src/os/linux/vm/os_linux.cpp

Wed, 02 Feb 2011 11:35:26 -0500

author
bobv
date
Wed, 02 Feb 2011 11:35:26 -0500
changeset 2508
b92c45f2bc75
parent 2450
34d64ad817f4
child 2509
9cd8a2c2d584
permissions
-rw-r--r--

7016023: Enable building ARM and PPC from src/closed repository
Reviewed-by: dholmes, bdelsart

duke@435 1 /*
acorn@2220 2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
coleenp@1755 25 # define __STDC_FORMAT_MACROS
coleenp@1755 26
stefank@2314 27 // no precompiled headers
stefank@2314 28 #include "classfile/classLoader.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "classfile/vmSymbols.hpp"
stefank@2314 31 #include "code/icBuffer.hpp"
stefank@2314 32 #include "code/vtableStubs.hpp"
stefank@2314 33 #include "compiler/compileBroker.hpp"
stefank@2314 34 #include "interpreter/interpreter.hpp"
stefank@2314 35 #include "jvm_linux.h"
stefank@2314 36 #include "memory/allocation.inline.hpp"
stefank@2314 37 #include "memory/filemap.hpp"
stefank@2314 38 #include "mutex_linux.inline.hpp"
stefank@2314 39 #include "oops/oop.inline.hpp"
stefank@2314 40 #include "os_share_linux.hpp"
stefank@2314 41 #include "prims/jniFastGetField.hpp"
stefank@2314 42 #include "prims/jvm.h"
stefank@2314 43 #include "prims/jvm_misc.hpp"
stefank@2314 44 #include "runtime/arguments.hpp"
stefank@2314 45 #include "runtime/extendedPC.hpp"
stefank@2314 46 #include "runtime/globals.hpp"
stefank@2314 47 #include "runtime/interfaceSupport.hpp"
stefank@2314 48 #include "runtime/java.hpp"
stefank@2314 49 #include "runtime/javaCalls.hpp"
stefank@2314 50 #include "runtime/mutexLocker.hpp"
stefank@2314 51 #include "runtime/objectMonitor.hpp"
stefank@2314 52 #include "runtime/osThread.hpp"
stefank@2314 53 #include "runtime/perfMemory.hpp"
stefank@2314 54 #include "runtime/sharedRuntime.hpp"
stefank@2314 55 #include "runtime/statSampler.hpp"
stefank@2314 56 #include "runtime/stubRoutines.hpp"
stefank@2314 57 #include "runtime/threadCritical.hpp"
stefank@2314 58 #include "runtime/timer.hpp"
stefank@2314 59 #include "services/attachListener.hpp"
stefank@2314 60 #include "services/runtimeService.hpp"
stefank@2314 61 #include "thread_linux.inline.hpp"
zgu@2364 62 #include "utilities/decoder.hpp"
stefank@2314 63 #include "utilities/defaultStream.hpp"
stefank@2314 64 #include "utilities/events.hpp"
stefank@2314 65 #include "utilities/growableArray.hpp"
stefank@2314 66 #include "utilities/vmError.hpp"
stefank@2314 67 #ifdef TARGET_ARCH_x86
stefank@2314 68 # include "assembler_x86.inline.hpp"
stefank@2314 69 # include "nativeInst_x86.hpp"
stefank@2314 70 #endif
stefank@2314 71 #ifdef TARGET_ARCH_sparc
stefank@2314 72 # include "assembler_sparc.inline.hpp"
stefank@2314 73 # include "nativeInst_sparc.hpp"
stefank@2314 74 #endif
stefank@2314 75 #ifdef TARGET_ARCH_zero
stefank@2314 76 # include "assembler_zero.inline.hpp"
stefank@2314 77 # include "nativeInst_zero.hpp"
stefank@2314 78 #endif
bobv@2508 79 #ifdef TARGET_ARCH_arm
bobv@2508 80 # include "assembler_arm.inline.hpp"
bobv@2508 81 # include "nativeInst_arm.hpp"
bobv@2508 82 #endif
bobv@2508 83 #ifdef TARGET_ARCH_ppc
bobv@2508 84 # include "assembler_ppc.inline.hpp"
bobv@2508 85 # include "nativeInst_ppc.hpp"
bobv@2508 86 #endif
stefank@2314 87 #ifdef COMPILER1
stefank@2314 88 #include "c1/c1_Runtime1.hpp"
stefank@2314 89 #endif
stefank@2314 90 #ifdef COMPILER2
stefank@2314 91 #include "opto/runtime.hpp"
stefank@2314 92 #endif
duke@435 93
duke@435 94 // put OS-includes here
duke@435 95 # include <sys/types.h>
duke@435 96 # include <sys/mman.h>
bobv@2036 97 # include <sys/stat.h>
bobv@2036 98 # include <sys/select.h>
duke@435 99 # include <pthread.h>
duke@435 100 # include <signal.h>
duke@435 101 # include <errno.h>
duke@435 102 # include <dlfcn.h>
duke@435 103 # include <stdio.h>
duke@435 104 # include <unistd.h>
duke@435 105 # include <sys/resource.h>
duke@435 106 # include <pthread.h>
duke@435 107 # include <sys/stat.h>
duke@435 108 # include <sys/time.h>
duke@435 109 # include <sys/times.h>
duke@435 110 # include <sys/utsname.h>
duke@435 111 # include <sys/socket.h>
duke@435 112 # include <sys/wait.h>
duke@435 113 # include <pwd.h>
duke@435 114 # include <poll.h>
duke@435 115 # include <semaphore.h>
duke@435 116 # include <fcntl.h>
duke@435 117 # include <string.h>
duke@435 118 # include <syscall.h>
duke@435 119 # include <sys/sysinfo.h>
duke@435 120 # include <gnu/libc-version.h>
duke@435 121 # include <sys/ipc.h>
duke@435 122 # include <sys/shm.h>
duke@435 123 # include <link.h>
coleenp@1755 124 # include <stdint.h>
coleenp@1755 125 # include <inttypes.h>
dholmes@2375 126 # include <sys/ioctl.h>
duke@435 127
duke@435 128 #define MAX_PATH (2 * K)
duke@435 129
duke@435 130 // for timer info max values which include all bits
duke@435 131 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 132 #define SEC_IN_NANOSECS 1000000000LL
duke@435 133
duke@435 134 ////////////////////////////////////////////////////////////////////////////////
duke@435 135 // global variables
duke@435 136 julong os::Linux::_physical_memory = 0;
duke@435 137
duke@435 138 address os::Linux::_initial_thread_stack_bottom = NULL;
duke@435 139 uintptr_t os::Linux::_initial_thread_stack_size = 0;
duke@435 140
duke@435 141 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
duke@435 142 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
duke@435 143 Mutex* os::Linux::_createThread_lock = NULL;
duke@435 144 pthread_t os::Linux::_main_thread;
duke@435 145 int os::Linux::_page_size = -1;
duke@435 146 bool os::Linux::_is_floating_stack = false;
duke@435 147 bool os::Linux::_is_NPTL = false;
duke@435 148 bool os::Linux::_supports_fast_thread_cpu_time = false;
xlu@634 149 const char * os::Linux::_glibc_version = NULL;
xlu@634 150 const char * os::Linux::_libpthread_version = NULL;
duke@435 151
duke@435 152 static jlong initial_time_count=0;
duke@435 153
duke@435 154 static int clock_tics_per_sec = 100;
duke@435 155
duke@435 156 // For diagnostics to print a message once. see run_periodic_checks
duke@435 157 static sigset_t check_signal_done;
duke@435 158 static bool check_signals = true;;
duke@435 159
duke@435 160 static pid_t _initial_pid = 0;
duke@435 161
duke@435 162 /* Signal number used to suspend/resume a thread */
duke@435 163
duke@435 164 /* do not use any signal number less than SIGSEGV, see 4355769 */
duke@435 165 static int SR_signum = SIGUSR2;
duke@435 166 sigset_t SR_sigset;
duke@435 167
kamg@677 168 /* Used to protect dlsym() calls */
kamg@677 169 static pthread_mutex_t dl_mutex;
kamg@677 170
duke@435 171 ////////////////////////////////////////////////////////////////////////////////
duke@435 172 // utility functions
duke@435 173
duke@435 174 static int SR_initialize();
duke@435 175 static int SR_finalize();
duke@435 176
duke@435 177 julong os::available_memory() {
duke@435 178 return Linux::available_memory();
duke@435 179 }
duke@435 180
duke@435 181 julong os::Linux::available_memory() {
duke@435 182 // values in struct sysinfo are "unsigned long"
duke@435 183 struct sysinfo si;
duke@435 184 sysinfo(&si);
duke@435 185
duke@435 186 return (julong)si.freeram * si.mem_unit;
duke@435 187 }
duke@435 188
duke@435 189 julong os::physical_memory() {
duke@435 190 return Linux::physical_memory();
duke@435 191 }
duke@435 192
phh@455 193 julong os::allocatable_physical_memory(julong size) {
phh@455 194 #ifdef _LP64
phh@455 195 return size;
phh@455 196 #else
phh@455 197 julong result = MIN2(size, (julong)3800*M);
phh@455 198 if (!is_allocatable(result)) {
phh@455 199 // See comments under solaris for alignment considerations
phh@455 200 julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
phh@455 201 result = MIN2(size, reasonable_size);
phh@455 202 }
phh@455 203 return result;
phh@455 204 #endif // _LP64
phh@455 205 }
phh@455 206
duke@435 207 ////////////////////////////////////////////////////////////////////////////////
duke@435 208 // environment support
duke@435 209
duke@435 210 bool os::getenv(const char* name, char* buf, int len) {
duke@435 211 const char* val = ::getenv(name);
duke@435 212 if (val != NULL && strlen(val) < (size_t)len) {
duke@435 213 strcpy(buf, val);
duke@435 214 return true;
duke@435 215 }
duke@435 216 if (len > 0) buf[0] = 0; // return a null string
duke@435 217 return false;
duke@435 218 }
duke@435 219
duke@435 220
duke@435 221 // Return true if user is running as root.
duke@435 222
duke@435 223 bool os::have_special_privileges() {
duke@435 224 static bool init = false;
duke@435 225 static bool privileges = false;
duke@435 226 if (!init) {
duke@435 227 privileges = (getuid() != geteuid()) || (getgid() != getegid());
duke@435 228 init = true;
duke@435 229 }
duke@435 230 return privileges;
duke@435 231 }
duke@435 232
duke@435 233
duke@435 234 #ifndef SYS_gettid
duke@435 235 // i386: 224, ia64: 1105, amd64: 186, sparc 143
duke@435 236 #ifdef __ia64__
duke@435 237 #define SYS_gettid 1105
duke@435 238 #elif __i386__
duke@435 239 #define SYS_gettid 224
duke@435 240 #elif __amd64__
duke@435 241 #define SYS_gettid 186
duke@435 242 #elif __sparc__
duke@435 243 #define SYS_gettid 143
duke@435 244 #else
duke@435 245 #error define gettid for the arch
duke@435 246 #endif
duke@435 247 #endif
duke@435 248
duke@435 249 // Cpu architecture string
never@1445 250 #if defined(ZERO)
never@1445 251 static char cpu_arch[] = ZERO_LIBARCH;
never@1445 252 #elif defined(IA64)
duke@435 253 static char cpu_arch[] = "ia64";
duke@435 254 #elif defined(IA32)
duke@435 255 static char cpu_arch[] = "i386";
duke@435 256 #elif defined(AMD64)
duke@435 257 static char cpu_arch[] = "amd64";
bobv@2036 258 #elif defined(ARM)
bobv@2036 259 static char cpu_arch[] = "arm";
bobv@2036 260 #elif defined(PPC)
bobv@2036 261 static char cpu_arch[] = "ppc";
duke@435 262 #elif defined(SPARC)
duke@435 263 # ifdef _LP64
duke@435 264 static char cpu_arch[] = "sparcv9";
duke@435 265 # else
duke@435 266 static char cpu_arch[] = "sparc";
duke@435 267 # endif
duke@435 268 #else
duke@435 269 #error Add appropriate cpu_arch setting
duke@435 270 #endif
duke@435 271
duke@435 272
duke@435 273 // pid_t gettid()
duke@435 274 //
duke@435 275 // Returns the kernel thread id of the currently running thread. Kernel
duke@435 276 // thread id is used to access /proc.
duke@435 277 //
duke@435 278 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
duke@435 279 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
duke@435 280 //
duke@435 281 pid_t os::Linux::gettid() {
duke@435 282 int rslt = syscall(SYS_gettid);
duke@435 283 if (rslt == -1) {
duke@435 284 // old kernel, no NPTL support
duke@435 285 return getpid();
duke@435 286 } else {
duke@435 287 return (pid_t)rslt;
duke@435 288 }
duke@435 289 }
duke@435 290
duke@435 291 // Most versions of linux have a bug where the number of processors are
duke@435 292 // determined by looking at the /proc file system. In a chroot environment,
duke@435 293 // the system call returns 1. This causes the VM to act as if it is
duke@435 294 // a single processor and elide locking (see is_MP() call).
duke@435 295 static bool unsafe_chroot_detected = false;
xlu@634 296 static const char *unstable_chroot_error = "/proc file system not found.\n"
xlu@634 297 "Java may be unstable running multithreaded in a chroot "
xlu@634 298 "environment on Linux when /proc filesystem is not mounted.";
duke@435 299
duke@435 300 void os::Linux::initialize_system_info() {
phh@1558 301 set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
phh@1558 302 if (processor_count() == 1) {
duke@435 303 pid_t pid = os::Linux::gettid();
duke@435 304 char fname[32];
duke@435 305 jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
duke@435 306 FILE *fp = fopen(fname, "r");
duke@435 307 if (fp == NULL) {
duke@435 308 unsafe_chroot_detected = true;
duke@435 309 } else {
duke@435 310 fclose(fp);
duke@435 311 }
duke@435 312 }
duke@435 313 _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
phh@1558 314 assert(processor_count() > 0, "linux error");
duke@435 315 }
duke@435 316
duke@435 317 void os::init_system_properties_values() {
duke@435 318 // char arch[12];
duke@435 319 // sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
duke@435 320
duke@435 321 // The next steps are taken in the product version:
duke@435 322 //
duke@435 323 // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
duke@435 324 // This library should be located at:
duke@435 325 // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
duke@435 326 //
duke@435 327 // If "/jre/lib/" appears at the right place in the path, then we
duke@435 328 // assume libjvm[_g].so is installed in a JDK and we use this path.
duke@435 329 //
duke@435 330 // Otherwise exit with message: "Could not create the Java virtual machine."
duke@435 331 //
duke@435 332 // The following extra steps are taken in the debugging version:
duke@435 333 //
duke@435 334 // If "/jre/lib/" does NOT appear at the right place in the path
duke@435 335 // instead of exit check for $JAVA_HOME environment variable.
duke@435 336 //
duke@435 337 // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
duke@435 338 // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
duke@435 339 // it looks like libjvm[_g].so is installed there
duke@435 340 // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
duke@435 341 //
duke@435 342 // Otherwise exit.
duke@435 343 //
duke@435 344 // Important note: if the location of libjvm.so changes this
duke@435 345 // code needs to be changed accordingly.
duke@435 346
duke@435 347 // The next few definitions allow the code to be verbatim:
duke@435 348 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
duke@435 349 #define getenv(n) ::getenv(n)
duke@435 350
duke@435 351 /*
duke@435 352 * See ld(1):
duke@435 353 * The linker uses the following search paths to locate required
duke@435 354 * shared libraries:
duke@435 355 * 1: ...
duke@435 356 * ...
duke@435 357 * 7: The default directories, normally /lib and /usr/lib.
duke@435 358 */
kvn@944 359 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
kvn@944 360 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
kvn@944 361 #else
duke@435 362 #define DEFAULT_LIBPATH "/lib:/usr/lib"
kvn@944 363 #endif
duke@435 364
duke@435 365 #define EXTENSIONS_DIR "/lib/ext"
duke@435 366 #define ENDORSED_DIR "/lib/endorsed"
duke@435 367 #define REG_DIR "/usr/java/packages"
duke@435 368
duke@435 369 {
duke@435 370 /* sysclasspath, java_home, dll_dir */
duke@435 371 {
duke@435 372 char *home_path;
duke@435 373 char *dll_path;
duke@435 374 char *pslash;
duke@435 375 char buf[MAXPATHLEN];
duke@435 376 os::jvm_path(buf, sizeof(buf));
duke@435 377
duke@435 378 // Found the full path to libjvm.so.
duke@435 379 // Now cut the path to <java_home>/jre if we can.
duke@435 380 *(strrchr(buf, '/')) = '\0'; /* get rid of /libjvm.so */
duke@435 381 pslash = strrchr(buf, '/');
duke@435 382 if (pslash != NULL)
duke@435 383 *pslash = '\0'; /* get rid of /{client|server|hotspot} */
duke@435 384 dll_path = malloc(strlen(buf) + 1);
duke@435 385 if (dll_path == NULL)
duke@435 386 return;
duke@435 387 strcpy(dll_path, buf);
duke@435 388 Arguments::set_dll_dir(dll_path);
duke@435 389
duke@435 390 if (pslash != NULL) {
duke@435 391 pslash = strrchr(buf, '/');
duke@435 392 if (pslash != NULL) {
duke@435 393 *pslash = '\0'; /* get rid of /<arch> */
duke@435 394 pslash = strrchr(buf, '/');
duke@435 395 if (pslash != NULL)
duke@435 396 *pslash = '\0'; /* get rid of /lib */
duke@435 397 }
duke@435 398 }
duke@435 399
duke@435 400 home_path = malloc(strlen(buf) + 1);
duke@435 401 if (home_path == NULL)
duke@435 402 return;
duke@435 403 strcpy(home_path, buf);
duke@435 404 Arguments::set_java_home(home_path);
duke@435 405
duke@435 406 if (!set_boot_path('/', ':'))
duke@435 407 return;
duke@435 408 }
duke@435 409
duke@435 410 /*
duke@435 411 * Where to look for native libraries
duke@435 412 *
duke@435 413 * Note: Due to a legacy implementation, most of the library path
duke@435 414 * is set in the launcher. This was to accomodate linking restrictions
duke@435 415 * on legacy Linux implementations (which are no longer supported).
duke@435 416 * Eventually, all the library path setting will be done here.
duke@435 417 *
duke@435 418 * However, to prevent the proliferation of improperly built native
duke@435 419 * libraries, the new path component /usr/java/packages is added here.
duke@435 420 * Eventually, all the library path setting will be done here.
duke@435 421 */
duke@435 422 {
duke@435 423 char *ld_library_path;
duke@435 424
duke@435 425 /*
duke@435 426 * Construct the invariant part of ld_library_path. Note that the
duke@435 427 * space for the colon and the trailing null are provided by the
duke@435 428 * nulls included by the sizeof operator (so actually we allocate
duke@435 429 * a byte more than necessary).
duke@435 430 */
duke@435 431 ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
duke@435 432 strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
duke@435 433 sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
duke@435 434
duke@435 435 /*
duke@435 436 * Get the user setting of LD_LIBRARY_PATH, and prepended it. It
duke@435 437 * should always exist (until the legacy problem cited above is
duke@435 438 * addressed).
duke@435 439 */
duke@435 440 char *v = getenv("LD_LIBRARY_PATH");
duke@435 441 if (v != NULL) {
duke@435 442 char *t = ld_library_path;
duke@435 443 /* That's +1 for the colon and +1 for the trailing '\0' */
duke@435 444 ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
duke@435 445 sprintf(ld_library_path, "%s:%s", v, t);
duke@435 446 }
duke@435 447 Arguments::set_library_path(ld_library_path);
duke@435 448 }
duke@435 449
duke@435 450 /*
duke@435 451 * Extensions directories.
duke@435 452 *
duke@435 453 * Note that the space for the colon and the trailing null are provided
duke@435 454 * by the nulls included by the sizeof operator (so actually one byte more
duke@435 455 * than necessary is allocated).
duke@435 456 */
duke@435 457 {
duke@435 458 char *buf = malloc(strlen(Arguments::get_java_home()) +
duke@435 459 sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
duke@435 460 sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
duke@435 461 Arguments::get_java_home());
duke@435 462 Arguments::set_ext_dirs(buf);
duke@435 463 }
duke@435 464
duke@435 465 /* Endorsed standards default directory. */
duke@435 466 {
duke@435 467 char * buf;
duke@435 468 buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
duke@435 469 sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
duke@435 470 Arguments::set_endorsed_dirs(buf);
duke@435 471 }
duke@435 472 }
duke@435 473
duke@435 474 #undef malloc
duke@435 475 #undef getenv
duke@435 476 #undef EXTENSIONS_DIR
duke@435 477 #undef ENDORSED_DIR
duke@435 478
duke@435 479 // Done
duke@435 480 return;
duke@435 481 }
duke@435 482
duke@435 483 ////////////////////////////////////////////////////////////////////////////////
duke@435 484 // breakpoint support
duke@435 485
duke@435 486 void os::breakpoint() {
duke@435 487 BREAKPOINT;
duke@435 488 }
duke@435 489
duke@435 490 extern "C" void breakpoint() {
duke@435 491 // use debugger to set breakpoint here
duke@435 492 }
duke@435 493
duke@435 494 ////////////////////////////////////////////////////////////////////////////////
duke@435 495 // signal support
duke@435 496
duke@435 497 debug_only(static bool signal_sets_initialized = false);
duke@435 498 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
duke@435 499
duke@435 500 bool os::Linux::is_sig_ignored(int sig) {
duke@435 501 struct sigaction oact;
duke@435 502 sigaction(sig, (struct sigaction*)NULL, &oact);
duke@435 503 void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
duke@435 504 : CAST_FROM_FN_PTR(void*, oact.sa_handler);
duke@435 505 if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
duke@435 506 return true;
duke@435 507 else
duke@435 508 return false;
duke@435 509 }
duke@435 510
duke@435 511 void os::Linux::signal_sets_init() {
duke@435 512 // Should also have an assertion stating we are still single-threaded.
duke@435 513 assert(!signal_sets_initialized, "Already initialized");
duke@435 514 // Fill in signals that are necessarily unblocked for all threads in
duke@435 515 // the VM. Currently, we unblock the following signals:
duke@435 516 // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
duke@435 517 // by -Xrs (=ReduceSignalUsage));
duke@435 518 // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
duke@435 519 // other threads. The "ReduceSignalUsage" boolean tells us not to alter
duke@435 520 // the dispositions or masks wrt these signals.
duke@435 521 // Programs embedding the VM that want to use the above signals for their
duke@435 522 // own purposes must, at this time, use the "-Xrs" option to prevent
duke@435 523 // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
duke@435 524 // (See bug 4345157, and other related bugs).
duke@435 525 // In reality, though, unblocking these signals is really a nop, since
duke@435 526 // these signals are not blocked by default.
duke@435 527 sigemptyset(&unblocked_sigs);
duke@435 528 sigemptyset(&allowdebug_blocked_sigs);
duke@435 529 sigaddset(&unblocked_sigs, SIGILL);
duke@435 530 sigaddset(&unblocked_sigs, SIGSEGV);
duke@435 531 sigaddset(&unblocked_sigs, SIGBUS);
duke@435 532 sigaddset(&unblocked_sigs, SIGFPE);
duke@435 533 sigaddset(&unblocked_sigs, SR_signum);
duke@435 534
duke@435 535 if (!ReduceSignalUsage) {
duke@435 536 if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
duke@435 537 sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 538 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 539 }
duke@435 540 if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
duke@435 541 sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 542 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 543 }
duke@435 544 if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
duke@435 545 sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 546 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 547 }
duke@435 548 }
duke@435 549 // Fill in signals that are blocked by all but the VM thread.
duke@435 550 sigemptyset(&vm_sigs);
duke@435 551 if (!ReduceSignalUsage)
duke@435 552 sigaddset(&vm_sigs, BREAK_SIGNAL);
duke@435 553 debug_only(signal_sets_initialized = true);
duke@435 554
duke@435 555 }
duke@435 556
duke@435 557 // These are signals that are unblocked while a thread is running Java.
duke@435 558 // (For some reason, they get blocked by default.)
duke@435 559 sigset_t* os::Linux::unblocked_signals() {
duke@435 560 assert(signal_sets_initialized, "Not initialized");
duke@435 561 return &unblocked_sigs;
duke@435 562 }
duke@435 563
duke@435 564 // These are the signals that are blocked while a (non-VM) thread is
duke@435 565 // running Java. Only the VM thread handles these signals.
duke@435 566 sigset_t* os::Linux::vm_signals() {
duke@435 567 assert(signal_sets_initialized, "Not initialized");
duke@435 568 return &vm_sigs;
duke@435 569 }
duke@435 570
duke@435 571 // These are signals that are blocked during cond_wait to allow debugger in
duke@435 572 sigset_t* os::Linux::allowdebug_blocked_signals() {
duke@435 573 assert(signal_sets_initialized, "Not initialized");
duke@435 574 return &allowdebug_blocked_sigs;
duke@435 575 }
duke@435 576
duke@435 577 void os::Linux::hotspot_sigmask(Thread* thread) {
duke@435 578
duke@435 579 //Save caller's signal mask before setting VM signal mask
duke@435 580 sigset_t caller_sigmask;
duke@435 581 pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
duke@435 582
duke@435 583 OSThread* osthread = thread->osthread();
duke@435 584 osthread->set_caller_sigmask(caller_sigmask);
duke@435 585
duke@435 586 pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
duke@435 587
duke@435 588 if (!ReduceSignalUsage) {
duke@435 589 if (thread->is_VM_thread()) {
duke@435 590 // Only the VM thread handles BREAK_SIGNAL ...
duke@435 591 pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
duke@435 592 } else {
duke@435 593 // ... all other threads block BREAK_SIGNAL
duke@435 594 pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
duke@435 595 }
duke@435 596 }
duke@435 597 }
duke@435 598
duke@435 599 //////////////////////////////////////////////////////////////////////////////
duke@435 600 // detecting pthread library
duke@435 601
duke@435 602 void os::Linux::libpthread_init() {
duke@435 603 // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
duke@435 604 // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
duke@435 605 // generic name for earlier versions.
duke@435 606 // Define macros here so we can build HotSpot on old systems.
duke@435 607 # ifndef _CS_GNU_LIBC_VERSION
duke@435 608 # define _CS_GNU_LIBC_VERSION 2
duke@435 609 # endif
duke@435 610 # ifndef _CS_GNU_LIBPTHREAD_VERSION
duke@435 611 # define _CS_GNU_LIBPTHREAD_VERSION 3
duke@435 612 # endif
duke@435 613
duke@435 614 size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
duke@435 615 if (n > 0) {
duke@435 616 char *str = (char *)malloc(n);
duke@435 617 confstr(_CS_GNU_LIBC_VERSION, str, n);
duke@435 618 os::Linux::set_glibc_version(str);
duke@435 619 } else {
duke@435 620 // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
duke@435 621 static char _gnu_libc_version[32];
duke@435 622 jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
duke@435 623 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
duke@435 624 os::Linux::set_glibc_version(_gnu_libc_version);
duke@435 625 }
duke@435 626
duke@435 627 n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
duke@435 628 if (n > 0) {
duke@435 629 char *str = (char *)malloc(n);
duke@435 630 confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
duke@435 631 // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
duke@435 632 // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
xlu@634 633 // is the case. LinuxThreads has a hard limit on max number of threads.
xlu@634 634 // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
xlu@634 635 // On the other hand, NPTL does not have such a limit, sysconf()
xlu@634 636 // will return -1 and errno is not changed. Check if it is really NPTL.
duke@435 637 if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
xlu@634 638 strstr(str, "NPTL") &&
xlu@634 639 sysconf(_SC_THREAD_THREADS_MAX) > 0) {
xlu@634 640 free(str);
xlu@634 641 os::Linux::set_libpthread_version("linuxthreads");
xlu@634 642 } else {
xlu@634 643 os::Linux::set_libpthread_version(str);
duke@435 644 }
duke@435 645 } else {
xlu@634 646 // glibc before 2.3.2 only has LinuxThreads.
xlu@634 647 os::Linux::set_libpthread_version("linuxthreads");
duke@435 648 }
duke@435 649
duke@435 650 if (strstr(libpthread_version(), "NPTL")) {
duke@435 651 os::Linux::set_is_NPTL();
duke@435 652 } else {
duke@435 653 os::Linux::set_is_LinuxThreads();
duke@435 654 }
duke@435 655
duke@435 656 // LinuxThreads have two flavors: floating-stack mode, which allows variable
duke@435 657 // stack size; and fixed-stack mode. NPTL is always floating-stack.
duke@435 658 if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
duke@435 659 os::Linux::set_is_floating_stack();
duke@435 660 }
duke@435 661 }
duke@435 662
duke@435 663 /////////////////////////////////////////////////////////////////////////////
duke@435 664 // thread stack
duke@435 665
duke@435 666 // Force Linux kernel to expand current thread stack. If "bottom" is close
duke@435 667 // to the stack guard, caller should block all signals.
