src/os/linux/vm/os_linux.cpp

Mon, 17 May 2010 11:32:56 -0700

author
kvn
date
Mon, 17 May 2010 11:32:56 -0700
changeset 1892
79bf863697eb
parent 1855
3fca8e9cd36a
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6951686: Using large pages on Linux prevents zero based compressed oops
Summary: Use req_addr when attaching shared memory segment.
Reviewed-by: twisti

duke@435 1 /*
xdono@1014 2 * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
coleenp@1755 25 # define __STDC_FORMAT_MACROS
coleenp@1755 26
duke@435 27 // do not include precompiled header file
duke@435 28 # include "incls/_os_linux.cpp.incl"
duke@435 29
duke@435 30 // put OS-includes here
duke@435 31 # include <sys/types.h>
duke@435 32 # include <sys/mman.h>
duke@435 33 # include <pthread.h>
duke@435 34 # include <signal.h>
duke@435 35 # include <errno.h>
duke@435 36 # include <dlfcn.h>
duke@435 37 # include <stdio.h>
duke@435 38 # include <unistd.h>
duke@435 39 # include <sys/resource.h>
duke@435 40 # include <pthread.h>
duke@435 41 # include <sys/stat.h>
duke@435 42 # include <sys/time.h>
duke@435 43 # include <sys/times.h>
duke@435 44 # include <sys/utsname.h>
duke@435 45 # include <sys/socket.h>
duke@435 46 # include <sys/wait.h>
duke@435 47 # include <pwd.h>
duke@435 48 # include <poll.h>
duke@435 49 # include <semaphore.h>
duke@435 50 # include <fcntl.h>
duke@435 51 # include <string.h>
duke@435 52 # include <syscall.h>
duke@435 53 # include <sys/sysinfo.h>
duke@435 54 # include <gnu/libc-version.h>
duke@435 55 # include <sys/ipc.h>
duke@435 56 # include <sys/shm.h>
duke@435 57 # include <link.h>
coleenp@1755 58 # include <stdint.h>
coleenp@1755 59 # include <inttypes.h>
duke@435 60
duke@435 61 #define MAX_PATH (2 * K)
duke@435 62
duke@435 63 // for timer info max values which include all bits
duke@435 64 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 65 #define SEC_IN_NANOSECS 1000000000LL
duke@435 66
duke@435 67 ////////////////////////////////////////////////////////////////////////////////
duke@435 68 // global variables
duke@435 69 julong os::Linux::_physical_memory = 0;
duke@435 70
duke@435 71 address os::Linux::_initial_thread_stack_bottom = NULL;
duke@435 72 uintptr_t os::Linux::_initial_thread_stack_size = 0;
duke@435 73
duke@435 74 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
duke@435 75 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
duke@435 76 Mutex* os::Linux::_createThread_lock = NULL;
duke@435 77 pthread_t os::Linux::_main_thread;
duke@435 78 int os::Linux::_page_size = -1;
duke@435 79 bool os::Linux::_is_floating_stack = false;
duke@435 80 bool os::Linux::_is_NPTL = false;
duke@435 81 bool os::Linux::_supports_fast_thread_cpu_time = false;
xlu@634 82 const char * os::Linux::_glibc_version = NULL;
xlu@634 83 const char * os::Linux::_libpthread_version = NULL;
duke@435 84
duke@435 85 static jlong initial_time_count=0;
duke@435 86
duke@435 87 static int clock_tics_per_sec = 100;
duke@435 88
duke@435 89 // For diagnostics to print a message once. see run_periodic_checks
duke@435 90 static sigset_t check_signal_done;
duke@435 91 static bool check_signals = true;;
duke@435 92
duke@435 93 static pid_t _initial_pid = 0;
duke@435 94
duke@435 95 /* Signal number used to suspend/resume a thread */
duke@435 96
duke@435 97 /* do not use any signal number less than SIGSEGV, see 4355769 */
duke@435 98 static int SR_signum = SIGUSR2;
duke@435 99 sigset_t SR_sigset;
duke@435 100
kamg@677 101 /* Used to protect dlsym() calls */
kamg@677 102 static pthread_mutex_t dl_mutex;
kamg@677 103
duke@435 104 ////////////////////////////////////////////////////////////////////////////////
duke@435 105 // utility functions
duke@435 106
duke@435 107 static int SR_initialize();
duke@435 108 static int SR_finalize();
duke@435 109
duke@435 110 julong os::available_memory() {
duke@435 111 return Linux::available_memory();
duke@435 112 }
duke@435 113
duke@435 114 julong os::Linux::available_memory() {
duke@435 115 // values in struct sysinfo are "unsigned long"
duke@435 116 struct sysinfo si;
duke@435 117 sysinfo(&si);
duke@435 118
duke@435 119 return (julong)si.freeram * si.mem_unit;
duke@435 120 }
duke@435 121
duke@435 122 julong os::physical_memory() {
duke@435 123 return Linux::physical_memory();
duke@435 124 }
duke@435 125
phh@455 126 julong os::allocatable_physical_memory(julong size) {
phh@455 127 #ifdef _LP64
phh@455 128 return size;
phh@455 129 #else
phh@455 130 julong result = MIN2(size, (julong)3800*M);
phh@455 131 if (!is_allocatable(result)) {
phh@455 132 // See comments under solaris for alignment considerations
phh@455 133 julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
phh@455 134 result = MIN2(size, reasonable_size);
phh@455 135 }
phh@455 136 return result;
phh@455 137 #endif // _LP64
phh@455 138 }
phh@455 139
duke@435 140 ////////////////////////////////////////////////////////////////////////////////
duke@435 141 // environment support
duke@435 142
duke@435 143 bool os::getenv(const char* name, char* buf, int len) {
duke@435 144 const char* val = ::getenv(name);
duke@435 145 if (val != NULL && strlen(val) < (size_t)len) {
duke@435 146 strcpy(buf, val);
duke@435 147 return true;
duke@435 148 }
duke@435 149 if (len > 0) buf[0] = 0; // return a null string
duke@435 150 return false;
duke@435 151 }
duke@435 152
duke@435 153
duke@435 154 // Return true if user is running as root.
duke@435 155
duke@435 156 bool os::have_special_privileges() {
duke@435 157 static bool init = false;
duke@435 158 static bool privileges = false;
duke@435 159 if (!init) {
duke@435 160 privileges = (getuid() != geteuid()) || (getgid() != getegid());
duke@435 161 init = true;
duke@435 162 }
duke@435 163 return privileges;
duke@435 164 }
duke@435 165
duke@435 166
duke@435 167 #ifndef SYS_gettid
duke@435 168 // i386: 224, ia64: 1105, amd64: 186, sparc 143
duke@435 169 #ifdef __ia64__
duke@435 170 #define SYS_gettid 1105
duke@435 171 #elif __i386__
duke@435 172 #define SYS_gettid 224
duke@435 173 #elif __amd64__
duke@435 174 #define SYS_gettid 186
duke@435 175 #elif __sparc__
duke@435 176 #define SYS_gettid 143
duke@435 177 #else
duke@435 178 #error define gettid for the arch
duke@435 179 #endif
duke@435 180 #endif
duke@435 181
duke@435 182 // Cpu architecture string
never@1445 183 #if defined(ZERO)
never@1445 184 static char cpu_arch[] = ZERO_LIBARCH;
never@1445 185 #elif defined(IA64)
duke@435 186 static char cpu_arch[] = "ia64";
duke@435 187 #elif defined(IA32)
duke@435 188 static char cpu_arch[] = "i386";
duke@435 189 #elif defined(AMD64)
duke@435 190 static char cpu_arch[] = "amd64";
duke@435 191 #elif defined(SPARC)
duke@435 192 # ifdef _LP64
duke@435 193 static char cpu_arch[] = "sparcv9";
duke@435 194 # else
duke@435 195 static char cpu_arch[] = "sparc";
duke@435 196 # endif
duke@435 197 #else
duke@435 198 #error Add appropriate cpu_arch setting
duke@435 199 #endif
duke@435 200
duke@435 201
duke@435 202 // pid_t gettid()
duke@435 203 //
duke@435 204 // Returns the kernel thread id of the currently running thread. Kernel
duke@435 205 // thread id is used to access /proc.
duke@435 206 //
duke@435 207 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
duke@435 208 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
duke@435 209 //
duke@435 210 pid_t os::Linux::gettid() {
duke@435 211 int rslt = syscall(SYS_gettid);
duke@435 212 if (rslt == -1) {
duke@435 213 // old kernel, no NPTL support
duke@435 214 return getpid();
duke@435 215 } else {
duke@435 216 return (pid_t)rslt;
duke@435 217 }
duke@435 218 }
duke@435 219
duke@435 220 // Most versions of linux have a bug where the number of processors are
duke@435 221 // determined by looking at the /proc file system. In a chroot environment,
duke@435 222 // the system call returns 1. This causes the VM to act as if it is
duke@435 223 // a single processor and elide locking (see is_MP() call).
duke@435 224 static bool unsafe_chroot_detected = false;
xlu@634 225 static const char *unstable_chroot_error = "/proc file system not found.\n"
xlu@634 226 "Java may be unstable running multithreaded in a chroot "
xlu@634 227 "environment on Linux when /proc filesystem is not mounted.";
duke@435 228
duke@435 229 void os::Linux::initialize_system_info() {
phh@1558 230 set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
phh@1558 231 if (processor_count() == 1) {
duke@435 232 pid_t pid = os::Linux::gettid();
duke@435 233 char fname[32];
duke@435 234 jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
duke@435 235 FILE *fp = fopen(fname, "r");
duke@435 236 if (fp == NULL) {
duke@435 237 unsafe_chroot_detected = true;
duke@435 238 } else {
duke@435 239 fclose(fp);
duke@435 240 }
duke@435 241 }
duke@435 242 _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
phh@1558 243 assert(processor_count() > 0, "linux error");
duke@435 244 }
duke@435 245
duke@435 246 void os::init_system_properties_values() {
duke@435 247 // char arch[12];
duke@435 248 // sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
duke@435 249
duke@435 250 // The next steps are taken in the product version:
duke@435 251 //
duke@435 252 // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
duke@435 253 // This library should be located at:
duke@435 254 // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
duke@435 255 //
duke@435 256 // If "/jre/lib/" appears at the right place in the path, then we
duke@435 257 // assume libjvm[_g].so is installed in a JDK and we use this path.
duke@435 258 //
duke@435 259 // Otherwise exit with message: "Could not create the Java virtual machine."
duke@435 260 //
duke@435 261 // The following extra steps are taken in the debugging version:
duke@435 262 //
duke@435 263 // If "/jre/lib/" does NOT appear at the right place in the path
duke@435 264 // instead of exit check for $JAVA_HOME environment variable.
duke@435 265 //
duke@435 266 // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
duke@435 267 // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
duke@435 268 // it looks like libjvm[_g].so is installed there
duke@435 269 // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
duke@435 270 //
duke@435 271 // Otherwise exit.
duke@435 272 //
duke@435 273 // Important note: if the location of libjvm.so changes this
duke@435 274 // code needs to be changed accordingly.
duke@435 275
duke@435 276 // The next few definitions allow the code to be verbatim:
duke@435 277 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
duke@435 278 #define getenv(n) ::getenv(n)
duke@435 279
duke@435 280 /*
duke@435 281 * See ld(1):
duke@435 282 * The linker uses the following search paths to locate required
duke@435 283 * shared libraries:
duke@435 284 * 1: ...
duke@435 285 * ...
duke@435 286 * 7: The default directories, normally /lib and /usr/lib.
duke@435 287 */
kvn@944 288 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
kvn@944 289 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
kvn@944 290 #else
duke@435 291 #define DEFAULT_LIBPATH "/lib:/usr/lib"
kvn@944 292 #endif
duke@435 293
duke@435 294 #define EXTENSIONS_DIR "/lib/ext"
duke@435 295 #define ENDORSED_DIR "/lib/endorsed"
duke@435 296 #define REG_DIR "/usr/java/packages"
duke@435 297
duke@435 298 {
duke@435 299 /* sysclasspath, java_home, dll_dir */
duke@435 300 {
duke@435 301 char *home_path;
duke@435 302 char *dll_path;
duke@435 303 char *pslash;
duke@435 304 char buf[MAXPATHLEN];
duke@435 305 os::jvm_path(buf, sizeof(buf));
duke@435 306
duke@435 307 // Found the full path to libjvm.so.
duke@435 308 // Now cut the path to <java_home>/jre if we can.
duke@435 309 *(strrchr(buf, '/')) = '\0'; /* get rid of /libjvm.so */
duke@435 310 pslash = strrchr(buf, '/');
duke@435 311 if (pslash != NULL)
duke@435 312 *pslash = '\0'; /* get rid of /{client|server|hotspot} */
duke@435 313 dll_path = malloc(strlen(buf) + 1);
duke@435 314 if (dll_path == NULL)
duke@435 315 return;
duke@435 316 strcpy(dll_path, buf);
duke@435 317 Arguments::set_dll_dir(dll_path);
duke@435 318
duke@435 319 if (pslash != NULL) {
duke@435 320 pslash = strrchr(buf, '/');
duke@435 321 if (pslash != NULL) {
duke@435 322 *pslash = '\0'; /* get rid of /<arch> */
duke@435 323 pslash = strrchr(buf, '/');
duke@435 324 if (pslash != NULL)
duke@435 325 *pslash = '\0'; /* get rid of /lib */
duke@435 326 }
duke@435 327 }
duke@435 328
duke@435 329 home_path = malloc(strlen(buf) + 1);
duke@435 330 if (home_path == NULL)
duke@435 331 return;
duke@435 332 strcpy(home_path, buf);
duke@435 333 Arguments::set_java_home(home_path);
duke@435 334
duke@435 335 if (!set_boot_path('/', ':'))
duke@435 336 return;
duke@435 337 }
duke@435 338
duke@435 339 /*
duke@435 340 * Where to look for native libraries
duke@435 341 *
duke@435 342 * Note: Due to a legacy implementation, most of the library path
duke@435 343 * is set in the launcher. This was to accomodate linking restrictions
duke@435 344 * on legacy Linux implementations (which are no longer supported).
duke@435 345 * Eventually, all the library path setting will be done here.
duke@435 346 *
duke@435 347 * However, to prevent the proliferation of improperly built native
duke@435 348 * libraries, the new path component /usr/java/packages is added here.
duke@435 349 * Eventually, all the library path setting will be done here.
duke@435 350 */
duke@435 351 {
duke@435 352 char *ld_library_path;
duke@435 353
duke@435 354 /*
duke@435 355 * Construct the invariant part of ld_library_path. Note that the
duke@435 356 * space for the colon and the trailing null are provided by the
duke@435 357 * nulls included by the sizeof operator (so actually we allocate
duke@435 358 * a byte more than necessary).
duke@435 359 */
duke@435 360 ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
duke@435 361 strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
duke@435 362 sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
duke@435 363
duke@435 364 /*
duke@435 365 * Get the user setting of LD_LIBRARY_PATH, and prepended it. It
duke@435 366 * should always exist (until the legacy problem cited above is
duke@435 367 * addressed).
duke@435 368 */
duke@435 369 char *v = getenv("LD_LIBRARY_PATH");
duke@435 370 if (v != NULL) {
duke@435 371 char *t = ld_library_path;
duke@435 372 /* That's +1 for the colon and +1 for the trailing '\0' */
duke@435 373 ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
duke@435 374 sprintf(ld_library_path, "%s:%s", v, t);
duke@435 375 }
duke@435 376 Arguments::set_library_path(ld_library_path);
duke@435 377 }
duke@435 378
duke@435 379 /*
duke@435 380 * Extensions directories.
duke@435 381 *
duke@435 382 * Note that the space for the colon and the trailing null are provided
duke@435 383 * by the nulls included by the sizeof operator (so actually one byte more
duke@435 384 * than necessary is allocated).
duke@435 385 */
duke@435 386 {
duke@435 387 char *buf = malloc(strlen(Arguments::get_java_home()) +
duke@435 388 sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
duke@435 389 sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
duke@435 390 Arguments::get_java_home());
duke@435 391 Arguments::set_ext_dirs(buf);
duke@435 392 }
duke@435 393
duke@435 394 /* Endorsed standards default directory. */
duke@435 395 {
duke@435 396 char * buf;
duke@435 397 buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
duke@435 398 sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
duke@435 399 Arguments::set_endorsed_dirs(buf);
duke@435 400 }
duke@435 401 }
duke@435 402
duke@435 403 #undef malloc
duke@435 404 #undef getenv
duke@435 405 #undef EXTENSIONS_DIR
duke@435 406 #undef ENDORSED_DIR
duke@435 407
duke@435 408 // Done
duke@435 409 return;
duke@435 410 }
duke@435 411
duke@435 412 ////////////////////////////////////////////////////////////////////////////////
duke@435 413 // breakpoint support
duke@435 414
duke@435 415 void os::breakpoint() {
duke@435 416 BREAKPOINT;
duke@435 417 }
duke@435 418
duke@435 419 extern "C" void breakpoint() {
duke@435 420 // use debugger to set breakpoint here
duke@435 421 }
duke@435 422
duke@435 423 ////////////////////////////////////////////////////////////////////////////////
duke@435 424 // signal support
duke@435 425
duke@435 426 debug_only(static bool signal_sets_initialized = false);
duke@435 427 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
duke@435 428
duke@435 429 bool os::Linux::is_sig_ignored(int sig) {
duke@435 430 struct sigaction oact;
duke@435 431 sigaction(sig, (struct sigaction*)NULL, &oact);
duke@435 432 void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
duke@435 433 : CAST_FROM_FN_PTR(void*, oact.sa_handler);
duke@435 434 if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
duke@435 435 return true;
duke@435 436 else
duke@435 437 return false;
duke@435 438 }
duke@435 439
duke@435 440 void os::Linux::signal_sets_init() {
duke@435 441 // Should also have an assertion stating we are still single-threaded.
duke@435 442 assert(!signal_sets_initialized, "Already initialized");
duke@435 443 // Fill in signals that are necessarily unblocked for all threads in
duke@435 444 // the VM. Currently, we unblock the following signals:
duke@435 445 // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
duke@435 446 // by -Xrs (=ReduceSignalUsage));
duke@435 447 // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
duke@435 448 // other threads. The "ReduceSignalUsage" boolean tells us not to alter
duke@435 449 // the dispositions or masks wrt these signals.
duke@435 450 // Programs embedding the VM that want to use the above signals for their
duke@435 451 // own purposes must, at this time, use the "-Xrs" option to prevent
duke@435 452 // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
duke@435 453 // (See bug 4345157, and other related bugs).
