src/os/linux/vm/os_linux.cpp

Wed, 19 Mar 2008 09:58:01 -0400

author
sbohne
date
Wed, 19 Mar 2008 09:58:01 -0400
changeset 496
5a76ab815e34
parent 435
a61af66fc99e
child 497
cd0742ba123c
permissions
-rw-r--r--

6667833: Remove CacheTimeMillis
Summary: Remove -XX:+CacheTimeMillis option and associated functionality
Reviewed-by: acorn, never

duke@435 1 /*
duke@435 2 * Copyright 1999-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // do not include precompiled header file
duke@435 26 # include "incls/_os_linux.cpp.incl"
duke@435 27
duke@435 28 // put OS-includes here
duke@435 29 # include <sys/types.h>
duke@435 30 # include <sys/mman.h>
duke@435 31 # include <pthread.h>
duke@435 32 # include <signal.h>
duke@435 33 # include <errno.h>
duke@435 34 # include <dlfcn.h>
duke@435 35 # include <stdio.h>
duke@435 36 # include <unistd.h>
duke@435 37 # include <sys/resource.h>
duke@435 38 # include <pthread.h>
duke@435 39 # include <sys/stat.h>
duke@435 40 # include <sys/time.h>
duke@435 41 # include <sys/times.h>
duke@435 42 # include <sys/utsname.h>
duke@435 43 # include <sys/socket.h>
duke@435 44 # include <sys/wait.h>
duke@435 45 # include <pwd.h>
duke@435 46 # include <poll.h>
duke@435 47 # include <semaphore.h>
duke@435 48 # include <fcntl.h>
duke@435 49 # include <string.h>
duke@435 50 # include <syscall.h>
duke@435 51 # include <sys/sysinfo.h>
duke@435 52 # include <gnu/libc-version.h>
duke@435 53 # include <sys/ipc.h>
duke@435 54 # include <sys/shm.h>
duke@435 55 # include <link.h>
duke@435 56
duke@435 57 #define MAX_PATH (2 * K)
duke@435 58
duke@435 59 // for timer info max values which include all bits
duke@435 60 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 61 #define SEC_IN_NANOSECS 1000000000LL
duke@435 62
duke@435 63 ////////////////////////////////////////////////////////////////////////////////
duke@435 64 // global variables
duke@435 65 julong os::Linux::_physical_memory = 0;
duke@435 66
duke@435 67 address os::Linux::_initial_thread_stack_bottom = NULL;
duke@435 68 uintptr_t os::Linux::_initial_thread_stack_size = 0;
duke@435 69
duke@435 70 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
duke@435 71 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
duke@435 72 Mutex* os::Linux::_createThread_lock = NULL;
duke@435 73 pthread_t os::Linux::_main_thread;
duke@435 74 int os::Linux::_page_size = -1;
duke@435 75 bool os::Linux::_is_floating_stack = false;
duke@435 76 bool os::Linux::_is_NPTL = false;
duke@435 77 bool os::Linux::_supports_fast_thread_cpu_time = false;
duke@435 78 char * os::Linux::_glibc_version = NULL;
duke@435 79 char * os::Linux::_libpthread_version = NULL;
duke@435 80
duke@435 81 static jlong initial_time_count=0;
duke@435 82
duke@435 83 static int clock_tics_per_sec = 100;
duke@435 84
duke@435 85 // For diagnostics to print a message once. see run_periodic_checks
duke@435 86 static sigset_t check_signal_done;
duke@435 87 static bool check_signals = true;;
duke@435 88
duke@435 89 static pid_t _initial_pid = 0;
duke@435 90
duke@435 91 /* Signal number used to suspend/resume a thread */
duke@435 92
duke@435 93 /* do not use any signal number less than SIGSEGV, see 4355769 */
duke@435 94 static int SR_signum = SIGUSR2;
duke@435 95 sigset_t SR_sigset;
duke@435 96
duke@435 97 ////////////////////////////////////////////////////////////////////////////////
duke@435 98 // utility functions
duke@435 99
duke@435 100 static int SR_initialize();
duke@435 101 static int SR_finalize();
duke@435 102
duke@435 103 julong os::available_memory() {
duke@435 104 return Linux::available_memory();
duke@435 105 }
duke@435 106
duke@435 107 julong os::Linux::available_memory() {
duke@435 108 // values in struct sysinfo are "unsigned long"
duke@435 109 struct sysinfo si;
duke@435 110 sysinfo(&si);
duke@435 111
duke@435 112 return (julong)si.freeram * si.mem_unit;
duke@435 113 }
duke@435 114
duke@435 115 julong os::physical_memory() {
duke@435 116 return Linux::physical_memory();
duke@435 117 }
duke@435 118
duke@435 119 ////////////////////////////////////////////////////////////////////////////////
duke@435 120 // environment support
duke@435 121
duke@435 122 bool os::getenv(const char* name, char* buf, int len) {
duke@435 123 const char* val = ::getenv(name);
duke@435 124 if (val != NULL && strlen(val) < (size_t)len) {
duke@435 125 strcpy(buf, val);
duke@435 126 return true;
duke@435 127 }
duke@435 128 if (len > 0) buf[0] = 0; // return a null string
duke@435 129 return false;
duke@435 130 }
duke@435 131
duke@435 132
duke@435 133 // Return true if user is running as root.
duke@435 134
duke@435 135 bool os::have_special_privileges() {
duke@435 136 static bool init = false;
duke@435 137 static bool privileges = false;
duke@435 138 if (!init) {
duke@435 139 privileges = (getuid() != geteuid()) || (getgid() != getegid());
duke@435 140 init = true;
duke@435 141 }
duke@435 142 return privileges;
duke@435 143 }
duke@435 144
duke@435 145
duke@435 146 #ifndef SYS_gettid
duke@435 147 // i386: 224, ia64: 1105, amd64: 186, sparc 143
duke@435 148 #ifdef __ia64__
duke@435 149 #define SYS_gettid 1105
duke@435 150 #elif __i386__
duke@435 151 #define SYS_gettid 224
duke@435 152 #elif __amd64__
duke@435 153 #define SYS_gettid 186
duke@435 154 #elif __sparc__
duke@435 155 #define SYS_gettid 143
duke@435 156 #else
duke@435 157 #error define gettid for the arch
duke@435 158 #endif
duke@435 159 #endif
duke@435 160
duke@435 161 // Cpu architecture string
duke@435 162 #if defined(IA64)
duke@435 163 static char cpu_arch[] = "ia64";
duke@435 164 #elif defined(IA32)
duke@435 165 static char cpu_arch[] = "i386";
duke@435 166 #elif defined(AMD64)
duke@435 167 static char cpu_arch[] = "amd64";
duke@435 168 #elif defined(SPARC)
duke@435 169 # ifdef _LP64
duke@435 170 static char cpu_arch[] = "sparcv9";
duke@435 171 # else
duke@435 172 static char cpu_arch[] = "sparc";
duke@435 173 # endif
duke@435 174 #else
duke@435 175 #error Add appropriate cpu_arch setting
duke@435 176 #endif
duke@435 177
duke@435 178
duke@435 179 // pid_t gettid()
duke@435 180 //
duke@435 181 // Returns the kernel thread id of the currently running thread. Kernel
duke@435 182 // thread id is used to access /proc.
duke@435 183 //
duke@435 184 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
duke@435 185 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
duke@435 186 //
duke@435 187 pid_t os::Linux::gettid() {
duke@435 188 int rslt = syscall(SYS_gettid);
duke@435 189 if (rslt == -1) {
duke@435 190 // old kernel, no NPTL support
duke@435 191 return getpid();
duke@435 192 } else {
duke@435 193 return (pid_t)rslt;
duke@435 194 }
duke@435 195 }
duke@435 196
duke@435 197 // Most versions of linux have a bug where the number of processors are
duke@435 198 // determined by looking at the /proc file system. In a chroot environment,
duke@435 199 // the system call returns 1. This causes the VM to act as if it is
duke@435 200 // a single processor and elide locking (see is_MP() call).
duke@435 201 static bool unsafe_chroot_detected = false;
duke@435 202 static char *unstable_chroot_error = "/proc file system not found.\n"
duke@435 203 "Java may be unstable running multithreaded in a chroot "
duke@435 204 "environment on Linux when /proc filesystem is not mounted.";
duke@435 205
duke@435 206 void os::Linux::initialize_system_info() {
duke@435 207 _processor_count = sysconf(_SC_NPROCESSORS_CONF);
duke@435 208 if (_processor_count == 1) {
duke@435 209 pid_t pid = os::Linux::gettid();
duke@435 210 char fname[32];
duke@435 211 jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
duke@435 212 FILE *fp = fopen(fname, "r");
duke@435 213 if (fp == NULL) {
duke@435 214 unsafe_chroot_detected = true;
duke@435 215 } else {
duke@435 216 fclose(fp);
duke@435 217 }
duke@435 218 }
duke@435 219 _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
duke@435 220 assert(_processor_count > 0, "linux error");
duke@435 221 }
duke@435 222
duke@435 223 void os::init_system_properties_values() {
duke@435 224 // char arch[12];
duke@435 225 // sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
duke@435 226
duke@435 227 // The next steps are taken in the product version:
duke@435 228 //
duke@435 229 // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
duke@435 230 // This library should be located at:
duke@435 231 // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
duke@435 232 //
duke@435 233 // If "/jre/lib/" appears at the right place in the path, then we
duke@435 234 // assume libjvm[_g].so is installed in a JDK and we use this path.
duke@435 235 //
duke@435 236 // Otherwise exit with message: "Could not create the Java virtual machine."
duke@435 237 //
duke@435 238 // The following extra steps are taken in the debugging version:
duke@435 239 //
duke@435 240 // If "/jre/lib/" does NOT appear at the right place in the path
duke@435 241 // instead of exit check for $JAVA_HOME environment variable.
duke@435 242 //
duke@435 243 // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
duke@435 244 // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
duke@435 245 // it looks like libjvm[_g].so is installed there
duke@435 246 // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
duke@435 247 //
duke@435 248 // Otherwise exit.
duke@435 249 //
duke@435 250 // Important note: if the location of libjvm.so changes this
duke@435 251 // code needs to be changed accordingly.
duke@435 252
duke@435 253 // The next few definitions allow the code to be verbatim:
duke@435 254 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
duke@435 255 #define getenv(n) ::getenv(n)
duke@435 256
duke@435 257 /*
duke@435 258 * See ld(1):
duke@435 259 * The linker uses the following search paths to locate required
duke@435 260 * shared libraries:
duke@435 261 * 1: ...
duke@435 262 * ...
duke@435 263 * 7: The default directories, normally /lib and /usr/lib.
duke@435 264 */
duke@435 265 #define DEFAULT_LIBPATH "/lib:/usr/lib"
duke@435 266
duke@435 267 #define EXTENSIONS_DIR "/lib/ext"
duke@435 268 #define ENDORSED_DIR "/lib/endorsed"
duke@435 269 #define REG_DIR "/usr/java/packages"
duke@435 270
duke@435 271 {
duke@435 272 /* sysclasspath, java_home, dll_dir */
duke@435 273 {
duke@435 274 char *home_path;
duke@435 275 char *dll_path;
duke@435 276 char *pslash;
duke@435 277 char buf[MAXPATHLEN];
duke@435 278 os::jvm_path(buf, sizeof(buf));
duke@435 279
duke@435 280 // Found the full path to libjvm.so.
duke@435 281 // Now cut the path to <java_home>/jre if we can.
duke@435 282 *(strrchr(buf, '/')) = '\0'; /* get rid of /libjvm.so */
duke@435 283 pslash = strrchr(buf, '/');
duke@435 284 if (pslash != NULL)
duke@435 285 *pslash = '\0'; /* get rid of /{client|server|hotspot} */
duke@435 286 dll_path = malloc(strlen(buf) + 1);
duke@435 287 if (dll_path == NULL)
duke@435 288 return;
duke@435 289 strcpy(dll_path, buf);
duke@435 290 Arguments::set_dll_dir(dll_path);
duke@435 291
duke@435 292 if (pslash != NULL) {
duke@435 293 pslash = strrchr(buf, '/');
duke@435 294 if (pslash != NULL) {
duke@435 295 *pslash = '\0'; /* get rid of /<arch> */
duke@435 296 pslash = strrchr(buf, '/');
duke@435 297 if (pslash != NULL)
duke@435 298 *pslash = '\0'; /* get rid of /lib */
duke@435 299 }
duke@435 300 }
duke@435 301
duke@435 302 home_path = malloc(strlen(buf) + 1);
duke@435 303 if (home_path == NULL)
duke@435 304 return;
duke@435 305 strcpy(home_path, buf);
duke@435 306 Arguments::set_java_home(home_path);
duke@435 307
duke@435 308 if (!set_boot_path('/', ':'))
duke@435 309 return;
duke@435 310 }
duke@435 311
duke@435 312 /*
duke@435 313 * Where to look for native libraries
duke@435 314 *
duke@435 315 * Note: Due to a legacy implementation, most of the library path
duke@435 316 * is set in the launcher. This was to accomodate linking restrictions
duke@435 317 * on legacy Linux implementations (which are no longer supported).
duke@435 318 * Eventually, all the library path setting will be done here.
duke@435 319 *
duke@435 320 * However, to prevent the proliferation of improperly built native
duke@435 321 * libraries, the new path component /usr/java/packages is added here.
duke@435 322 * Eventually, all the library path setting will be done here.
duke@435 323 */
duke@435 324 {
duke@435 325 char *ld_library_path;
duke@435 326
duke@435 327 /*
duke@435 328 * Construct the invariant part of ld_library_path. Note that the
duke@435 329 * space for the colon and the trailing null are provided by the
duke@435 330 * nulls included by the sizeof operator (so actually we allocate
duke@435 331 * a byte more than necessary).
duke@435 332 */
duke@435 333 ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
duke@435 334 strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
duke@435 335 sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
duke@435 336
duke@435 337 /*
duke@435 338 * Get the user setting of LD_LIBRARY_PATH, and prepended it. It
duke@435 339 * should always exist (until the legacy problem cited above is
duke@435 340 * addressed).
duke@435 341 */
duke@435 342 char *v = getenv("LD_LIBRARY_PATH");
duke@435 343 if (v != NULL) {
duke@435 344 char *t = ld_library_path;
duke@435 345 /* That's +1 for the colon and +1 for the trailing '\0' */
duke@435 346 ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
duke@435 347 sprintf(ld_library_path, "%s:%s", v, t);
duke@435 348 }
duke@435 349 Arguments::set_library_path(ld_library_path);
duke@435 350 }
duke@435 351
duke@435 352 /*
duke@435 353 * Extensions directories.
duke@435 354 *
duke@435 355 * Note that the space for the colon and the trailing null are provided
duke@435 356 * by the nulls included by the sizeof operator (so actually one byte more
duke@435 357 * than necessary is allocated).
duke@435 358 */
duke@435 359 {
duke@435 360 char *buf = malloc(strlen(Arguments::get_java_home()) +
duke@435 361 sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
duke@435 362 sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
duke@435 363 Arguments::get_java_home());
duke@435 364 Arguments::set_ext_dirs(buf);
duke@435 365 }
duke@435 366
duke@435 367 /* Endorsed standards default directory. */
duke@435 368 {
duke@435 369 char * buf;
duke@435 370 buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
duke@435 371 sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
duke@435 372 Arguments::set_endorsed_dirs(buf);
duke@435 373 }
duke@435 374 }
duke@435 375
duke@435 376 #undef malloc
duke@435 377 #undef getenv
duke@435 378 #undef EXTENSIONS_DIR
duke@435 379 #undef ENDORSED_DIR
duke@435 380
duke@435 381 // Done
duke@435 382 return;
duke@435 383 }
duke@435 384
duke@435 385 ////////////////////////////////////////////////////////////////////////////////
duke@435 386 // breakpoint support
duke@435 387
duke@435 388 void os::breakpoint() {
duke@435 389 BREAKPOINT;
duke@435 390 }
duke@435 391
duke@435 392 extern "C" void breakpoint() {
duke@435 393 // use debugger to set breakpoint here
duke@435 394 }
duke@435 395
duke@435 396 ////////////////////////////////////////////////////////////////////////////////
duke@435 397 // signal support
duke@435 398
duke@435 399 debug_only(static bool signal_sets_initialized = false);
duke@435 400 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
duke@435 401
duke@435 402 bool os::Linux::is_sig_ignored(int sig) {
duke@435 403 struct sigaction oact;
duke@435 404 sigaction(sig, (struct sigaction*)NULL, &oact);
duke@435 405 void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
duke@435 406 : CAST_FROM_FN_PTR(void*, oact.sa_handler);
duke@435 407 if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
duke@435 408 return true;
duke@435 409 else
duke@435 410 return false;
duke@435 411 }
duke@435 412
duke@435 413 void os::Linux::signal_sets_init() {
duke@435 414 // Should also have an assertion stating we are still single-threaded.
duke@435 415 assert(!signal_sets_initialized, "Already initialized");
duke@435 416 // Fill in signals that are necessarily unblocked for all threads in
duke@435 417 // the VM. Currently, we unblock the following signals:
duke@435 418 // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
duke@435 419 // by -Xrs (=ReduceSignalUsage));
duke@435 420 // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
duke@435 421 // other threads. The "ReduceSignalUsage" boolean tells us not to alter
duke@435 422 // the dispositions or masks wrt these signals.
duke@435 423 // Programs embedding the VM that want to use the above signals for their
duke@435 424 // own purposes must, at this time, use the "-Xrs" option to prevent
duke@435 425 // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
duke@435 426 // (See bug 4345157, and other related bugs).
duke@435 427 // In reality, though, unblocking these signals is really a nop, since
duke@435 428 // these signals are not blocked by default.
duke@435 429 sigemptyset(&unblocked_sigs);
duke@435 430 sigemptyset(&allowdebug_blocked_sigs);
duke@435 431 sigaddset(&unblocked_sigs, SIGILL);
duke@435 432 sigaddset(&unblocked_sigs, SIGSEGV);
duke@435 433 sigaddset(&unblocked_sigs, SIGBUS);
duke@435 434 sigaddset(&unblocked_sigs, SIGFPE);
duke@435 435 sigaddset(&unblocked_sigs, SR_signum);
duke@435 436
duke@435 437 if (!ReduceSignalUsage) {
duke@435 438 if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
duke@435 439 sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 440 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 441 }
duke@435 442 if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
duke@435 443 sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 444 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 445 }
duke@435 446 if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
duke@435 447 sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 448 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 449 }
duke@435 450 }
duke@435 451 // Fill in signals that are blocked by all but the VM thread.
duke@435 452 sigemptyset(&vm_sigs);
duke@435 453 if (!ReduceSignalUsage)
duke@435 454 sigaddset(&vm_sigs, BREAK_SIGNAL);
duke@435 455 debug_only(signal_sets_initialized = true);
duke@435 456
duke@435 457 }
duke@435 458
duke@435 459 // These are signals that are unblocked while a thread is running Java.
duke@435 460 // (For some reason, they get blocked by default.)
duke@435 461 sigset_t* os::Linux::unblocked_signals() {
duke@435 462 assert(signal_sets_initialized, "Not initialized");
duke@435 463 return &unblocked_sigs;
duke@435 464 }
duke@435 465
duke@435 466 // These are the signals that are blocked while a (non-VM) thread is
duke@435 467 // running Java. Only the VM thread handles these signals.
duke@435 468 sigset_t* os::Linux::vm_signals() {
duke@435 469 assert(signal_sets_initialized, "Not initialized");
duke@435 470 return &vm_sigs;
duke@435 471 }
duke@435 472
duke@435 473 // These are signals that are blocked during cond_wait to allow debugger in
duke@435 474 sigset_t* os::Linux::allowdebug_blocked_signals() {
duke@435 475 assert(signal_sets_initialized, "Not initialized");
duke@435 476 return &allowdebug_blocked_sigs;
duke@435 477 }
duke@435 478
duke@435 479 void os::Linux::hotspot_sigmask(Thread* thread) {
duke@435 480
duke@435 481 //Save caller's signal mask before setting VM signal mask
duke@435 482 sigset_t caller_sigmask;
duke@435 483 pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
duke@435 484
duke@435 485 OSThread* osthread = thread->osthread();
duke@435 486 osthread->set_caller_sigmask(caller_sigmask);
duke@435 487
duke@435 488 pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
duke@435 489
duke@435 490 if (!ReduceSignalUsage) {
duke@435 491 if (thread->is_VM_thread()) {
duke@435 492 // Only the VM thread handles BREAK_SIGNAL ...
duke@435 493 pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
duke@435 494 } else {
duke@435 495 // ... all other threads block BREAK_SIGNAL
duke@435 496 pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
duke@435 497 }
duke@435 498 }
duke@435 499 }
duke@435 500
duke@435 501 //////////////////////////////////////////////////////////////////////////////
duke@435 502 // detecting pthread library
duke@435 503
duke@435 504 void os::Linux::libpthread_init() {
duke@435 505 // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
duke@435 506 // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
duke@435 507 // generic name for earlier versions.
duke@435 508 // Define macros here so we can build HotSpot on old systems.
duke@435 509 # ifndef _CS_GNU_LIBC_VERSION
duke@435 510 # define _CS_GNU_LIBC_VERSION 2
duke@435 511 # endif
duke@435 512 # ifndef _CS_GNU_LIBPTHREAD_VERSION
duke@435 513 # define _CS_GNU_LIBPTHREAD_VERSION 3
duke@435 514 # endif
duke@435 515
duke@435 516 size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
duke@435 517 if (n > 0) {
duke@435 518 char *str = (char *)malloc(n);
duke@435 519 confstr(_CS_GNU_LIBC_VERSION, str, n);
duke@435 520 os::Linux::set_glibc_version(str);
duke@435 521 } else {
duke@435 522 // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
duke@435 523 static char _gnu_libc_version[32];
duke@435 524 jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
duke@435 525 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
duke@435 526 os::Linux::set_glibc_version(_gnu_libc_version);
duke@435 527 }
duke@435 528
duke@435 529 n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
duke@435 530 if (n > 0) {
duke@435 531 char *str = (char *)malloc(n);
duke@435 532 confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
duke@435 533
duke@435 534 // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
duke@435 535 // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
duke@435 536 // is the case:
duke@435 537 if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
duke@435 538 strstr(str, "NPTL")) {
duke@435 539 // LinuxThreads has a hard limit on max number of threads. So
duke@435 540 // sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
duke@435 541 // On the other hand, NPTL does not have such a limit, sysconf()
duke@435 542 // will return -1 and errno is not changed. Check if it is really
duke@435 543 // NPTL:
duke@435 544 if (sysconf(_SC_THREAD_THREADS_MAX) > 0) {
duke@435 545 free(str);
duke@435 546 str = "linuxthreads";
duke@435 547 }
duke@435 548 }
duke@435 549 os::Linux::set_libpthread_version(str);
duke@435 550 } else {
duke@435 551 // glibc before 2.3.2 only has LinuxThreads.
duke@435 552 os::Linux::set_libpthread_version("linuxthreads");
duke@435 553 }
duke@435 554
duke@435 555 if (strstr(libpthread_version(), "NPTL")) {
duke@435 556 os::Linux::set_is_NPTL();
duke@435 557 } else {
duke@435 558 os::Linux::set_is_LinuxThreads();
duke@435 559 }
duke@435 560
duke@435 561 // LinuxThreads have two flavors: floating-stack mode, which allows variable
duke@435 562 // stack size; and fixed-stack mode. NPTL is always floating-stack.
duke@435 563 if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
duke@435 564 os::Linux::set_is_floating_stack();
duke@435 565 }
duke@435 566 }
duke@435 567
duke@435 568 /////////////////////////////////////////////////////////////////////////////
duke@435 569 // thread stack
duke@435 570
duke@435 571 // Force Linux kernel to expand current thread stack. If "bottom" is close
duke@435 572 // to the stack guard, caller should block all signals.
duke@435 573 //
duke@435 574 // MAP_GROWSDOWN:
duke@435 575 // A special mmap() flag that is used to implement thread stacks. It tells
duke@435 576 // kernel that the memory region should extend downwards when needed. This
duke@435 577 // allows early versions of LinuxThreads to only mmap the first few pages
duke@435 578 // when creating a new thread. Linux kernel will automatically expand thread
duke@435 579 // stack as needed (on page faults).
duke@435 580 //
duke@435 581 // However, because the memory region of a MAP_GROWSDOWN stack can grow on
duke@435 582 // demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
duke@435 583 // region, it's hard to tell if the fault is due to a legitimate stack
duke@435 584 // access or because of reading/writing non-exist memory (e.g. buffer
duke@435 585 // overrun). As a rule, if the fault happens below current stack pointer,
duke@435 586 // Linux kernel does not expand stack, instead a SIGSEGV is sent to the
duke@435 587 // application (see Linux kernel fault.c).
