duke@435 3565 return 0;
duke@435 3566 }
duke@435 3567
duke@435 3568
duke@435 3569 // returns true on success and false on error - really an error is fatal
duke@435 3570 // but this seems the normal response to library errors
duke@435 3571 static bool do_suspend(OSThread* osthread) {
duke@435 3572 // mark as suspended and send signal
duke@435 3573 osthread->sr.set_suspend_action(SR_SUSPEND);
duke@435 3574 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3575 assert_status(status == 0, status, "pthread_kill");
duke@435 3576
duke@435 3577 // check status and wait until notified of suspension
duke@435 3578 if (status == 0) {
duke@435 3579 for (int i = 0; !osthread->sr.is_suspended(); i++) {
duke@435 3580 os::yield_all(i);
duke@435 3581 }
duke@435 3582 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3583 return true;
duke@435 3584 }
duke@435 3585 else {
duke@435 3586 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3587 return false;
duke@435 3588 }
duke@435 3589 }
duke@435 3590
duke@435 3591 static void do_resume(OSThread* osthread) {
duke@435 3592 assert(osthread->sr.is_suspended(), "thread should be suspended");
duke@435 3593 osthread->sr.set_suspend_action(SR_CONTINUE);
duke@435 3594
duke@435 3595 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3596 assert_status(status == 0, status, "pthread_kill");
duke@435 3597 // check status and wait unit notified of resumption
duke@435 3598 if (status == 0) {
duke@435 3599 for (int i = 0; osthread->sr.is_suspended(); i++) {
duke@435 3600 os::yield_all(i);
duke@435 3601 }
duke@435 3602 }
duke@435 3603 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3604 }
duke@435 3605
duke@435 3606 ////////////////////////////////////////////////////////////////////////////////
duke@435 3607 // interrupt support
duke@435 3608
duke@435 3609 void os::interrupt(Thread* thread) {
duke@435 3610 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3611 "possibility of dangling Thread pointer");
duke@435 3612
duke@435 3613 OSThread* osthread = thread->osthread();
duke@435 3614
duke@435 3615 if (!osthread->interrupted()) {
duke@435 3616 osthread->set_interrupted(true);
duke@435 3617 // More than one thread can get here with the same value of osthread,
duke@435 3618 // resulting in multiple notifications. We do, however, want the store
duke@435 3619 // to interrupted() to be visible to other threads before we execute unpark().
duke@435 3620 OrderAccess::fence();
duke@435 3621 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 3622 if (slp != NULL) slp->unpark() ;
duke@435 3623 }
duke@435 3624
duke@435 3625 // For JSR166. Unpark even if interrupt status already was set
duke@435 3626 if (thread->is_Java_thread())
duke@435 3627 ((JavaThread*)thread)->parker()->unpark();
duke@435 3628
duke@435 3629 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3630 if (ev != NULL) ev->unpark() ;
duke@435 3631
duke@435 3632 }
duke@435 3633
duke@435 3634 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3635 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3636 "possibility of dangling Thread pointer");
duke@435 3637
duke@435 3638 OSThread* osthread = thread->osthread();
duke@435 3639
duke@435 3640 bool interrupted = osthread->interrupted();
duke@435 3641
duke@435 3642 if (interrupted && clear_interrupted) {
duke@435 3643 osthread->set_interrupted(false);
duke@435 3644 // consider thread->_SleepEvent->reset() ... optional optimization
duke@435 3645 }
duke@435 3646
duke@435 3647 return interrupted;
duke@435 3648 }
duke@435 3649
duke@435 3650 ///////////////////////////////////////////////////////////////////////////////////
duke@435 3651 // signal handling (except suspend/resume)
duke@435 3652
duke@435 3653 // This routine may be used by user applications as a "hook" to catch signals.
duke@435 3654 // The user-defined signal handler must pass unrecognized signals to this
duke@435 3655 // routine, and if it returns true (non-zero), then the signal handler must
duke@435 3656 // return immediately. If the flag "abort_if_unrecognized" is true, then this
duke@435 3657 // routine will never retun false (zero), but instead will execute a VM panic
duke@435 3658 // routine kill the process.
duke@435 3659 //
duke@435 3660 // If this routine returns false, it is OK to call it again. This allows
duke@435 3661 // the user-defined signal handler to perform checks either before or after
duke@435 3662 // the VM performs its own checks. Naturally, the user code would be making
duke@435 3663 // a serious error if it tried to handle an exception (such as a null check
duke@435 3664 // or breakpoint) that the VM was generating for its own correct operation.
duke@435 3665 //
duke@435 3666 // This routine may recognize any of the following kinds of signals:
duke@435 3667 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
duke@435 3668 // It should be consulted by handlers for any of those signals.
duke@435 3669 //
duke@435 3670 // The caller of this routine must pass in the three arguments supplied
duke@435 3671 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
duke@435 3672 // field of the structure passed to sigaction(). This routine assumes that
duke@435 3673 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
duke@435 3674 //
duke@435 3675 // Note that the VM will print warnings if it detects conflicting signal
duke@435 3676 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
duke@435 3677 //
coleenp@2507 3678 extern "C" JNIEXPORT int
duke@435 3679 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
duke@435 3680 void* ucontext, int abort_if_unrecognized);
duke@435 3681
duke@435 3682 void signalHandler(int sig, siginfo_t* info, void* uc) {
duke@435 3683 assert(info != NULL && uc != NULL, "it must be old kernel");
duke@435 3684 JVM_handle_linux_signal(sig, info, uc, true);
duke@435 3685 }
duke@435 3686
duke@435 3687
duke@435 3688 // This boolean allows users to forward their own non-matching signals
duke@435 3689 // to JVM_handle_linux_signal, harmlessly.
duke@435 3690 bool os::Linux::signal_handlers_are_installed = false;
duke@435 3691
duke@435 3692 // For signal-chaining
duke@435 3693 struct sigaction os::Linux::sigact[MAXSIGNUM];
duke@435 3694 unsigned int os::Linux::sigs = 0;
duke@435 3695 bool os::Linux::libjsig_is_loaded = false;
duke@435 3696 typedef struct sigaction *(*get_signal_t)(int);
duke@435 3697 get_signal_t os::Linux::get_signal_action = NULL;
duke@435 3698
duke@435 3699 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
duke@435 3700 struct sigaction *actp = NULL;
duke@435 3701
duke@435 3702 if (libjsig_is_loaded) {
duke@435 3703 // Retrieve the old signal handler from libjsig
duke@435 3704 actp = (*get_signal_action)(sig);
duke@435 3705 }
duke@435 3706 if (actp == NULL) {
duke@435 3707 // Retrieve the preinstalled signal handler from jvm
duke@435 3708 actp = get_preinstalled_handler(sig);
duke@435 3709 }
duke@435 3710
duke@435 3711 return actp;
duke@435 3712 }
duke@435 3713
duke@435 3714 static bool call_chained_handler(struct sigaction *actp, int sig,
duke@435 3715 siginfo_t *siginfo, void *context) {
duke@435 3716 // Call the old signal handler
duke@435 3717 if (actp->sa_handler == SIG_DFL) {
duke@435 3718 // It's more reasonable to let jvm treat it as an unexpected exception
duke@435 3719 // instead of taking the default action.
duke@435 3720 return false;
duke@435 3721 } else if (actp->sa_handler != SIG_IGN) {
duke@435 3722 if ((actp->sa_flags & SA_NODEFER) == 0) {
duke@435 3723 // automaticlly block the signal
duke@435 3724 sigaddset(&(actp->sa_mask), sig);
duke@435 3725 }
duke@435 3726
duke@435 3727 sa_handler_t hand;
duke@435 3728 sa_sigaction_t sa;
duke@435 3729 bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
duke@435 3730 // retrieve the chained handler
duke@435 3731 if (siginfo_flag_set) {
duke@435 3732 sa = actp->sa_sigaction;
duke@435 3733 } else {
duke@435 3734 hand = actp->sa_handler;
duke@435 3735 }
duke@435 3736
duke@435 3737 if ((actp->sa_flags & SA_RESETHAND) != 0) {
duke@435 3738 actp->sa_handler = SIG_DFL;
duke@435 3739 }
duke@435 3740
duke@435 3741 // try to honor the signal mask
duke@435 3742 sigset_t oset;
duke@435 3743 pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
duke@435 3744
duke@435 3745 // call into the chained handler
duke@435 3746 if (siginfo_flag_set) {
duke@435 3747 (*sa)(sig, siginfo, context);
duke@435 3748 } else {
duke@435 3749 (*hand)(sig);
duke@435 3750 }
duke@435 3751
duke@435 3752 // restore the signal mask
duke@435 3753 pthread_sigmask(SIG_SETMASK, &oset, 0);
duke@435 3754 }
duke@435 3755 // Tell jvm's signal handler the signal is taken care of.
duke@435 3756 return true;
duke@435 3757 }
duke@435 3758
duke@435 3759 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
duke@435 3760 bool chained = false;
duke@435 3761 // signal-chaining
duke@435 3762 if (UseSignalChaining) {
duke@435 3763 struct sigaction *actp = get_chained_signal_action(sig);
duke@435 3764 if (actp != NULL) {
duke@435 3765 chained = call_chained_handler(actp, sig, siginfo, context);
duke@435 3766 }
duke@435 3767 }
duke@435 3768 return chained;
duke@435 3769 }
duke@435 3770
duke@435 3771 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
duke@435 3772 if ((( (unsigned int)1 << sig ) & sigs) != 0) {
duke@435 3773 return &sigact[sig];
duke@435 3774 }
duke@435 3775 return NULL;
duke@435 3776 }
duke@435 3777
duke@435 3778 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
duke@435 3779 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3780 sigact[sig] = oldAct;
duke@435 3781 sigs |= (unsigned int)1 << sig;
duke@435 3782 }
duke@435 3783
duke@435 3784 // for diagnostic
duke@435 3785 int os::Linux::sigflags[MAXSIGNUM];
duke@435 3786
duke@435 3787 int os::Linux::get_our_sigflags(int sig) {
duke@435 3788 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3789 return sigflags[sig];
duke@435 3790 }
duke@435 3791
duke@435 3792 void os::Linux::set_our_sigflags(int sig, int flags) {
duke@435 3793 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3794 sigflags[sig] = flags;
duke@435 3795 }
duke@435 3796
duke@435 3797 void os::Linux::set_signal_handler(int sig, bool set_installed) {
duke@435 3798 // Check for overwrite.
duke@435 3799 struct sigaction oldAct;
duke@435 3800 sigaction(sig, (struct sigaction*)NULL, &oldAct);
duke@435 3801
duke@435 3802 void* oldhand = oldAct.sa_sigaction
duke@435 3803 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3804 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3805 if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
duke@435 3806 oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
duke@435 3807 oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
duke@435 3808 if (AllowUserSignalHandlers || !set_installed) {
duke@435 3809 // Do not overwrite; user takes responsibility to forward to us.