duke@435 668 //
duke@435 669 // MAP_GROWSDOWN:
duke@435 670 // A special mmap() flag that is used to implement thread stacks. It tells
duke@435 671 // kernel that the memory region should extend downwards when needed. This
duke@435 672 // allows early versions of LinuxThreads to only mmap the first few pages
duke@435 673 // when creating a new thread. Linux kernel will automatically expand thread
duke@435 674 // stack as needed (on page faults).
duke@435 675 //
duke@435 676 // However, because the memory region of a MAP_GROWSDOWN stack can grow on
duke@435 677 // demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
duke@435 678 // region, it's hard to tell if the fault is due to a legitimate stack
duke@435 679 // access or because of reading/writing non-exist memory (e.g. buffer
duke@435 680 // overrun). As a rule, if the fault happens below current stack pointer,
duke@435 681 // Linux kernel does not expand stack, instead a SIGSEGV is sent to the
duke@435 682 // application (see Linux kernel fault.c).
duke@435 683 //
duke@435 684 // This Linux feature can cause SIGSEGV when VM bangs thread stack for
duke@435 685 // stack overflow detection.
duke@435 686 //
duke@435 687 // Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
duke@435 688 // not use this flag. However, the stack of initial thread is not created
duke@435 689 // by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
duke@435 690 // unlikely) that user code can create a thread with MAP_GROWSDOWN stack
duke@435 691 // and then attach the thread to JVM.
duke@435 692 //
duke@435 693 // To get around the problem and allow stack banging on Linux, we need to
duke@435 694 // manually expand thread stack after receiving the SIGSEGV.
duke@435 695 //
duke@435 696 // There are two ways to expand thread stack to address "bottom", we used
duke@435 697 // both of them in JVM before 1.5:
duke@435 698 // 1. adjust stack pointer first so that it is below "bottom", and then
duke@435 699 // touch "bottom"
duke@435 700 // 2. mmap() the page in question
duke@435 701 //
duke@435 702 // Now alternate signal stack is gone, it's harder to use 2. For instance,
duke@435 703 // if current sp is already near the lower end of page 101, and we need to
duke@435 704 // call mmap() to map page 100, it is possible that part of the mmap() frame
duke@435 705 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
duke@435 706 // That will destroy the mmap() frame and cause VM to crash.
duke@435 707 //
duke@435 708 // The following code works by adjusting sp first, then accessing the "bottom"
duke@435 709 // page to force a page fault. Linux kernel will then automatically expand the
duke@435 710 // stack mapping.
duke@435 711 //
duke@435 712 // _expand_stack_to() assumes its frame size is less than page size, which
duke@435 713 // should always be true if the function is not inlined.
duke@435 714
duke@435 715 #if __GNUC__ < 3 // gcc 2.x does not support noinline attribute
duke@435 716 #define NOINLINE
duke@435 717 #else
duke@435 718 #define NOINLINE __attribute__ ((noinline))
duke@435 719 #endif
duke@435 720
duke@435 721 static void _expand_stack_to(address bottom) NOINLINE;
duke@435 722
duke@435 723 static void _expand_stack_to(address bottom) {
duke@435 724 address sp;
duke@435 725 size_t size;
duke@435 726 volatile char *p;
duke@435 727
duke@435 728 // Adjust bottom to point to the largest address within the same page, it
duke@435 729 // gives us a one-page buffer if alloca() allocates slightly more memory.
duke@435 730 bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
duke@435 731 bottom += os::Linux::page_size() - 1;
duke@435 732
duke@435 733 // sp might be slightly above current stack pointer; if that's the case, we
duke@435 734 // will alloca() a little more space than necessary, which is OK. Don't use
duke@435 735 // os::current_stack_pointer(), as its result can be slightly below current
duke@435 736 // stack pointer, causing us to not alloca enough to reach "bottom".
duke@435 737 sp = (address)&sp;
duke@435 738
duke@435 739 if (sp > bottom) {
duke@435 740 size = sp - bottom;
duke@435 741 p = (volatile char *)alloca(size);
duke@435 742 assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
duke@435 743 p[0] = '\0';
duke@435 744 }
duke@435 745 }
duke@435 746
duke@435 747 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
duke@435 748 assert(t!=NULL, "just checking");
duke@435 749 assert(t->osthread()->expanding_stack(), "expand should be set");
duke@435 750 assert(t->stack_base() != NULL, "stack_base was not initialized");
duke@435 751
duke@435 752 if (addr < t->stack_base() && addr >= t->stack_yellow_zone_base()) {
duke@435 753 sigset_t mask_all, old_sigset;
duke@435 754 sigfillset(&mask_all);
duke@435 755 pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
duke@435 756 _expand_stack_to(addr);
duke@435 757 pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
duke@435 758 return true;
duke@435 759 }
duke@435 760 return false;
duke@435 761 }
duke@435 762
duke@435 763 //////////////////////////////////////////////////////////////////////////////
duke@435 764 // create new thread
duke@435 765
duke@435 766 static address highest_vm_reserved_address();
duke@435 767
duke@435 768 // check if it's safe to start a new thread
duke@435 769 static bool _thread_safety_check(Thread* thread) {
duke@435 770 if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
duke@435 771 // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
duke@435 772 // Heap is mmap'ed at lower end of memory space. Thread stacks are
duke@435 773 // allocated (MAP_FIXED) from high address space. Every thread stack
duke@435 774 // occupies a fixed size slot (usually 2Mbytes, but user can change
duke@435 775 // it to other values if they rebuild LinuxThreads).
duke@435 776 //
duke@435 777 // Problem with MAP_FIXED is that mmap() can still succeed even part of
duke@435 778 // the memory region has already been mmap'ed. That means if we have too
duke@435 779 // many threads and/or very large heap, eventually thread stack will
duke@435 780 // collide with heap.
duke@435 781 //
duke@435 782 // Here we try to prevent heap/stack collision by comparing current
duke@435 783 // stack bottom with the highest address that has been mmap'ed by JVM
duke@435 784 // plus a safety margin for memory maps created by native code.
duke@435 785 //
duke@435 786 // This feature can be disabled by setting ThreadSafetyMargin to 0
duke@435 787 //
duke@435 788 if (ThreadSafetyMargin > 0) {
duke@435 789 address stack_bottom = os::current_stack_base() - os::current_stack_size();
duke@435 790
duke@435 791 // not safe if our stack extends below the safety margin
duke@435 792 return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
duke@435 793 } else {
duke@435 794 return true;
duke@435 795 }
duke@435 796 } else {
duke@435 797 // Floating stack LinuxThreads or NPTL:
duke@435 798 // Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
duke@435 799 // there's not enough space left, pthread_create() will fail. If we come
duke@435 800 // here, that means enough space has been reserved for stack.
duke@435 801 return true;
duke@435 802 }
duke@435 803 }
duke@435 804
duke@435 805 // Thread start routine for all newly created threads
duke@435 806 static void *java_start(Thread *thread) {
duke@435 807 // Try to randomize the cache line index of hot stack frames.
duke@435 808 // This helps when threads of the same stack traces evict each other's
duke@435 809 // cache lines. The threads can be either from the same JVM instance, or
duke@435 810 // from different JVM instances. The benefit is especially true for
duke@435 811 // processors with hyperthreading technology.
duke@435 812 static int counter = 0;
duke@435 813 int pid = os::current_process_id();
duke@435 814 alloca(((pid ^ counter++) & 7) * 128);
duke@435 815
duke@435 816 ThreadLocalStorage::set_thread(thread);
duke@435 817
duke@435 818 OSThread* osthread = thread->osthread();
duke@435 819 Monitor* sync = osthread->startThread_lock();
duke@435 820
duke@435 821 // non floating stack LinuxThreads needs extra check, see above
duke@435 822 if (!_thread_safety_check(thread)) {
duke@435 823 // notify parent thread
duke@435 824 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 825 osthread->set_state(ZOMBIE);
duke@435 826 sync->notify_all();
duke@435 827 return NULL;
duke@435 828 }
duke@435 829
duke@435 830 // thread_id is kernel thread id (similar to Solaris LWP id)
duke@435 831 osthread->set_thread_id(os::Linux::gettid());
duke@435 832
duke@435 833 if (UseNUMA) {
duke@435 834 int lgrp_id = os::numa_get_group_id();
duke@435 835 if (lgrp_id != -1) {
duke@435 836 thread->set_lgrp_id(lgrp_id);
duke@435 837 }
duke@435 838 }
duke@435 839 // initialize signal mask for this thread
duke@435 840 os::Linux::hotspot_sigmask(thread);
duke@435 841
duke@435 842 // initialize floating point control register
duke@435 843 os::Linux::init_thread_fpu_state();
duke@435 844
duke@435 845 // handshaking with parent thread
duke@435 846 {
duke@435 847 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 848
duke@435 849 // notify parent thread
duke@435 850 osthread->set_state(INITIALIZED);
duke@435 851 sync->notify_all();
duke@435 852
duke@435 853 // wait until os::start_thread()
duke@435 854 while (osthread->get_state() == INITIALIZED) {
duke@435 855 sync->wait(Mutex::_no_safepoint_check_flag);
duke@435 856 }
duke@435 857 }
duke@435 858
duke@435 859 // call one more level start routine
duke@435 860 thread->run();
duke@435 861
duke@435 862 return 0;
duke@435 863 }
duke@435 864
duke@435 865 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 866 assert(thread->osthread() == NULL, "caller responsible");
duke@435 867
duke@435 868 // Allocate the OSThread object
duke@435 869 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 870 if (osthread == NULL) {
duke@435 871 return false;
duke@435 872 }
duke@435 873
duke@435 874 // set the correct thread state
duke@435 875 osthread->set_thread_type(thr_type);
duke@435 876
duke@435 877 // Initial state is ALLOCATED but not INITIALIZED
duke@435 878 osthread->set_state(ALLOCATED);
duke@435 879
duke@435 880 thread->set_osthread(osthread);
duke@435 881
duke@435 882 // init thread attributes
duke@435 883 pthread_attr_t attr;
duke@435 884 pthread_attr_init(&attr);
duke@435 885 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
duke@435 886
duke@435 887 // stack size
duke@435 888 if (os::Linux::supports_variable_stack_size()) {
duke@435 889 // calculate stack size if it's not specified by caller
duke@435 890 if (stack_size == 0) {
duke@435 891 stack_size = os::Linux::default_stack_size(thr_type);
duke@435 892
duke@435 893 switch (thr_type) {
duke@435 894 case os::java_thread:
coleenp@2222 895 // Java threads use ThreadStackSize which default value can be
coleenp@2222 896 // changed with the flag -Xss
coleenp@2222 897 assert (JavaThread::stack_size_at_create() > 0, "this should be set");
coleenp@2222 898 stack_size = JavaThread::stack_size_at_create();
duke@435 899 break;
duke@435 900 case os::compiler_thread:
duke@435 901 if (CompilerThreadStackSize > 0) {
duke@435 902 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 903 break;
duke@435 904 } // else fall through:
duke@435 905 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 906 case os::vm_thread:
duke@435 907 case os::pgc_thread:
duke@435 908 case os::cgc_thread:
duke@435 909 case os::watcher_thread:
duke@435 910 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 911 break;
duke@435 912 }
duke@435 913 }
duke@435 914
duke@435 915 stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
duke@435 916 pthread_attr_setstacksize(&attr, stack_size);
duke@435 917 } else {
duke@435 918 // let pthread_create() pick the default value.
duke@435 919 }
duke@435 920
duke@435 921 // glibc guard page
duke@435 922 pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
duke@435 923
duke@435 924 ThreadState state;
duke@435 925
duke@435 926 {
duke@435 927 // Serialize thread creation if we are running with fixed stack LinuxThreads
duke@435 928 bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
duke@435 929 if (lock) {
duke@435 930 os::Linux::createThread_lock()->lock_without_safepoint_check();
duke@435 931 }
duke@435 932
duke@435 933 pthread_t tid;
duke@435 934 int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
duke@435 935
duke@435 936 pthread_attr_destroy(&attr);
duke@435 937
duke@435 938 if (ret != 0) {
duke@435 939 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 940 perror("pthread_create()");
duke@435 941 }
duke@435 942 // Need to clean up stuff we've allocated so far
duke@435 943 thread->set_osthread(NULL);
duke@435 944 delete osthread;
duke@435 945 if (lock) os::Linux::createThread_lock()->unlock();
duke@435 946 return false;
duke@435 947 }
duke@435 948
duke@435 949 // Store pthread info into the OSThread
duke@435 950 osthread->set_pthread_id(tid);
duke@435 951
duke@435 952 // Wait until child thread is either initialized or aborted
duke@435 953 {
duke@435 954 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 955 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 956 while ((state = osthread->get_state()) == ALLOCATED) {
duke@435 957 sync_with_child->wait(Mutex::_no_safepoint_check_flag);
duke@435 958 }
duke@435 959 }
duke@435 960
duke@435 961 if (lock) {
duke@435 962 os::Linux::createThread_lock()->unlock();
duke@435 963 }
duke@435 964 }
duke@435 965
duke@435 966 // Aborted due to thread limit being reached
duke@435 967 if (state == ZOMBIE) {
duke@435 968 thread->set_osthread(NULL);
duke@435 969 delete osthread;
duke@435 970 return false;
duke@435 971 }
duke@435 972
duke@435 973 // The thread is returned suspended (in state INITIALIZED),
duke@435 974 // and is started higher up in the call chain
duke@435 975 assert(state == INITIALIZED, "race condition");
duke@435 976 return true;
duke@435 977 }
duke@435 978
duke@435 979 /////////////////////////////////////////////////////////////////////////////
duke@435 980 // attach existing thread
duke@435 981
duke@435 982 // bootstrap the main thread
duke@435 983 bool os::create_main_thread(JavaThread* thread) {
duke@435 984 assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
duke@435 985 return create_attached_thread(thread);
duke@435 986 }
duke@435 987
duke@435 988 bool os::create_attached_thread(JavaThread* thread) {
duke@435 989 #ifdef ASSERT
duke@435 990 thread->verify_not_published();
duke@435 991 #endif
duke@435 992
duke@435 993 // Allocate the OSThread object
duke@435 994 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 995
duke@435 996 if (osthread == NULL) {
duke@435 997 return false;
duke@435 998 }
duke@435 999
duke@435 1000 // Store pthread info into the OSThread
duke@435 1001 osthread->set_thread_id(os::Linux::gettid());
duke@435 1002 osthread->set_pthread_id(::pthread_self());
duke@435 1003
duke@435 1004 // initialize floating point control register
duke@435 1005 os::Linux::init_thread_fpu_state();
duke@435 1006
duke@435 1007 // Initial thread state is RUNNABLE
duke@435 1008 osthread->set_state(RUNNABLE);
duke@435 1009
duke@435 1010 thread->set_osthread(osthread);
duke@435 1011
duke@435 1012 if (UseNUMA) {
duke@435 1013 int lgrp_id = os::numa_get_group_id();
duke@435 1014 if (lgrp_id != -1) {
duke@435 1015 thread->set_lgrp_id(lgrp_id);
duke@435 1016 }
duke@435 1017 }
duke@435 1018
duke@435 1019 if (os::Linux::is_initial_thread()) {
duke@435 1020 // If current thread is initial thread, its stack is mapped on demand,
duke@435 1021 // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
duke@435 1022 // the entire stack region to avoid SEGV in stack banging.
duke@435 1023 // It is also useful to get around the heap-stack-gap problem on SuSE
duke@435 1024 // kernel (see 4821821 for details). We first expand stack to the top
duke@435 1025 // of yellow zone, then enable stack yellow zone (order is significant,
duke@435 1026 // enabling yellow zone first will crash JVM on SuSE Linux), so there
duke@435 1027 // is no gap between the last two virtual memory regions.
duke@435 1028
duke@435 1029 JavaThread *jt = (JavaThread *)thread;
duke@435 1030 address addr = jt->stack_yellow_zone_base();
duke@435 1031 assert(addr != NULL, "initialization problem?");
duke@435 1032 assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
duke@435 1033
duke@435 1034 osthread->set_expanding_stack();
duke@435 1035 os::Linux::manually_expand_stack(jt, addr);
duke@435 1036 osthread->clear_expanding_stack();
duke@435 1037 }
duke@435 1038
duke@435 1039 // initialize signal mask for this thread
duke@435 1040 // and save the caller's signal mask
duke@435 1041 os::Linux::hotspot_sigmask(thread);
duke@435 1042
duke@435 1043 return true;
duke@435 1044 }
duke@435 1045
duke@435 1046 void os::pd_start_thread(Thread* thread) {
duke@435 1047 OSThread * osthread = thread->osthread();
duke@435 1048 assert(osthread->get_state() != INITIALIZED, "just checking");
duke@435 1049 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 1050 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 1051 sync_with_child->notify();
duke@435 1052 }
duke@435 1053
duke@435 1054 // Free Linux resources related to the OSThread
duke@435 1055 void os::free_thread(OSThread* osthread) {
duke@435 1056 assert(osthread != NULL, "osthread not set");
duke@435 1057
duke@435 1058 if (Thread::current()->osthread() == osthread) {
duke@435 1059 // Restore caller's signal mask
duke@435 1060 sigset_t sigmask = osthread->caller_sigmask();
duke@435 1061 pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
duke@435 1062 }
duke@435 1063
duke@435 1064 delete osthread;
duke@435 1065 }
duke@435 1066
duke@435 1067 //////////////////////////////////////////////////////////////////////////////
duke@435 1068 // thread local storage
duke@435 1069
duke@435 1070 int os::allocate_thread_local_storage() {
duke@435 1071 pthread_key_t key;
duke@435 1072 int rslt = pthread_key_create(&key, NULL);
duke@435 1073 assert(rslt == 0, "cannot allocate thread local storage");
duke@435 1074 return (int)key;
duke@435 1075 }
duke@435 1076
duke@435 1077 // Note: This is currently not used by VM, as we don't destroy TLS key
duke@435 1078 // on VM exit.
duke@435 1079 void os::free_thread_local_storage(int index) {
duke@435 1080 int rslt = pthread_key_delete((pthread_key_t)index);
duke@435 1081 assert(rslt == 0, "invalid index");
duke@435 1082 }
duke@435 1083
duke@435 1084 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 1085 int rslt = pthread_setspecific((pthread_key_t)index, value);
duke@435 1086 assert(rslt == 0, "pthread_setspecific failed");
duke@435 1087 }
duke@435 1088
duke@435 1089 extern "C" Thread* get_thread() {
duke@435 1090 return ThreadLocalStorage::thread();
duke@435 1091 }
duke@435 1092
duke@435 1093 //////////////////////////////////////////////////////////////////////////////
duke@435 1094 // initial thread
duke@435 1095
duke@435 1096 // Check if current thread is the initial thread, similar to Solaris thr_main.
duke@435 1097 bool os::Linux::is_initial_thread(void) {
duke@435 1098 char dummy;
duke@435 1099 // If called before init complete, thread stack bottom will be null.
duke@435 1100 // Can be called if fatal error occurs before initialization.
duke@435 1101 if (initial_thread_stack_bottom() == NULL) return false;
duke@435 1102 assert(initial_thread_stack_bottom() != NULL &&
duke@435 1103 initial_thread_stack_size() != 0,
duke@435 1104 "os::init did not locate initial thread's stack region");
duke@435 1105 if ((address)&dummy >= initial_thread_stack_bottom() &&
duke@435 1106 (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
duke@435 1107 return true;
duke@435 1108 else return false;
duke@435 1109 }
duke@435 1110
duke@435 1111 // Find the virtual memory area that contains addr
duke@435 1112 static bool find_vma(address addr, address* vma_low, address* vma_high) {
duke@435 1113 FILE *fp = fopen("/proc/self/maps", "r");
duke@435 1114 if (fp) {
duke@435 1115 address low, high;
duke@435 1116 while (!feof(fp)) {
duke@435 1117 if (fscanf(fp, "%p-%p", &low, &high) == 2) {
duke@435 1118 if (low <= addr && addr < high) {
duke@435 1119 if (vma_low) *vma_low = low;
duke@435 1120 if (vma_high) *vma_high = high;
duke@435 1121 fclose (fp);
duke@435 1122 return true;
duke@435 1123 }
duke@435 1124 }
duke@435 1125 for (;;) {
duke@435 1126 int ch = fgetc(fp);
duke@435 1127 if (ch == EOF || ch == (int)'\n') break;
duke@435 1128 }
duke@435 1129 }
duke@435 1130 fclose(fp);
duke@435 1131 }
duke@435 1132 return false;
duke@435 1133 }
duke@435 1134
duke@435 1135 // Locate initial thread stack. This special handling of initial thread stack
duke@435 1136 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
duke@435 1137 // bogus value for initial thread.
duke@435 1138 void os::Linux::capture_initial_stack(size_t max_size) {
duke@435 1139 // stack size is the easy part, get it from RLIMIT_STACK
duke@435 1140 size_t stack_size;
duke@435 1141 struct rlimit rlim;
duke@435 1142 getrlimit(RLIMIT_STACK, &rlim);
duke@435 1143 stack_size = rlim.rlim_cur;
duke@435 1144
duke@435 1145 // 6308388: a bug in ld.so will relocate its own .data section to the
duke@435 1146 // lower end of primordial stack; reduce ulimit -s value a little bit
duke@435 1147 // so we won't install guard page on ld.so's data section.
duke@435 1148 stack_size -= 2 * page_size();
duke@435 1149
duke@435 1150 // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
duke@435 1151 // 7.1, in both cases we will get 2G in return value.
duke@435 1152 // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
duke@435 1153 // SuSE 7.2, Debian) can not handle alternate signal stack correctly
duke@435 1154 // for initial thread if its stack size exceeds 6M. Cap it at 2M,
duke@435 1155 // in case other parts in glibc still assumes 2M max stack size.
duke@435 1156 // FIXME: alt signal stack is gone, maybe we can relax this constraint?
duke@435 1157 #ifndef IA64
duke@435 1158 if (stack_size > 2 * K * K) stack_size = 2 * K * K;
duke@435 1159 #else
duke@435 1160 // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
duke@435 1161 if (stack_size > 4 * K * K) stack_size = 4 * K * K;
duke@435 1162 #endif
duke@435 1163
duke@435 1164 // Try to figure out where the stack base (top) is. This is harder.
duke@435 1165 //
duke@435 1166 // When an application is started, glibc saves the initial stack pointer in
duke@435 1167 // a global variable "__libc_stack_end", which is then used by system
duke@435 1168 // libraries. __libc_stack_end should be pretty close to stack top. The
duke@435 1169 // variable is available since the very early days. However, because it is
duke@435 1170 // a private interface, it could disappear in the future.
duke@435 1171 //
duke@435 1172 // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
duke@435 1173 // to __libc_stack_end, it is very close to stack top, but isn't the real
duke@435 1174 // stack top. Note that /proc may not exist if VM is running as a chroot
duke@435 1175 // program, so reading /proc/<pid>/stat could fail. Also the contents of
duke@435 1176 // /proc/<pid>/stat could change in the future (though unlikely).
duke@435 1177 //
duke@435 1178 // We try __libc_stack_end first. If that doesn't work, look for
duke@435 1179 // /proc/<pid>/stat. If neither of them works, we use current stack pointer
duke@435 1180 // as a hint, which should work well in most cases.
duke@435 1181
duke@435 1182 uintptr_t stack_start;
duke@435 1183
duke@435 1184 // try __libc_stack_end first
duke@435 1185 uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
duke@435 1186 if (p && *p) {
duke@435 1187 stack_start = *p;
duke@435 1188 } else {
duke@435 1189 // see if we can get the start_stack field from /proc/self/stat
duke@435 1190 FILE *fp;
duke@435 1191 int pid;
duke@435 1192 char state;
duke@435 1193 int ppid;
duke@435 1194 int pgrp;
duke@435 1195 int session;
duke@435 1196 int nr;
duke@435 1197 int tpgrp;
duke@435 1198 unsigned long flags;
duke@435 1199 unsigned long minflt;
duke@435 1200 unsigned long cminflt;
duke@435 1201 unsigned long majflt;
duke@435 1202 unsigned long cmajflt;
duke@435 1203 unsigned long utime;
duke@435 1204 unsigned long stime;
duke@435 1205 long cutime;
duke@435 1206 long cstime;
duke@435 1207 long prio;
duke@435 1208 long nice;
duke@435 1209 long junk;
duke@435 1210 long it_real;
duke@435 1211 uintptr_t start;
duke@435 1212 uintptr_t vsize;
bobv@2036 1213 intptr_t rss;
bobv@2036 1214 uintptr_t rsslim;
duke@435 1215 uintptr_t scodes;
duke@435 1216 uintptr_t ecode;
duke@435 1217 int i;
duke@435 1218
duke@435 1219 // Figure what the primordial thread stack base is. Code is inspired
duke@435 1220 // by email from Hans Boehm. /proc/self/stat begins with current pid,
duke@435 1221 // followed by command name surrounded by parentheses, state, etc.
duke@435 1222 char stat[2048];
duke@435 1223 int statlen;
duke@435 1224
duke@435 1225 fp = fopen("/proc/self/stat", "r");
duke@435 1226 if (fp) {
duke@435 1227 statlen = fread(stat, 1, 2047, fp);
duke@435 1228 stat[statlen] = '\0';
duke@435 1229 fclose(fp);
duke@435 1230
duke@435 1231 // Skip pid and the command string. Note that we could be dealing with
duke@435 1232 // weird command names, e.g. user could decide to rename java launcher
duke@435 1233 // to "java 1.4.2 :)", then the stat file would look like
duke@435 1234 // 1234 (java 1.4.2 :)) R ... ...
duke@435 1235 // We don't really need to know the command string, just find the last
duke@435 1236 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 1237 char * s = strrchr(stat, ')');
duke@435 1238
duke@435 1239 i = 0;
duke@435 1240 if (s) {
duke@435 1241 // Skip blank chars
duke@435 1242 do s++; while (isspace(*s));
duke@435 1243
bobv@2036 1244 #define _UFM UINTX_FORMAT
bobv@2036 1245 #define _DFM INTX_FORMAT
bobv@2036 1246
bobv@2036 1247 /* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 */
bobv@2036 1248 /* 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 */
bobv@2036 1249 i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
duke@435 1250 &state, /* 3 %c */
duke@435 1251 &ppid, /* 4 %d */
duke@435 1252 &pgrp, /* 5 %d */
duke@435 1253 &session, /* 6 %d */
duke@435 1254 &nr, /* 7 %d */
duke@435 1255 &tpgrp, /* 8 %d */
duke@435 1256 &flags, /* 9 %lu */
duke@435 1257 &minflt, /* 10 %lu */
duke@435 1258 &cminflt, /* 11 %lu */
duke@435 1259 &majflt, /* 12 %lu */
duke@435 1260 &cmajflt, /* 13 %lu */
duke@435 1261 &utime, /* 14 %lu */
duke@435 1262 &stime, /* 15 %lu */
duke@435 1263 &cutime, /* 16 %ld */
duke@435 1264 &cstime, /* 17 %ld */
duke@435 1265 &prio, /* 18 %ld */
duke@435 1266 &nice, /* 19 %ld */
duke@435 1267 &junk, /* 20 %ld */
duke@435 1268 &it_real, /* 21 %ld */
bobv@2036 1269 &start, /* 22 UINTX_FORMAT */
bobv@2036 1270 &vsize, /* 23 UINTX_FORMAT */
bobv@2036 1271 &rss, /* 24 INTX_FORMAT */
bobv@2036 1272 &rsslim, /* 25 UINTX_FORMAT */
bobv@2036 1273 &scodes, /* 26 UINTX_FORMAT */
bobv@2036 1274 &ecode, /* 27 UINTX_FORMAT */
bobv@2036 1275 &stack_start); /* 28 UINTX_FORMAT */
duke@435 1276 }
duke@435 1277
bobv@2036 1278 #undef _UFM
bobv@2036 1279 #undef _DFM
bobv@2036 1280
duke@435 1281 if (i != 28 - 2) {
duke@435 1282 assert(false, "Bad conversion from /proc/self/stat");
duke@435 1283 // product mode - assume we are the initial thread, good luck in the
duke@435 1284 // embedded case.
duke@435 1285 warning("Can't detect initial thread stack location - bad conversion");
duke@435 1286 stack_start = (uintptr_t) &rlim;
duke@435 1287 }
duke@435 1288 } else {
duke@435 1289 // For some reason we can't open /proc/self/stat (for example, running on
duke@435 1290 // FreeBSD with a Linux emulator, or inside chroot), this should work for
duke@435 1291 // most cases, so don't abort:
duke@435 1292 warning("Can't detect initial thread stack location - no /proc/self/stat");
duke@435 1293 stack_start = (uintptr_t) &rlim;
duke@435 1294 }
duke@435 1295 }
duke@435 1296
duke@435 1297 // Now we have a pointer (stack_start) very close to the stack top, the
duke@435 1298 // next thing to do is to figure out the exact location of stack top. We
duke@435 1299 // can find out the virtual memory area that contains stack_start by
duke@435 1300 // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
duke@435 1301 // and its upper limit is the real stack top. (again, this would fail if
duke@435 1302 // running inside chroot, because /proc may not exist.)