duke@435 588 //
duke@435 589 // This Linux feature can cause SIGSEGV when VM bangs thread stack for
duke@435 590 // stack overflow detection.
duke@435 591 //
duke@435 592 // Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
duke@435 593 // not use this flag. However, the stack of initial thread is not created
duke@435 594 // by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
duke@435 595 // unlikely) that user code can create a thread with MAP_GROWSDOWN stack
duke@435 596 // and then attach the thread to JVM.
duke@435 597 //
duke@435 598 // To get around the problem and allow stack banging on Linux, we need to
duke@435 599 // manually expand thread stack after receiving the SIGSEGV.
duke@435 600 //
duke@435 601 // There are two ways to expand thread stack to address "bottom", we used
duke@435 602 // both of them in JVM before 1.5:
duke@435 603 // 1. adjust stack pointer first so that it is below "bottom", and then
duke@435 604 // touch "bottom"
duke@435 605 // 2. mmap() the page in question
duke@435 606 //
duke@435 607 // Now alternate signal stack is gone, it's harder to use 2. For instance,
duke@435 608 // if current sp is already near the lower end of page 101, and we need to
duke@435 609 // call mmap() to map page 100, it is possible that part of the mmap() frame
duke@435 610 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
duke@435 611 // That will destroy the mmap() frame and cause VM to crash.
duke@435 612 //
duke@435 613 // The following code works by adjusting sp first, then accessing the "bottom"
duke@435 614 // page to force a page fault. Linux kernel will then automatically expand the
duke@435 615 // stack mapping.
duke@435 616 //
duke@435 617 // _expand_stack_to() assumes its frame size is less than page size, which
duke@435 618 // should always be true if the function is not inlined.
duke@435 619
duke@435 620 #if __GNUC__ < 3 // gcc 2.x does not support noinline attribute
duke@435 621 #define NOINLINE
duke@435 622 #else
duke@435 623 #define NOINLINE __attribute__ ((noinline))
duke@435 624 #endif
duke@435 625
duke@435 626 static void _expand_stack_to(address bottom) NOINLINE;
duke@435 627
duke@435 628 static void _expand_stack_to(address bottom) {
duke@435 629 address sp;
duke@435 630 size_t size;
duke@435 631 volatile char *p;
duke@435 632
duke@435 633 // Adjust bottom to point to the largest address within the same page, it
duke@435 634 // gives us a one-page buffer if alloca() allocates slightly more memory.
duke@435 635 bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
duke@435 636 bottom += os::Linux::page_size() - 1;
duke@435 637
duke@435 638 // sp might be slightly above current stack pointer; if that's the case, we
duke@435 639 // will alloca() a little more space than necessary, which is OK. Don't use
duke@435 640 // os::current_stack_pointer(), as its result can be slightly below current
duke@435 641 // stack pointer, causing us to not alloca enough to reach "bottom".
duke@435 642 sp = (address)&sp;
duke@435 643
duke@435 644 if (sp > bottom) {
duke@435 645 size = sp - bottom;
duke@435 646 p = (volatile char *)alloca(size);
duke@435 647 assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
duke@435 648 p[0] = '\0';
duke@435 649 }
duke@435 650 }
duke@435 651
duke@435 652 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
duke@435 653 assert(t!=NULL, "just checking");
duke@435 654 assert(t->osthread()->expanding_stack(), "expand should be set");
duke@435 655 assert(t->stack_base() != NULL, "stack_base was not initialized");
duke@435 656
duke@435 657 if (addr < t->stack_base() && addr >= t->stack_yellow_zone_base()) {
duke@435 658 sigset_t mask_all, old_sigset;
duke@435 659 sigfillset(&mask_all);
duke@435 660 pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
duke@435 661 _expand_stack_to(addr);
duke@435 662 pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
duke@435 663 return true;
duke@435 664 }
duke@435 665 return false;
duke@435 666 }
duke@435 667
duke@435 668 //////////////////////////////////////////////////////////////////////////////
duke@435 669 // create new thread
duke@435 670
duke@435 671 static address highest_vm_reserved_address();
duke@435 672
duke@435 673 // check if it's safe to start a new thread
duke@435 674 static bool _thread_safety_check(Thread* thread) {
duke@435 675 if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
duke@435 676 // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
duke@435 677 // Heap is mmap'ed at lower end of memory space. Thread stacks are
duke@435 678 // allocated (MAP_FIXED) from high address space. Every thread stack
duke@435 679 // occupies a fixed size slot (usually 2Mbytes, but user can change
duke@435 680 // it to other values if they rebuild LinuxThreads).
duke@435 681 //
duke@435 682 // Problem with MAP_FIXED is that mmap() can still succeed even part of
duke@435 683 // the memory region has already been mmap'ed. That means if we have too
duke@435 684 // many threads and/or very large heap, eventually thread stack will
duke@435 685 // collide with heap.
duke@435 686 //
duke@435 687 // Here we try to prevent heap/stack collision by comparing current
duke@435 688 // stack bottom with the highest address that has been mmap'ed by JVM
duke@435 689 // plus a safety margin for memory maps created by native code.
duke@435 690 //
duke@435 691 // This feature can be disabled by setting ThreadSafetyMargin to 0
duke@435 692 //
duke@435 693 if (ThreadSafetyMargin > 0) {
duke@435 694 address stack_bottom = os::current_stack_base() - os::current_stack_size();
duke@435 695
duke@435 696 // not safe if our stack extends below the safety margin
duke@435 697 return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
duke@435 698 } else {
duke@435 699 return true;
duke@435 700 }
duke@435 701 } else {
duke@435 702 // Floating stack LinuxThreads or NPTL:
duke@435 703 // Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
duke@435 704 // there's not enough space left, pthread_create() will fail. If we come
duke@435 705 // here, that means enough space has been reserved for stack.
duke@435 706 return true;
duke@435 707 }
duke@435 708 }
duke@435 709
duke@435 710 // Thread start routine for all newly created threads
duke@435 711 static void *java_start(Thread *thread) {
duke@435 712 // Try to randomize the cache line index of hot stack frames.
duke@435 713 // This helps when threads of the same stack traces evict each other's
duke@435 714 // cache lines. The threads can be either from the same JVM instance, or
duke@435 715 // from different JVM instances. The benefit is especially true for
duke@435 716 // processors with hyperthreading technology.
duke@435 717 static int counter = 0;
duke@435 718 int pid = os::current_process_id();
duke@435 719 alloca(((pid ^ counter++) & 7) * 128);
duke@435 720
duke@435 721 ThreadLocalStorage::set_thread(thread);
duke@435 722
duke@435 723 OSThread* osthread = thread->osthread();
duke@435 724 Monitor* sync = osthread->startThread_lock();
duke@435 725
duke@435 726 // non floating stack LinuxThreads needs extra check, see above
duke@435 727 if (!_thread_safety_check(thread)) {
duke@435 728 // notify parent thread
duke@435 729 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 730 osthread->set_state(ZOMBIE);
duke@435 731 sync->notify_all();
duke@435 732 return NULL;
duke@435 733 }
duke@435 734
duke@435 735 // thread_id is kernel thread id (similar to Solaris LWP id)
duke@435 736 osthread->set_thread_id(os::Linux::gettid());
duke@435 737
duke@435 738 if (UseNUMA) {
duke@435 739 int lgrp_id = os::numa_get_group_id();
duke@435 740 if (lgrp_id != -1) {
duke@435 741 thread->set_lgrp_id(lgrp_id);
duke@435 742 }
duke@435 743 }
duke@435 744 // initialize signal mask for this thread
duke@435 745 os::Linux::hotspot_sigmask(thread);
duke@435 746
duke@435 747 // initialize floating point control register
duke@435 748 os::Linux::init_thread_fpu_state();
duke@435 749
duke@435 750 // handshaking with parent thread
duke@435 751 {
duke@435 752 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 753
duke@435 754 // notify parent thread
duke@435 755 osthread->set_state(INITIALIZED);
duke@435 756 sync->notify_all();
duke@435 757
duke@435 758 // wait until os::start_thread()
duke@435 759 while (osthread->get_state() == INITIALIZED) {
duke@435 760 sync->wait(Mutex::_no_safepoint_check_flag);
duke@435 761 }
duke@435 762 }
duke@435 763
duke@435 764 // call one more level start routine
duke@435 765 thread->run();
duke@435 766
duke@435 767 return 0;
duke@435 768 }
duke@435 769
duke@435 770 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 771 assert(thread->osthread() == NULL, "caller responsible");
duke@435 772
duke@435 773 // Allocate the OSThread object
duke@435 774 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 775 if (osthread == NULL) {
duke@435 776 return false;
duke@435 777 }
duke@435 778
duke@435 779 // set the correct thread state
duke@435 780 osthread->set_thread_type(thr_type);
duke@435 781
duke@435 782 // Initial state is ALLOCATED but not INITIALIZED
duke@435 783 osthread->set_state(ALLOCATED);
duke@435 784
duke@435 785 thread->set_osthread(osthread);
duke@435 786
duke@435 787 // init thread attributes
duke@435 788 pthread_attr_t attr;
duke@435 789 pthread_attr_init(&attr);
duke@435 790 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
duke@435 791
duke@435 792 // stack size
duke@435 793 if (os::Linux::supports_variable_stack_size()) {
duke@435 794 // calculate stack size if it's not specified by caller
duke@435 795 if (stack_size == 0) {
duke@435 796 stack_size = os::Linux::default_stack_size(thr_type);
duke@435 797
duke@435 798 switch (thr_type) {
duke@435 799 case os::java_thread:
duke@435 800 // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
duke@435 801 if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
duke@435 802 break;
duke@435 803 case os::compiler_thread:
duke@435 804 if (CompilerThreadStackSize > 0) {
duke@435 805 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 806 break;
duke@435 807 } // else fall through:
duke@435 808 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 809 case os::vm_thread:
duke@435 810 case os::pgc_thread:
duke@435 811 case os::cgc_thread:
duke@435 812 case os::watcher_thread:
duke@435 813 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 814 break;
duke@435 815 }
duke@435 816 }
duke@435 817
duke@435 818 stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
duke@435 819 pthread_attr_setstacksize(&attr, stack_size);
duke@435 820 } else {
duke@435 821 // let pthread_create() pick the default value.
duke@435 822 }
duke@435 823
duke@435 824 // glibc guard page
duke@435 825 pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
duke@435 826
duke@435 827 ThreadState state;
duke@435 828
duke@435 829 {
duke@435 830 // Serialize thread creation if we are running with fixed stack LinuxThreads
duke@435 831 bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
duke@435 832 if (lock) {
duke@435 833 os::Linux::createThread_lock()->lock_without_safepoint_check();
duke@435 834 }
duke@435 835
duke@435 836 pthread_t tid;
duke@435 837 int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
duke@435 838
duke@435 839 pthread_attr_destroy(&attr);
duke@435 840
duke@435 841 if (ret != 0) {
duke@435 842 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 843 perror("pthread_create()");
duke@435 844 }
duke@435 845 // Need to clean up stuff we've allocated so far
duke@435 846 thread->set_osthread(NULL);
duke@435 847 delete osthread;
duke@435 848 if (lock) os::Linux::createThread_lock()->unlock();
duke@435 849 return false;
duke@435 850 }
duke@435 851
duke@435 852 // Store pthread info into the OSThread
duke@435 853 osthread->set_pthread_id(tid);
duke@435 854
duke@435 855 // Wait until child thread is either initialized or aborted
duke@435 856 {
duke@435 857 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 858 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 859 while ((state = osthread->get_state()) == ALLOCATED) {
duke@435 860 sync_with_child->wait(Mutex::_no_safepoint_check_flag);
duke@435 861 }
duke@435 862 }
duke@435 863
duke@435 864 if (lock) {
duke@435 865 os::Linux::createThread_lock()->unlock();
duke@435 866 }
duke@435 867 }
duke@435 868
duke@435 869 // Aborted due to thread limit being reached
duke@435 870 if (state == ZOMBIE) {
duke@435 871 thread->set_osthread(NULL);
duke@435 872 delete osthread;
duke@435 873 return false;
duke@435 874 }
duke@435 875
duke@435 876 // The thread is returned suspended (in state INITIALIZED),
duke@435 877 // and is started higher up in the call chain
duke@435 878 assert(state == INITIALIZED, "race condition");
duke@435 879 return true;
duke@435 880 }
duke@435 881
duke@435 882 /////////////////////////////////////////////////////////////////////////////
duke@435 883 // attach existing thread
duke@435 884
duke@435 885 // bootstrap the main thread
duke@435 886 bool os::create_main_thread(JavaThread* thread) {
duke@435 887 assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
duke@435 888 return create_attached_thread(thread);
duke@435 889 }
duke@435 890
duke@435 891 bool os::create_attached_thread(JavaThread* thread) {
duke@435 892 #ifdef ASSERT
duke@435 893 thread->verify_not_published();
duke@435 894 #endif
duke@435 895
duke@435 896 // Allocate the OSThread object
duke@435 897 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 898
duke@435 899 if (osthread == NULL) {
duke@435 900 return false;
duke@435 901 }
duke@435 902
duke@435 903 // Store pthread info into the OSThread
duke@435 904 osthread->set_thread_id(os::Linux::gettid());
duke@435 905 osthread->set_pthread_id(::pthread_self());
duke@435 906
duke@435 907 // initialize floating point control register
duke@435 908 os::Linux::init_thread_fpu_state();
duke@435 909
duke@435 910 // Initial thread state is RUNNABLE
duke@435 911 osthread->set_state(RUNNABLE);
duke@435 912
duke@435 913 thread->set_osthread(osthread);
duke@435 914
duke@435 915 if (UseNUMA) {
duke@435 916 int lgrp_id = os::numa_get_group_id();
duke@435 917 if (lgrp_id != -1) {
duke@435 918 thread->set_lgrp_id(lgrp_id);
duke@435 919 }
duke@435 920 }
duke@435 921
duke@435 922 if (os::Linux::is_initial_thread()) {
duke@435 923 // If current thread is initial thread, its stack is mapped on demand,
duke@435 924 // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
duke@435 925 // the entire stack region to avoid SEGV in stack banging.
duke@435 926 // It is also useful to get around the heap-stack-gap problem on SuSE
duke@435 927 // kernel (see 4821821 for details). We first expand stack to the top
duke@435 928 // of yellow zone, then enable stack yellow zone (order is significant,
duke@435 929 // enabling yellow zone first will crash JVM on SuSE Linux), so there
duke@435 930 // is no gap between the last two virtual memory regions.
duke@435 931
duke@435 932 JavaThread *jt = (JavaThread *)thread;
duke@435 933 address addr = jt->stack_yellow_zone_base();
duke@435 934 assert(addr != NULL, "initialization problem?");
duke@435 935 assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
duke@435 936
duke@435 937 osthread->set_expanding_stack();
duke@435 938 os::Linux::manually_expand_stack(jt, addr);
duke@435 939 osthread->clear_expanding_stack();
duke@435 940 }
duke@435 941
duke@435 942 // initialize signal mask for this thread
duke@435 943 // and save the caller's signal mask
duke@435 944 os::Linux::hotspot_sigmask(thread);
duke@435 945
duke@435 946 return true;
duke@435 947 }
duke@435 948
duke@435 949 void os::pd_start_thread(Thread* thread) {
duke@435 950 OSThread * osthread = thread->osthread();
duke@435 951 assert(osthread->get_state() != INITIALIZED, "just checking");
duke@435 952 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 953 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 954 sync_with_child->notify();
duke@435 955 }
duke@435 956
duke@435 957 // Free Linux resources related to the OSThread
duke@435 958 void os::free_thread(OSThread* osthread) {
duke@435 959 assert(osthread != NULL, "osthread not set");
duke@435 960
duke@435 961 if (Thread::current()->osthread() == osthread) {
duke@435 962 // Restore caller's signal mask
duke@435 963 sigset_t sigmask = osthread->caller_sigmask();
duke@435 964 pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
duke@435 965 }
duke@435 966
duke@435 967 delete osthread;
duke@435 968 }
duke@435 969
duke@435 970 //////////////////////////////////////////////////////////////////////////////
duke@435 971 // thread local storage
duke@435 972
duke@435 973 int os::allocate_thread_local_storage() {
duke@435 974 pthread_key_t key;
duke@435 975 int rslt = pthread_key_create(&key, NULL);
duke@435 976 assert(rslt == 0, "cannot allocate thread local storage");
duke@435 977 return (int)key;
duke@435 978 }
duke@435 979
duke@435 980 // Note: This is currently not used by VM, as we don't destroy TLS key
duke@435 981 // on VM exit.
duke@435 982 void os::free_thread_local_storage(int index) {
duke@435 983 int rslt = pthread_key_delete((pthread_key_t)index);
duke@435 984 assert(rslt == 0, "invalid index");
duke@435 985 }
duke@435 986
duke@435 987 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 988 int rslt = pthread_setspecific((pthread_key_t)index, value);
duke@435 989 assert(rslt == 0, "pthread_setspecific failed");
duke@435 990 }
duke@435 991
duke@435 992 extern "C" Thread* get_thread() {
duke@435 993 return ThreadLocalStorage::thread();
duke@435 994 }
duke@435 995
duke@435 996 //////////////////////////////////////////////////////////////////////////////
duke@435 997 // initial thread
duke@435 998
duke@435 999 // Check if current thread is the initial thread, similar to Solaris thr_main.
duke@435 1000 bool os::Linux::is_initial_thread(void) {
duke@435 1001 char dummy;
duke@435 1002 // If called before init complete, thread stack bottom will be null.
duke@435 1003 // Can be called if fatal error occurs before initialization.
duke@435 1004 if (initial_thread_stack_bottom() == NULL) return false;
duke@435 1005 assert(initial_thread_stack_bottom() != NULL &&
duke@435 1006 initial_thread_stack_size() != 0,
duke@435 1007 "os::init did not locate initial thread's stack region");
duke@435 1008 if ((address)&dummy >= initial_thread_stack_bottom() &&
duke@435 1009 (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
duke@435 1010 return true;
duke@435 1011 else return false;
duke@435 1012 }
duke@435 1013
duke@435 1014 // Find the virtual memory area that contains addr
duke@435 1015 static bool find_vma(address addr, address* vma_low, address* vma_high) {
duke@435 1016 FILE *fp = fopen("/proc/self/maps", "r");
duke@435 1017 if (fp) {
duke@435 1018 address low, high;
duke@435 1019 while (!feof(fp)) {
duke@435 1020 if (fscanf(fp, "%p-%p", &low, &high) == 2) {
duke@435 1021 if (low <= addr && addr < high) {
duke@435 1022 if (vma_low) *vma_low = low;
duke@435 1023 if (vma_high) *vma_high = high;
duke@435 1024 fclose (fp);
duke@435 1025 return true;
duke@435 1026 }
duke@435 1027 }
duke@435 1028 for (;;) {
duke@435 1029 int ch = fgetc(fp);
duke@435 1030 if (ch == EOF || ch == (int)'\n') break;
duke@435 1031 }
duke@435 1032 }
duke@435 1033 fclose(fp);
duke@435 1034 }
duke@435 1035 return false;
duke@435 1036 }
duke@435 1037
duke@435 1038 // Locate initial thread stack. This special handling of initial thread stack
duke@435 1039 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
duke@435 1040 // bogus value for initial thread.
duke@435 1041 void os::Linux::capture_initial_stack(size_t max_size) {
duke@435 1042 // stack size is the easy part, get it from RLIMIT_STACK
duke@435 1043 size_t stack_size;
duke@435 1044 struct rlimit rlim;
duke@435 1045 getrlimit(RLIMIT_STACK, &rlim);
duke@435 1046 stack_size = rlim.rlim_cur;
duke@435 1047
duke@435 1048 // 6308388: a bug in ld.so will relocate its own .data section to the
duke@435 1049 // lower end of primordial stack; reduce ulimit -s value a little bit
duke@435 1050 // so we won't install guard page on ld.so's data section.
duke@435 1051 stack_size -= 2 * page_size();
duke@435 1052
duke@435 1053 // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
duke@435 1054 // 7.1, in both cases we will get 2G in return value.
duke@435 1055 // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
duke@435 1056 // SuSE 7.2, Debian) can not handle alternate signal stack correctly
duke@435 1057 // for initial thread if its stack size exceeds 6M. Cap it at 2M,
duke@435 1058 // in case other parts in glibc still assumes 2M max stack size.
duke@435 1059 // FIXME: alt signal stack is gone, maybe we can relax this constraint?
duke@435 1060 #ifndef IA64
duke@435 1061 if (stack_size > 2 * K * K) stack_size = 2 * K * K;
duke@435 1062 #else
duke@435 1063 // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
duke@435 1064 if (stack_size > 4 * K * K) stack_size = 4 * K * K;
duke@435 1065 #endif
duke@435 1066
duke@435 1067 // Try to figure out where the stack base (top) is. This is harder.
duke@435 1068 //
duke@435 1069 // When an application is started, glibc saves the initial stack pointer in
duke@435 1070 // a global variable "__libc_stack_end", which is then used by system
duke@435 1071 // libraries. __libc_stack_end should be pretty close to stack top. The
duke@435 1072 // variable is available since the very early days. However, because it is
duke@435 1073 // a private interface, it could disappear in the future.
duke@435 1074 //
duke@435 1075 // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
duke@435 1076 // to __libc_stack_end, it is very close to stack top, but isn't the real
duke@435 1077 // stack top. Note that /proc may not exist if VM is running as a chroot
duke@435 1078 // program, so reading /proc/<pid>/stat could fail. Also the contents of
duke@435 1079 // /proc/<pid>/stat could change in the future (though unlikely).
duke@435 1080 //
duke@435 1081 // We try __libc_stack_end first. If that doesn't work, look for
duke@435 1082 // /proc/<pid>/stat. If neither of them works, we use current stack pointer
duke@435 1083 // as a hint, which should work well in most cases.
duke@435 1084
duke@435 1085 uintptr_t stack_start;
duke@435 1086
duke@435 1087 // try __libc_stack_end first
duke@435 1088 uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
duke@435 1089 if (p && *p) {
duke@435 1090 stack_start = *p;
duke@435 1091 } else {
duke@435 1092 // see if we can get the start_stack field from /proc/self/stat
duke@435 1093 FILE *fp;
duke@435 1094 int pid;
duke@435 1095 char state;
duke@435 1096 int ppid;
duke@435 1097 int pgrp;
duke@435 1098 int session;
duke@435 1099 int nr;
duke@435 1100 int tpgrp;
duke@435 1101 unsigned long flags;
duke@435 1102 unsigned long minflt;
duke@435 1103 unsigned long cminflt;
duke@435 1104 unsigned long majflt;
duke@435 1105 unsigned long cmajflt;
duke@435 1106 unsigned long utime;
duke@435 1107 unsigned long stime;
duke@435 1108 long cutime;
duke@435 1109 long cstime;
duke@435 1110 long prio;
duke@435 1111 long nice;
duke@435 1112 long junk;
duke@435 1113 long it_real;
duke@435 1114 uintptr_t start;
duke@435 1115 uintptr_t vsize;
duke@435 1116 uintptr_t rss;
duke@435 1117 unsigned long rsslim;
duke@435 1118 uintptr_t scodes;
duke@435 1119 uintptr_t ecode;
duke@435 1120 int i;
duke@435 1121
duke@435 1122 // Figure what the primordial thread stack base is. Code is inspired
duke@435 1123 // by email from Hans Boehm. /proc/self/stat begins with current pid,
duke@435 1124 // followed by command name surrounded by parentheses, state, etc.
duke@435 1125 char stat[2048];
duke@435 1126 int statlen;
duke@435 1127
duke@435 1128 fp = fopen("/proc/self/stat", "r");
duke@435 1129 if (fp) {
duke@435 1130 statlen = fread(stat, 1, 2047, fp);
duke@435 1131 stat[statlen] = '\0';
duke@435 1132 fclose(fp);
duke@435 1133
duke@435 1134 // Skip pid and the command string. Note that we could be dealing with
duke@435 1135 // weird command names, e.g. user could decide to rename java launcher
duke@435 1136 // to "java 1.4.2 :)", then the stat file would look like
duke@435 1137 // 1234 (java 1.4.2 :)) R ... ...