duke@435 454 // In reality, though, unblocking these signals is really a nop, since
duke@435 455 // these signals are not blocked by default.
duke@435 456 sigemptyset(&unblocked_sigs);
duke@435 457 sigemptyset(&allowdebug_blocked_sigs);
duke@435 458 sigaddset(&unblocked_sigs, SIGILL);
duke@435 459 sigaddset(&unblocked_sigs, SIGSEGV);
duke@435 460 sigaddset(&unblocked_sigs, SIGBUS);
duke@435 461 sigaddset(&unblocked_sigs, SIGFPE);
duke@435 462 sigaddset(&unblocked_sigs, SR_signum);
duke@435 463
duke@435 464 if (!ReduceSignalUsage) {
duke@435 465 if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
duke@435 466 sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 467 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 468 }
duke@435 469 if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
duke@435 470 sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 471 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 472 }
duke@435 473 if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
duke@435 474 sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 475 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 476 }
duke@435 477 }
duke@435 478 // Fill in signals that are blocked by all but the VM thread.
duke@435 479 sigemptyset(&vm_sigs);
duke@435 480 if (!ReduceSignalUsage)
duke@435 481 sigaddset(&vm_sigs, BREAK_SIGNAL);
duke@435 482 debug_only(signal_sets_initialized = true);
duke@435 483
duke@435 484 }
duke@435 485
duke@435 486 // These are signals that are unblocked while a thread is running Java.
duke@435 487 // (For some reason, they get blocked by default.)
duke@435 488 sigset_t* os::Linux::unblocked_signals() {
duke@435 489 assert(signal_sets_initialized, "Not initialized");
duke@435 490 return &unblocked_sigs;
duke@435 491 }
duke@435 492
duke@435 493 // These are the signals that are blocked while a (non-VM) thread is
duke@435 494 // running Java. Only the VM thread handles these signals.
duke@435 495 sigset_t* os::Linux::vm_signals() {
duke@435 496 assert(signal_sets_initialized, "Not initialized");
duke@435 497 return &vm_sigs;
duke@435 498 }
duke@435 499
duke@435 500 // These are signals that are blocked during cond_wait to allow debugger in
duke@435 501 sigset_t* os::Linux::allowdebug_blocked_signals() {
duke@435 502 assert(signal_sets_initialized, "Not initialized");
duke@435 503 return &allowdebug_blocked_sigs;
duke@435 504 }
duke@435 505
duke@435 506 void os::Linux::hotspot_sigmask(Thread* thread) {
duke@435 507
duke@435 508 //Save caller's signal mask before setting VM signal mask
duke@435 509 sigset_t caller_sigmask;
duke@435 510 pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
duke@435 511
duke@435 512 OSThread* osthread = thread->osthread();
duke@435 513 osthread->set_caller_sigmask(caller_sigmask);
duke@435 514
duke@435 515 pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
duke@435 516
duke@435 517 if (!ReduceSignalUsage) {
duke@435 518 if (thread->is_VM_thread()) {
duke@435 519 // Only the VM thread handles BREAK_SIGNAL ...
duke@435 520 pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
duke@435 521 } else {
duke@435 522 // ... all other threads block BREAK_SIGNAL
duke@435 523 pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
duke@435 524 }
duke@435 525 }
duke@435 526 }
duke@435 527
duke@435 528 //////////////////////////////////////////////////////////////////////////////
duke@435 529 // detecting pthread library
duke@435 530
duke@435 531 void os::Linux::libpthread_init() {
duke@435 532 // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
duke@435 533 // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
duke@435 534 // generic name for earlier versions.
duke@435 535 // Define macros here so we can build HotSpot on old systems.
duke@435 536 # ifndef _CS_GNU_LIBC_VERSION
duke@435 537 # define _CS_GNU_LIBC_VERSION 2
duke@435 538 # endif
duke@435 539 # ifndef _CS_GNU_LIBPTHREAD_VERSION
duke@435 540 # define _CS_GNU_LIBPTHREAD_VERSION 3
duke@435 541 # endif
duke@435 542
duke@435 543 size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
duke@435 544 if (n > 0) {
duke@435 545 char *str = (char *)malloc(n);
duke@435 546 confstr(_CS_GNU_LIBC_VERSION, str, n);
duke@435 547 os::Linux::set_glibc_version(str);
duke@435 548 } else {
duke@435 549 // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
duke@435 550 static char _gnu_libc_version[32];
duke@435 551 jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
duke@435 552 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
duke@435 553 os::Linux::set_glibc_version(_gnu_libc_version);
duke@435 554 }
duke@435 555
duke@435 556 n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
duke@435 557 if (n > 0) {
duke@435 558 char *str = (char *)malloc(n);
duke@435 559 confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
duke@435 560 // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
duke@435 561 // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
xlu@634 562 // is the case. LinuxThreads has a hard limit on max number of threads.
xlu@634 563 // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
xlu@634 564 // On the other hand, NPTL does not have such a limit, sysconf()
xlu@634 565 // will return -1 and errno is not changed. Check if it is really NPTL.
duke@435 566 if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
xlu@634 567 strstr(str, "NPTL") &&
xlu@634 568 sysconf(_SC_THREAD_THREADS_MAX) > 0) {
xlu@634 569 free(str);
xlu@634 570 os::Linux::set_libpthread_version("linuxthreads");
xlu@634 571 } else {
xlu@634 572 os::Linux::set_libpthread_version(str);
duke@435 573 }
duke@435 574 } else {
xlu@634 575 // glibc before 2.3.2 only has LinuxThreads.
xlu@634 576 os::Linux::set_libpthread_version("linuxthreads");
duke@435 577 }
duke@435 578
duke@435 579 if (strstr(libpthread_version(), "NPTL")) {
duke@435 580 os::Linux::set_is_NPTL();
duke@435 581 } else {
duke@435 582 os::Linux::set_is_LinuxThreads();
duke@435 583 }
duke@435 584
duke@435 585 // LinuxThreads have two flavors: floating-stack mode, which allows variable
duke@435 586 // stack size; and fixed-stack mode. NPTL is always floating-stack.
duke@435 587 if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
duke@435 588 os::Linux::set_is_floating_stack();
duke@435 589 }
duke@435 590 }
duke@435 591
duke@435 592 /////////////////////////////////////////////////////////////////////////////
duke@435 593 // thread stack
duke@435 594
duke@435 595 // Force Linux kernel to expand current thread stack. If "bottom" is close
duke@435 596 // to the stack guard, caller should block all signals.
duke@435 597 //
duke@435 598 // MAP_GROWSDOWN:
duke@435 599 // A special mmap() flag that is used to implement thread stacks. It tells
duke@435 600 // kernel that the memory region should extend downwards when needed. This
duke@435 601 // allows early versions of LinuxThreads to only mmap the first few pages
duke@435 602 // when creating a new thread. Linux kernel will automatically expand thread
duke@435 603 // stack as needed (on page faults).
duke@435 604 //
duke@435 605 // However, because the memory region of a MAP_GROWSDOWN stack can grow on
duke@435 606 // demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
duke@435 607 // region, it's hard to tell if the fault is due to a legitimate stack
duke@435 608 // access or because of reading/writing non-exist memory (e.g. buffer
duke@435 609 // overrun). As a rule, if the fault happens below current stack pointer,
duke@435 610 // Linux kernel does not expand stack, instead a SIGSEGV is sent to the
duke@435 611 // application (see Linux kernel fault.c).
duke@435 612 //
duke@435 613 // This Linux feature can cause SIGSEGV when VM bangs thread stack for
duke@435 614 // stack overflow detection.
duke@435 615 //
duke@435 616 // Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
duke@435 617 // not use this flag. However, the stack of initial thread is not created
duke@435 618 // by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
duke@435 619 // unlikely) that user code can create a thread with MAP_GROWSDOWN stack
duke@435 620 // and then attach the thread to JVM.
duke@435 621 //
duke@435 622 // To get around the problem and allow stack banging on Linux, we need to
duke@435 623 // manually expand thread stack after receiving the SIGSEGV.
duke@435 624 //
duke@435 625 // There are two ways to expand thread stack to address "bottom", we used
duke@435 626 // both of them in JVM before 1.5:
duke@435 627 // 1. adjust stack pointer first so that it is below "bottom", and then
duke@435 628 // touch "bottom"
duke@435 629 // 2. mmap() the page in question
duke@435 630 //
duke@435 631 // Now alternate signal stack is gone, it's harder to use 2. For instance,
duke@435 632 // if current sp is already near the lower end of page 101, and we need to
duke@435 633 // call mmap() to map page 100, it is possible that part of the mmap() frame
duke@435 634 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
duke@435 635 // That will destroy the mmap() frame and cause VM to crash.
duke@435 636 //
duke@435 637 // The following code works by adjusting sp first, then accessing the "bottom"
duke@435 638 // page to force a page fault. Linux kernel will then automatically expand the
duke@435 639 // stack mapping.
duke@435 640 //
duke@435 641 // _expand_stack_to() assumes its frame size is less than page size, which
duke@435 642 // should always be true if the function is not inlined.
duke@435 643
duke@435 644 #if __GNUC__ < 3 // gcc 2.x does not support noinline attribute
duke@435 645 #define NOINLINE
duke@435 646 #else
duke@435 647 #define NOINLINE __attribute__ ((noinline))
duke@435 648 #endif
duke@435 649
duke@435 650 static void _expand_stack_to(address bottom) NOINLINE;
duke@435 651
duke@435 652 static void _expand_stack_to(address bottom) {
duke@435 653 address sp;
duke@435 654 size_t size;
duke@435 655 volatile char *p;
duke@435 656
duke@435 657 // Adjust bottom to point to the largest address within the same page, it
duke@435 658 // gives us a one-page buffer if alloca() allocates slightly more memory.
duke@435 659 bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
duke@435 660 bottom += os::Linux::page_size() - 1;
duke@435 661
duke@435 662 // sp might be slightly above current stack pointer; if that's the case, we
duke@435 663 // will alloca() a little more space than necessary, which is OK. Don't use
duke@435 664 // os::current_stack_pointer(), as its result can be slightly below current
duke@435 665 // stack pointer, causing us to not alloca enough to reach "bottom".
duke@435 666 sp = (address)&sp;
duke@435 667
duke@435 668 if (sp > bottom) {
duke@435 669 size = sp - bottom;
duke@435 670 p = (volatile char *)alloca(size);
duke@435 671 assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
duke@435 672 p[0] = '\0';
duke@435 673 }
duke@435 674 }
duke@435 675
duke@435 676 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
duke@435 677 assert(t!=NULL, "just checking");
duke@435 678 assert(t->osthread()->expanding_stack(), "expand should be set");
duke@435 679 assert(t->stack_base() != NULL, "stack_base was not initialized");
duke@435 680
duke@435 681 if (addr < t->stack_base() && addr >= t->stack_yellow_zone_base()) {
duke@435 682 sigset_t mask_all, old_sigset;
duke@435 683 sigfillset(&mask_all);
duke@435 684 pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
duke@435 685 _expand_stack_to(addr);
duke@435 686 pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
duke@435 687 return true;
duke@435 688 }
duke@435 689 return false;
duke@435 690 }
duke@435 691
duke@435 692 //////////////////////////////////////////////////////////////////////////////
duke@435 693 // create new thread
duke@435 694
duke@435 695 static address highest_vm_reserved_address();
duke@435 696
duke@435 697 // check if it's safe to start a new thread
duke@435 698 static bool _thread_safety_check(Thread* thread) {
duke@435 699 if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
duke@435 700 // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
duke@435 701 // Heap is mmap'ed at lower end of memory space. Thread stacks are
duke@435 702 // allocated (MAP_FIXED) from high address space. Every thread stack
duke@435 703 // occupies a fixed size slot (usually 2Mbytes, but user can change
duke@435 704 // it to other values if they rebuild LinuxThreads).
duke@435 705 //
duke@435 706 // Problem with MAP_FIXED is that mmap() can still succeed even part of
duke@435 707 // the memory region has already been mmap'ed. That means if we have too
duke@435 708 // many threads and/or very large heap, eventually thread stack will
duke@435 709 // collide with heap.
duke@435 710 //
duke@435 711 // Here we try to prevent heap/stack collision by comparing current
duke@435 712 // stack bottom with the highest address that has been mmap'ed by JVM
duke@435 713 // plus a safety margin for memory maps created by native code.
duke@435 714 //
duke@435 715 // This feature can be disabled by setting ThreadSafetyMargin to 0
duke@435 716 //
duke@435 717 if (ThreadSafetyMargin > 0) {
duke@435 718 address stack_bottom = os::current_stack_base() - os::current_stack_size();
duke@435 719
duke@435 720 // not safe if our stack extends below the safety margin
duke@435 721 return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
duke@435 722 } else {
duke@435 723 return true;
duke@435 724 }
duke@435 725 } else {
duke@435 726 // Floating stack LinuxThreads or NPTL:
duke@435 727 // Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
duke@435 728 // there's not enough space left, pthread_create() will fail. If we come
duke@435 729 // here, that means enough space has been reserved for stack.
duke@435 730 return true;
duke@435 731 }
duke@435 732 }
duke@435 733
duke@435 734 // Thread start routine for all newly created threads
duke@435 735 static void *java_start(Thread *thread) {
duke@435 736 // Try to randomize the cache line index of hot stack frames.
duke@435 737 // This helps when threads of the same stack traces evict each other's
duke@435 738 // cache lines. The threads can be either from the same JVM instance, or
duke@435 739 // from different JVM instances. The benefit is especially true for
duke@435 740 // processors with hyperthreading technology.
duke@435 741 static int counter = 0;
duke@435 742 int pid = os::current_process_id();
duke@435 743 alloca(((pid ^ counter++) & 7) * 128);
duke@435 744
duke@435 745 ThreadLocalStorage::set_thread(thread);
duke@435 746
duke@435 747 OSThread* osthread = thread->osthread();
duke@435 748 Monitor* sync = osthread->startThread_lock();
duke@435 749
duke@435 750 // non floating stack LinuxThreads needs extra check, see above
duke@435 751 if (!_thread_safety_check(thread)) {
duke@435 752 // notify parent thread
duke@435 753 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 754 osthread->set_state(ZOMBIE);
duke@435 755 sync->notify_all();
duke@435 756 return NULL;
duke@435 757 }
duke@435 758
duke@435 759 // thread_id is kernel thread id (similar to Solaris LWP id)
duke@435 760 osthread->set_thread_id(os::Linux::gettid());
duke@435 761
duke@435 762 if (UseNUMA) {
duke@435 763 int lgrp_id = os::numa_get_group_id();
duke@435 764 if (lgrp_id != -1) {
duke@435 765 thread->set_lgrp_id(lgrp_id);
duke@435 766 }
duke@435 767 }
duke@435 768 // initialize signal mask for this thread
duke@435 769 os::Linux::hotspot_sigmask(thread);
duke@435 770
duke@435 771 // initialize floating point control register
duke@435 772 os::Linux::init_thread_fpu_state();
duke@435 773
duke@435 774 // handshaking with parent thread
duke@435 775 {
duke@435 776 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 777
duke@435 778 // notify parent thread
duke@435 779 osthread->set_state(INITIALIZED);
duke@435 780 sync->notify_all();
duke@435 781
duke@435 782 // wait until os::start_thread()
duke@435 783 while (osthread->get_state() == INITIALIZED) {
duke@435 784 sync->wait(Mutex::_no_safepoint_check_flag);
duke@435 785 }
duke@435 786 }
duke@435 787
duke@435 788 // call one more level start routine
duke@435 789 thread->run();
duke@435 790
duke@435 791 return 0;
duke@435 792 }
duke@435 793
duke@435 794 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 795 assert(thread->osthread() == NULL, "caller responsible");
duke@435 796
duke@435 797 // Allocate the OSThread object
duke@435 798 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 799 if (osthread == NULL) {
duke@435 800 return false;
duke@435 801 }
duke@435 802
duke@435 803 // set the correct thread state
duke@435 804 osthread->set_thread_type(thr_type);
duke@435 805
duke@435 806 // Initial state is ALLOCATED but not INITIALIZED
duke@435 807 osthread->set_state(ALLOCATED);
duke@435 808
duke@435 809 thread->set_osthread(osthread);
duke@435 810
duke@435 811 // init thread attributes
duke@435 812 pthread_attr_t attr;
duke@435 813 pthread_attr_init(&attr);
duke@435 814 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
duke@435 815
duke@435 816 // stack size
duke@435 817 if (os::Linux::supports_variable_stack_size()) {
duke@435 818 // calculate stack size if it's not specified by caller
duke@435 819 if (stack_size == 0) {
duke@435 820 stack_size = os::Linux::default_stack_size(thr_type);
duke@435 821
duke@435 822 switch (thr_type) {
duke@435 823 case os::java_thread:
duke@435 824 // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
duke@435 825 if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
duke@435 826 break;
duke@435 827 case os::compiler_thread:
duke@435 828 if (CompilerThreadStackSize > 0) {
duke@435 829 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 830 break;
duke@435 831 } // else fall through:
duke@435 832 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 833 case os::vm_thread:
duke@435 834 case os::pgc_thread:
duke@435 835 case os::cgc_thread:
duke@435 836 case os::watcher_thread:
duke@435 837 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 838 break;
duke@435 839 }
duke@435 840 }
duke@435 841
duke@435 842 stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
duke@435 843 pthread_attr_setstacksize(&attr, stack_size);
duke@435 844 } else {
duke@435 845 // let pthread_create() pick the default value.