duke@435 1303
duke@435 1304 uintptr_t stack_top;
duke@435 1305 address low, high;
duke@435 1306 if (find_vma((address)stack_start, &low, &high)) {
duke@435 1307 // success, "high" is the true stack top. (ignore "low", because initial
duke@435 1308 // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
duke@435 1309 stack_top = (uintptr_t)high;
duke@435 1310 } else {
duke@435 1311 // failed, likely because /proc/self/maps does not exist
duke@435 1312 warning("Can't detect initial thread stack location - find_vma failed");
duke@435 1313 // best effort: stack_start is normally within a few pages below the real
duke@435 1314 // stack top, use it as stack top, and reduce stack size so we won't put
duke@435 1315 // guard page outside stack.
duke@435 1316 stack_top = stack_start;
duke@435 1317 stack_size -= 16 * page_size();
duke@435 1318 }
duke@435 1319
duke@435 1320 // stack_top could be partially down the page so align it
duke@435 1321 stack_top = align_size_up(stack_top, page_size());
duke@435 1322
duke@435 1323 if (max_size && stack_size > max_size) {
duke@435 1324 _initial_thread_stack_size = max_size;
duke@435 1325 } else {
duke@435 1326 _initial_thread_stack_size = stack_size;
duke@435 1327 }
duke@435 1328
duke@435 1329 _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
duke@435 1330 _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
duke@435 1331 }
duke@435 1332
duke@435 1333 ////////////////////////////////////////////////////////////////////////////////
duke@435 1334 // time support
duke@435 1335
duke@435 1336 // Time since start-up in seconds to a fine granularity.
duke@435 1337 // Used by VMSelfDestructTimer and the MemProfiler.
duke@435 1338 double os::elapsedTime() {
duke@435 1339
duke@435 1340 return (double)(os::elapsed_counter()) * 0.000001;
duke@435 1341 }
duke@435 1342
duke@435 1343 jlong os::elapsed_counter() {
duke@435 1344 timeval time;
duke@435 1345 int status = gettimeofday(&time, NULL);
duke@435 1346 return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
duke@435 1347 }
duke@435 1348
duke@435 1349 jlong os::elapsed_frequency() {
duke@435 1350 return (1000 * 1000);
duke@435 1351 }
duke@435 1352
ysr@777 1353 // For now, we say that linux does not support vtime. I have no idea
ysr@777 1354 // whether it can actually be made to (DLD, 9/13/05).
ysr@777 1355
ysr@777 1356 bool os::supports_vtime() { return false; }
ysr@777 1357 bool os::enable_vtime() { return false; }
ysr@777 1358 bool os::vtime_enabled() { return false; }
ysr@777 1359 double os::elapsedVTime() {
ysr@777 1360 // better than nothing, but not much
ysr@777 1361 return elapsedTime();
ysr@777 1362 }
ysr@777 1363
sbohne@496 1364 jlong os::javaTimeMillis() {
duke@435 1365 timeval time;
duke@435 1366 int status = gettimeofday(&time, NULL);
duke@435 1367 assert(status != -1, "linux error");
duke@435 1368 return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
duke@435 1369 }
duke@435 1370
duke@435 1371 #ifndef CLOCK_MONOTONIC
duke@435 1372 #define CLOCK_MONOTONIC (1)
duke@435 1373 #endif
duke@435 1374
duke@435 1375 void os::Linux::clock_init() {
duke@435 1376 // we do dlopen's in this particular order due to bug in linux
duke@435 1377 // dynamical loader (see 6348968) leading to crash on exit
duke@435 1378 void* handle = dlopen("librt.so.1", RTLD_LAZY);
duke@435 1379 if (handle == NULL) {
duke@435 1380 handle = dlopen("librt.so", RTLD_LAZY);
duke@435 1381 }
duke@435 1382
duke@435 1383 if (handle) {
duke@435 1384 int (*clock_getres_func)(clockid_t, struct timespec*) =
duke@435 1385 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
duke@435 1386 int (*clock_gettime_func)(clockid_t, struct timespec*) =
duke@435 1387 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
duke@435 1388 if (clock_getres_func && clock_gettime_func) {
duke@435 1389 // See if monotonic clock is supported by the kernel. Note that some
duke@435 1390 // early implementations simply return kernel jiffies (updated every
duke@435 1391 // 1/100 or 1/1000 second). It would be bad to use such a low res clock
duke@435 1392 // for nano time (though the monotonic property is still nice to have).
duke@435 1393 // It's fixed in newer kernels, however clock_getres() still returns
duke@435 1394 // 1/HZ. We check if clock_getres() works, but will ignore its reported
duke@435 1395 // resolution for now. Hopefully as people move to new kernels, this
duke@435 1396 // won't be a problem.
duke@435 1397 struct timespec res;
duke@435 1398 struct timespec tp;
duke@435 1399 if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
duke@435 1400 clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
duke@435 1401 // yes, monotonic clock is supported
duke@435 1402 _clock_gettime = clock_gettime_func;
duke@435 1403 } else {
duke@435 1404 // close librt if there is no monotonic clock
duke@435 1405 dlclose(handle);
duke@435 1406 }
duke@435 1407 }
duke@435 1408 }
duke@435 1409 }
duke@435 1410
duke@435 1411 #ifndef SYS_clock_getres
duke@435 1412
duke@435 1413 #if defined(IA32) || defined(AMD64)
duke@435 1414 #define SYS_clock_getres IA32_ONLY(266) AMD64_ONLY(229)
bobv@2036 1415 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1416 #else
bobv@2036 1417 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
bobv@2036 1418 #define sys_clock_getres(x,y) -1
duke@435 1419 #endif
duke@435 1420
bobv@2036 1421 #else
bobv@2036 1422 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1423 #endif
duke@435 1424
duke@435 1425 void os::Linux::fast_thread_clock_init() {
duke@435 1426 if (!UseLinuxPosixThreadCPUClocks) {
duke@435 1427 return;
duke@435 1428 }
duke@435 1429 clockid_t clockid;
duke@435 1430 struct timespec tp;
duke@435 1431 int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
duke@435 1432 (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
duke@435 1433
duke@435 1434 // Switch to using fast clocks for thread cpu time if
duke@435 1435 // the sys_clock_getres() returns 0 error code.
duke@435 1436 // Note, that some kernels may support the current thread
duke@435 1437 // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
duke@435 1438 // returned by the pthread_getcpuclockid().
duke@435 1439 // If the fast Posix clocks are supported then the sys_clock_getres()
duke@435 1440 // must return at least tp.tv_sec == 0 which means a resolution
duke@435 1441 // better than 1 sec. This is extra check for reliability.
duke@435 1442
duke@435 1443 if(pthread_getcpuclockid_func &&
duke@435 1444 pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
duke@435 1445 sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
duke@435 1446
duke@435 1447 _supports_fast_thread_cpu_time = true;
duke@435 1448 _pthread_getcpuclockid = pthread_getcpuclockid_func;
duke@435 1449 }
duke@435 1450 }
duke@435 1451
duke@435 1452 jlong os::javaTimeNanos() {
duke@435 1453 if (Linux::supports_monotonic_clock()) {
duke@435 1454 struct timespec tp;
duke@435 1455 int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
duke@435 1456 assert(status == 0, "gettime error");
duke@435 1457 jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
duke@435 1458 return result;
duke@435 1459 } else {
duke@435 1460 timeval time;
duke@435 1461 int status = gettimeofday(&time, NULL);
duke@435 1462 assert(status != -1, "linux error");
duke@435 1463 jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
duke@435 1464 return 1000 * usecs;
duke@435 1465 }
duke@435 1466 }
duke@435 1467
duke@435 1468 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 1469 if (Linux::supports_monotonic_clock()) {
duke@435 1470 info_ptr->max_value = ALL_64_BITS;
duke@435 1471
duke@435 1472 // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
duke@435 1473 info_ptr->may_skip_backward = false; // not subject to resetting or drifting
duke@435 1474 info_ptr->may_skip_forward = false; // not subject to resetting or drifting
duke@435 1475 } else {
duke@435 1476 // gettimeofday - based on time in seconds since the Epoch thus does not wrap
duke@435 1477 info_ptr->max_value = ALL_64_BITS;
duke@435 1478
duke@435 1479 // gettimeofday is a real time clock so it skips
duke@435 1480 info_ptr->may_skip_backward = true;
duke@435 1481 info_ptr->may_skip_forward = true;
duke@435 1482 }
duke@435 1483
duke@435 1484 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 1485 }
duke@435 1486
duke@435 1487 // Return the real, user, and system times in seconds from an
duke@435 1488 // arbitrary fixed point in the past.
duke@435 1489 bool os::getTimesSecs(double* process_real_time,
duke@435 1490 double* process_user_time,
duke@435 1491 double* process_system_time) {
duke@435 1492 struct tms ticks;
duke@435 1493 clock_t real_ticks = times(&ticks);
duke@435 1494
duke@435 1495 if (real_ticks == (clock_t) (-1)) {
duke@435 1496 return false;
duke@435 1497 } else {
duke@435 1498 double ticks_per_second = (double) clock_tics_per_sec;
duke@435 1499 *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
duke@435 1500 *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
duke@435 1501 *process_real_time = ((double) real_ticks) / ticks_per_second;
duke@435 1502
duke@435 1503 return true;
duke@435 1504 }
duke@435 1505 }
duke@435 1506
duke@435 1507
duke@435 1508 char * os::local_time_string(char *buf, size_t buflen) {
duke@435 1509 struct tm t;
duke@435 1510 time_t long_time;
duke@435 1511 time(&long_time);
duke@435 1512 localtime_r(&long_time, &t);
duke@435 1513 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 1514 t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
duke@435 1515 t.tm_hour, t.tm_min, t.tm_sec);
duke@435 1516 return buf;
duke@435 1517 }
duke@435 1518
ysr@983 1519 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 1520 return localtime_r(clock, res);
ysr@983 1521 }
ysr@983 1522
duke@435 1523 ////////////////////////////////////////////////////////////////////////////////
duke@435 1524 // runtime exit support
duke@435 1525
duke@435 1526 // Note: os::shutdown() might be called very early during initialization, or
duke@435 1527 // called from signal handler. Before adding something to os::shutdown(), make
duke@435 1528 // sure it is async-safe and can handle partially initialized VM.
duke@435 1529 void os::shutdown() {
duke@435 1530
duke@435 1531 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 1532 perfMemory_exit();
duke@435 1533
duke@435 1534 // needs to remove object in file system
duke@435 1535 AttachListener::abort();
duke@435 1536
duke@435 1537 // flush buffered output, finish log files
duke@435 1538 ostream_abort();
duke@435 1539
duke@435 1540 // Check for abort hook
duke@435 1541 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 1542 if (abort_hook != NULL) {
duke@435 1543 abort_hook();
duke@435 1544 }
duke@435 1545
duke@435 1546 }
duke@435 1547
duke@435 1548 // Note: os::abort() might be called very early during initialization, or
duke@435 1549 // called from signal handler. Before adding something to os::abort(), make
duke@435 1550 // sure it is async-safe and can handle partially initialized VM.
duke@435 1551 void os::abort(bool dump_core) {
duke@435 1552 os::shutdown();
duke@435 1553 if (dump_core) {
duke@435 1554 #ifndef PRODUCT
duke@435 1555 fdStream out(defaultStream::output_fd());
duke@435 1556 out.print_raw("Current thread is ");
duke@435 1557 char buf[16];
duke@435 1558 jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
duke@435 1559 out.print_raw_cr(buf);
duke@435 1560 out.print_raw_cr("Dumping core ...");
duke@435 1561 #endif
duke@435 1562 ::abort(); // dump core
duke@435 1563 }
duke@435 1564
duke@435 1565 ::exit(1);
duke@435 1566 }
duke@435 1567
duke@435 1568 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1569 void os::die() {
duke@435 1570 // _exit() on LinuxThreads only kills current thread
duke@435 1571 ::abort();
duke@435 1572 }
duke@435 1573
duke@435 1574 // unused on linux for now.
duke@435 1575 void os::set_error_file(const char *logfile) {}
duke@435 1576
ikrylov@2322 1577
ikrylov@2322 1578 // This method is a copy of JDK's sysGetLastErrorString
ikrylov@2322 1579 // from src/solaris/hpi/src/system_md.c
ikrylov@2322 1580
ikrylov@2322 1581 size_t os::lasterror(char *buf, size_t len) {
ikrylov@2322 1582
ikrylov@2322 1583 if (errno == 0) return 0;
ikrylov@2322 1584
ikrylov@2322 1585 const char *s = ::strerror(errno);
ikrylov@2322 1586 size_t n = ::strlen(s);
ikrylov@2322 1587 if (n >= len) {
ikrylov@2322 1588 n = len - 1;
ikrylov@2322 1589 }
ikrylov@2322 1590 ::strncpy(buf, s, n);
ikrylov@2322 1591 buf[n] = '\0';
ikrylov@2322 1592 return n;
ikrylov@2322 1593 }
ikrylov@2322 1594
duke@435 1595 intx os::current_thread_id() { return (intx)pthread_self(); }
duke@435 1596 int os::current_process_id() {
duke@435 1597
duke@435 1598 // Under the old linux thread library, linux gives each thread
duke@435 1599 // its own process id. Because of this each thread will return
duke@435 1600 // a different pid if this method were to return the result
duke@435 1601 // of getpid(2). Linux provides no api that returns the pid
duke@435 1602 // of the launcher thread for the vm. This implementation
duke@435 1603 // returns a unique pid, the pid of the launcher thread
duke@435 1604 // that starts the vm 'process'.
duke@435 1605
duke@435 1606 // Under the NPTL, getpid() returns the same pid as the
duke@435 1607 // launcher thread rather than a unique pid per thread.
duke@435 1608 // Use gettid() if you want the old pre NPTL behaviour.
duke@435 1609
duke@435 1610 // if you are looking for the result of a call to getpid() that
duke@435 1611 // returns a unique pid for the calling thread, then look at the
duke@435 1612 // OSThread::thread_id() method in osThread_linux.hpp file
duke@435 1613
duke@435 1614 return (int)(_initial_pid ? _initial_pid : getpid());
duke@435 1615 }
duke@435 1616
duke@435 1617 // DLL functions
duke@435 1618
duke@435 1619 const char* os::dll_file_extension() { return ".so"; }
duke@435 1620
coleenp@2450 1621 // This must be hard coded because it's the system's temporary
coleenp@2450 1622 // directory not the java application's temp directory, ala java.io.tmpdir.
coleenp@2450 1623 const char* os::get_temp_directory() { return "/tmp"; }
duke@435 1624
phh@1126 1625 static bool file_exists(const char* filename) {
phh@1126 1626 struct stat statbuf;
phh@1126 1627 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1628 return false;
phh@1126 1629 }
phh@1126 1630 return os::stat(filename, &statbuf) == 0;
phh@1126 1631 }
phh@1126 1632
phh@1126 1633 void os::dll_build_name(char* buffer, size_t buflen,
phh@1126 1634 const char* pname, const char* fname) {
phh@1126 1635 // Copied from libhpi
kamg@677 1636 const size_t pnamelen = pname ? strlen(pname) : 0;
kamg@677 1637
phh@1126 1638 // Quietly truncate on buffer overflow. Should be an error.
kamg@677 1639 if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
kamg@677 1640 *buffer = '\0';
kamg@677 1641 return;
kamg@677 1642 }
kamg@677 1643
kamg@677 1644 if (pnamelen == 0) {
phh@1126 1645 snprintf(buffer, buflen, "lib%s.so", fname);
phh@1126 1646 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1647 int n;
phh@1126 1648 char** pelements = split_path(pname, &n);
phh@1126 1649 for (int i = 0 ; i < n ; i++) {
phh@1126 1650 // Really shouldn't be NULL, but check can't hurt
phh@1126 1651 if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
phh@1126 1652 continue; // skip the empty path values
phh@1126 1653 }
phh@1126 1654 snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
phh@1126 1655 if (file_exists(buffer)) {
phh@1126 1656 break;
phh@1126 1657 }
phh@1126 1658 }
phh@1126 1659 // release the storage
phh@1126 1660 for (int i = 0 ; i < n ; i++) {
phh@1126 1661 if (pelements[i] != NULL) {
phh@1126 1662 FREE_C_HEAP_ARRAY(char, pelements[i]);
phh@1126 1663 }
phh@1126 1664 }
phh@1126 1665 if (pelements != NULL) {
phh@1126 1666 FREE_C_HEAP_ARRAY(char*, pelements);
phh@1126 1667 }
kamg@677 1668 } else {
phh@1126 1669 snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
kamg@677 1670 }
kamg@677 1671 }
kamg@677 1672
duke@435 1673 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1674 return getcwd(buf, buflen);
duke@435 1675 }
duke@435 1676
duke@435 1677 // check if addr is inside libjvm[_g].so
duke@435 1678 bool os::address_is_in_vm(address addr) {
duke@435 1679 static address libjvm_base_addr;
duke@435 1680 Dl_info dlinfo;
duke@435 1681
duke@435 1682 if (libjvm_base_addr == NULL) {
duke@435 1683 dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
duke@435 1684 libjvm_base_addr = (address)dlinfo.dli_fbase;
duke@435 1685 assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
duke@435 1686 }
duke@435 1687
duke@435 1688 if (dladdr((void *)addr, &dlinfo)) {
duke@435 1689 if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
duke@435 1690 }
duke@435 1691
duke@435 1692 return false;
duke@435 1693 }
duke@435 1694
duke@435 1695 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1696 int buflen, int *offset) {
duke@435 1697 Dl_info dlinfo;
duke@435 1698
duke@435 1699 if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
zgu@2364 1700 if (buf != NULL) {
zgu@2364 1701 if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
zgu@2364 1702 jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
zgu@2364 1703 }
zgu@2364 1704 }
zgu@2364 1705 if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
duke@435 1706 return true;
zgu@2364 1707 } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
zgu@2364 1708 if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
zgu@2364 1709 dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
zgu@2364 1710 return true;
zgu@2364 1711 }
duke@435 1712 }
zgu@2364 1713
zgu@2364 1714 if (buf != NULL) buf[0] = '\0';
zgu@2364 1715 if (offset != NULL) *offset = -1;
zgu@2364 1716 return false;
duke@435 1717 }
duke@435 1718
duke@435 1719 struct _address_to_library_name {
duke@435 1720 address addr; // input : memory address
duke@435 1721 size_t buflen; // size of fname
duke@435 1722 char* fname; // output: library name
duke@435 1723 address base; // library base addr
duke@435 1724 };
duke@435 1725
duke@435 1726 static int address_to_library_name_callback(struct dl_phdr_info *info,
duke@435 1727 size_t size, void *data) {
duke@435 1728 int i;
duke@435 1729 bool found = false;
duke@435 1730 address libbase = NULL;
duke@435 1731 struct _address_to_library_name * d = (struct _address_to_library_name *)data;
duke@435 1732
duke@435 1733 // iterate through all loadable segments
duke@435 1734 for (i = 0; i < info->dlpi_phnum; i++) {
duke@435 1735 address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
duke@435 1736 if (info->dlpi_phdr[i].p_type == PT_LOAD) {
duke@435 1737 // base address of a library is the lowest address of its loaded
duke@435 1738 // segments.
duke@435 1739 if (libbase == NULL || libbase > segbase) {
duke@435 1740 libbase = segbase;
duke@435 1741 }
duke@435 1742 // see if 'addr' is within current segment
duke@435 1743 if (segbase <= d->addr &&
duke@435 1744 d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
duke@435 1745 found = true;
duke@435 1746 }
duke@435 1747 }
duke@435 1748 }
duke@435 1749
duke@435 1750 // dlpi_name is NULL or empty if the ELF file is executable, return 0
duke@435 1751 // so dll_address_to_library_name() can fall through to use dladdr() which
duke@435 1752 // can figure out executable name from argv[0].
duke@435 1753 if (found && info->dlpi_name && info->dlpi_name[0]) {
duke@435 1754 d->base = libbase;
duke@435 1755 if (d->fname) {
duke@435 1756 jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
duke@435 1757 }
duke@435 1758 return 1;
duke@435 1759 }
duke@435 1760 return 0;
duke@435 1761 }
duke@435 1762
duke@435 1763 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1764 int buflen, int* offset) {
duke@435 1765 Dl_info dlinfo;
duke@435 1766 struct _address_to_library_name data;
duke@435 1767
duke@435 1768 // There is a bug in old glibc dladdr() implementation that it could resolve
duke@435 1769 // to wrong library name if the .so file has a base address != NULL. Here
duke@435 1770 // we iterate through the program headers of all loaded libraries to find
duke@435 1771 // out which library 'addr' really belongs to. This workaround can be
duke@435 1772 // removed once the minimum requirement for glibc is moved to 2.3.x.
duke@435 1773 data.addr = addr;
duke@435 1774 data.fname = buf;
duke@435 1775 data.buflen = buflen;
duke@435 1776 data.base = NULL;
duke@435 1777 int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
duke@435 1778
duke@435 1779 if (rslt) {
duke@435 1780 // buf already contains library name
duke@435 1781 if (offset) *offset = addr - data.base;
duke@435 1782 return true;
duke@435 1783 } else if (dladdr((void*)addr, &dlinfo)){
duke@435 1784 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
duke@435 1785 if (offset) *offset = addr - (address)dlinfo.dli_fbase;
duke@435 1786 return true;
duke@435 1787 } else {
duke@435 1788 if (buf) buf[0] = '\0';
duke@435 1789 if (offset) *offset = -1;
duke@435 1790 return false;
duke@435 1791 }
duke@435 1792 }
duke@435 1793
duke@435 1794 // Loads .dll/.so and
duke@435 1795 // in case of error it checks if .dll/.so was built for the
duke@435 1796 // same architecture as Hotspot is running on
duke@435 1797
duke@435 1798 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
duke@435 1799 {
duke@435 1800 void * result= ::dlopen(filename, RTLD_LAZY);
duke@435 1801 if (result != NULL) {
duke@435 1802 // Successful loading
duke@435 1803 return result;
duke@435 1804 }
duke@435 1805
duke@435 1806 Elf32_Ehdr elf_head;
duke@435 1807
duke@435 1808 // Read system error message into ebuf
duke@435 1809 // It may or may not be overwritten below
duke@435 1810 ::strncpy(ebuf, ::dlerror(), ebuflen-1);
duke@435 1811 ebuf[ebuflen-1]='\0';
duke@435 1812 int diag_msg_max_length=ebuflen-strlen(ebuf);
duke@435 1813 char* diag_msg_buf=ebuf+strlen(ebuf);
duke@435 1814
duke@435 1815 if (diag_msg_max_length==0) {
duke@435 1816 // No more space in ebuf for additional diagnostics message
duke@435 1817 return NULL;
duke@435 1818 }
duke@435 1819
duke@435 1820
duke@435 1821 int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
duke@435 1822
duke@435 1823 if (file_descriptor < 0) {
duke@435 1824 // Can't open library, report dlerror() message
duke@435 1825 return NULL;
duke@435 1826 }
duke@435 1827
duke@435 1828 bool failed_to_read_elf_head=
duke@435 1829 (sizeof(elf_head)!=
duke@435 1830 (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
duke@435 1831
duke@435 1832 ::close(file_descriptor);
duke@435 1833 if (failed_to_read_elf_head) {
duke@435 1834 // file i/o error - report dlerror() msg
duke@435 1835 return NULL;
duke@435 1836 }
duke@435 1837
duke@435 1838 typedef struct {
duke@435 1839 Elf32_Half code; // Actual value as defined in elf.h
duke@435 1840 Elf32_Half compat_class; // Compatibility of archs at VM's sense
duke@435 1841 char elf_class; // 32 or 64 bit
duke@435 1842 char endianess; // MSB or LSB
duke@435 1843 char* name; // String representation
duke@435 1844 } arch_t;
duke@435 1845
duke@435 1846 #ifndef EM_486
duke@435 1847 #define EM_486 6 /* Intel 80486 */
duke@435 1848 #endif
duke@435 1849
duke@435 1850 static const arch_t arch_array[]={
duke@435 1851 {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1852 {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1853 {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
duke@435 1854 {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
duke@435 1855 {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1856 {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1857 {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
duke@435 1858 {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
never@1445 1859 {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
never@1445 1860 {EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
never@1445 1861 {EM_S390, EM_S390, ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
never@1445 1862 {EM_ALPHA, EM_ALPHA, ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
never@1445 1863 {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
never@1445 1864 {EM_MIPS, EM_MIPS, ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
never@1445 1865 {EM_PARISC, EM_PARISC, ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
never@1445 1866 {EM_68K, EM_68K, ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
duke@435 1867 };
duke@435 1868
duke@435 1869 #if (defined IA32)
duke@435 1870 static Elf32_Half running_arch_code=EM_386;
duke@435 1871 #elif (defined AMD64)
duke@435 1872 static Elf32_Half running_arch_code=EM_X86_64;
duke@435 1873 #elif (defined IA64)
duke@435 1874 static Elf32_Half running_arch_code=EM_IA_64;
duke@435 1875 #elif (defined __sparc) && (defined _LP64)
duke@435 1876 static Elf32_Half running_arch_code=EM_SPARCV9;
duke@435 1877 #elif (defined __sparc) && (!defined _LP64)
duke@435 1878 static Elf32_Half running_arch_code=EM_SPARC;
duke@435 1879 #elif (defined __powerpc64__)
duke@435 1880 static Elf32_Half running_arch_code=EM_PPC64;
duke@435 1881 #elif (defined __powerpc__)
duke@435 1882 static Elf32_Half running_arch_code=EM_PPC;
never@1445 1883 #elif (defined ARM)
never@1445 1884 static Elf32_Half running_arch_code=EM_ARM;
never@1445 1885 #elif (defined S390)
never@1445 1886 static Elf32_Half running_arch_code=EM_S390;
never@1445 1887 #elif (defined ALPHA)
never@1445 1888 static Elf32_Half running_arch_code=EM_ALPHA;
never@1445 1889 #elif (defined MIPSEL)
never@1445 1890 static Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
never@1445 1891 #elif (defined PARISC)
never@1445 1892 static Elf32_Half running_arch_code=EM_PARISC;
never@1445 1893 #elif (defined MIPS)
never@1445 1894 static Elf32_Half running_arch_code=EM_MIPS;
never@1445 1895 #elif (defined M68K)
never@1445 1896 static Elf32_Half running_arch_code=EM_68K;
duke@435 1897 #else
duke@435 1898 #error Method os::dll_load requires that one of following is defined:\
never@1445 1899 IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
duke@435 1900 #endif
duke@435 1901
duke@435 1902 // Identify compatability class for VM's architecture and library's architecture
duke@435 1903 // Obtain string descriptions for architectures
duke@435 1904
duke@435 1905 arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
duke@435 1906 int running_arch_index=-1;
duke@435 1907
duke@435 1908 for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
duke@435 1909 if (running_arch_code == arch_array[i].code) {
duke@435 1910 running_arch_index = i;
duke@435 1911 }
duke@435 1912 if (lib_arch.code == arch_array[i].code) {
duke@435 1913 lib_arch.compat_class = arch_array[i].compat_class;
duke@435 1914 lib_arch.name = arch_array[i].name;
duke@435 1915 }
duke@435 1916 }
duke@435 1917
duke@435 1918 assert(running_arch_index != -1,
duke@435 1919 "Didn't find running architecture code (running_arch_code) in arch_array");
duke@435 1920 if (running_arch_index == -1) {
duke@435 1921 // Even though running architecture detection failed
duke@435 1922 // we may still continue with reporting dlerror() message
duke@435 1923 return NULL;
duke@435 1924 }
duke@435 1925
duke@435 1926 if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
duke@435 1927 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
duke@435 1928 return NULL;
duke@435 1929 }
duke@435 1930
never@1445 1931 #ifndef S390
duke@435 1932 if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
duke@435 1933 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
duke@435 1934 return NULL;
duke@435 1935 }
never@1445 1936 #endif // !S390
duke@435 1937
duke@435 1938 if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
duke@435 1939 if ( lib_arch.name!=NULL ) {
duke@435 1940 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1941 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
duke@435 1942 lib_arch.name, arch_array[running_arch_index].name);
duke@435 1943 } else {
duke@435 1944 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1945 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
duke@435 1946 lib_arch.code,
duke@435 1947 arch_array[running_arch_index].name);
duke@435 1948 }
duke@435 1949 }
duke@435 1950
duke@435 1951 return NULL;
duke@435 1952 }
duke@435 1953
kamg@677 1954 /*
kamg@677 1955 * glibc-2.0 libdl is not MT safe. If you are building with any glibc,
kamg@677 1956 * chances are you might want to run the generated bits against glibc-2.0
kamg@677 1957 * libdl.so, so always use locking for any version of glibc.