duke@435 1138 // We don't really need to know the command string, just find the last
duke@435 1139 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 1140 char * s = strrchr(stat, ')');
duke@435 1141
duke@435 1142 i = 0;
duke@435 1143 if (s) {
duke@435 1144 // Skip blank chars
duke@435 1145 do s++; while (isspace(*s));
duke@435 1146
duke@435 1147 /* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 */
duke@435 1148 /* 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 */
duke@435 1149 i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu",
duke@435 1150 &state, /* 3 %c */
duke@435 1151 &ppid, /* 4 %d */
duke@435 1152 &pgrp, /* 5 %d */
duke@435 1153 &session, /* 6 %d */
duke@435 1154 &nr, /* 7 %d */
duke@435 1155 &tpgrp, /* 8 %d */
duke@435 1156 &flags, /* 9 %lu */
duke@435 1157 &minflt, /* 10 %lu */
duke@435 1158 &cminflt, /* 11 %lu */
duke@435 1159 &majflt, /* 12 %lu */
duke@435 1160 &cmajflt, /* 13 %lu */
duke@435 1161 &utime, /* 14 %lu */
duke@435 1162 &stime, /* 15 %lu */
duke@435 1163 &cutime, /* 16 %ld */
duke@435 1164 &cstime, /* 17 %ld */
duke@435 1165 &prio, /* 18 %ld */
duke@435 1166 &nice, /* 19 %ld */
duke@435 1167 &junk, /* 20 %ld */
duke@435 1168 &it_real, /* 21 %ld */
duke@435 1169 &start, /* 22 %lu */
duke@435 1170 &vsize, /* 23 %lu */
duke@435 1171 &rss, /* 24 %ld */
duke@435 1172 &rsslim, /* 25 %lu */
duke@435 1173 &scodes, /* 26 %lu */
duke@435 1174 &ecode, /* 27 %lu */
duke@435 1175 &stack_start); /* 28 %lu */
duke@435 1176 }
duke@435 1177
duke@435 1178 if (i != 28 - 2) {
duke@435 1179 assert(false, "Bad conversion from /proc/self/stat");
duke@435 1180 // product mode - assume we are the initial thread, good luck in the
duke@435 1181 // embedded case.
duke@435 1182 warning("Can't detect initial thread stack location - bad conversion");
duke@435 1183 stack_start = (uintptr_t) &rlim;
duke@435 1184 }
duke@435 1185 } else {
duke@435 1186 // For some reason we can't open /proc/self/stat (for example, running on
duke@435 1187 // FreeBSD with a Linux emulator, or inside chroot), this should work for
duke@435 1188 // most cases, so don't abort:
duke@435 1189 warning("Can't detect initial thread stack location - no /proc/self/stat");
duke@435 1190 stack_start = (uintptr_t) &rlim;
duke@435 1191 }
duke@435 1192 }
duke@435 1193
duke@435 1194 // Now we have a pointer (stack_start) very close to the stack top, the
duke@435 1195 // next thing to do is to figure out the exact location of stack top. We
duke@435 1196 // can find out the virtual memory area that contains stack_start by
duke@435 1197 // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
duke@435 1198 // and its upper limit is the real stack top. (again, this would fail if
duke@435 1199 // running inside chroot, because /proc may not exist.)
duke@435 1200
duke@435 1201 uintptr_t stack_top;
duke@435 1202 address low, high;
duke@435 1203 if (find_vma((address)stack_start, &low, &high)) {
duke@435 1204 // success, "high" is the true stack top. (ignore "low", because initial
duke@435 1205 // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
duke@435 1206 stack_top = (uintptr_t)high;
duke@435 1207 } else {
duke@435 1208 // failed, likely because /proc/self/maps does not exist
duke@435 1209 warning("Can't detect initial thread stack location - find_vma failed");
duke@435 1210 // best effort: stack_start is normally within a few pages below the real
duke@435 1211 // stack top, use it as stack top, and reduce stack size so we won't put
duke@435 1212 // guard page outside stack.
duke@435 1213 stack_top = stack_start;
duke@435 1214 stack_size -= 16 * page_size();
duke@435 1215 }
duke@435 1216
duke@435 1217 // stack_top could be partially down the page so align it
duke@435 1218 stack_top = align_size_up(stack_top, page_size());
duke@435 1219
duke@435 1220 if (max_size && stack_size > max_size) {
duke@435 1221 _initial_thread_stack_size = max_size;
duke@435 1222 } else {
duke@435 1223 _initial_thread_stack_size = stack_size;
duke@435 1224 }
duke@435 1225
duke@435 1226 _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
duke@435 1227 _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
duke@435 1228 }
duke@435 1229
duke@435 1230 ////////////////////////////////////////////////////////////////////////////////
duke@435 1231 // time support
duke@435 1232
duke@435 1233 // Time since start-up in seconds to a fine granularity.
duke@435 1234 // Used by VMSelfDestructTimer and the MemProfiler.
duke@435 1235 double os::elapsedTime() {
duke@435 1236
duke@435 1237 return (double)(os::elapsed_counter()) * 0.000001;
duke@435 1238 }
duke@435 1239
duke@435 1240 jlong os::elapsed_counter() {
duke@435 1241 timeval time;
duke@435 1242 int status = gettimeofday(&time, NULL);
duke@435 1243 return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
duke@435 1244 }
duke@435 1245
duke@435 1246 jlong os::elapsed_frequency() {
duke@435 1247 return (1000 * 1000);
duke@435 1248 }
duke@435 1249
sbohne@496 1250 jlong os::javaTimeMillis() {
duke@435 1251 timeval time;
duke@435 1252 int status = gettimeofday(&time, NULL);
duke@435 1253 assert(status != -1, "linux error");
duke@435 1254 return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
duke@435 1255 }
duke@435 1256
duke@435 1257 #ifndef CLOCK_MONOTONIC
duke@435 1258 #define CLOCK_MONOTONIC (1)
duke@435 1259 #endif
duke@435 1260
duke@435 1261 void os::Linux::clock_init() {
duke@435 1262 // we do dlopen's in this particular order due to bug in linux
duke@435 1263 // dynamical loader (see 6348968) leading to crash on exit
duke@435 1264 void* handle = dlopen("librt.so.1", RTLD_LAZY);
duke@435 1265 if (handle == NULL) {
duke@435 1266 handle = dlopen("librt.so", RTLD_LAZY);
duke@435 1267 }
duke@435 1268
duke@435 1269 if (handle) {
duke@435 1270 int (*clock_getres_func)(clockid_t, struct timespec*) =
duke@435 1271 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
duke@435 1272 int (*clock_gettime_func)(clockid_t, struct timespec*) =
duke@435 1273 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
duke@435 1274 if (clock_getres_func && clock_gettime_func) {
duke@435 1275 // See if monotonic clock is supported by the kernel. Note that some
duke@435 1276 // early implementations simply return kernel jiffies (updated every
duke@435 1277 // 1/100 or 1/1000 second). It would be bad to use such a low res clock
duke@435 1278 // for nano time (though the monotonic property is still nice to have).
duke@435 1279 // It's fixed in newer kernels, however clock_getres() still returns
duke@435 1280 // 1/HZ. We check if clock_getres() works, but will ignore its reported
duke@435 1281 // resolution for now. Hopefully as people move to new kernels, this
duke@435 1282 // won't be a problem.
duke@435 1283 struct timespec res;
duke@435 1284 struct timespec tp;
duke@435 1285 if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
duke@435 1286 clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
duke@435 1287 // yes, monotonic clock is supported
duke@435 1288 _clock_gettime = clock_gettime_func;
duke@435 1289 } else {
duke@435 1290 // close librt if there is no monotonic clock
duke@435 1291 dlclose(handle);
duke@435 1292 }
duke@435 1293 }
duke@435 1294 }
duke@435 1295 }
duke@435 1296
duke@435 1297 #ifndef SYS_clock_getres
duke@435 1298
duke@435 1299 #if defined(IA32) || defined(AMD64)
duke@435 1300 #define SYS_clock_getres IA32_ONLY(266) AMD64_ONLY(229)
duke@435 1301 #else
duke@435 1302 #error Value of SYS_clock_getres not known on this platform
duke@435 1303 #endif
duke@435 1304
duke@435 1305 #endif
duke@435 1306
duke@435 1307 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1308
duke@435 1309 void os::Linux::fast_thread_clock_init() {
duke@435 1310 if (!UseLinuxPosixThreadCPUClocks) {
duke@435 1311 return;
duke@435 1312 }
duke@435 1313 clockid_t clockid;
duke@435 1314 struct timespec tp;
duke@435 1315 int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
duke@435 1316 (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
duke@435 1317
duke@435 1318 // Switch to using fast clocks for thread cpu time if
duke@435 1319 // the sys_clock_getres() returns 0 error code.
duke@435 1320 // Note, that some kernels may support the current thread
duke@435 1321 // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
duke@435 1322 // returned by the pthread_getcpuclockid().
duke@435 1323 // If the fast Posix clocks are supported then the sys_clock_getres()
duke@435 1324 // must return at least tp.tv_sec == 0 which means a resolution
duke@435 1325 // better than 1 sec. This is extra check for reliability.
duke@435 1326
duke@435 1327 if(pthread_getcpuclockid_func &&
duke@435 1328 pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
duke@435 1329 sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
duke@435 1330
duke@435 1331 _supports_fast_thread_cpu_time = true;
duke@435 1332 _pthread_getcpuclockid = pthread_getcpuclockid_func;
duke@435 1333 }
duke@435 1334 }
duke@435 1335
duke@435 1336 jlong os::javaTimeNanos() {
duke@435 1337 if (Linux::supports_monotonic_clock()) {
duke@435 1338 struct timespec tp;
duke@435 1339 int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
duke@435 1340 assert(status == 0, "gettime error");
duke@435 1341 jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
duke@435 1342 return result;
duke@435 1343 } else {
duke@435 1344 timeval time;
duke@435 1345 int status = gettimeofday(&time, NULL);
duke@435 1346 assert(status != -1, "linux error");
duke@435 1347 jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
duke@435 1348 return 1000 * usecs;
duke@435 1349 }
duke@435 1350 }
duke@435 1351
duke@435 1352 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 1353 if (Linux::supports_monotonic_clock()) {
duke@435 1354 info_ptr->max_value = ALL_64_BITS;
duke@435 1355
duke@435 1356 // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
duke@435 1357 info_ptr->may_skip_backward = false; // not subject to resetting or drifting
duke@435 1358 info_ptr->may_skip_forward = false; // not subject to resetting or drifting
duke@435 1359 } else {
duke@435 1360 // gettimeofday - based on time in seconds since the Epoch thus does not wrap
duke@435 1361 info_ptr->max_value = ALL_64_BITS;
duke@435 1362
duke@435 1363 // gettimeofday is a real time clock so it skips
duke@435 1364 info_ptr->may_skip_backward = true;
duke@435 1365 info_ptr->may_skip_forward = true;
duke@435 1366 }
duke@435 1367
duke@435 1368 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 1369 }
duke@435 1370
duke@435 1371 // Return the real, user, and system times in seconds from an
duke@435 1372 // arbitrary fixed point in the past.
duke@435 1373 bool os::getTimesSecs(double* process_real_time,
duke@435 1374 double* process_user_time,
duke@435 1375 double* process_system_time) {
duke@435 1376 struct tms ticks;
duke@435 1377 clock_t real_ticks = times(&ticks);
duke@435 1378
duke@435 1379 if (real_ticks == (clock_t) (-1)) {
duke@435 1380 return false;
duke@435 1381 } else {
duke@435 1382 double ticks_per_second = (double) clock_tics_per_sec;
duke@435 1383 *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
duke@435 1384 *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
duke@435 1385 *process_real_time = ((double) real_ticks) / ticks_per_second;
duke@435 1386
duke@435 1387 return true;
duke@435 1388 }
duke@435 1389 }
duke@435 1390
duke@435 1391
duke@435 1392 char * os::local_time_string(char *buf, size_t buflen) {
duke@435 1393 struct tm t;
duke@435 1394 time_t long_time;
duke@435 1395 time(&long_time);
duke@435 1396 localtime_r(&long_time, &t);
duke@435 1397 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 1398 t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
duke@435 1399 t.tm_hour, t.tm_min, t.tm_sec);
duke@435 1400 return buf;
duke@435 1401 }
duke@435 1402
duke@435 1403 ////////////////////////////////////////////////////////////////////////////////
duke@435 1404 // runtime exit support
duke@435 1405
duke@435 1406 // Note: os::shutdown() might be called very early during initialization, or
duke@435 1407 // called from signal handler. Before adding something to os::shutdown(), make
duke@435 1408 // sure it is async-safe and can handle partially initialized VM.
duke@435 1409 void os::shutdown() {
duke@435 1410
duke@435 1411 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 1412 perfMemory_exit();
duke@435 1413
duke@435 1414 // needs to remove object in file system
duke@435 1415 AttachListener::abort();
duke@435 1416
duke@435 1417 // flush buffered output, finish log files
duke@435 1418 ostream_abort();
duke@435 1419
duke@435 1420 // Check for abort hook
duke@435 1421 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 1422 if (abort_hook != NULL) {
duke@435 1423 abort_hook();
duke@435 1424 }
duke@435 1425
duke@435 1426 }
duke@435 1427
duke@435 1428 // Note: os::abort() might be called very early during initialization, or
duke@435 1429 // called from signal handler. Before adding something to os::abort(), make
duke@435 1430 // sure it is async-safe and can handle partially initialized VM.
duke@435 1431 void os::abort(bool dump_core) {
duke@435 1432 os::shutdown();
duke@435 1433 if (dump_core) {
duke@435 1434 #ifndef PRODUCT
duke@435 1435 fdStream out(defaultStream::output_fd());
duke@435 1436 out.print_raw("Current thread is ");
duke@435 1437 char buf[16];
duke@435 1438 jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
duke@435 1439 out.print_raw_cr(buf);
duke@435 1440 out.print_raw_cr("Dumping core ...");
duke@435 1441 #endif
duke@435 1442 ::abort(); // dump core
duke@435 1443 }
duke@435 1444
duke@435 1445 ::exit(1);
duke@435 1446 }
duke@435 1447
duke@435 1448 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1449 void os::die() {
duke@435 1450 // _exit() on LinuxThreads only kills current thread
duke@435 1451 ::abort();
duke@435 1452 }
duke@435 1453
duke@435 1454 // unused on linux for now.
duke@435 1455 void os::set_error_file(const char *logfile) {}
duke@435 1456
duke@435 1457 intx os::current_thread_id() { return (intx)pthread_self(); }
duke@435 1458 int os::current_process_id() {
duke@435 1459
duke@435 1460 // Under the old linux thread library, linux gives each thread
duke@435 1461 // its own process id. Because of this each thread will return
duke@435 1462 // a different pid if this method were to return the result
duke@435 1463 // of getpid(2). Linux provides no api that returns the pid
duke@435 1464 // of the launcher thread for the vm. This implementation
duke@435 1465 // returns a unique pid, the pid of the launcher thread
duke@435 1466 // that starts the vm 'process'.
duke@435 1467
duke@435 1468 // Under the NPTL, getpid() returns the same pid as the
duke@435 1469 // launcher thread rather than a unique pid per thread.
duke@435 1470 // Use gettid() if you want the old pre NPTL behaviour.
duke@435 1471
duke@435 1472 // if you are looking for the result of a call to getpid() that
duke@435 1473 // returns a unique pid for the calling thread, then look at the
duke@435 1474 // OSThread::thread_id() method in osThread_linux.hpp file
duke@435 1475
duke@435 1476 return (int)(_initial_pid ? _initial_pid : getpid());
duke@435 1477 }
duke@435 1478
duke@435 1479 // DLL functions
duke@435 1480
duke@435 1481 const char* os::dll_file_extension() { return ".so"; }
duke@435 1482
duke@435 1483 const char* os::get_temp_directory() { return "/tmp/"; }
duke@435 1484
duke@435 1485 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1486 return getcwd(buf, buflen);
duke@435 1487 }
duke@435 1488
duke@435 1489 // check if addr is inside libjvm[_g].so
duke@435 1490 bool os::address_is_in_vm(address addr) {
duke@435 1491 static address libjvm_base_addr;
duke@435 1492 Dl_info dlinfo;
duke@435 1493
duke@435 1494 if (libjvm_base_addr == NULL) {
duke@435 1495 dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
duke@435 1496 libjvm_base_addr = (address)dlinfo.dli_fbase;
duke@435 1497 assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
duke@435 1498 }
duke@435 1499
duke@435 1500 if (dladdr((void *)addr, &dlinfo)) {
duke@435 1501 if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
duke@435 1502 }
duke@435 1503
duke@435 1504 return false;
duke@435 1505 }
duke@435 1506
duke@435 1507 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1508 int buflen, int *offset) {
duke@435 1509 Dl_info dlinfo;
duke@435 1510
duke@435 1511 if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
duke@435 1512 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
duke@435 1513 if (offset) *offset = addr - (address)dlinfo.dli_saddr;
duke@435 1514 return true;
duke@435 1515 } else {
duke@435 1516 if (buf) buf[0] = '\0';
duke@435 1517 if (offset) *offset = -1;
duke@435 1518 return false;
duke@435 1519 }
duke@435 1520 }
duke@435 1521
duke@435 1522 struct _address_to_library_name {
duke@435 1523 address addr; // input : memory address
duke@435 1524 size_t buflen; // size of fname
duke@435 1525 char* fname; // output: library name
duke@435 1526 address base; // library base addr
duke@435 1527 };
duke@435 1528
duke@435 1529 static int address_to_library_name_callback(struct dl_phdr_info *info,
duke@435 1530 size_t size, void *data) {
duke@435 1531 int i;
duke@435 1532 bool found = false;
duke@435 1533 address libbase = NULL;
duke@435 1534 struct _address_to_library_name * d = (struct _address_to_library_name *)data;
duke@435 1535
duke@435 1536 // iterate through all loadable segments
duke@435 1537 for (i = 0; i < info->dlpi_phnum; i++) {
duke@435 1538 address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
duke@435 1539 if (info->dlpi_phdr[i].p_type == PT_LOAD) {
duke@435 1540 // base address of a library is the lowest address of its loaded
duke@435 1541 // segments.
duke@435 1542 if (libbase == NULL || libbase > segbase) {
duke@435 1543 libbase = segbase;
duke@435 1544 }
duke@435 1545 // see if 'addr' is within current segment
duke@435 1546 if (segbase <= d->addr &&
duke@435 1547 d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
duke@435 1548 found = true;
duke@435 1549 }
duke@435 1550 }
duke@435 1551 }
duke@435 1552
duke@435 1553 // dlpi_name is NULL or empty if the ELF file is executable, return 0
duke@435 1554 // so dll_address_to_library_name() can fall through to use dladdr() which
duke@435 1555 // can figure out executable name from argv[0].
duke@435 1556 if (found && info->dlpi_name && info->dlpi_name[0]) {
duke@435 1557 d->base = libbase;
duke@435 1558 if (d->fname) {
duke@435 1559 jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
duke@435 1560 }
duke@435 1561 return 1;
duke@435 1562 }
duke@435 1563 return 0;
duke@435 1564 }
duke@435 1565
duke@435 1566 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1567 int buflen, int* offset) {
duke@435 1568 Dl_info dlinfo;
duke@435 1569 struct _address_to_library_name data;
duke@435 1570
duke@435 1571 // There is a bug in old glibc dladdr() implementation that it could resolve
duke@435 1572 // to wrong library name if the .so file has a base address != NULL. Here
duke@435 1573 // we iterate through the program headers of all loaded libraries to find
duke@435 1574 // out which library 'addr' really belongs to. This workaround can be
duke@435 1575 // removed once the minimum requirement for glibc is moved to 2.3.x.
duke@435 1576 data.addr = addr;
duke@435 1577 data.fname = buf;
duke@435 1578 data.buflen = buflen;
duke@435 1579 data.base = NULL;
duke@435 1580 int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
duke@435 1581
duke@435 1582 if (rslt) {
duke@435 1583 // buf already contains library name
duke@435 1584 if (offset) *offset = addr - data.base;
duke@435 1585 return true;
duke@435 1586 } else if (dladdr((void*)addr, &dlinfo)){
duke@435 1587 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
duke@435 1588 if (offset) *offset = addr - (address)dlinfo.dli_fbase;
duke@435 1589 return true;
duke@435 1590 } else {
duke@435 1591 if (buf) buf[0] = '\0';
duke@435 1592 if (offset) *offset = -1;
duke@435 1593 return false;
duke@435 1594 }
duke@435 1595 }
duke@435 1596
duke@435 1597 // Loads .dll/.so and
duke@435 1598 // in case of error it checks if .dll/.so was built for the
duke@435 1599 // same architecture as Hotspot is running on
duke@435 1600
duke@435 1601 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
duke@435 1602 {
duke@435 1603 void * result= ::dlopen(filename, RTLD_LAZY);
duke@435 1604 if (result != NULL) {
duke@435 1605 // Successful loading
duke@435 1606 return result;
duke@435 1607 }
duke@435 1608
duke@435 1609 Elf32_Ehdr elf_head;
duke@435 1610
duke@435 1611 // Read system error message into ebuf
duke@435 1612 // It may or may not be overwritten below
duke@435 1613 ::strncpy(ebuf, ::dlerror(), ebuflen-1);
duke@435 1614 ebuf[ebuflen-1]='\0';
duke@435 1615 int diag_msg_max_length=ebuflen-strlen(ebuf);
duke@435 1616 char* diag_msg_buf=ebuf+strlen(ebuf);
duke@435 1617
duke@435 1618 if (diag_msg_max_length==0) {
duke@435 1619 // No more space in ebuf for additional diagnostics message
duke@435 1620 return NULL;
duke@435 1621 }
duke@435 1622
duke@435 1623
duke@435 1624 int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
duke@435 1625
duke@435 1626 if (file_descriptor < 0) {
duke@435 1627 // Can't open library, report dlerror() message
duke@435 1628 return NULL;
duke@435 1629 }
duke@435 1630
duke@435 1631 bool failed_to_read_elf_head=
duke@435 1632 (sizeof(elf_head)!=
duke@435 1633 (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
duke@435 1634
duke@435 1635 ::close(file_descriptor);
duke@435 1636 if (failed_to_read_elf_head) {
duke@435 1637 // file i/o error - report dlerror() msg
duke@435 1638 return NULL;
duke@435 1639 }
duke@435 1640
duke@435 1641 typedef struct {
duke@435 1642 Elf32_Half code; // Actual value as defined in elf.h
duke@435 1643 Elf32_Half compat_class; // Compatibility of archs at VM's sense
duke@435 1644 char elf_class; // 32 or 64 bit
duke@435 1645 char endianess; // MSB or LSB
duke@435 1646 char* name; // String representation
duke@435 1647 } arch_t;
duke@435 1648
duke@435 1649 #ifndef EM_486
duke@435 1650 #define EM_486 6 /* Intel 80486 */
duke@435 1651 #endif
duke@435 1652
duke@435 1653 static const arch_t arch_array[]={
duke@435 1654 {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1655 {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1656 {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
duke@435 1657 {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
duke@435 1658 {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1659 {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1660 {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
duke@435 1661 {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
duke@435 1662 {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
duke@435 1663 };
duke@435 1664
duke@435 1665 #if (defined IA32)
duke@435 1666 static Elf32_Half running_arch_code=EM_386;
duke@435 1667 #elif (defined AMD64)
duke@435 1668 static Elf32_Half running_arch_code=EM_X86_64;
duke@435 1669 #elif (defined IA64)
duke@435 1670 static Elf32_Half running_arch_code=EM_IA_64;
duke@435 1671 #elif (defined __sparc) && (defined _LP64)
duke@435 1672 static Elf32_Half running_arch_code=EM_SPARCV9;
duke@435 1673 #elif (defined __sparc) && (!defined _LP64)
duke@435 1674 static Elf32_Half running_arch_code=EM_SPARC;
duke@435 1675 #elif (defined __powerpc64__)
duke@435 1676 static Elf32_Half running_arch_code=EM_PPC64;
duke@435 1677 #elif (defined __powerpc__)
duke@435 1678 static Elf32_Half running_arch_code=EM_PPC;
duke@435 1679 #else
duke@435 1680 #error Method os::dll_load requires that one of following is defined:\
duke@435 1681 IA32, AMD64, IA64, __sparc, __powerpc__
duke@435 1682 #endif
duke@435 1683
duke@435 1684 // Identify compatability class for VM's architecture and library's architecture
duke@435 1685 // Obtain string descriptions for architectures
duke@435 1686
duke@435 1687 arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
duke@435 1688 int running_arch_index=-1;
duke@435 1689
duke@435 1690 for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
duke@435 1691 if (running_arch_code == arch_array[i].code) {
duke@435 1692 running_arch_index = i;
duke@435 1693 }
duke@435 1694 if (lib_arch.code == arch_array[i].code) {
duke@435 1695 lib_arch.compat_class = arch_array[i].compat_class;
duke@435 1696 lib_arch.name = arch_array[i].name;
duke@435 1697 }
duke@435 1698 }
duke@435 1699
duke@435 1700 assert(running_arch_index != -1,
duke@435 1701 "Didn't find running architecture code (running_arch_code) in arch_array");
duke@435 1702 if (running_arch_index == -1) {
duke@435 1703 // Even though running architecture detection failed
duke@435 1704 // we may still continue with reporting dlerror() message
duke@435 1705 return NULL;
duke@435 1706 }
duke@435 1707
duke@435 1708 if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
duke@435 1709 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
duke@435 1710 return NULL;
duke@435 1711 }
duke@435 1712
duke@435 1713 if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
duke@435 1714 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
duke@435 1715 return NULL;
duke@435 1716 }
duke@435 1717
duke@435 1718 if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
duke@435 1719 if ( lib_arch.name!=NULL ) {
duke@435 1720 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1721 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
duke@435 1722 lib_arch.name, arch_array[running_arch_index].name);
duke@435 1723 } else {
duke@435 1724 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1725 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
duke@435 1726 lib_arch.code,
duke@435 1727 arch_array[running_arch_index].name);
duke@435 1728 }
duke@435 1729 }
duke@435 1730
duke@435 1731 return NULL;
duke@435 1732 }
duke@435 1733
duke@435 1734
duke@435 1735
duke@435 1736
duke@435 1737 bool _print_ascii_file(const char* filename, outputStream* st) {
duke@435 1738 int fd = open(filename, O_RDONLY);
duke@435 1739 if (fd == -1) {
duke@435 1740 return false;
duke@435 1741 }
duke@435 1742
duke@435 1743 char buf[32];
duke@435 1744 int bytes;
duke@435 1745 while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
duke@435 1746 st->print_raw(buf, bytes);
duke@435 1747 }
duke@435 1748
duke@435 1749 close(fd);
duke@435 1750
duke@435 1751 return true;
duke@435 1752 }
duke@435 1753
duke@435 1754 void os::print_dll_info(outputStream *st) {
duke@435 1755 st->print_cr("Dynamic libraries:");
duke@435 1756
duke@435 1757 char fname[32];
duke@435 1758 pid_t pid = os::Linux::gettid();
duke@435 1759
duke@435 1760 jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
duke@435 1761
duke@435 1762 if (!_print_ascii_file(fname, st)) {
duke@435 1763 st->print("Can not get library information for pid = %d\n", pid);
duke@435 1764 }
duke@435 1765 }
duke@435 1766
duke@435 1767
duke@435 1768 void os::print_os_info(outputStream* st) {
duke@435 1769 st->print("OS:");
duke@435 1770
duke@435 1771 // Try to identify popular distros.