duke@435 846 }
duke@435 847
duke@435 848 // glibc guard page
duke@435 849 pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
duke@435 850
duke@435 851 ThreadState state;
duke@435 852
duke@435 853 {
duke@435 854 // Serialize thread creation if we are running with fixed stack LinuxThreads
duke@435 855 bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
duke@435 856 if (lock) {
duke@435 857 os::Linux::createThread_lock()->lock_without_safepoint_check();
duke@435 858 }
duke@435 859
duke@435 860 pthread_t tid;
duke@435 861 int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
duke@435 862
duke@435 863 pthread_attr_destroy(&attr);
duke@435 864
duke@435 865 if (ret != 0) {
duke@435 866 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 867 perror("pthread_create()");
duke@435 868 }
duke@435 869 // Need to clean up stuff we've allocated so far
duke@435 870 thread->set_osthread(NULL);
duke@435 871 delete osthread;
duke@435 872 if (lock) os::Linux::createThread_lock()->unlock();
duke@435 873 return false;
duke@435 874 }
duke@435 875
duke@435 876 // Store pthread info into the OSThread
duke@435 877 osthread->set_pthread_id(tid);
duke@435 878
duke@435 879 // Wait until child thread is either initialized or aborted
duke@435 880 {
duke@435 881 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 882 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 883 while ((state = osthread->get_state()) == ALLOCATED) {
duke@435 884 sync_with_child->wait(Mutex::_no_safepoint_check_flag);
duke@435 885 }
duke@435 886 }
duke@435 887
duke@435 888 if (lock) {
duke@435 889 os::Linux::createThread_lock()->unlock();
duke@435 890 }
duke@435 891 }
duke@435 892
duke@435 893 // Aborted due to thread limit being reached
duke@435 894 if (state == ZOMBIE) {
duke@435 895 thread->set_osthread(NULL);
duke@435 896 delete osthread;
duke@435 897 return false;
duke@435 898 }
duke@435 899
duke@435 900 // The thread is returned suspended (in state INITIALIZED),
duke@435 901 // and is started higher up in the call chain
duke@435 902 assert(state == INITIALIZED, "race condition");
duke@435 903 return true;
duke@435 904 }
duke@435 905
duke@435 906 /////////////////////////////////////////////////////////////////////////////
duke@435 907 // attach existing thread
duke@435 908
duke@435 909 // bootstrap the main thread
duke@435 910 bool os::create_main_thread(JavaThread* thread) {
duke@435 911 assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
duke@435 912 return create_attached_thread(thread);
duke@435 913 }
duke@435 914
duke@435 915 bool os::create_attached_thread(JavaThread* thread) {
duke@435 916 #ifdef ASSERT
duke@435 917 thread->verify_not_published();
duke@435 918 #endif
duke@435 919
duke@435 920 // Allocate the OSThread object
duke@435 921 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 922
duke@435 923 if (osthread == NULL) {
duke@435 924 return false;
duke@435 925 }
duke@435 926
duke@435 927 // Store pthread info into the OSThread
duke@435 928 osthread->set_thread_id(os::Linux::gettid());
duke@435 929 osthread->set_pthread_id(::pthread_self());
duke@435 930
duke@435 931 // initialize floating point control register
duke@435 932 os::Linux::init_thread_fpu_state();
duke@435 933
duke@435 934 // Initial thread state is RUNNABLE
duke@435 935 osthread->set_state(RUNNABLE);
duke@435 936
duke@435 937 thread->set_osthread(osthread);
duke@435 938
duke@435 939 if (UseNUMA) {
duke@435 940 int lgrp_id = os::numa_get_group_id();
duke@435 941 if (lgrp_id != -1) {
duke@435 942 thread->set_lgrp_id(lgrp_id);
duke@435 943 }
duke@435 944 }
duke@435 945
duke@435 946 if (os::Linux::is_initial_thread()) {
duke@435 947 // If current thread is initial thread, its stack is mapped on demand,
duke@435 948 // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
duke@435 949 // the entire stack region to avoid SEGV in stack banging.
duke@435 950 // It is also useful to get around the heap-stack-gap problem on SuSE
duke@435 951 // kernel (see 4821821 for details). We first expand stack to the top
duke@435 952 // of yellow zone, then enable stack yellow zone (order is significant,
duke@435 953 // enabling yellow zone first will crash JVM on SuSE Linux), so there
duke@435 954 // is no gap between the last two virtual memory regions.
duke@435 955
duke@435 956 JavaThread *jt = (JavaThread *)thread;
duke@435 957 address addr = jt->stack_yellow_zone_base();
duke@435 958 assert(addr != NULL, "initialization problem?");
duke@435 959 assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
duke@435 960
duke@435 961 osthread->set_expanding_stack();
duke@435 962 os::Linux::manually_expand_stack(jt, addr);
duke@435 963 osthread->clear_expanding_stack();
duke@435 964 }
duke@435 965
duke@435 966 // initialize signal mask for this thread
duke@435 967 // and save the caller's signal mask
duke@435 968 os::Linux::hotspot_sigmask(thread);
duke@435 969
duke@435 970 return true;
duke@435 971 }
duke@435 972
duke@435 973 void os::pd_start_thread(Thread* thread) {
duke@435 974 OSThread * osthread = thread->osthread();
duke@435 975 assert(osthread->get_state() != INITIALIZED, "just checking");
duke@435 976 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 977 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 978 sync_with_child->notify();
duke@435 979 }
duke@435 980
duke@435 981 // Free Linux resources related to the OSThread
duke@435 982 void os::free_thread(OSThread* osthread) {
duke@435 983 assert(osthread != NULL, "osthread not set");
duke@435 984
duke@435 985 if (Thread::current()->osthread() == osthread) {
duke@435 986 // Restore caller's signal mask
duke@435 987 sigset_t sigmask = osthread->caller_sigmask();
duke@435 988 pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
duke@435 989 }
duke@435 990
duke@435 991 delete osthread;
duke@435 992 }
duke@435 993
duke@435 994 //////////////////////////////////////////////////////////////////////////////
duke@435 995 // thread local storage
duke@435 996
duke@435 997 int os::allocate_thread_local_storage() {
duke@435 998 pthread_key_t key;
duke@435 999 int rslt = pthread_key_create(&key, NULL);
duke@435 1000 assert(rslt == 0, "cannot allocate thread local storage");
duke@435 1001 return (int)key;
duke@435 1002 }
duke@435 1003
duke@435 1004 // Note: This is currently not used by VM, as we don't destroy TLS key
duke@435 1005 // on VM exit.
duke@435 1006 void os::free_thread_local_storage(int index) {
duke@435 1007 int rslt = pthread_key_delete((pthread_key_t)index);
duke@435 1008 assert(rslt == 0, "invalid index");
duke@435 1009 }
duke@435 1010
duke@435 1011 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 1012 int rslt = pthread_setspecific((pthread_key_t)index, value);
duke@435 1013 assert(rslt == 0, "pthread_setspecific failed");
duke@435 1014 }
duke@435 1015
duke@435 1016 extern "C" Thread* get_thread() {
duke@435 1017 return ThreadLocalStorage::thread();
duke@435 1018 }
duke@435 1019
duke@435 1020 //////////////////////////////////////////////////////////////////////////////
duke@435 1021 // initial thread
duke@435 1022
duke@435 1023 // Check if current thread is the initial thread, similar to Solaris thr_main.
duke@435 1024 bool os::Linux::is_initial_thread(void) {
duke@435 1025 char dummy;
duke@435 1026 // If called before init complete, thread stack bottom will be null.
duke@435 1027 // Can be called if fatal error occurs before initialization.
duke@435 1028 if (initial_thread_stack_bottom() == NULL) return false;
duke@435 1029 assert(initial_thread_stack_bottom() != NULL &&
duke@435 1030 initial_thread_stack_size() != 0,
duke@435 1031 "os::init did not locate initial thread's stack region");
duke@435 1032 if ((address)&dummy >= initial_thread_stack_bottom() &&
duke@435 1033 (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
duke@435 1034 return true;
duke@435 1035 else return false;
duke@435 1036 }
duke@435 1037
duke@435 1038 // Find the virtual memory area that contains addr
duke@435 1039 static bool find_vma(address addr, address* vma_low, address* vma_high) {
duke@435 1040 FILE *fp = fopen("/proc/self/maps", "r");
duke@435 1041 if (fp) {
duke@435 1042 address low, high;
duke@435 1043 while (!feof(fp)) {
duke@435 1044 if (fscanf(fp, "%p-%p", &low, &high) == 2) {
duke@435 1045 if (low <= addr && addr < high) {
duke@435 1046 if (vma_low) *vma_low = low;
duke@435 1047 if (vma_high) *vma_high = high;
duke@435 1048 fclose (fp);
duke@435 1049 return true;
duke@435 1050 }
duke@435 1051 }
duke@435 1052 for (;;) {
duke@435 1053 int ch = fgetc(fp);
duke@435 1054 if (ch == EOF || ch == (int)'\n') break;
duke@435 1055 }
duke@435 1056 }
duke@435 1057 fclose(fp);
duke@435 1058 }
duke@435 1059 return false;
duke@435 1060 }
duke@435 1061
duke@435 1062 // Locate initial thread stack. This special handling of initial thread stack
duke@435 1063 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
duke@435 1064 // bogus value for initial thread.
duke@435 1065 void os::Linux::capture_initial_stack(size_t max_size) {
duke@435 1066 // stack size is the easy part, get it from RLIMIT_STACK
duke@435 1067 size_t stack_size;
duke@435 1068 struct rlimit rlim;
duke@435 1069 getrlimit(RLIMIT_STACK, &rlim);
duke@435 1070 stack_size = rlim.rlim_cur;
duke@435 1071
duke@435 1072 // 6308388: a bug in ld.so will relocate its own .data section to the
duke@435 1073 // lower end of primordial stack; reduce ulimit -s value a little bit
duke@435 1074 // so we won't install guard page on ld.so's data section.
duke@435 1075 stack_size -= 2 * page_size();
duke@435 1076
duke@435 1077 // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
duke@435 1078 // 7.1, in both cases we will get 2G in return value.
duke@435 1079 // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
duke@435 1080 // SuSE 7.2, Debian) can not handle alternate signal stack correctly
duke@435 1081 // for initial thread if its stack size exceeds 6M. Cap it at 2M,
duke@435 1082 // in case other parts in glibc still assumes 2M max stack size.
duke@435 1083 // FIXME: alt signal stack is gone, maybe we can relax this constraint?
duke@435 1084 #ifndef IA64
duke@435 1085 if (stack_size > 2 * K * K) stack_size = 2 * K * K;
duke@435 1086 #else
duke@435 1087 // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
duke@435 1088 if (stack_size > 4 * K * K) stack_size = 4 * K * K;
duke@435 1089 #endif
duke@435 1090
duke@435 1091 // Try to figure out where the stack base (top) is. This is harder.
duke@435 1092 //
duke@435 1093 // When an application is started, glibc saves the initial stack pointer in
duke@435 1094 // a global variable "__libc_stack_end", which is then used by system
duke@435 1095 // libraries. __libc_stack_end should be pretty close to stack top. The
duke@435 1096 // variable is available since the very early days. However, because it is
duke@435 1097 // a private interface, it could disappear in the future.
duke@435 1098 //
duke@435 1099 // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
duke@435 1100 // to __libc_stack_end, it is very close to stack top, but isn't the real
duke@435 1101 // stack top. Note that /proc may not exist if VM is running as a chroot
duke@435 1102 // program, so reading /proc/<pid>/stat could fail. Also the contents of
duke@435 1103 // /proc/<pid>/stat could change in the future (though unlikely).
duke@435 1104 //
duke@435 1105 // We try __libc_stack_end first. If that doesn't work, look for
duke@435 1106 // /proc/<pid>/stat. If neither of them works, we use current stack pointer
duke@435 1107 // as a hint, which should work well in most cases.
duke@435 1108
duke@435 1109 uintptr_t stack_start;
duke@435 1110
duke@435 1111 // try __libc_stack_end first
duke@435 1112 uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
duke@435 1113 if (p && *p) {
duke@435 1114 stack_start = *p;
duke@435 1115 } else {
duke@435 1116 // see if we can get the start_stack field from /proc/self/stat
duke@435 1117 FILE *fp;
duke@435 1118 int pid;
duke@435 1119 char state;
duke@435 1120 int ppid;
duke@435 1121 int pgrp;
duke@435 1122 int session;
duke@435 1123 int nr;
duke@435 1124 int tpgrp;
duke@435 1125 unsigned long flags;
duke@435 1126 unsigned long minflt;
duke@435 1127 unsigned long cminflt;
duke@435 1128 unsigned long majflt;
duke@435 1129 unsigned long cmajflt;
duke@435 1130 unsigned long utime;
duke@435 1131 unsigned long stime;
duke@435 1132 long cutime;
duke@435 1133 long cstime;
duke@435 1134 long prio;
duke@435 1135 long nice;
duke@435 1136 long junk;
duke@435 1137 long it_real;
duke@435 1138 uintptr_t start;
duke@435 1139 uintptr_t vsize;
duke@435 1140 uintptr_t rss;
duke@435 1141 unsigned long rsslim;
duke@435 1142 uintptr_t scodes;
duke@435 1143 uintptr_t ecode;
duke@435 1144 int i;
duke@435 1145
duke@435 1146 // Figure what the primordial thread stack base is. Code is inspired
duke@435 1147 // by email from Hans Boehm. /proc/self/stat begins with current pid,
duke@435 1148 // followed by command name surrounded by parentheses, state, etc.
duke@435 1149 char stat[2048];
duke@435 1150 int statlen;
duke@435 1151
duke@435 1152 fp = fopen("/proc/self/stat", "r");
duke@435 1153 if (fp) {
duke@435 1154 statlen = fread(stat, 1, 2047, fp);
duke@435 1155 stat[statlen] = '\0';
duke@435 1156 fclose(fp);
duke@435 1157
duke@435 1158 // Skip pid and the command string. Note that we could be dealing with
duke@435 1159 // weird command names, e.g. user could decide to rename java launcher
duke@435 1160 // to "java 1.4.2 :)", then the stat file would look like
duke@435 1161 // 1234 (java 1.4.2 :)) R ... ...
duke@435 1162 // We don't really need to know the command string, just find the last
duke@435 1163 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 1164 char * s = strrchr(stat, ')');
duke@435 1165
duke@435 1166 i = 0;
duke@435 1167 if (s) {
duke@435 1168 // Skip blank chars
duke@435 1169 do s++; while (isspace(*s));
duke@435 1170
duke@435 1171 /* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 */
duke@435 1172 /* 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 */
xlu@948 1173 i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld "
xlu@948 1174 UINTX_FORMAT UINTX_FORMAT UINTX_FORMAT
xlu@948 1175 " %lu "
xlu@948 1176 UINTX_FORMAT UINTX_FORMAT UINTX_FORMAT,
duke@435 1177 &state, /* 3 %c */
duke@435 1178 &ppid, /* 4 %d */
duke@435 1179 &pgrp, /* 5 %d */
duke@435 1180 &session, /* 6 %d */
duke@435 1181 &nr, /* 7 %d */
duke@435 1182 &tpgrp, /* 8 %d */
duke@435 1183 &flags, /* 9 %lu */
duke@435 1184 &minflt, /* 10 %lu */
duke@435 1185 &cminflt, /* 11 %lu */
duke@435 1186 &majflt, /* 12 %lu */
duke@435 1187 &cmajflt, /* 13 %lu */
duke@435 1188 &utime, /* 14 %lu */
duke@435 1189 &stime, /* 15 %lu */
duke@435 1190 &cutime, /* 16 %ld */
duke@435 1191 &cstime, /* 17 %ld */
duke@435 1192 &prio, /* 18 %ld */
duke@435 1193 &nice, /* 19 %ld */
duke@435 1194 &junk, /* 20 %ld */
duke@435 1195 &it_real, /* 21 %ld */
xlu@948 1196 &start, /* 22 UINTX_FORMAT */
xlu@948 1197 &vsize, /* 23 UINTX_FORMAT */
xlu@948 1198 &rss, /* 24 UINTX_FORMAT */
duke@435 1199 &rsslim, /* 25 %lu */
xlu@948 1200 &scodes, /* 26 UINTX_FORMAT */
xlu@948 1201 &ecode, /* 27 UINTX_FORMAT */
xlu@948 1202 &stack_start); /* 28 UINTX_FORMAT */
duke@435 1203 }
duke@435 1204
duke@435 1205 if (i != 28 - 2) {
duke@435 1206 assert(false, "Bad conversion from /proc/self/stat");
duke@435 1207 // product mode - assume we are the initial thread, good luck in the
duke@435 1208 // embedded case.
duke@435 1209 warning("Can't detect initial thread stack location - bad conversion");
duke@435 1210 stack_start = (uintptr_t) &rlim;
duke@435 1211 }
duke@435 1212 } else {
duke@435 1213 // For some reason we can't open /proc/self/stat (for example, running on
duke@435 1214 // FreeBSD with a Linux emulator, or inside chroot), this should work for
duke@435 1215 // most cases, so don't abort:
duke@435 1216 warning("Can't detect initial thread stack location - no /proc/self/stat");
duke@435 1217 stack_start = (uintptr_t) &rlim;
duke@435 1218 }
duke@435 1219 }
duke@435 1220
duke@435 1221 // Now we have a pointer (stack_start) very close to the stack top, the
duke@435 1222 // next thing to do is to figure out the exact location of stack top. We
duke@435 1223 // can find out the virtual memory area that contains stack_start by
duke@435 1224 // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
duke@435 1225 // and its upper limit is the real stack top. (again, this would fail if
duke@435 1226 // running inside chroot, because /proc may not exist.)
duke@435 1227
duke@435 1228 uintptr_t stack_top;
duke@435 1229 address low, high;
duke@435 1230 if (find_vma((address)stack_start, &low, &high)) {
duke@435 1231 // success, "high" is the true stack top. (ignore "low", because initial
duke@435 1232 // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
duke@435 1233 stack_top = (uintptr_t)high;
duke@435 1234 } else {
duke@435 1235 // failed, likely because /proc/self/maps does not exist
duke@435 1236 warning("Can't detect initial thread stack location - find_vma failed");
duke@435 1237 // best effort: stack_start is normally within a few pages below the real
duke@435 1238 // stack top, use it as stack top, and reduce stack size so we won't put
duke@435 1239 // guard page outside stack.
duke@435 1240 stack_top = stack_start;
duke@435 1241 stack_size -= 16 * page_size();
duke@435 1242 }
duke@435 1243
duke@435 1244 // stack_top could be partially down the page so align it
duke@435 1245 stack_top = align_size_up(stack_top, page_size());
duke@435 1246
duke@435 1247 if (max_size && stack_size > max_size) {
duke@435 1248 _initial_thread_stack_size = max_size;
duke@435 1249 } else {
duke@435 1250 _initial_thread_stack_size = stack_size;
duke@435 1251 }
duke@435 1252
duke@435 1253 _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
duke@435 1254 _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
duke@435 1255 }
duke@435 1256
duke@435 1257 ////////////////////////////////////////////////////////////////////////////////
duke@435 1258 // time support
duke@435 1259
duke@435 1260 // Time since start-up in seconds to a fine granularity.
duke@435 1261 // Used by VMSelfDestructTimer and the MemProfiler.
duke@435 1262 double os::elapsedTime() {
duke@435 1263
duke@435 1264 return (double)(os::elapsed_counter()) * 0.000001;
duke@435 1265 }
duke@435 1266
duke@435 1267 jlong os::elapsed_counter() {
duke@435 1268 timeval time;
duke@435 1269 int status = gettimeofday(&time, NULL);
duke@435 1270 return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
duke@435 1271 }
duke@435 1272
duke@435 1273 jlong os::elapsed_frequency() {
duke@435 1274 return (1000 * 1000);
duke@435 1275 }
duke@435 1276
ysr@777 1277 // For now, we say that linux does not support vtime. I have no idea
ysr@777 1278 // whether it can actually be made to (DLD, 9/13/05).