kamg@677 1958 */
kamg@677 1959 void* os::dll_lookup(void* handle, const char* name) {
kamg@677 1960 pthread_mutex_lock(&dl_mutex);
kamg@677 1961 void* res = dlsym(handle, name);
kamg@677 1962 pthread_mutex_unlock(&dl_mutex);
kamg@677 1963 return res;
kamg@677 1964 }
duke@435 1965
duke@435 1966
ikrylov@2322 1967 static bool _print_ascii_file(const char* filename, outputStream* st) {
ikrylov@2322 1968 int fd = ::open(filename, O_RDONLY);
duke@435 1969 if (fd == -1) {
duke@435 1970 return false;
duke@435 1971 }
duke@435 1972
duke@435 1973 char buf[32];
duke@435 1974 int bytes;
ikrylov@2322 1975 while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
duke@435 1976 st->print_raw(buf, bytes);
duke@435 1977 }
duke@435 1978
ikrylov@2322 1979 ::close(fd);
duke@435 1980
duke@435 1981 return true;
duke@435 1982 }
duke@435 1983
duke@435 1984 void os::print_dll_info(outputStream *st) {
duke@435 1985 st->print_cr("Dynamic libraries:");
duke@435 1986
duke@435 1987 char fname[32];
duke@435 1988 pid_t pid = os::Linux::gettid();
duke@435 1989
duke@435 1990 jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
duke@435 1991
duke@435 1992 if (!_print_ascii_file(fname, st)) {
duke@435 1993 st->print("Can not get library information for pid = %d\n", pid);
duke@435 1994 }
duke@435 1995 }
duke@435 1996
duke@435 1997
duke@435 1998 void os::print_os_info(outputStream* st) {
duke@435 1999 st->print("OS:");
duke@435 2000
duke@435 2001 // Try to identify popular distros.
duke@435 2002 // Most Linux distributions have /etc/XXX-release file, which contains
duke@435 2003 // the OS version string. Some have more than one /etc/XXX-release file
duke@435 2004 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
duke@435 2005 // so the order is important.
duke@435 2006 if (!_print_ascii_file("/etc/mandrake-release", st) &&
duke@435 2007 !_print_ascii_file("/etc/sun-release", st) &&
duke@435 2008 !_print_ascii_file("/etc/redhat-release", st) &&
duke@435 2009 !_print_ascii_file("/etc/SuSE-release", st) &&
duke@435 2010 !_print_ascii_file("/etc/turbolinux-release", st) &&
duke@435 2011 !_print_ascii_file("/etc/gentoo-release", st) &&
bobv@2036 2012 !_print_ascii_file("/etc/debian_version", st) &&
bobv@2036 2013 !_print_ascii_file("/etc/ltib-release", st) &&
bobv@2036 2014 !_print_ascii_file("/etc/angstrom-version", st)) {
duke@435 2015 st->print("Linux");
duke@435 2016 }
duke@435 2017 st->cr();
duke@435 2018
duke@435 2019 // kernel
duke@435 2020 st->print("uname:");
duke@435 2021 struct utsname name;
duke@435 2022 uname(&name);
duke@435 2023 st->print(name.sysname); st->print(" ");
duke@435 2024 st->print(name.release); st->print(" ");
duke@435 2025 st->print(name.version); st->print(" ");
duke@435 2026 st->print(name.machine);
duke@435 2027 st->cr();
duke@435 2028
duke@435 2029 // Print warning if unsafe chroot environment detected
duke@435 2030 if (unsafe_chroot_detected) {
duke@435 2031 st->print("WARNING!! ");
duke@435 2032 st->print_cr(unstable_chroot_error);
duke@435 2033 }
duke@435 2034
duke@435 2035 // libc, pthread
duke@435 2036 st->print("libc:");
duke@435 2037 st->print(os::Linux::glibc_version()); st->print(" ");
duke@435 2038 st->print(os::Linux::libpthread_version()); st->print(" ");
duke@435 2039 if (os::Linux::is_LinuxThreads()) {
duke@435 2040 st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
duke@435 2041 }
duke@435 2042 st->cr();
duke@435 2043
duke@435 2044 // rlimit
duke@435 2045 st->print("rlimit:");
duke@435 2046 struct rlimit rlim;
duke@435 2047
duke@435 2048 st->print(" STACK ");
duke@435 2049 getrlimit(RLIMIT_STACK, &rlim);
duke@435 2050 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2051 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2052
duke@435 2053 st->print(", CORE ");
duke@435 2054 getrlimit(RLIMIT_CORE, &rlim);
duke@435 2055 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2056 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2057
duke@435 2058 st->print(", NPROC ");
duke@435 2059 getrlimit(RLIMIT_NPROC, &rlim);
duke@435 2060 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2061 else st->print("%d", rlim.rlim_cur);
duke@435 2062
duke@435 2063 st->print(", NOFILE ");
duke@435 2064 getrlimit(RLIMIT_NOFILE, &rlim);
duke@435 2065 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2066 else st->print("%d", rlim.rlim_cur);
duke@435 2067
duke@435 2068 st->print(", AS ");
duke@435 2069 getrlimit(RLIMIT_AS, &rlim);
duke@435 2070 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2071 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2072 st->cr();
duke@435 2073
duke@435 2074 // load average
duke@435 2075 st->print("load average:");
duke@435 2076 double loadavg[3];
duke@435 2077 os::loadavg(loadavg, 3);
duke@435 2078 st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
duke@435 2079 st->cr();
bobv@2036 2080
bobv@2036 2081 // meminfo
bobv@2036 2082 st->print("\n/proc/meminfo:\n");
bobv@2036 2083 _print_ascii_file("/proc/meminfo", st);
bobv@2036 2084 st->cr();
duke@435 2085 }
duke@435 2086
duke@435 2087 void os::print_memory_info(outputStream* st) {
duke@435 2088
duke@435 2089 st->print("Memory:");
duke@435 2090 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 2091
duke@435 2092 // values in struct sysinfo are "unsigned long"
duke@435 2093 struct sysinfo si;
duke@435 2094 sysinfo(&si);
duke@435 2095
duke@435 2096 st->print(", physical " UINT64_FORMAT "k",
duke@435 2097 os::physical_memory() >> 10);
duke@435 2098 st->print("(" UINT64_FORMAT "k free)",
duke@435 2099 os::available_memory() >> 10);
duke@435 2100 st->print(", swap " UINT64_FORMAT "k",
duke@435 2101 ((jlong)si.totalswap * si.mem_unit) >> 10);
duke@435 2102 st->print("(" UINT64_FORMAT "k free)",
duke@435 2103 ((jlong)si.freeswap * si.mem_unit) >> 10);
duke@435 2104 st->cr();
duke@435 2105 }
duke@435 2106
duke@435 2107 // Taken from /usr/include/bits/siginfo.h Supposed to be architecture specific
duke@435 2108 // but they're the same for all the linux arch that we support
duke@435 2109 // and they're the same for solaris but there's no common place to put this.
duke@435 2110 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
duke@435 2111 "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
duke@435 2112 "ILL_COPROC", "ILL_BADSTK" };
duke@435 2113
duke@435 2114 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
duke@435 2115 "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
duke@435 2116 "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
duke@435 2117
duke@435 2118 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
duke@435 2119
duke@435 2120 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
duke@435 2121
duke@435 2122 void os::print_siginfo(outputStream* st, void* siginfo) {
duke@435 2123 st->print("siginfo:");
duke@435 2124
duke@435 2125 const int buflen = 100;
duke@435 2126 char buf[buflen];
duke@435 2127 siginfo_t *si = (siginfo_t*)siginfo;
duke@435 2128 st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
duke@435 2129 if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
duke@435 2130 st->print("si_errno=%s", buf);
duke@435 2131 } else {
duke@435 2132 st->print("si_errno=%d", si->si_errno);
duke@435 2133 }
duke@435 2134 const int c = si->si_code;
duke@435 2135 assert(c > 0, "unexpected si_code");
duke@435 2136 switch (si->si_signo) {
duke@435 2137 case SIGILL:
duke@435 2138 st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
duke@435 2139 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2140 break;
duke@435 2141 case SIGFPE:
duke@435 2142 st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
duke@435 2143 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2144 break;
duke@435 2145 case SIGSEGV:
duke@435 2146 st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
duke@435 2147 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2148 break;
duke@435 2149 case SIGBUS:
duke@435 2150 st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
duke@435 2151 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2152 break;
duke@435 2153 default:
duke@435 2154 st->print(", si_code=%d", si->si_code);
duke@435 2155 // no si_addr
duke@435 2156 }
duke@435 2157
duke@435 2158 if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
duke@435 2159 UseSharedSpaces) {
duke@435 2160 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 2161 if (mapinfo->is_in_shared_space(si->si_addr)) {
duke@435 2162 st->print("\n\nError accessing class data sharing archive." \
duke@435 2163 " Mapped file inaccessible during execution, " \
duke@435 2164 " possible disk/network problem.");
duke@435 2165 }
duke@435 2166 }
duke@435 2167 st->cr();
duke@435 2168 }
duke@435 2169
duke@435 2170
duke@435 2171 static void print_signal_handler(outputStream* st, int sig,
duke@435 2172 char* buf, size_t buflen);
duke@435 2173
duke@435 2174 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 2175 st->print_cr("Signal Handlers:");
duke@435 2176 print_signal_handler(st, SIGSEGV, buf, buflen);
duke@435 2177 print_signal_handler(st, SIGBUS , buf, buflen);
duke@435 2178 print_signal_handler(st, SIGFPE , buf, buflen);
duke@435 2179 print_signal_handler(st, SIGPIPE, buf, buflen);
duke@435 2180 print_signal_handler(st, SIGXFSZ, buf, buflen);
duke@435 2181 print_signal_handler(st, SIGILL , buf, buflen);
duke@435 2182 print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
duke@435 2183 print_signal_handler(st, SR_signum, buf, buflen);
duke@435 2184 print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
duke@435 2185 print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
duke@435 2186 print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
duke@435 2187 print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
duke@435 2188 }
duke@435 2189
duke@435 2190 static char saved_jvm_path[MAXPATHLEN] = {0};
duke@435 2191
duke@435 2192 // Find the full path to the current module, libjvm.so or libjvm_g.so
mchung@1997 2193 void os::jvm_path(char *buf, jint buflen) {
duke@435 2194 // Error checking.
mchung@1997 2195 if (buflen < MAXPATHLEN) {
duke@435 2196 assert(false, "must use a large-enough buffer");
duke@435 2197 buf[0] = '\0';
duke@435 2198 return;
duke@435 2199 }
duke@435 2200 // Lazy resolve the path to current module.
duke@435 2201 if (saved_jvm_path[0] != 0) {
duke@435 2202 strcpy(buf, saved_jvm_path);
duke@435 2203 return;
duke@435 2204 }
duke@435 2205
duke@435 2206 char dli_fname[MAXPATHLEN];
duke@435 2207 bool ret = dll_address_to_library_name(
duke@435 2208 CAST_FROM_FN_PTR(address, os::jvm_path),
duke@435 2209 dli_fname, sizeof(dli_fname), NULL);
duke@435 2210 assert(ret != 0, "cannot locate libjvm");
bobv@2036 2211 char *rp = realpath(dli_fname, buf);
bobv@2036 2212 if (rp == NULL)
xlu@948 2213 return;
duke@435 2214
duke@435 2215 if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
duke@435 2216 // Support for the gamma launcher. Typical value for buf is
duke@435 2217 // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so". If "/jre/lib/" appears at
duke@435 2218 // the right place in the string, then assume we are installed in a JDK and
duke@435 2219 // we're done. Otherwise, check for a JAVA_HOME environment variable and fix
duke@435 2220 // up the path so it looks like libjvm.so is installed there (append a
duke@435 2221 // fake suffix hotspot/libjvm.so).
duke@435 2222 const char *p = buf + strlen(buf) - 1;
duke@435 2223 for (int count = 0; p > buf && count < 5; ++count) {
duke@435 2224 for (--p; p > buf && *p != '/'; --p)
duke@435 2225 /* empty */ ;
duke@435 2226 }
duke@435 2227
duke@435 2228 if (strncmp(p, "/jre/lib/", 9) != 0) {
duke@435 2229 // Look for JAVA_HOME in the environment.
duke@435 2230 char* java_home_var = ::getenv("JAVA_HOME");
duke@435 2231 if (java_home_var != NULL && java_home_var[0] != 0) {
mchung@1997 2232 char* jrelib_p;
mchung@1997 2233 int len;
mchung@1997 2234
duke@435 2235 // Check the current module name "libjvm.so" or "libjvm_g.so".
duke@435 2236 p = strrchr(buf, '/');
duke@435 2237 assert(strstr(p, "/libjvm") == p, "invalid library name");
duke@435 2238 p = strstr(p, "_g") ? "_g" : "";
duke@435 2239
bobv@2036 2240 rp = realpath(java_home_var, buf);
bobv@2036 2241 if (rp == NULL)
xlu@948 2242 return;
mchung@1997 2243
mchung@1997 2244 // determine if this is a legacy image or modules image
mchung@1997 2245 // modules image doesn't have "jre" subdirectory
mchung@1997 2246 len = strlen(buf);
mchung@1997 2247 jrelib_p = buf + len;
mchung@1997 2248 snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
mchung@1997 2249 if (0 != access(buf, F_OK)) {
mchung@1997 2250 snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
mchung@1997 2251 }
mchung@1997 2252
duke@435 2253 if (0 == access(buf, F_OK)) {
duke@435 2254 // Use current module name "libjvm[_g].so" instead of
duke@435 2255 // "libjvm"debug_only("_g")".so" since for fastdebug version
duke@435 2256 // we should have "libjvm.so" but debug_only("_g") adds "_g"!
mchung@1997 2257 len = strlen(buf);
mchung@1997 2258 snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
duke@435 2259 } else {
duke@435 2260 // Go back to path of .so
bobv@2036 2261 rp = realpath(dli_fname, buf);
bobv@2036 2262 if (rp == NULL)
xlu@948 2263 return;
duke@435 2264 }
duke@435 2265 }
duke@435 2266 }
duke@435 2267 }
duke@435 2268
duke@435 2269 strcpy(saved_jvm_path, buf);
duke@435 2270 }
duke@435 2271
duke@435 2272 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 2273 // no prefix required, not even "_"
duke@435 2274 }
duke@435 2275
duke@435 2276 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 2277 // no suffix required
duke@435 2278 }
duke@435 2279
duke@435 2280 ////////////////////////////////////////////////////////////////////////////////
duke@435 2281 // sun.misc.Signal support
duke@435 2282
duke@435 2283 static volatile jint sigint_count = 0;
duke@435 2284
duke@435 2285 static void
duke@435 2286 UserHandler(int sig, void *siginfo, void *context) {
duke@435 2287 // 4511530 - sem_post is serialized and handled by the manager thread. When
duke@435 2288 // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
duke@435 2289 // don't want to flood the manager thread with sem_post requests.
duke@435 2290 if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
duke@435 2291 return;
duke@435 2292
duke@435 2293 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 2294 // handler fails to abort. Let VM die immediately.
duke@435 2295 if (sig == SIGINT && is_error_reported()) {
duke@435 2296 os::die();
duke@435 2297 }
duke@435 2298
duke@435 2299 os::signal_notify(sig);
duke@435 2300 }
duke@435 2301
duke@435 2302 void* os::user_handler() {
duke@435 2303 return CAST_FROM_FN_PTR(void*, UserHandler);
duke@435 2304 }
duke@435 2305
duke@435 2306 extern "C" {
duke@435 2307 typedef void (*sa_handler_t)(int);
duke@435 2308 typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
duke@435 2309 }
duke@435 2310
duke@435 2311 void* os::signal(int signal_number, void* handler) {
duke@435 2312 struct sigaction sigAct, oldSigAct;
duke@435 2313
duke@435 2314 sigfillset(&(sigAct.sa_mask));
duke@435 2315 sigAct.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 2316 sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
duke@435 2317
duke@435 2318 if (sigaction(signal_number, &sigAct, &oldSigAct)) {
duke@435 2319 // -1 means registration failed
duke@435 2320 return (void *)-1;
duke@435 2321 }
duke@435 2322
duke@435 2323 return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
duke@435 2324 }
duke@435 2325
duke@435 2326 void os::signal_raise(int signal_number) {
duke@435 2327 ::raise(signal_number);
duke@435 2328 }
duke@435 2329
duke@435 2330 /*
duke@435 2331 * The following code is moved from os.cpp for making this
duke@435 2332 * code platform specific, which it is by its very nature.
duke@435 2333 */
duke@435 2334
duke@435 2335 // Will be modified when max signal is changed to be dynamic
duke@435 2336 int os::sigexitnum_pd() {
duke@435 2337 return NSIG;
duke@435 2338 }
duke@435 2339
duke@435 2340 // a counter for each possible signal value
duke@435 2341 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 2342
duke@435 2343 // Linux(POSIX) specific hand shaking semaphore.
duke@435 2344 static sem_t sig_sem;
duke@435 2345
duke@435 2346 void os::signal_init_pd() {
duke@435 2347 // Initialize signal structures
duke@435 2348 ::memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 2349
duke@435 2350 // Initialize signal semaphore
duke@435 2351 ::sem_init(&sig_sem, 0, 0);
duke@435 2352 }
duke@435 2353
duke@435 2354 void os::signal_notify(int sig) {
duke@435 2355 Atomic::inc(&pending_signals[sig]);
duke@435 2356 ::sem_post(&sig_sem);
duke@435 2357 }
duke@435 2358
duke@435 2359 static int check_pending_signals(bool wait) {
duke@435 2360 Atomic::store(0, &sigint_count);
duke@435 2361 for (;;) {
duke@435 2362 for (int i = 0; i < NSIG + 1; i++) {
duke@435 2363 jint n = pending_signals[i];
duke@435 2364 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 2365 return i;
duke@435 2366 }
duke@435 2367 }
duke@435 2368 if (!wait) {
duke@435 2369 return -1;
duke@435 2370 }
duke@435 2371 JavaThread *thread = JavaThread::current();
duke@435 2372 ThreadBlockInVM tbivm(thread);
duke@435 2373
duke@435 2374 bool threadIsSuspended;
duke@435 2375 do {
duke@435 2376 thread->set_suspend_equivalent();
duke@435 2377 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 2378 ::sem_wait(&sig_sem);
duke@435 2379
duke@435 2380 // were we externally suspended while we were waiting?
duke@435 2381 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 2382 if (threadIsSuspended) {
duke@435 2383 //
duke@435 2384 // The semaphore has been incremented, but while we were waiting
duke@435 2385 // another thread suspended us. We don't want to continue running
duke@435 2386 // while suspended because that would surprise the thread that
duke@435 2387 // suspended us.
duke@435 2388 //
duke@435 2389 ::sem_post(&sig_sem);
duke@435 2390
duke@435 2391 thread->java_suspend_self();
duke@435 2392 }
duke@435 2393 } while (threadIsSuspended);
duke@435 2394 }
duke@435 2395 }
duke@435 2396
duke@435 2397 int os::signal_lookup() {
duke@435 2398 return check_pending_signals(false);
duke@435 2399 }
duke@435 2400
duke@435 2401 int os::signal_wait() {
duke@435 2402 return check_pending_signals(true);
duke@435 2403 }
duke@435 2404
duke@435 2405 ////////////////////////////////////////////////////////////////////////////////
duke@435 2406 // Virtual Memory
duke@435 2407
duke@435 2408 int os::vm_page_size() {
duke@435 2409 // Seems redundant as all get out
duke@435 2410 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2411 return os::Linux::page_size();
duke@435 2412 }
duke@435 2413
duke@435 2414 // Solaris allocates memory by pages.
duke@435 2415 int os::vm_allocation_granularity() {
duke@435 2416 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2417 return os::Linux::page_size();
duke@435 2418 }
duke@435 2419
duke@435 2420 // Rationale behind this function:
duke@435 2421 // current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
duke@435 2422 // mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
duke@435 2423 // samples for JITted code. Here we create private executable mapping over the code cache
duke@435 2424 // and then we can use standard (well, almost, as mapping can change) way to provide
duke@435 2425 // info for the reporting script by storing timestamp and location of symbol
duke@435 2426 void linux_wrap_code(char* base, size_t size) {
duke@435 2427 static volatile jint cnt = 0;
duke@435 2428
duke@435 2429 if (!UseOprofile) {
duke@435 2430 return;
duke@435 2431 }
duke@435 2432
coleenp@1852 2433 char buf[PATH_MAX+1];
duke@435 2434 int num = Atomic::add(1, &cnt);
duke@435 2435
coleenp@1788 2436 snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
coleenp@1788 2437 os::get_temp_directory(), os::current_process_id(), num);
duke@435 2438 unlink(buf);
duke@435 2439
ikrylov@2322 2440 int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
duke@435 2441
duke@435 2442 if (fd != -1) {
ikrylov@2322 2443 off_t rv = ::lseek(fd, size-2, SEEK_SET);
duke@435 2444 if (rv != (off_t)-1) {
ikrylov@2322 2445 if (::write(fd, "", 1) == 1) {
duke@435 2446 mmap(base, size,
duke@435 2447 PROT_READ|PROT_WRITE|PROT_EXEC,
duke@435 2448 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
duke@435 2449 }
duke@435 2450 }
ikrylov@2322 2451 ::close(fd);
duke@435 2452 unlink(buf);
duke@435 2453 }
duke@435 2454 }
duke@435 2455
duke@435 2456 // NOTE: Linux kernel does not really reserve the pages for us.
duke@435 2457 // All it does is to check if there are enough free pages
duke@435 2458 // left at the time of mmap(). This could be a potential
duke@435 2459 // problem.
coleenp@1091 2460 bool os::commit_memory(char* addr, size_t size, bool exec) {
coleenp@1091 2461 int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
coleenp@1091 2462 uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
duke@435 2463 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
duke@435 2464 return res != (uintptr_t) MAP_FAILED;
duke@435 2465 }
duke@435 2466
coleenp@1091 2467 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
coleenp@1091 2468 bool exec) {
coleenp@1091 2469 return commit_memory(addr, size, exec);
duke@435 2470 }
duke@435 2471
duke@435 2472 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
iveresov@576 2473
iveresov@576 2474 void os::free_memory(char *addr, size_t bytes) {
iveresov@1196 2475 ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
iveresov@1196 2476 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
iveresov@576 2477 }
iveresov@576 2478
iveresov@897 2479 void os::numa_make_global(char *addr, size_t bytes) {
iveresov@897 2480 Linux::numa_interleave_memory(addr, bytes);
iveresov@897 2481 }
iveresov@576 2482
iveresov@576 2483 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
iveresov@576 2484 Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
iveresov@576 2485 }
iveresov@576 2486
iveresov@576 2487 bool os::numa_topology_changed() { return false; }
iveresov@576 2488
iveresov@576 2489 size_t os::numa_get_groups_num() {
iveresov@576 2490 int max_node = Linux::numa_max_node();
iveresov@576 2491 return max_node > 0 ? max_node + 1 : 1;
iveresov@576 2492 }
iveresov@576 2493
iveresov@576 2494 int os::numa_get_group_id() {
iveresov@576 2495 int cpu_id = Linux::sched_getcpu();
iveresov@576 2496 if (cpu_id != -1) {
iveresov@576 2497 int lgrp_id = Linux::get_node_by_cpu(cpu_id);
iveresov@576 2498 if (lgrp_id != -1) {
iveresov@576 2499 return lgrp_id;
iveresov@576 2500 }
duke@435 2501 }
duke@435 2502 return 0;
duke@435 2503 }
duke@435 2504
iveresov@576 2505 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
iveresov@576 2506 for (size_t i = 0; i < size; i++) {
iveresov@576 2507 ids[i] = i;
iveresov@576 2508 }
iveresov@576 2509 return size;
iveresov@576 2510 }
iveresov@576 2511
duke@435 2512 bool os::get_page_info(char *start, page_info* info) {
duke@435 2513 return false;
duke@435 2514 }
duke@435 2515
duke@435 2516 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 2517 return end;
duke@435 2518 }
duke@435 2519
iveresov@576 2520 extern "C" void numa_warn(int number, char *where, ...) { }
iveresov@576 2521 extern "C" void numa_error(char *where) { }
iveresov@576 2522
iveresov@1198 2523
iveresov@1198 2524 // If we are running with libnuma version > 2, then we should
iveresov@1198 2525 // be trying to use symbols with versions 1.1
iveresov@1198 2526 // If we are running with earlier version, which did not have symbol versions,
iveresov@1198 2527 // we should use the base version.
iveresov@1198 2528 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
iveresov@1198 2529 void *f = dlvsym(handle, name, "libnuma_1.1");
iveresov@1198 2530 if (f == NULL) {
iveresov@1198 2531 f = dlsym(handle, name);
iveresov@1198 2532 }
iveresov@1198 2533 return f;
iveresov@1198 2534 }
iveresov@1198 2535
iveresov@897 2536 bool os::Linux::libnuma_init() {
iveresov@576 2537 // sched_getcpu() should be in libc.
iveresov@576 2538 set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
iveresov@576 2539 dlsym(RTLD_DEFAULT, "sched_getcpu")));
iveresov@576 2540
iveresov@576 2541 if (sched_getcpu() != -1) { // Does it work?
iveresov@702 2542 void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
iveresov@576 2543 if (handle != NULL) {
iveresov@576 2544 set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
iveresov@1198 2545 libnuma_dlsym(handle, "numa_node_to_cpus")));
iveresov@576 2546 set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
iveresov@1198 2547 libnuma_dlsym(handle, "numa_max_node")));
iveresov@576 2548 set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
iveresov@1198 2549 libnuma_dlsym(handle, "numa_available")));
iveresov@576 2550 set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
iveresov@1198 2551 libnuma_dlsym(handle, "numa_tonode_memory")));
iveresov@897 2552 set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
iveresov@1198 2553 libnuma_dlsym(handle, "numa_interleave_memory")));
iveresov@897 2554
iveresov@897 2555
iveresov@576 2556 if (numa_available() != -1) {
iveresov@1198 2557 set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
iveresov@576 2558 // Create a cpu -> node mapping
iveresov@576 2559 _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
iveresov@576 2560 rebuild_cpu_to_node_map();
iveresov@897 2561 return true;
iveresov@576 2562 }
iveresov@576 2563 }
iveresov@576 2564 }
iveresov@897 2565 return false;
iveresov@576 2566 }
iveresov@576 2567
iveresov@576 2568 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
iveresov@576 2569 // The table is later used in get_node_by_cpu().
iveresov@576 2570 void os::Linux::rebuild_cpu_to_node_map() {
iveresov@897 2571 const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
iveresov@897 2572 // in libnuma (possible values are starting from 16,
iveresov@897 2573 // and continuing up with every other power of 2, but less
iveresov@897 2574 // than the maximum number of CPUs supported by kernel), and
iveresov@897 2575 // is a subject to change (in libnuma version 2 the requirements
iveresov@897 2576 // are more reasonable) we'll just hardcode the number they use
iveresov@897 2577 // in the library.
iveresov@897 2578 const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
iveresov@897 2579
iveresov@897 2580 size_t cpu_num = os::active_processor_count();
iveresov@897 2581 size_t cpu_map_size = NCPUS / BitsPerCLong;
iveresov@897 2582 size_t cpu_map_valid_size =
iveresov@897 2583 MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
iveresov@897 2584
iveresov@576 2585 cpu_to_node()->clear();
iveresov@576 2586 cpu_to_node()->at_grow(cpu_num - 1);
iveresov@897 2587 size_t node_num = numa_get_groups_num();
iveresov@897 2588
iveresov@576 2589 unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
iveresov@897 2590 for (size_t i = 0; i < node_num; i++) {
iveresov@576 2591 if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
iveresov@897 2592 for (size_t j = 0; j < cpu_map_valid_size; j++) {
iveresov@576 2593 if (cpu_map[j] != 0) {
iveresov@897 2594 for (size_t k = 0; k < BitsPerCLong; k++) {
iveresov@576 2595 if (cpu_map[j] & (1UL << k)) {
iveresov@897 2596 cpu_to_node()->at_put(j * BitsPerCLong + k, i);
iveresov@576 2597 }
iveresov@576 2598 }
iveresov@576 2599 }
iveresov@576 2600 }
iveresov@576 2601 }
iveresov@576 2602 }
iveresov@576 2603 FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
iveresov@576 2604 }
iveresov@576 2605
iveresov@576 2606 int os::Linux::get_node_by_cpu(int cpu_id) {
iveresov@576 2607 if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
iveresov@576 2608 return cpu_to_node()->at(cpu_id);
iveresov@576 2609 }
iveresov@576 2610 return -1;
iveresov@576 2611 }
iveresov@576 2612
iveresov@576 2613 GrowableArray<int>* os::Linux::_cpu_to_node;
iveresov@576 2614 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
iveresov@576 2615 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
iveresov@576 2616 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
iveresov@576 2617 os::Linux::numa_available_func_t os::Linux::_numa_available;
iveresov@576 2618 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
iveresov@897 2619 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
iveresov@897 2620 unsigned long* os::Linux::_numa_all_nodes;
iveresov@576 2621
duke@435 2622 bool os::uncommit_memory(char* addr, size_t size) {
bobv@2036 2623 uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
bobv@2036 2624 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
bobv@2036 2625 return res != (uintptr_t) MAP_FAILED;
duke@435 2626 }
duke@435 2627
coleenp@1755 2628 // Linux uses a growable mapping for the stack, and if the mapping for
coleenp@1755 2629 // the stack guard pages is not removed when we detach a thread the
coleenp@1755 2630 // stack cannot grow beyond the pages where the stack guard was
coleenp@1755 2631 // mapped. If at some point later in the process the stack expands to
coleenp@1755 2632 // that point, the Linux kernel cannot expand the stack any further
coleenp@1755 2633 // because the guard pages are in the way, and a segfault occurs.