duke@435 3810 return;
duke@435 3811 } else if (UseSignalChaining) {
duke@435 3812 // save the old handler in jvm
duke@435 3813 save_preinstalled_handler(sig, oldAct);
duke@435 3814 // libjsig also interposes the sigaction() call below and saves the
duke@435 3815 // old sigaction on it own.
duke@435 3816 } else {
jcoomes@1845 3817 fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
jcoomes@1845 3818 "%#lx for signal %d.", (long)oldhand, sig));
duke@435 3819 }
duke@435 3820 }
duke@435 3821
duke@435 3822 struct sigaction sigAct;
duke@435 3823 sigfillset(&(sigAct.sa_mask));
duke@435 3824 sigAct.sa_handler = SIG_DFL;
duke@435 3825 if (!set_installed) {
duke@435 3826 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3827 } else {
duke@435 3828 sigAct.sa_sigaction = signalHandler;
duke@435 3829 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3830 }
duke@435 3831 // Save flags, which are set by ours
duke@435 3832 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3833 sigflags[sig] = sigAct.sa_flags;
duke@435 3834
duke@435 3835 int ret = sigaction(sig, &sigAct, &oldAct);
duke@435 3836 assert(ret == 0, "check");
duke@435 3837
duke@435 3838 void* oldhand2 = oldAct.sa_sigaction
duke@435 3839 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3840 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3841 assert(oldhand2 == oldhand, "no concurrent signal handler installation");
duke@435 3842 }
duke@435 3843
duke@435 3844 // install signal handlers for signals that HotSpot needs to
duke@435 3845 // handle in order to support Java-level exception handling.
duke@435 3846
duke@435 3847 void os::Linux::install_signal_handlers() {
duke@435 3848 if (!signal_handlers_are_installed) {
duke@435 3849 signal_handlers_are_installed = true;
duke@435 3850
duke@435 3851 // signal-chaining
duke@435 3852 typedef void (*signal_setting_t)();
duke@435 3853 signal_setting_t begin_signal_setting = NULL;
duke@435 3854 signal_setting_t end_signal_setting = NULL;
duke@435 3855 begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3856 dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
duke@435 3857 if (begin_signal_setting != NULL) {
duke@435 3858 end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3859 dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
duke@435 3860 get_signal_action = CAST_TO_FN_PTR(get_signal_t,
duke@435 3861 dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
duke@435 3862 libjsig_is_loaded = true;
duke@435 3863 assert(UseSignalChaining, "should enable signal-chaining");
duke@435 3864 }
duke@435 3865 if (libjsig_is_loaded) {
duke@435 3866 // Tell libjsig jvm is setting signal handlers
duke@435 3867 (*begin_signal_setting)();
duke@435 3868 }
duke@435 3869
duke@435 3870 set_signal_handler(SIGSEGV, true);
duke@435 3871 set_signal_handler(SIGPIPE, true);
duke@435 3872 set_signal_handler(SIGBUS, true);
duke@435 3873 set_signal_handler(SIGILL, true);
duke@435 3874 set_signal_handler(SIGFPE, true);
duke@435 3875 set_signal_handler(SIGXFSZ, true);
duke@435 3876
duke@435 3877 if (libjsig_is_loaded) {
duke@435 3878 // Tell libjsig jvm finishes setting signal handlers
duke@435 3879 (*end_signal_setting)();
duke@435 3880 }
duke@435 3881
duke@435 3882 // We don't activate signal checker if libjsig is in place, we trust ourselves
kevinw@3152 3883 // and if UserSignalHandler is installed all bets are off.
kevinw@3152 3884 // Log that signal checking is off only if -verbose:jni is specified.
duke@435 3885 if (CheckJNICalls) {
duke@435 3886 if (libjsig_is_loaded) {
kevinw@3152 3887 if (PrintJNIResolving) {
kevinw@3152 3888 tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
kevinw@3152 3889 }
duke@435 3890 check_signals = false;
duke@435 3891 }
duke@435 3892 if (AllowUserSignalHandlers) {
kevinw@3152 3893 if (PrintJNIResolving) {
kevinw@3152 3894 tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
kevinw@3152 3895 }
duke@435 3896 check_signals = false;
duke@435 3897 }
duke@435 3898 }
duke@435 3899 }
duke@435 3900 }
duke@435 3901
duke@435 3902 // This is the fastest way to get thread cpu time on Linux.
duke@435 3903 // Returns cpu time (user+sys) for any thread, not only for current.
duke@435 3904 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
duke@435 3905 // It might work on 2.6.10+ with a special kernel/glibc patch.
duke@435 3906 // For reference, please, see IEEE Std 1003.1-2004:
duke@435 3907 // http://www.unix.org/single_unix_specification
duke@435 3908
duke@435 3909 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
duke@435 3910 struct timespec tp;
duke@435 3911 int rc = os::Linux::clock_gettime(clockid, &tp);
duke@435 3912 assert(rc == 0, "clock_gettime is expected to return 0 code");
duke@435 3913
johnc@3339 3914 return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
duke@435 3915 }
duke@435 3916
duke@435 3917 /////
duke@435 3918 // glibc on Linux platform uses non-documented flag
duke@435 3919 // to indicate, that some special sort of signal
duke@435 3920 // trampoline is used.
duke@435 3921 // We will never set this flag, and we should
duke@435 3922 // ignore this flag in our diagnostic
duke@435 3923 #ifdef SIGNIFICANT_SIGNAL_MASK
duke@435 3924 #undef SIGNIFICANT_SIGNAL_MASK
duke@435 3925 #endif
duke@435 3926 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
duke@435 3927
duke@435 3928 static const char* get_signal_handler_name(address handler,
duke@435 3929 char* buf, int buflen) {
duke@435 3930 int offset;
duke@435 3931 bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
duke@435 3932 if (found) {
duke@435 3933 // skip directory names
duke@435 3934 const char *p1, *p2;
duke@435 3935 p1 = buf;
duke@435 3936 size_t len = strlen(os::file_separator());
duke@435 3937 while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
duke@435 3938 jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
duke@435 3939 } else {
duke@435 3940 jio_snprintf(buf, buflen, PTR_FORMAT, handler);
duke@435 3941 }
duke@435 3942 return buf;
duke@435 3943 }
duke@435 3944
duke@435 3945 static void print_signal_handler(outputStream* st, int sig,
duke@435 3946 char* buf, size_t buflen) {
duke@435 3947 struct sigaction sa;
duke@435 3948
duke@435 3949 sigaction(sig, NULL, &sa);
duke@435 3950
duke@435 3951 // See comment for SIGNIFICANT_SIGNAL_MASK define
duke@435 3952 sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3953
duke@435 3954 st->print("%s: ", os::exception_name(sig, buf, buflen));
duke@435 3955
duke@435 3956 address handler = (sa.sa_flags & SA_SIGINFO)
duke@435 3957 ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
duke@435 3958 : CAST_FROM_FN_PTR(address, sa.sa_handler);
duke@435 3959
duke@435 3960 if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
duke@435 3961 st->print("SIG_DFL");
duke@435 3962 } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
duke@435 3963 st->print("SIG_IGN");
duke@435 3964 } else {
duke@435 3965 st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
duke@435 3966 }
duke@435 3967
duke@435 3968 st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
duke@435 3969
duke@435 3970 address rh = VMError::get_resetted_sighandler(sig);
duke@435 3971 // May be, handler was resetted by VMError?
duke@435 3972 if(rh != NULL) {
duke@435 3973 handler = rh;
duke@435 3974 sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
duke@435 3975 }
duke@435 3976
duke@435 3977 st->print(", sa_flags=" PTR32_FORMAT, sa.sa_flags);
duke@435 3978
duke@435 3979 // Check: is it our handler?
duke@435 3980 if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
duke@435 3981 handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
duke@435 3982 // It is our signal handler
duke@435 3983 // check for flags, reset system-used one!
duke@435 3984 if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 3985 st->print(
duke@435 3986 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
duke@435 3987 os::Linux::get_our_sigflags(sig));
duke@435 3988 }
duke@435 3989 }
duke@435 3990 st->cr();
duke@435 3991 }
duke@435 3992
duke@435 3993
duke@435 3994 #define DO_SIGNAL_CHECK(sig) \
duke@435 3995 if (!sigismember(&check_signal_done, sig)) \
duke@435 3996 os::Linux::check_signal_handler(sig)
duke@435 3997
duke@435 3998 // This method is a periodic task to check for misbehaving JNI applications
duke@435 3999 // under CheckJNI, we can add any periodic checks here
duke@435 4000
duke@435 4001 void os::run_periodic_checks() {
duke@435 4002
duke@435 4003 if (check_signals == false) return;
duke@435 4004
duke@435 4005 // SEGV and BUS if overridden could potentially prevent
duke@435 4006 // generation of hs*.log in the event of a crash, debugging
duke@435 4007 // such a case can be very challenging, so we absolutely
duke@435 4008 // check the following for a good measure:
duke@435 4009 DO_SIGNAL_CHECK(SIGSEGV);
duke@435 4010 DO_SIGNAL_CHECK(SIGILL);
duke@435 4011 DO_SIGNAL_CHECK(SIGFPE);
duke@435 4012 DO_SIGNAL_CHECK(SIGBUS);
duke@435 4013 DO_SIGNAL_CHECK(SIGPIPE);
duke@435 4014 DO_SIGNAL_CHECK(SIGXFSZ);
duke@435 4015
duke@435 4016
duke@435 4017 // ReduceSignalUsage allows the user to override these handlers
duke@435 4018 // see comments at the very top and jvm_solaris.h
duke@435 4019 if (!ReduceSignalUsage) {
duke@435 4020 DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
duke@435 4021 DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
duke@435 4022 DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
duke@435 4023 DO_SIGNAL_CHECK(BREAK_SIGNAL);
duke@435 4024 }
duke@435 4025
duke@435 4026 DO_SIGNAL_CHECK(SR_signum);
duke@435 4027 DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
duke@435 4028 }
duke@435 4029
duke@435 4030 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
duke@435 4031
duke@435 4032 static os_sigaction_t os_sigaction = NULL;
duke@435 4033
duke@435 4034 void os::Linux::check_signal_handler(int sig) {
duke@435 4035 char buf[O_BUFLEN];
duke@435 4036 address jvmHandler = NULL;
duke@435 4037
duke@435 4038
duke@435 4039 struct sigaction act;
duke@435 4040 if (os_sigaction == NULL) {
duke@435 4041 // only trust the default sigaction, in case it has been interposed
duke@435 4042 os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
duke@435 4043 if (os_sigaction == NULL) return;
duke@435 4044 }
duke@435 4045
duke@435 4046 os_sigaction(sig, (struct sigaction*)NULL, &act);
duke@435 4047
duke@435 4048
duke@435 4049 act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 4050
duke@435 4051 address thisHandler = (act.sa_flags & SA_SIGINFO)
duke@435 4052 ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
duke@435 4053 : CAST_FROM_FN_PTR(address, act.sa_handler) ;
duke@435 4054
duke@435 4055
duke@435 4056 switch(sig) {
duke@435 4057 case SIGSEGV:
duke@435 4058 case SIGBUS:
duke@435 4059 case SIGFPE:
duke@435 4060 case SIGPIPE:
duke@435 4061 case SIGILL:
duke@435 4062 case SIGXFSZ:
duke@435 4063 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
duke@435 4064 break;
duke@435 4065
duke@435 4066 case SHUTDOWN1_SIGNAL:
duke@435 4067 case SHUTDOWN2_SIGNAL:
duke@435 4068 case SHUTDOWN3_SIGNAL:
duke@435 4069 case BREAK_SIGNAL:
duke@435 4070 jvmHandler = (address)user_handler();
duke@435 4071 break;
duke@435 4072
duke@435 4073 case INTERRUPT_SIGNAL:
duke@435 4074 jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
duke@435 4075 break;
duke@435 4076
duke@435 4077 default:
duke@435 4078 if (sig == SR_signum) {
duke@435 4079 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
duke@435 4080 } else {
duke@435 4081 return;
duke@435 4082 }
duke@435 4083 break;
duke@435 4084 }
duke@435 4085
duke@435 4086 if (thisHandler != jvmHandler) {
duke@435 4087 tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
duke@435 4088 tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
duke@435 4089 tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
duke@435 4090 // No need to check this sig any longer
duke@435 4091 sigaddset(&check_signal_done, sig);
duke@435 4092 } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 4093 tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
duke@435 4094 tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
duke@435 4095 tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
duke@435 4096 // No need to check this sig any longer
duke@435 4097 sigaddset(&check_signal_done, sig);
duke@435 4098 }
duke@435 4099
duke@435 4100 // Dump all the signal
duke@435 4101 if (sigismember(&check_signal_done, sig)) {
duke@435 4102 print_signal_handlers(tty, buf, O_BUFLEN);
duke@435 4103 }
duke@435 4104 }
duke@435 4105
duke@435 4106 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
duke@435 4107
duke@435 4108 extern bool signal_name(int signo, char* buf, size_t len);
duke@435 4109
duke@435 4110 const char* os::exception_name(int exception_code, char* buf, size_t size) {
duke@435 4111 if (0 < exception_code && exception_code <= SIGRTMAX) {
duke@435 4112 // signal
duke@435 4113 if (!signal_name(exception_code, buf, size)) {
duke@435 4114 jio_snprintf(buf, size, "SIG%d", exception_code);
duke@435 4115 }
duke@435 4116 return buf;
duke@435 4117 } else {
duke@435 4118 return NULL;
duke@435 4119 }
duke@435 4120 }
duke@435 4121
duke@435 4122 // this is called _before_ the most of global arguments have been parsed
duke@435 4123 void os::init(void) {
duke@435 4124 char dummy; /* used to get a guess on initial stack address */
duke@435 4125 // first_hrtime = gethrtime();
duke@435 4126
duke@435 4127 // With LinuxThreads the JavaMain thread pid (primordial thread)
duke@435 4128 // is different than the pid of the java launcher thread.