ysr@777 1279
ysr@777 1280 bool os::supports_vtime() { return false; }
ysr@777 1281 bool os::enable_vtime() { return false; }
ysr@777 1282 bool os::vtime_enabled() { return false; }
ysr@777 1283 double os::elapsedVTime() {
ysr@777 1284 // better than nothing, but not much
ysr@777 1285 return elapsedTime();
ysr@777 1286 }
ysr@777 1287
sbohne@496 1288 jlong os::javaTimeMillis() {
duke@435 1289 timeval time;
duke@435 1290 int status = gettimeofday(&time, NULL);
duke@435 1291 assert(status != -1, "linux error");
duke@435 1292 return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
duke@435 1293 }
duke@435 1294
duke@435 1295 #ifndef CLOCK_MONOTONIC
duke@435 1296 #define CLOCK_MONOTONIC (1)
duke@435 1297 #endif
duke@435 1298
duke@435 1299 void os::Linux::clock_init() {
duke@435 1300 // we do dlopen's in this particular order due to bug in linux
duke@435 1301 // dynamical loader (see 6348968) leading to crash on exit
duke@435 1302 void* handle = dlopen("librt.so.1", RTLD_LAZY);
duke@435 1303 if (handle == NULL) {
duke@435 1304 handle = dlopen("librt.so", RTLD_LAZY);
duke@435 1305 }
duke@435 1306
duke@435 1307 if (handle) {
duke@435 1308 int (*clock_getres_func)(clockid_t, struct timespec*) =
duke@435 1309 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
duke@435 1310 int (*clock_gettime_func)(clockid_t, struct timespec*) =
duke@435 1311 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
duke@435 1312 if (clock_getres_func && clock_gettime_func) {
duke@435 1313 // See if monotonic clock is supported by the kernel. Note that some
duke@435 1314 // early implementations simply return kernel jiffies (updated every
duke@435 1315 // 1/100 or 1/1000 second). It would be bad to use such a low res clock
duke@435 1316 // for nano time (though the monotonic property is still nice to have).
duke@435 1317 // It's fixed in newer kernels, however clock_getres() still returns
duke@435 1318 // 1/HZ. We check if clock_getres() works, but will ignore its reported
duke@435 1319 // resolution for now. Hopefully as people move to new kernels, this
duke@435 1320 // won't be a problem.
duke@435 1321 struct timespec res;
duke@435 1322 struct timespec tp;
duke@435 1323 if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
duke@435 1324 clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
duke@435 1325 // yes, monotonic clock is supported
duke@435 1326 _clock_gettime = clock_gettime_func;
duke@435 1327 } else {
duke@435 1328 // close librt if there is no monotonic clock
duke@435 1329 dlclose(handle);
duke@435 1330 }
duke@435 1331 }
duke@435 1332 }
duke@435 1333 }
duke@435 1334
duke@435 1335 #ifndef SYS_clock_getres
duke@435 1336
duke@435 1337 #if defined(IA32) || defined(AMD64)
duke@435 1338 #define SYS_clock_getres IA32_ONLY(266) AMD64_ONLY(229)
duke@435 1339 #else
duke@435 1340 #error Value of SYS_clock_getres not known on this platform
duke@435 1341 #endif
duke@435 1342
duke@435 1343 #endif
duke@435 1344
duke@435 1345 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1346
duke@435 1347 void os::Linux::fast_thread_clock_init() {
duke@435 1348 if (!UseLinuxPosixThreadCPUClocks) {
duke@435 1349 return;
duke@435 1350 }
duke@435 1351 clockid_t clockid;
duke@435 1352 struct timespec tp;
duke@435 1353 int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
duke@435 1354 (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
duke@435 1355
duke@435 1356 // Switch to using fast clocks for thread cpu time if
duke@435 1357 // the sys_clock_getres() returns 0 error code.
duke@435 1358 // Note, that some kernels may support the current thread
duke@435 1359 // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
duke@435 1360 // returned by the pthread_getcpuclockid().
duke@435 1361 // If the fast Posix clocks are supported then the sys_clock_getres()
duke@435 1362 // must return at least tp.tv_sec == 0 which means a resolution
duke@435 1363 // better than 1 sec. This is extra check for reliability.
duke@435 1364
duke@435 1365 if(pthread_getcpuclockid_func &&
duke@435 1366 pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
duke@435 1367 sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
duke@435 1368
duke@435 1369 _supports_fast_thread_cpu_time = true;
duke@435 1370 _pthread_getcpuclockid = pthread_getcpuclockid_func;
duke@435 1371 }
duke@435 1372 }
duke@435 1373
duke@435 1374 jlong os::javaTimeNanos() {
duke@435 1375 if (Linux::supports_monotonic_clock()) {
duke@435 1376 struct timespec tp;
duke@435 1377 int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
duke@435 1378 assert(status == 0, "gettime error");
duke@435 1379 jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
duke@435 1380 return result;
duke@435 1381 } else {
duke@435 1382 timeval time;
duke@435 1383 int status = gettimeofday(&time, NULL);
duke@435 1384 assert(status != -1, "linux error");
duke@435 1385 jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
duke@435 1386 return 1000 * usecs;
duke@435 1387 }
duke@435 1388 }
duke@435 1389
duke@435 1390 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 1391 if (Linux::supports_monotonic_clock()) {
duke@435 1392 info_ptr->max_value = ALL_64_BITS;
duke@435 1393
duke@435 1394 // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
duke@435 1395 info_ptr->may_skip_backward = false; // not subject to resetting or drifting
duke@435 1396 info_ptr->may_skip_forward = false; // not subject to resetting or drifting
duke@435 1397 } else {
duke@435 1398 // gettimeofday - based on time in seconds since the Epoch thus does not wrap
duke@435 1399 info_ptr->max_value = ALL_64_BITS;
duke@435 1400
duke@435 1401 // gettimeofday is a real time clock so it skips
duke@435 1402 info_ptr->may_skip_backward = true;
duke@435 1403 info_ptr->may_skip_forward = true;
duke@435 1404 }
duke@435 1405
duke@435 1406 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 1407 }
duke@435 1408
duke@435 1409 // Return the real, user, and system times in seconds from an
duke@435 1410 // arbitrary fixed point in the past.
duke@435 1411 bool os::getTimesSecs(double* process_real_time,
duke@435 1412 double* process_user_time,
duke@435 1413 double* process_system_time) {
duke@435 1414 struct tms ticks;
duke@435 1415 clock_t real_ticks = times(&ticks);
duke@435 1416
duke@435 1417 if (real_ticks == (clock_t) (-1)) {
duke@435 1418 return false;
duke@435 1419 } else {
duke@435 1420 double ticks_per_second = (double) clock_tics_per_sec;
duke@435 1421 *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
duke@435 1422 *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
duke@435 1423 *process_real_time = ((double) real_ticks) / ticks_per_second;
duke@435 1424
duke@435 1425 return true;
duke@435 1426 }
duke@435 1427 }
duke@435 1428
duke@435 1429
duke@435 1430 char * os::local_time_string(char *buf, size_t buflen) {
duke@435 1431 struct tm t;
duke@435 1432 time_t long_time;
duke@435 1433 time(&long_time);
duke@435 1434 localtime_r(&long_time, &t);
duke@435 1435 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 1436 t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
duke@435 1437 t.tm_hour, t.tm_min, t.tm_sec);
duke@435 1438 return buf;
duke@435 1439 }
duke@435 1440
ysr@983 1441 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 1442 return localtime_r(clock, res);
ysr@983 1443 }
ysr@983 1444
duke@435 1445 ////////////////////////////////////////////////////////////////////////////////
duke@435 1446 // runtime exit support
duke@435 1447
duke@435 1448 // Note: os::shutdown() might be called very early during initialization, or
duke@435 1449 // called from signal handler. Before adding something to os::shutdown(), make
duke@435 1450 // sure it is async-safe and can handle partially initialized VM.
duke@435 1451 void os::shutdown() {
duke@435 1452
duke@435 1453 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 1454 perfMemory_exit();
duke@435 1455
duke@435 1456 // needs to remove object in file system
duke@435 1457 AttachListener::abort();
duke@435 1458
duke@435 1459 // flush buffered output, finish log files
duke@435 1460 ostream_abort();
duke@435 1461
duke@435 1462 // Check for abort hook
duke@435 1463 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 1464 if (abort_hook != NULL) {
duke@435 1465 abort_hook();
duke@435 1466 }
duke@435 1467
duke@435 1468 }
duke@435 1469
duke@435 1470 // Note: os::abort() might be called very early during initialization, or
duke@435 1471 // called from signal handler. Before adding something to os::abort(), make
duke@435 1472 // sure it is async-safe and can handle partially initialized VM.
duke@435 1473 void os::abort(bool dump_core) {
duke@435 1474 os::shutdown();
duke@435 1475 if (dump_core) {
duke@435 1476 #ifndef PRODUCT
duke@435 1477 fdStream out(defaultStream::output_fd());
duke@435 1478 out.print_raw("Current thread is ");
duke@435 1479 char buf[16];
duke@435 1480 jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
duke@435 1481 out.print_raw_cr(buf);
duke@435 1482 out.print_raw_cr("Dumping core ...");
duke@435 1483 #endif
duke@435 1484 ::abort(); // dump core
duke@435 1485 }
duke@435 1486
duke@435 1487 ::exit(1);
duke@435 1488 }
duke@435 1489
duke@435 1490 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1491 void os::die() {
duke@435 1492 // _exit() on LinuxThreads only kills current thread
duke@435 1493 ::abort();
duke@435 1494 }
duke@435 1495
duke@435 1496 // unused on linux for now.
duke@435 1497 void os::set_error_file(const char *logfile) {}
duke@435 1498
duke@435 1499 intx os::current_thread_id() { return (intx)pthread_self(); }
duke@435 1500 int os::current_process_id() {
duke@435 1501
duke@435 1502 // Under the old linux thread library, linux gives each thread
duke@435 1503 // its own process id. Because of this each thread will return
duke@435 1504 // a different pid if this method were to return the result
duke@435 1505 // of getpid(2). Linux provides no api that returns the pid
duke@435 1506 // of the launcher thread for the vm. This implementation
duke@435 1507 // returns a unique pid, the pid of the launcher thread
duke@435 1508 // that starts the vm 'process'.
duke@435 1509
duke@435 1510 // Under the NPTL, getpid() returns the same pid as the
duke@435 1511 // launcher thread rather than a unique pid per thread.
duke@435 1512 // Use gettid() if you want the old pre NPTL behaviour.
duke@435 1513
duke@435 1514 // if you are looking for the result of a call to getpid() that
duke@435 1515 // returns a unique pid for the calling thread, then look at the
duke@435 1516 // OSThread::thread_id() method in osThread_linux.hpp file
duke@435 1517
duke@435 1518 return (int)(_initial_pid ? _initial_pid : getpid());
duke@435 1519 }
duke@435 1520
duke@435 1521 // DLL functions
duke@435 1522
duke@435 1523 const char* os::dll_file_extension() { return ".so"; }
duke@435 1524
coleenp@1788 1525 const char* os::get_temp_directory() {
coleenp@1788 1526 const char *prop = Arguments::get_property("java.io.tmpdir");
coleenp@1788 1527 return prop == NULL ? "/tmp" : prop;
coleenp@1788 1528 }
duke@435 1529
phh@1126 1530 static bool file_exists(const char* filename) {
phh@1126 1531 struct stat statbuf;
phh@1126 1532 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1533 return false;
phh@1126 1534 }
phh@1126 1535 return os::stat(filename, &statbuf) == 0;
phh@1126 1536 }
phh@1126 1537
phh@1126 1538 void os::dll_build_name(char* buffer, size_t buflen,
phh@1126 1539 const char* pname, const char* fname) {
phh@1126 1540 // Copied from libhpi
kamg@677 1541 const size_t pnamelen = pname ? strlen(pname) : 0;
kamg@677 1542
phh@1126 1543 // Quietly truncate on buffer overflow. Should be an error.
kamg@677 1544 if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
kamg@677 1545 *buffer = '\0';
kamg@677 1546 return;
kamg@677 1547 }
kamg@677 1548
kamg@677 1549 if (pnamelen == 0) {
phh@1126 1550 snprintf(buffer, buflen, "lib%s.so", fname);
phh@1126 1551 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1552 int n;
phh@1126 1553 char** pelements = split_path(pname, &n);
phh@1126 1554 for (int i = 0 ; i < n ; i++) {
phh@1126 1555 // Really shouldn't be NULL, but check can't hurt
phh@1126 1556 if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
phh@1126 1557 continue; // skip the empty path values
phh@1126 1558 }
phh@1126 1559 snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
phh@1126 1560 if (file_exists(buffer)) {
phh@1126 1561 break;
phh@1126 1562 }
phh@1126 1563 }
phh@1126 1564 // release the storage
phh@1126 1565 for (int i = 0 ; i < n ; i++) {
phh@1126 1566 if (pelements[i] != NULL) {
phh@1126 1567 FREE_C_HEAP_ARRAY(char, pelements[i]);
phh@1126 1568 }
phh@1126 1569 }
phh@1126 1570 if (pelements != NULL) {
phh@1126 1571 FREE_C_HEAP_ARRAY(char*, pelements);
phh@1126 1572 }
kamg@677 1573 } else {
phh@1126 1574 snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
kamg@677 1575 }
kamg@677 1576 }
kamg@677 1577
duke@435 1578 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1579 return getcwd(buf, buflen);
duke@435 1580 }
duke@435 1581
duke@435 1582 // check if addr is inside libjvm[_g].so
duke@435 1583 bool os::address_is_in_vm(address addr) {
duke@435 1584 static address libjvm_base_addr;
duke@435 1585 Dl_info dlinfo;
duke@435 1586
duke@435 1587 if (libjvm_base_addr == NULL) {
duke@435 1588 dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
duke@435 1589 libjvm_base_addr = (address)dlinfo.dli_fbase;
duke@435 1590 assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
duke@435 1591 }
duke@435 1592
duke@435 1593 if (dladdr((void *)addr, &dlinfo)) {
duke@435 1594 if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
duke@435 1595 }
duke@435 1596
duke@435 1597 return false;
duke@435 1598 }
duke@435 1599
duke@435 1600 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1601 int buflen, int *offset) {
duke@435 1602 Dl_info dlinfo;
duke@435 1603
duke@435 1604 if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
duke@435 1605 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
duke@435 1606 if (offset) *offset = addr - (address)dlinfo.dli_saddr;
duke@435 1607 return true;
duke@435 1608 } else {
duke@435 1609 if (buf) buf[0] = '\0';
duke@435 1610 if (offset) *offset = -1;
duke@435 1611 return false;
duke@435 1612 }
duke@435 1613 }
duke@435 1614
duke@435 1615 struct _address_to_library_name {
duke@435 1616 address addr; // input : memory address
duke@435 1617 size_t buflen; // size of fname
duke@435 1618 char* fname; // output: library name
duke@435 1619 address base; // library base addr
duke@435 1620 };
duke@435 1621
duke@435 1622 static int address_to_library_name_callback(struct dl_phdr_info *info,
duke@435 1623 size_t size, void *data) {
duke@435 1624 int i;
duke@435 1625 bool found = false;
duke@435 1626 address libbase = NULL;
duke@435 1627 struct _address_to_library_name * d = (struct _address_to_library_name *)data;
duke@435 1628
duke@435 1629 // iterate through all loadable segments
duke@435 1630 for (i = 0; i < info->dlpi_phnum; i++) {
duke@435 1631 address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
duke@435 1632 if (info->dlpi_phdr[i].p_type == PT_LOAD) {
duke@435 1633 // base address of a library is the lowest address of its loaded
duke@435 1634 // segments.
duke@435 1635 if (libbase == NULL || libbase > segbase) {
duke@435 1636 libbase = segbase;
duke@435 1637 }
duke@435 1638 // see if 'addr' is within current segment
duke@435 1639 if (segbase <= d->addr &&
duke@435 1640 d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
duke@435 1641 found = true;
duke@435 1642 }
duke@435 1643 }
duke@435 1644 }
duke@435 1645
duke@435 1646 // dlpi_name is NULL or empty if the ELF file is executable, return 0
duke@435 1647 // so dll_address_to_library_name() can fall through to use dladdr() which
duke@435 1648 // can figure out executable name from argv[0].
duke@435 1649 if (found && info->dlpi_name && info->dlpi_name[0]) {
duke@435 1650 d->base = libbase;
duke@435 1651 if (d->fname) {
duke@435 1652 jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
duke@435 1653 }
duke@435 1654 return 1;
duke@435 1655 }
duke@435 1656 return 0;
duke@435 1657 }
duke@435 1658
duke@435 1659 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1660 int buflen, int* offset) {
duke@435 1661 Dl_info dlinfo;
duke@435 1662 struct _address_to_library_name data;
duke@435 1663
duke@435 1664 // There is a bug in old glibc dladdr() implementation that it could resolve
duke@435 1665 // to wrong library name if the .so file has a base address != NULL. Here
duke@435 1666 // we iterate through the program headers of all loaded libraries to find
duke@435 1667 // out which library 'addr' really belongs to. This workaround can be
duke@435 1668 // removed once the minimum requirement for glibc is moved to 2.3.x.