duke@435 1772 // Most Linux distributions have /etc/XXX-release file, which contains
duke@435 1773 // the OS version string. Some have more than one /etc/XXX-release file
duke@435 1774 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
duke@435 1775 // so the order is important.
duke@435 1776 if (!_print_ascii_file("/etc/mandrake-release", st) &&
duke@435 1777 !_print_ascii_file("/etc/sun-release", st) &&
duke@435 1778 !_print_ascii_file("/etc/redhat-release", st) &&
duke@435 1779 !_print_ascii_file("/etc/SuSE-release", st) &&
duke@435 1780 !_print_ascii_file("/etc/turbolinux-release", st) &&
duke@435 1781 !_print_ascii_file("/etc/gentoo-release", st) &&
duke@435 1782 !_print_ascii_file("/etc/debian_version", st)) {
duke@435 1783 st->print("Linux");
duke@435 1784 }
duke@435 1785 st->cr();
duke@435 1786
duke@435 1787 // kernel
duke@435 1788 st->print("uname:");
duke@435 1789 struct utsname name;
duke@435 1790 uname(&name);
duke@435 1791 st->print(name.sysname); st->print(" ");
duke@435 1792 st->print(name.release); st->print(" ");
duke@435 1793 st->print(name.version); st->print(" ");
duke@435 1794 st->print(name.machine);
duke@435 1795 st->cr();
duke@435 1796
duke@435 1797 // Print warning if unsafe chroot environment detected
duke@435 1798 if (unsafe_chroot_detected) {
duke@435 1799 st->print("WARNING!! ");
duke@435 1800 st->print_cr(unstable_chroot_error);
duke@435 1801 }
duke@435 1802
duke@435 1803 // libc, pthread
duke@435 1804 st->print("libc:");
duke@435 1805 st->print(os::Linux::glibc_version()); st->print(" ");
duke@435 1806 st->print(os::Linux::libpthread_version()); st->print(" ");
duke@435 1807 if (os::Linux::is_LinuxThreads()) {
duke@435 1808 st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
duke@435 1809 }
duke@435 1810 st->cr();
duke@435 1811
duke@435 1812 // rlimit
duke@435 1813 st->print("rlimit:");
duke@435 1814 struct rlimit rlim;
duke@435 1815
duke@435 1816 st->print(" STACK ");
duke@435 1817 getrlimit(RLIMIT_STACK, &rlim);
duke@435 1818 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1819 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 1820
duke@435 1821 st->print(", CORE ");
duke@435 1822 getrlimit(RLIMIT_CORE, &rlim);
duke@435 1823 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1824 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 1825
duke@435 1826 st->print(", NPROC ");
duke@435 1827 getrlimit(RLIMIT_NPROC, &rlim);
duke@435 1828 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1829 else st->print("%d", rlim.rlim_cur);
duke@435 1830
duke@435 1831 st->print(", NOFILE ");
duke@435 1832 getrlimit(RLIMIT_NOFILE, &rlim);
duke@435 1833 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1834 else st->print("%d", rlim.rlim_cur);
duke@435 1835
duke@435 1836 st->print(", AS ");
duke@435 1837 getrlimit(RLIMIT_AS, &rlim);
duke@435 1838 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1839 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 1840 st->cr();
duke@435 1841
duke@435 1842 // load average
duke@435 1843 st->print("load average:");
duke@435 1844 double loadavg[3];
duke@435 1845 os::loadavg(loadavg, 3);
duke@435 1846 st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
duke@435 1847 st->cr();
duke@435 1848 }
duke@435 1849
duke@435 1850 void os::print_memory_info(outputStream* st) {
duke@435 1851
duke@435 1852 st->print("Memory:");
duke@435 1853 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 1854
duke@435 1855 // values in struct sysinfo are "unsigned long"
duke@435 1856 struct sysinfo si;
duke@435 1857 sysinfo(&si);
duke@435 1858
duke@435 1859 st->print(", physical " UINT64_FORMAT "k",
duke@435 1860 os::physical_memory() >> 10);
duke@435 1861 st->print("(" UINT64_FORMAT "k free)",
duke@435 1862 os::available_memory() >> 10);
duke@435 1863 st->print(", swap " UINT64_FORMAT "k",
duke@435 1864 ((jlong)si.totalswap * si.mem_unit) >> 10);
duke@435 1865 st->print("(" UINT64_FORMAT "k free)",
duke@435 1866 ((jlong)si.freeswap * si.mem_unit) >> 10);
duke@435 1867 st->cr();
duke@435 1868 }
duke@435 1869
duke@435 1870 // Taken from /usr/include/bits/siginfo.h Supposed to be architecture specific
duke@435 1871 // but they're the same for all the linux arch that we support
duke@435 1872 // and they're the same for solaris but there's no common place to put this.
duke@435 1873 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
duke@435 1874 "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
duke@435 1875 "ILL_COPROC", "ILL_BADSTK" };
duke@435 1876
duke@435 1877 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
duke@435 1878 "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
duke@435 1879 "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
duke@435 1880
duke@435 1881 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
duke@435 1882
duke@435 1883 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
duke@435 1884
duke@435 1885 void os::print_siginfo(outputStream* st, void* siginfo) {
duke@435 1886 st->print("siginfo:");
duke@435 1887
duke@435 1888 const int buflen = 100;
duke@435 1889 char buf[buflen];
duke@435 1890 siginfo_t *si = (siginfo_t*)siginfo;
duke@435 1891 st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
duke@435 1892 if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
duke@435 1893 st->print("si_errno=%s", buf);
duke@435 1894 } else {
duke@435 1895 st->print("si_errno=%d", si->si_errno);
duke@435 1896 }
duke@435 1897 const int c = si->si_code;
duke@435 1898 assert(c > 0, "unexpected si_code");
duke@435 1899 switch (si->si_signo) {
duke@435 1900 case SIGILL:
duke@435 1901 st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
duke@435 1902 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 1903 break;
duke@435 1904 case SIGFPE:
duke@435 1905 st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
duke@435 1906 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 1907 break;
duke@435 1908 case SIGSEGV:
duke@435 1909 st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
duke@435 1910 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 1911 break;
duke@435 1912 case SIGBUS:
duke@435 1913 st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
duke@435 1914 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 1915 break;
duke@435 1916 default:
duke@435 1917 st->print(", si_code=%d", si->si_code);
duke@435 1918 // no si_addr
duke@435 1919 }
duke@435 1920
duke@435 1921 if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
duke@435 1922 UseSharedSpaces) {
duke@435 1923 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 1924 if (mapinfo->is_in_shared_space(si->si_addr)) {
duke@435 1925 st->print("\n\nError accessing class data sharing archive." \
duke@435 1926 " Mapped file inaccessible during execution, " \
duke@435 1927 " possible disk/network problem.");
duke@435 1928 }
duke@435 1929 }
duke@435 1930 st->cr();
duke@435 1931 }
duke@435 1932
duke@435 1933
duke@435 1934 static void print_signal_handler(outputStream* st, int sig,
duke@435 1935 char* buf, size_t buflen);
duke@435 1936
duke@435 1937 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 1938 st->print_cr("Signal Handlers:");
duke@435 1939 print_signal_handler(st, SIGSEGV, buf, buflen);
duke@435 1940 print_signal_handler(st, SIGBUS , buf, buflen);
duke@435 1941 print_signal_handler(st, SIGFPE , buf, buflen);
duke@435 1942 print_signal_handler(st, SIGPIPE, buf, buflen);
duke@435 1943 print_signal_handler(st, SIGXFSZ, buf, buflen);
duke@435 1944 print_signal_handler(st, SIGILL , buf, buflen);
duke@435 1945 print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
duke@435 1946 print_signal_handler(st, SR_signum, buf, buflen);
duke@435 1947 print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
duke@435 1948 print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
duke@435 1949 print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
duke@435 1950 print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
duke@435 1951 }
duke@435 1952
duke@435 1953 static char saved_jvm_path[MAXPATHLEN] = {0};
duke@435 1954
duke@435 1955 // Find the full path to the current module, libjvm.so or libjvm_g.so
duke@435 1956 void os::jvm_path(char *buf, jint len) {
duke@435 1957 // Error checking.
duke@435 1958 if (len < MAXPATHLEN) {
duke@435 1959 assert(false, "must use a large-enough buffer");
duke@435 1960 buf[0] = '\0';
duke@435 1961 return;
duke@435 1962 }
duke@435 1963 // Lazy resolve the path to current module.
duke@435 1964 if (saved_jvm_path[0] != 0) {
duke@435 1965 strcpy(buf, saved_jvm_path);
duke@435 1966 return;
duke@435 1967 }
duke@435 1968
duke@435 1969 char dli_fname[MAXPATHLEN];
duke@435 1970 bool ret = dll_address_to_library_name(
duke@435 1971 CAST_FROM_FN_PTR(address, os::jvm_path),
duke@435 1972 dli_fname, sizeof(dli_fname), NULL);
duke@435 1973 assert(ret != 0, "cannot locate libjvm");
duke@435 1974 realpath(dli_fname, buf);
duke@435 1975
duke@435 1976 if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
duke@435 1977 // Support for the gamma launcher. Typical value for buf is
duke@435 1978 // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so". If "/jre/lib/" appears at
duke@435 1979 // the right place in the string, then assume we are installed in a JDK and
duke@435 1980 // we're done. Otherwise, check for a JAVA_HOME environment variable and fix
duke@435 1981 // up the path so it looks like libjvm.so is installed there (append a
duke@435 1982 // fake suffix hotspot/libjvm.so).
duke@435 1983 const char *p = buf + strlen(buf) - 1;
duke@435 1984 for (int count = 0; p > buf && count < 5; ++count) {
duke@435 1985 for (--p; p > buf && *p != '/'; --p)
duke@435 1986 /* empty */ ;
duke@435 1987 }
duke@435 1988
duke@435 1989 if (strncmp(p, "/jre/lib/", 9) != 0) {
duke@435 1990 // Look for JAVA_HOME in the environment.
duke@435 1991 char* java_home_var = ::getenv("JAVA_HOME");
duke@435 1992 if (java_home_var != NULL && java_home_var[0] != 0) {
duke@435 1993 // Check the current module name "libjvm.so" or "libjvm_g.so".
duke@435 1994 p = strrchr(buf, '/');
duke@435 1995 assert(strstr(p, "/libjvm") == p, "invalid library name");
duke@435 1996 p = strstr(p, "_g") ? "_g" : "";
duke@435 1997
duke@435 1998 realpath(java_home_var, buf);
duke@435 1999 sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
duke@435 2000 if (0 == access(buf, F_OK)) {
duke@435 2001 // Use current module name "libjvm[_g].so" instead of
duke@435 2002 // "libjvm"debug_only("_g")".so" since for fastdebug version
duke@435 2003 // we should have "libjvm.so" but debug_only("_g") adds "_g"!
duke@435 2004 // It is used when we are choosing the HPI library's name
duke@435 2005 // "libhpi[_g].so" in hpi::initialize_get_interface().
duke@435 2006 sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
duke@435 2007 } else {
duke@435 2008 // Go back to path of .so
duke@435 2009 realpath(dli_fname, buf);
duke@435 2010 }
duke@435 2011 }
duke@435 2012 }
duke@435 2013 }
duke@435 2014
duke@435 2015 strcpy(saved_jvm_path, buf);
duke@435 2016 }
duke@435 2017
duke@435 2018 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 2019 // no prefix required, not even "_"
duke@435 2020 }
duke@435 2021
duke@435 2022 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 2023 // no suffix required
duke@435 2024 }
duke@435 2025
duke@435 2026 ////////////////////////////////////////////////////////////////////////////////
duke@435 2027 // sun.misc.Signal support
duke@435 2028
duke@435 2029 static volatile jint sigint_count = 0;
duke@435 2030
duke@435 2031 static void
duke@435 2032 UserHandler(int sig, void *siginfo, void *context) {
duke@435 2033 // 4511530 - sem_post is serialized and handled by the manager thread. When
duke@435 2034 // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
duke@435 2035 // don't want to flood the manager thread with sem_post requests.
duke@435 2036 if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
duke@435 2037 return;
duke@435 2038
duke@435 2039 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 2040 // handler fails to abort. Let VM die immediately.
duke@435 2041 if (sig == SIGINT && is_error_reported()) {
duke@435 2042 os::die();
duke@435 2043 }
duke@435 2044
duke@435 2045 os::signal_notify(sig);
duke@435 2046 }
duke@435 2047
duke@435 2048 void* os::user_handler() {
duke@435 2049 return CAST_FROM_FN_PTR(void*, UserHandler);
duke@435 2050 }
duke@435 2051
duke@435 2052 extern "C" {
duke@435 2053 typedef void (*sa_handler_t)(int);
duke@435 2054 typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
duke@435 2055 }
duke@435 2056
duke@435 2057 void* os::signal(int signal_number, void* handler) {
duke@435 2058 struct sigaction sigAct, oldSigAct;
duke@435 2059
duke@435 2060 sigfillset(&(sigAct.sa_mask));
duke@435 2061 sigAct.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 2062 sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
duke@435 2063
duke@435 2064 if (sigaction(signal_number, &sigAct, &oldSigAct)) {
duke@435 2065 // -1 means registration failed
duke@435 2066 return (void *)-1;
duke@435 2067 }
duke@435 2068
duke@435 2069 return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
duke@435 2070 }
duke@435 2071
duke@435 2072 void os::signal_raise(int signal_number) {
duke@435 2073 ::raise(signal_number);
duke@435 2074 }
duke@435 2075
duke@435 2076 /*
duke@435 2077 * The following code is moved from os.cpp for making this
duke@435 2078 * code platform specific, which it is by its very nature.
duke@435 2079 */
duke@435 2080
duke@435 2081 // Will be modified when max signal is changed to be dynamic
duke@435 2082 int os::sigexitnum_pd() {
duke@435 2083 return NSIG;
duke@435 2084 }
duke@435 2085
duke@435 2086 // a counter for each possible signal value
duke@435 2087 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 2088
duke@435 2089 // Linux(POSIX) specific hand shaking semaphore.
duke@435 2090 static sem_t sig_sem;
duke@435 2091
duke@435 2092 void os::signal_init_pd() {
duke@435 2093 // Initialize signal structures
duke@435 2094 ::memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 2095
duke@435 2096 // Initialize signal semaphore
duke@435 2097 ::sem_init(&sig_sem, 0, 0);
duke@435 2098 }
duke@435 2099
duke@435 2100 void os::signal_notify(int sig) {
duke@435 2101 Atomic::inc(&pending_signals[sig]);
duke@435 2102 ::sem_post(&sig_sem);
duke@435 2103 }
duke@435 2104
duke@435 2105 static int check_pending_signals(bool wait) {
duke@435 2106 Atomic::store(0, &sigint_count);
duke@435 2107 for (;;) {
duke@435 2108 for (int i = 0; i < NSIG + 1; i++) {
duke@435 2109 jint n = pending_signals[i];
duke@435 2110 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 2111 return i;
duke@435 2112 }
duke@435 2113 }
duke@435 2114 if (!wait) {
duke@435 2115 return -1;
duke@435 2116 }
duke@435 2117 JavaThread *thread = JavaThread::current();
duke@435 2118 ThreadBlockInVM tbivm(thread);
duke@435 2119
duke@435 2120 bool threadIsSuspended;
duke@435 2121 do {
duke@435 2122 thread->set_suspend_equivalent();
duke@435 2123 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 2124 ::sem_wait(&sig_sem);
duke@435 2125
duke@435 2126 // were we externally suspended while we were waiting?
duke@435 2127 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 2128 if (threadIsSuspended) {
duke@435 2129 //
duke@435 2130 // The semaphore has been incremented, but while we were waiting
duke@435 2131 // another thread suspended us. We don't want to continue running
duke@435 2132 // while suspended because that would surprise the thread that
duke@435 2133 // suspended us.
duke@435 2134 //
duke@435 2135 ::sem_post(&sig_sem);
duke@435 2136
duke@435 2137 thread->java_suspend_self();
duke@435 2138 }
duke@435 2139 } while (threadIsSuspended);
duke@435 2140 }
duke@435 2141 }
duke@435 2142
duke@435 2143 int os::signal_lookup() {
duke@435 2144 return check_pending_signals(false);
duke@435 2145 }
duke@435 2146
duke@435 2147 int os::signal_wait() {
duke@435 2148 return check_pending_signals(true);
duke@435 2149 }
duke@435 2150
duke@435 2151 ////////////////////////////////////////////////////////////////////////////////
duke@435 2152 // Virtual Memory
duke@435 2153
duke@435 2154 int os::vm_page_size() {
duke@435 2155 // Seems redundant as all get out
duke@435 2156 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2157 return os::Linux::page_size();
duke@435 2158 }
duke@435 2159
duke@435 2160 // Solaris allocates memory by pages.
duke@435 2161 int os::vm_allocation_granularity() {
duke@435 2162 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2163 return os::Linux::page_size();
duke@435 2164 }
duke@435 2165
duke@435 2166 // Rationale behind this function:
duke@435 2167 // current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
duke@435 2168 // mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
duke@435 2169 // samples for JITted code. Here we create private executable mapping over the code cache
duke@435 2170 // and then we can use standard (well, almost, as mapping can change) way to provide
duke@435 2171 // info for the reporting script by storing timestamp and location of symbol
duke@435 2172 void linux_wrap_code(char* base, size_t size) {
duke@435 2173 static volatile jint cnt = 0;
duke@435 2174
duke@435 2175 if (!UseOprofile) {
duke@435 2176 return;
duke@435 2177 }
duke@435 2178
duke@435 2179 char buf[40];
duke@435 2180 int num = Atomic::add(1, &cnt);
duke@435 2181
duke@435 2182 sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
duke@435 2183 unlink(buf);
duke@435 2184
duke@435 2185 int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
duke@435 2186
duke@435 2187 if (fd != -1) {
duke@435 2188 off_t rv = lseek(fd, size-2, SEEK_SET);
duke@435 2189 if (rv != (off_t)-1) {
duke@435 2190 if (write(fd, "", 1) == 1) {
duke@435 2191 mmap(base, size,
duke@435 2192 PROT_READ|PROT_WRITE|PROT_EXEC,
duke@435 2193 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
duke@435 2194 }
duke@435 2195 }
duke@435 2196 close(fd);
duke@435 2197 unlink(buf);
duke@435 2198 }
duke@435 2199 }
duke@435 2200
duke@435 2201 // NOTE: Linux kernel does not really reserve the pages for us.
duke@435 2202 // All it does is to check if there are enough free pages
duke@435 2203 // left at the time of mmap(). This could be a potential
duke@435 2204 // problem.
duke@435 2205 bool os::commit_memory(char* addr, size_t size) {
duke@435 2206 uintptr_t res = (uintptr_t) ::mmap(addr, size,
duke@435 2207 PROT_READ|PROT_WRITE|PROT_EXEC,
duke@435 2208 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
duke@435 2209 return res != (uintptr_t) MAP_FAILED;
duke@435 2210 }
duke@435 2211
duke@435 2212 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
duke@435 2213 return commit_memory(addr, size);
duke@435 2214 }
duke@435 2215
duke@435 2216 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
duke@435 2217 void os::free_memory(char *addr, size_t bytes) { }
duke@435 2218 void os::numa_make_global(char *addr, size_t bytes) { }
duke@435 2219 void os::numa_make_local(char *addr, size_t bytes) { }
duke@435 2220 bool os::numa_topology_changed() { return false; }
duke@435 2221 size_t os::numa_get_groups_num() { return 1; }
duke@435 2222 int os::numa_get_group_id() { return 0; }
duke@435 2223 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
duke@435 2224 if (size > 0) {
duke@435 2225 ids[0] = 0;
duke@435 2226 return 1;
duke@435 2227 }
duke@435 2228 return 0;
duke@435 2229 }
duke@435 2230
duke@435 2231 bool os::get_page_info(char *start, page_info* info) {
duke@435 2232 return false;
duke@435 2233 }
duke@435 2234
duke@435 2235 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 2236 return end;
duke@435 2237 }
duke@435 2238
duke@435 2239 bool os::uncommit_memory(char* addr, size_t size) {
duke@435 2240 return ::mmap(addr, size,
duke@435 2241 PROT_READ|PROT_WRITE|PROT_EXEC,
duke@435 2242 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
duke@435 2243 != MAP_FAILED;
duke@435 2244 }
duke@435 2245
duke@435 2246 static address _highest_vm_reserved_address = NULL;
duke@435 2247
duke@435 2248 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
duke@435 2249 // at 'requested_addr'. If there are existing memory mappings at the same
duke@435 2250 // location, however, they will be overwritten. If 'fixed' is false,
duke@435 2251 // 'requested_addr' is only treated as a hint, the return value may or
duke@435 2252 // may not start from the requested address. Unlike Linux mmap(), this
duke@435 2253 // function returns NULL to indicate failure.
duke@435 2254 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
duke@435 2255 char * addr;
duke@435 2256 int flags;
duke@435 2257
duke@435 2258 flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
duke@435 2259 if (fixed) {
duke@435 2260 assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
duke@435 2261 flags |= MAP_FIXED;
duke@435 2262 }
duke@435 2263
duke@435 2264 addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE|PROT_EXEC,
duke@435 2265 flags, -1, 0);
duke@435 2266
duke@435 2267 if (addr != MAP_FAILED) {
duke@435 2268 // anon_mmap() should only get called during VM initialization,
duke@435 2269 // don't need lock (actually we can skip locking even it can be called
duke@435 2270 // from multiple threads, because _highest_vm_reserved_address is just a
duke@435 2271 // hint about the upper limit of non-stack memory regions.)
duke@435 2272 if ((address)addr + bytes > _highest_vm_reserved_address) {
duke@435 2273 _highest_vm_reserved_address = (address)addr + bytes;
duke@435 2274 }
duke@435 2275 }
duke@435 2276
duke@435 2277 return addr == MAP_FAILED ? NULL : addr;
duke@435 2278 }
duke@435 2279
duke@435 2280 // Don't update _highest_vm_reserved_address, because there might be memory
duke@435 2281 // regions above addr + size. If so, releasing a memory region only creates
duke@435 2282 // a hole in the address space, it doesn't help prevent heap-stack collision.
duke@435 2283 //
duke@435 2284 static int anon_munmap(char * addr, size_t size) {
duke@435 2285 return ::munmap(addr, size) == 0;
duke@435 2286 }
duke@435 2287
duke@435 2288 char* os::reserve_memory(size_t bytes, char* requested_addr,
duke@435 2289 size_t alignment_hint) {
duke@435 2290 return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
duke@435 2291 }
duke@435 2292
duke@435 2293 bool os::release_memory(char* addr, size_t size) {
duke@435 2294 return anon_munmap(addr, size);
duke@435 2295 }
duke@435 2296
duke@435 2297 static address highest_vm_reserved_address() {
duke@435 2298 return _highest_vm_reserved_address;
duke@435 2299 }
duke@435 2300
duke@435 2301 static bool linux_mprotect(char* addr, size_t size, int prot) {
duke@435 2302 // Linux wants the mprotect address argument to be page aligned.