coleenp@1755 2634 //
coleenp@1755 2635 // However, it's essential not to split the stack region by unmapping
coleenp@1755 2636 // a region (leaving a hole) that's already part of the stack mapping,
coleenp@1755 2637 // so if the stack mapping has already grown beyond the guard pages at
coleenp@1755 2638 // the time we create them, we have to truncate the stack mapping.
coleenp@1755 2639 // So, we need to know the extent of the stack mapping when
coleenp@1755 2640 // create_stack_guard_pages() is called.
coleenp@1755 2641
coleenp@1755 2642 // Find the bounds of the stack mapping. Return true for success.
coleenp@1755 2643 //
coleenp@1755 2644 // We only need this for stacks that are growable: at the time of
coleenp@1755 2645 // writing thread stacks don't use growable mappings (i.e. those
coleenp@1755 2646 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
coleenp@1755 2647 // only applies to the main thread.
coleenp@1755 2648 static bool
coleenp@1755 2649 get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
coleenp@1755 2650 {
coleenp@1755 2651 FILE *f = fopen("/proc/self/maps", "r");
coleenp@1755 2652 if (f == NULL)
coleenp@1755 2653 return false;
coleenp@1755 2654
coleenp@1755 2655 while (!feof(f)) {
coleenp@1755 2656 size_t dummy;
coleenp@1755 2657 char *str = NULL;
coleenp@1755 2658 ssize_t len = getline(&str, &dummy, f);
coleenp@1755 2659 if (len == -1) {
coleenp@1760 2660 fclose(f);
coleenp@1755 2661 return false;
coleenp@1755 2662 }
coleenp@1755 2663
coleenp@1755 2664 if (len > 0 && str[len-1] == '\n') {
coleenp@1755 2665 str[len-1] = 0;
coleenp@1755 2666 len--;
coleenp@1755 2667 }
coleenp@1755 2668
coleenp@1755 2669 static const char *stack_str = "[stack]";
coleenp@1755 2670 if (len > (ssize_t)strlen(stack_str)
coleenp@1755 2671 && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
coleenp@1755 2672 if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
coleenp@1755 2673 uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
coleenp@1755 2674 if (sp >= *bottom && sp <= *top) {
coleenp@1755 2675 free(str);
coleenp@1760 2676 fclose(f);
coleenp@1755 2677 return true;
coleenp@1755 2678 }
coleenp@1755 2679 }
coleenp@1755 2680 }
coleenp@1755 2681 free(str);
coleenp@1755 2682 }
coleenp@1760 2683 fclose(f);
coleenp@1755 2684 return false;
coleenp@1755 2685 }
coleenp@1755 2686
coleenp@1755 2687 // If the (growable) stack mapping already extends beyond the point
coleenp@1755 2688 // where we're going to put our guard pages, truncate the mapping at
coleenp@1755 2689 // that point by munmap()ping it. This ensures that when we later
coleenp@1755 2690 // munmap() the guard pages we don't leave a hole in the stack
dholmes@2105 2691 // mapping. This only affects the main/initial thread, but guard
dholmes@2105 2692 // against future OS changes
coleenp@1755 2693 bool os::create_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2694 uintptr_t stack_extent, stack_base;
dholmes@2105 2695 bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
dholmes@2105 2696 if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
dholmes@2105 2697 assert(os::Linux::is_initial_thread(),
dholmes@2105 2698 "growable stack in non-initial thread");
coleenp@1755 2699 if (stack_extent < (uintptr_t)addr)
coleenp@1755 2700 ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
coleenp@1755 2701 }
coleenp@1755 2702
coleenp@1755 2703 return os::commit_memory(addr, size);
coleenp@1755 2704 }
coleenp@1755 2705
coleenp@1755 2706 // If this is a growable mapping, remove the guard pages entirely by
dholmes@2105 2707 // munmap()ping them. If not, just call uncommit_memory(). This only
dholmes@2105 2708 // affects the main/initial thread, but guard against future OS changes
coleenp@1755 2709 bool os::remove_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2710 uintptr_t stack_extent, stack_base;
dholmes@2105 2711 bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
dholmes@2105 2712 if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
dholmes@2105 2713 assert(os::Linux::is_initial_thread(),
dholmes@2105 2714 "growable stack in non-initial thread");
dholmes@2105 2715
coleenp@1755 2716 return ::munmap(addr, size) == 0;
coleenp@1755 2717 }
coleenp@1755 2718
coleenp@1755 2719 return os::uncommit_memory(addr, size);
coleenp@1755 2720 }
coleenp@1755 2721
duke@435 2722 static address _highest_vm_reserved_address = NULL;
duke@435 2723
duke@435 2724 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
duke@435 2725 // at 'requested_addr'. If there are existing memory mappings at the same
duke@435 2726 // location, however, they will be overwritten. If 'fixed' is false,
duke@435 2727 // 'requested_addr' is only treated as a hint, the return value may or
duke@435 2728 // may not start from the requested address. Unlike Linux mmap(), this
duke@435 2729 // function returns NULL to indicate failure.
duke@435 2730 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
duke@435 2731 char * addr;
duke@435 2732 int flags;
duke@435 2733
duke@435 2734 flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
duke@435 2735 if (fixed) {
duke@435 2736 assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
duke@435 2737 flags |= MAP_FIXED;
duke@435 2738 }
duke@435 2739
coleenp@1091 2740 // Map uncommitted pages PROT_READ and PROT_WRITE, change access
coleenp@1091 2741 // to PROT_EXEC if executable when we commit the page.
coleenp@1091 2742 addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
duke@435 2743 flags, -1, 0);
duke@435 2744
duke@435 2745 if (addr != MAP_FAILED) {
duke@435 2746 // anon_mmap() should only get called during VM initialization,
duke@435 2747 // don't need lock (actually we can skip locking even it can be called
duke@435 2748 // from multiple threads, because _highest_vm_reserved_address is just a
duke@435 2749 // hint about the upper limit of non-stack memory regions.)
duke@435 2750 if ((address)addr + bytes > _highest_vm_reserved_address) {
duke@435 2751 _highest_vm_reserved_address = (address)addr + bytes;
duke@435 2752 }
duke@435 2753 }
duke@435 2754
duke@435 2755 return addr == MAP_FAILED ? NULL : addr;
duke@435 2756 }
duke@435 2757
duke@435 2758 // Don't update _highest_vm_reserved_address, because there might be memory
duke@435 2759 // regions above addr + size. If so, releasing a memory region only creates
duke@435 2760 // a hole in the address space, it doesn't help prevent heap-stack collision.
duke@435 2761 //
duke@435 2762 static int anon_munmap(char * addr, size_t size) {
duke@435 2763 return ::munmap(addr, size) == 0;
duke@435 2764 }
duke@435 2765
duke@435 2766 char* os::reserve_memory(size_t bytes, char* requested_addr,
duke@435 2767 size_t alignment_hint) {
duke@435 2768 return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
duke@435 2769 }
duke@435 2770
duke@435 2771 bool os::release_memory(char* addr, size_t size) {
duke@435 2772 return anon_munmap(addr, size);
duke@435 2773 }
duke@435 2774
duke@435 2775 static address highest_vm_reserved_address() {
duke@435 2776 return _highest_vm_reserved_address;
duke@435 2777 }
duke@435 2778
duke@435 2779 static bool linux_mprotect(char* addr, size_t size, int prot) {
duke@435 2780 // Linux wants the mprotect address argument to be page aligned.
duke@435 2781 char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
duke@435 2782
duke@435 2783 // According to SUSv3, mprotect() should only be used with mappings
duke@435 2784 // established by mmap(), and mmap() always maps whole pages. Unaligned
duke@435 2785 // 'addr' likely indicates problem in the VM (e.g. trying to change
duke@435 2786 // protection of malloc'ed or statically allocated memory). Check the
duke@435 2787 // caller if you hit this assert.
duke@435 2788 assert(addr == bottom, "sanity check");
duke@435 2789
duke@435 2790 size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
duke@435 2791 return ::mprotect(bottom, size, prot) == 0;
duke@435 2792 }
duke@435 2793
coleenp@672 2794 // Set protections specified
coleenp@672 2795 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 2796 bool is_committed) {
coleenp@672 2797 unsigned int p = 0;
coleenp@672 2798 switch (prot) {
coleenp@672 2799 case MEM_PROT_NONE: p = PROT_NONE; break;
coleenp@672 2800 case MEM_PROT_READ: p = PROT_READ; break;
coleenp@672 2801 case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
coleenp@672 2802 case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
coleenp@672 2803 default:
coleenp@672 2804 ShouldNotReachHere();
coleenp@672 2805 }
coleenp@672 2806 // is_committed is unused.
coleenp@672 2807 return linux_mprotect(addr, bytes, p);
duke@435 2808 }
duke@435 2809
duke@435 2810 bool os::guard_memory(char* addr, size_t size) {
duke@435 2811 return linux_mprotect(addr, size, PROT_NONE);
duke@435 2812 }
duke@435 2813
duke@435 2814 bool os::unguard_memory(char* addr, size_t size) {
coleenp@912 2815 return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
duke@435 2816 }
duke@435 2817
duke@435 2818 // Large page support
duke@435 2819
duke@435 2820 static size_t _large_page_size = 0;
duke@435 2821
duke@435 2822 bool os::large_page_init() {
duke@435 2823 if (!UseLargePages) return false;
duke@435 2824
duke@435 2825 if (LargePageSizeInBytes) {
duke@435 2826 _large_page_size = LargePageSizeInBytes;
duke@435 2827 } else {
duke@435 2828 // large_page_size on Linux is used to round up heap size. x86 uses either
duke@435 2829 // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
duke@435 2830 // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
duke@435 2831 // page as large as 256M.
duke@435 2832 //
duke@435 2833 // Here we try to figure out page size by parsing /proc/meminfo and looking
duke@435 2834 // for a line with the following format:
duke@435 2835 // Hugepagesize: 2048 kB
duke@435 2836 //
duke@435 2837 // If we can't determine the value (e.g. /proc is not mounted, or the text
duke@435 2838 // format has been changed), we'll use the largest page size supported by
duke@435 2839 // the processor.
duke@435 2840
never@1445 2841 #ifndef ZERO
bobv@2036 2842 _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
bobv@2036 2843 ARM_ONLY(2 * M) PPC_ONLY(4 * M);
never@1445 2844 #endif // ZERO
duke@435 2845
duke@435 2846 FILE *fp = fopen("/proc/meminfo", "r");
duke@435 2847 if (fp) {
duke@435 2848 while (!feof(fp)) {
duke@435 2849 int x = 0;
duke@435 2850 char buf[16];
duke@435 2851 if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
duke@435 2852 if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
duke@435 2853 _large_page_size = x * K;
duke@435 2854 break;
duke@435 2855 }
duke@435 2856 } else {
duke@435 2857 // skip to next line
duke@435 2858 for (;;) {
duke@435 2859 int ch = fgetc(fp);
duke@435 2860 if (ch == EOF || ch == (int)'\n') break;
duke@435 2861 }
duke@435 2862 }
duke@435 2863 }
duke@435 2864 fclose(fp);
duke@435 2865 }
duke@435 2866 }
duke@435 2867
duke@435 2868 const size_t default_page_size = (size_t)Linux::page_size();
duke@435 2869 if (_large_page_size > default_page_size) {
duke@435 2870 _page_sizes[0] = _large_page_size;
duke@435 2871 _page_sizes[1] = default_page_size;
duke@435 2872 _page_sizes[2] = 0;
duke@435 2873 }
duke@435 2874
duke@435 2875 // Large page support is available on 2.6 or newer kernel, some vendors
duke@435 2876 // (e.g. Redhat) have backported it to their 2.4 based distributions.
duke@435 2877 // We optimistically assume the support is available. If later it turns out
duke@435 2878 // not true, VM will automatically switch to use regular page size.
duke@435 2879 return true;
duke@435 2880 }
duke@435 2881
duke@435 2882 #ifndef SHM_HUGETLB
duke@435 2883 #define SHM_HUGETLB 04000
duke@435 2884 #endif
duke@435 2885
coleenp@1091 2886 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
coleenp@1091 2887 // "exec" is passed in but not used. Creating the shared image for
coleenp@1091 2888 // the code cache doesn't have an SHM_X executable permission to check.
duke@435 2889 assert(UseLargePages, "only for large pages");
duke@435 2890
duke@435 2891 key_t key = IPC_PRIVATE;
duke@435 2892 char *addr;
duke@435 2893
duke@435 2894 bool warn_on_failure = UseLargePages &&
duke@435 2895 (!FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 2896 !FLAG_IS_DEFAULT(LargePageSizeInBytes)
duke@435 2897 );
duke@435 2898 char msg[128];
duke@435 2899
duke@435 2900 // Create a large shared memory region to attach to based on size.
duke@435 2901 // Currently, size is the total size of the heap
duke@435 2902 int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
duke@435 2903 if (shmid == -1) {
duke@435 2904 // Possible reasons for shmget failure:
duke@435 2905 // 1. shmmax is too small for Java heap.
duke@435 2906 // > check shmmax value: cat /proc/sys/kernel/shmmax
duke@435 2907 // > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
duke@435 2908 // 2. not enough large page memory.
duke@435 2909 // > check available large pages: cat /proc/meminfo
duke@435 2910 // > increase amount of large pages:
duke@435 2911 // echo new_value > /proc/sys/vm/nr_hugepages
duke@435 2912 // Note 1: different Linux may use different name for this property,
duke@435 2913 // e.g. on Redhat AS-3 it is "hugetlb_pool".
duke@435 2914 // Note 2: it's possible there's enough physical memory available but
duke@435 2915 // they are so fragmented after a long run that they can't
duke@435 2916 // coalesce into large pages. Try to reserve large pages when
duke@435 2917 // the system is still "fresh".
duke@435 2918 if (warn_on_failure) {
duke@435 2919 jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
duke@435 2920 warning(msg);
duke@435 2921 }
duke@435 2922 return NULL;
duke@435 2923 }
duke@435 2924
duke@435 2925 // attach to the region
kvn@1892 2926 addr = (char*)shmat(shmid, req_addr, 0);
duke@435 2927 int err = errno;
duke@435 2928
duke@435 2929 // Remove shmid. If shmat() is successful, the actual shared memory segment
duke@435 2930 // will be deleted when it's detached by shmdt() or when the process
duke@435 2931 // terminates. If shmat() is not successful this will remove the shared
duke@435 2932 // segment immediately.
duke@435 2933 shmctl(shmid, IPC_RMID, NULL);
duke@435 2934
duke@435 2935 if ((intptr_t)addr == -1) {
duke@435 2936 if (warn_on_failure) {
duke@435 2937 jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
duke@435 2938 warning(msg);
duke@435 2939 }
duke@435 2940 return NULL;
duke@435 2941 }
duke@435 2942
duke@435 2943 return addr;
duke@435 2944 }
duke@435 2945
duke@435 2946 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 2947 // detaching the SHM segment will also delete it, see reserve_memory_special()
duke@435 2948 int rslt = shmdt(base);
duke@435 2949 return rslt == 0;
duke@435 2950 }
duke@435 2951
duke@435 2952 size_t os::large_page_size() {
duke@435 2953 return _large_page_size;
duke@435 2954 }
duke@435 2955
duke@435 2956 // Linux does not support anonymous mmap with large page memory. The only way
duke@435 2957 // to reserve large page memory without file backing is through SysV shared
duke@435 2958 // memory API. The entire memory region is committed and pinned upfront.
duke@435 2959 // Hopefully this will change in the future...
duke@435 2960 bool os::can_commit_large_page_memory() {
duke@435 2961 return false;
duke@435 2962 }
duke@435 2963
jcoomes@514 2964 bool os::can_execute_large_page_memory() {
jcoomes@514 2965 return false;
jcoomes@514 2966 }
jcoomes@514 2967
duke@435 2968 // Reserve memory at an arbitrary address, only if that area is
duke@435 2969 // available (and not reserved for something else).
duke@435 2970
duke@435 2971 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 2972 const int max_tries = 10;
duke@435 2973 char* base[max_tries];
duke@435 2974 size_t size[max_tries];
duke@435 2975 const size_t gap = 0x000000;
duke@435 2976
duke@435 2977 // Assert only that the size is a multiple of the page size, since
duke@435 2978 // that's all that mmap requires, and since that's all we really know
duke@435 2979 // about at this low abstraction level. If we need higher alignment,
duke@435 2980 // we can either pass an alignment to this method or verify alignment
duke@435 2981 // in one of the methods further up the call chain. See bug 5044738.
duke@435 2982 assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
duke@435 2983
duke@435 2984 // Repeatedly allocate blocks until the block is allocated at the
duke@435 2985 // right spot. Give up after max_tries. Note that reserve_memory() will
duke@435 2986 // automatically update _highest_vm_reserved_address if the call is
duke@435 2987 // successful. The variable tracks the highest memory address every reserved
duke@435 2988 // by JVM. It is used to detect heap-stack collision if running with
duke@435 2989 // fixed-stack LinuxThreads. Because here we may attempt to reserve more
duke@435 2990 // space than needed, it could confuse the collision detecting code. To
duke@435 2991 // solve the problem, save current _highest_vm_reserved_address and
duke@435 2992 // calculate the correct value before return.
duke@435 2993 address old_highest = _highest_vm_reserved_address;
duke@435 2994
duke@435 2995 // Linux mmap allows caller to pass an address as hint; give it a try first,
duke@435 2996 // if kernel honors the hint then we can return immediately.
duke@435 2997 char * addr = anon_mmap(requested_addr, bytes, false);
duke@435 2998 if (addr == requested_addr) {
duke@435 2999 return requested_addr;
duke@435 3000 }
duke@435 3001
duke@435 3002 if (addr != NULL) {
duke@435 3003 // mmap() is successful but it fails to reserve at the requested address
duke@435 3004 anon_munmap(addr, bytes);
duke@435 3005 }
duke@435 3006
duke@435 3007 int i;
duke@435 3008 for (i = 0; i < max_tries; ++i) {
duke@435 3009 base[i] = reserve_memory(bytes);
duke@435 3010
duke@435 3011 if (base[i] != NULL) {
duke@435 3012 // Is this the block we wanted?
duke@435 3013 if (base[i] == requested_addr) {
duke@435 3014 size[i] = bytes;
duke@435 3015 break;
duke@435 3016 }
duke@435 3017
duke@435 3018 // Does this overlap the block we wanted? Give back the overlapped
duke@435 3019 // parts and try again.
duke@435 3020
duke@435 3021 size_t top_overlap = requested_addr + (bytes + gap) - base[i];
duke@435 3022 if (top_overlap >= 0 && top_overlap < bytes) {
duke@435 3023 unmap_memory(base[i], top_overlap);
duke@435 3024 base[i] += top_overlap;
duke@435 3025 size[i] = bytes - top_overlap;
duke@435 3026 } else {
duke@435 3027 size_t bottom_overlap = base[i] + bytes - requested_addr;
duke@435 3028 if (bottom_overlap >= 0 && bottom_overlap < bytes) {
duke@435 3029 unmap_memory(requested_addr, bottom_overlap);
duke@435 3030 size[i] = bytes - bottom_overlap;
duke@435 3031 } else {
duke@435 3032 size[i] = bytes;
duke@435 3033 }
duke@435 3034 }
duke@435 3035 }
duke@435 3036 }
duke@435 3037
duke@435 3038 // Give back the unused reserved pieces.
duke@435 3039
duke@435 3040 for (int j = 0; j < i; ++j) {
duke@435 3041 if (base[j] != NULL) {
duke@435 3042 unmap_memory(base[j], size[j]);
duke@435 3043 }
duke@435 3044 }
duke@435 3045
duke@435 3046 if (i < max_tries) {
duke@435 3047 _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
duke@435 3048 return requested_addr;
duke@435 3049 } else {
duke@435 3050 _highest_vm_reserved_address = old_highest;
duke@435 3051 return NULL;
duke@435 3052 }
duke@435 3053 }
duke@435 3054
duke@435 3055 size_t os::read(int fd, void *buf, unsigned int nBytes) {
duke@435 3056 return ::read(fd, buf, nBytes);
duke@435 3057 }
duke@435 3058
duke@435 3059 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
duke@435 3060 // Solaris uses poll(), linux uses park().
duke@435 3061 // Poll() is likely a better choice, assuming that Thread.interrupt()
duke@435 3062 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
duke@435 3063 // SIGSEGV, see 4355769.
duke@435 3064
duke@435 3065 const int NANOSECS_PER_MILLISECS = 1000000;
duke@435 3066
duke@435 3067 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
duke@435 3068 assert(thread == Thread::current(), "thread consistency check");
duke@435 3069
duke@435 3070 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 3071 slp->reset() ;
duke@435 3072 OrderAccess::fence() ;
duke@435 3073
duke@435 3074 if (interruptible) {
duke@435 3075 jlong prevtime = javaTimeNanos();
duke@435 3076
duke@435 3077 for (;;) {
duke@435 3078 if (os::is_interrupted(thread, true)) {
duke@435 3079 return OS_INTRPT;
duke@435 3080 }
duke@435 3081
duke@435 3082 jlong newtime = javaTimeNanos();
duke@435 3083
duke@435 3084 if (newtime - prevtime < 0) {
duke@435 3085 // time moving backwards, should only happen if no monotonic clock
duke@435 3086 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 3087 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 3088 } else {
duke@435 3089 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 3090 }
duke@435 3091
duke@435 3092 if(millis <= 0) {
duke@435 3093 return OS_OK;
duke@435 3094 }
duke@435 3095
duke@435 3096 prevtime = newtime;
duke@435 3097
duke@435 3098 {
duke@435 3099 assert(thread->is_Java_thread(), "sanity check");
duke@435 3100 JavaThread *jt = (JavaThread *) thread;
duke@435 3101 ThreadBlockInVM tbivm(jt);
duke@435 3102 OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
duke@435 3103
duke@435 3104 jt->set_suspend_equivalent();
duke@435 3105 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 3106 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 3107
duke@435 3108 slp->park(millis);
duke@435 3109
duke@435 3110 // were we externally suspended while we were waiting?
duke@435 3111 jt->check_and_wait_while_suspended();
duke@435 3112 }
duke@435 3113 }
duke@435 3114 } else {
duke@435 3115 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 3116 jlong prevtime = javaTimeNanos();
duke@435 3117
duke@435 3118 for (;;) {
duke@435 3119 // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
duke@435 3120 // the 1st iteration ...
duke@435 3121 jlong newtime = javaTimeNanos();
duke@435 3122
duke@435 3123 if (newtime - prevtime < 0) {
duke@435 3124 // time moving backwards, should only happen if no monotonic clock
duke@435 3125 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 3126 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 3127 } else {
duke@435 3128 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 3129 }
duke@435 3130
duke@435 3131 if(millis <= 0) break ;
duke@435 3132
duke@435 3133 prevtime = newtime;
duke@435 3134 slp->park(millis);
duke@435 3135 }
duke@435 3136 return OS_OK ;
duke@435 3137 }
duke@435 3138 }
duke@435 3139
duke@435 3140 int os::naked_sleep() {
duke@435 3141 // %% make the sleep time an integer flag. for now use 1 millisec.
duke@435 3142 return os::sleep(Thread::current(), 1, false);
duke@435 3143 }
duke@435 3144
duke@435 3145 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 3146 void os::infinite_sleep() {
duke@435 3147 while (true) { // sleep forever ...
duke@435 3148 ::sleep(100); // ... 100 seconds at a time
duke@435 3149 }
duke@435 3150 }
duke@435 3151
duke@435 3152 // Used to convert frequent JVM_Yield() to nops
duke@435 3153 bool os::dont_yield() {
duke@435 3154 return DontYieldALot;
duke@435 3155 }
duke@435 3156
duke@435 3157 void os::yield() {
duke@435 3158 sched_yield();
duke@435 3159 }
duke@435 3160
duke@435 3161 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
duke@435 3162
duke@435 3163 void os::yield_all(int attempts) {
duke@435 3164 // Yields to all threads, including threads with lower priorities
duke@435 3165 // Threads on Linux are all with same priority. The Solaris style
duke@435 3166 // os::yield_all() with nanosleep(1ms) is not necessary.
duke@435 3167 sched_yield();
duke@435 3168 }
duke@435 3169
duke@435 3170 // Called from the tight loops to possibly influence time-sharing heuristics
duke@435 3171 void os::loop_breaker(int attempts) {
duke@435 3172 os::yield_all(attempts);
duke@435 3173 }
duke@435 3174
duke@435 3175 ////////////////////////////////////////////////////////////////////////////////
duke@435 3176 // thread priority support
duke@435 3177
duke@435 3178 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
duke@435 3179 // only supports dynamic priority, static priority must be zero. For real-time
duke@435 3180 // applications, Linux supports SCHED_RR which allows static priority (1-99).
duke@435 3181 // However, for large multi-threaded applications, SCHED_RR is not only slower
duke@435 3182 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
duke@435 3183 // of 5 runs - Sep 2005).
duke@435 3184 //
duke@435 3185 // The following code actually changes the niceness of kernel-thread/LWP. It
duke@435 3186 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
duke@435 3187 // not the entire user process, and user level threads are 1:1 mapped to kernel
duke@435 3188 // threads. It has always been the case, but could change in the future. For
duke@435 3189 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
duke@435 3190 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
duke@435 3191
duke@435 3192 int os::java_to_os_priority[MaxPriority + 1] = {
duke@435 3193 19, // 0 Entry should never be used
duke@435 3194
duke@435 3195 4, // 1 MinPriority
duke@435 3196 3, // 2
duke@435 3197 2, // 3
duke@435 3198
duke@435 3199 1, // 4
duke@435 3200 0, // 5 NormPriority
duke@435 3201 -1, // 6
duke@435 3202
duke@435 3203 -2, // 7
duke@435 3204 -3, // 8
duke@435 3205 -4, // 9 NearMaxPriority
duke@435 3206
duke@435 3207 -5 // 10 MaxPriority
duke@435 3208 };
duke@435 3209
duke@435 3210 static int prio_init() {
duke@435 3211 if (ThreadPriorityPolicy == 1) {
duke@435 3212 // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
duke@435 3213 // if effective uid is not root. Perhaps, a more elegant way of doing
duke@435 3214 // this is to test CAP_SYS_NICE capability, but that will require libcap.so
duke@435 3215 if (geteuid() != 0) {
duke@435 3216 if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
duke@435 3217 warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
duke@435 3218 }
duke@435 3219 ThreadPriorityPolicy = 0;
duke@435 3220 }
duke@435 3221 }
duke@435 3222 return 0;
duke@435 3223 }
duke@435 3224
duke@435 3225 OSReturn os::set_native_priority(Thread* thread, int newpri) {
duke@435 3226 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
duke@435 3227
duke@435 3228 int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
duke@435 3229 return (ret == 0) ? OS_OK : OS_ERR;
duke@435 3230 }
duke@435 3231
duke@435 3232 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
duke@435 3233 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
duke@435 3234 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 3235 return OS_OK;
duke@435 3236 }
duke@435 3237
duke@435 3238 errno = 0;
duke@435 3239 *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
duke@435 3240 return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
duke@435 3241 }
duke@435 3242
duke@435 3243 // Hint to the underlying OS that a task switch would not be good.
duke@435 3244 // Void return because it's a hint and can fail.
duke@435 3245 void os::hint_no_preempt() {}
duke@435 3246
duke@435 3247 ////////////////////////////////////////////////////////////////////////////////
duke@435 3248 // suspend/resume support
duke@435 3249
duke@435 3250 // the low-level signal-based suspend/resume support is a remnant from the
duke@435 3251 // old VM-suspension that used to be for java-suspension, safepoints etc,
duke@435 3252 // within hotspot. Now there is a single use-case for this:
duke@435 3253 // - calling get_thread_pc() on the VMThread by the flat-profiler task
duke@435 3254 // that runs in the watcher thread.
duke@435 3255 // The remaining code is greatly simplified from the more general suspension
duke@435 3256 // code that used to be used.
duke@435 3257 //
duke@435 3258 // The protocol is quite simple:
duke@435 3259 // - suspend:
duke@435 3260 // - sends a signal to the target thread
duke@435 3261 // - polls the suspend state of the osthread using a yield loop
duke@435 3262 // - target thread signal handler (SR_handler) sets suspend state
duke@435 3263 // and blocks in sigsuspend until continued
duke@435 3264 // - resume:
duke@435 3265 // - sets target osthread state to continue
duke@435 3266 // - sends signal to end the sigsuspend loop in the SR_handler
duke@435 3267 //
duke@435 3268 // Note that the SR_lock plays no role in this suspend/resume protocol.
duke@435 3269 //
duke@435 3270
duke@435 3271 static void resume_clear_context(OSThread *osthread) {
duke@435 3272 osthread->set_ucontext(NULL);
duke@435 3273 osthread->set_siginfo(NULL);
duke@435 3274
duke@435 3275 // notify the suspend action is completed, we have now resumed
duke@435 3276 osthread->sr.clear_suspended();
duke@435 3277 }
duke@435 3278
duke@435 3279 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3280 osthread->set_ucontext(context);
duke@435 3281 osthread->set_siginfo(siginfo);
duke@435 3282 }
duke@435 3283
duke@435 3284 //
duke@435 3285 // Handler function invoked when a thread's execution is suspended or
duke@435 3286 // resumed. We have to be careful that only async-safe functions are
duke@435 3287 // called here (Note: most pthread functions are not async safe and
duke@435 3288 // should be avoided.)