duke@435 1669 data.addr = addr;
duke@435 1670 data.fname = buf;
duke@435 1671 data.buflen = buflen;
duke@435 1672 data.base = NULL;
duke@435 1673 int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
duke@435 1674
duke@435 1675 if (rslt) {
duke@435 1676 // buf already contains library name
duke@435 1677 if (offset) *offset = addr - data.base;
duke@435 1678 return true;
duke@435 1679 } else if (dladdr((void*)addr, &dlinfo)){
duke@435 1680 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
duke@435 1681 if (offset) *offset = addr - (address)dlinfo.dli_fbase;
duke@435 1682 return true;
duke@435 1683 } else {
duke@435 1684 if (buf) buf[0] = '\0';
duke@435 1685 if (offset) *offset = -1;
duke@435 1686 return false;
duke@435 1687 }
duke@435 1688 }
duke@435 1689
duke@435 1690 // Loads .dll/.so and
duke@435 1691 // in case of error it checks if .dll/.so was built for the
duke@435 1692 // same architecture as Hotspot is running on
duke@435 1693
duke@435 1694 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
duke@435 1695 {
duke@435 1696 void * result= ::dlopen(filename, RTLD_LAZY);
duke@435 1697 if (result != NULL) {
duke@435 1698 // Successful loading
duke@435 1699 return result;
duke@435 1700 }
duke@435 1701
duke@435 1702 Elf32_Ehdr elf_head;
duke@435 1703
duke@435 1704 // Read system error message into ebuf
duke@435 1705 // It may or may not be overwritten below
duke@435 1706 ::strncpy(ebuf, ::dlerror(), ebuflen-1);
duke@435 1707 ebuf[ebuflen-1]='\0';
duke@435 1708 int diag_msg_max_length=ebuflen-strlen(ebuf);
duke@435 1709 char* diag_msg_buf=ebuf+strlen(ebuf);
duke@435 1710
duke@435 1711 if (diag_msg_max_length==0) {
duke@435 1712 // No more space in ebuf for additional diagnostics message
duke@435 1713 return NULL;
duke@435 1714 }
duke@435 1715
duke@435 1716
duke@435 1717 int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
duke@435 1718
duke@435 1719 if (file_descriptor < 0) {
duke@435 1720 // Can't open library, report dlerror() message
duke@435 1721 return NULL;
duke@435 1722 }
duke@435 1723
duke@435 1724 bool failed_to_read_elf_head=
duke@435 1725 (sizeof(elf_head)!=
duke@435 1726 (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
duke@435 1727
duke@435 1728 ::close(file_descriptor);
duke@435 1729 if (failed_to_read_elf_head) {
duke@435 1730 // file i/o error - report dlerror() msg
duke@435 1731 return NULL;
duke@435 1732 }
duke@435 1733
duke@435 1734 typedef struct {
duke@435 1735 Elf32_Half code; // Actual value as defined in elf.h
duke@435 1736 Elf32_Half compat_class; // Compatibility of archs at VM's sense
duke@435 1737 char elf_class; // 32 or 64 bit
duke@435 1738 char endianess; // MSB or LSB
duke@435 1739 char* name; // String representation
duke@435 1740 } arch_t;
duke@435 1741
duke@435 1742 #ifndef EM_486
duke@435 1743 #define EM_486 6 /* Intel 80486 */
duke@435 1744 #endif
duke@435 1745
duke@435 1746 static const arch_t arch_array[]={
duke@435 1747 {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1748 {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1749 {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
duke@435 1750 {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
duke@435 1751 {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1752 {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1753 {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
duke@435 1754 {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
never@1445 1755 {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
never@1445 1756 {EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
never@1445 1757 {EM_S390, EM_S390, ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
never@1445 1758 {EM_ALPHA, EM_ALPHA, ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
never@1445 1759 {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
never@1445 1760 {EM_MIPS, EM_MIPS, ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
never@1445 1761 {EM_PARISC, EM_PARISC, ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
never@1445 1762 {EM_68K, EM_68K, ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
duke@435 1763 };
duke@435 1764
duke@435 1765 #if (defined IA32)
duke@435 1766 static Elf32_Half running_arch_code=EM_386;
duke@435 1767 #elif (defined AMD64)
duke@435 1768 static Elf32_Half running_arch_code=EM_X86_64;
duke@435 1769 #elif (defined IA64)
duke@435 1770 static Elf32_Half running_arch_code=EM_IA_64;
duke@435 1771 #elif (defined __sparc) && (defined _LP64)
duke@435 1772 static Elf32_Half running_arch_code=EM_SPARCV9;
duke@435 1773 #elif (defined __sparc) && (!defined _LP64)
duke@435 1774 static Elf32_Half running_arch_code=EM_SPARC;
duke@435 1775 #elif (defined __powerpc64__)
duke@435 1776 static Elf32_Half running_arch_code=EM_PPC64;
duke@435 1777 #elif (defined __powerpc__)
duke@435 1778 static Elf32_Half running_arch_code=EM_PPC;
never@1445 1779 #elif (defined ARM)
never@1445 1780 static Elf32_Half running_arch_code=EM_ARM;
never@1445 1781 #elif (defined S390)
never@1445 1782 static Elf32_Half running_arch_code=EM_S390;
never@1445 1783 #elif (defined ALPHA)
never@1445 1784 static Elf32_Half running_arch_code=EM_ALPHA;
never@1445 1785 #elif (defined MIPSEL)
never@1445 1786 static Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
never@1445 1787 #elif (defined PARISC)
never@1445 1788 static Elf32_Half running_arch_code=EM_PARISC;
never@1445 1789 #elif (defined MIPS)
never@1445 1790 static Elf32_Half running_arch_code=EM_MIPS;
never@1445 1791 #elif (defined M68K)
never@1445 1792 static Elf32_Half running_arch_code=EM_68K;
duke@435 1793 #else
duke@435 1794 #error Method os::dll_load requires that one of following is defined:\
never@1445 1795 IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
duke@435 1796 #endif
duke@435 1797
duke@435 1798 // Identify compatability class for VM's architecture and library's architecture
duke@435 1799 // Obtain string descriptions for architectures
duke@435 1800
duke@435 1801 arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
duke@435 1802 int running_arch_index=-1;
duke@435 1803
duke@435 1804 for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
duke@435 1805 if (running_arch_code == arch_array[i].code) {
duke@435 1806 running_arch_index = i;
duke@435 1807 }
duke@435 1808 if (lib_arch.code == arch_array[i].code) {
duke@435 1809 lib_arch.compat_class = arch_array[i].compat_class;
duke@435 1810 lib_arch.name = arch_array[i].name;
duke@435 1811 }
duke@435 1812 }
duke@435 1813
duke@435 1814 assert(running_arch_index != -1,
duke@435 1815 "Didn't find running architecture code (running_arch_code) in arch_array");
duke@435 1816 if (running_arch_index == -1) {
duke@435 1817 // Even though running architecture detection failed
duke@435 1818 // we may still continue with reporting dlerror() message
duke@435 1819 return NULL;
duke@435 1820 }
duke@435 1821
duke@435 1822 if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
duke@435 1823 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
duke@435 1824 return NULL;
duke@435 1825 }
duke@435 1826
never@1445 1827 #ifndef S390
duke@435 1828 if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
duke@435 1829 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
duke@435 1830 return NULL;
duke@435 1831 }
never@1445 1832 #endif // !S390
duke@435 1833
duke@435 1834 if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
duke@435 1835 if ( lib_arch.name!=NULL ) {
duke@435 1836 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1837 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
duke@435 1838 lib_arch.name, arch_array[running_arch_index].name);
duke@435 1839 } else {
duke@435 1840 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1841 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
duke@435 1842 lib_arch.code,
duke@435 1843 arch_array[running_arch_index].name);
duke@435 1844 }
duke@435 1845 }
duke@435 1846
duke@435 1847 return NULL;
duke@435 1848 }
duke@435 1849
kamg@677 1850 /*
kamg@677 1851 * glibc-2.0 libdl is not MT safe. If you are building with any glibc,
kamg@677 1852 * chances are you might want to run the generated bits against glibc-2.0
kamg@677 1853 * libdl.so, so always use locking for any version of glibc.
kamg@677 1854 */
kamg@677 1855 void* os::dll_lookup(void* handle, const char* name) {
kamg@677 1856 pthread_mutex_lock(&dl_mutex);
kamg@677 1857 void* res = dlsym(handle, name);
kamg@677 1858 pthread_mutex_unlock(&dl_mutex);
kamg@677 1859 return res;
kamg@677 1860 }
duke@435 1861
duke@435 1862
duke@435 1863 bool _print_ascii_file(const char* filename, outputStream* st) {
duke@435 1864 int fd = open(filename, O_RDONLY);
duke@435 1865 if (fd == -1) {
duke@435 1866 return false;
duke@435 1867 }
duke@435 1868
duke@435 1869 char buf[32];
duke@435 1870 int bytes;
duke@435 1871 while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
duke@435 1872 st->print_raw(buf, bytes);
duke@435 1873 }
duke@435 1874
duke@435 1875 close(fd);
duke@435 1876
duke@435 1877 return true;
duke@435 1878 }
duke@435 1879
duke@435 1880 void os::print_dll_info(outputStream *st) {
duke@435 1881 st->print_cr("Dynamic libraries:");
duke@435 1882
duke@435 1883 char fname[32];
duke@435 1884 pid_t pid = os::Linux::gettid();
duke@435 1885
duke@435 1886 jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
duke@435 1887
duke@435 1888 if (!_print_ascii_file(fname, st)) {
duke@435 1889 st->print("Can not get library information for pid = %d\n", pid);
duke@435 1890 }
duke@435 1891 }
duke@435 1892
duke@435 1893
duke@435 1894 void os::print_os_info(outputStream* st) {
duke@435 1895 st->print("OS:");
duke@435 1896
duke@435 1897 // Try to identify popular distros.
duke@435 1898 // Most Linux distributions have /etc/XXX-release file, which contains
duke@435 1899 // the OS version string. Some have more than one /etc/XXX-release file
duke@435 1900 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
duke@435 1901 // so the order is important.
duke@435 1902 if (!_print_ascii_file("/etc/mandrake-release", st) &&
duke@435 1903 !_print_ascii_file("/etc/sun-release", st) &&
duke@435 1904 !_print_ascii_file("/etc/redhat-release", st) &&
duke@435 1905 !_print_ascii_file("/etc/SuSE-release", st) &&
duke@435 1906 !_print_ascii_file("/etc/turbolinux-release", st) &&
duke@435 1907 !_print_ascii_file("/etc/gentoo-release", st) &&
duke@435 1908 !_print_ascii_file("/etc/debian_version", st)) {
duke@435 1909 st->print("Linux");
duke@435 1910 }
duke@435 1911 st->cr();
duke@435 1912
duke@435 1913 // kernel
duke@435 1914 st->print("uname:");
duke@435 1915 struct utsname name;
duke@435 1916 uname(&name);
duke@435 1917 st->print(name.sysname); st->print(" ");
duke@435 1918 st->print(name.release); st->print(" ");
duke@435 1919 st->print(name.version); st->print(" ");
duke@435 1920 st->print(name.machine);
duke@435 1921 st->cr();
duke@435 1922
duke@435 1923 // Print warning if unsafe chroot environment detected
duke@435 1924 if (unsafe_chroot_detected) {
duke@435 1925 st->print("WARNING!! ");
duke@435 1926 st->print_cr(unstable_chroot_error);
duke@435 1927 }
duke@435 1928
duke@435 1929 // libc, pthread
duke@435 1930 st->print("libc:");
duke@435 1931 st->print(os::Linux::glibc_version()); st->print(" ");
duke@435 1932 st->print(os::Linux::libpthread_version()); st->print(" ");
duke@435 1933 if (os::Linux::is_LinuxThreads()) {
duke@435 1934 st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
duke@435 1935 }
duke@435 1936 st->cr();
duke@435 1937
duke@435 1938 // rlimit
duke@435 1939 st->print("rlimit:");
duke@435 1940 struct rlimit rlim;
duke@435 1941
duke@435 1942 st->print(" STACK ");
duke@435 1943 getrlimit(RLIMIT_STACK, &rlim);
duke@435 1944 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1945 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 1946
duke@435 1947 st->print(", CORE ");
duke@435 1948 getrlimit(RLIMIT_CORE, &rlim);
duke@435 1949 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1950 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 1951
duke@435 1952 st->print(", NPROC ");
duke@435 1953 getrlimit(RLIMIT_NPROC, &rlim);
duke@435 1954 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1955 else st->print("%d", rlim.rlim_cur);
duke@435 1956
duke@435 1957 st->print(", NOFILE ");
duke@435 1958 getrlimit(RLIMIT_NOFILE, &rlim);
duke@435 1959 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1960 else st->print("%d", rlim.rlim_cur);
duke@435 1961
duke@435 1962 st->print(", AS ");
duke@435 1963 getrlimit(RLIMIT_AS, &rlim);
duke@435 1964 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1965 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 1966 st->cr();
duke@435 1967
duke@435 1968 // load average
duke@435 1969 st->print("load average:");
duke@435 1970 double loadavg[3];
duke@435 1971 os::loadavg(loadavg, 3);
duke@435 1972 st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
duke@435 1973 st->cr();
duke@435 1974 }
duke@435 1975
duke@435 1976 void os::print_memory_info(outputStream* st) {
duke@435 1977
duke@435 1978 st->print("Memory:");
duke@435 1979 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 1980
duke@435 1981 // values in struct sysinfo are "unsigned long"
duke@435 1982 struct sysinfo si;
duke@435 1983 sysinfo(&si);
duke@435 1984
duke@435 1985 st->print(", physical " UINT64_FORMAT "k",
duke@435 1986 os::physical_memory() >> 10);
duke@435 1987 st->print("(" UINT64_FORMAT "k free)",
duke@435 1988 os::available_memory() >> 10);
duke@435 1989 st->print(", swap " UINT64_FORMAT "k",
duke@435 1990 ((jlong)si.totalswap * si.mem_unit) >> 10);
duke@435 1991 st->print("(" UINT64_FORMAT "k free)",
duke@435 1992 ((jlong)si.freeswap * si.mem_unit) >> 10);
duke@435 1993 st->cr();
duke@435 1994 }
duke@435 1995
duke@435 1996 // Taken from /usr/include/bits/siginfo.h Supposed to be architecture specific
duke@435 1997 // but they're the same for all the linux arch that we support
duke@435 1998 // and they're the same for solaris but there's no common place to put this.
duke@435 1999 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
duke@435 2000 "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
duke@435 2001 "ILL_COPROC", "ILL_BADSTK" };
duke@435 2002
duke@435 2003 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
duke@435 2004 "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
duke@435 2005 "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
duke@435 2006
duke@435 2007 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
duke@435 2008
duke@435 2009 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
duke@435 2010
duke@435 2011 void os::print_siginfo(outputStream* st, void* siginfo) {
duke@435 2012 st->print("siginfo:");
duke@435 2013
duke@435 2014 const int buflen = 100;
duke@435 2015 char buf[buflen];
duke@435 2016 siginfo_t *si = (siginfo_t*)siginfo;
duke@435 2017 st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
duke@435 2018 if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
duke@435 2019 st->print("si_errno=%s", buf);
duke@435 2020 } else {
duke@435 2021 st->print("si_errno=%d", si->si_errno);
duke@435 2022 }
duke@435 2023 const int c = si->si_code;
duke@435 2024 assert(c > 0, "unexpected si_code");
duke@435 2025 switch (si->si_signo) {
duke@435 2026 case SIGILL:
duke@435 2027 st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
duke@435 2028 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2029 break;
duke@435 2030 case SIGFPE:
duke@435 2031 st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
duke@435 2032 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2033 break;
duke@435 2034 case SIGSEGV:
duke@435 2035 st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
duke@435 2036 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2037 break;
duke@435 2038 case SIGBUS:
duke@435 2039 st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
duke@435 2040 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2041 break;
duke@435 2042 default:
duke@435 2043 st->print(", si_code=%d", si->si_code);
duke@435 2044 // no si_addr
duke@435 2045 }
duke@435 2046
duke@435 2047 if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
duke@435 2048 UseSharedSpaces) {
duke@435 2049 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 2050 if (mapinfo->is_in_shared_space(si->si_addr)) {
duke@435 2051 st->print("\n\nError accessing class data sharing archive." \
duke@435 2052 " Mapped file inaccessible during execution, " \
duke@435 2053 " possible disk/network problem.");
duke@435 2054 }
duke@435 2055 }
duke@435 2056 st->cr();
duke@435 2057 }
duke@435 2058
duke@435 2059
duke@435 2060 static void print_signal_handler(outputStream* st, int sig,
duke@435 2061 char* buf, size_t buflen);
duke@435 2062
duke@435 2063 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 2064 st->print_cr("Signal Handlers:");
duke@435 2065 print_signal_handler(st, SIGSEGV, buf, buflen);
duke@435 2066 print_signal_handler(st, SIGBUS , buf, buflen);
duke@435 2067 print_signal_handler(st, SIGFPE , buf, buflen);
duke@435 2068 print_signal_handler(st, SIGPIPE, buf, buflen);
duke@435 2069 print_signal_handler(st, SIGXFSZ, buf, buflen);
duke@435 2070 print_signal_handler(st, SIGILL , buf, buflen);
duke@435 2071 print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
duke@435 2072 print_signal_handler(st, SR_signum, buf, buflen);
duke@435 2073 print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
duke@435 2074 print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
duke@435 2075 print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
duke@435 2076 print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
duke@435 2077 }
duke@435 2078
duke@435 2079 static char saved_jvm_path[MAXPATHLEN] = {0};
duke@435 2080
duke@435 2081 // Find the full path to the current module, libjvm.so or libjvm_g.so
duke@435 2082 void os::jvm_path(char *buf, jint len) {
duke@435 2083 // Error checking.
duke@435 2084 if (len < MAXPATHLEN) {
duke@435 2085 assert(false, "must use a large-enough buffer");
duke@435 2086 buf[0] = '\0';
duke@435 2087 return;
duke@435 2088 }
duke@435 2089 // Lazy resolve the path to current module.
duke@435 2090 if (saved_jvm_path[0] != 0) {
duke@435 2091 strcpy(buf, saved_jvm_path);
duke@435 2092 return;
duke@435 2093 }
duke@435 2094
duke@435 2095 char dli_fname[MAXPATHLEN];
duke@435 2096 bool ret = dll_address_to_library_name(
duke@435 2097 CAST_FROM_FN_PTR(address, os::jvm_path),
duke@435 2098 dli_fname, sizeof(dli_fname), NULL);
duke@435 2099 assert(ret != 0, "cannot locate libjvm");
xlu@948 2100 if (realpath(dli_fname, buf) == NULL)
xlu@948 2101 return;
duke@435 2102
duke@435 2103 if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
duke@435 2104 // Support for the gamma launcher. Typical value for buf is
duke@435 2105 // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so". If "/jre/lib/" appears at
duke@435 2106 // the right place in the string, then assume we are installed in a JDK and
duke@435 2107 // we're done. Otherwise, check for a JAVA_HOME environment variable and fix
duke@435 2108 // up the path so it looks like libjvm.so is installed there (append a
duke@435 2109 // fake suffix hotspot/libjvm.so).
duke@435 2110 const char *p = buf + strlen(buf) - 1;
duke@435 2111 for (int count = 0; p > buf && count < 5; ++count) {
duke@435 2112 for (--p; p > buf && *p != '/'; --p)
duke@435 2113 /* empty */ ;
duke@435 2114 }
duke@435 2115
duke@435 2116 if (strncmp(p, "/jre/lib/", 9) != 0) {
duke@435 2117 // Look for JAVA_HOME in the environment.