duke@435 2303 char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
duke@435 2304
duke@435 2305 // According to SUSv3, mprotect() should only be used with mappings
duke@435 2306 // established by mmap(), and mmap() always maps whole pages. Unaligned
duke@435 2307 // 'addr' likely indicates problem in the VM (e.g. trying to change
duke@435 2308 // protection of malloc'ed or statically allocated memory). Check the
duke@435 2309 // caller if you hit this assert.
duke@435 2310 assert(addr == bottom, "sanity check");
duke@435 2311
duke@435 2312 size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
duke@435 2313 return ::mprotect(bottom, size, prot) == 0;
duke@435 2314 }
duke@435 2315
duke@435 2316 bool os::protect_memory(char* addr, size_t size) {
duke@435 2317 return linux_mprotect(addr, size, PROT_READ);
duke@435 2318 }
duke@435 2319
duke@435 2320 bool os::guard_memory(char* addr, size_t size) {
duke@435 2321 return linux_mprotect(addr, size, PROT_NONE);
duke@435 2322 }
duke@435 2323
duke@435 2324 bool os::unguard_memory(char* addr, size_t size) {
duke@435 2325 return linux_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
duke@435 2326 }
duke@435 2327
duke@435 2328 // Large page support
duke@435 2329
duke@435 2330 static size_t _large_page_size = 0;
duke@435 2331
duke@435 2332 bool os::large_page_init() {
duke@435 2333 if (!UseLargePages) return false;
duke@435 2334
duke@435 2335 if (LargePageSizeInBytes) {
duke@435 2336 _large_page_size = LargePageSizeInBytes;
duke@435 2337 } else {
duke@435 2338 // large_page_size on Linux is used to round up heap size. x86 uses either
duke@435 2339 // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
duke@435 2340 // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
duke@435 2341 // page as large as 256M.
duke@435 2342 //
duke@435 2343 // Here we try to figure out page size by parsing /proc/meminfo and looking
duke@435 2344 // for a line with the following format:
duke@435 2345 // Hugepagesize: 2048 kB
duke@435 2346 //
duke@435 2347 // If we can't determine the value (e.g. /proc is not mounted, or the text
duke@435 2348 // format has been changed), we'll use the largest page size supported by
duke@435 2349 // the processor.
duke@435 2350
duke@435 2351 _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
duke@435 2352
duke@435 2353 FILE *fp = fopen("/proc/meminfo", "r");
duke@435 2354 if (fp) {
duke@435 2355 while (!feof(fp)) {
duke@435 2356 int x = 0;
duke@435 2357 char buf[16];
duke@435 2358 if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
duke@435 2359 if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
duke@435 2360 _large_page_size = x * K;
duke@435 2361 break;
duke@435 2362 }
duke@435 2363 } else {
duke@435 2364 // skip to next line
duke@435 2365 for (;;) {
duke@435 2366 int ch = fgetc(fp);
duke@435 2367 if (ch == EOF || ch == (int)'\n') break;
duke@435 2368 }
duke@435 2369 }
duke@435 2370 }
duke@435 2371 fclose(fp);
duke@435 2372 }
duke@435 2373 }
duke@435 2374
duke@435 2375 const size_t default_page_size = (size_t)Linux::page_size();
duke@435 2376 if (_large_page_size > default_page_size) {
duke@435 2377 _page_sizes[0] = _large_page_size;
duke@435 2378 _page_sizes[1] = default_page_size;
duke@435 2379 _page_sizes[2] = 0;
duke@435 2380 }
duke@435 2381
duke@435 2382 // Large page support is available on 2.6 or newer kernel, some vendors
duke@435 2383 // (e.g. Redhat) have backported it to their 2.4 based distributions.
duke@435 2384 // We optimistically assume the support is available. If later it turns out
duke@435 2385 // not true, VM will automatically switch to use regular page size.
duke@435 2386 return true;
duke@435 2387 }
duke@435 2388
duke@435 2389 #ifndef SHM_HUGETLB
duke@435 2390 #define SHM_HUGETLB 04000
duke@435 2391 #endif
duke@435 2392
duke@435 2393 char* os::reserve_memory_special(size_t bytes) {
duke@435 2394 assert(UseLargePages, "only for large pages");
duke@435 2395
duke@435 2396 key_t key = IPC_PRIVATE;
duke@435 2397 char *addr;
duke@435 2398
duke@435 2399 bool warn_on_failure = UseLargePages &&
duke@435 2400 (!FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 2401 !FLAG_IS_DEFAULT(LargePageSizeInBytes)
duke@435 2402 );
duke@435 2403 char msg[128];
duke@435 2404
duke@435 2405 // Create a large shared memory region to attach to based on size.
duke@435 2406 // Currently, size is the total size of the heap
duke@435 2407 int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
duke@435 2408 if (shmid == -1) {
duke@435 2409 // Possible reasons for shmget failure:
duke@435 2410 // 1. shmmax is too small for Java heap.
duke@435 2411 // > check shmmax value: cat /proc/sys/kernel/shmmax
duke@435 2412 // > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
duke@435 2413 // 2. not enough large page memory.
duke@435 2414 // > check available large pages: cat /proc/meminfo
duke@435 2415 // > increase amount of large pages:
duke@435 2416 // echo new_value > /proc/sys/vm/nr_hugepages
duke@435 2417 // Note 1: different Linux may use different name for this property,
duke@435 2418 // e.g. on Redhat AS-3 it is "hugetlb_pool".
duke@435 2419 // Note 2: it's possible there's enough physical memory available but
duke@435 2420 // they are so fragmented after a long run that they can't
duke@435 2421 // coalesce into large pages. Try to reserve large pages when
duke@435 2422 // the system is still "fresh".
duke@435 2423 if (warn_on_failure) {
duke@435 2424 jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
duke@435 2425 warning(msg);
duke@435 2426 }
duke@435 2427 return NULL;
duke@435 2428 }
duke@435 2429
duke@435 2430 // attach to the region
duke@435 2431 addr = (char*)shmat(shmid, NULL, 0);
duke@435 2432 int err = errno;
duke@435 2433
duke@435 2434 // Remove shmid. If shmat() is successful, the actual shared memory segment
duke@435 2435 // will be deleted when it's detached by shmdt() or when the process
duke@435 2436 // terminates. If shmat() is not successful this will remove the shared
duke@435 2437 // segment immediately.
duke@435 2438 shmctl(shmid, IPC_RMID, NULL);
duke@435 2439
duke@435 2440 if ((intptr_t)addr == -1) {
duke@435 2441 if (warn_on_failure) {
duke@435 2442 jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
duke@435 2443 warning(msg);
duke@435 2444 }
duke@435 2445 return NULL;
duke@435 2446 }
duke@435 2447
duke@435 2448 return addr;
duke@435 2449 }
duke@435 2450
duke@435 2451 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 2452 // detaching the SHM segment will also delete it, see reserve_memory_special()
duke@435 2453 int rslt = shmdt(base);
duke@435 2454 return rslt == 0;
duke@435 2455 }
duke@435 2456
duke@435 2457 size_t os::large_page_size() {
duke@435 2458 return _large_page_size;
duke@435 2459 }
duke@435 2460
duke@435 2461 // Linux does not support anonymous mmap with large page memory. The only way
duke@435 2462 // to reserve large page memory without file backing is through SysV shared
duke@435 2463 // memory API. The entire memory region is committed and pinned upfront.
duke@435 2464 // Hopefully this will change in the future...
duke@435 2465 bool os::can_commit_large_page_memory() {
duke@435 2466 return false;
duke@435 2467 }
duke@435 2468
duke@435 2469 // Reserve memory at an arbitrary address, only if that area is
duke@435 2470 // available (and not reserved for something else).
duke@435 2471
duke@435 2472 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 2473 const int max_tries = 10;
duke@435 2474 char* base[max_tries];
duke@435 2475 size_t size[max_tries];
duke@435 2476 const size_t gap = 0x000000;
duke@435 2477
duke@435 2478 // Assert only that the size is a multiple of the page size, since
duke@435 2479 // that's all that mmap requires, and since that's all we really know
duke@435 2480 // about at this low abstraction level. If we need higher alignment,
duke@435 2481 // we can either pass an alignment to this method or verify alignment
duke@435 2482 // in one of the methods further up the call chain. See bug 5044738.
duke@435 2483 assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
duke@435 2484
duke@435 2485 // Repeatedly allocate blocks until the block is allocated at the
duke@435 2486 // right spot. Give up after max_tries. Note that reserve_memory() will
duke@435 2487 // automatically update _highest_vm_reserved_address if the call is
duke@435 2488 // successful. The variable tracks the highest memory address every reserved
duke@435 2489 // by JVM. It is used to detect heap-stack collision if running with
duke@435 2490 // fixed-stack LinuxThreads. Because here we may attempt to reserve more
duke@435 2491 // space than needed, it could confuse the collision detecting code. To
duke@435 2492 // solve the problem, save current _highest_vm_reserved_address and
duke@435 2493 // calculate the correct value before return.
duke@435 2494 address old_highest = _highest_vm_reserved_address;
duke@435 2495
duke@435 2496 // Linux mmap allows caller to pass an address as hint; give it a try first,
duke@435 2497 // if kernel honors the hint then we can return immediately.
duke@435 2498 char * addr = anon_mmap(requested_addr, bytes, false);
duke@435 2499 if (addr == requested_addr) {
duke@435 2500 return requested_addr;
duke@435 2501 }
duke@435 2502
duke@435 2503 if (addr != NULL) {
duke@435 2504 // mmap() is successful but it fails to reserve at the requested address
duke@435 2505 anon_munmap(addr, bytes);
duke@435 2506 }
duke@435 2507
duke@435 2508 int i;
duke@435 2509 for (i = 0; i < max_tries; ++i) {
duke@435 2510 base[i] = reserve_memory(bytes);
duke@435 2511
duke@435 2512 if (base[i] != NULL) {
duke@435 2513 // Is this the block we wanted?
duke@435 2514 if (base[i] == requested_addr) {
duke@435 2515 size[i] = bytes;
duke@435 2516 break;
duke@435 2517 }
duke@435 2518
duke@435 2519 // Does this overlap the block we wanted? Give back the overlapped
duke@435 2520 // parts and try again.
duke@435 2521
duke@435 2522 size_t top_overlap = requested_addr + (bytes + gap) - base[i];
duke@435 2523 if (top_overlap >= 0 && top_overlap < bytes) {
duke@435 2524 unmap_memory(base[i], top_overlap);
duke@435 2525 base[i] += top_overlap;
duke@435 2526 size[i] = bytes - top_overlap;
duke@435 2527 } else {
duke@435 2528 size_t bottom_overlap = base[i] + bytes - requested_addr;
duke@435 2529 if (bottom_overlap >= 0 && bottom_overlap < bytes) {
duke@435 2530 unmap_memory(requested_addr, bottom_overlap);
duke@435 2531 size[i] = bytes - bottom_overlap;
duke@435 2532 } else {
duke@435 2533 size[i] = bytes;
duke@435 2534 }
duke@435 2535 }
duke@435 2536 }
duke@435 2537 }
duke@435 2538
duke@435 2539 // Give back the unused reserved pieces.
duke@435 2540
duke@435 2541 for (int j = 0; j < i; ++j) {
duke@435 2542 if (base[j] != NULL) {
duke@435 2543 unmap_memory(base[j], size[j]);
duke@435 2544 }
duke@435 2545 }
duke@435 2546
duke@435 2547 if (i < max_tries) {
duke@435 2548 _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
duke@435 2549 return requested_addr;
duke@435 2550 } else {
duke@435 2551 _highest_vm_reserved_address = old_highest;
duke@435 2552 return NULL;
duke@435 2553 }
duke@435 2554 }
duke@435 2555
duke@435 2556 size_t os::read(int fd, void *buf, unsigned int nBytes) {
duke@435 2557 return ::read(fd, buf, nBytes);
duke@435 2558 }
duke@435 2559
duke@435 2560 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
duke@435 2561 // Solaris uses poll(), linux uses park().
duke@435 2562 // Poll() is likely a better choice, assuming that Thread.interrupt()
duke@435 2563 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
duke@435 2564 // SIGSEGV, see 4355769.
duke@435 2565
duke@435 2566 const int NANOSECS_PER_MILLISECS = 1000000;
duke@435 2567
duke@435 2568 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
duke@435 2569 assert(thread == Thread::current(), "thread consistency check");
duke@435 2570
duke@435 2571 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 2572 slp->reset() ;
duke@435 2573 OrderAccess::fence() ;
duke@435 2574
duke@435 2575 if (interruptible) {
duke@435 2576 jlong prevtime = javaTimeNanos();
duke@435 2577
duke@435 2578 for (;;) {
duke@435 2579 if (os::is_interrupted(thread, true)) {
duke@435 2580 return OS_INTRPT;
duke@435 2581 }
duke@435 2582
duke@435 2583 jlong newtime = javaTimeNanos();
duke@435 2584
duke@435 2585 if (newtime - prevtime < 0) {
duke@435 2586 // time moving backwards, should only happen if no monotonic clock
duke@435 2587 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 2588 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 2589 } else {
duke@435 2590 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 2591 }
duke@435 2592
duke@435 2593 if(millis <= 0) {
duke@435 2594 return OS_OK;
duke@435 2595 }
duke@435 2596
duke@435 2597 prevtime = newtime;
duke@435 2598
duke@435 2599 {
duke@435 2600 assert(thread->is_Java_thread(), "sanity check");
duke@435 2601 JavaThread *jt = (JavaThread *) thread;
duke@435 2602 ThreadBlockInVM tbivm(jt);
duke@435 2603 OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
duke@435 2604
duke@435 2605 jt->set_suspend_equivalent();
duke@435 2606 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 2607 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 2608
duke@435 2609 slp->park(millis);
duke@435 2610
duke@435 2611 // were we externally suspended while we were waiting?
duke@435 2612 jt->check_and_wait_while_suspended();
duke@435 2613 }
duke@435 2614 }
duke@435 2615 } else {
duke@435 2616 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 2617 jlong prevtime = javaTimeNanos();
duke@435 2618
duke@435 2619 for (;;) {
duke@435 2620 // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
duke@435 2621 // the 1st iteration ...
duke@435 2622 jlong newtime = javaTimeNanos();
duke@435 2623
duke@435 2624 if (newtime - prevtime < 0) {
duke@435 2625 // time moving backwards, should only happen if no monotonic clock
duke@435 2626 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 2627 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 2628 } else {
duke@435 2629 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 2630 }
duke@435 2631
duke@435 2632 if(millis <= 0) break ;
duke@435 2633
duke@435 2634 prevtime = newtime;
duke@435 2635 slp->park(millis);
duke@435 2636 }
duke@435 2637 return OS_OK ;
duke@435 2638 }
duke@435 2639 }
duke@435 2640
duke@435 2641 int os::naked_sleep() {
duke@435 2642 // %% make the sleep time an integer flag. for now use 1 millisec.
duke@435 2643 return os::sleep(Thread::current(), 1, false);
duke@435 2644 }
duke@435 2645
duke@435 2646 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 2647 void os::infinite_sleep() {
duke@435 2648 while (true) { // sleep forever ...
duke@435 2649 ::sleep(100); // ... 100 seconds at a time
duke@435 2650 }
duke@435 2651 }
duke@435 2652
duke@435 2653 // Used to convert frequent JVM_Yield() to nops
duke@435 2654 bool os::dont_yield() {
duke@435 2655 return DontYieldALot;
duke@435 2656 }
duke@435 2657
duke@435 2658 void os::yield() {
duke@435 2659 sched_yield();
duke@435 2660 }
duke@435 2661
duke@435 2662 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
duke@435 2663
duke@435 2664 void os::yield_all(int attempts) {
duke@435 2665 // Yields to all threads, including threads with lower priorities
duke@435 2666 // Threads on Linux are all with same priority. The Solaris style
duke@435 2667 // os::yield_all() with nanosleep(1ms) is not necessary.
duke@435 2668 sched_yield();
duke@435 2669 }
duke@435 2670
duke@435 2671 // Called from the tight loops to possibly influence time-sharing heuristics
duke@435 2672 void os::loop_breaker(int attempts) {
duke@435 2673 os::yield_all(attempts);
duke@435 2674 }
duke@435 2675
duke@435 2676 ////////////////////////////////////////////////////////////////////////////////
duke@435 2677 // thread priority support
duke@435 2678
duke@435 2679 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
duke@435 2680 // only supports dynamic priority, static priority must be zero. For real-time
duke@435 2681 // applications, Linux supports SCHED_RR which allows static priority (1-99).
duke@435 2682 // However, for large multi-threaded applications, SCHED_RR is not only slower
duke@435 2683 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
duke@435 2684 // of 5 runs - Sep 2005).
duke@435 2685 //
duke@435 2686 // The following code actually changes the niceness of kernel-thread/LWP. It
duke@435 2687 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
duke@435 2688 // not the entire user process, and user level threads are 1:1 mapped to kernel
duke@435 2689 // threads. It has always been the case, but could change in the future. For
duke@435 2690 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
duke@435 2691 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
duke@435 2692
duke@435 2693 int os::java_to_os_priority[MaxPriority + 1] = {
duke@435 2694 19, // 0 Entry should never be used
duke@435 2695
duke@435 2696 4, // 1 MinPriority
duke@435 2697 3, // 2
duke@435 2698 2, // 3
duke@435 2699
duke@435 2700 1, // 4
duke@435 2701 0, // 5 NormPriority
duke@435 2702 -1, // 6
duke@435 2703
duke@435 2704 -2, // 7
duke@435 2705 -3, // 8
duke@435 2706 -4, // 9 NearMaxPriority
duke@435 2707
duke@435 2708 -5 // 10 MaxPriority
duke@435 2709 };
duke@435 2710
duke@435 2711 static int prio_init() {
duke@435 2712 if (ThreadPriorityPolicy == 1) {
duke@435 2713 // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
duke@435 2714 // if effective uid is not root. Perhaps, a more elegant way of doing
duke@435 2715 // this is to test CAP_SYS_NICE capability, but that will require libcap.so
duke@435 2716 if (geteuid() != 0) {
duke@435 2717 if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
duke@435 2718 warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
duke@435 2719 }
duke@435 2720 ThreadPriorityPolicy = 0;
duke@435 2721 }
duke@435 2722 }
duke@435 2723 return 0;
duke@435 2724 }
duke@435 2725
duke@435 2726 OSReturn os::set_native_priority(Thread* thread, int newpri) {
duke@435 2727 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
duke@435 2728
duke@435 2729 int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
duke@435 2730 return (ret == 0) ? OS_OK : OS_ERR;
duke@435 2731 }
duke@435 2732
duke@435 2733 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
duke@435 2734 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
duke@435 2735 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 2736 return OS_OK;
duke@435 2737 }
duke@435 2738
duke@435 2739 errno = 0;
duke@435 2740 *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
duke@435 2741 return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
duke@435 2742 }
duke@435 2743
duke@435 2744 // Hint to the underlying OS that a task switch would not be good.
duke@435 2745 // Void return because it's a hint and can fail.
duke@435 2746 void os::hint_no_preempt() {}
duke@435 2747
duke@435 2748 ////////////////////////////////////////////////////////////////////////////////
duke@435 2749 // suspend/resume support
duke@435 2750
duke@435 2751 // the low-level signal-based suspend/resume support is a remnant from the
duke@435 2752 // old VM-suspension that used to be for java-suspension, safepoints etc,
duke@435 2753 // within hotspot. Now there is a single use-case for this:
duke@435 2754 // - calling get_thread_pc() on the VMThread by the flat-profiler task
duke@435 2755 // that runs in the watcher thread.
duke@435 2756 // The remaining code is greatly simplified from the more general suspension
duke@435 2757 // code that used to be used.
duke@435 2758 //
duke@435 2759 // The protocol is quite simple:
duke@435 2760 // - suspend:
duke@435 2761 // - sends a signal to the target thread
duke@435 2762 // - polls the suspend state of the osthread using a yield loop
duke@435 2763 // - target thread signal handler (SR_handler) sets suspend state
duke@435 2764 // and blocks in sigsuspend until continued
duke@435 2765 // - resume:
duke@435 2766 // - sets target osthread state to continue
duke@435 2767 // - sends signal to end the sigsuspend loop in the SR_handler
duke@435 2768 //
duke@435 2769 // Note that the SR_lock plays no role in this suspend/resume protocol.
duke@435 2770 //
duke@435 2771
duke@435 2772 static void resume_clear_context(OSThread *osthread) {
duke@435 2773 osthread->set_ucontext(NULL);
duke@435 2774 osthread->set_siginfo(NULL);
duke@435 2775
duke@435 2776 // notify the suspend action is completed, we have now resumed
duke@435 2777 osthread->sr.clear_suspended();
duke@435 2778 }
duke@435 2779
duke@435 2780 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
duke@435 2781 osthread->set_ucontext(context);
duke@435 2782 osthread->set_siginfo(siginfo);
duke@435 2783 }
duke@435 2784
duke@435 2785 //
duke@435 2786 // Handler function invoked when a thread's execution is suspended or
duke@435 2787 // resumed. We have to be careful that only async-safe functions are
duke@435 2788 // called here (Note: most pthread functions are not async safe and
duke@435 2789 // should be avoided.)
duke@435 2790 //
duke@435 2791 // Note: sigwait() is a more natural fit than sigsuspend() from an
duke@435 2792 // interface point of view, but sigwait() prevents the signal hander
duke@435 2793 // from being run. libpthread would get very confused by not having
duke@435 2794 // its signal handlers run and prevents sigwait()'s use with the
duke@435 2795 // mutex granting granting signal.
duke@435 2796 //
duke@435 2797 // Currently only ever called on the VMThread
duke@435 2798 //
duke@435 2799 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
duke@435 2800 // Save and restore errno to avoid confusing native code with EINTR
duke@435 2801 // after sigsuspend.
duke@435 2802 int old_errno = errno;
duke@435 2803
duke@435 2804 Thread* thread = Thread::current();
duke@435 2805 OSThread* osthread = thread->osthread();
duke@435 2806 assert(thread->is_VM_thread(), "Must be VMThread");
duke@435 2807 // read current suspend action
duke@435 2808 int action = osthread->sr.suspend_action();
duke@435 2809 if (action == SR_SUSPEND) {
duke@435 2810 suspend_save_context(osthread, siginfo, context);
duke@435 2811
duke@435 2812 // Notify the suspend action is about to be completed. do_suspend()
duke@435 2813 // waits until SR_SUSPENDED is set and then returns. We will wait
duke@435 2814 // here for a resume signal and that completes the suspend-other
duke@435 2815 // action. do_suspend/do_resume is always called as a pair from
duke@435 2816 // the same thread - so there are no races
duke@435 2817
duke@435 2818 // notify the caller
duke@435 2819 osthread->sr.set_suspended();
duke@435 2820
duke@435 2821 sigset_t suspend_set; // signals for sigsuspend()
duke@435 2822
duke@435 2823 // get current set of blocked signals and unblock resume signal
duke@435 2824 pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
duke@435 2825 sigdelset(&suspend_set, SR_signum);
duke@435 2826
duke@435 2827 // wait here until we are resumed
duke@435 2828 do {
duke@435 2829 sigsuspend(&suspend_set);
duke@435 2830 // ignore all returns until we get a resume signal
duke@435 2831 } while (osthread->sr.suspend_action() != SR_CONTINUE);
duke@435 2832
duke@435 2833 resume_clear_context(osthread);
duke@435 2834
duke@435 2835 } else {
duke@435 2836 assert(action == SR_CONTINUE, "unexpected sr action");
duke@435 2837 // nothing special to do - just leave the handler
duke@435 2838 }
duke@435 2839
duke@435 2840 errno = old_errno;
duke@435 2841 }
duke@435 2842
duke@435 2843
duke@435 2844 static int SR_initialize() {
duke@435 2845 struct sigaction act;
duke@435 2846 char *s;
duke@435 2847 /* Get signal number to use for suspend/resume */
duke@435 2848 if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
duke@435 2849 int sig = ::strtol(s, 0, 10);
duke@435 2850 if (sig > 0 || sig < _NSIG) {
duke@435 2851 SR_signum = sig;
duke@435 2852 }
duke@435 2853 }
duke@435 2854
duke@435 2855 assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
duke@435 2856 "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
duke@435 2857
duke@435 2858 sigemptyset(&SR_sigset);
duke@435 2859 sigaddset(&SR_sigset, SR_signum);
duke@435 2860
duke@435 2861 /* Set up signal handler for suspend/resume */
duke@435 2862 act.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 2863 act.sa_handler = (void (*)(int)) SR_handler;
duke@435 2864
duke@435 2865 // SR_signum is blocked by default.