duke@435 3289 //
duke@435 3290 // Note: sigwait() is a more natural fit than sigsuspend() from an
duke@435 3291 // interface point of view, but sigwait() prevents the signal hander
duke@435 3292 // from being run. libpthread would get very confused by not having
duke@435 3293 // its signal handlers run and prevents sigwait()'s use with the
duke@435 3294 // mutex granting granting signal.
duke@435 3295 //
duke@435 3296 // Currently only ever called on the VMThread
duke@435 3297 //
duke@435 3298 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3299 // Save and restore errno to avoid confusing native code with EINTR
duke@435 3300 // after sigsuspend.
duke@435 3301 int old_errno = errno;
duke@435 3302
duke@435 3303 Thread* thread = Thread::current();
duke@435 3304 OSThread* osthread = thread->osthread();
duke@435 3305 assert(thread->is_VM_thread(), "Must be VMThread");
duke@435 3306 // read current suspend action
duke@435 3307 int action = osthread->sr.suspend_action();
duke@435 3308 if (action == SR_SUSPEND) {
duke@435 3309 suspend_save_context(osthread, siginfo, context);
duke@435 3310
duke@435 3311 // Notify the suspend action is about to be completed. do_suspend()
duke@435 3312 // waits until SR_SUSPENDED is set and then returns. We will wait
duke@435 3313 // here for a resume signal and that completes the suspend-other
duke@435 3314 // action. do_suspend/do_resume is always called as a pair from
duke@435 3315 // the same thread - so there are no races
duke@435 3316
duke@435 3317 // notify the caller
duke@435 3318 osthread->sr.set_suspended();
duke@435 3319
duke@435 3320 sigset_t suspend_set; // signals for sigsuspend()
duke@435 3321
duke@435 3322 // get current set of blocked signals and unblock resume signal
duke@435 3323 pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
duke@435 3324 sigdelset(&suspend_set, SR_signum);
duke@435 3325
duke@435 3326 // wait here until we are resumed
duke@435 3327 do {
duke@435 3328 sigsuspend(&suspend_set);
duke@435 3329 // ignore all returns until we get a resume signal
duke@435 3330 } while (osthread->sr.suspend_action() != SR_CONTINUE);
duke@435 3331
duke@435 3332 resume_clear_context(osthread);
duke@435 3333
duke@435 3334 } else {
duke@435 3335 assert(action == SR_CONTINUE, "unexpected sr action");
duke@435 3336 // nothing special to do - just leave the handler
duke@435 3337 }
duke@435 3338
duke@435 3339 errno = old_errno;
duke@435 3340 }
duke@435 3341
duke@435 3342
duke@435 3343 static int SR_initialize() {
duke@435 3344 struct sigaction act;
duke@435 3345 char *s;
duke@435 3346 /* Get signal number to use for suspend/resume */
duke@435 3347 if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
duke@435 3348 int sig = ::strtol(s, 0, 10);
duke@435 3349 if (sig > 0 || sig < _NSIG) {
duke@435 3350 SR_signum = sig;
duke@435 3351 }
duke@435 3352 }
duke@435 3353
duke@435 3354 assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
duke@435 3355 "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
duke@435 3356
duke@435 3357 sigemptyset(&SR_sigset);
duke@435 3358 sigaddset(&SR_sigset, SR_signum);
duke@435 3359
duke@435 3360 /* Set up signal handler for suspend/resume */
duke@435 3361 act.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 3362 act.sa_handler = (void (*)(int)) SR_handler;
duke@435 3363
duke@435 3364 // SR_signum is blocked by default.
duke@435 3365 // 4528190 - We also need to block pthread restart signal (32 on all
duke@435 3366 // supported Linux platforms). Note that LinuxThreads need to block
duke@435 3367 // this signal for all threads to work properly. So we don't have
duke@435 3368 // to use hard-coded signal number when setting up the mask.
duke@435 3369 pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
duke@435 3370
duke@435 3371 if (sigaction(SR_signum, &act, 0) == -1) {
duke@435 3372 return -1;
duke@435 3373 }
duke@435 3374
duke@435 3375 // Save signal flag
duke@435 3376 os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
duke@435 3377 return 0;
duke@435 3378 }
duke@435 3379
duke@435 3380 static int SR_finalize() {
duke@435 3381 return 0;
duke@435 3382 }
duke@435 3383
duke@435 3384
duke@435 3385 // returns true on success and false on error - really an error is fatal
duke@435 3386 // but this seems the normal response to library errors
duke@435 3387 static bool do_suspend(OSThread* osthread) {
duke@435 3388 // mark as suspended and send signal
duke@435 3389 osthread->sr.set_suspend_action(SR_SUSPEND);
duke@435 3390 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3391 assert_status(status == 0, status, "pthread_kill");
duke@435 3392
duke@435 3393 // check status and wait until notified of suspension
duke@435 3394 if (status == 0) {
duke@435 3395 for (int i = 0; !osthread->sr.is_suspended(); i++) {
duke@435 3396 os::yield_all(i);
duke@435 3397 }
duke@435 3398 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3399 return true;
duke@435 3400 }
duke@435 3401 else {
duke@435 3402 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3403 return false;
duke@435 3404 }
duke@435 3405 }
duke@435 3406
duke@435 3407 static void do_resume(OSThread* osthread) {
duke@435 3408 assert(osthread->sr.is_suspended(), "thread should be suspended");
duke@435 3409 osthread->sr.set_suspend_action(SR_CONTINUE);
duke@435 3410
duke@435 3411 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3412 assert_status(status == 0, status, "pthread_kill");
duke@435 3413 // check status and wait unit notified of resumption
duke@435 3414 if (status == 0) {
duke@435 3415 for (int i = 0; osthread->sr.is_suspended(); i++) {
duke@435 3416 os::yield_all(i);
duke@435 3417 }
duke@435 3418 }
duke@435 3419 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3420 }
duke@435 3421
duke@435 3422 ////////////////////////////////////////////////////////////////////////////////
duke@435 3423 // interrupt support
duke@435 3424
duke@435 3425 void os::interrupt(Thread* thread) {
duke@435 3426 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3427 "possibility of dangling Thread pointer");
duke@435 3428
duke@435 3429 OSThread* osthread = thread->osthread();
duke@435 3430
duke@435 3431 if (!osthread->interrupted()) {
duke@435 3432 osthread->set_interrupted(true);
duke@435 3433 // More than one thread can get here with the same value of osthread,
duke@435 3434 // resulting in multiple notifications. We do, however, want the store
duke@435 3435 // to interrupted() to be visible to other threads before we execute unpark().
duke@435 3436 OrderAccess::fence();
duke@435 3437 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 3438 if (slp != NULL) slp->unpark() ;
duke@435 3439 }
duke@435 3440
duke@435 3441 // For JSR166. Unpark even if interrupt status already was set
duke@435 3442 if (thread->is_Java_thread())
duke@435 3443 ((JavaThread*)thread)->parker()->unpark();
duke@435 3444
duke@435 3445 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3446 if (ev != NULL) ev->unpark() ;
duke@435 3447
duke@435 3448 }
duke@435 3449
duke@435 3450 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3451 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3452 "possibility of dangling Thread pointer");
duke@435 3453
duke@435 3454 OSThread* osthread = thread->osthread();
duke@435 3455
duke@435 3456 bool interrupted = osthread->interrupted();
duke@435 3457
duke@435 3458 if (interrupted && clear_interrupted) {
duke@435 3459 osthread->set_interrupted(false);
duke@435 3460 // consider thread->_SleepEvent->reset() ... optional optimization
duke@435 3461 }
duke@435 3462
duke@435 3463 return interrupted;
duke@435 3464 }
duke@435 3465
duke@435 3466 ///////////////////////////////////////////////////////////////////////////////////
duke@435 3467 // signal handling (except suspend/resume)
duke@435 3468
duke@435 3469 // This routine may be used by user applications as a "hook" to catch signals.
duke@435 3470 // The user-defined signal handler must pass unrecognized signals to this
duke@435 3471 // routine, and if it returns true (non-zero), then the signal handler must
duke@435 3472 // return immediately. If the flag "abort_if_unrecognized" is true, then this
duke@435 3473 // routine will never retun false (zero), but instead will execute a VM panic
duke@435 3474 // routine kill the process.
duke@435 3475 //
duke@435 3476 // If this routine returns false, it is OK to call it again. This allows
duke@435 3477 // the user-defined signal handler to perform checks either before or after
duke@435 3478 // the VM performs its own checks. Naturally, the user code would be making
duke@435 3479 // a serious error if it tried to handle an exception (such as a null check
duke@435 3480 // or breakpoint) that the VM was generating for its own correct operation.
duke@435 3481 //
duke@435 3482 // This routine may recognize any of the following kinds of signals:
duke@435 3483 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
duke@435 3484 // It should be consulted by handlers for any of those signals.
duke@435 3485 //
duke@435 3486 // The caller of this routine must pass in the three arguments supplied
duke@435 3487 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
duke@435 3488 // field of the structure passed to sigaction(). This routine assumes that
duke@435 3489 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
duke@435 3490 //
duke@435 3491 // Note that the VM will print warnings if it detects conflicting signal
duke@435 3492 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
duke@435 3493 //
duke@435 3494 extern "C" int
duke@435 3495 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
duke@435 3496 void* ucontext, int abort_if_unrecognized);
duke@435 3497
duke@435 3498 void signalHandler(int sig, siginfo_t* info, void* uc) {
duke@435 3499 assert(info != NULL && uc != NULL, "it must be old kernel");
duke@435 3500 JVM_handle_linux_signal(sig, info, uc, true);
duke@435 3501 }
duke@435 3502
duke@435 3503
duke@435 3504 // This boolean allows users to forward their own non-matching signals
duke@435 3505 // to JVM_handle_linux_signal, harmlessly.
duke@435 3506 bool os::Linux::signal_handlers_are_installed = false;
duke@435 3507
duke@435 3508 // For signal-chaining
duke@435 3509 struct sigaction os::Linux::sigact[MAXSIGNUM];
duke@435 3510 unsigned int os::Linux::sigs = 0;
duke@435 3511 bool os::Linux::libjsig_is_loaded = false;
duke@435 3512 typedef struct sigaction *(*get_signal_t)(int);
duke@435 3513 get_signal_t os::Linux::get_signal_action = NULL;
duke@435 3514
duke@435 3515 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
duke@435 3516 struct sigaction *actp = NULL;
duke@435 3517
duke@435 3518 if (libjsig_is_loaded) {
duke@435 3519 // Retrieve the old signal handler from libjsig
duke@435 3520 actp = (*get_signal_action)(sig);
duke@435 3521 }
duke@435 3522 if (actp == NULL) {
duke@435 3523 // Retrieve the preinstalled signal handler from jvm
duke@435 3524 actp = get_preinstalled_handler(sig);
duke@435 3525 }
duke@435 3526
duke@435 3527 return actp;
duke@435 3528 }
duke@435 3529
duke@435 3530 static bool call_chained_handler(struct sigaction *actp, int sig,
duke@435 3531 siginfo_t *siginfo, void *context) {
duke@435 3532 // Call the old signal handler
duke@435 3533 if (actp->sa_handler == SIG_DFL) {
duke@435 3534 // It's more reasonable to let jvm treat it as an unexpected exception
duke@435 3535 // instead of taking the default action.
duke@435 3536 return false;
duke@435 3537 } else if (actp->sa_handler != SIG_IGN) {
duke@435 3538 if ((actp->sa_flags & SA_NODEFER) == 0) {
duke@435 3539 // automaticlly block the signal
duke@435 3540 sigaddset(&(actp->sa_mask), sig);
duke@435 3541 }
duke@435 3542
duke@435 3543 sa_handler_t hand;
duke@435 3544 sa_sigaction_t sa;
duke@435 3545 bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
duke@435 3546 // retrieve the chained handler
duke@435 3547 if (siginfo_flag_set) {
duke@435 3548 sa = actp->sa_sigaction;
duke@435 3549 } else {
duke@435 3550 hand = actp->sa_handler;
duke@435 3551 }
duke@435 3552
duke@435 3553 if ((actp->sa_flags & SA_RESETHAND) != 0) {
duke@435 3554 actp->sa_handler = SIG_DFL;
duke@435 3555 }
duke@435 3556
duke@435 3557 // try to honor the signal mask
duke@435 3558 sigset_t oset;
duke@435 3559 pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
duke@435 3560
duke@435 3561 // call into the chained handler
duke@435 3562 if (siginfo_flag_set) {
duke@435 3563 (*sa)(sig, siginfo, context);
duke@435 3564 } else {
duke@435 3565 (*hand)(sig);
duke@435 3566 }
duke@435 3567
duke@435 3568 // restore the signal mask
duke@435 3569 pthread_sigmask(SIG_SETMASK, &oset, 0);
duke@435 3570 }
duke@435 3571 // Tell jvm's signal handler the signal is taken care of.
duke@435 3572 return true;
duke@435 3573 }
duke@435 3574
duke@435 3575 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
duke@435 3576 bool chained = false;
duke@435 3577 // signal-chaining
duke@435 3578 if (UseSignalChaining) {
duke@435 3579 struct sigaction *actp = get_chained_signal_action(sig);
duke@435 3580 if (actp != NULL) {
duke@435 3581 chained = call_chained_handler(actp, sig, siginfo, context);
duke@435 3582 }
duke@435 3583 }
duke@435 3584 return chained;
duke@435 3585 }
duke@435 3586
duke@435 3587 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
duke@435 3588 if ((( (unsigned int)1 << sig ) & sigs) != 0) {
duke@435 3589 return &sigact[sig];
duke@435 3590 }
duke@435 3591 return NULL;
duke@435 3592 }
duke@435 3593
duke@435 3594 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
duke@435 3595 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3596 sigact[sig] = oldAct;
duke@435 3597 sigs |= (unsigned int)1 << sig;
duke@435 3598 }
duke@435 3599
duke@435 3600 // for diagnostic
duke@435 3601 int os::Linux::sigflags[MAXSIGNUM];
duke@435 3602
duke@435 3603 int os::Linux::get_our_sigflags(int sig) {
duke@435 3604 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3605 return sigflags[sig];
duke@435 3606 }
duke@435 3607
duke@435 3608 void os::Linux::set_our_sigflags(int sig, int flags) {
duke@435 3609 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3610 sigflags[sig] = flags;
duke@435 3611 }
duke@435 3612
duke@435 3613 void os::Linux::set_signal_handler(int sig, bool set_installed) {
duke@435 3614 // Check for overwrite.
duke@435 3615 struct sigaction oldAct;
duke@435 3616 sigaction(sig, (struct sigaction*)NULL, &oldAct);
duke@435 3617
duke@435 3618 void* oldhand = oldAct.sa_sigaction
duke@435 3619 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3620 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3621 if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
duke@435 3622 oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
duke@435 3623 oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
duke@435 3624 if (AllowUserSignalHandlers || !set_installed) {
duke@435 3625 // Do not overwrite; user takes responsibility to forward to us.
duke@435 3626 return;
duke@435 3627 } else if (UseSignalChaining) {
duke@435 3628 // save the old handler in jvm
duke@435 3629 save_preinstalled_handler(sig, oldAct);
duke@435 3630 // libjsig also interposes the sigaction() call below and saves the
duke@435 3631 // old sigaction on it own.
duke@435 3632 } else {
jcoomes@1845 3633 fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
jcoomes@1845 3634 "%#lx for signal %d.", (long)oldhand, sig));
duke@435 3635 }
duke@435 3636 }
duke@435 3637
duke@435 3638 struct sigaction sigAct;
duke@435 3639 sigfillset(&(sigAct.sa_mask));
duke@435 3640 sigAct.sa_handler = SIG_DFL;
duke@435 3641 if (!set_installed) {
duke@435 3642 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3643 } else {
duke@435 3644 sigAct.sa_sigaction = signalHandler;
duke@435 3645 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3646 }
duke@435 3647 // Save flags, which are set by ours
duke@435 3648 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3649 sigflags[sig] = sigAct.sa_flags;
duke@435 3650
duke@435 3651 int ret = sigaction(sig, &sigAct, &oldAct);
duke@435 3652 assert(ret == 0, "check");
duke@435 3653
duke@435 3654 void* oldhand2 = oldAct.sa_sigaction
duke@435 3655 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3656 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3657 assert(oldhand2 == oldhand, "no concurrent signal handler installation");
duke@435 3658 }
duke@435 3659
duke@435 3660 // install signal handlers for signals that HotSpot needs to
duke@435 3661 // handle in order to support Java-level exception handling.
duke@435 3662
duke@435 3663 void os::Linux::install_signal_handlers() {
duke@435 3664 if (!signal_handlers_are_installed) {
duke@435 3665 signal_handlers_are_installed = true;
duke@435 3666
duke@435 3667 // signal-chaining
duke@435 3668 typedef void (*signal_setting_t)();
duke@435 3669 signal_setting_t begin_signal_setting = NULL;
duke@435 3670 signal_setting_t end_signal_setting = NULL;
duke@435 3671 begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3672 dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
duke@435 3673 if (begin_signal_setting != NULL) {
duke@435 3674 end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3675 dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
duke@435 3676 get_signal_action = CAST_TO_FN_PTR(get_signal_t,
duke@435 3677 dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
duke@435 3678 libjsig_is_loaded = true;
duke@435 3679 assert(UseSignalChaining, "should enable signal-chaining");
duke@435 3680 }
duke@435 3681 if (libjsig_is_loaded) {
duke@435 3682 // Tell libjsig jvm is setting signal handlers
duke@435 3683 (*begin_signal_setting)();
duke@435 3684 }
duke@435 3685
duke@435 3686 set_signal_handler(SIGSEGV, true);
duke@435 3687 set_signal_handler(SIGPIPE, true);
duke@435 3688 set_signal_handler(SIGBUS, true);
duke@435 3689 set_signal_handler(SIGILL, true);
duke@435 3690 set_signal_handler(SIGFPE, true);
duke@435 3691 set_signal_handler(SIGXFSZ, true);
duke@435 3692
duke@435 3693 if (libjsig_is_loaded) {
duke@435 3694 // Tell libjsig jvm finishes setting signal handlers
duke@435 3695 (*end_signal_setting)();
duke@435 3696 }
duke@435 3697
duke@435 3698 // We don't activate signal checker if libjsig is in place, we trust ourselves
duke@435 3699 // and if UserSignalHandler is installed all bets are off
duke@435 3700 if (CheckJNICalls) {
duke@435 3701 if (libjsig_is_loaded) {
duke@435 3702 tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
duke@435 3703 check_signals = false;
duke@435 3704 }
duke@435 3705 if (AllowUserSignalHandlers) {
duke@435 3706 tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
duke@435 3707 check_signals = false;
duke@435 3708 }
duke@435 3709 }
duke@435 3710 }
duke@435 3711 }
duke@435 3712
duke@435 3713 // This is the fastest way to get thread cpu time on Linux.
duke@435 3714 // Returns cpu time (user+sys) for any thread, not only for current.
duke@435 3715 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
duke@435 3716 // It might work on 2.6.10+ with a special kernel/glibc patch.
duke@435 3717 // For reference, please, see IEEE Std 1003.1-2004:
duke@435 3718 // http://www.unix.org/single_unix_specification
duke@435 3719
duke@435 3720 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
duke@435 3721 struct timespec tp;
duke@435 3722 int rc = os::Linux::clock_gettime(clockid, &tp);
duke@435 3723 assert(rc == 0, "clock_gettime is expected to return 0 code");
duke@435 3724
duke@435 3725 return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
duke@435 3726 }
duke@435 3727
duke@435 3728 /////
duke@435 3729 // glibc on Linux platform uses non-documented flag
duke@435 3730 // to indicate, that some special sort of signal
duke@435 3731 // trampoline is used.
duke@435 3732 // We will never set this flag, and we should
duke@435 3733 // ignore this flag in our diagnostic
duke@435 3734 #ifdef SIGNIFICANT_SIGNAL_MASK
duke@435 3735 #undef SIGNIFICANT_SIGNAL_MASK
duke@435 3736 #endif
duke@435 3737 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
duke@435 3738
duke@435 3739 static const char* get_signal_handler_name(address handler,
duke@435 3740 char* buf, int buflen) {
duke@435 3741 int offset;
duke@435 3742 bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
duke@435 3743 if (found) {
duke@435 3744 // skip directory names
duke@435 3745 const char *p1, *p2;
duke@435 3746 p1 = buf;
duke@435 3747 size_t len = strlen(os::file_separator());
duke@435 3748 while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
duke@435 3749 jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
duke@435 3750 } else {
duke@435 3751 jio_snprintf(buf, buflen, PTR_FORMAT, handler);
duke@435 3752 }
duke@435 3753 return buf;
duke@435 3754 }
duke@435 3755
duke@435 3756 static void print_signal_handler(outputStream* st, int sig,
duke@435 3757 char* buf, size_t buflen) {
duke@435 3758 struct sigaction sa;
duke@435 3759
duke@435 3760 sigaction(sig, NULL, &sa);
duke@435 3761
duke@435 3762 // See comment for SIGNIFICANT_SIGNAL_MASK define
duke@435 3763 sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3764
duke@435 3765 st->print("%s: ", os::exception_name(sig, buf, buflen));
duke@435 3766
duke@435 3767 address handler = (sa.sa_flags & SA_SIGINFO)
duke@435 3768 ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
duke@435 3769 : CAST_FROM_FN_PTR(address, sa.sa_handler);
duke@435 3770
duke@435 3771 if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
duke@435 3772 st->print("SIG_DFL");
duke@435 3773 } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
duke@435 3774 st->print("SIG_IGN");
duke@435 3775 } else {
duke@435 3776 st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
duke@435 3777 }
duke@435 3778
duke@435 3779 st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
duke@435 3780
duke@435 3781 address rh = VMError::get_resetted_sighandler(sig);
duke@435 3782 // May be, handler was resetted by VMError?
duke@435 3783 if(rh != NULL) {
duke@435 3784 handler = rh;
duke@435 3785 sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
duke@435 3786 }
duke@435 3787
duke@435 3788 st->print(", sa_flags=" PTR32_FORMAT, sa.sa_flags);
duke@435 3789
duke@435 3790 // Check: is it our handler?
duke@435 3791 if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
duke@435 3792 handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
duke@435 3793 // It is our signal handler
duke@435 3794 // check for flags, reset system-used one!
duke@435 3795 if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 3796 st->print(
duke@435 3797 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
duke@435 3798 os::Linux::get_our_sigflags(sig));
duke@435 3799 }
duke@435 3800 }
duke@435 3801 st->cr();
duke@435 3802 }
duke@435 3803
duke@435 3804
duke@435 3805 #define DO_SIGNAL_CHECK(sig) \
duke@435 3806 if (!sigismember(&check_signal_done, sig)) \
duke@435 3807 os::Linux::check_signal_handler(sig)
duke@435 3808
duke@435 3809 // This method is a periodic task to check for misbehaving JNI applications
duke@435 3810 // under CheckJNI, we can add any periodic checks here
duke@435 3811
duke@435 3812 void os::run_periodic_checks() {
duke@435 3813
duke@435 3814 if (check_signals == false) return;
duke@435 3815
duke@435 3816 // SEGV and BUS if overridden could potentially prevent
duke@435 3817 // generation of hs*.log in the event of a crash, debugging
duke@435 3818 // such a case can be very challenging, so we absolutely
duke@435 3819 // check the following for a good measure:
duke@435 3820 DO_SIGNAL_CHECK(SIGSEGV);
duke@435 3821 DO_SIGNAL_CHECK(SIGILL);
duke@435 3822 DO_SIGNAL_CHECK(SIGFPE);
duke@435 3823 DO_SIGNAL_CHECK(SIGBUS);
duke@435 3824 DO_SIGNAL_CHECK(SIGPIPE);
duke@435 3825 DO_SIGNAL_CHECK(SIGXFSZ);
duke@435 3826
duke@435 3827
duke@435 3828 // ReduceSignalUsage allows the user to override these handlers
duke@435 3829 // see comments at the very top and jvm_solaris.h
duke@435 3830 if (!ReduceSignalUsage) {
duke@435 3831 DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
duke@435 3832 DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
duke@435 3833 DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
duke@435 3834 DO_SIGNAL_CHECK(BREAK_SIGNAL);
duke@435 3835 }
duke@435 3836
duke@435 3837 DO_SIGNAL_CHECK(SR_signum);
duke@435 3838 DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
duke@435 3839 }
duke@435 3840
duke@435 3841 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
duke@435 3842
duke@435 3843 static os_sigaction_t os_sigaction = NULL;
duke@435 3844
duke@435 3845 void os::Linux::check_signal_handler(int sig) {
duke@435 3846 char buf[O_BUFLEN];
duke@435 3847 address jvmHandler = NULL;
duke@435 3848
duke@435 3849
duke@435 3850 struct sigaction act;
duke@435 3851 if (os_sigaction == NULL) {
duke@435 3852 // only trust the default sigaction, in case it has been interposed
duke@435 3853 os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
duke@435 3854 if (os_sigaction == NULL) return;
duke@435 3855 }
duke@435 3856
duke@435 3857 os_sigaction(sig, (struct sigaction*)NULL, &act);
duke@435 3858
duke@435 3859
duke@435 3860 act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3861
duke@435 3862 address thisHandler = (act.sa_flags & SA_SIGINFO)
duke@435 3863 ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
duke@435 3864 : CAST_FROM_FN_PTR(address, act.sa_handler) ;
duke@435 3865
duke@435 3866
duke@435 3867 switch(sig) {
duke@435 3868 case SIGSEGV:
duke@435 3869 case SIGBUS:
duke@435 3870 case SIGFPE:
duke@435 3871 case SIGPIPE:
duke@435 3872 case SIGILL:
duke@435 3873 case SIGXFSZ:
duke@435 3874 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
duke@435 3875 break;
duke@435 3876
duke@435 3877 case SHUTDOWN1_SIGNAL:
duke@435 3878 case SHUTDOWN2_SIGNAL:
duke@435 3879 case SHUTDOWN3_SIGNAL:
duke@435 3880 case BREAK_SIGNAL:
duke@435 3881 jvmHandler = (address)user_handler();
duke@435 3882 break;
duke@435 3883
duke@435 3884 case INTERRUPT_SIGNAL:
duke@435 3885 jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
duke@435 3886 break;
duke@435 3887
duke@435 3888 default:
duke@435 3889 if (sig == SR_signum) {
duke@435 3890 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
duke@435 3891 } else {
duke@435 3892 return;
duke@435 3893 }
duke@435 3894 break;
duke@435 3895 }
duke@435 3896
duke@435 3897 if (thisHandler != jvmHandler) {
duke@435 3898 tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
duke@435 3899 tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
duke@435 3900 tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
duke@435 3901 // No need to check this sig any longer
duke@435 3902 sigaddset(&check_signal_done, sig);
duke@435 3903 } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 3904 tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
duke@435 3905 tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
duke@435 3906 tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
duke@435 3907 // No need to check this sig any longer
duke@435 3908 sigaddset(&check_signal_done, sig);
duke@435 3909 }
duke@435 3910
duke@435 3911 // Dump all the signal
duke@435 3912 if (sigismember(&check_signal_done, sig)) {
duke@435 3913 print_signal_handlers(tty, buf, O_BUFLEN);
duke@435 3914 }
duke@435 3915 }
duke@435 3916
duke@435 3917 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
duke@435 3918
duke@435 3919 extern bool signal_name(int signo, char* buf, size_t len);
duke@435 3920
duke@435 3921 const char* os::exception_name(int exception_code, char* buf, size_t size) {
duke@435 3922 if (0 < exception_code && exception_code <= SIGRTMAX) {
duke@435 3923 // signal
duke@435 3924 if (!signal_name(exception_code, buf, size)) {
duke@435 3925 jio_snprintf(buf, size, "SIG%d", exception_code);
duke@435 3926 }
duke@435 3927 return buf;
duke@435 3928 } else {
duke@435 3929 return NULL;
duke@435 3930 }
duke@435 3931 }
duke@435 3932
duke@435 3933 // this is called _before_ the most of global arguments have been parsed
duke@435 3934 void os::init(void) {
duke@435 3935 char dummy; /* used to get a guess on initial stack address */
duke@435 3936 // first_hrtime = gethrtime();
duke@435 3937
duke@435 3938 // With LinuxThreads the JavaMain thread pid (primordial thread)
duke@435 3939 // is different than the pid of the java launcher thread.
duke@435 3940 // So, on Linux, the launcher thread pid is passed to the VM
duke@435 3941 // via the sun.java.launcher.pid property.
duke@435 3942 // Use this property instead of getpid() if it was correctly passed.
duke@435 3943 // See bug 6351349.