duke@435 4129 // So, on Linux, the launcher thread pid is passed to the VM
duke@435 4130 // via the sun.java.launcher.pid property.
duke@435 4131 // Use this property instead of getpid() if it was correctly passed.
duke@435 4132 // See bug 6351349.
duke@435 4133 pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
duke@435 4134
duke@435 4135 _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
duke@435 4136
duke@435 4137 clock_tics_per_sec = sysconf(_SC_CLK_TCK);
duke@435 4138
duke@435 4139 init_random(1234567);
duke@435 4140
duke@435 4141 ThreadCritical::initialize();
duke@435 4142
duke@435 4143 Linux::set_page_size(sysconf(_SC_PAGESIZE));
duke@435 4144 if (Linux::page_size() == -1) {
jcoomes@1845 4145 fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
jcoomes@1845 4146 strerror(errno)));
duke@435 4147 }
duke@435 4148 init_page_sizes((size_t) Linux::page_size());
duke@435 4149
duke@435 4150 Linux::initialize_system_info();
duke@435 4151
duke@435 4152 // main_thread points to the aboriginal thread
duke@435 4153 Linux::_main_thread = pthread_self();
duke@435 4154
duke@435 4155 Linux::clock_init();
duke@435 4156 initial_time_count = os::elapsed_counter();
kamg@677 4157 pthread_mutex_init(&dl_mutex, NULL);
duke@435 4158 }
duke@435 4159
duke@435 4160 // To install functions for atexit system call
duke@435 4161 extern "C" {
duke@435 4162 static void perfMemory_exit_helper() {
duke@435 4163 perfMemory_exit();
duke@435 4164 }
duke@435 4165 }
duke@435 4166
duke@435 4167 // this is called _after_ the global arguments have been parsed
duke@435 4168 jint os::init_2(void)
duke@435 4169 {
duke@435 4170 Linux::fast_thread_clock_init();
duke@435 4171
duke@435 4172 // Allocate a single page and mark it as readable for safepoint polling
duke@435 4173 address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 4174 guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
duke@435 4175
duke@435 4176 os::set_polling_page( polling_page );
duke@435 4177
duke@435 4178 #ifndef PRODUCT
duke@435 4179 if(Verbose && PrintMiscellaneous)
duke@435 4180 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 4181 #endif
duke@435 4182
duke@435 4183 if (!UseMembar) {
duke@435 4184 address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 4185 guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
duke@435 4186 os::set_memory_serialize_page( mem_serialize_page );
duke@435 4187
duke@435 4188 #ifndef PRODUCT
duke@435 4189 if(Verbose && PrintMiscellaneous)
duke@435 4190 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 4191 #endif
duke@435 4192 }
duke@435 4193
iveresov@2850 4194 os::large_page_init();
duke@435 4195
duke@435 4196 // initialize suspend/resume support - must do this before signal_sets_init()
duke@435 4197 if (SR_initialize() != 0) {
duke@435 4198 perror("SR_initialize failed");
duke@435 4199 return JNI_ERR;
duke@435 4200 }
duke@435 4201
duke@435 4202 Linux::signal_sets_init();
duke@435 4203 Linux::install_signal_handlers();
duke@435 4204
coleenp@2222 4205 // Check minimum allowable stack size for thread creation and to initialize
coleenp@2222 4206 // the java system classes, including StackOverflowError - depends on page
coleenp@2222 4207 // size. Add a page for compiler2 recursion in main thread.
coleenp@2222 4208 // Add in 2*BytesPerWord times page size to account for VM stack during
coleenp@2222 4209 // class initialization depending on 32 or 64 bit VM.
coleenp@2222 4210 os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
coleenp@2222 4211 (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
coleenp@2222 4212 2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
coleenp@2222 4213
duke@435 4214 size_t threadStackSizeInBytes = ThreadStackSize * K;
duke@435 4215 if (threadStackSizeInBytes != 0 &&
coleenp@2222 4216 threadStackSizeInBytes < os::Linux::min_stack_allowed) {
duke@435 4217 tty->print_cr("\nThe stack size specified is too small, "
duke@435 4218 "Specify at least %dk",
coleenp@2222 4219 os::Linux::min_stack_allowed/ K);
duke@435 4220 return JNI_ERR;
duke@435 4221 }
duke@435 4222
duke@435 4223 // Make the stack size a multiple of the page size so that
duke@435 4224 // the yellow/red zones can be guarded.
duke@435 4225 JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
duke@435 4226 vm_page_size()));
duke@435 4227
duke@435 4228 Linux::capture_initial_stack(JavaThread::stack_size_at_create());
duke@435 4229
duke@435 4230 Linux::libpthread_init();
duke@435 4231 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 4232 tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
duke@435 4233 Linux::glibc_version(), Linux::libpthread_version(),
duke@435 4234 Linux::is_floating_stack() ? "floating stack" : "fixed stack");
duke@435 4235 }
duke@435 4236
iveresov@576 4237 if (UseNUMA) {
iveresov@897 4238 if (!Linux::libnuma_init()) {
iveresov@897 4239 UseNUMA = false;
iveresov@897 4240 } else {
iveresov@897 4241 if ((Linux::numa_max_node() < 1)) {
iveresov@897 4242 // There's only one node(they start from 0), disable NUMA.
iveresov@897 4243 UseNUMA = false;
iveresov@897 4244 }
iveresov@897 4245 }
iveresov@2824 4246 // With SHM large pages we cannot uncommit a page, so there's not way
iveresov@2824 4247 // we can make the adaptive lgrp chunk resizing work. If the user specified
iveresov@2824 4248 // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
iveresov@2824 4249 // disable adaptive resizing.
iveresov@2824 4250 if (UseNUMA && UseLargePages && UseSHM) {
iveresov@2824 4251 if (!FLAG_IS_DEFAULT(UseNUMA)) {
iveresov@2824 4252 if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
iveresov@2824 4253 UseLargePages = false;
iveresov@2824 4254 } else {
iveresov@2824 4255 warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
iveresov@2824 4256 UseAdaptiveSizePolicy = false;
iveresov@2824 4257 UseAdaptiveNUMAChunkSizing = false;
iveresov@2824 4258 }
iveresov@2824 4259 } else {
iveresov@2824 4260 UseNUMA = false;
iveresov@2824 4261 }
iveresov@2824 4262 }
iveresov@897 4263 if (!UseNUMA && ForceNUMA) {
iveresov@897 4264 UseNUMA = true;
iveresov@897 4265 }
iveresov@576 4266 }
iveresov@576 4267
duke@435 4268 if (MaxFDLimit) {
duke@435 4269 // set the number of file descriptors to max. print out error
duke@435 4270 // if getrlimit/setrlimit fails but continue regardless.
duke@435 4271 struct rlimit nbr_files;
duke@435 4272 int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 4273 if (status != 0) {
duke@435 4274 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 4275 perror("os::init_2 getrlimit failed");
duke@435 4276 } else {
duke@435 4277 nbr_files.rlim_cur = nbr_files.rlim_max;
duke@435 4278 status = setrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 4279 if (status != 0) {
duke@435 4280 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 4281 perror("os::init_2 setrlimit failed");
duke@435 4282 }
duke@435 4283 }
duke@435 4284 }
duke@435 4285
duke@435 4286 // Initialize lock used to serialize thread creation (see os::create_thread)
duke@435 4287 Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
duke@435 4288
duke@435 4289 // at-exit methods are called in the reverse order of their registration.
duke@435 4290 // atexit functions are called on return from main or as a result of a
duke@435 4291 // call to exit(3C). There can be only 32 of these functions registered
duke@435 4292 // and atexit() does not set errno.
duke@435 4293
duke@435 4294 if (PerfAllowAtExitRegistration) {
duke@435 4295 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 4296 // atexit functions can be delayed until process exit time, which
duke@435 4297 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 4298 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 4299
duke@435 4300 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 4301 // the future if the appropriate cleanup code can be added to the
duke@435 4302 // VM_Exit VMOperation's doit method.