duke@435 2866 // 4528190 - We also need to block pthread restart signal (32 on all
duke@435 2867 // supported Linux platforms). Note that LinuxThreads need to block
duke@435 2868 // this signal for all threads to work properly. So we don't have
duke@435 2869 // to use hard-coded signal number when setting up the mask.
duke@435 2870 pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
duke@435 2871
duke@435 2872 if (sigaction(SR_signum, &act, 0) == -1) {
duke@435 2873 return -1;
duke@435 2874 }
duke@435 2875
duke@435 2876 // Save signal flag
duke@435 2877 os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
duke@435 2878 return 0;
duke@435 2879 }
duke@435 2880
duke@435 2881 static int SR_finalize() {
duke@435 2882 return 0;
duke@435 2883 }
duke@435 2884
duke@435 2885
duke@435 2886 // returns true on success and false on error - really an error is fatal
duke@435 2887 // but this seems the normal response to library errors
duke@435 2888 static bool do_suspend(OSThread* osthread) {
duke@435 2889 // mark as suspended and send signal
duke@435 2890 osthread->sr.set_suspend_action(SR_SUSPEND);
duke@435 2891 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 2892 assert_status(status == 0, status, "pthread_kill");
duke@435 2893
duke@435 2894 // check status and wait until notified of suspension
duke@435 2895 if (status == 0) {
duke@435 2896 for (int i = 0; !osthread->sr.is_suspended(); i++) {
duke@435 2897 os::yield_all(i);
duke@435 2898 }
duke@435 2899 osthread->sr.set_suspend_action(SR_NONE);
duke@435 2900 return true;
duke@435 2901 }
duke@435 2902 else {
duke@435 2903 osthread->sr.set_suspend_action(SR_NONE);
duke@435 2904 return false;
duke@435 2905 }
duke@435 2906 }
duke@435 2907
duke@435 2908 static void do_resume(OSThread* osthread) {
duke@435 2909 assert(osthread->sr.is_suspended(), "thread should be suspended");
duke@435 2910 osthread->sr.set_suspend_action(SR_CONTINUE);
duke@435 2911
duke@435 2912 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 2913 assert_status(status == 0, status, "pthread_kill");
duke@435 2914 // check status and wait unit notified of resumption
duke@435 2915 if (status == 0) {
duke@435 2916 for (int i = 0; osthread->sr.is_suspended(); i++) {
duke@435 2917 os::yield_all(i);
duke@435 2918 }
duke@435 2919 }
duke@435 2920 osthread->sr.set_suspend_action(SR_NONE);
duke@435 2921 }
duke@435 2922
duke@435 2923 ////////////////////////////////////////////////////////////////////////////////
duke@435 2924 // interrupt support
duke@435 2925
duke@435 2926 void os::interrupt(Thread* thread) {
duke@435 2927 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 2928 "possibility of dangling Thread pointer");
duke@435 2929
duke@435 2930 OSThread* osthread = thread->osthread();
duke@435 2931
duke@435 2932 if (!osthread->interrupted()) {
duke@435 2933 osthread->set_interrupted(true);
duke@435 2934 // More than one thread can get here with the same value of osthread,
duke@435 2935 // resulting in multiple notifications. We do, however, want the store
duke@435 2936 // to interrupted() to be visible to other threads before we execute unpark().
duke@435 2937 OrderAccess::fence();
duke@435 2938 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 2939 if (slp != NULL) slp->unpark() ;
duke@435 2940 }
duke@435 2941
duke@435 2942 // For JSR166. Unpark even if interrupt status already was set
duke@435 2943 if (thread->is_Java_thread())
duke@435 2944 ((JavaThread*)thread)->parker()->unpark();
duke@435 2945
duke@435 2946 ParkEvent * ev = thread->_ParkEvent ;
duke@435 2947 if (ev != NULL) ev->unpark() ;
duke@435 2948
duke@435 2949 }
duke@435 2950
duke@435 2951 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 2952 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 2953 "possibility of dangling Thread pointer");
duke@435 2954
duke@435 2955 OSThread* osthread = thread->osthread();
duke@435 2956
duke@435 2957 bool interrupted = osthread->interrupted();
duke@435 2958
duke@435 2959 if (interrupted && clear_interrupted) {
duke@435 2960 osthread->set_interrupted(false);
duke@435 2961 // consider thread->_SleepEvent->reset() ... optional optimization
duke@435 2962 }
duke@435 2963
duke@435 2964 return interrupted;
duke@435 2965 }
duke@435 2966
duke@435 2967 ///////////////////////////////////////////////////////////////////////////////////
duke@435 2968 // signal handling (except suspend/resume)
duke@435 2969
duke@435 2970 // This routine may be used by user applications as a "hook" to catch signals.
duke@435 2971 // The user-defined signal handler must pass unrecognized signals to this
duke@435 2972 // routine, and if it returns true (non-zero), then the signal handler must
duke@435 2973 // return immediately. If the flag "abort_if_unrecognized" is true, then this
duke@435 2974 // routine will never retun false (zero), but instead will execute a VM panic
duke@435 2975 // routine kill the process.
duke@435 2976 //
duke@435 2977 // If this routine returns false, it is OK to call it again. This allows
duke@435 2978 // the user-defined signal handler to perform checks either before or after
duke@435 2979 // the VM performs its own checks. Naturally, the user code would be making
duke@435 2980 // a serious error if it tried to handle an exception (such as a null check
duke@435 2981 // or breakpoint) that the VM was generating for its own correct operation.
duke@435 2982 //
duke@435 2983 // This routine may recognize any of the following kinds of signals:
duke@435 2984 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
duke@435 2985 // It should be consulted by handlers for any of those signals.
duke@435 2986 //
duke@435 2987 // The caller of this routine must pass in the three arguments supplied
duke@435 2988 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
duke@435 2989 // field of the structure passed to sigaction(). This routine assumes that
duke@435 2990 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
duke@435 2991 //
duke@435 2992 // Note that the VM will print warnings if it detects conflicting signal
duke@435 2993 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
duke@435 2994 //
duke@435 2995 extern "C" int
duke@435 2996 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
duke@435 2997 void* ucontext, int abort_if_unrecognized);
duke@435 2998
duke@435 2999 void signalHandler(int sig, siginfo_t* info, void* uc) {
duke@435 3000 assert(info != NULL && uc != NULL, "it must be old kernel");
duke@435 3001 JVM_handle_linux_signal(sig, info, uc, true);
duke@435 3002 }
duke@435 3003
duke@435 3004
duke@435 3005 // This boolean allows users to forward their own non-matching signals
duke@435 3006 // to JVM_handle_linux_signal, harmlessly.
duke@435 3007 bool os::Linux::signal_handlers_are_installed = false;
duke@435 3008
duke@435 3009 // For signal-chaining
duke@435 3010 struct sigaction os::Linux::sigact[MAXSIGNUM];
duke@435 3011 unsigned int os::Linux::sigs = 0;
duke@435 3012 bool os::Linux::libjsig_is_loaded = false;
duke@435 3013 typedef struct sigaction *(*get_signal_t)(int);
duke@435 3014 get_signal_t os::Linux::get_signal_action = NULL;
duke@435 3015
duke@435 3016 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
duke@435 3017 struct sigaction *actp = NULL;
duke@435 3018
duke@435 3019 if (libjsig_is_loaded) {
duke@435 3020 // Retrieve the old signal handler from libjsig
duke@435 3021 actp = (*get_signal_action)(sig);
duke@435 3022 }
duke@435 3023 if (actp == NULL) {
duke@435 3024 // Retrieve the preinstalled signal handler from jvm
duke@435 3025 actp = get_preinstalled_handler(sig);
duke@435 3026 }
duke@435 3027
duke@435 3028 return actp;
duke@435 3029 }
duke@435 3030
duke@435 3031 static bool call_chained_handler(struct sigaction *actp, int sig,
duke@435 3032 siginfo_t *siginfo, void *context) {
duke@435 3033 // Call the old signal handler
duke@435 3034 if (actp->sa_handler == SIG_DFL) {
duke@435 3035 // It's more reasonable to let jvm treat it as an unexpected exception
duke@435 3036 // instead of taking the default action.
duke@435 3037 return false;
duke@435 3038 } else if (actp->sa_handler != SIG_IGN) {
duke@435 3039 if ((actp->sa_flags & SA_NODEFER) == 0) {
duke@435 3040 // automaticlly block the signal
duke@435 3041 sigaddset(&(actp->sa_mask), sig);
duke@435 3042 }
duke@435 3043
duke@435 3044 sa_handler_t hand;
duke@435 3045 sa_sigaction_t sa;
duke@435 3046 bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
duke@435 3047 // retrieve the chained handler
duke@435 3048 if (siginfo_flag_set) {
duke@435 3049 sa = actp->sa_sigaction;
duke@435 3050 } else {
duke@435 3051 hand = actp->sa_handler;
duke@435 3052 }
duke@435 3053
duke@435 3054 if ((actp->sa_flags & SA_RESETHAND) != 0) {
duke@435 3055 actp->sa_handler = SIG_DFL;
duke@435 3056 }
duke@435 3057
duke@435 3058 // try to honor the signal mask
duke@435 3059 sigset_t oset;
duke@435 3060 pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
duke@435 3061
duke@435 3062 // call into the chained handler
duke@435 3063 if (siginfo_flag_set) {
duke@435 3064 (*sa)(sig, siginfo, context);
duke@435 3065 } else {
duke@435 3066 (*hand)(sig);
duke@435 3067 }
duke@435 3068
duke@435 3069 // restore the signal mask
duke@435 3070 pthread_sigmask(SIG_SETMASK, &oset, 0);
duke@435 3071 }
duke@435 3072 // Tell jvm's signal handler the signal is taken care of.
duke@435 3073 return true;
duke@435 3074 }
duke@435 3075
duke@435 3076 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
duke@435 3077 bool chained = false;
duke@435 3078 // signal-chaining
duke@435 3079 if (UseSignalChaining) {
duke@435 3080 struct sigaction *actp = get_chained_signal_action(sig);
duke@435 3081 if (actp != NULL) {
duke@435 3082 chained = call_chained_handler(actp, sig, siginfo, context);
duke@435 3083 }
duke@435 3084 }
duke@435 3085 return chained;
duke@435 3086 }
duke@435 3087
duke@435 3088 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
duke@435 3089 if ((( (unsigned int)1 << sig ) & sigs) != 0) {
duke@435 3090 return &sigact[sig];
duke@435 3091 }
duke@435 3092 return NULL;
duke@435 3093 }
duke@435 3094
duke@435 3095 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
duke@435 3096 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3097 sigact[sig] = oldAct;
duke@435 3098 sigs |= (unsigned int)1 << sig;
duke@435 3099 }
duke@435 3100
duke@435 3101 // for diagnostic
duke@435 3102 int os::Linux::sigflags[MAXSIGNUM];
duke@435 3103
duke@435 3104 int os::Linux::get_our_sigflags(int sig) {
duke@435 3105 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3106 return sigflags[sig];
duke@435 3107 }
duke@435 3108
duke@435 3109 void os::Linux::set_our_sigflags(int sig, int flags) {
duke@435 3110 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3111 sigflags[sig] = flags;
duke@435 3112 }
duke@435 3113
duke@435 3114 void os::Linux::set_signal_handler(int sig, bool set_installed) {
duke@435 3115 // Check for overwrite.
duke@435 3116 struct sigaction oldAct;
duke@435 3117 sigaction(sig, (struct sigaction*)NULL, &oldAct);
duke@435 3118
duke@435 3119 void* oldhand = oldAct.sa_sigaction
duke@435 3120 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3121 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3122 if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
duke@435 3123 oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
duke@435 3124 oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
duke@435 3125 if (AllowUserSignalHandlers || !set_installed) {
duke@435 3126 // Do not overwrite; user takes responsibility to forward to us.
duke@435 3127 return;
duke@435 3128 } else if (UseSignalChaining) {
duke@435 3129 // save the old handler in jvm
duke@435 3130 save_preinstalled_handler(sig, oldAct);
duke@435 3131 // libjsig also interposes the sigaction() call below and saves the
duke@435 3132 // old sigaction on it own.
duke@435 3133 } else {
duke@435 3134 fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
duke@435 3135 }
duke@435 3136 }
duke@435 3137
duke@435 3138 struct sigaction sigAct;
duke@435 3139 sigfillset(&(sigAct.sa_mask));
duke@435 3140 sigAct.sa_handler = SIG_DFL;
duke@435 3141 if (!set_installed) {
duke@435 3142 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3143 } else {
duke@435 3144 sigAct.sa_sigaction = signalHandler;
duke@435 3145 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3146 }
duke@435 3147 // Save flags, which are set by ours
duke@435 3148 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3149 sigflags[sig] = sigAct.sa_flags;
duke@435 3150
duke@435 3151 int ret = sigaction(sig, &sigAct, &oldAct);
duke@435 3152 assert(ret == 0, "check");
duke@435 3153
duke@435 3154 void* oldhand2 = oldAct.sa_sigaction
duke@435 3155 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3156 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3157 assert(oldhand2 == oldhand, "no concurrent signal handler installation");
duke@435 3158 }
duke@435 3159
duke@435 3160 // install signal handlers for signals that HotSpot needs to
duke@435 3161 // handle in order to support Java-level exception handling.
duke@435 3162
duke@435 3163 void os::Linux::install_signal_handlers() {
duke@435 3164 if (!signal_handlers_are_installed) {
duke@435 3165 signal_handlers_are_installed = true;
duke@435 3166
duke@435 3167 // signal-chaining
duke@435 3168 typedef void (*signal_setting_t)();
duke@435 3169 signal_setting_t begin_signal_setting = NULL;
duke@435 3170 signal_setting_t end_signal_setting = NULL;
duke@435 3171 begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3172 dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
duke@435 3173 if (begin_signal_setting != NULL) {
duke@435 3174 end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3175 dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
duke@435 3176 get_signal_action = CAST_TO_FN_PTR(get_signal_t,
duke@435 3177 dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
duke@435 3178 libjsig_is_loaded = true;
duke@435 3179 assert(UseSignalChaining, "should enable signal-chaining");
duke@435 3180 }
duke@435 3181 if (libjsig_is_loaded) {
duke@435 3182 // Tell libjsig jvm is setting signal handlers
duke@435 3183 (*begin_signal_setting)();
duke@435 3184 }
duke@435 3185
duke@435 3186 set_signal_handler(SIGSEGV, true);
duke@435 3187 set_signal_handler(SIGPIPE, true);
duke@435 3188 set_signal_handler(SIGBUS, true);
duke@435 3189 set_signal_handler(SIGILL, true);
duke@435 3190 set_signal_handler(SIGFPE, true);
duke@435 3191 set_signal_handler(SIGXFSZ, true);
duke@435 3192
duke@435 3193 if (libjsig_is_loaded) {
duke@435 3194 // Tell libjsig jvm finishes setting signal handlers
duke@435 3195 (*end_signal_setting)();
duke@435 3196 }
duke@435 3197
duke@435 3198 // We don't activate signal checker if libjsig is in place, we trust ourselves
duke@435 3199 // and if UserSignalHandler is installed all bets are off
duke@435 3200 if (CheckJNICalls) {
duke@435 3201 if (libjsig_is_loaded) {
duke@435 3202 tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
duke@435 3203 check_signals = false;
duke@435 3204 }
duke@435 3205 if (AllowUserSignalHandlers) {
duke@435 3206 tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
duke@435 3207 check_signals = false;
duke@435 3208 }
duke@435 3209 }
duke@435 3210 }
duke@435 3211 }
duke@435 3212
duke@435 3213 // This is the fastest way to get thread cpu time on Linux.
duke@435 3214 // Returns cpu time (user+sys) for any thread, not only for current.
duke@435 3215 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
duke@435 3216 // It might work on 2.6.10+ with a special kernel/glibc patch.
duke@435 3217 // For reference, please, see IEEE Std 1003.1-2004:
duke@435 3218 // http://www.unix.org/single_unix_specification
duke@435 3219
duke@435 3220 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
duke@435 3221 struct timespec tp;
duke@435 3222 int rc = os::Linux::clock_gettime(clockid, &tp);
duke@435 3223 assert(rc == 0, "clock_gettime is expected to return 0 code");
duke@435 3224
duke@435 3225 return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
duke@435 3226 }
duke@435 3227
duke@435 3228 /////
duke@435 3229 // glibc on Linux platform uses non-documented flag
duke@435 3230 // to indicate, that some special sort of signal
duke@435 3231 // trampoline is used.
duke@435 3232 // We will never set this flag, and we should
duke@435 3233 // ignore this flag in our diagnostic
duke@435 3234 #ifdef SIGNIFICANT_SIGNAL_MASK
duke@435 3235 #undef SIGNIFICANT_SIGNAL_MASK
duke@435 3236 #endif
duke@435 3237 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
duke@435 3238
duke@435 3239 static const char* get_signal_handler_name(address handler,
duke@435 3240 char* buf, int buflen) {
duke@435 3241 int offset;
duke@435 3242 bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
duke@435 3243 if (found) {
duke@435 3244 // skip directory names
duke@435 3245 const char *p1, *p2;
duke@435 3246 p1 = buf;
duke@435 3247 size_t len = strlen(os::file_separator());
duke@435 3248 while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
duke@435 3249 jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
duke@435 3250 } else {
duke@435 3251 jio_snprintf(buf, buflen, PTR_FORMAT, handler);
duke@435 3252 }
duke@435 3253 return buf;
duke@435 3254 }
duke@435 3255
duke@435 3256 static void print_signal_handler(outputStream* st, int sig,
duke@435 3257 char* buf, size_t buflen) {
duke@435 3258 struct sigaction sa;
duke@435 3259
duke@435 3260 sigaction(sig, NULL, &sa);
duke@435 3261
duke@435 3262 // See comment for SIGNIFICANT_SIGNAL_MASK define
duke@435 3263 sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3264
duke@435 3265 st->print("%s: ", os::exception_name(sig, buf, buflen));
duke@435 3266
duke@435 3267 address handler = (sa.sa_flags & SA_SIGINFO)
duke@435 3268 ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
duke@435 3269 : CAST_FROM_FN_PTR(address, sa.sa_handler);
duke@435 3270
duke@435 3271 if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
duke@435 3272 st->print("SIG_DFL");
duke@435 3273 } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
duke@435 3274 st->print("SIG_IGN");
duke@435 3275 } else {
duke@435 3276 st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
duke@435 3277 }
duke@435 3278
duke@435 3279 st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
duke@435 3280
duke@435 3281 address rh = VMError::get_resetted_sighandler(sig);
duke@435 3282 // May be, handler was resetted by VMError?
duke@435 3283 if(rh != NULL) {
duke@435 3284 handler = rh;
duke@435 3285 sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
duke@435 3286 }
duke@435 3287
duke@435 3288 st->print(", sa_flags=" PTR32_FORMAT, sa.sa_flags);
duke@435 3289
duke@435 3290 // Check: is it our handler?
duke@435 3291 if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
duke@435 3292 handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
duke@435 3293 // It is our signal handler
duke@435 3294 // check for flags, reset system-used one!
duke@435 3295 if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 3296 st->print(
duke@435 3297 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
duke@435 3298 os::Linux::get_our_sigflags(sig));
duke@435 3299 }
duke@435 3300 }
duke@435 3301 st->cr();
duke@435 3302 }
duke@435 3303
duke@435 3304
duke@435 3305 #define DO_SIGNAL_CHECK(sig) \
duke@435 3306 if (!sigismember(&check_signal_done, sig)) \
duke@435 3307 os::Linux::check_signal_handler(sig)
duke@435 3308
duke@435 3309 // This method is a periodic task to check for misbehaving JNI applications
duke@435 3310 // under CheckJNI, we can add any periodic checks here
duke@435 3311
duke@435 3312 void os::run_periodic_checks() {
duke@435 3313
duke@435 3314 if (check_signals == false) return;
duke@435 3315
duke@435 3316 // SEGV and BUS if overridden could potentially prevent
duke@435 3317 // generation of hs*.log in the event of a crash, debugging
duke@435 3318 // such a case can be very challenging, so we absolutely
duke@435 3319 // check the following for a good measure:
duke@435 3320 DO_SIGNAL_CHECK(SIGSEGV);
duke@435 3321 DO_SIGNAL_CHECK(SIGILL);
duke@435 3322 DO_SIGNAL_CHECK(SIGFPE);
duke@435 3323 DO_SIGNAL_CHECK(SIGBUS);
duke@435 3324 DO_SIGNAL_CHECK(SIGPIPE);
duke@435 3325 DO_SIGNAL_CHECK(SIGXFSZ);
duke@435 3326
duke@435 3327
duke@435 3328 // ReduceSignalUsage allows the user to override these handlers
duke@435 3329 // see comments at the very top and jvm_solaris.h
duke@435 3330 if (!ReduceSignalUsage) {
duke@435 3331 DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
duke@435 3332 DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
duke@435 3333 DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
duke@435 3334 DO_SIGNAL_CHECK(BREAK_SIGNAL);
duke@435 3335 }
duke@435 3336
duke@435 3337 DO_SIGNAL_CHECK(SR_signum);
duke@435 3338 DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
duke@435 3339 }
duke@435 3340
duke@435 3341 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
duke@435 3342
duke@435 3343 static os_sigaction_t os_sigaction = NULL;
duke@435 3344
duke@435 3345 void os::Linux::check_signal_handler(int sig) {
duke@435 3346 char buf[O_BUFLEN];
duke@435 3347 address jvmHandler = NULL;
duke@435 3348
duke@435 3349
duke@435 3350 struct sigaction act;
duke@435 3351 if (os_sigaction == NULL) {
duke@435 3352 // only trust the default sigaction, in case it has been interposed
duke@435 3353 os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
duke@435 3354 if (os_sigaction == NULL) return;
duke@435 3355 }
duke@435 3356
duke@435 3357 os_sigaction(sig, (struct sigaction*)NULL, &act);
duke@435 3358
duke@435 3359
duke@435 3360 act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3361
duke@435 3362 address thisHandler = (act.sa_flags & SA_SIGINFO)
duke@435 3363 ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
duke@435 3364 : CAST_FROM_FN_PTR(address, act.sa_handler) ;
duke@435 3365
duke@435 3366
duke@435 3367 switch(sig) {
duke@435 3368 case SIGSEGV:
duke@435 3369 case SIGBUS:
duke@435 3370 case SIGFPE:
duke@435 3371 case SIGPIPE:
duke@435 3372 case SIGILL:
duke@435 3373 case SIGXFSZ:
duke@435 3374 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
duke@435 3375 break;
duke@435 3376
duke@435 3377 case SHUTDOWN1_SIGNAL:
duke@435 3378 case SHUTDOWN2_SIGNAL:
duke@435 3379 case SHUTDOWN3_SIGNAL:
duke@435 3380 case BREAK_SIGNAL:
duke@435 3381 jvmHandler = (address)user_handler();
duke@435 3382 break;
duke@435 3383
duke@435 3384 case INTERRUPT_SIGNAL:
duke@435 3385 jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
duke@435 3386 break;
duke@435 3387
duke@435 3388 default:
duke@435 3389 if (sig == SR_signum) {
duke@435 3390 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
duke@435 3391 } else {
duke@435 3392 return;
duke@435 3393 }
duke@435 3394 break;
duke@435 3395 }
duke@435 3396
duke@435 3397 if (thisHandler != jvmHandler) {
duke@435 3398 tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
duke@435 3399 tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
duke@435 3400 tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
duke@435 3401 // No need to check this sig any longer
duke@435 3402 sigaddset(&check_signal_done, sig);
duke@435 3403 } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 3404 tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
duke@435 3405 tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
duke@435 3406 tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
duke@435 3407 // No need to check this sig any longer
duke@435 3408 sigaddset(&check_signal_done, sig);
duke@435 3409 }
duke@435 3410
duke@435 3411 // Dump all the signal
duke@435 3412 if (sigismember(&check_signal_done, sig)) {
duke@435 3413 print_signal_handlers(tty, buf, O_BUFLEN);
duke@435 3414 }
duke@435 3415 }
duke@435 3416
duke@435 3417 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
duke@435 3418
duke@435 3419 extern bool signal_name(int signo, char* buf, size_t len);
duke@435 3420
duke@435 3421 const char* os::exception_name(int exception_code, char* buf, size_t size) {
duke@435 3422 if (0 < exception_code && exception_code <= SIGRTMAX) {
duke@435 3423 // signal
duke@435 3424 if (!signal_name(exception_code, buf, size)) {
duke@435 3425 jio_snprintf(buf, size, "SIG%d", exception_code);
duke@435 3426 }
duke@435 3427 return buf;
duke@435 3428 } else {
duke@435 3429 return NULL;
duke@435 3430 }
duke@435 3431 }
duke@435 3432
duke@435 3433 // this is called _before_ the most of global arguments have been parsed
duke@435 3434 void os::init(void) {
duke@435 3435 char dummy; /* used to get a guess on initial stack address */
duke@435 3436 // first_hrtime = gethrtime();
duke@435 3437
duke@435 3438 // With LinuxThreads the JavaMain thread pid (primordial thread)
duke@435 3439 // is different than the pid of the java launcher thread.