duke@435 3944 pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
duke@435 3945
duke@435 3946 _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
duke@435 3947
duke@435 3948 clock_tics_per_sec = sysconf(_SC_CLK_TCK);
duke@435 3949
duke@435 3950 init_random(1234567);
duke@435 3951
duke@435 3952 ThreadCritical::initialize();
duke@435 3953
duke@435 3954 Linux::set_page_size(sysconf(_SC_PAGESIZE));
duke@435 3955 if (Linux::page_size() == -1) {
jcoomes@1845 3956 fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
jcoomes@1845 3957 strerror(errno)));
duke@435 3958 }
duke@435 3959 init_page_sizes((size_t) Linux::page_size());
duke@435 3960
duke@435 3961 Linux::initialize_system_info();
duke@435 3962
duke@435 3963 // main_thread points to the aboriginal thread
duke@435 3964 Linux::_main_thread = pthread_self();
duke@435 3965
duke@435 3966 Linux::clock_init();
duke@435 3967 initial_time_count = os::elapsed_counter();
kamg@677 3968 pthread_mutex_init(&dl_mutex, NULL);
duke@435 3969 }
duke@435 3970
duke@435 3971 // To install functions for atexit system call
duke@435 3972 extern "C" {
duke@435 3973 static void perfMemory_exit_helper() {
duke@435 3974 perfMemory_exit();
duke@435 3975 }
duke@435 3976 }
duke@435 3977
duke@435 3978 // this is called _after_ the global arguments have been parsed
duke@435 3979 jint os::init_2(void)
duke@435 3980 {
duke@435 3981 Linux::fast_thread_clock_init();
duke@435 3982
duke@435 3983 // Allocate a single page and mark it as readable for safepoint polling
duke@435 3984 address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 3985 guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
duke@435 3986
duke@435 3987 os::set_polling_page( polling_page );
duke@435 3988
duke@435 3989 #ifndef PRODUCT
duke@435 3990 if(Verbose && PrintMiscellaneous)
duke@435 3991 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 3992 #endif
duke@435 3993
duke@435 3994 if (!UseMembar) {
duke@435 3995 address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 3996 guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
duke@435 3997 os::set_memory_serialize_page( mem_serialize_page );
duke@435 3998
duke@435 3999 #ifndef PRODUCT
duke@435 4000 if(Verbose && PrintMiscellaneous)
duke@435 4001 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 4002 #endif
duke@435 4003 }
duke@435 4004
duke@435 4005 FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
duke@435 4006
duke@435 4007 // initialize suspend/resume support - must do this before signal_sets_init()
duke@435 4008 if (SR_initialize() != 0) {
duke@435 4009 perror("SR_initialize failed");
duke@435 4010 return JNI_ERR;
duke@435 4011 }
duke@435 4012
duke@435 4013 Linux::signal_sets_init();
duke@435 4014 Linux::install_signal_handlers();
duke@435 4015
coleenp@2222 4016 // Check minimum allowable stack size for thread creation and to initialize
coleenp@2222 4017 // the java system classes, including StackOverflowError - depends on page
coleenp@2222 4018 // size. Add a page for compiler2 recursion in main thread.
coleenp@2222 4019 // Add in 2*BytesPerWord times page size to account for VM stack during
coleenp@2222 4020 // class initialization depending on 32 or 64 bit VM.
coleenp@2222 4021 os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
coleenp@2222 4022 (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
coleenp@2222 4023 2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
coleenp@2222 4024
duke@435 4025 size_t threadStackSizeInBytes = ThreadStackSize * K;
duke@435 4026 if (threadStackSizeInBytes != 0 &&
coleenp@2222 4027 threadStackSizeInBytes < os::Linux::min_stack_allowed) {
duke@435 4028 tty->print_cr("\nThe stack size specified is too small, "
duke@435 4029 "Specify at least %dk",
coleenp@2222 4030 os::Linux::min_stack_allowed/ K);
duke@435 4031 return JNI_ERR;
duke@435 4032 }
duke@435 4033
duke@435 4034 // Make the stack size a multiple of the page size so that
duke@435 4035 // the yellow/red zones can be guarded.
duke@435 4036 JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
duke@435 4037 vm_page_size()));
duke@435 4038
duke@435 4039 Linux::capture_initial_stack(JavaThread::stack_size_at_create());
duke@435 4040
duke@435 4041 Linux::libpthread_init();
duke@435 4042 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 4043 tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
duke@435 4044 Linux::glibc_version(), Linux::libpthread_version(),
duke@435 4045 Linux::is_floating_stack() ? "floating stack" : "fixed stack");
duke@435 4046 }
duke@435 4047
iveresov@576 4048 if (UseNUMA) {
iveresov@897 4049 if (!Linux::libnuma_init()) {
iveresov@897 4050 UseNUMA = false;
iveresov@897 4051 } else {
iveresov@897 4052 if ((Linux::numa_max_node() < 1)) {
iveresov@897 4053 // There's only one node(they start from 0), disable NUMA.
iveresov@897 4054 UseNUMA = false;
iveresov@897 4055 }
iveresov@897 4056 }
iveresov@897 4057 if (!UseNUMA && ForceNUMA) {
iveresov@897 4058 UseNUMA = true;
iveresov@897 4059 }
iveresov@576 4060 }
iveresov@576 4061
duke@435 4062 if (MaxFDLimit) {
duke@435 4063 // set the number of file descriptors to max. print out error
duke@435 4064 // if getrlimit/setrlimit fails but continue regardless.
duke@435 4065 struct rlimit nbr_files;
duke@435 4066 int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 4067 if (status != 0) {
duke@435 4068 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 4069 perror("os::init_2 getrlimit failed");
duke@435 4070 } else {
duke@435 4071 nbr_files.rlim_cur = nbr_files.rlim_max;
duke@435 4072 status = setrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 4073 if (status != 0) {
duke@435 4074 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 4075 perror("os::init_2 setrlimit failed");
duke@435 4076 }
duke@435 4077 }
duke@435 4078 }
duke@435 4079
duke@435 4080 // Initialize lock used to serialize thread creation (see os::create_thread)
duke@435 4081 Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
duke@435 4082
duke@435 4083 // at-exit methods are called in the reverse order of their registration.
duke@435 4084 // atexit functions are called on return from main or as a result of a
duke@435 4085 // call to exit(3C). There can be only 32 of these functions registered
duke@435 4086 // and atexit() does not set errno.
duke@435 4087
duke@435 4088 if (PerfAllowAtExitRegistration) {
duke@435 4089 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 4090 // atexit functions can be delayed until process exit time, which
duke@435 4091 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 4092 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 4093
duke@435 4094 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 4095 // the future if the appropriate cleanup code can be added to the
duke@435 4096 // VM_Exit VMOperation's doit method.
duke@435 4097 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 4098 warning("os::init2 atexit(perfMemory_exit_helper) failed");
duke@435 4099 }
duke@435 4100 }
duke@435 4101
duke@435 4102 // initialize thread priority policy
duke@435 4103 prio_init();
duke@435 4104
duke@435 4105 return JNI_OK;
duke@435 4106 }
duke@435 4107
bobv@2036 4108 // this is called at the end of vm_initialization
bobv@2036 4109 void os::init_3(void) { }
bobv@2036 4110
duke@435 4111 // Mark the polling page as unreadable
duke@435 4112 void os::make_polling_page_unreadable(void) {
duke@435 4113 if( !guard_memory((char*)_polling_page, Linux::page_size()) )
duke@435 4114 fatal("Could not disable polling page");
duke@435 4115 };
duke@435 4116
duke@435 4117 // Mark the polling page as readable
duke@435 4118 void os::make_polling_page_readable(void) {
coleenp@672 4119 if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
duke@435 4120 fatal("Could not enable polling page");
coleenp@672 4121 }
duke@435 4122 };
duke@435 4123
duke@435 4124 int os::active_processor_count() {
duke@435 4125 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4126 // so just return the number of online processors.
duke@435 4127 int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
duke@435 4128 assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
duke@435 4129 return online_cpus;
duke@435 4130 }
duke@435 4131
duke@435 4132 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 4133 // Not yet implemented.
duke@435 4134 return false;
duke@435 4135 }
duke@435 4136
duke@435 4137 bool os::bind_to_processor(uint processor_id) {
duke@435 4138 // Not yet implemented.
duke@435 4139 return false;
duke@435 4140 }
duke@435 4141
duke@435 4142 ///
duke@435 4143
duke@435 4144 // Suspends the target using the signal mechanism and then grabs the PC before
duke@435 4145 // resuming the target. Used by the flat-profiler only
duke@435 4146 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 4147 // Make sure that it is called by the watcher for the VMThread
duke@435 4148 assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
duke@435 4149 assert(thread->is_VM_thread(), "Can only be called for VMThread");
duke@435 4150
duke@435 4151 ExtendedPC epc;
duke@435 4152
duke@435 4153 OSThread* osthread = thread->osthread();
duke@435 4154 if (do_suspend(osthread)) {
duke@435 4155 if (osthread->ucontext() != NULL) {
duke@435 4156 epc = os::Linux::ucontext_get_pc(osthread->ucontext());
duke@435 4157 } else {
duke@435 4158 // NULL context is unexpected, double-check this is the VMThread
duke@435 4159 guarantee(thread->is_VM_thread(), "can only be called for VMThread");
duke@435 4160 }
duke@435 4161 do_resume(osthread);
duke@435 4162 }
duke@435 4163 // failure means pthread_kill failed for some reason - arguably this is
duke@435 4164 // a fatal problem, but such problems are ignored elsewhere
duke@435 4165
duke@435 4166 return epc;
duke@435 4167 }
duke@435 4168
duke@435 4169 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
duke@435 4170 {
duke@435 4171 if (is_NPTL()) {
duke@435 4172 return pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4173 } else {
duke@435 4174 #ifndef IA64
duke@435 4175 // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
duke@435 4176 // word back to default 64bit precision if condvar is signaled. Java
duke@435 4177 // wants 53bit precision. Save and restore current value.
duke@435 4178 int fpu = get_fpu_control_word();
duke@435 4179 #endif // IA64
duke@435 4180 int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4181 #ifndef IA64
duke@435 4182 set_fpu_control_word(fpu);
duke@435 4183 #endif // IA64
duke@435 4184 return status;
duke@435 4185 }
duke@435 4186 }
duke@435 4187
duke@435 4188 ////////////////////////////////////////////////////////////////////////////////
duke@435 4189 // debug support
duke@435 4190
duke@435 4191 static address same_page(address x, address y) {
duke@435 4192 int page_bits = -os::vm_page_size();
duke@435 4193 if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
duke@435 4194 return x;
duke@435 4195 else if (x > y)
duke@435 4196 return (address)(intptr_t(y) | ~page_bits) + 1;
duke@435 4197 else
duke@435 4198 return (address)(intptr_t(y) & page_bits);
duke@435 4199 }
duke@435 4200
bobv@2036 4201 bool os::find(address addr, outputStream* st) {
duke@435 4202 Dl_info dlinfo;
duke@435 4203 memset(&dlinfo, 0, sizeof(dlinfo));
duke@435 4204 if (dladdr(addr, &dlinfo)) {
bobv@2036 4205 st->print(PTR_FORMAT ": ", addr);
duke@435 4206 if (dlinfo.dli_sname != NULL) {
bobv@2036 4207 st->print("%s+%#x", dlinfo.dli_sname,
duke@435 4208 addr - (intptr_t)dlinfo.dli_saddr);
duke@435 4209 } else if (dlinfo.dli_fname) {
bobv@2036 4210 st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
duke@435 4211 } else {
bobv@2036 4212 st->print("<absolute address>");
duke@435 4213 }
duke@435 4214 if (dlinfo.dli_fname) {
bobv@2036 4215 st->print(" in %s", dlinfo.dli_fname);
duke@435 4216 }
duke@435 4217 if (dlinfo.dli_fbase) {
bobv@2036 4218 st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
duke@435 4219 }
bobv@2036 4220 st->cr();
duke@435 4221
duke@435 4222 if (Verbose) {
duke@435 4223 // decode some bytes around the PC
duke@435 4224 address begin = same_page(addr-40, addr);
duke@435 4225 address end = same_page(addr+40, addr);
duke@435 4226 address lowest = (address) dlinfo.dli_sname;
duke@435 4227 if (!lowest) lowest = (address) dlinfo.dli_fbase;
duke@435 4228 if (begin < lowest) begin = lowest;
duke@435 4229 Dl_info dlinfo2;
duke@435 4230 if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
duke@435 4231 && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
duke@435 4232 end = (address) dlinfo2.dli_saddr;
bobv@2036 4233 Disassembler::decode(begin, end, st);
duke@435 4234 }
duke@435 4235 return true;
duke@435 4236 }
duke@435 4237 return false;
duke@435 4238 }
duke@435 4239
duke@435 4240 ////////////////////////////////////////////////////////////////////////////////
duke@435 4241 // misc
duke@435 4242
duke@435 4243 // This does not do anything on Linux. This is basically a hook for being
duke@435 4244 // able to use structured exception handling (thread-local exception filters)
duke@435 4245 // on, e.g., Win32.
duke@435 4246 void
duke@435 4247 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
duke@435 4248 JavaCallArguments* args, Thread* thread) {
duke@435 4249 f(value, method, args, thread);
duke@435 4250 }
duke@435 4251
duke@435 4252 void os::print_statistics() {
duke@435 4253 }
duke@435 4254
duke@435 4255 int os::message_box(const char* title, const char* message) {
duke@435 4256 int i;
duke@435 4257 fdStream err(defaultStream::error_fd());
duke@435 4258 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4259 err.cr();
duke@435 4260 err.print_raw_cr(title);
duke@435 4261 for (i = 0; i < 78; i++) err.print_raw("-");
duke@435 4262 err.cr();
duke@435 4263 err.print_raw_cr(message);
duke@435 4264 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4265 err.cr();
duke@435 4266
duke@435 4267 char buf[16];
duke@435 4268 // Prevent process from exiting upon "read error" without consuming all CPU
duke@435 4269 while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
duke@435 4270
duke@435 4271 return buf[0] == 'y' || buf[0] == 'Y';
duke@435 4272 }
duke@435 4273
duke@435 4274 int os::stat(const char *path, struct stat *sbuf) {
duke@435 4275 char pathbuf[MAX_PATH];
duke@435 4276 if (strlen(path) > MAX_PATH - 1) {
duke@435 4277 errno = ENAMETOOLONG;
duke@435 4278 return -1;
duke@435 4279 }
ikrylov@2322 4280 os::native_path(strcpy(pathbuf, path));
duke@435 4281 return ::stat(pathbuf, sbuf);
duke@435 4282 }
duke@435 4283
duke@435 4284 bool os::check_heap(bool force) {
duke@435 4285 return true;
duke@435 4286 }
duke@435 4287
duke@435 4288 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
duke@435 4289 return ::vsnprintf(buf, count, format, args);
duke@435 4290 }
duke@435 4291
duke@435 4292 // Is a (classpath) directory empty?
duke@435 4293 bool os::dir_is_empty(const char* path) {
duke@435 4294 DIR *dir = NULL;
duke@435 4295 struct dirent *ptr;
duke@435 4296
duke@435 4297 dir = opendir(path);
duke@435 4298 if (dir == NULL) return true;
duke@435 4299
duke@435 4300 /* Scan the directory */
duke@435 4301 bool result = true;
duke@435 4302 char buf[sizeof(struct dirent) + MAX_PATH];
duke@435 4303 while (result && (ptr = ::readdir(dir)) != NULL) {
duke@435 4304 if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
duke@435 4305 result = false;
duke@435 4306 }
duke@435 4307 }
duke@435 4308 closedir(dir);
duke@435 4309 return result;
duke@435 4310 }
duke@435 4311
ikrylov@2322 4312 // This code originates from JDK's sysOpen and open64_w
ikrylov@2322 4313 // from src/solaris/hpi/src/system_md.c
ikrylov@2322 4314
ikrylov@2322 4315 #ifndef O_DELETE
ikrylov@2322 4316 #define O_DELETE 0x10000
ikrylov@2322 4317 #endif
ikrylov@2322 4318
ikrylov@2322 4319 // Open a file. Unlink the file immediately after open returns
ikrylov@2322 4320 // if the specified oflag has the O_DELETE flag set.
ikrylov@2322 4321 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
ikrylov@2322 4322
ikrylov@2322 4323 int os::open(const char *path, int oflag, int mode) {
ikrylov@2322 4324
ikrylov@2322 4325 if (strlen(path) > MAX_PATH - 1) {
ikrylov@2322 4326 errno = ENAMETOOLONG;
ikrylov@2322 4327 return -1;
ikrylov@2322 4328 }
ikrylov@2322 4329 int fd;
ikrylov@2322 4330 int o_delete = (oflag & O_DELETE);
ikrylov@2322 4331 oflag = oflag & ~O_DELETE;
ikrylov@2322 4332
ikrylov@2322 4333 fd = ::open64(path, oflag, mode);
ikrylov@2322 4334 if (fd == -1) return -1;
ikrylov@2322 4335
ikrylov@2322 4336 //If the open succeeded, the file might still be a directory
ikrylov@2322 4337 {
ikrylov@2322 4338 struct stat64 buf64;
ikrylov@2322 4339 int ret = ::fstat64(fd, &buf64);
ikrylov@2322 4340 int st_mode = buf64.st_mode;
ikrylov@2322 4341
ikrylov@2322 4342 if (ret != -1) {
ikrylov@2322 4343 if ((st_mode & S_IFMT) == S_IFDIR) {
ikrylov@2322 4344 errno = EISDIR;
ikrylov@2322 4345 ::close(fd);
ikrylov@2322 4346 return -1;
ikrylov@2322 4347 }
ikrylov@2322 4348 } else {
ikrylov@2322 4349 ::close(fd);
ikrylov@2322 4350 return -1;
ikrylov@2322 4351 }
ikrylov@2322 4352 }
ikrylov@2322 4353
ikrylov@2322 4354 /*
ikrylov@2322 4355 * All file descriptors that are opened in the JVM and not
ikrylov@2322 4356 * specifically destined for a subprocess should have the
ikrylov@2322 4357 * close-on-exec flag set. If we don't set it, then careless 3rd
ikrylov@2322 4358 * party native code might fork and exec without closing all
ikrylov@2322 4359 * appropriate file descriptors (e.g. as we do in closeDescriptors in
ikrylov@2322 4360 * UNIXProcess.c), and this in turn might:
ikrylov@2322 4361 *
ikrylov@2322 4362 * - cause end-of-file to fail to be detected on some file
ikrylov@2322 4363 * descriptors, resulting in mysterious hangs, or
ikrylov@2322 4364 *
ikrylov@2322 4365 * - might cause an fopen in the subprocess to fail on a system
ikrylov@2322 4366 * suffering from bug 1085341.
ikrylov@2322 4367 *
ikrylov@2322 4368 * (Yes, the default setting of the close-on-exec flag is a Unix
ikrylov@2322 4369 * design flaw)
ikrylov@2322 4370 *
ikrylov@2322 4371 * See:
ikrylov@2322 4372 * 1085341: 32-bit stdio routines should support file descriptors >255
ikrylov@2322 4373 * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
ikrylov@2322 4374 * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
ikrylov@2322 4375 */
ikrylov@2322 4376 #ifdef FD_CLOEXEC
ikrylov@2322 4377 {
ikrylov@2322 4378 int flags = ::fcntl(fd, F_GETFD);
ikrylov@2322 4379 if (flags != -1)
ikrylov@2322 4380 ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
ikrylov@2322 4381 }
ikrylov@2322 4382 #endif
ikrylov@2322 4383
ikrylov@2322 4384 if (o_delete != 0) {
ikrylov@2322 4385 ::unlink(path);
ikrylov@2322 4386 }
ikrylov@2322 4387 return fd;
ikrylov@2322 4388 }
ikrylov@2322 4389
ikrylov@2322 4390
duke@435 4391 // create binary file, rewriting existing file if required
duke@435 4392 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 4393 int oflags = O_WRONLY | O_CREAT;
duke@435 4394 if (!rewrite_existing) {
duke@435 4395 oflags |= O_EXCL;
duke@435 4396 }
duke@435 4397 return ::open64(path, oflags, S_IREAD | S_IWRITE);
duke@435 4398 }
duke@435 4399
duke@435 4400 // return current position of file pointer
duke@435 4401 jlong os::current_file_offset(int fd) {
duke@435 4402 return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
duke@435 4403 }
duke@435 4404
duke@435 4405 // move file pointer to the specified offset
duke@435 4406 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 4407 return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
duke@435 4408 }
duke@435 4409
ikrylov@2322 4410 // This code originates from JDK's sysAvailable
ikrylov@2322 4411 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
ikrylov@2322 4412
ikrylov@2322 4413 int os::available(int fd, jlong *bytes) {
ikrylov@2322 4414 jlong cur, end;
ikrylov@2322 4415 int mode;
ikrylov@2322 4416 struct stat64 buf64;
ikrylov@2322 4417
ikrylov@2322 4418 if (::fstat64(fd, &buf64) >= 0) {
ikrylov@2322 4419 mode = buf64.st_mode;
ikrylov@2322 4420 if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
ikrylov@2322 4421 /*
ikrylov@2322 4422 * XXX: is the following call interruptible? If so, this might
ikrylov@2322 4423 * need to go through the INTERRUPT_IO() wrapper as for other
ikrylov@2322 4424 * blocking, interruptible calls in this file.
ikrylov@2322 4425 */
ikrylov@2322 4426 int n;
ikrylov@2322 4427 if (::ioctl(fd, FIONREAD, &n) >= 0) {
ikrylov@2322 4428 *bytes = n;
ikrylov@2322 4429 return 1;
ikrylov@2322 4430 }
ikrylov@2322 4431 }
ikrylov@2322 4432 }
ikrylov@2322 4433 if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
ikrylov@2322 4434 return 0;
ikrylov@2322 4435 } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
ikrylov@2322 4436 return 0;
ikrylov@2322 4437 } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
ikrylov@2322 4438 return 0;
ikrylov@2322 4439 }
ikrylov@2322 4440 *bytes = end - cur;
ikrylov@2322 4441 return 1;
ikrylov@2322 4442 }
ikrylov@2322 4443
dholmes@2375 4444 int os::socket_available(int fd, jint *pbytes) {
dholmes@2375 4445 // Linux doc says EINTR not returned, unlike Solaris
dholmes@2375 4446 int ret = ::ioctl(fd, FIONREAD, pbytes);
dholmes@2375 4447
dholmes@2375 4448 //%% note ioctl can return 0 when successful, JVM_SocketAvailable
dholmes@2375 4449 // is expected to return 0 on failure and 1 on success to the jdk.
dholmes@2375 4450 return (ret < 0) ? 0 : 1;
dholmes@2375 4451 }
dholmes@2375 4452
duke@435 4453 // Map a block of memory.
duke@435 4454 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4455 char *addr, size_t bytes, bool read_only,
duke@435 4456 bool allow_exec) {
duke@435 4457 int prot;
duke@435 4458 int flags;
duke@435 4459
duke@435 4460 if (read_only) {
duke@435 4461 prot = PROT_READ;
duke@435 4462 flags = MAP_SHARED;
duke@435 4463 } else {
duke@435 4464 prot = PROT_READ | PROT_WRITE;
duke@435 4465 flags = MAP_PRIVATE;
duke@435 4466 }
duke@435 4467
duke@435 4468 if (allow_exec) {
duke@435 4469 prot |= PROT_EXEC;
duke@435 4470 }
duke@435 4471
duke@435 4472 if (addr != NULL) {
duke@435 4473 flags |= MAP_FIXED;
duke@435 4474 }
duke@435 4475
duke@435 4476 char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
duke@435 4477 fd, file_offset);
duke@435 4478 if (mapped_address == MAP_FAILED) {
duke@435 4479 return NULL;
duke@435 4480 }
duke@435 4481 return mapped_address;
duke@435 4482 }
duke@435 4483
duke@435 4484
duke@435 4485 // Remap a block of memory.
duke@435 4486 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4487 char *addr, size_t bytes, bool read_only,
duke@435 4488 bool allow_exec) {
duke@435 4489 // same as map_memory() on this OS
duke@435 4490 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 4491 allow_exec);
duke@435 4492 }
duke@435 4493
duke@435 4494
duke@435 4495 // Unmap a block of memory.
duke@435 4496 bool os::unmap_memory(char* addr, size_t bytes) {
duke@435 4497 return munmap(addr, bytes) == 0;
duke@435 4498 }
duke@435 4499
duke@435 4500 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
duke@435 4501
duke@435 4502 static clockid_t thread_cpu_clockid(Thread* thread) {
duke@435 4503 pthread_t tid = thread->osthread()->pthread_id();
duke@435 4504 clockid_t clockid;
duke@435 4505
duke@435 4506 // Get thread clockid
duke@435 4507 int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
duke@435 4508 assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
duke@435 4509 return clockid;
duke@435 4510 }
duke@435 4511
duke@435 4512 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 4513 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 4514 // of a thread.
duke@435 4515 //
duke@435 4516 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 4517 // the fast estimate available on the platform.
duke@435 4518
duke@435 4519 jlong os::current_thread_cpu_time() {
duke@435 4520 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4521 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4522 } else {
duke@435 4523 // return user + sys since the cost is the same
duke@435 4524 return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
duke@435 4525 }
duke@435 4526 }
duke@435 4527
duke@435 4528 jlong os::thread_cpu_time(Thread* thread) {
duke@435 4529 // consistent with what current_thread_cpu_time() returns
duke@435 4530 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4531 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4532 } else {
duke@435 4533 return slow_thread_cpu_time(thread, true /* user + sys */);
duke@435 4534 }
duke@435 4535 }
duke@435 4536
duke@435 4537 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 4538 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4539 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4540 } else {
duke@435 4541 return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 4542 }
duke@435 4543 }
duke@435 4544
duke@435 4545 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4546 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4547 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4548 } else {
duke@435 4549 return slow_thread_cpu_time(thread, user_sys_cpu_time);
duke@435 4550 }
duke@435 4551 }
duke@435 4552
duke@435 4553 //
duke@435 4554 // -1 on error.
duke@435 4555 //
duke@435 4556
duke@435 4557 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4558 static bool proc_pid_cpu_avail = true;
duke@435 4559 static bool proc_task_unchecked = true;
duke@435 4560 static const char *proc_stat_path = "/proc/%d/stat";
duke@435 4561 pid_t tid = thread->osthread()->thread_id();
duke@435 4562 int i;
duke@435 4563 char *s;
duke@435 4564 char stat[2048];
duke@435 4565 int statlen;
duke@435 4566 char proc_name[64];
duke@435 4567 int count;
duke@435 4568 long sys_time, user_time;
duke@435 4569 char string[64];
bobv@2036 4570 char cdummy;
duke@435 4571 int idummy;
duke@435 4572 long ldummy;
duke@435 4573 FILE *fp;
duke@435 4574
duke@435 4575 // We first try accessing /proc/<pid>/cpu since this is faster to
duke@435 4576 // process. If this file is not present (linux kernels 2.5 and above)
duke@435 4577 // then we open /proc/<pid>/stat.
duke@435 4578 if ( proc_pid_cpu_avail ) {
duke@435 4579 sprintf(proc_name, "/proc/%d/cpu", tid);
duke@435 4580 fp = fopen(proc_name, "r");
duke@435 4581 if ( fp != NULL ) {
duke@435 4582 count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
duke@435 4583 fclose(fp);
duke@435 4584 if ( count != 3 ) return -1;
duke@435 4585
duke@435 4586 if (user_sys_cpu_time) {
duke@435 4587 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4588 } else {
duke@435 4589 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4590 }
duke@435 4591 }
duke@435 4592 else proc_pid_cpu_avail = false;
duke@435 4593 }
duke@435 4594
duke@435 4595 // The /proc/<tid>/stat aggregates per-process usage on
duke@435 4596 // new Linux kernels 2.6+ where NPTL is supported.
duke@435 4597 // The /proc/self/task/<tid>/stat still has the per-thread usage.
duke@435 4598 // See bug 6328462.
duke@435 4599 // There can be no directory /proc/self/task on kernels 2.4 with NPTL
duke@435 4600 // and possibly in some other cases, so we check its availability.
duke@435 4601 if (proc_task_unchecked && os::Linux::is_NPTL()) {
duke@435 4602 // This is executed only once
duke@435 4603 proc_task_unchecked = false;
duke@435 4604 fp = fopen("/proc/self/task", "r");
duke@435 4605 if (fp != NULL) {
duke@435 4606 proc_stat_path = "/proc/self/task/%d/stat";
duke@435 4607 fclose(fp);
duke@435 4608 }
duke@435 4609 }
duke@435 4610
duke@435 4611 sprintf(proc_name, proc_stat_path, tid);
duke@435 4612 fp = fopen(proc_name, "r");
duke@435 4613 if ( fp == NULL ) return -1;
duke@435 4614 statlen = fread(stat, 1, 2047, fp);
duke@435 4615 stat[statlen] = '\0';
duke@435 4616 fclose(fp);
duke@435 4617
duke@435 4618 // Skip pid and the command string. Note that we could be dealing with
duke@435 4619 // weird command names, e.g. user could decide to rename java launcher
duke@435 4620 // to "java 1.4.2 :)", then the stat file would look like
duke@435 4621 // 1234 (java 1.4.2 :)) R ... ...