duke@435 4303 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 4304 warning("os::init2 atexit(perfMemory_exit_helper) failed");
duke@435 4305 }
duke@435 4306 }
duke@435 4307
duke@435 4308 // initialize thread priority policy
duke@435 4309 prio_init();
duke@435 4310
duke@435 4311 return JNI_OK;
duke@435 4312 }
duke@435 4313
bobv@2036 4314 // this is called at the end of vm_initialization
jcoomes@2999 4315 void os::init_3(void)
jcoomes@2999 4316 {
jcoomes@2999 4317 #ifdef JAVASE_EMBEDDED
jcoomes@2999 4318 // Start the MemNotifyThread
jcoomes@2999 4319 if (LowMemoryProtection) {
jcoomes@2999 4320 MemNotifyThread::start();
jcoomes@2999 4321 }
jcoomes@2999 4322 return;
jcoomes@2999 4323 #endif
jcoomes@2999 4324 }
bobv@2036 4325
duke@435 4326 // Mark the polling page as unreadable
duke@435 4327 void os::make_polling_page_unreadable(void) {
duke@435 4328 if( !guard_memory((char*)_polling_page, Linux::page_size()) )
duke@435 4329 fatal("Could not disable polling page");
duke@435 4330 };
duke@435 4331
duke@435 4332 // Mark the polling page as readable
duke@435 4333 void os::make_polling_page_readable(void) {
coleenp@672 4334 if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
duke@435 4335 fatal("Could not enable polling page");
coleenp@672 4336 }
duke@435 4337 };
duke@435 4338
duke@435 4339 int os::active_processor_count() {
duke@435 4340 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4341 // so just return the number of online processors.
duke@435 4342 int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
duke@435 4343 assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
duke@435 4344 return online_cpus;
duke@435 4345 }
duke@435 4346
dcubed@3202 4347 void os::set_native_thread_name(const char *name) {
dcubed@3202 4348 // Not yet implemented.
dcubed@3202 4349 return;
dcubed@3202 4350 }
dcubed@3202 4351
duke@435 4352 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 4353 // Not yet implemented.
duke@435 4354 return false;
duke@435 4355 }
duke@435 4356
duke@435 4357 bool os::bind_to_processor(uint processor_id) {
duke@435 4358 // Not yet implemented.
duke@435 4359 return false;
duke@435 4360 }
duke@435 4361
duke@435 4362 ///
duke@435 4363
duke@435 4364 // Suspends the target using the signal mechanism and then grabs the PC before
duke@435 4365 // resuming the target. Used by the flat-profiler only
duke@435 4366 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 4367 // Make sure that it is called by the watcher for the VMThread
duke@435 4368 assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
duke@435 4369 assert(thread->is_VM_thread(), "Can only be called for VMThread");
duke@435 4370
duke@435 4371 ExtendedPC epc;
duke@435 4372
duke@435 4373 OSThread* osthread = thread->osthread();
duke@435 4374 if (do_suspend(osthread)) {
duke@435 4375 if (osthread->ucontext() != NULL) {
duke@435 4376 epc = os::Linux::ucontext_get_pc(osthread->ucontext());
duke@435 4377 } else {
duke@435 4378 // NULL context is unexpected, double-check this is the VMThread
duke@435 4379 guarantee(thread->is_VM_thread(), "can only be called for VMThread");
duke@435 4380 }
duke@435 4381 do_resume(osthread);
duke@435 4382 }
duke@435 4383 // failure means pthread_kill failed for some reason - arguably this is
duke@435 4384 // a fatal problem, but such problems are ignored elsewhere
duke@435 4385
duke@435 4386 return epc;
duke@435 4387 }
duke@435 4388
duke@435 4389 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
duke@435 4390 {
duke@435 4391 if (is_NPTL()) {
duke@435 4392 return pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4393 } else {
duke@435 4394 #ifndef IA64
duke@435 4395 // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
duke@435 4396 // word back to default 64bit precision if condvar is signaled. Java
duke@435 4397 // wants 53bit precision. Save and restore current value.
duke@435 4398 int fpu = get_fpu_control_word();
duke@435 4399 #endif // IA64
duke@435 4400 int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4401 #ifndef IA64
duke@435 4402 set_fpu_control_word(fpu);
duke@435 4403 #endif // IA64
duke@435 4404 return status;
duke@435 4405 }
duke@435 4406 }
duke@435 4407
duke@435 4408 ////////////////////////////////////////////////////////////////////////////////
duke@435 4409 // debug support
duke@435 4410
duke@435 4411 static address same_page(address x, address y) {
duke@435 4412 int page_bits = -os::vm_page_size();
duke@435 4413 if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
duke@435 4414 return x;
duke@435 4415 else if (x > y)
duke@435 4416 return (address)(intptr_t(y) | ~page_bits) + 1;
duke@435 4417 else
duke@435 4418 return (address)(intptr_t(y) & page_bits);
duke@435 4419 }
duke@435 4420
bobv@2036 4421 bool os::find(address addr, outputStream* st) {
duke@435 4422 Dl_info dlinfo;
duke@435 4423 memset(&dlinfo, 0, sizeof(dlinfo));
duke@435 4424 if (dladdr(addr, &dlinfo)) {
bobv@2036 4425 st->print(PTR_FORMAT ": ", addr);
duke@435 4426 if (dlinfo.dli_sname != NULL) {
bobv@2036 4427 st->print("%s+%#x", dlinfo.dli_sname,
duke@435 4428 addr - (intptr_t)dlinfo.dli_saddr);
duke@435 4429 } else if (dlinfo.dli_fname) {
bobv@2036 4430 st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
duke@435 4431 } else {
bobv@2036 4432 st->print("<absolute address>");
duke@435 4433 }
duke@435 4434 if (dlinfo.dli_fname) {
bobv@2036 4435 st->print(" in %s", dlinfo.dli_fname);
duke@435 4436 }
duke@435 4437 if (dlinfo.dli_fbase) {
bobv@2036 4438 st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
duke@435 4439 }
bobv@2036 4440 st->cr();
duke@435 4441
duke@435 4442 if (Verbose) {
duke@435 4443 // decode some bytes around the PC
duke@435 4444 address begin = same_page(addr-40, addr);
duke@435 4445 address end = same_page(addr+40, addr);
duke@435 4446 address lowest = (address) dlinfo.dli_sname;
duke@435 4447 if (!lowest) lowest = (address) dlinfo.dli_fbase;
duke@435 4448 if (begin < lowest) begin = lowest;
duke@435 4449 Dl_info dlinfo2;
duke@435 4450 if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
duke@435 4451 && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
duke@435 4452 end = (address) dlinfo2.dli_saddr;
bobv@2036 4453 Disassembler::decode(begin, end, st);
duke@435 4454 }
duke@435 4455 return true;
duke@435 4456 }
duke@435 4457 return false;
duke@435 4458 }
duke@435 4459
duke@435 4460 ////////////////////////////////////////////////////////////////////////////////
duke@435 4461 // misc
duke@435 4462
duke@435 4463 // This does not do anything on Linux. This is basically a hook for being
duke@435 4464 // able to use structured exception handling (thread-local exception filters)
duke@435 4465 // on, e.g., Win32.
duke@435 4466 void
duke@435 4467 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
duke@435 4468 JavaCallArguments* args, Thread* thread) {
duke@435 4469 f(value, method, args, thread);
duke@435 4470 }
duke@435 4471
duke@435 4472 void os::print_statistics() {
duke@435 4473 }
duke@435 4474
duke@435 4475 int os::message_box(const char* title, const char* message) {
duke@435 4476 int i;
duke@435 4477 fdStream err(defaultStream::error_fd());
duke@435 4478 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4479 err.cr();
duke@435 4480 err.print_raw_cr(title);
duke@435 4481 for (i = 0; i < 78; i++) err.print_raw("-");
duke@435 4482 err.cr();
duke@435 4483 err.print_raw_cr(message);
duke@435 4484 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4485 err.cr();
duke@435 4486
duke@435 4487 char buf[16];
duke@435 4488 // Prevent process from exiting upon "read error" without consuming all CPU
duke@435 4489 while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
duke@435 4490
duke@435 4491 return buf[0] == 'y' || buf[0] == 'Y';
duke@435 4492 }
duke@435 4493
duke@435 4494 int os::stat(const char *path, struct stat *sbuf) {
duke@435 4495 char pathbuf[MAX_PATH];
duke@435 4496 if (strlen(path) > MAX_PATH - 1) {
duke@435 4497 errno = ENAMETOOLONG;
duke@435 4498 return -1;
duke@435 4499 }
ikrylov@2322 4500 os::native_path(strcpy(pathbuf, path));
duke@435 4501 return ::stat(pathbuf, sbuf);
duke@435 4502 }
duke@435 4503
duke@435 4504 bool os::check_heap(bool force) {
duke@435 4505 return true;
duke@435 4506 }
duke@435 4507
duke@435 4508 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
duke@435 4509 return ::vsnprintf(buf, count, format, args);
duke@435 4510 }
duke@435 4511
duke@435 4512 // Is a (classpath) directory empty?
duke@435 4513 bool os::dir_is_empty(const char* path) {
duke@435 4514 DIR *dir = NULL;
duke@435 4515 struct dirent *ptr;
duke@435 4516
duke@435 4517 dir = opendir(path);
duke@435 4518 if (dir == NULL) return true;
duke@435 4519
duke@435 4520 /* Scan the directory */
duke@435 4521 bool result = true;
duke@435 4522 char buf[sizeof(struct dirent) + MAX_PATH];
duke@435 4523 while (result && (ptr = ::readdir(dir)) != NULL) {
duke@435 4524 if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
duke@435 4525 result = false;
duke@435 4526 }
duke@435 4527 }
duke@435 4528 closedir(dir);
duke@435 4529 return result;
duke@435 4530 }
duke@435 4531
ikrylov@2322 4532 // This code originates from JDK's sysOpen and open64_w
ikrylov@2322 4533 // from src/solaris/hpi/src/system_md.c
ikrylov@2322 4534
ikrylov@2322 4535 #ifndef O_DELETE
ikrylov@2322 4536 #define O_DELETE 0x10000
ikrylov@2322 4537 #endif
ikrylov@2322 4538
ikrylov@2322 4539 // Open a file. Unlink the file immediately after open returns
ikrylov@2322 4540 // if the specified oflag has the O_DELETE flag set.