duke@435 3440 // So, on Linux, the launcher thread pid is passed to the VM
duke@435 3441 // via the sun.java.launcher.pid property.
duke@435 3442 // Use this property instead of getpid() if it was correctly passed.
duke@435 3443 // See bug 6351349.
duke@435 3444 pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
duke@435 3445
duke@435 3446 _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
duke@435 3447
duke@435 3448 clock_tics_per_sec = sysconf(_SC_CLK_TCK);
duke@435 3449
duke@435 3450 init_random(1234567);
duke@435 3451
duke@435 3452 ThreadCritical::initialize();
duke@435 3453
duke@435 3454 Linux::set_page_size(sysconf(_SC_PAGESIZE));
duke@435 3455 if (Linux::page_size() == -1) {
duke@435 3456 fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
duke@435 3457 }
duke@435 3458 init_page_sizes((size_t) Linux::page_size());
duke@435 3459
duke@435 3460 Linux::initialize_system_info();
duke@435 3461
duke@435 3462 // main_thread points to the aboriginal thread
duke@435 3463 Linux::_main_thread = pthread_self();
duke@435 3464
duke@435 3465 Linux::clock_init();
duke@435 3466 initial_time_count = os::elapsed_counter();
duke@435 3467 }
duke@435 3468
duke@435 3469 // To install functions for atexit system call
duke@435 3470 extern "C" {
duke@435 3471 static void perfMemory_exit_helper() {
duke@435 3472 perfMemory_exit();
duke@435 3473 }
duke@435 3474 }
duke@435 3475
duke@435 3476 // this is called _after_ the global arguments have been parsed
duke@435 3477 jint os::init_2(void)
duke@435 3478 {
duke@435 3479 Linux::fast_thread_clock_init();
duke@435 3480
duke@435 3481 // Allocate a single page and mark it as readable for safepoint polling
duke@435 3482 address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 3483 guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
duke@435 3484
duke@435 3485 os::set_polling_page( polling_page );
duke@435 3486
duke@435 3487 #ifndef PRODUCT
duke@435 3488 if(Verbose && PrintMiscellaneous)
duke@435 3489 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 3490 #endif
duke@435 3491
duke@435 3492 if (!UseMembar) {
duke@435 3493 address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 3494 guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
duke@435 3495 os::set_memory_serialize_page( mem_serialize_page );
duke@435 3496
duke@435 3497 #ifndef PRODUCT
duke@435 3498 if(Verbose && PrintMiscellaneous)
duke@435 3499 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 3500 #endif
duke@435 3501 }
duke@435 3502
duke@435 3503 FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
duke@435 3504
duke@435 3505 // initialize suspend/resume support - must do this before signal_sets_init()
duke@435 3506 if (SR_initialize() != 0) {
duke@435 3507 perror("SR_initialize failed");
duke@435 3508 return JNI_ERR;
duke@435 3509 }
duke@435 3510
duke@435 3511 Linux::signal_sets_init();
duke@435 3512 Linux::install_signal_handlers();
duke@435 3513
duke@435 3514 size_t threadStackSizeInBytes = ThreadStackSize * K;
duke@435 3515 if (threadStackSizeInBytes != 0 &&
duke@435 3516 threadStackSizeInBytes < Linux::min_stack_allowed) {
duke@435 3517 tty->print_cr("\nThe stack size specified is too small, "
duke@435 3518 "Specify at least %dk",
duke@435 3519 Linux::min_stack_allowed / K);
duke@435 3520 return JNI_ERR;
duke@435 3521 }
duke@435 3522
duke@435 3523 // Make the stack size a multiple of the page size so that
duke@435 3524 // the yellow/red zones can be guarded.
duke@435 3525 JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
duke@435 3526 vm_page_size()));
duke@435 3527
duke@435 3528 Linux::capture_initial_stack(JavaThread::stack_size_at_create());
duke@435 3529
duke@435 3530 Linux::libpthread_init();
duke@435 3531 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 3532 tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
duke@435 3533 Linux::glibc_version(), Linux::libpthread_version(),
duke@435 3534 Linux::is_floating_stack() ? "floating stack" : "fixed stack");
duke@435 3535 }
duke@435 3536
duke@435 3537 if (MaxFDLimit) {
duke@435 3538 // set the number of file descriptors to max. print out error
duke@435 3539 // if getrlimit/setrlimit fails but continue regardless.
duke@435 3540 struct rlimit nbr_files;
duke@435 3541 int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 3542 if (status != 0) {
duke@435 3543 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 3544 perror("os::init_2 getrlimit failed");
duke@435 3545 } else {
duke@435 3546 nbr_files.rlim_cur = nbr_files.rlim_max;
duke@435 3547 status = setrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 3548 if (status != 0) {
duke@435 3549 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 3550 perror("os::init_2 setrlimit failed");
duke@435 3551 }
duke@435 3552 }
duke@435 3553 }
duke@435 3554
duke@435 3555 // Initialize lock used to serialize thread creation (see os::create_thread)
duke@435 3556 Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
duke@435 3557
duke@435 3558 // Initialize HPI.
duke@435 3559 jint hpi_result = hpi::initialize();
duke@435 3560 if (hpi_result != JNI_OK) {
duke@435 3561 tty->print_cr("There was an error trying to initialize the HPI library.");
duke@435 3562 return hpi_result;
duke@435 3563 }
duke@435 3564
duke@435 3565 // at-exit methods are called in the reverse order of their registration.
duke@435 3566 // atexit functions are called on return from main or as a result of a
duke@435 3567 // call to exit(3C). There can be only 32 of these functions registered
duke@435 3568 // and atexit() does not set errno.
duke@435 3569
duke@435 3570 if (PerfAllowAtExitRegistration) {
duke@435 3571 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 3572 // atexit functions can be delayed until process exit time, which
duke@435 3573 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 3574 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 3575
duke@435 3576 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 3577 // the future if the appropriate cleanup code can be added to the
duke@435 3578 // VM_Exit VMOperation's doit method.
duke@435 3579 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 3580 warning("os::init2 atexit(perfMemory_exit_helper) failed");
duke@435 3581 }
duke@435 3582 }
duke@435 3583
duke@435 3584 // initialize thread priority policy
duke@435 3585 prio_init();
duke@435 3586
duke@435 3587 return JNI_OK;
duke@435 3588 }
duke@435 3589
duke@435 3590 // Mark the polling page as unreadable
duke@435 3591 void os::make_polling_page_unreadable(void) {
duke@435 3592 if( !guard_memory((char*)_polling_page, Linux::page_size()) )
duke@435 3593 fatal("Could not disable polling page");
duke@435 3594 };
duke@435 3595
duke@435 3596 // Mark the polling page as readable
duke@435 3597 void os::make_polling_page_readable(void) {
duke@435 3598 if( !protect_memory((char *)_polling_page, Linux::page_size()) )
duke@435 3599 fatal("Could not enable polling page");
duke@435 3600 };
duke@435 3601
duke@435 3602 int os::active_processor_count() {
duke@435 3603 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 3604 // so just return the number of online processors.
duke@435 3605 int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
duke@435 3606 assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
duke@435 3607 return online_cpus;
duke@435 3608 }
duke@435 3609
duke@435 3610 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 3611 // Not yet implemented.
duke@435 3612 return false;
duke@435 3613 }
duke@435 3614
duke@435 3615 bool os::bind_to_processor(uint processor_id) {
duke@435 3616 // Not yet implemented.
duke@435 3617 return false;
duke@435 3618 }
duke@435 3619
duke@435 3620 ///
duke@435 3621
duke@435 3622 // Suspends the target using the signal mechanism and then grabs the PC before
duke@435 3623 // resuming the target. Used by the flat-profiler only
duke@435 3624 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 3625 // Make sure that it is called by the watcher for the VMThread
duke@435 3626 assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
duke@435 3627 assert(thread->is_VM_thread(), "Can only be called for VMThread");
duke@435 3628
duke@435 3629 ExtendedPC epc;
duke@435 3630
duke@435 3631 OSThread* osthread = thread->osthread();
duke@435 3632 if (do_suspend(osthread)) {
duke@435 3633 if (osthread->ucontext() != NULL) {
duke@435 3634 epc = os::Linux::ucontext_get_pc(osthread->ucontext());
duke@435 3635 } else {
duke@435 3636 // NULL context is unexpected, double-check this is the VMThread
duke@435 3637 guarantee(thread->is_VM_thread(), "can only be called for VMThread");
duke@435 3638 }
duke@435 3639 do_resume(osthread);
duke@435 3640 }
duke@435 3641 // failure means pthread_kill failed for some reason - arguably this is
duke@435 3642 // a fatal problem, but such problems are ignored elsewhere
duke@435 3643
duke@435 3644 return epc;
duke@435 3645 }
duke@435 3646
duke@435 3647 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
duke@435 3648 {
duke@435 3649 if (is_NPTL()) {
duke@435 3650 return pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 3651 } else {
duke@435 3652 #ifndef IA64
duke@435 3653 // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
duke@435 3654 // word back to default 64bit precision if condvar is signaled. Java
duke@435 3655 // wants 53bit precision. Save and restore current value.
duke@435 3656 int fpu = get_fpu_control_word();
duke@435 3657 #endif // IA64
duke@435 3658 int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 3659 #ifndef IA64
duke@435 3660 set_fpu_control_word(fpu);
duke@435 3661 #endif // IA64
duke@435 3662 return status;
duke@435 3663 }
duke@435 3664 }
duke@435 3665
duke@435 3666 ////////////////////////////////////////////////////////////////////////////////
duke@435 3667 // debug support
duke@435 3668
duke@435 3669 #ifndef PRODUCT
duke@435 3670 static address same_page(address x, address y) {
duke@435 3671 int page_bits = -os::vm_page_size();
duke@435 3672 if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
duke@435 3673 return x;
duke@435 3674 else if (x > y)
duke@435 3675 return (address)(intptr_t(y) | ~page_bits) + 1;
duke@435 3676 else
duke@435 3677 return (address)(intptr_t(y) & page_bits);
duke@435 3678 }
duke@435 3679
duke@435 3680 bool os::find(address addr) {
duke@435 3681 Dl_info dlinfo;
duke@435 3682 memset(&dlinfo, 0, sizeof(dlinfo));
duke@435 3683 if (dladdr(addr, &dlinfo)) {
duke@435 3684 tty->print(PTR_FORMAT ": ", addr);
duke@435 3685 if (dlinfo.dli_sname != NULL) {
duke@435 3686 tty->print("%s+%#x", dlinfo.dli_sname,
duke@435 3687 addr - (intptr_t)dlinfo.dli_saddr);
duke@435 3688 } else if (dlinfo.dli_fname) {
duke@435 3689 tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
duke@435 3690 } else {
duke@435 3691 tty->print("<absolute address>");
duke@435 3692 }
duke@435 3693 if (dlinfo.dli_fname) {
duke@435 3694 tty->print(" in %s", dlinfo.dli_fname);
duke@435 3695 }
duke@435 3696 if (dlinfo.dli_fbase) {
duke@435 3697 tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
duke@435 3698 }
duke@435 3699 tty->cr();
duke@435 3700
duke@435 3701 if (Verbose) {
duke@435 3702 // decode some bytes around the PC
duke@435 3703 address begin = same_page(addr-40, addr);
duke@435 3704 address end = same_page(addr+40, addr);
duke@435 3705 address lowest = (address) dlinfo.dli_sname;
duke@435 3706 if (!lowest) lowest = (address) dlinfo.dli_fbase;
duke@435 3707 if (begin < lowest) begin = lowest;
duke@435 3708 Dl_info dlinfo2;
duke@435 3709 if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
duke@435 3710 && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
duke@435 3711 end = (address) dlinfo2.dli_saddr;
duke@435 3712 Disassembler::decode(begin, end);
duke@435 3713 }
duke@435 3714 return true;
duke@435 3715 }
duke@435 3716 return false;
duke@435 3717 }
duke@435 3718
duke@435 3719 #endif
duke@435 3720
duke@435 3721 ////////////////////////////////////////////////////////////////////////////////
duke@435 3722 // misc
duke@435 3723
duke@435 3724 // This does not do anything on Linux. This is basically a hook for being
duke@435 3725 // able to use structured exception handling (thread-local exception filters)
duke@435 3726 // on, e.g., Win32.
duke@435 3727 void
duke@435 3728 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
duke@435 3729 JavaCallArguments* args, Thread* thread) {
duke@435 3730 f(value, method, args, thread);
duke@435 3731 }
duke@435 3732
duke@435 3733 void os::print_statistics() {
duke@435 3734 }
duke@435 3735
duke@435 3736 int os::message_box(const char* title, const char* message) {
duke@435 3737 int i;
duke@435 3738 fdStream err(defaultStream::error_fd());
duke@435 3739 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 3740 err.cr();
duke@435 3741 err.print_raw_cr(title);
duke@435 3742 for (i = 0; i < 78; i++) err.print_raw("-");
duke@435 3743 err.cr();
duke@435 3744 err.print_raw_cr(message);
duke@435 3745 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 3746 err.cr();
duke@435 3747
duke@435 3748 char buf[16];
duke@435 3749 // Prevent process from exiting upon "read error" without consuming all CPU
duke@435 3750 while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
duke@435 3751
duke@435 3752 return buf[0] == 'y' || buf[0] == 'Y';
duke@435 3753 }
duke@435 3754
duke@435 3755 int os::stat(const char *path, struct stat *sbuf) {
duke@435 3756 char pathbuf[MAX_PATH];
duke@435 3757 if (strlen(path) > MAX_PATH - 1) {
duke@435 3758 errno = ENAMETOOLONG;
duke@435 3759 return -1;
duke@435 3760 }
duke@435 3761 hpi::native_path(strcpy(pathbuf, path));
duke@435 3762 return ::stat(pathbuf, sbuf);
duke@435 3763 }
duke@435 3764
duke@435 3765 bool os::check_heap(bool force) {
duke@435 3766 return true;
duke@435 3767 }
duke@435 3768
duke@435 3769 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
duke@435 3770 return ::vsnprintf(buf, count, format, args);
duke@435 3771 }
duke@435 3772
duke@435 3773 // Is a (classpath) directory empty?
duke@435 3774 bool os::dir_is_empty(const char* path) {
duke@435 3775 DIR *dir = NULL;
duke@435 3776 struct dirent *ptr;
duke@435 3777
duke@435 3778 dir = opendir(path);
duke@435 3779 if (dir == NULL) return true;
duke@435 3780
duke@435 3781 /* Scan the directory */
duke@435 3782 bool result = true;
duke@435 3783 char buf[sizeof(struct dirent) + MAX_PATH];
duke@435 3784 while (result && (ptr = ::readdir(dir)) != NULL) {
duke@435 3785 if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
duke@435 3786 result = false;
duke@435 3787 }
duke@435 3788 }
duke@435 3789 closedir(dir);
duke@435 3790 return result;
duke@435 3791 }
duke@435 3792
duke@435 3793 // create binary file, rewriting existing file if required
duke@435 3794 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 3795 int oflags = O_WRONLY | O_CREAT;
duke@435 3796 if (!rewrite_existing) {
duke@435 3797 oflags |= O_EXCL;
duke@435 3798 }
duke@435 3799 return ::open64(path, oflags, S_IREAD | S_IWRITE);
duke@435 3800 }
duke@435 3801
duke@435 3802 // return current position of file pointer
duke@435 3803 jlong os::current_file_offset(int fd) {
duke@435 3804 return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
duke@435 3805 }
duke@435 3806
duke@435 3807 // move file pointer to the specified offset
duke@435 3808 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 3809 return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
duke@435 3810 }
duke@435 3811
duke@435 3812 // Map a block of memory.
duke@435 3813 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 3814 char *addr, size_t bytes, bool read_only,
duke@435 3815 bool allow_exec) {
duke@435 3816 int prot;
duke@435 3817 int flags;
duke@435 3818
duke@435 3819 if (read_only) {
duke@435 3820 prot = PROT_READ;
duke@435 3821 flags = MAP_SHARED;
duke@435 3822 } else {
duke@435 3823 prot = PROT_READ | PROT_WRITE;
duke@435 3824 flags = MAP_PRIVATE;
duke@435 3825 }
duke@435 3826
duke@435 3827 if (allow_exec) {
duke@435 3828 prot |= PROT_EXEC;
duke@435 3829 }
duke@435 3830
duke@435 3831 if (addr != NULL) {
duke@435 3832 flags |= MAP_FIXED;
duke@435 3833 }
duke@435 3834
duke@435 3835 char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
duke@435 3836 fd, file_offset);
duke@435 3837 if (mapped_address == MAP_FAILED) {
duke@435 3838 return NULL;
duke@435 3839 }
duke@435 3840 return mapped_address;
duke@435 3841 }
duke@435 3842
duke@435 3843
duke@435 3844 // Remap a block of memory.
duke@435 3845 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 3846 char *addr, size_t bytes, bool read_only,
duke@435 3847 bool allow_exec) {
duke@435 3848 // same as map_memory() on this OS
duke@435 3849 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 3850 allow_exec);
duke@435 3851 }
duke@435 3852
duke@435 3853
duke@435 3854 // Unmap a block of memory.
duke@435 3855 bool os::unmap_memory(char* addr, size_t bytes) {
duke@435 3856 return munmap(addr, bytes) == 0;
duke@435 3857 }
duke@435 3858
duke@435 3859 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
duke@435 3860
duke@435 3861 static clockid_t thread_cpu_clockid(Thread* thread) {
duke@435 3862 pthread_t tid = thread->osthread()->pthread_id();
duke@435 3863 clockid_t clockid;
duke@435 3864
duke@435 3865 // Get thread clockid
duke@435 3866 int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
duke@435 3867 assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
duke@435 3868 return clockid;
duke@435 3869 }
duke@435 3870
duke@435 3871 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 3872 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 3873 // of a thread.
duke@435 3874 //
duke@435 3875 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 3876 // the fast estimate available on the platform.
duke@435 3877
duke@435 3878 jlong os::current_thread_cpu_time() {
duke@435 3879 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 3880 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 3881 } else {
duke@435 3882 // return user + sys since the cost is the same
duke@435 3883 return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
duke@435 3884 }
duke@435 3885 }
duke@435 3886
duke@435 3887 jlong os::thread_cpu_time(Thread* thread) {
duke@435 3888 // consistent with what current_thread_cpu_time() returns
duke@435 3889 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 3890 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 3891 } else {
duke@435 3892 return slow_thread_cpu_time(thread, true /* user + sys */);
duke@435 3893 }
duke@435 3894 }
duke@435 3895
duke@435 3896 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 3897 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 3898 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 3899 } else {
duke@435 3900 return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 3901 }
duke@435 3902 }
duke@435 3903
duke@435 3904 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 3905 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 3906 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 3907 } else {
duke@435 3908 return slow_thread_cpu_time(thread, user_sys_cpu_time);
duke@435 3909 }
duke@435 3910 }
duke@435 3911
duke@435 3912 //
duke@435 3913 // -1 on error.
duke@435 3914 //
duke@435 3915
duke@435 3916 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 3917 static bool proc_pid_cpu_avail = true;
duke@435 3918 static bool proc_task_unchecked = true;
duke@435 3919 static const char *proc_stat_path = "/proc/%d/stat";
duke@435 3920 pid_t tid = thread->osthread()->thread_id();
duke@435 3921 int i;
duke@435 3922 char *s;
duke@435 3923 char stat[2048];
duke@435 3924 int statlen;
duke@435 3925 char proc_name[64];
duke@435 3926 int count;
duke@435 3927 long sys_time, user_time;
duke@435 3928 char string[64];
duke@435 3929 int idummy;
duke@435 3930 long ldummy;
duke@435 3931 FILE *fp;
duke@435 3932
duke@435 3933 // We first try accessing /proc/<pid>/cpu since this is faster to
duke@435 3934 // process. If this file is not present (linux kernels 2.5 and above)
duke@435 3935 // then we open /proc/<pid>/stat.
duke@435 3936 if ( proc_pid_cpu_avail ) {
duke@435 3937 sprintf(proc_name, "/proc/%d/cpu", tid);
duke@435 3938 fp = fopen(proc_name, "r");
duke@435 3939 if ( fp != NULL ) {
duke@435 3940 count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
duke@435 3941 fclose(fp);
duke@435 3942 if ( count != 3 ) return -1;
duke@435 3943
duke@435 3944 if (user_sys_cpu_time) {
duke@435 3945 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 3946 } else {
duke@435 3947 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 3948 }
duke@435 3949 }
duke@435 3950 else proc_pid_cpu_avail = false;
duke@435 3951 }
duke@435 3952
duke@435 3953 // The /proc/<tid>/stat aggregates per-process usage on
duke@435 3954 // new Linux kernels 2.6+ where NPTL is supported.
duke@435 3955 // The /proc/self/task/<tid>/stat still has the per-thread usage.
duke@435 3956 // See bug 6328462.
duke@435 3957 // There can be no directory /proc/self/task on kernels 2.4 with NPTL
duke@435 3958 // and possibly in some other cases, so we check its availability.
duke@435 3959 if (proc_task_unchecked && os::Linux::is_NPTL()) {
duke@435 3960 // This is executed only once
duke@435 3961 proc_task_unchecked = false;
duke@435 3962 fp = fopen("/proc/self/task", "r");
duke@435 3963 if (fp != NULL) {
duke@435 3964 proc_stat_path = "/proc/self/task/%d/stat";
duke@435 3965 fclose(fp);
duke@435 3966 }
duke@435 3967 }
duke@435 3968
duke@435 3969 sprintf(proc_name, proc_stat_path, tid);
duke@435 3970 fp = fopen(proc_name, "r");
duke@435 3971 if ( fp == NULL ) return -1;
duke@435 3972 statlen = fread(stat, 1, 2047, fp);
duke@435 3973 stat[statlen] = '\0';
duke@435 3974 fclose(fp);
duke@435 3975
duke@435 3976 // Skip pid and the command string. Note that we could be dealing with
duke@435 3977 // weird command names, e.g. user could decide to rename java launcher
duke@435 3978 // to "java 1.4.2 :)", then the stat file would look like
duke@435 3979 // 1234 (java 1.4.2 :)) R ... ...
duke@435 3980 // We don't really need to know the command string, just find the last
duke@435 3981 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 3982 s = strrchr(stat, ')');
duke@435 3983 i = 0;
duke@435 3984 if (s == NULL ) return -1;
duke@435 3985
duke@435 3986 // Skip blank chars
duke@435 3987 do s++; while (isspace(*s));
duke@435 3988
duke@435 3989 count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
duke@435 3990 &idummy, &idummy, &idummy, &idummy, &idummy, &idummy,
duke@435 3991 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
duke@435 3992 &user_time, &sys_time);
duke@435 3993 if ( count != 13 ) return -1;
duke@435 3994 if (user_sys_cpu_time) {
duke@435 3995 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 3996 } else {
duke@435 3997 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 3998 }
duke@435 3999 }
duke@435 4000
duke@435 4001 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4002 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4003 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4004 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4005 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4006 }
duke@435 4007
duke@435 4008 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4009 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4010 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4011 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4012 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4013 }
duke@435 4014
duke@435 4015 bool os::is_thread_cpu_time_supported() {
duke@435 4016 return true;
duke@435 4017 }
duke@435 4018
duke@435 4019 // System loadavg support. Returns -1 if load average cannot be obtained.
duke@435 4020 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4021 // so just return the system wide load average.
duke@435 4022 int os::loadavg(double loadavg[], int nelem) {
duke@435 4023 return ::getloadavg(loadavg, nelem);
duke@435 4024 }
duke@435 4025
duke@435 4026 void os::pause() {
duke@435 4027 char filename[MAX_PATH];
duke@435 4028 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 4029 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 4030 } else {
duke@435 4031 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 4032 }
duke@435 4033
duke@435 4034 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 4035 if (fd != -1) {
duke@435 4036 struct stat buf;
duke@435 4037 close(fd);
duke@435 4038 while (::stat(filename, &buf) == 0) {
duke@435 4039 (void)::poll(NULL, 0, 100);
duke@435 4040 }
duke@435 4041 } else {
duke@435 4042 jio_fprintf(stderr,
duke@435 4043 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 4044 }
duke@435 4045 }
duke@435 4046
duke@435 4047 extern "C" {
duke@435 4048
duke@435 4049 /**
duke@435 4050 * NOTE: the following code is to keep the green threads code
duke@435 4051 * in the libjava.so happy. Once the green threads is removed,
duke@435 4052 * these code will no longer be needed.