duke@435 2118 char* java_home_var = ::getenv("JAVA_HOME");
duke@435 2119 if (java_home_var != NULL && java_home_var[0] != 0) {
duke@435 2120 // Check the current module name "libjvm.so" or "libjvm_g.so".
duke@435 2121 p = strrchr(buf, '/');
duke@435 2122 assert(strstr(p, "/libjvm") == p, "invalid library name");
duke@435 2123 p = strstr(p, "_g") ? "_g" : "";
duke@435 2124
xlu@948 2125 if (realpath(java_home_var, buf) == NULL)
xlu@948 2126 return;
duke@435 2127 sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
duke@435 2128 if (0 == access(buf, F_OK)) {
duke@435 2129 // Use current module name "libjvm[_g].so" instead of
duke@435 2130 // "libjvm"debug_only("_g")".so" since for fastdebug version
duke@435 2131 // we should have "libjvm.so" but debug_only("_g") adds "_g"!
duke@435 2132 // It is used when we are choosing the HPI library's name
duke@435 2133 // "libhpi[_g].so" in hpi::initialize_get_interface().
duke@435 2134 sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
duke@435 2135 } else {
duke@435 2136 // Go back to path of .so
xlu@948 2137 if (realpath(dli_fname, buf) == NULL)
xlu@948 2138 return;
duke@435 2139 }
duke@435 2140 }
duke@435 2141 }
duke@435 2142 }
duke@435 2143
duke@435 2144 strcpy(saved_jvm_path, buf);
duke@435 2145 }
duke@435 2146
duke@435 2147 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 2148 // no prefix required, not even "_"
duke@435 2149 }
duke@435 2150
duke@435 2151 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 2152 // no suffix required
duke@435 2153 }
duke@435 2154
duke@435 2155 ////////////////////////////////////////////////////////////////////////////////
duke@435 2156 // sun.misc.Signal support
duke@435 2157
duke@435 2158 static volatile jint sigint_count = 0;
duke@435 2159
duke@435 2160 static void
duke@435 2161 UserHandler(int sig, void *siginfo, void *context) {
duke@435 2162 // 4511530 - sem_post is serialized and handled by the manager thread. When
duke@435 2163 // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
duke@435 2164 // don't want to flood the manager thread with sem_post requests.
duke@435 2165 if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
duke@435 2166 return;
duke@435 2167
duke@435 2168 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 2169 // handler fails to abort. Let VM die immediately.
duke@435 2170 if (sig == SIGINT && is_error_reported()) {
duke@435 2171 os::die();
duke@435 2172 }
duke@435 2173
duke@435 2174 os::signal_notify(sig);
duke@435 2175 }
duke@435 2176
duke@435 2177 void* os::user_handler() {
duke@435 2178 return CAST_FROM_FN_PTR(void*, UserHandler);
duke@435 2179 }
duke@435 2180
duke@435 2181 extern "C" {
duke@435 2182 typedef void (*sa_handler_t)(int);
duke@435 2183 typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
duke@435 2184 }
duke@435 2185
duke@435 2186 void* os::signal(int signal_number, void* handler) {
duke@435 2187 struct sigaction sigAct, oldSigAct;
duke@435 2188
duke@435 2189 sigfillset(&(sigAct.sa_mask));
duke@435 2190 sigAct.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 2191 sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
duke@435 2192
duke@435 2193 if (sigaction(signal_number, &sigAct, &oldSigAct)) {
duke@435 2194 // -1 means registration failed
duke@435 2195 return (void *)-1;
duke@435 2196 }
duke@435 2197
duke@435 2198 return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
duke@435 2199 }
duke@435 2200
duke@435 2201 void os::signal_raise(int signal_number) {
duke@435 2202 ::raise(signal_number);
duke@435 2203 }
duke@435 2204
duke@435 2205 /*
duke@435 2206 * The following code is moved from os.cpp for making this
duke@435 2207 * code platform specific, which it is by its very nature.
duke@435 2208 */
duke@435 2209
duke@435 2210 // Will be modified when max signal is changed to be dynamic
duke@435 2211 int os::sigexitnum_pd() {
duke@435 2212 return NSIG;
duke@435 2213 }
duke@435 2214
duke@435 2215 // a counter for each possible signal value
duke@435 2216 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 2217
duke@435 2218 // Linux(POSIX) specific hand shaking semaphore.
duke@435 2219 static sem_t sig_sem;
duke@435 2220
duke@435 2221 void os::signal_init_pd() {
duke@435 2222 // Initialize signal structures
duke@435 2223 ::memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 2224
duke@435 2225 // Initialize signal semaphore
duke@435 2226 ::sem_init(&sig_sem, 0, 0);
duke@435 2227 }
duke@435 2228
duke@435 2229 void os::signal_notify(int sig) {
duke@435 2230 Atomic::inc(&pending_signals[sig]);
duke@435 2231 ::sem_post(&sig_sem);
duke@435 2232 }
duke@435 2233
duke@435 2234 static int check_pending_signals(bool wait) {
duke@435 2235 Atomic::store(0, &sigint_count);
duke@435 2236 for (;;) {
duke@435 2237 for (int i = 0; i < NSIG + 1; i++) {
duke@435 2238 jint n = pending_signals[i];
duke@435 2239 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 2240 return i;
duke@435 2241 }
duke@435 2242 }
duke@435 2243 if (!wait) {
duke@435 2244 return -1;
duke@435 2245 }
duke@435 2246 JavaThread *thread = JavaThread::current();
duke@435 2247 ThreadBlockInVM tbivm(thread);
duke@435 2248
duke@435 2249 bool threadIsSuspended;
duke@435 2250 do {
duke@435 2251 thread->set_suspend_equivalent();
duke@435 2252 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 2253 ::sem_wait(&sig_sem);
duke@435 2254
duke@435 2255 // were we externally suspended while we were waiting?
duke@435 2256 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 2257 if (threadIsSuspended) {
duke@435 2258 //
duke@435 2259 // The semaphore has been incremented, but while we were waiting
duke@435 2260 // another thread suspended us. We don't want to continue running
duke@435 2261 // while suspended because that would surprise the thread that
duke@435 2262 // suspended us.
duke@435 2263 //
duke@435 2264 ::sem_post(&sig_sem);
duke@435 2265
duke@435 2266 thread->java_suspend_self();
duke@435 2267 }
duke@435 2268 } while (threadIsSuspended);
duke@435 2269 }
duke@435 2270 }
duke@435 2271
duke@435 2272 int os::signal_lookup() {
duke@435 2273 return check_pending_signals(false);
duke@435 2274 }
duke@435 2275
duke@435 2276 int os::signal_wait() {
duke@435 2277 return check_pending_signals(true);
duke@435 2278 }
duke@435 2279
duke@435 2280 ////////////////////////////////////////////////////////////////////////////////
duke@435 2281 // Virtual Memory
duke@435 2282
duke@435 2283 int os::vm_page_size() {
duke@435 2284 // Seems redundant as all get out
duke@435 2285 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2286 return os::Linux::page_size();
duke@435 2287 }
duke@435 2288
duke@435 2289 // Solaris allocates memory by pages.
duke@435 2290 int os::vm_allocation_granularity() {
duke@435 2291 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2292 return os::Linux::page_size();
duke@435 2293 }
duke@435 2294
duke@435 2295 // Rationale behind this function:
duke@435 2296 // current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
duke@435 2297 // mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
duke@435 2298 // samples for JITted code. Here we create private executable mapping over the code cache
duke@435 2299 // and then we can use standard (well, almost, as mapping can change) way to provide
duke@435 2300 // info for the reporting script by storing timestamp and location of symbol
duke@435 2301 void linux_wrap_code(char* base, size_t size) {
duke@435 2302 static volatile jint cnt = 0;
duke@435 2303
duke@435 2304 if (!UseOprofile) {
duke@435 2305 return;
duke@435 2306 }
duke@435 2307
coleenp@1852 2308 char buf[PATH_MAX+1];
duke@435 2309 int num = Atomic::add(1, &cnt);
duke@435 2310
coleenp@1788 2311 snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
coleenp@1788 2312 os::get_temp_directory(), os::current_process_id(), num);
duke@435 2313 unlink(buf);
duke@435 2314
duke@435 2315 int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
duke@435 2316
duke@435 2317 if (fd != -1) {
duke@435 2318 off_t rv = lseek(fd, size-2, SEEK_SET);
duke@435 2319 if (rv != (off_t)-1) {
duke@435 2320 if (write(fd, "", 1) == 1) {
duke@435 2321 mmap(base, size,
duke@435 2322 PROT_READ|PROT_WRITE|PROT_EXEC,
duke@435 2323 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
duke@435 2324 }
duke@435 2325 }
duke@435 2326 close(fd);
duke@435 2327 unlink(buf);
duke@435 2328 }
duke@435 2329 }
duke@435 2330
duke@435 2331 // NOTE: Linux kernel does not really reserve the pages for us.
duke@435 2332 // All it does is to check if there are enough free pages
duke@435 2333 // left at the time of mmap(). This could be a potential
duke@435 2334 // problem.
coleenp@1091 2335 bool os::commit_memory(char* addr, size_t size, bool exec) {
coleenp@1091 2336 int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
coleenp@1091 2337 uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
duke@435 2338 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
duke@435 2339 return res != (uintptr_t) MAP_FAILED;
duke@435 2340 }
duke@435 2341
coleenp@1091 2342 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
coleenp@1091 2343 bool exec) {
coleenp@1091 2344 return commit_memory(addr, size, exec);
duke@435 2345 }
duke@435 2346
duke@435 2347 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
iveresov@576 2348
iveresov@576 2349 void os::free_memory(char *addr, size_t bytes) {
iveresov@1196 2350 ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
iveresov@1196 2351 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
iveresov@576 2352 }
iveresov@576 2353
iveresov@897 2354 void os::numa_make_global(char *addr, size_t bytes) {
iveresov@897 2355 Linux::numa_interleave_memory(addr, bytes);
iveresov@897 2356 }
iveresov@576 2357
iveresov@576 2358 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
iveresov@576 2359 Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
iveresov@576 2360 }
iveresov@576 2361
iveresov@576 2362 bool os::numa_topology_changed() { return false; }
iveresov@576 2363
iveresov@576 2364 size_t os::numa_get_groups_num() {
iveresov@576 2365 int max_node = Linux::numa_max_node();
iveresov@576 2366 return max_node > 0 ? max_node + 1 : 1;
iveresov@576 2367 }
iveresov@576 2368
iveresov@576 2369 int os::numa_get_group_id() {
iveresov@576 2370 int cpu_id = Linux::sched_getcpu();
iveresov@576 2371 if (cpu_id != -1) {
iveresov@576 2372 int lgrp_id = Linux::get_node_by_cpu(cpu_id);
iveresov@576 2373 if (lgrp_id != -1) {
iveresov@576 2374 return lgrp_id;
iveresov@576 2375 }
duke@435 2376 }
duke@435 2377 return 0;
duke@435 2378 }
duke@435 2379
iveresov@576 2380 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
iveresov@576 2381 for (size_t i = 0; i < size; i++) {
iveresov@576 2382 ids[i] = i;
iveresov@576 2383 }
iveresov@576 2384 return size;
iveresov@576 2385 }
iveresov@576 2386
duke@435 2387 bool os::get_page_info(char *start, page_info* info) {
duke@435 2388 return false;
duke@435 2389 }
duke@435 2390
duke@435 2391 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 2392 return end;
duke@435 2393 }
duke@435 2394
iveresov@576 2395 extern "C" void numa_warn(int number, char *where, ...) { }
iveresov@576 2396 extern "C" void numa_error(char *where) { }
iveresov@576 2397
iveresov@1198 2398
iveresov@1198 2399 // If we are running with libnuma version > 2, then we should
iveresov@1198 2400 // be trying to use symbols with versions 1.1
iveresov@1198 2401 // If we are running with earlier version, which did not have symbol versions,
iveresov@1198 2402 // we should use the base version.
iveresov@1198 2403 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
iveresov@1198 2404 void *f = dlvsym(handle, name, "libnuma_1.1");
iveresov@1198 2405 if (f == NULL) {
iveresov@1198 2406 f = dlsym(handle, name);
iveresov@1198 2407 }
iveresov@1198 2408 return f;
iveresov@1198 2409 }
iveresov@1198 2410
iveresov@897 2411 bool os::Linux::libnuma_init() {
iveresov@576 2412 // sched_getcpu() should be in libc.
iveresov@576 2413 set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
iveresov@576 2414 dlsym(RTLD_DEFAULT, "sched_getcpu")));
iveresov@576 2415
iveresov@576 2416 if (sched_getcpu() != -1) { // Does it work?
iveresov@702 2417 void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
iveresov@576 2418 if (handle != NULL) {
iveresov@576 2419 set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
iveresov@1198 2420 libnuma_dlsym(handle, "numa_node_to_cpus")));
iveresov@576 2421 set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
iveresov@1198 2422 libnuma_dlsym(handle, "numa_max_node")));
iveresov@576 2423 set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
iveresov@1198 2424 libnuma_dlsym(handle, "numa_available")));
iveresov@576 2425 set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
iveresov@1198 2426 libnuma_dlsym(handle, "numa_tonode_memory")));
iveresov@897 2427 set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
iveresov@1198 2428 libnuma_dlsym(handle, "numa_interleave_memory")));
iveresov@897 2429
iveresov@897 2430
iveresov@576 2431 if (numa_available() != -1) {
iveresov@1198 2432 set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
iveresov@576 2433 // Create a cpu -> node mapping
iveresov@576 2434 _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
iveresov@576 2435 rebuild_cpu_to_node_map();
iveresov@897 2436 return true;
iveresov@576 2437 }
iveresov@576 2438 }
iveresov@576 2439 }
iveresov@897 2440 return false;
iveresov@576 2441 }
iveresov@576 2442
iveresov@576 2443 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
iveresov@576 2444 // The table is later used in get_node_by_cpu().
iveresov@576 2445 void os::Linux::rebuild_cpu_to_node_map() {
iveresov@897 2446 const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
iveresov@897 2447 // in libnuma (possible values are starting from 16,
iveresov@897 2448 // and continuing up with every other power of 2, but less
iveresov@897 2449 // than the maximum number of CPUs supported by kernel), and
iveresov@897 2450 // is a subject to change (in libnuma version 2 the requirements
iveresov@897 2451 // are more reasonable) we'll just hardcode the number they use
iveresov@897 2452 // in the library.
iveresov@897 2453 const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
iveresov@897 2454
iveresov@897 2455 size_t cpu_num = os::active_processor_count();
iveresov@897 2456 size_t cpu_map_size = NCPUS / BitsPerCLong;
iveresov@897 2457 size_t cpu_map_valid_size =
iveresov@897 2458 MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
iveresov@897 2459
iveresov@576 2460 cpu_to_node()->clear();
iveresov@576 2461 cpu_to_node()->at_grow(cpu_num - 1);
iveresov@897 2462 size_t node_num = numa_get_groups_num();
iveresov@897 2463
iveresov@576 2464 unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
iveresov@897 2465 for (size_t i = 0; i < node_num; i++) {
iveresov@576 2466 if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
iveresov@897 2467 for (size_t j = 0; j < cpu_map_valid_size; j++) {
iveresov@576 2468 if (cpu_map[j] != 0) {
iveresov@897 2469 for (size_t k = 0; k < BitsPerCLong; k++) {
iveresov@576 2470 if (cpu_map[j] & (1UL << k)) {
iveresov@897 2471 cpu_to_node()->at_put(j * BitsPerCLong + k, i);
iveresov@576 2472 }
iveresov@576 2473 }
iveresov@576 2474 }
iveresov@576 2475 }
iveresov@576 2476 }
iveresov@576 2477 }
iveresov@576 2478 FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
iveresov@576 2479 }
iveresov@576 2480
iveresov@576 2481 int os::Linux::get_node_by_cpu(int cpu_id) {
iveresov@576 2482 if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
iveresov@576 2483 return cpu_to_node()->at(cpu_id);
iveresov@576 2484 }
iveresov@576 2485 return -1;
iveresov@576 2486 }
iveresov@576 2487
iveresov@576 2488 GrowableArray<int>* os::Linux::_cpu_to_node;
iveresov@576 2489 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
iveresov@576 2490 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
iveresov@576 2491 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
iveresov@576 2492 os::Linux::numa_available_func_t os::Linux::_numa_available;
iveresov@576 2493 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
iveresov@897 2494 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
iveresov@897 2495 unsigned long* os::Linux::_numa_all_nodes;
iveresov@576 2496
duke@435 2497 bool os::uncommit_memory(char* addr, size_t size) {
coleenp@1091 2498 return ::mmap(addr, size, PROT_NONE,
duke@435 2499 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
duke@435 2500 != MAP_FAILED;
duke@435 2501 }
duke@435 2502
coleenp@1755 2503 // Linux uses a growable mapping for the stack, and if the mapping for
coleenp@1755 2504 // the stack guard pages is not removed when we detach a thread the
coleenp@1755 2505 // stack cannot grow beyond the pages where the stack guard was
coleenp@1755 2506 // mapped. If at some point later in the process the stack expands to
coleenp@1755 2507 // that point, the Linux kernel cannot expand the stack any further
coleenp@1755 2508 // because the guard pages are in the way, and a segfault occurs.
coleenp@1755 2509 //
coleenp@1755 2510 // However, it's essential not to split the stack region by unmapping
coleenp@1755 2511 // a region (leaving a hole) that's already part of the stack mapping,
coleenp@1755 2512 // so if the stack mapping has already grown beyond the guard pages at
coleenp@1755 2513 // the time we create them, we have to truncate the stack mapping.
coleenp@1755 2514 // So, we need to know the extent of the stack mapping when
coleenp@1755 2515 // create_stack_guard_pages() is called.
coleenp@1755 2516
coleenp@1755 2517 // Find the bounds of the stack mapping. Return true for success.
coleenp@1755 2518 //
coleenp@1755 2519 // We only need this for stacks that are growable: at the time of
coleenp@1755 2520 // writing thread stacks don't use growable mappings (i.e. those
coleenp@1755 2521 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
coleenp@1755 2522 // only applies to the main thread.