ikrylov@2322 4541 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
ikrylov@2322 4542
ikrylov@2322 4543 int os::open(const char *path, int oflag, int mode) {
ikrylov@2322 4544
ikrylov@2322 4545 if (strlen(path) > MAX_PATH - 1) {
ikrylov@2322 4546 errno = ENAMETOOLONG;
ikrylov@2322 4547 return -1;
ikrylov@2322 4548 }
ikrylov@2322 4549 int fd;
ikrylov@2322 4550 int o_delete = (oflag & O_DELETE);
ikrylov@2322 4551 oflag = oflag & ~O_DELETE;
ikrylov@2322 4552
ikrylov@2322 4553 fd = ::open64(path, oflag, mode);
ikrylov@2322 4554 if (fd == -1) return -1;
ikrylov@2322 4555
ikrylov@2322 4556 //If the open succeeded, the file might still be a directory
ikrylov@2322 4557 {
ikrylov@2322 4558 struct stat64 buf64;
ikrylov@2322 4559 int ret = ::fstat64(fd, &buf64);
ikrylov@2322 4560 int st_mode = buf64.st_mode;
ikrylov@2322 4561
ikrylov@2322 4562 if (ret != -1) {
ikrylov@2322 4563 if ((st_mode & S_IFMT) == S_IFDIR) {
ikrylov@2322 4564 errno = EISDIR;
ikrylov@2322 4565 ::close(fd);
ikrylov@2322 4566 return -1;
ikrylov@2322 4567 }
ikrylov@2322 4568 } else {
ikrylov@2322 4569 ::close(fd);
ikrylov@2322 4570 return -1;
ikrylov@2322 4571 }
ikrylov@2322 4572 }
ikrylov@2322 4573
ikrylov@2322 4574 /*
ikrylov@2322 4575 * All file descriptors that are opened in the JVM and not
ikrylov@2322 4576 * specifically destined for a subprocess should have the
ikrylov@2322 4577 * close-on-exec flag set. If we don't set it, then careless 3rd
ikrylov@2322 4578 * party native code might fork and exec without closing all
ikrylov@2322 4579 * appropriate file descriptors (e.g. as we do in closeDescriptors in
ikrylov@2322 4580 * UNIXProcess.c), and this in turn might:
ikrylov@2322 4581 *
ikrylov@2322 4582 * - cause end-of-file to fail to be detected on some file
ikrylov@2322 4583 * descriptors, resulting in mysterious hangs, or
ikrylov@2322 4584 *
ikrylov@2322 4585 * - might cause an fopen in the subprocess to fail on a system
ikrylov@2322 4586 * suffering from bug 1085341.
ikrylov@2322 4587 *
ikrylov@2322 4588 * (Yes, the default setting of the close-on-exec flag is a Unix
ikrylov@2322 4589 * design flaw)
ikrylov@2322 4590 *
ikrylov@2322 4591 * See:
ikrylov@2322 4592 * 1085341: 32-bit stdio routines should support file descriptors >255
ikrylov@2322 4593 * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
ikrylov@2322 4594 * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
ikrylov@2322 4595 */
ikrylov@2322 4596 #ifdef FD_CLOEXEC
ikrylov@2322 4597 {
ikrylov@2322 4598 int flags = ::fcntl(fd, F_GETFD);
ikrylov@2322 4599 if (flags != -1)
ikrylov@2322 4600 ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
ikrylov@2322 4601 }
ikrylov@2322 4602 #endif
ikrylov@2322 4603
ikrylov@2322 4604 if (o_delete != 0) {
ikrylov@2322 4605 ::unlink(path);
ikrylov@2322 4606 }
ikrylov@2322 4607 return fd;
ikrylov@2322 4608 }
ikrylov@2322 4609
ikrylov@2322 4610
duke@435 4611 // create binary file, rewriting existing file if required
duke@435 4612 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 4613 int oflags = O_WRONLY | O_CREAT;
duke@435 4614 if (!rewrite_existing) {
duke@435 4615 oflags |= O_EXCL;
duke@435 4616 }
duke@435 4617 return ::open64(path, oflags, S_IREAD | S_IWRITE);
duke@435 4618 }
duke@435 4619
duke@435 4620 // return current position of file pointer
duke@435 4621 jlong os::current_file_offset(int fd) {
duke@435 4622 return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
duke@435 4623 }
duke@435 4624
duke@435 4625 // move file pointer to the specified offset
duke@435 4626 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 4627 return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
duke@435 4628 }
duke@435 4629
ikrylov@2322 4630 // This code originates from JDK's sysAvailable
ikrylov@2322 4631 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
ikrylov@2322 4632
ikrylov@2322 4633 int os::available(int fd, jlong *bytes) {
ikrylov@2322 4634 jlong cur, end;
ikrylov@2322 4635 int mode;
ikrylov@2322 4636 struct stat64 buf64;
ikrylov@2322 4637
ikrylov@2322 4638 if (::fstat64(fd, &buf64) >= 0) {
ikrylov@2322 4639 mode = buf64.st_mode;
ikrylov@2322 4640 if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
ikrylov@2322 4641 /*
ikrylov@2322 4642 * XXX: is the following call interruptible? If so, this might
ikrylov@2322 4643 * need to go through the INTERRUPT_IO() wrapper as for other
ikrylov@2322 4644 * blocking, interruptible calls in this file.
ikrylov@2322 4645 */
ikrylov@2322 4646 int n;
ikrylov@2322 4647 if (::ioctl(fd, FIONREAD, &n) >= 0) {
ikrylov@2322 4648 *bytes = n;
ikrylov@2322 4649 return 1;
ikrylov@2322 4650 }
ikrylov@2322 4651 }
ikrylov@2322 4652 }
ikrylov@2322 4653 if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
ikrylov@2322 4654 return 0;
ikrylov@2322 4655 } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
ikrylov@2322 4656 return 0;
ikrylov@2322 4657 } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
ikrylov@2322 4658 return 0;
ikrylov@2322 4659 }
ikrylov@2322 4660 *bytes = end - cur;
ikrylov@2322 4661 return 1;
ikrylov@2322 4662 }
ikrylov@2322 4663
dholmes@2375 4664 int os::socket_available(int fd, jint *pbytes) {
dholmes@2375 4665 // Linux doc says EINTR not returned, unlike Solaris
dholmes@2375 4666 int ret = ::ioctl(fd, FIONREAD, pbytes);
dholmes@2375 4667
dholmes@2375 4668 //%% note ioctl can return 0 when successful, JVM_SocketAvailable
dholmes@2375 4669 // is expected to return 0 on failure and 1 on success to the jdk.
dholmes@2375 4670 return (ret < 0) ? 0 : 1;
dholmes@2375 4671 }
dholmes@2375 4672
duke@435 4673 // Map a block of memory.
zgu@3900 4674 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4675 char *addr, size_t bytes, bool read_only,
duke@435 4676 bool allow_exec) {
duke@435 4677 int prot;
dlong@3612 4678 int flags = MAP_PRIVATE;
duke@435 4679
duke@435 4680 if (read_only) {
duke@435 4681 prot = PROT_READ;
duke@435 4682 } else {
duke@435 4683 prot = PROT_READ | PROT_WRITE;
duke@435 4684 }
duke@435 4685
duke@435 4686 if (allow_exec) {
duke@435 4687 prot |= PROT_EXEC;
duke@435 4688 }
duke@435 4689
duke@435 4690 if (addr != NULL) {
duke@435 4691 flags |= MAP_FIXED;
duke@435 4692 }
duke@435 4693
duke@435 4694 char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
duke@435 4695 fd, file_offset);
duke@435 4696 if (mapped_address == MAP_FAILED) {
duke@435 4697 return NULL;
duke@435 4698 }
duke@435 4699 return mapped_address;
duke@435 4700 }
duke@435 4701
duke@435 4702
duke@435 4703 // Remap a block of memory.
zgu@3900 4704 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4705 char *addr, size_t bytes, bool read_only,
duke@435 4706 bool allow_exec) {
duke@435 4707 // same as map_memory() on this OS
duke@435 4708 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 4709 allow_exec);
duke@435 4710 }
duke@435 4711
duke@435 4712
duke@435 4713 // Unmap a block of memory.
zgu@3900 4714 bool os::pd_unmap_memory(char* addr, size_t bytes) {
duke@435 4715 return munmap(addr, bytes) == 0;
duke@435 4716 }
duke@435 4717
duke@435 4718 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
duke@435 4719
duke@435 4720 static clockid_t thread_cpu_clockid(Thread* thread) {
duke@435 4721 pthread_t tid = thread->osthread()->pthread_id();
duke@435 4722 clockid_t clockid;
duke@435 4723
duke@435 4724 // Get thread clockid
duke@435 4725 int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
duke@435 4726 assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
duke@435 4727 return clockid;
duke@435 4728 }
duke@435 4729
duke@435 4730 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 4731 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 4732 // of a thread.
duke@435 4733 //
duke@435 4734 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 4735 // the fast estimate available on the platform.
duke@435 4736
duke@435 4737 jlong os::current_thread_cpu_time() {
duke@435 4738 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4739 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4740 } else {
duke@435 4741 // return user + sys since the cost is the same
duke@435 4742 return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
duke@435 4743 }
duke@435 4744 }
duke@435 4745
duke@435 4746 jlong os::thread_cpu_time(Thread* thread) {
duke@435 4747 // consistent with what current_thread_cpu_time() returns
duke@435 4748 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4749 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4750 } else {
duke@435 4751 return slow_thread_cpu_time(thread, true /* user + sys */);
duke@435 4752 }
duke@435 4753 }
duke@435 4754
duke@435 4755 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 4756 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4757 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4758 } else {
duke@435 4759 return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 4760 }
duke@435 4761 }
duke@435 4762
duke@435 4763 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4764 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4765 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4766 } else {
duke@435 4767 return slow_thread_cpu_time(thread, user_sys_cpu_time);
duke@435 4768 }
duke@435 4769 }
duke@435 4770
duke@435 4771 //
duke@435 4772 // -1 on error.
duke@435 4773 //
duke@435 4774
duke@435 4775 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4776 static bool proc_pid_cpu_avail = true;
duke@435 4777 static bool proc_task_unchecked = true;
duke@435 4778 static const char *proc_stat_path = "/proc/%d/stat";
duke@435 4779 pid_t tid = thread->osthread()->thread_id();
duke@435 4780 int i;
duke@435 4781 char *s;
duke@435 4782 char stat[2048];
duke@435 4783 int statlen;
duke@435 4784 char proc_name[64];
duke@435 4785 int count;
duke@435 4786 long sys_time, user_time;
duke@435 4787 char string[64];
bobv@2036 4788 char cdummy;
duke@435 4789 int idummy;
duke@435 4790 long ldummy;
duke@435 4791 FILE *fp;
duke@435 4792
duke@435 4793 // We first try accessing /proc/<pid>/cpu since this is faster to
duke@435 4794 // process. If this file is not present (linux kernels 2.5 and above)
duke@435 4795 // then we open /proc/<pid>/stat.
duke@435 4796 if ( proc_pid_cpu_avail ) {
duke@435 4797 sprintf(proc_name, "/proc/%d/cpu", tid);
duke@435 4798 fp = fopen(proc_name, "r");
duke@435 4799 if ( fp != NULL ) {
duke@435 4800 count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
duke@435 4801 fclose(fp);
duke@435 4802 if ( count != 3 ) return -1;
duke@435 4803
duke@435 4804 if (user_sys_cpu_time) {
duke@435 4805 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4806 } else {
duke@435 4807 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4808 }
duke@435 4809 }
duke@435 4810 else proc_pid_cpu_avail = false;
duke@435 4811 }
duke@435 4812
duke@435 4813 // The /proc/<tid>/stat aggregates per-process usage on
duke@435 4814 // new Linux kernels 2.6+ where NPTL is supported.
duke@435 4815 // The /proc/self/task/<tid>/stat still has the per-thread usage.
duke@435 4816 // See bug 6328462.
duke@435 4817 // There can be no directory /proc/self/task on kernels 2.4 with NPTL
duke@435 4818 // and possibly in some other cases, so we check its availability.