duke@435 4622 // We don't really need to know the command string, just find the last
duke@435 4623 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 4624 s = strrchr(stat, ')');
duke@435 4625 i = 0;
duke@435 4626 if (s == NULL ) return -1;
duke@435 4627
duke@435 4628 // Skip blank chars
duke@435 4629 do s++; while (isspace(*s));
duke@435 4630
bobv@2036 4631 count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
bobv@2036 4632 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
duke@435 4633 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
duke@435 4634 &user_time, &sys_time);
bobv@2036 4635 if ( count != 13 ) return -1;
duke@435 4636 if (user_sys_cpu_time) {
duke@435 4637 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4638 } else {
duke@435 4639 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4640 }
duke@435 4641 }
duke@435 4642
duke@435 4643 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4644 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4645 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4646 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4647 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4648 }
duke@435 4649
duke@435 4650 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4651 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4652 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4653 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4654 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4655 }
duke@435 4656
duke@435 4657 bool os::is_thread_cpu_time_supported() {
duke@435 4658 return true;
duke@435 4659 }
duke@435 4660
duke@435 4661 // System loadavg support. Returns -1 if load average cannot be obtained.
duke@435 4662 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4663 // so just return the system wide load average.
duke@435 4664 int os::loadavg(double loadavg[], int nelem) {
duke@435 4665 return ::getloadavg(loadavg, nelem);
duke@435 4666 }
duke@435 4667
duke@435 4668 void os::pause() {
duke@435 4669 char filename[MAX_PATH];
duke@435 4670 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 4671 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 4672 } else {
duke@435 4673 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 4674 }
duke@435 4675
duke@435 4676 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 4677 if (fd != -1) {
duke@435 4678 struct stat buf;
ikrylov@2322 4679 ::close(fd);
duke@435 4680 while (::stat(filename, &buf) == 0) {
duke@435 4681 (void)::poll(NULL, 0, 100);
duke@435 4682 }
duke@435 4683 } else {
duke@435 4684 jio_fprintf(stderr,
duke@435 4685 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 4686 }
duke@435 4687 }
duke@435 4688
duke@435 4689 extern "C" {
duke@435 4690
duke@435 4691 /**
duke@435 4692 * NOTE: the following code is to keep the green threads code
duke@435 4693 * in the libjava.so happy. Once the green threads is removed,
duke@435 4694 * these code will no longer be needed.
duke@435 4695 */
duke@435 4696 int
duke@435 4697 jdk_waitpid(pid_t pid, int* status, int options) {
duke@435 4698 return waitpid(pid, status, options);
duke@435 4699 }
duke@435 4700
duke@435 4701 int
duke@435 4702 fork1() {
duke@435 4703 return fork();
duke@435 4704 }
duke@435 4705
duke@435 4706 int
duke@435 4707 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
duke@435 4708 return sem_init(sem, pshared, value);
duke@435 4709 }
duke@435 4710
duke@435 4711 int
duke@435 4712 jdk_sem_post(sem_t *sem) {
duke@435 4713 return sem_post(sem);
duke@435 4714 }
duke@435 4715
duke@435 4716 int
duke@435 4717 jdk_sem_wait(sem_t *sem) {
duke@435 4718 return sem_wait(sem);
duke@435 4719 }
duke@435 4720
duke@435 4721 int
duke@435 4722 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
duke@435 4723 return pthread_sigmask(how , newmask, oldmask);
duke@435 4724 }
duke@435 4725
duke@435 4726 }
duke@435 4727
duke@435 4728 // Refer to the comments in os_solaris.cpp park-unpark.
duke@435 4729 //
duke@435 4730 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
duke@435 4731 // hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
duke@435 4732 // For specifics regarding the bug see GLIBC BUGID 261237 :
duke@435 4733 // http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
duke@435 4734 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
duke@435 4735 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
duke@435 4736 // is used. (The simple C test-case provided in the GLIBC bug report manifests the
duke@435 4737 // hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
duke@435 4738 // and monitorenter when we're using 1-0 locking. All those operations may result in
duke@435 4739 // calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
duke@435 4740 // of libpthread avoids the problem, but isn't practical.
duke@435 4741 //
duke@435 4742 // Possible remedies:
duke@435 4743 //
duke@435 4744 // 1. Establish a minimum relative wait time. 50 to 100 msecs seems to work.
duke@435 4745 // This is palliative and probabilistic, however. If the thread is preempted
duke@435 4746 // between the call to compute_abstime() and pthread_cond_timedwait(), more
duke@435 4747 // than the minimum period may have passed, and the abstime may be stale (in the
duke@435 4748 // past) resultin in a hang. Using this technique reduces the odds of a hang
duke@435 4749 // but the JVM is still vulnerable, particularly on heavily loaded systems.
duke@435 4750 //
duke@435 4751 // 2. Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
duke@435 4752 // of the usual flag-condvar-mutex idiom. The write side of the pipe is set
duke@435 4753 // NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
duke@435 4754 // reduces to poll()+read(). This works well, but consumes 2 FDs per extant
duke@435 4755 // thread.
duke@435 4756 //
duke@435 4757 // 3. Embargo pthread_cond_timedwait() and implement a native "chron" thread
duke@435 4758 // that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
duke@435 4759 // a timeout request to the chron thread and then blocking via pthread_cond_wait().
duke@435 4760 // This also works well. In fact it avoids kernel-level scalability impediments
duke@435 4761 // on certain platforms that don't handle lots of active pthread_cond_timedwait()
duke@435 4762 // timers in a graceful fashion.
duke@435 4763 //
duke@435 4764 // 4. When the abstime value is in the past it appears that control returns
duke@435 4765 // correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
duke@435 4766 // Subsequent timedwait/wait calls may hang indefinitely. Given that, we
duke@435 4767 // can avoid the problem by reinitializing the condvar -- by cond_destroy()
duke@435 4768 // followed by cond_init() -- after all calls to pthread_cond_timedwait().
duke@435 4769 // It may be possible to avoid reinitialization by checking the return
duke@435 4770 // value from pthread_cond_timedwait(). In addition to reinitializing the
duke@435 4771 // condvar we must establish the invariant that cond_signal() is only called
duke@435 4772 // within critical sections protected by the adjunct mutex. This prevents
duke@435 4773 // cond_signal() from "seeing" a condvar that's in the midst of being
duke@435 4774 // reinitialized or that is corrupt. Sadly, this invariant obviates the
duke@435 4775 // desirable signal-after-unlock optimization that avoids futile context switching.
duke@435 4776 //
duke@435 4777 // I'm also concerned that some versions of NTPL might allocate an auxilliary
duke@435 4778 // structure when a condvar is used or initialized. cond_destroy() would
duke@435 4779 // release the helper structure. Our reinitialize-after-timedwait fix
duke@435 4780 // put excessive stress on malloc/free and locks protecting the c-heap.
duke@435 4781 //
duke@435 4782 // We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
duke@435 4783 // It may be possible to refine (4) by checking the kernel and NTPL verisons
duke@435 4784 // and only enabling the work-around for vulnerable environments.
duke@435 4785
duke@435 4786 // utility to compute the abstime argument to timedwait:
duke@435 4787 // millis is the relative timeout time
duke@435 4788 // abstime will be the absolute timeout time
duke@435 4789 // TODO: replace compute_abstime() with unpackTime()
duke@435 4790
duke@435 4791 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
duke@435 4792 if (millis < 0) millis = 0;
duke@435 4793 struct timeval now;
duke@435 4794 int status = gettimeofday(&now, NULL);
duke@435 4795 assert(status == 0, "gettimeofday");
duke@435 4796 jlong seconds = millis / 1000;
duke@435 4797 millis %= 1000;
duke@435 4798 if (seconds > 50000000) { // see man cond_timedwait(3T)
duke@435 4799 seconds = 50000000;
duke@435 4800 }
duke@435 4801 abstime->tv_sec = now.tv_sec + seconds;
duke@435 4802 long usec = now.tv_usec + millis * 1000;
duke@435 4803 if (usec >= 1000000) {
duke@435 4804 abstime->tv_sec += 1;
duke@435 4805 usec -= 1000000;
duke@435 4806 }
duke@435 4807 abstime->tv_nsec = usec * 1000;
duke@435 4808 return abstime;
duke@435 4809 }
duke@435 4810
duke@435 4811
duke@435 4812 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
duke@435 4813 // Conceptually TryPark() should be equivalent to park(0).
duke@435 4814
duke@435 4815 int os::PlatformEvent::TryPark() {
duke@435 4816 for (;;) {
duke@435 4817 const int v = _Event ;
duke@435 4818 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4819 if (Atomic::cmpxchg (0, &_Event, v) == v) return v ;
duke@435 4820 }
duke@435 4821 }
duke@435 4822
duke@435 4823 void os::PlatformEvent::park() { // AKA "down()"
duke@435 4824 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 4825 // may call park().
duke@435 4826 // TODO: assert that _Assoc != NULL or _Assoc == Self
duke@435 4827 int v ;
duke@435 4828 for (;;) {
duke@435 4829 v = _Event ;
duke@435 4830 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4831 }
duke@435 4832 guarantee (v >= 0, "invariant") ;
duke@435 4833 if (v == 0) {
duke@435 4834 // Do this the hard way by blocking ...
duke@435 4835 int status = pthread_mutex_lock(_mutex);
duke@435 4836 assert_status(status == 0, status, "mutex_lock");
duke@435 4837 guarantee (_nParked == 0, "invariant") ;
duke@435 4838 ++ _nParked ;
duke@435 4839 while (_Event < 0) {
duke@435 4840 status = pthread_cond_wait(_cond, _mutex);
duke@435 4841 // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
duke@435 4842 // Treat this the same as if the wait was interrupted
duke@435 4843 if (status == ETIME) { status = EINTR; }
duke@435 4844 assert_status(status == 0 || status == EINTR, status, "cond_wait");
duke@435 4845 }
duke@435 4846 -- _nParked ;
duke@435 4847
duke@435 4848 // In theory we could move the ST of 0 into _Event past the unlock(),
duke@435 4849 // but then we'd need a MEMBAR after the ST.
duke@435 4850 _Event = 0 ;
duke@435 4851 status = pthread_mutex_unlock(_mutex);
duke@435 4852 assert_status(status == 0, status, "mutex_unlock");
duke@435 4853 }
duke@435 4854 guarantee (_Event >= 0, "invariant") ;
duke@435 4855 }
duke@435 4856
duke@435 4857 int os::PlatformEvent::park(jlong millis) {
duke@435 4858 guarantee (_nParked == 0, "invariant") ;
duke@435 4859
duke@435 4860 int v ;
duke@435 4861 for (;;) {
duke@435 4862 v = _Event ;
duke@435 4863 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4864 }
duke@435 4865 guarantee (v >= 0, "invariant") ;
duke@435 4866 if (v != 0) return OS_OK ;
duke@435 4867
duke@435 4868 // We do this the hard way, by blocking the thread.
duke@435 4869 // Consider enforcing a minimum timeout value.
duke@435 4870 struct timespec abst;
duke@435 4871 compute_abstime(&abst, millis);
duke@435 4872
duke@435 4873 int ret = OS_TIMEOUT;
duke@435 4874 int status = pthread_mutex_lock(_mutex);
duke@435 4875 assert_status(status == 0, status, "mutex_lock");
duke@435 4876 guarantee (_nParked == 0, "invariant") ;
duke@435 4877 ++_nParked ;
duke@435 4878
duke@435 4879 // Object.wait(timo) will return because of
duke@435 4880 // (a) notification
duke@435 4881 // (b) timeout
duke@435 4882 // (c) thread.interrupt
duke@435 4883 //
duke@435 4884 // Thread.interrupt and object.notify{All} both call Event::set.
duke@435 4885 // That is, we treat thread.interrupt as a special case of notification.
duke@435 4886 // The underlying Solaris implementation, cond_timedwait, admits
duke@435 4887 // spurious/premature wakeups, but the JLS/JVM spec prevents the
duke@435 4888 // JVM from making those visible to Java code. As such, we must
duke@435 4889 // filter out spurious wakeups. We assume all ETIME returns are valid.
duke@435 4890 //
duke@435 4891 // TODO: properly differentiate simultaneous notify+interrupt.
duke@435 4892 // In that case, we should propagate the notify to another waiter.
duke@435 4893
duke@435 4894 while (_Event < 0) {
duke@435 4895 status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
duke@435 4896 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4897 pthread_cond_destroy (_cond);
duke@435 4898 pthread_cond_init (_cond, NULL) ;
duke@435 4899 }
duke@435 4900 assert_status(status == 0 || status == EINTR ||
duke@435 4901 status == ETIME || status == ETIMEDOUT,
duke@435 4902 status, "cond_timedwait");
duke@435 4903 if (!FilterSpuriousWakeups) break ; // previous semantics
duke@435 4904 if (status == ETIME || status == ETIMEDOUT) break ;
duke@435 4905 // We consume and ignore EINTR and spurious wakeups.
duke@435 4906 }
duke@435 4907 --_nParked ;
duke@435 4908 if (_Event >= 0) {
duke@435 4909 ret = OS_OK;
duke@435 4910 }
duke@435 4911 _Event = 0 ;
duke@435 4912 status = pthread_mutex_unlock(_mutex);
duke@435 4913 assert_status(status == 0, status, "mutex_unlock");
duke@435 4914 assert (_nParked == 0, "invariant") ;
duke@435 4915 return ret;
duke@435 4916 }
duke@435 4917
duke@435 4918 void os::PlatformEvent::unpark() {
duke@435 4919 int v, AnyWaiters ;
duke@435 4920 for (;;) {
duke@435 4921 v = _Event ;
duke@435 4922 if (v > 0) {
duke@435 4923 // The LD of _Event could have reordered or be satisfied
duke@435 4924 // by a read-aside from this processor's write buffer.
duke@435 4925 // To avoid problems execute a barrier and then
duke@435 4926 // ratify the value.
duke@435 4927 OrderAccess::fence() ;
duke@435 4928 if (_Event == v) return ;
duke@435 4929 continue ;
duke@435 4930 }
duke@435 4931 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 4932 }
duke@435 4933 if (v < 0) {
duke@435 4934 // Wait for the thread associated with the event to vacate
duke@435 4935 int status = pthread_mutex_lock(_mutex);
duke@435 4936 assert_status(status == 0, status, "mutex_lock");
duke@435 4937 AnyWaiters = _nParked ;
duke@435 4938 assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
duke@435 4939 if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4940 AnyWaiters = 0 ;
duke@435 4941 pthread_cond_signal (_cond);
duke@435 4942 }
duke@435 4943 status = pthread_mutex_unlock(_mutex);
duke@435 4944 assert_status(status == 0, status, "mutex_unlock");
duke@435 4945 if (AnyWaiters != 0) {
duke@435 4946 status = pthread_cond_signal(_cond);
duke@435 4947 assert_status(status == 0, status, "cond_signal");
duke@435 4948 }
duke@435 4949 }
duke@435 4950
duke@435 4951 // Note that we signal() _after dropping the lock for "immortal" Events.
duke@435 4952 // This is safe and avoids a common class of futile wakeups. In rare
duke@435 4953 // circumstances this can cause a thread to return prematurely from
duke@435 4954 // cond_{timed}wait() but the spurious wakeup is benign and the victim will
duke@435 4955 // simply re-test the condition and re-park itself.
duke@435 4956 }
duke@435 4957
duke@435 4958
duke@435 4959 // JSR166
duke@435 4960 // -------------------------------------------------------
duke@435 4961
duke@435 4962 /*
duke@435 4963 * The solaris and linux implementations of park/unpark are fairly
duke@435 4964 * conservative for now, but can be improved. They currently use a
duke@435 4965 * mutex/condvar pair, plus a a count.
duke@435 4966 * Park decrements count if > 0, else does a condvar wait. Unpark
duke@435 4967 * sets count to 1 and signals condvar. Only one thread ever waits
duke@435 4968 * on the condvar. Contention seen when trying to park implies that someone
duke@435 4969 * is unparking you, so don't wait. And spurious returns are fine, so there
duke@435 4970 * is no need to track notifications.
duke@435 4971 */
duke@435 4972
duke@435 4973
duke@435 4974 #define NANOSECS_PER_SEC 1000000000
duke@435 4975 #define NANOSECS_PER_MILLISEC 1000000
duke@435 4976 #define MAX_SECS 100000000
duke@435 4977 /*
duke@435 4978 * This code is common to linux and solaris and will be moved to a
duke@435 4979 * common place in dolphin.
duke@435 4980 *
duke@435 4981 * The passed in time value is either a relative time in nanoseconds
duke@435 4982 * or an absolute time in milliseconds. Either way it has to be unpacked
duke@435 4983 * into suitable seconds and nanoseconds components and stored in the
duke@435 4984 * given timespec structure.
duke@435 4985 * Given time is a 64-bit value and the time_t used in the timespec is only
duke@435 4986 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
duke@435 4987 * overflow if times way in the future are given. Further on Solaris versions
duke@435 4988 * prior to 10 there is a restriction (see cond_timedwait) that the specified
duke@435 4989 * number of seconds, in abstime, is less than current_time + 100,000,000.
duke@435 4990 * As it will be 28 years before "now + 100000000" will overflow we can
duke@435 4991 * ignore overflow and just impose a hard-limit on seconds using the value
duke@435 4992 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
duke@435 4993 * years from "now".
duke@435 4994 */
duke@435 4995
duke@435 4996 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
duke@435 4997 assert (time > 0, "convertTime");
duke@435 4998
duke@435 4999 struct timeval now;
duke@435 5000 int status = gettimeofday(&now, NULL);
duke@435 5001 assert(status == 0, "gettimeofday");
duke@435 5002
duke@435 5003 time_t max_secs = now.tv_sec + MAX_SECS;
duke@435 5004
duke@435 5005 if (isAbsolute) {
duke@435 5006 jlong secs = time / 1000;
duke@435 5007 if (secs > max_secs) {
duke@435 5008 absTime->tv_sec = max_secs;
duke@435 5009 }
duke@435 5010 else {
duke@435 5011 absTime->tv_sec = secs;
duke@435 5012 }
duke@435 5013 absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
duke@435 5014 }
duke@435 5015 else {
duke@435 5016 jlong secs = time / NANOSECS_PER_SEC;
duke@435 5017 if (secs >= MAX_SECS) {
duke@435 5018 absTime->tv_sec = max_secs;
duke@435 5019 absTime->tv_nsec = 0;
duke@435 5020 }
duke@435 5021 else {
duke@435 5022 absTime->tv_sec = now.tv_sec + secs;
duke@435 5023 absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
duke@435 5024 if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
duke@435 5025 absTime->tv_nsec -= NANOSECS_PER_SEC;
duke@435 5026 ++absTime->tv_sec; // note: this must be <= max_secs
duke@435 5027 }
duke@435 5028 }
duke@435 5029 }
duke@435 5030 assert(absTime->tv_sec >= 0, "tv_sec < 0");
duke@435 5031 assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
duke@435 5032 assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
duke@435 5033 assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
duke@435 5034 }
duke@435 5035
duke@435 5036 void Parker::park(bool isAbsolute, jlong time) {
duke@435 5037 // Optional fast-path check:
duke@435 5038 // Return immediately if a permit is available.
duke@435 5039 if (_counter > 0) {
duke@435 5040 _counter = 0 ;
dholmes@1552 5041 OrderAccess::fence();
duke@435 5042 return ;
duke@435 5043 }
duke@435 5044
duke@435 5045 Thread* thread = Thread::current();
duke@435 5046 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 5047 JavaThread *jt = (JavaThread *)thread;
duke@435 5048
duke@435 5049 // Optional optimization -- avoid state transitions if there's an interrupt pending.
duke@435 5050 // Check interrupt before trying to wait
duke@435 5051 if (Thread::is_interrupted(thread, false)) {
duke@435 5052 return;
duke@435 5053 }
duke@435 5054
duke@435 5055 // Next, demultiplex/decode time arguments
duke@435 5056 timespec absTime;
acorn@2220 5057 if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
duke@435 5058 return;
duke@435 5059 }
duke@435 5060 if (time > 0) {
duke@435 5061 unpackTime(&absTime, isAbsolute, time);
duke@435 5062 }
duke@435 5063
duke@435 5064
duke@435 5065 // Enter safepoint region
duke@435 5066 // Beware of deadlocks such as 6317397.
duke@435 5067 // The per-thread Parker:: mutex is a classic leaf-lock.
duke@435 5068 // In particular a thread must never block on the Threads_lock while
duke@435 5069 // holding the Parker:: mutex. If safepoints are pending both the
duke@435 5070 // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
duke@435 5071 ThreadBlockInVM tbivm(jt);
duke@435 5072
duke@435 5073 // Don't wait if cannot get lock since interference arises from
duke@435 5074 // unblocking. Also. check interrupt before trying wait
duke@435 5075 if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
duke@435 5076 return;
duke@435 5077 }
duke@435 5078
duke@435 5079 int status ;
duke@435 5080 if (_counter > 0) { // no wait needed
duke@435 5081 _counter = 0;
duke@435 5082 status = pthread_mutex_unlock(_mutex);
duke@435 5083 assert (status == 0, "invariant") ;
dholmes@1552 5084 OrderAccess::fence();
duke@435 5085 return;
duke@435 5086 }
duke@435 5087
duke@435 5088 #ifdef ASSERT
duke@435 5089 // Don't catch signals while blocked; let the running threads have the signals.
duke@435 5090 // (This allows a debugger to break into the running thread.)
duke@435 5091 sigset_t oldsigs;
duke@435 5092 sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
duke@435 5093 pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
duke@435 5094 #endif
duke@435 5095
duke@435 5096 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 5097 jt->set_suspend_equivalent();
duke@435 5098 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 5099
duke@435 5100 if (time == 0) {
duke@435 5101 status = pthread_cond_wait (_cond, _mutex) ;
duke@435 5102 } else {
duke@435 5103 status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
duke@435 5104 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 5105 pthread_cond_destroy (_cond) ;
duke@435 5106 pthread_cond_init (_cond, NULL);
duke@435 5107 }
duke@435 5108 }
duke@435 5109 assert_status(status == 0 || status == EINTR ||
duke@435 5110 status == ETIME || status == ETIMEDOUT,
duke@435 5111 status, "cond_timedwait");
duke@435 5112
duke@435 5113 #ifdef ASSERT
duke@435 5114 pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
duke@435 5115 #endif
duke@435 5116
duke@435 5117 _counter = 0 ;
duke@435 5118 status = pthread_mutex_unlock(_mutex) ;
duke@435 5119 assert_status(status == 0, status, "invariant") ;
duke@435 5120 // If externally suspended while waiting, re-suspend
duke@435 5121 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 5122 jt->java_suspend_self();
duke@435 5123 }
duke@435 5124
dholmes@1552 5125 OrderAccess::fence();
duke@435 5126 }
duke@435 5127
duke@435 5128 void Parker::unpark() {
duke@435 5129 int s, status ;
duke@435 5130 status = pthread_mutex_lock(_mutex);
duke@435 5131 assert (status == 0, "invariant") ;
duke@435 5132 s = _counter;
duke@435 5133 _counter = 1;
duke@435 5134 if (s < 1) {
duke@435 5135 if (WorkAroundNPTLTimedWaitHang) {
duke@435 5136 status = pthread_cond_signal (_cond) ;
duke@435 5137 assert (status == 0, "invariant") ;
duke@435 5138 status = pthread_mutex_unlock(_mutex);
duke@435 5139 assert (status == 0, "invariant") ;
duke@435 5140 } else {
duke@435 5141 status = pthread_mutex_unlock(_mutex);
duke@435 5142 assert (status == 0, "invariant") ;
duke@435 5143 status = pthread_cond_signal (_cond) ;
duke@435 5144 assert (status == 0, "invariant") ;
duke@435 5145 }
duke@435 5146 } else {
duke@435 5147 pthread_mutex_unlock(_mutex);
duke@435 5148 assert (status == 0, "invariant") ;
duke@435 5149 }
duke@435 5150 }
duke@435 5151
duke@435 5152
duke@435 5153 extern char** environ;
duke@435 5154
duke@435 5155 #ifndef __NR_fork
duke@435 5156 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
duke@435 5157 #endif
duke@435 5158
duke@435 5159 #ifndef __NR_execve
duke@435 5160 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
duke@435 5161 #endif
duke@435 5162
duke@435 5163 // Run the specified command in a separate process. Return its exit value,
duke@435 5164 // or -1 on failure (e.g. can't fork a new process).
duke@435 5165 // Unlike system(), this function can be called from signal handler. It
duke@435 5166 // doesn't block SIGINT et al.
duke@435 5167 int os::fork_and_exec(char* cmd) {
xlu@634 5168 const char * argv[4] = {"sh", "-c", cmd, NULL};
duke@435 5169
duke@435 5170 // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
duke@435 5171 // pthread_atfork handlers and reset pthread library. All we need is a
duke@435 5172 // separate process to execve. Make a direct syscall to fork process.
duke@435 5173 // On IA64 there's no fork syscall, we have to use fork() and hope for
duke@435 5174 // the best...
duke@435 5175 pid_t pid = NOT_IA64(syscall(__NR_fork);)
duke@435 5176 IA64_ONLY(fork();)
duke@435 5177
duke@435 5178 if (pid < 0) {
duke@435 5179 // fork failed
duke@435 5180 return -1;
duke@435 5181
duke@435 5182 } else if (pid == 0) {
duke@435 5183 // child process
duke@435 5184
duke@435 5185 // execve() in LinuxThreads will call pthread_kill_other_threads_np()
duke@435 5186 // first to kill every thread on the thread list. Because this list is
duke@435 5187 // not reset by fork() (see notes above), execve() will instead kill
duke@435 5188 // every thread in the parent process. We know this is the only thread
duke@435 5189 // in the new process, so make a system call directly.
duke@435 5190 // IA64 should use normal execve() from glibc to match the glibc fork()
duke@435 5191 // above.
duke@435 5192 NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
xlu@634 5193 IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
duke@435 5194
duke@435 5195 // execve failed
duke@435 5196 _exit(-1);
duke@435 5197
duke@435 5198 } else {
duke@435 5199 // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
duke@435 5200 // care about the actual exit code, for now.
duke@435 5201
duke@435 5202 int status;
duke@435 5203
duke@435 5204 // Wait for the child process to exit. This returns immediately if
duke@435 5205 // the child has already exited. */
duke@435 5206 while (waitpid(pid, &status, 0) < 0) {
duke@435 5207 switch (errno) {
duke@435 5208 case ECHILD: return 0;
duke@435 5209 case EINTR: break;
duke@435 5210 default: return -1;
duke@435 5211 }
duke@435 5212 }
duke@435 5213
duke@435 5214 if (WIFEXITED(status)) {
duke@435 5215 // The child exited normally; get its exit code.
duke@435 5216 return WEXITSTATUS(status);
duke@435 5217 } else if (WIFSIGNALED(status)) {
duke@435 5218 // The child exited because of a signal
duke@435 5219 // The best value to return is 0x80 + signal number,
duke@435 5220 // because that is what all Unix shells do, and because
duke@435 5221 // it allows callers to distinguish between process exit and
duke@435 5222 // process death by signal.
duke@435 5223 return 0x80 + WTERMSIG(status);
duke@435 5224 } else {
duke@435 5225 // Unknown exit code; pass it through
duke@435 5226 return status;
duke@435 5227 }
duke@435 5228 }
duke@435 5229 }
bobv@2036 5230
bobv@2036 5231 // is_headless_jre()
bobv@2036 5232 //
bobv@2036 5233 // Test for the existence of libmawt in motif21 or xawt directories
bobv@2036 5234 // in order to report if we are running in a headless jre
bobv@2036 5235 //
bobv@2036 5236 bool os::is_headless_jre() {
bobv@2036 5237 struct stat statbuf;
bobv@2036 5238 char buf[MAXPATHLEN];
bobv@2036 5239 char libmawtpath[MAXPATHLEN];
bobv@2036 5240 const char *xawtstr = "/xawt/libmawt.so";
bobv@2036 5241 const char *motifstr = "/motif21/libmawt.so";
bobv@2036 5242 char *p;
bobv@2036 5243
bobv@2036 5244 // Get path to libjvm.so
bobv@2036 5245 os::jvm_path(buf, sizeof(buf));
bobv@2036 5246
bobv@2036 5247 // Get rid of libjvm.so
bobv@2036 5248 p = strrchr(buf, '/');
bobv@2036 5249 if (p == NULL) return false;
bobv@2036 5250 else *p = '\0';
bobv@2036 5251
bobv@2036 5252 // Get rid of client or server
bobv@2036 5253 p = strrchr(buf, '/');
bobv@2036 5254 if (p == NULL) return false;
bobv@2036 5255 else *p = '\0';
bobv@2036 5256
bobv@2036 5257 // check xawt/libmawt.so
bobv@2036 5258 strcpy(libmawtpath, buf);
bobv@2036 5259 strcat(libmawtpath, xawtstr);
bobv@2036 5260 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 5261
bobv@2036 5262 // check motif21/libmawt.so
bobv@2036 5263 strcpy(libmawtpath, buf);
bobv@2036 5264 strcat(libmawtpath, motifstr);
bobv@2036 5265 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 5266
bobv@2036 5267 return true;
bobv@2036 5268 }
bobv@2036 5269

mercurial