coleenp@1755 2523 static bool
coleenp@1755 2524 get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
coleenp@1755 2525 {
coleenp@1755 2526 FILE *f = fopen("/proc/self/maps", "r");
coleenp@1755 2527 if (f == NULL)
coleenp@1755 2528 return false;
coleenp@1755 2529
coleenp@1755 2530 while (!feof(f)) {
coleenp@1755 2531 size_t dummy;
coleenp@1755 2532 char *str = NULL;
coleenp@1755 2533 ssize_t len = getline(&str, &dummy, f);
coleenp@1755 2534 if (len == -1) {
coleenp@1760 2535 fclose(f);
coleenp@1755 2536 return false;
coleenp@1755 2537 }
coleenp@1755 2538
coleenp@1755 2539 if (len > 0 && str[len-1] == '\n') {
coleenp@1755 2540 str[len-1] = 0;
coleenp@1755 2541 len--;
coleenp@1755 2542 }
coleenp@1755 2543
coleenp@1755 2544 static const char *stack_str = "[stack]";
coleenp@1755 2545 if (len > (ssize_t)strlen(stack_str)
coleenp@1755 2546 && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
coleenp@1755 2547 if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
coleenp@1755 2548 uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
coleenp@1755 2549 if (sp >= *bottom && sp <= *top) {
coleenp@1755 2550 free(str);
coleenp@1760 2551 fclose(f);
coleenp@1755 2552 return true;
coleenp@1755 2553 }
coleenp@1755 2554 }
coleenp@1755 2555 }
coleenp@1755 2556 free(str);
coleenp@1755 2557 }
coleenp@1760 2558 fclose(f);
coleenp@1755 2559 return false;
coleenp@1755 2560 }
coleenp@1755 2561
coleenp@1755 2562 // If the (growable) stack mapping already extends beyond the point
coleenp@1755 2563 // where we're going to put our guard pages, truncate the mapping at
coleenp@1755 2564 // that point by munmap()ping it. This ensures that when we later
coleenp@1755 2565 // munmap() the guard pages we don't leave a hole in the stack
coleenp@1755 2566 // mapping.
coleenp@1755 2567 bool os::create_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2568 uintptr_t stack_extent, stack_base;
coleenp@1755 2569 if (get_stack_bounds(&stack_extent, &stack_base)) {
coleenp@1755 2570 if (stack_extent < (uintptr_t)addr)
coleenp@1755 2571 ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
coleenp@1755 2572 }
coleenp@1755 2573
coleenp@1755 2574 return os::commit_memory(addr, size);
coleenp@1755 2575 }
coleenp@1755 2576
coleenp@1755 2577 // If this is a growable mapping, remove the guard pages entirely by
coleenp@1755 2578 // munmap()ping them. If not, just call uncommit_memory().
coleenp@1755 2579 bool os::remove_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2580 uintptr_t stack_extent, stack_base;
coleenp@1755 2581 if (get_stack_bounds(&stack_extent, &stack_base)) {
coleenp@1755 2582 return ::munmap(addr, size) == 0;
coleenp@1755 2583 }
coleenp@1755 2584
coleenp@1755 2585 return os::uncommit_memory(addr, size);
coleenp@1755 2586 }
coleenp@1755 2587
duke@435 2588 static address _highest_vm_reserved_address = NULL;
duke@435 2589
duke@435 2590 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
duke@435 2591 // at 'requested_addr'. If there are existing memory mappings at the same
duke@435 2592 // location, however, they will be overwritten. If 'fixed' is false,
duke@435 2593 // 'requested_addr' is only treated as a hint, the return value may or
duke@435 2594 // may not start from the requested address. Unlike Linux mmap(), this
duke@435 2595 // function returns NULL to indicate failure.
duke@435 2596 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
duke@435 2597 char * addr;
duke@435 2598 int flags;
duke@435 2599
duke@435 2600 flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
duke@435 2601 if (fixed) {
duke@435 2602 assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
duke@435 2603 flags |= MAP_FIXED;
duke@435 2604 }
duke@435 2605
coleenp@1091 2606 // Map uncommitted pages PROT_READ and PROT_WRITE, change access
coleenp@1091 2607 // to PROT_EXEC if executable when we commit the page.
coleenp@1091 2608 addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
duke@435 2609 flags, -1, 0);
duke@435 2610
duke@435 2611 if (addr != MAP_FAILED) {
duke@435 2612 // anon_mmap() should only get called during VM initialization,
duke@435 2613 // don't need lock (actually we can skip locking even it can be called
duke@435 2614 // from multiple threads, because _highest_vm_reserved_address is just a
duke@435 2615 // hint about the upper limit of non-stack memory regions.)
duke@435 2616 if ((address)addr + bytes > _highest_vm_reserved_address) {
duke@435 2617 _highest_vm_reserved_address = (address)addr + bytes;
duke@435 2618 }
duke@435 2619 }
duke@435 2620
duke@435 2621 return addr == MAP_FAILED ? NULL : addr;
duke@435 2622 }
duke@435 2623
duke@435 2624 // Don't update _highest_vm_reserved_address, because there might be memory
duke@435 2625 // regions above addr + size. If so, releasing a memory region only creates
duke@435 2626 // a hole in the address space, it doesn't help prevent heap-stack collision.
duke@435 2627 //
duke@435 2628 static int anon_munmap(char * addr, size_t size) {
duke@435 2629 return ::munmap(addr, size) == 0;
duke@435 2630 }
duke@435 2631
duke@435 2632 char* os::reserve_memory(size_t bytes, char* requested_addr,
duke@435 2633 size_t alignment_hint) {
duke@435 2634 return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
duke@435 2635 }
duke@435 2636
duke@435 2637 bool os::release_memory(char* addr, size_t size) {
duke@435 2638 return anon_munmap(addr, size);
duke@435 2639 }
duke@435 2640
duke@435 2641 static address highest_vm_reserved_address() {
duke@435 2642 return _highest_vm_reserved_address;
duke@435 2643 }
duke@435 2644
duke@435 2645 static bool linux_mprotect(char* addr, size_t size, int prot) {
duke@435 2646 // Linux wants the mprotect address argument to be page aligned.
duke@435 2647 char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
duke@435 2648
duke@435 2649 // According to SUSv3, mprotect() should only be used with mappings
duke@435 2650 // established by mmap(), and mmap() always maps whole pages. Unaligned
duke@435 2651 // 'addr' likely indicates problem in the VM (e.g. trying to change
duke@435 2652 // protection of malloc'ed or statically allocated memory). Check the
duke@435 2653 // caller if you hit this assert.
duke@435 2654 assert(addr == bottom, "sanity check");
duke@435 2655
duke@435 2656 size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
duke@435 2657 return ::mprotect(bottom, size, prot) == 0;
duke@435 2658 }
duke@435 2659
coleenp@672 2660 // Set protections specified
coleenp@672 2661 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 2662 bool is_committed) {
coleenp@672 2663 unsigned int p = 0;
coleenp@672 2664 switch (prot) {
coleenp@672 2665 case MEM_PROT_NONE: p = PROT_NONE; break;
coleenp@672 2666 case MEM_PROT_READ: p = PROT_READ; break;
coleenp@672 2667 case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
coleenp@672 2668 case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
coleenp@672 2669 default:
coleenp@672 2670 ShouldNotReachHere();
coleenp@672 2671 }
coleenp@672 2672 // is_committed is unused.
coleenp@672 2673 return linux_mprotect(addr, bytes, p);
duke@435 2674 }
duke@435 2675
duke@435 2676 bool os::guard_memory(char* addr, size_t size) {
duke@435 2677 return linux_mprotect(addr, size, PROT_NONE);
duke@435 2678 }
duke@435 2679
duke@435 2680 bool os::unguard_memory(char* addr, size_t size) {
coleenp@912 2681 return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
duke@435 2682 }
duke@435 2683
duke@435 2684 // Large page support
duke@435 2685
duke@435 2686 static size_t _large_page_size = 0;
duke@435 2687
duke@435 2688 bool os::large_page_init() {
duke@435 2689 if (!UseLargePages) return false;
duke@435 2690
duke@435 2691 if (LargePageSizeInBytes) {
duke@435 2692 _large_page_size = LargePageSizeInBytes;
duke@435 2693 } else {
duke@435 2694 // large_page_size on Linux is used to round up heap size. x86 uses either
duke@435 2695 // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
duke@435 2696 // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
duke@435 2697 // page as large as 256M.
duke@435 2698 //
duke@435 2699 // Here we try to figure out page size by parsing /proc/meminfo and looking
duke@435 2700 // for a line with the following format:
duke@435 2701 // Hugepagesize: 2048 kB
duke@435 2702 //
duke@435 2703 // If we can't determine the value (e.g. /proc is not mounted, or the text
duke@435 2704 // format has been changed), we'll use the largest page size supported by
duke@435 2705 // the processor.
duke@435 2706
never@1445 2707 #ifndef ZERO
duke@435 2708 _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
never@1445 2709 #endif // ZERO
duke@435 2710
duke@435 2711 FILE *fp = fopen("/proc/meminfo", "r");
duke@435 2712 if (fp) {
duke@435 2713 while (!feof(fp)) {
duke@435 2714 int x = 0;
duke@435 2715 char buf[16];
duke@435 2716 if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
duke@435 2717 if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
duke@435 2718 _large_page_size = x * K;
duke@435 2719 break;
duke@435 2720 }
duke@435 2721 } else {
duke@435 2722 // skip to next line
duke@435 2723 for (;;) {
duke@435 2724 int ch = fgetc(fp);
duke@435 2725 if (ch == EOF || ch == (int)'\n') break;
duke@435 2726 }
duke@435 2727 }
duke@435 2728 }
duke@435 2729 fclose(fp);
duke@435 2730 }
duke@435 2731 }
duke@435 2732
duke@435 2733 const size_t default_page_size = (size_t)Linux::page_size();
duke@435 2734 if (_large_page_size > default_page_size) {
duke@435 2735 _page_sizes[0] = _large_page_size;
duke@435 2736 _page_sizes[1] = default_page_size;
duke@435 2737 _page_sizes[2] = 0;
duke@435 2738 }
duke@435 2739
duke@435 2740 // Large page support is available on 2.6 or newer kernel, some vendors
duke@435 2741 // (e.g. Redhat) have backported it to their 2.4 based distributions.
duke@435 2742 // We optimistically assume the support is available. If later it turns out
duke@435 2743 // not true, VM will automatically switch to use regular page size.
duke@435 2744 return true;
duke@435 2745 }
duke@435 2746
duke@435 2747 #ifndef SHM_HUGETLB
duke@435 2748 #define SHM_HUGETLB 04000
duke@435 2749 #endif
duke@435 2750
coleenp@1091 2751 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
coleenp@1091 2752 // "exec" is passed in but not used. Creating the shared image for
coleenp@1091 2753 // the code cache doesn't have an SHM_X executable permission to check.
duke@435 2754 assert(UseLargePages, "only for large pages");
duke@435 2755
duke@435 2756 key_t key = IPC_PRIVATE;
duke@435 2757 char *addr;
duke@435 2758
duke@435 2759 bool warn_on_failure = UseLargePages &&
duke@435 2760 (!FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 2761 !FLAG_IS_DEFAULT(LargePageSizeInBytes)
duke@435 2762 );
duke@435 2763 char msg[128];
duke@435 2764
duke@435 2765 // Create a large shared memory region to attach to based on size.
duke@435 2766 // Currently, size is the total size of the heap
duke@435 2767 int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
duke@435 2768 if (shmid == -1) {
duke@435 2769 // Possible reasons for shmget failure:
duke@435 2770 // 1. shmmax is too small for Java heap.
duke@435 2771 // > check shmmax value: cat /proc/sys/kernel/shmmax
duke@435 2772 // > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
duke@435 2773 // 2. not enough large page memory.
duke@435 2774 // > check available large pages: cat /proc/meminfo
duke@435 2775 // > increase amount of large pages:
duke@435 2776 // echo new_value > /proc/sys/vm/nr_hugepages
duke@435 2777 // Note 1: different Linux may use different name for this property,
duke@435 2778 // e.g. on Redhat AS-3 it is "hugetlb_pool".
duke@435 2779 // Note 2: it's possible there's enough physical memory available but
duke@435 2780 // they are so fragmented after a long run that they can't
duke@435 2781 // coalesce into large pages. Try to reserve large pages when
duke@435 2782 // the system is still "fresh".
duke@435 2783 if (warn_on_failure) {
duke@435 2784 jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
duke@435 2785 warning(msg);
duke@435 2786 }
duke@435 2787 return NULL;
duke@435 2788 }
duke@435 2789
duke@435 2790 // attach to the region
kvn@1892 2791 addr = (char*)shmat(shmid, req_addr, 0);
duke@435 2792 int err = errno;
duke@435 2793
duke@435 2794 // Remove shmid. If shmat() is successful, the actual shared memory segment
duke@435 2795 // will be deleted when it's detached by shmdt() or when the process
duke@435 2796 // terminates. If shmat() is not successful this will remove the shared
duke@435 2797 // segment immediately.
duke@435 2798 shmctl(shmid, IPC_RMID, NULL);
duke@435 2799
duke@435 2800 if ((intptr_t)addr == -1) {
duke@435 2801 if (warn_on_failure) {
duke@435 2802 jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
duke@435 2803 warning(msg);
duke@435 2804 }
duke@435 2805 return NULL;
duke@435 2806 }
duke@435 2807
duke@435 2808 return addr;
duke@435 2809 }
duke@435 2810
duke@435 2811 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 2812 // detaching the SHM segment will also delete it, see reserve_memory_special()
duke@435 2813 int rslt = shmdt(base);
duke@435 2814 return rslt == 0;
duke@435 2815 }
duke@435 2816
duke@435 2817 size_t os::large_page_size() {
duke@435 2818 return _large_page_size;
duke@435 2819 }
duke@435 2820
duke@435 2821 // Linux does not support anonymous mmap with large page memory. The only way
duke@435 2822 // to reserve large page memory without file backing is through SysV shared
duke@435 2823 // memory API. The entire memory region is committed and pinned upfront.
duke@435 2824 // Hopefully this will change in the future...
duke@435 2825 bool os::can_commit_large_page_memory() {
duke@435 2826 return false;
duke@435 2827 }
duke@435 2828
jcoomes@514 2829 bool os::can_execute_large_page_memory() {
jcoomes@514 2830 return false;
jcoomes@514 2831 }
jcoomes@514 2832
duke@435 2833 // Reserve memory at an arbitrary address, only if that area is
duke@435 2834 // available (and not reserved for something else).
duke@435 2835
duke@435 2836 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 2837 const int max_tries = 10;
duke@435 2838 char* base[max_tries];
duke@435 2839 size_t size[max_tries];
duke@435 2840 const size_t gap = 0x000000;
duke@435 2841
duke@435 2842 // Assert only that the size is a multiple of the page size, since
duke@435 2843 // that's all that mmap requires, and since that's all we really know
duke@435 2844 // about at this low abstraction level. If we need higher alignment,
duke@435 2845 // we can either pass an alignment to this method or verify alignment
duke@435 2846 // in one of the methods further up the call chain. See bug 5044738.
duke@435 2847 assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
duke@435 2848
duke@435 2849 // Repeatedly allocate blocks until the block is allocated at the
duke@435 2850 // right spot. Give up after max_tries. Note that reserve_memory() will
duke@435 2851 // automatically update _highest_vm_reserved_address if the call is
duke@435 2852 // successful. The variable tracks the highest memory address every reserved
duke@435 2853 // by JVM. It is used to detect heap-stack collision if running with
duke@435 2854 // fixed-stack LinuxThreads. Because here we may attempt to reserve more
duke@435 2855 // space than needed, it could confuse the collision detecting code. To
duke@435 2856 // solve the problem, save current _highest_vm_reserved_address and
duke@435 2857 // calculate the correct value before return.
duke@435 2858 address old_highest = _highest_vm_reserved_address;
duke@435 2859
duke@435 2860 // Linux mmap allows caller to pass an address as hint; give it a try first,
duke@435 2861 // if kernel honors the hint then we can return immediately.
duke@435 2862 char * addr = anon_mmap(requested_addr, bytes, false);
duke@435 2863 if (addr == requested_addr) {
duke@435 2864 return requested_addr;
duke@435 2865 }
duke@435 2866
duke@435 2867 if (addr != NULL) {
duke@435 2868 // mmap() is successful but it fails to reserve at the requested address
duke@435 2869 anon_munmap(addr, bytes);
duke@435 2870 }
duke@435 2871
duke@435 2872 int i;
duke@435 2873 for (i = 0; i < max_tries; ++i) {
duke@435 2874 base[i] = reserve_memory(bytes);
duke@435 2875
duke@435 2876 if (base[i] != NULL) {
duke@435 2877 // Is this the block we wanted?
duke@435 2878 if (base[i] == requested_addr) {
duke@435 2879 size[i] = bytes;
duke@435 2880 break;
duke@435 2881 }
duke@435 2882
duke@435 2883 // Does this overlap the block we wanted? Give back the overlapped
duke@435 2884 // parts and try again.
duke@435 2885
duke@435 2886 size_t top_overlap = requested_addr + (bytes + gap) - base[i];
duke@435 2887 if (top_overlap >= 0 && top_overlap < bytes) {
duke@435 2888 unmap_memory(base[i], top_overlap);
duke@435 2889 base[i] += top_overlap;
duke@435 2890 size[i] = bytes - top_overlap;
duke@435 2891 } else {
duke@435 2892 size_t bottom_overlap = base[i] + bytes - requested_addr;
duke@435 2893 if (bottom_overlap >= 0 && bottom_overlap < bytes) {
duke@435 2894 unmap_memory(requested_addr, bottom_overlap);
duke@435 2895 size[i] = bytes - bottom_overlap;
duke@435 2896 } else {
duke@435 2897 size[i] = bytes;
duke@435 2898 }
duke@435 2899 }
duke@435 2900 }
duke@435 2901 }
duke@435 2902
duke@435 2903 // Give back the unused reserved pieces.
duke@435 2904
duke@435 2905 for (int j = 0; j < i; ++j) {
duke@435 2906 if (base[j] != NULL) {
duke@435 2907 unmap_memory(base[j], size[j]);
duke@435 2908 }
duke@435 2909 }
duke@435 2910
duke@435 2911 if (i < max_tries) {
duke@435 2912 _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
duke@435 2913 return requested_addr;
duke@435 2914 } else {
duke@435 2915 _highest_vm_reserved_address = old_highest;
duke@435 2916 return NULL;
duke@435 2917 }
duke@435 2918 }
duke@435 2919
duke@435 2920 size_t os::read(int fd, void *buf, unsigned int nBytes) {
duke@435 2921 return ::read(fd, buf, nBytes);
duke@435 2922 }
duke@435 2923
duke@435 2924 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
duke@435 2925 // Solaris uses poll(), linux uses park().
duke@435 2926 // Poll() is likely a better choice, assuming that Thread.interrupt()
duke@435 2927 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
duke@435 2928 // SIGSEGV, see 4355769.