duke@435 4819 if (proc_task_unchecked && os::Linux::is_NPTL()) {
duke@435 4820 // This is executed only once
duke@435 4821 proc_task_unchecked = false;
duke@435 4822 fp = fopen("/proc/self/task", "r");
duke@435 4823 if (fp != NULL) {
duke@435 4824 proc_stat_path = "/proc/self/task/%d/stat";
duke@435 4825 fclose(fp);
duke@435 4826 }
duke@435 4827 }
duke@435 4828
duke@435 4829 sprintf(proc_name, proc_stat_path, tid);
duke@435 4830 fp = fopen(proc_name, "r");
duke@435 4831 if ( fp == NULL ) return -1;
duke@435 4832 statlen = fread(stat, 1, 2047, fp);
duke@435 4833 stat[statlen] = '\0';
duke@435 4834 fclose(fp);
duke@435 4835
duke@435 4836 // Skip pid and the command string. Note that we could be dealing with
duke@435 4837 // weird command names, e.g. user could decide to rename java launcher
duke@435 4838 // to "java 1.4.2 :)", then the stat file would look like
duke@435 4839 // 1234 (java 1.4.2 :)) R ... ...
duke@435 4840 // We don't really need to know the command string, just find the last
duke@435 4841 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 4842 s = strrchr(stat, ')');
duke@435 4843 i = 0;
duke@435 4844 if (s == NULL ) return -1;
duke@435 4845
duke@435 4846 // Skip blank chars
duke@435 4847 do s++; while (isspace(*s));
duke@435 4848
bobv@2036 4849 count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
bobv@2036 4850 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
duke@435 4851 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
duke@435 4852 &user_time, &sys_time);
bobv@2036 4853 if ( count != 13 ) return -1;
duke@435 4854 if (user_sys_cpu_time) {
duke@435 4855 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4856 } else {
duke@435 4857 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4858 }
duke@435 4859 }
duke@435 4860
duke@435 4861 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4862 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4863 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4864 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4865 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4866 }
duke@435 4867
duke@435 4868 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4869 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4870 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4871 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4872 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4873 }
duke@435 4874
duke@435 4875 bool os::is_thread_cpu_time_supported() {
duke@435 4876 return true;
duke@435 4877 }
duke@435 4878
duke@435 4879 // System loadavg support. Returns -1 if load average cannot be obtained.
duke@435 4880 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4881 // so just return the system wide load average.
duke@435 4882 int os::loadavg(double loadavg[], int nelem) {
duke@435 4883 return ::getloadavg(loadavg, nelem);
duke@435 4884 }
duke@435 4885
duke@435 4886 void os::pause() {
duke@435 4887 char filename[MAX_PATH];
duke@435 4888 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 4889 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 4890 } else {
duke@435 4891 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 4892 }
duke@435 4893
duke@435 4894 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 4895 if (fd != -1) {
duke@435 4896 struct stat buf;
ikrylov@2322 4897 ::close(fd);
duke@435 4898 while (::stat(filename, &buf) == 0) {
duke@435 4899 (void)::poll(NULL, 0, 100);
duke@435 4900 }
duke@435 4901 } else {
duke@435 4902 jio_fprintf(stderr,
duke@435 4903 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 4904 }
duke@435 4905 }
duke@435 4906
duke@435 4907
duke@435 4908 // Refer to the comments in os_solaris.cpp park-unpark.
duke@435 4909 //
duke@435 4910 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
duke@435 4911 // hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
duke@435 4912 // For specifics regarding the bug see GLIBC BUGID 261237 :
duke@435 4913 // http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
duke@435 4914 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
duke@435 4915 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
duke@435 4916 // is used. (The simple C test-case provided in the GLIBC bug report manifests the
duke@435 4917 // hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
duke@435 4918 // and monitorenter when we're using 1-0 locking. All those operations may result in
duke@435 4919 // calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
duke@435 4920 // of libpthread avoids the problem, but isn't practical.
duke@435 4921 //
duke@435 4922 // Possible remedies:
duke@435 4923 //
duke@435 4924 // 1. Establish a minimum relative wait time. 50 to 100 msecs seems to work.
duke@435 4925 // This is palliative and probabilistic, however. If the thread is preempted
duke@435 4926 // between the call to compute_abstime() and pthread_cond_timedwait(), more
duke@435 4927 // than the minimum period may have passed, and the abstime may be stale (in the
duke@435 4928 // past) resultin in a hang. Using this technique reduces the odds of a hang
duke@435 4929 // but the JVM is still vulnerable, particularly on heavily loaded systems.
duke@435 4930 //
duke@435 4931 // 2. Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
duke@435 4932 // of the usual flag-condvar-mutex idiom. The write side of the pipe is set
duke@435 4933 // NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
duke@435 4934 // reduces to poll()+read(). This works well, but consumes 2 FDs per extant
duke@435 4935 // thread.
duke@435 4936 //
duke@435 4937 // 3. Embargo pthread_cond_timedwait() and implement a native "chron" thread
duke@435 4938 // that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
duke@435 4939 // a timeout request to the chron thread and then blocking via pthread_cond_wait().
duke@435 4940 // This also works well. In fact it avoids kernel-level scalability impediments
duke@435 4941 // on certain platforms that don't handle lots of active pthread_cond_timedwait()
duke@435 4942 // timers in a graceful fashion.
duke@435 4943 //
duke@435 4944 // 4. When the abstime value is in the past it appears that control returns
duke@435 4945 // correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
duke@435 4946 // Subsequent timedwait/wait calls may hang indefinitely. Given that, we
duke@435 4947 // can avoid the problem by reinitializing the condvar -- by cond_destroy()
duke@435 4948 // followed by cond_init() -- after all calls to pthread_cond_timedwait().
duke@435 4949 // It may be possible to avoid reinitialization by checking the return
duke@435 4950 // value from pthread_cond_timedwait(). In addition to reinitializing the
duke@435 4951 // condvar we must establish the invariant that cond_signal() is only called
duke@435 4952 // within critical sections protected by the adjunct mutex. This prevents
duke@435 4953 // cond_signal() from "seeing" a condvar that's in the midst of being
duke@435 4954 // reinitialized or that is corrupt. Sadly, this invariant obviates the
duke@435 4955 // desirable signal-after-unlock optimization that avoids futile context switching.
duke@435 4956 //
duke@435 4957 // I'm also concerned that some versions of NTPL might allocate an auxilliary
duke@435 4958 // structure when a condvar is used or initialized. cond_destroy() would
duke@435 4959 // release the helper structure. Our reinitialize-after-timedwait fix
duke@435 4960 // put excessive stress on malloc/free and locks protecting the c-heap.
duke@435 4961 //
duke@435 4962 // We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
duke@435 4963 // It may be possible to refine (4) by checking the kernel and NTPL verisons
duke@435 4964 // and only enabling the work-around for vulnerable environments.
duke@435 4965
duke@435 4966 // utility to compute the abstime argument to timedwait:
duke@435 4967 // millis is the relative timeout time
duke@435 4968 // abstime will be the absolute timeout time
duke@435 4969 // TODO: replace compute_abstime() with unpackTime()
duke@435 4970
duke@435 4971 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
duke@435 4972 if (millis < 0) millis = 0;
duke@435 4973 struct timeval now;
duke@435 4974 int status = gettimeofday(&now, NULL);
duke@435 4975 assert(status == 0, "gettimeofday");
duke@435 4976 jlong seconds = millis / 1000;
duke@435 4977 millis %= 1000;
duke@435 4978 if (seconds > 50000000) { // see man cond_timedwait(3T)
duke@435 4979 seconds = 50000000;
duke@435 4980 }
duke@435 4981 abstime->tv_sec = now.tv_sec + seconds;
duke@435 4982 long usec = now.tv_usec + millis * 1000;
duke@435 4983 if (usec >= 1000000) {
duke@435 4984 abstime->tv_sec += 1;
duke@435 4985 usec -= 1000000;
duke@435 4986 }
duke@435 4987 abstime->tv_nsec = usec * 1000;
duke@435 4988 return abstime;
duke@435 4989 }
duke@435 4990
duke@435 4991
duke@435 4992 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
duke@435 4993 // Conceptually TryPark() should be equivalent to park(0).
duke@435 4994
duke@435 4995 int os::PlatformEvent::TryPark() {
duke@435 4996 for (;;) {
duke@435 4997 const int v = _Event ;
duke@435 4998 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4999 if (Atomic::cmpxchg (0, &_Event, v) == v) return v ;
duke@435 5000 }
duke@435 5001 }
duke@435 5002
duke@435 5003 void os::PlatformEvent::park() { // AKA "down()"
duke@435 5004 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 5005 // may call park().
duke@435 5006 // TODO: assert that _Assoc != NULL or _Assoc == Self
duke@435 5007 int v ;
duke@435 5008 for (;;) {
duke@435 5009 v = _Event ;
duke@435 5010 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 5011 }
duke@435 5012 guarantee (v >= 0, "invariant") ;
duke@435 5013 if (v == 0) {
duke@435 5014 // Do this the hard way by blocking ...
duke@435 5015 int status = pthread_mutex_lock(_mutex);
duke@435 5016 assert_status(status == 0, status, "mutex_lock");
duke@435 5017 guarantee (_nParked == 0, "invariant") ;
duke@435 5018 ++ _nParked ;
duke@435 5019 while (_Event < 0) {
duke@435 5020 status = pthread_cond_wait(_cond, _mutex);
duke@435 5021 // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
duke@435 5022 // Treat this the same as if the wait was interrupted
duke@435 5023 if (status == ETIME) { status = EINTR; }
duke@435 5024 assert_status(status == 0 || status == EINTR, status, "cond_wait");
duke@435 5025 }
duke@435 5026 -- _nParked ;
duke@435 5027
duke@435 5028 // In theory we could move the ST of 0 into _Event past the unlock(),
duke@435 5029 // but then we'd need a MEMBAR after the ST.
duke@435 5030 _Event = 0 ;
duke@435 5031 status = pthread_mutex_unlock(_mutex);
duke@435 5032 assert_status(status == 0, status, "mutex_unlock");
duke@435 5033 }
duke@435 5034 guarantee (_Event >= 0, "invariant") ;
duke@435 5035 }
duke@435 5036
duke@435 5037 int os::PlatformEvent::park(jlong millis) {
duke@435 5038 guarantee (_nParked == 0, "invariant") ;
duke@435 5039
duke@435 5040 int v ;
duke@435 5041 for (;;) {
duke@435 5042 v = _Event ;
duke@435 5043 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 5044 }
duke@435 5045 guarantee (v >= 0, "invariant") ;
duke@435 5046 if (v != 0) return OS_OK ;
duke@435 5047
duke@435 5048 // We do this the hard way, by blocking the thread.
duke@435 5049 // Consider enforcing a minimum timeout value.