duke@435 4053 */
duke@435 4054 int
duke@435 4055 jdk_waitpid(pid_t pid, int* status, int options) {
duke@435 4056 return waitpid(pid, status, options);
duke@435 4057 }
duke@435 4058
duke@435 4059 int
duke@435 4060 fork1() {
duke@435 4061 return fork();
duke@435 4062 }
duke@435 4063
duke@435 4064 int
duke@435 4065 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
duke@435 4066 return sem_init(sem, pshared, value);
duke@435 4067 }
duke@435 4068
duke@435 4069 int
duke@435 4070 jdk_sem_post(sem_t *sem) {
duke@435 4071 return sem_post(sem);
duke@435 4072 }
duke@435 4073
duke@435 4074 int
duke@435 4075 jdk_sem_wait(sem_t *sem) {
duke@435 4076 return sem_wait(sem);
duke@435 4077 }
duke@435 4078
duke@435 4079 int
duke@435 4080 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
duke@435 4081 return pthread_sigmask(how , newmask, oldmask);
duke@435 4082 }
duke@435 4083
duke@435 4084 }
duke@435 4085
duke@435 4086 // Refer to the comments in os_solaris.cpp park-unpark.
duke@435 4087 //
duke@435 4088 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
duke@435 4089 // hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
duke@435 4090 // For specifics regarding the bug see GLIBC BUGID 261237 :
duke@435 4091 // http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
duke@435 4092 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
duke@435 4093 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
duke@435 4094 // is used. (The simple C test-case provided in the GLIBC bug report manifests the
duke@435 4095 // hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
duke@435 4096 // and monitorenter when we're using 1-0 locking. All those operations may result in
duke@435 4097 // calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
duke@435 4098 // of libpthread avoids the problem, but isn't practical.
duke@435 4099 //
duke@435 4100 // Possible remedies:
duke@435 4101 //
duke@435 4102 // 1. Establish a minimum relative wait time. 50 to 100 msecs seems to work.
duke@435 4103 // This is palliative and probabilistic, however. If the thread is preempted
duke@435 4104 // between the call to compute_abstime() and pthread_cond_timedwait(), more
duke@435 4105 // than the minimum period may have passed, and the abstime may be stale (in the
duke@435 4106 // past) resultin in a hang. Using this technique reduces the odds of a hang
duke@435 4107 // but the JVM is still vulnerable, particularly on heavily loaded systems.
duke@435 4108 //
duke@435 4109 // 2. Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
duke@435 4110 // of the usual flag-condvar-mutex idiom. The write side of the pipe is set
duke@435 4111 // NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
duke@435 4112 // reduces to poll()+read(). This works well, but consumes 2 FDs per extant
duke@435 4113 // thread.
duke@435 4114 //
duke@435 4115 // 3. Embargo pthread_cond_timedwait() and implement a native "chron" thread
duke@435 4116 // that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
duke@435 4117 // a timeout request to the chron thread and then blocking via pthread_cond_wait().
duke@435 4118 // This also works well. In fact it avoids kernel-level scalability impediments
duke@435 4119 // on certain platforms that don't handle lots of active pthread_cond_timedwait()
duke@435 4120 // timers in a graceful fashion.
duke@435 4121 //
duke@435 4122 // 4. When the abstime value is in the past it appears that control returns
duke@435 4123 // correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
duke@435 4124 // Subsequent timedwait/wait calls may hang indefinitely. Given that, we
duke@435 4125 // can avoid the problem by reinitializing the condvar -- by cond_destroy()
duke@435 4126 // followed by cond_init() -- after all calls to pthread_cond_timedwait().
duke@435 4127 // It may be possible to avoid reinitialization by checking the return
duke@435 4128 // value from pthread_cond_timedwait(). In addition to reinitializing the
duke@435 4129 // condvar we must establish the invariant that cond_signal() is only called
duke@435 4130 // within critical sections protected by the adjunct mutex. This prevents
duke@435 4131 // cond_signal() from "seeing" a condvar that's in the midst of being
duke@435 4132 // reinitialized or that is corrupt. Sadly, this invariant obviates the
duke@435 4133 // desirable signal-after-unlock optimization that avoids futile context switching.
duke@435 4134 //
duke@435 4135 // I'm also concerned that some versions of NTPL might allocate an auxilliary
duke@435 4136 // structure when a condvar is used or initialized. cond_destroy() would
duke@435 4137 // release the helper structure. Our reinitialize-after-timedwait fix
duke@435 4138 // put excessive stress on malloc/free and locks protecting the c-heap.
duke@435 4139 //
duke@435 4140 // We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
duke@435 4141 // It may be possible to refine (4) by checking the kernel and NTPL verisons
duke@435 4142 // and only enabling the work-around for vulnerable environments.
duke@435 4143
duke@435 4144 // utility to compute the abstime argument to timedwait:
duke@435 4145 // millis is the relative timeout time
duke@435 4146 // abstime will be the absolute timeout time
duke@435 4147 // TODO: replace compute_abstime() with unpackTime()
duke@435 4148
duke@435 4149 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
duke@435 4150 if (millis < 0) millis = 0;
duke@435 4151 struct timeval now;
duke@435 4152 int status = gettimeofday(&now, NULL);
duke@435 4153 assert(status == 0, "gettimeofday");
duke@435 4154 jlong seconds = millis / 1000;
duke@435 4155 millis %= 1000;
duke@435 4156 if (seconds > 50000000) { // see man cond_timedwait(3T)
duke@435 4157 seconds = 50000000;
duke@435 4158 }
duke@435 4159 abstime->tv_sec = now.tv_sec + seconds;
duke@435 4160 long usec = now.tv_usec + millis * 1000;
duke@435 4161 if (usec >= 1000000) {
duke@435 4162 abstime->tv_sec += 1;
duke@435 4163 usec -= 1000000;
duke@435 4164 }
duke@435 4165 abstime->tv_nsec = usec * 1000;
duke@435 4166 return abstime;
duke@435 4167 }
duke@435 4168
duke@435 4169
duke@435 4170 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
duke@435 4171 // Conceptually TryPark() should be equivalent to park(0).
duke@435 4172
duke@435 4173 int os::PlatformEvent::TryPark() {
duke@435 4174 for (;;) {
duke@435 4175 const int v = _Event ;
duke@435 4176 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4177 if (Atomic::cmpxchg (0, &_Event, v) == v) return v ;
duke@435 4178 }
duke@435 4179 }
duke@435 4180
duke@435 4181 void os::PlatformEvent::park() { // AKA "down()"
duke@435 4182 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 4183 // may call park().
duke@435 4184 // TODO: assert that _Assoc != NULL or _Assoc == Self
duke@435 4185 int v ;
duke@435 4186 for (;;) {
duke@435 4187 v = _Event ;
duke@435 4188 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4189 }
duke@435 4190 guarantee (v >= 0, "invariant") ;
duke@435 4191 if (v == 0) {
duke@435 4192 // Do this the hard way by blocking ...
duke@435 4193 int status = pthread_mutex_lock(_mutex);
duke@435 4194 assert_status(status == 0, status, "mutex_lock");
duke@435 4195 guarantee (_nParked == 0, "invariant") ;
duke@435 4196 ++ _nParked ;
duke@435 4197 while (_Event < 0) {
duke@435 4198 status = pthread_cond_wait(_cond, _mutex);
duke@435 4199 // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
duke@435 4200 // Treat this the same as if the wait was interrupted
duke@435 4201 if (status == ETIME) { status = EINTR; }
duke@435 4202 assert_status(status == 0 || status == EINTR, status, "cond_wait");
duke@435 4203 }
duke@435 4204 -- _nParked ;
duke@435 4205
duke@435 4206 // In theory we could move the ST of 0 into _Event past the unlock(),
duke@435 4207 // but then we'd need a MEMBAR after the ST.
duke@435 4208 _Event = 0 ;
duke@435 4209 status = pthread_mutex_unlock(_mutex);
duke@435 4210 assert_status(status == 0, status, "mutex_unlock");
duke@435 4211 }
duke@435 4212 guarantee (_Event >= 0, "invariant") ;
duke@435 4213 }
duke@435 4214
duke@435 4215 int os::PlatformEvent::park(jlong millis) {
duke@435 4216 guarantee (_nParked == 0, "invariant") ;
duke@435 4217
duke@435 4218 int v ;
duke@435 4219 for (;;) {
duke@435 4220 v = _Event ;
duke@435 4221 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4222 }
duke@435 4223 guarantee (v >= 0, "invariant") ;
duke@435 4224 if (v != 0) return OS_OK ;
duke@435 4225
duke@435 4226 // We do this the hard way, by blocking the thread.
duke@435 4227 // Consider enforcing a minimum timeout value.
duke@435 4228 struct timespec abst;
duke@435 4229 compute_abstime(&abst, millis);
duke@435 4230
duke@435 4231 int ret = OS_TIMEOUT;
duke@435 4232 int status = pthread_mutex_lock(_mutex);
duke@435 4233 assert_status(status == 0, status, "mutex_lock");
duke@435 4234 guarantee (_nParked == 0, "invariant") ;
duke@435 4235 ++_nParked ;
duke@435 4236
duke@435 4237 // Object.wait(timo) will return because of
duke@435 4238 // (a) notification
duke@435 4239 // (b) timeout
duke@435 4240 // (c) thread.interrupt
duke@435 4241 //
duke@435 4242 // Thread.interrupt and object.notify{All} both call Event::set.
duke@435 4243 // That is, we treat thread.interrupt as a special case of notification.
duke@435 4244 // The underlying Solaris implementation, cond_timedwait, admits
duke@435 4245 // spurious/premature wakeups, but the JLS/JVM spec prevents the
duke@435 4246 // JVM from making those visible to Java code. As such, we must
duke@435 4247 // filter out spurious wakeups. We assume all ETIME returns are valid.
duke@435 4248 //
duke@435 4249 // TODO: properly differentiate simultaneous notify+interrupt.
duke@435 4250 // In that case, we should propagate the notify to another waiter.
duke@435 4251
duke@435 4252 while (_Event < 0) {
duke@435 4253 status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
duke@435 4254 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4255 pthread_cond_destroy (_cond);
duke@435 4256 pthread_cond_init (_cond, NULL) ;
duke@435 4257 }
duke@435 4258 assert_status(status == 0 || status == EINTR ||
duke@435 4259 status == ETIME || status == ETIMEDOUT,
duke@435 4260 status, "cond_timedwait");
duke@435 4261 if (!FilterSpuriousWakeups) break ; // previous semantics
duke@435 4262 if (status == ETIME || status == ETIMEDOUT) break ;
duke@435 4263 // We consume and ignore EINTR and spurious wakeups.
duke@435 4264 }
duke@435 4265 --_nParked ;
duke@435 4266 if (_Event >= 0) {
duke@435 4267 ret = OS_OK;
duke@435 4268 }
duke@435 4269 _Event = 0 ;
duke@435 4270 status = pthread_mutex_unlock(_mutex);
duke@435 4271 assert_status(status == 0, status, "mutex_unlock");
duke@435 4272 assert (_nParked == 0, "invariant") ;
duke@435 4273 return ret;
duke@435 4274 }
duke@435 4275
duke@435 4276 void os::PlatformEvent::unpark() {
duke@435 4277 int v, AnyWaiters ;
duke@435 4278 for (;;) {
duke@435 4279 v = _Event ;
duke@435 4280 if (v > 0) {
duke@435 4281 // The LD of _Event could have reordered or be satisfied
duke@435 4282 // by a read-aside from this processor's write buffer.
duke@435 4283 // To avoid problems execute a barrier and then
duke@435 4284 // ratify the value.
duke@435 4285 OrderAccess::fence() ;
duke@435 4286 if (_Event == v) return ;
duke@435 4287 continue ;
duke@435 4288 }
duke@435 4289 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 4290 }
duke@435 4291 if (v < 0) {
duke@435 4292 // Wait for the thread associated with the event to vacate
duke@435 4293 int status = pthread_mutex_lock(_mutex);
duke@435 4294 assert_status(status == 0, status, "mutex_lock");
duke@435 4295 AnyWaiters = _nParked ;
duke@435 4296 assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
duke@435 4297 if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4298 AnyWaiters = 0 ;
duke@435 4299 pthread_cond_signal (_cond);
duke@435 4300 }
duke@435 4301 status = pthread_mutex_unlock(_mutex);
duke@435 4302 assert_status(status == 0, status, "mutex_unlock");
duke@435 4303 if (AnyWaiters != 0) {
duke@435 4304 status = pthread_cond_signal(_cond);
duke@435 4305 assert_status(status == 0, status, "cond_signal");
duke@435 4306 }
duke@435 4307 }
duke@435 4308
duke@435 4309 // Note that we signal() _after dropping the lock for "immortal" Events.
duke@435 4310 // This is safe and avoids a common class of futile wakeups. In rare
duke@435 4311 // circumstances this can cause a thread to return prematurely from
duke@435 4312 // cond_{timed}wait() but the spurious wakeup is benign and the victim will
duke@435 4313 // simply re-test the condition and re-park itself.
duke@435 4314 }
duke@435 4315
duke@435 4316
duke@435 4317 // JSR166
duke@435 4318 // -------------------------------------------------------
duke@435 4319
duke@435 4320 /*
duke@435 4321 * The solaris and linux implementations of park/unpark are fairly
duke@435 4322 * conservative for now, but can be improved. They currently use a
duke@435 4323 * mutex/condvar pair, plus a a count.
duke@435 4324 * Park decrements count if > 0, else does a condvar wait. Unpark
duke@435 4325 * sets count to 1 and signals condvar. Only one thread ever waits
duke@435 4326 * on the condvar. Contention seen when trying to park implies that someone
duke@435 4327 * is unparking you, so don't wait. And spurious returns are fine, so there
duke@435 4328 * is no need to track notifications.
duke@435 4329 */
duke@435 4330
duke@435 4331
duke@435 4332 #define NANOSECS_PER_SEC 1000000000
duke@435 4333 #define NANOSECS_PER_MILLISEC 1000000
duke@435 4334 #define MAX_SECS 100000000
duke@435 4335 /*
duke@435 4336 * This code is common to linux and solaris and will be moved to a
duke@435 4337 * common place in dolphin.
duke@435 4338 *
duke@435 4339 * The passed in time value is either a relative time in nanoseconds
duke@435 4340 * or an absolute time in milliseconds. Either way it has to be unpacked
duke@435 4341 * into suitable seconds and nanoseconds components and stored in the
duke@435 4342 * given timespec structure.
duke@435 4343 * Given time is a 64-bit value and the time_t used in the timespec is only
duke@435 4344 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
duke@435 4345 * overflow if times way in the future are given. Further on Solaris versions
duke@435 4346 * prior to 10 there is a restriction (see cond_timedwait) that the specified
duke@435 4347 * number of seconds, in abstime, is less than current_time + 100,000,000.
duke@435 4348 * As it will be 28 years before "now + 100000000" will overflow we can
duke@435 4349 * ignore overflow and just impose a hard-limit on seconds using the value
duke@435 4350 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
duke@435 4351 * years from "now".
duke@435 4352 */
duke@435 4353
duke@435 4354 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
duke@435 4355 assert (time > 0, "convertTime");
duke@435 4356
duke@435 4357 struct timeval now;
duke@435 4358 int status = gettimeofday(&now, NULL);
duke@435 4359 assert(status == 0, "gettimeofday");
duke@435 4360
duke@435 4361 time_t max_secs = now.tv_sec + MAX_SECS;
duke@435 4362
duke@435 4363 if (isAbsolute) {
duke@435 4364 jlong secs = time / 1000;
duke@435 4365 if (secs > max_secs) {
duke@435 4366 absTime->tv_sec = max_secs;
duke@435 4367 }
duke@435 4368 else {
duke@435 4369 absTime->tv_sec = secs;
duke@435 4370 }
duke@435 4371 absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
duke@435 4372 }
duke@435 4373 else {
duke@435 4374 jlong secs = time / NANOSECS_PER_SEC;
duke@435 4375 if (secs >= MAX_SECS) {
duke@435 4376 absTime->tv_sec = max_secs;
duke@435 4377 absTime->tv_nsec = 0;
duke@435 4378 }
duke@435 4379 else {
duke@435 4380 absTime->tv_sec = now.tv_sec + secs;
duke@435 4381 absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
duke@435 4382 if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
duke@435 4383 absTime->tv_nsec -= NANOSECS_PER_SEC;
duke@435 4384 ++absTime->tv_sec; // note: this must be <= max_secs
duke@435 4385 }
duke@435 4386 }
duke@435 4387 }
duke@435 4388 assert(absTime->tv_sec >= 0, "tv_sec < 0");
duke@435 4389 assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
duke@435 4390 assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
duke@435 4391 assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
duke@435 4392 }
duke@435 4393
duke@435 4394 void Parker::park(bool isAbsolute, jlong time) {
duke@435 4395 // Optional fast-path check:
duke@435 4396 // Return immediately if a permit is available.
duke@435 4397 if (_counter > 0) {
duke@435 4398 _counter = 0 ;
duke@435 4399 return ;
duke@435 4400 }
duke@435 4401
duke@435 4402 Thread* thread = Thread::current();
duke@435 4403 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 4404 JavaThread *jt = (JavaThread *)thread;
duke@435 4405
duke@435 4406 // Optional optimization -- avoid state transitions if there's an interrupt pending.
duke@435 4407 // Check interrupt before trying to wait
duke@435 4408 if (Thread::is_interrupted(thread, false)) {
duke@435 4409 return;
duke@435 4410 }
duke@435 4411
duke@435 4412 // Next, demultiplex/decode time arguments
duke@435 4413 timespec absTime;
duke@435 4414 if (time < 0) { // don't wait at all
duke@435 4415 return;
duke@435 4416 }
duke@435 4417 if (time > 0) {
duke@435 4418 unpackTime(&absTime, isAbsolute, time);
duke@435 4419 }
duke@435 4420
duke@435 4421
duke@435 4422 // Enter safepoint region
duke@435 4423 // Beware of deadlocks such as 6317397.
duke@435 4424 // The per-thread Parker:: mutex is a classic leaf-lock.
duke@435 4425 // In particular a thread must never block on the Threads_lock while
duke@435 4426 // holding the Parker:: mutex. If safepoints are pending both the
duke@435 4427 // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
duke@435 4428 ThreadBlockInVM tbivm(jt);
duke@435 4429
duke@435 4430 // Don't wait if cannot get lock since interference arises from
duke@435 4431 // unblocking. Also. check interrupt before trying wait
duke@435 4432 if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
duke@435 4433 return;
duke@435 4434 }
duke@435 4435
duke@435 4436 int status ;
duke@435 4437 if (_counter > 0) { // no wait needed
duke@435 4438 _counter = 0;
duke@435 4439 status = pthread_mutex_unlock(_mutex);
duke@435 4440 assert (status == 0, "invariant") ;
duke@435 4441 return;
duke@435 4442 }
duke@435 4443
duke@435 4444 #ifdef ASSERT
duke@435 4445 // Don't catch signals while blocked; let the running threads have the signals.
duke@435 4446 // (This allows a debugger to break into the running thread.)
duke@435 4447 sigset_t oldsigs;
duke@435 4448 sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
duke@435 4449 pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
duke@435 4450 #endif
duke@435 4451
duke@435 4452 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 4453 jt->set_suspend_equivalent();
duke@435 4454 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 4455
duke@435 4456 if (time == 0) {
duke@435 4457 status = pthread_cond_wait (_cond, _mutex) ;
duke@435 4458 } else {
duke@435 4459 status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
duke@435 4460 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4461 pthread_cond_destroy (_cond) ;
duke@435 4462 pthread_cond_init (_cond, NULL);
duke@435 4463 }
duke@435 4464 }
duke@435 4465 assert_status(status == 0 || status == EINTR ||
duke@435 4466 status == ETIME || status == ETIMEDOUT,
duke@435 4467 status, "cond_timedwait");
duke@435 4468
duke@435 4469 #ifdef ASSERT
duke@435 4470 pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
duke@435 4471 #endif
duke@435 4472
duke@435 4473 _counter = 0 ;
duke@435 4474 status = pthread_mutex_unlock(_mutex) ;
duke@435 4475 assert_status(status == 0, status, "invariant") ;
duke@435 4476 // If externally suspended while waiting, re-suspend
duke@435 4477 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 4478 jt->java_suspend_self();
duke@435 4479 }
duke@435 4480
duke@435 4481 }
duke@435 4482
duke@435 4483 void Parker::unpark() {
duke@435 4484 int s, status ;
duke@435 4485 status = pthread_mutex_lock(_mutex);
duke@435 4486 assert (status == 0, "invariant") ;
duke@435 4487 s = _counter;
duke@435 4488 _counter = 1;
duke@435 4489 if (s < 1) {
duke@435 4490 if (WorkAroundNPTLTimedWaitHang) {
duke@435 4491 status = pthread_cond_signal (_cond) ;
duke@435 4492 assert (status == 0, "invariant") ;
duke@435 4493 status = pthread_mutex_unlock(_mutex);
duke@435 4494 assert (status == 0, "invariant") ;
duke@435 4495 } else {
duke@435 4496 status = pthread_mutex_unlock(_mutex);
duke@435 4497 assert (status == 0, "invariant") ;
duke@435 4498 status = pthread_cond_signal (_cond) ;
duke@435 4499 assert (status == 0, "invariant") ;
duke@435 4500 }
duke@435 4501 } else {
duke@435 4502 pthread_mutex_unlock(_mutex);
duke@435 4503 assert (status == 0, "invariant") ;
duke@435 4504 }
duke@435 4505 }
duke@435 4506
duke@435 4507
duke@435 4508 extern char** environ;
duke@435 4509
duke@435 4510 #ifndef __NR_fork
duke@435 4511 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
duke@435 4512 #endif
duke@435 4513
duke@435 4514 #ifndef __NR_execve
duke@435 4515 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
duke@435 4516 #endif
duke@435 4517
duke@435 4518 // Run the specified command in a separate process. Return its exit value,
duke@435 4519 // or -1 on failure (e.g. can't fork a new process).
duke@435 4520 // Unlike system(), this function can be called from signal handler. It
duke@435 4521 // doesn't block SIGINT et al.
duke@435 4522 int os::fork_and_exec(char* cmd) {
duke@435 4523 char * argv[4];
duke@435 4524 argv[0] = "sh";
duke@435 4525 argv[1] = "-c";
duke@435 4526 argv[2] = cmd;
duke@435 4527 argv[3] = NULL;
duke@435 4528
duke@435 4529 // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
duke@435 4530 // pthread_atfork handlers and reset pthread library. All we need is a
duke@435 4531 // separate process to execve. Make a direct syscall to fork process.
duke@435 4532 // On IA64 there's no fork syscall, we have to use fork() and hope for
duke@435 4533 // the best...
duke@435 4534 pid_t pid = NOT_IA64(syscall(__NR_fork);)
duke@435 4535 IA64_ONLY(fork();)
duke@435 4536
duke@435 4537 if (pid < 0) {
duke@435 4538 // fork failed
duke@435 4539 return -1;
duke@435 4540
duke@435 4541 } else if (pid == 0) {
duke@435 4542 // child process
duke@435 4543
duke@435 4544 // execve() in LinuxThreads will call pthread_kill_other_threads_np()
duke@435 4545 // first to kill every thread on the thread list. Because this list is
duke@435 4546 // not reset by fork() (see notes above), execve() will instead kill
duke@435 4547 // every thread in the parent process. We know this is the only thread
duke@435 4548 // in the new process, so make a system call directly.
duke@435 4549 // IA64 should use normal execve() from glibc to match the glibc fork()
duke@435 4550 // above.
duke@435 4551 NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
duke@435 4552 IA64_ONLY(execve("/bin/sh", argv, environ);)
duke@435 4553
duke@435 4554 // execve failed
duke@435 4555 _exit(-1);
duke@435 4556
duke@435 4557 } else {
duke@435 4558 // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
duke@435 4559 // care about the actual exit code, for now.
duke@435 4560
duke@435 4561 int status;
duke@435 4562
duke@435 4563 // Wait for the child process to exit. This returns immediately if
duke@435 4564 // the child has already exited. */
duke@435 4565 while (waitpid(pid, &status, 0) < 0) {
duke@435 4566 switch (errno) {
duke@435 4567 case ECHILD: return 0;
duke@435 4568 case EINTR: break;
duke@435 4569 default: return -1;
duke@435 4570 }
duke@435 4571 }
duke@435 4572
duke@435 4573 if (WIFEXITED(status)) {
duke@435 4574 // The child exited normally; get its exit code.
duke@435 4575 return WEXITSTATUS(status);
duke@435 4576 } else if (WIFSIGNALED(status)) {
duke@435 4577 // The child exited because of a signal
duke@435 4578 // The best value to return is 0x80 + signal number,
duke@435 4579 // because that is what all Unix shells do, and because
duke@435 4580 // it allows callers to distinguish between process exit and
duke@435 4581 // process death by signal.
duke@435 4582 return 0x80 + WTERMSIG(status);
duke@435 4583 } else {
duke@435 4584 // Unknown exit code; pass it through
duke@435 4585 return status;
duke@435 4586 }
duke@435 4587 }
duke@435 4588 }

mercurial