duke@435 5050 struct timespec abst;
duke@435 5051 compute_abstime(&abst, millis);
duke@435 5052
duke@435 5053 int ret = OS_TIMEOUT;
duke@435 5054 int status = pthread_mutex_lock(_mutex);
duke@435 5055 assert_status(status == 0, status, "mutex_lock");
duke@435 5056 guarantee (_nParked == 0, "invariant") ;
duke@435 5057 ++_nParked ;
duke@435 5058
duke@435 5059 // Object.wait(timo) will return because of
duke@435 5060 // (a) notification
duke@435 5061 // (b) timeout
duke@435 5062 // (c) thread.interrupt
duke@435 5063 //
duke@435 5064 // Thread.interrupt and object.notify{All} both call Event::set.
duke@435 5065 // That is, we treat thread.interrupt as a special case of notification.
duke@435 5066 // The underlying Solaris implementation, cond_timedwait, admits
duke@435 5067 // spurious/premature wakeups, but the JLS/JVM spec prevents the
duke@435 5068 // JVM from making those visible to Java code. As such, we must
duke@435 5069 // filter out spurious wakeups. We assume all ETIME returns are valid.
duke@435 5070 //
duke@435 5071 // TODO: properly differentiate simultaneous notify+interrupt.
duke@435 5072 // In that case, we should propagate the notify to another waiter.
duke@435 5073
duke@435 5074 while (_Event < 0) {
duke@435 5075 status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
duke@435 5076 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 5077 pthread_cond_destroy (_cond);
duke@435 5078 pthread_cond_init (_cond, NULL) ;
duke@435 5079 }
duke@435 5080 assert_status(status == 0 || status == EINTR ||
duke@435 5081 status == ETIME || status == ETIMEDOUT,
duke@435 5082 status, "cond_timedwait");
duke@435 5083 if (!FilterSpuriousWakeups) break ; // previous semantics
duke@435 5084 if (status == ETIME || status == ETIMEDOUT) break ;
duke@435 5085 // We consume and ignore EINTR and spurious wakeups.
duke@435 5086 }
duke@435 5087 --_nParked ;
duke@435 5088 if (_Event >= 0) {
duke@435 5089 ret = OS_OK;
duke@435 5090 }
duke@435 5091 _Event = 0 ;
duke@435 5092 status = pthread_mutex_unlock(_mutex);
duke@435 5093 assert_status(status == 0, status, "mutex_unlock");
duke@435 5094 assert (_nParked == 0, "invariant") ;
duke@435 5095 return ret;
duke@435 5096 }
duke@435 5097
duke@435 5098 void os::PlatformEvent::unpark() {
duke@435 5099 int v, AnyWaiters ;
duke@435 5100 for (;;) {
duke@435 5101 v = _Event ;
duke@435 5102 if (v > 0) {
duke@435 5103 // The LD of _Event could have reordered or be satisfied
duke@435 5104 // by a read-aside from this processor's write buffer.
duke@435 5105 // To avoid problems execute a barrier and then
duke@435 5106 // ratify the value.
duke@435 5107 OrderAccess::fence() ;
duke@435 5108 if (_Event == v) return ;
duke@435 5109 continue ;
duke@435 5110 }
duke@435 5111 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 5112 }
duke@435 5113 if (v < 0) {
duke@435 5114 // Wait for the thread associated with the event to vacate
duke@435 5115 int status = pthread_mutex_lock(_mutex);
duke@435 5116 assert_status(status == 0, status, "mutex_lock");
duke@435 5117 AnyWaiters = _nParked ;
duke@435 5118 assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
duke@435 5119 if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 5120 AnyWaiters = 0 ;
duke@435 5121 pthread_cond_signal (_cond);
duke@435 5122 }
duke@435 5123 status = pthread_mutex_unlock(_mutex);
duke@435 5124 assert_status(status == 0, status, "mutex_unlock");
duke@435 5125 if (AnyWaiters != 0) {
duke@435 5126 status = pthread_cond_signal(_cond);
duke@435 5127 assert_status(status == 0, status, "cond_signal");
duke@435 5128 }
duke@435 5129 }
duke@435 5130
duke@435 5131 // Note that we signal() _after dropping the lock for "immortal" Events.
duke@435 5132 // This is safe and avoids a common class of futile wakeups. In rare
duke@435 5133 // circumstances this can cause a thread to return prematurely from
duke@435 5134 // cond_{timed}wait() but the spurious wakeup is benign and the victim will
duke@435 5135 // simply re-test the condition and re-park itself.
duke@435 5136 }
duke@435 5137
duke@435 5138
duke@435 5139 // JSR166
duke@435 5140 // -------------------------------------------------------
duke@435 5141
duke@435 5142 /*
duke@435 5143 * The solaris and linux implementations of park/unpark are fairly
duke@435 5144 * conservative for now, but can be improved. They currently use a
duke@435 5145 * mutex/condvar pair, plus a a count.
duke@435 5146 * Park decrements count if > 0, else does a condvar wait. Unpark
duke@435 5147 * sets count to 1 and signals condvar. Only one thread ever waits
duke@435 5148 * on the condvar. Contention seen when trying to park implies that someone
duke@435 5149 * is unparking you, so don't wait. And spurious returns are fine, so there
duke@435 5150 * is no need to track notifications.
duke@435 5151 */
duke@435 5152
duke@435 5153 #define MAX_SECS 100000000
duke@435 5154 /*
duke@435 5155 * This code is common to linux and solaris and will be moved to a
duke@435 5156 * common place in dolphin.
duke@435 5157 *
duke@435 5158 * The passed in time value is either a relative time in nanoseconds
duke@435 5159 * or an absolute time in milliseconds. Either way it has to be unpacked
duke@435 5160 * into suitable seconds and nanoseconds components and stored in the
duke@435 5161 * given timespec structure.
duke@435 5162 * Given time is a 64-bit value and the time_t used in the timespec is only
duke@435 5163 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
duke@435 5164 * overflow if times way in the future are given. Further on Solaris versions
duke@435 5165 * prior to 10 there is a restriction (see cond_timedwait) that the specified
duke@435 5166 * number of seconds, in abstime, is less than current_time + 100,000,000.
duke@435 5167 * As it will be 28 years before "now + 100000000" will overflow we can
duke@435 5168 * ignore overflow and just impose a hard-limit on seconds using the value
duke@435 5169 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
duke@435 5170 * years from "now".
duke@435 5171 */
duke@435 5172
duke@435 5173 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
duke@435 5174 assert (time > 0, "convertTime");
duke@435 5175
duke@435 5176 struct timeval now;
duke@435 5177 int status = gettimeofday(&now, NULL);
duke@435 5178 assert(status == 0, "gettimeofday");
duke@435 5179
duke@435 5180 time_t max_secs = now.tv_sec + MAX_SECS;
duke@435 5181
duke@435 5182 if (isAbsolute) {
duke@435 5183 jlong secs = time / 1000;
duke@435 5184 if (secs > max_secs) {
duke@435 5185 absTime->tv_sec = max_secs;
duke@435 5186 }
duke@435 5187 else {
duke@435 5188 absTime->tv_sec = secs;
duke@435 5189 }
duke@435 5190 absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
duke@435 5191 }
duke@435 5192 else {
duke@435 5193 jlong secs = time / NANOSECS_PER_SEC;
duke@435 5194 if (secs >= MAX_SECS) {
duke@435 5195 absTime->tv_sec = max_secs;
duke@435 5196 absTime->tv_nsec = 0;
duke@435 5197 }
duke@435 5198 else {
duke@435 5199 absTime->tv_sec = now.tv_sec + secs;
duke@435 5200 absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
duke@435 5201 if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
duke@435 5202 absTime->tv_nsec -= NANOSECS_PER_SEC;
duke@435 5203 ++absTime->tv_sec; // note: this must be <= max_secs
duke@435 5204 }
duke@435 5205 }
duke@435 5206 }
duke@435 5207 assert(absTime->tv_sec >= 0, "tv_sec < 0");
duke@435 5208 assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
duke@435 5209 assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
duke@435 5210 assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
duke@435 5211 }
duke@435 5212
duke@435 5213 void Parker::park(bool isAbsolute, jlong time) {
duke@435 5214 // Optional fast-path check:
duke@435 5215 // Return immediately if a permit is available.
duke@435 5216 if (_counter > 0) {
duke@435 5217 _counter = 0 ;
dholmes@1552 5218 OrderAccess::fence();
duke@435 5219 return ;
duke@435 5220 }
duke@435 5221
duke@435 5222 Thread* thread = Thread::current();
duke@435 5223 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 5224 JavaThread *jt = (JavaThread *)thread;
duke@435 5225
duke@435 5226 // Optional optimization -- avoid state transitions if there's an interrupt pending.
duke@435 5227 // Check interrupt before trying to wait
duke@435 5228 if (Thread::is_interrupted(thread, false)) {
duke@435 5229 return;
duke@435 5230 }
duke@435 5231
duke@435 5232 // Next, demultiplex/decode time arguments
duke@435 5233 timespec absTime;
acorn@2220 5234 if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
duke@435 5235 return;
duke@435 5236 }
duke@435 5237 if (time > 0) {
duke@435 5238 unpackTime(&absTime, isAbsolute, time);
duke@435 5239 }
duke@435 5240
duke@435 5241
duke@435 5242 // Enter safepoint region
duke@435 5243 // Beware of deadlocks such as 6317397.
duke@435 5244 // The per-thread Parker:: mutex is a classic leaf-lock.
duke@435 5245 // In particular a thread must never block on the Threads_lock while
duke@435 5246 // holding the Parker:: mutex. If safepoints are pending both the
duke@435 5247 // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
duke@435 5248 ThreadBlockInVM tbivm(jt);
duke@435 5249
duke@435 5250 // Don't wait if cannot get lock since interference arises from
duke@435 5251 // unblocking. Also. check interrupt before trying wait
duke@435 5252 if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
duke@435 5253 return;
duke@435 5254 }
duke@435 5255
duke@435 5256 int status ;
duke@435 5257 if (_counter > 0) { // no wait needed
duke@435 5258 _counter = 0;
duke@435 5259 status = pthread_mutex_unlock(_mutex);
duke@435 5260 assert (status == 0, "invariant") ;
dholmes@1552 5261 OrderAccess::fence();
duke@435 5262 return;
duke@435 5263 }
duke@435 5264
duke@435 5265 #ifdef ASSERT
duke@435 5266 // Don't catch signals while blocked; let the running threads have the signals.
duke@435 5267 // (This allows a debugger to break into the running thread.)
duke@435 5268 sigset_t oldsigs;
duke@435 5269 sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
duke@435 5270 pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
duke@435 5271 #endif
duke@435 5272
duke@435 5273 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 5274 jt->set_suspend_equivalent();
duke@435 5275 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 5276
duke@435 5277 if (time == 0) {
duke@435 5278 status = pthread_cond_wait (_cond, _mutex) ;
duke@435 5279 } else {
duke@435 5280 status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
duke@435 5281 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 5282 pthread_cond_destroy (_cond) ;
duke@435 5283 pthread_cond_init (_cond, NULL);
duke@435 5284 }
duke@435 5285 }
duke@435 5286 assert_status(status == 0 || status == EINTR ||
duke@435 5287 status == ETIME || status == ETIMEDOUT,
duke@435 5288 status, "cond_timedwait");
duke@435 5289
duke@435 5290 #ifdef ASSERT
duke@435 5291 pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
duke@435 5292 #endif
duke@435 5293
duke@435 5294 _counter = 0 ;
duke@435 5295 status = pthread_mutex_unlock(_mutex) ;
duke@435 5296 assert_status(status == 0, status, "invariant") ;
duke@435 5297 // If externally suspended while waiting, re-suspend
duke@435 5298 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 5299 jt->java_suspend_self();
duke@435 5300 }
duke@435 5301
dholmes@1552 5302 OrderAccess::fence();
duke@435 5303 }
duke@435 5304
duke@435 5305 void Parker::unpark() {
duke@435 5306 int s, status ;
duke@435 5307 status = pthread_mutex_lock(_mutex);
duke@435 5308 assert (status == 0, "invariant") ;
duke@435 5309 s = _counter;
duke@435 5310 _counter = 1;
duke@435 5311 if (s < 1) {
duke@435 5312 if (WorkAroundNPTLTimedWaitHang) {
duke@435 5313 status = pthread_cond_signal (_cond) ;
duke@435 5314 assert (status == 0, "invariant") ;
duke@435 5315 status = pthread_mutex_unlock(_mutex);
duke@435 5316 assert (status == 0, "invariant") ;
duke@435 5317 } else {
duke@435 5318 status = pthread_mutex_unlock(_mutex);
duke@435 5319 assert (status == 0, "invariant") ;
duke@435 5320 status = pthread_cond_signal (_cond) ;
duke@435 5321 assert (status == 0, "invariant") ;
duke@435 5322 }
duke@435 5323 } else {
duke@435 5324 pthread_mutex_unlock(_mutex);
duke@435 5325 assert (status == 0, "invariant") ;
duke@435 5326 }
duke@435 5327 }
duke@435 5328
duke@435 5329
duke@435 5330 extern char** environ;
duke@435 5331
duke@435 5332 #ifndef __NR_fork
duke@435 5333 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
duke@435 5334 #endif
duke@435 5335
duke@435 5336 #ifndef __NR_execve
duke@435 5337 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
duke@435 5338 #endif
duke@435 5339
duke@435 5340 // Run the specified command in a separate process. Return its exit value,
duke@435 5341 // or -1 on failure (e.g. can't fork a new process).
duke@435 5342 // Unlike system(), this function can be called from signal handler. It
duke@435 5343 // doesn't block SIGINT et al.
duke@435 5344 int os::fork_and_exec(char* cmd) {
xlu@634 5345 const char * argv[4] = {"sh", "-c", cmd, NULL};
duke@435 5346
duke@435 5347 // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
duke@435 5348 // pthread_atfork handlers and reset pthread library. All we need is a
duke@435 5349 // separate process to execve. Make a direct syscall to fork process.
duke@435 5350 // On IA64 there's no fork syscall, we have to use fork() and hope for
duke@435 5351 // the best...
duke@435 5352 pid_t pid = NOT_IA64(syscall(__NR_fork);)
duke@435 5353 IA64_ONLY(fork();)
duke@435 5354
duke@435 5355 if (pid < 0) {
duke@435 5356 // fork failed
duke@435 5357 return -1;
duke@435 5358
duke@435 5359 } else if (pid == 0) {
duke@435 5360 // child process
duke@435 5361
duke@435 5362 // execve() in LinuxThreads will call pthread_kill_other_threads_np()
duke@435 5363 // first to kill every thread on the thread list. Because this list is
duke@435 5364 // not reset by fork() (see notes above), execve() will instead kill
duke@435 5365 // every thread in the parent process. We know this is the only thread
duke@435 5366 // in the new process, so make a system call directly.
duke@435 5367 // IA64 should use normal execve() from glibc to match the glibc fork()
duke@435 5368 // above.
duke@435 5369 NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
xlu@634 5370 IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
duke@435 5371
duke@435 5372 // execve failed
duke@435 5373 _exit(-1);
duke@435 5374
duke@435 5375 } else {
duke@435 5376 // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
duke@435 5377 // care about the actual exit code, for now.
duke@435 5378
duke@435 5379 int status;
duke@435 5380
duke@435 5381 // Wait for the child process to exit. This returns immediately if
duke@435 5382 // the child has already exited. */
duke@435 5383 while (waitpid(pid, &status, 0) < 0) {
duke@435 5384 switch (errno) {
duke@435 5385 case ECHILD: return 0;
duke@435 5386 case EINTR: break;
duke@435 5387 default: return -1;
duke@435 5388 }
duke@435 5389 }
duke@435 5390
duke@435 5391 if (WIFEXITED(status)) {
duke@435 5392 // The child exited normally; get its exit code.
duke@435 5393 return WEXITSTATUS(status);
duke@435 5394 } else if (WIFSIGNALED(status)) {
duke@435 5395 // The child exited because of a signal
duke@435 5396 // The best value to return is 0x80 + signal number,
duke@435 5397 // because that is what all Unix shells do, and because
duke@435 5398 // it allows callers to distinguish between process exit and
duke@435 5399 // process death by signal.
duke@435 5400 return 0x80 + WTERMSIG(status);
duke@435 5401 } else {
duke@435 5402 // Unknown exit code; pass it through
duke@435 5403 return status;
duke@435 5404 }
duke@435 5405 }
duke@435 5406 }
bobv@2036 5407
bobv@2036 5408 // is_headless_jre()
bobv@2036 5409 //
dholmes@3281 5410 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
bobv@2036 5411 // in order to report if we are running in a headless jre
bobv@2036 5412 //
dholmes@3281 5413 // Since JDK8 xawt/libmawt.so was moved into the same directory
dholmes@3281 5414 // as libawt.so, and renamed libawt_xawt.so
dholmes@3281 5415 //
bobv@2036 5416 bool os::is_headless_jre() {
bobv@2036 5417 struct stat statbuf;
bobv@2036 5418 char buf[MAXPATHLEN];
bobv@2036 5419 char libmawtpath[MAXPATHLEN];
bobv@2036 5420 const char *xawtstr = "/xawt/libmawt.so";
dholmes@3281 5421 const char *new_xawtstr = "/libawt_xawt.so";
bobv@2036 5422 char *p;
bobv@2036 5423
bobv@2036 5424 // Get path to libjvm.so
bobv@2036 5425 os::jvm_path(buf, sizeof(buf));
bobv@2036 5426
bobv@2036 5427 // Get rid of libjvm.so
bobv@2036 5428 p = strrchr(buf, '/');
bobv@2036 5429 if (p == NULL) return false;
bobv@2036 5430 else *p = '\0';
bobv@2036 5431
bobv@2036 5432 // Get rid of client or server
bobv@2036 5433 p = strrchr(buf, '/');
bobv@2036 5434 if (p == NULL) return false;
bobv@2036 5435 else *p = '\0';
bobv@2036 5436
bobv@2036 5437 // check xawt/libmawt.so
bobv@2036 5438 strcpy(libmawtpath, buf);
bobv@2036 5439 strcat(libmawtpath, xawtstr);
bobv@2036 5440 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 5441
dholmes@3281 5442 // check libawt_xawt.so
bobv@2036 5443 strcpy(libmawtpath, buf);
dholmes@3281 5444 strcat(libmawtpath, new_xawtstr);
bobv@2036 5445 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 5446
bobv@2036 5447 return true;
bobv@2036 5448 }
bobv@2036 5449
jcoomes@2999 5450
jcoomes@2999 5451 #ifdef JAVASE_EMBEDDED
jcoomes@2999 5452 //
jcoomes@2999 5453 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
jcoomes@2999 5454 //
jcoomes@2999 5455 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
jcoomes@2999 5456
jcoomes@2999 5457 // ctor
jcoomes@2999 5458 //
jcoomes@2999 5459 MemNotifyThread::MemNotifyThread(int fd): Thread() {
jcoomes@2999 5460 assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
jcoomes@2999 5461 _fd = fd;
jcoomes@2999 5462
jcoomes@2999 5463 if (os::create_thread(this, os::os_thread)) {
jcoomes@2999 5464 _memnotify_thread = this;
jcoomes@2999 5465 os::set_priority(this, NearMaxPriority);
jcoomes@2999 5466 os::start_thread(this);
jcoomes@2999 5467 }
jcoomes@2999 5468 }
jcoomes@2999 5469
jcoomes@2999 5470 // Where all the work gets done
jcoomes@2999 5471 //
jcoomes@2999 5472 void MemNotifyThread::run() {
jcoomes@2999 5473 assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
jcoomes@2999 5474
jcoomes@2999 5475 // Set up the select arguments
jcoomes@2999 5476 fd_set rfds;
jcoomes@2999 5477 if (_fd != -1) {
jcoomes@2999 5478 FD_ZERO(&rfds);
jcoomes@2999 5479 FD_SET(_fd, &rfds);
jcoomes@2999 5480 }
jcoomes@2999 5481
jcoomes@2999 5482 // Now wait for the mem_notify device to wake up
jcoomes@2999 5483 while (1) {
jcoomes@2999 5484 // Wait for the mem_notify device to signal us..
jcoomes@2999 5485 int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
jcoomes@2999 5486 if (rc == -1) {
jcoomes@2999 5487 perror("select!\n");
jcoomes@2999 5488 break;
jcoomes@2999 5489 } else if (rc) {
jcoomes@2999 5490 //ssize_t free_before = os::available_memory();
jcoomes@2999 5491 //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
jcoomes@2999 5492
jcoomes@2999 5493 // The kernel is telling us there is not much memory left...
jcoomes@2999 5494 // try to do something about that
jcoomes@2999 5495
jcoomes@2999 5496 // If we are not already in a GC, try one.
jcoomes@2999 5497 if (!Universe::heap()->is_gc_active()) {
jcoomes@2999 5498 Universe::heap()->collect(GCCause::_allocation_failure);
jcoomes@2999 5499
jcoomes@2999 5500 //ssize_t free_after = os::available_memory();
jcoomes@2999 5501 //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
jcoomes@2999 5502 //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
jcoomes@2999 5503 }
jcoomes@2999 5504 // We might want to do something like the following if we find the GC's are not helping...
jcoomes@2999 5505 // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
jcoomes@2999 5506 }
jcoomes@2999 5507 }
jcoomes@2999 5508 }
jcoomes@2999 5509
jcoomes@2999 5510 //
jcoomes@2999 5511 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
jcoomes@2999 5512 //
jcoomes@2999 5513 void MemNotifyThread::start() {
jcoomes@2999 5514 int fd;
jcoomes@2999 5515 fd = open ("/dev/mem_notify", O_RDONLY, 0);
jcoomes@2999 5516 if (fd < 0) {
jcoomes@2999 5517 return;
jcoomes@2999 5518 }
jcoomes@2999 5519
jcoomes@2999 5520 if (memnotify_thread() == NULL) {
jcoomes@2999 5521 new MemNotifyThread(fd);
jcoomes@2999 5522 }
jcoomes@2999 5523 }
jcoomes@2999 5524 #endif // JAVASE_EMBEDDED

mercurial