duke@435 2929
duke@435 2930 const int NANOSECS_PER_MILLISECS = 1000000;
duke@435 2931
duke@435 2932 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
duke@435 2933 assert(thread == Thread::current(), "thread consistency check");
duke@435 2934
duke@435 2935 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 2936 slp->reset() ;
duke@435 2937 OrderAccess::fence() ;
duke@435 2938
duke@435 2939 if (interruptible) {
duke@435 2940 jlong prevtime = javaTimeNanos();
duke@435 2941
duke@435 2942 for (;;) {
duke@435 2943 if (os::is_interrupted(thread, true)) {
duke@435 2944 return OS_INTRPT;
duke@435 2945 }
duke@435 2946
duke@435 2947 jlong newtime = javaTimeNanos();
duke@435 2948
duke@435 2949 if (newtime - prevtime < 0) {
duke@435 2950 // time moving backwards, should only happen if no monotonic clock
duke@435 2951 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 2952 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 2953 } else {
duke@435 2954 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 2955 }
duke@435 2956
duke@435 2957 if(millis <= 0) {
duke@435 2958 return OS_OK;
duke@435 2959 }
duke@435 2960
duke@435 2961 prevtime = newtime;
duke@435 2962
duke@435 2963 {
duke@435 2964 assert(thread->is_Java_thread(), "sanity check");
duke@435 2965 JavaThread *jt = (JavaThread *) thread;
duke@435 2966 ThreadBlockInVM tbivm(jt);
duke@435 2967 OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
duke@435 2968
duke@435 2969 jt->set_suspend_equivalent();
duke@435 2970 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 2971 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 2972
duke@435 2973 slp->park(millis);
duke@435 2974
duke@435 2975 // were we externally suspended while we were waiting?
duke@435 2976 jt->check_and_wait_while_suspended();
duke@435 2977 }
duke@435 2978 }
duke@435 2979 } else {
duke@435 2980 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 2981 jlong prevtime = javaTimeNanos();
duke@435 2982
duke@435 2983 for (;;) {
duke@435 2984 // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
duke@435 2985 // the 1st iteration ...
duke@435 2986 jlong newtime = javaTimeNanos();
duke@435 2987
duke@435 2988 if (newtime - prevtime < 0) {
duke@435 2989 // time moving backwards, should only happen if no monotonic clock
duke@435 2990 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 2991 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 2992 } else {
duke@435 2993 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 2994 }
duke@435 2995
duke@435 2996 if(millis <= 0) break ;
duke@435 2997
duke@435 2998 prevtime = newtime;
duke@435 2999 slp->park(millis);
duke@435 3000 }
duke@435 3001 return OS_OK ;
duke@435 3002 }
duke@435 3003 }
duke@435 3004
duke@435 3005 int os::naked_sleep() {
duke@435 3006 // %% make the sleep time an integer flag. for now use 1 millisec.
duke@435 3007 return os::sleep(Thread::current(), 1, false);
duke@435 3008 }
duke@435 3009
duke@435 3010 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 3011 void os::infinite_sleep() {
duke@435 3012 while (true) { // sleep forever ...
duke@435 3013 ::sleep(100); // ... 100 seconds at a time
duke@435 3014 }
duke@435 3015 }
duke@435 3016
duke@435 3017 // Used to convert frequent JVM_Yield() to nops
duke@435 3018 bool os::dont_yield() {
duke@435 3019 return DontYieldALot;
duke@435 3020 }
duke@435 3021
duke@435 3022 void os::yield() {
duke@435 3023 sched_yield();
duke@435 3024 }
duke@435 3025
duke@435 3026 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
duke@435 3027
duke@435 3028 void os::yield_all(int attempts) {
duke@435 3029 // Yields to all threads, including threads with lower priorities
duke@435 3030 // Threads on Linux are all with same priority. The Solaris style
duke@435 3031 // os::yield_all() with nanosleep(1ms) is not necessary.
duke@435 3032 sched_yield();
duke@435 3033 }
duke@435 3034
duke@435 3035 // Called from the tight loops to possibly influence time-sharing heuristics
duke@435 3036 void os::loop_breaker(int attempts) {
duke@435 3037 os::yield_all(attempts);
duke@435 3038 }
duke@435 3039
duke@435 3040 ////////////////////////////////////////////////////////////////////////////////
duke@435 3041 // thread priority support
duke@435 3042
duke@435 3043 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
duke@435 3044 // only supports dynamic priority, static priority must be zero. For real-time
duke@435 3045 // applications, Linux supports SCHED_RR which allows static priority (1-99).
duke@435 3046 // However, for large multi-threaded applications, SCHED_RR is not only slower
duke@435 3047 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
duke@435 3048 // of 5 runs - Sep 2005).
duke@435 3049 //
duke@435 3050 // The following code actually changes the niceness of kernel-thread/LWP. It
duke@435 3051 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
duke@435 3052 // not the entire user process, and user level threads are 1:1 mapped to kernel
duke@435 3053 // threads. It has always been the case, but could change in the future. For
duke@435 3054 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
duke@435 3055 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
duke@435 3056
duke@435 3057 int os::java_to_os_priority[MaxPriority + 1] = {
duke@435 3058 19, // 0 Entry should never be used
duke@435 3059
duke@435 3060 4, // 1 MinPriority
duke@435 3061 3, // 2
duke@435 3062 2, // 3
duke@435 3063
duke@435 3064 1, // 4
duke@435 3065 0, // 5 NormPriority
duke@435 3066 -1, // 6
duke@435 3067
duke@435 3068 -2, // 7
duke@435 3069 -3, // 8
duke@435 3070 -4, // 9 NearMaxPriority
duke@435 3071
duke@435 3072 -5 // 10 MaxPriority
duke@435 3073 };
duke@435 3074
duke@435 3075 static int prio_init() {
duke@435 3076 if (ThreadPriorityPolicy == 1) {
duke@435 3077 // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
duke@435 3078 // if effective uid is not root. Perhaps, a more elegant way of doing
duke@435 3079 // this is to test CAP_SYS_NICE capability, but that will require libcap.so
duke@435 3080 if (geteuid() != 0) {
duke@435 3081 if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
duke@435 3082 warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
duke@435 3083 }
duke@435 3084 ThreadPriorityPolicy = 0;
duke@435 3085 }
duke@435 3086 }
duke@435 3087 return 0;
duke@435 3088 }
duke@435 3089
duke@435 3090 OSReturn os::set_native_priority(Thread* thread, int newpri) {
duke@435 3091 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
duke@435 3092
duke@435 3093 int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
duke@435 3094 return (ret == 0) ? OS_OK : OS_ERR;
duke@435 3095 }
duke@435 3096
duke@435 3097 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
duke@435 3098 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
duke@435 3099 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 3100 return OS_OK;
duke@435 3101 }
duke@435 3102
duke@435 3103 errno = 0;
duke@435 3104 *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
duke@435 3105 return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
duke@435 3106 }
duke@435 3107
duke@435 3108 // Hint to the underlying OS that a task switch would not be good.
duke@435 3109 // Void return because it's a hint and can fail.
duke@435 3110 void os::hint_no_preempt() {}
duke@435 3111
duke@435 3112 ////////////////////////////////////////////////////////////////////////////////
duke@435 3113 // suspend/resume support
duke@435 3114
duke@435 3115 // the low-level signal-based suspend/resume support is a remnant from the
duke@435 3116 // old VM-suspension that used to be for java-suspension, safepoints etc,
duke@435 3117 // within hotspot. Now there is a single use-case for this:
duke@435 3118 // - calling get_thread_pc() on the VMThread by the flat-profiler task
duke@435 3119 // that runs in the watcher thread.
duke@435 3120 // The remaining code is greatly simplified from the more general suspension
duke@435 3121 // code that used to be used.
duke@435 3122 //
duke@435 3123 // The protocol is quite simple:
duke@435 3124 // - suspend:
duke@435 3125 // - sends a signal to the target thread
duke@435 3126 // - polls the suspend state of the osthread using a yield loop
duke@435 3127 // - target thread signal handler (SR_handler) sets suspend state
duke@435 3128 // and blocks in sigsuspend until continued
duke@435 3129 // - resume:
duke@435 3130 // - sets target osthread state to continue
duke@435 3131 // - sends signal to end the sigsuspend loop in the SR_handler
duke@435 3132 //
duke@435 3133 // Note that the SR_lock plays no role in this suspend/resume protocol.
duke@435 3134 //
duke@435 3135
duke@435 3136 static void resume_clear_context(OSThread *osthread) {
duke@435 3137 osthread->set_ucontext(NULL);
duke@435 3138 osthread->set_siginfo(NULL);
duke@435 3139
duke@435 3140 // notify the suspend action is completed, we have now resumed
duke@435 3141 osthread->sr.clear_suspended();
duke@435 3142 }
duke@435 3143
duke@435 3144 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3145 osthread->set_ucontext(context);
duke@435 3146 osthread->set_siginfo(siginfo);
duke@435 3147 }
duke@435 3148
duke@435 3149 //
duke@435 3150 // Handler function invoked when a thread's execution is suspended or
duke@435 3151 // resumed. We have to be careful that only async-safe functions are
duke@435 3152 // called here (Note: most pthread functions are not async safe and
duke@435 3153 // should be avoided.)
duke@435 3154 //
duke@435 3155 // Note: sigwait() is a more natural fit than sigsuspend() from an
duke@435 3156 // interface point of view, but sigwait() prevents the signal hander
duke@435 3157 // from being run. libpthread would get very confused by not having
duke@435 3158 // its signal handlers run and prevents sigwait()'s use with the
duke@435 3159 // mutex granting granting signal.
duke@435 3160 //
duke@435 3161 // Currently only ever called on the VMThread
duke@435 3162 //
duke@435 3163 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3164 // Save and restore errno to avoid confusing native code with EINTR
duke@435 3165 // after sigsuspend.
duke@435 3166 int old_errno = errno;
duke@435 3167
duke@435 3168 Thread* thread = Thread::current();
duke@435 3169 OSThread* osthread = thread->osthread();
duke@435 3170 assert(thread->is_VM_thread(), "Must be VMThread");
duke@435 3171 // read current suspend action
duke@435 3172 int action = osthread->sr.suspend_action();
duke@435 3173 if (action == SR_SUSPEND) {
duke@435 3174 suspend_save_context(osthread, siginfo, context);
duke@435 3175
duke@435 3176 // Notify the suspend action is about to be completed. do_suspend()
duke@435 3177 // waits until SR_SUSPENDED is set and then returns. We will wait
duke@435 3178 // here for a resume signal and that completes the suspend-other
duke@435 3179 // action. do_suspend/do_resume is always called as a pair from
duke@435 3180 // the same thread - so there are no races
duke@435 3181
duke@435 3182 // notify the caller
duke@435 3183 osthread->sr.set_suspended();
duke@435 3184
duke@435 3185 sigset_t suspend_set; // signals for sigsuspend()
duke@435 3186
duke@435 3187 // get current set of blocked signals and unblock resume signal
duke@435 3188 pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
duke@435 3189 sigdelset(&suspend_set, SR_signum);
duke@435 3190
duke@435 3191 // wait here until we are resumed
duke@435 3192 do {
duke@435 3193 sigsuspend(&suspend_set);
duke@435 3194 // ignore all returns until we get a resume signal
duke@435 3195 } while (osthread->sr.suspend_action() != SR_CONTINUE);
duke@435 3196
duke@435 3197 resume_clear_context(osthread);
duke@435 3198
duke@435 3199 } else {
duke@435 3200 assert(action == SR_CONTINUE, "unexpected sr action");
duke@435 3201 // nothing special to do - just leave the handler
duke@435 3202 }
duke@435 3203
duke@435 3204 errno = old_errno;
duke@435 3205 }
duke@435 3206
duke@435 3207
duke@435 3208 static int SR_initialize() {
duke@435 3209 struct sigaction act;
duke@435 3210 char *s;
duke@435 3211 /* Get signal number to use for suspend/resume */
duke@435 3212 if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
duke@435 3213 int sig = ::strtol(s, 0, 10);
duke@435 3214 if (sig > 0 || sig < _NSIG) {
duke@435 3215 SR_signum = sig;
duke@435 3216 }
duke@435 3217 }
duke@435 3218
duke@435 3219 assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
duke@435 3220 "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
duke@435 3221
duke@435 3222 sigemptyset(&SR_sigset);
duke@435 3223 sigaddset(&SR_sigset, SR_signum);
duke@435 3224
duke@435 3225 /* Set up signal handler for suspend/resume */
duke@435 3226 act.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 3227 act.sa_handler = (void (*)(int)) SR_handler;
duke@435 3228
duke@435 3229 // SR_signum is blocked by default.
duke@435 3230 // 4528190 - We also need to block pthread restart signal (32 on all
duke@435 3231 // supported Linux platforms). Note that LinuxThreads need to block
duke@435 3232 // this signal for all threads to work properly. So we don't have
duke@435 3233 // to use hard-coded signal number when setting up the mask.
duke@435 3234 pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
duke@435 3235
duke@435 3236 if (sigaction(SR_signum, &act, 0) == -1) {
duke@435 3237 return -1;
duke@435 3238 }
duke@435 3239
duke@435 3240 // Save signal flag
duke@435 3241 os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
duke@435 3242 return 0;
duke@435 3243 }
duke@435 3244
duke@435 3245 static int SR_finalize() {
duke@435 3246 return 0;
duke@435 3247 }
duke@435 3248
duke@435 3249
duke@435 3250 // returns true on success and false on error - really an error is fatal
duke@435 3251 // but this seems the normal response to library errors
duke@435 3252 static bool do_suspend(OSThread* osthread) {
duke@435 3253 // mark as suspended and send signal
duke@435 3254 osthread->sr.set_suspend_action(SR_SUSPEND);
duke@435 3255 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3256 assert_status(status == 0, status, "pthread_kill");
duke@435 3257
duke@435 3258 // check status and wait until notified of suspension
duke@435 3259 if (status == 0) {
duke@435 3260 for (int i = 0; !osthread->sr.is_suspended(); i++) {
duke@435 3261 os::yield_all(i);
duke@435 3262 }
duke@435 3263 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3264 return true;
duke@435 3265 }
duke@435 3266 else {
duke@435 3267 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3268 return false;
duke@435 3269 }
duke@435 3270 }
duke@435 3271
duke@435 3272 static void do_resume(OSThread* osthread) {
duke@435 3273 assert(osthread->sr.is_suspended(), "thread should be suspended");
duke@435 3274 osthread->sr.set_suspend_action(SR_CONTINUE);
duke@435 3275
duke@435 3276 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3277 assert_status(status == 0, status, "pthread_kill");
duke@435 3278 // check status and wait unit notified of resumption
duke@435 3279 if (status == 0) {
duke@435 3280 for (int i = 0; osthread->sr.is_suspended(); i++) {
duke@435 3281 os::yield_all(i);
duke@435 3282 }
duke@435 3283 }
duke@435 3284 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3285 }
duke@435 3286
duke@435 3287 ////////////////////////////////////////////////////////////////////////////////
duke@435 3288 // interrupt support
duke@435 3289
duke@435 3290 void os::interrupt(Thread* thread) {
duke@435 3291 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3292 "possibility of dangling Thread pointer");
duke@435 3293
duke@435 3294 OSThread* osthread = thread->osthread();
duke@435 3295
duke@435 3296 if (!osthread->interrupted()) {
duke@435 3297 osthread->set_interrupted(true);
duke@435 3298 // More than one thread can get here with the same value of osthread,
duke@435 3299 // resulting in multiple notifications. We do, however, want the store
duke@435 3300 // to interrupted() to be visible to other threads before we execute unpark().
duke@435 3301 OrderAccess::fence();
duke@435 3302 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 3303 if (slp != NULL) slp->unpark() ;
duke@435 3304 }
duke@435 3305
duke@435 3306 // For JSR166. Unpark even if interrupt status already was set
duke@435 3307 if (thread->is_Java_thread())
duke@435 3308 ((JavaThread*)thread)->parker()->unpark();
duke@435 3309
duke@435 3310 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3311 if (ev != NULL) ev->unpark() ;
duke@435 3312
duke@435 3313 }
duke@435 3314
duke@435 3315 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3316 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3317 "possibility of dangling Thread pointer");
duke@435 3318
duke@435 3319 OSThread* osthread = thread->osthread();
duke@435 3320
duke@435 3321 bool interrupted = osthread->interrupted();
duke@435 3322
duke@435 3323 if (interrupted && clear_interrupted) {
duke@435 3324 osthread->set_interrupted(false);
duke@435 3325 // consider thread->_SleepEvent->reset() ... optional optimization
duke@435 3326 }
duke@435 3327
duke@435 3328 return interrupted;
duke@435 3329 }
duke@435 3330
duke@435 3331 ///////////////////////////////////////////////////////////////////////////////////
duke@435 3332 // signal handling (except suspend/resume)
duke@435 3333
duke@435 3334 // This routine may be used by user applications as a "hook" to catch signals.
duke@435 3335 // The user-defined signal handler must pass unrecognized signals to this
duke@435 3336 // routine, and if it returns true (non-zero), then the signal handler must
duke@435 3337 // return immediately. If the flag "abort_if_unrecognized" is true, then this
duke@435 3338 // routine will never retun false (zero), but instead will execute a VM panic
duke@435 3339 // routine kill the process.
duke@435 3340 //
duke@435 3341 // If this routine returns false, it is OK to call it again. This allows
duke@435 3342 // the user-defined signal handler to perform checks either before or after
duke@435 3343 // the VM performs its own checks. Naturally, the user code would be making
duke@435 3344 // a serious error if it tried to handle an exception (such as a null check
duke@435 3345 // or breakpoint) that the VM was generating for its own correct operation.
duke@435 3346 //
duke@435 3347 // This routine may recognize any of the following kinds of signals:
duke@435 3348 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
duke@435 3349 // It should be consulted by handlers for any of those signals.
duke@435 3350 //
duke@435 3351 // The caller of this routine must pass in the three arguments supplied
duke@435 3352 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
duke@435 3353 // field of the structure passed to sigaction(). This routine assumes that
duke@435 3354 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
duke@435 3355 //
duke@435 3356 // Note that the VM will print warnings if it detects conflicting signal
duke@435 3357 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
duke@435 3358 //
duke@435 3359 extern "C" int
duke@435 3360 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
duke@435 3361 void* ucontext, int abort_if_unrecognized);
duke@435 3362
duke@435 3363 void signalHandler(int sig, siginfo_t* info, void* uc) {
duke@435 3364 assert(info != NULL && uc != NULL, "it must be old kernel");
duke@435 3365 JVM_handle_linux_signal(sig, info, uc, true);
duke@435 3366 }
duke@435 3367
duke@435 3368
duke@435 3369 // This boolean allows users to forward their own non-matching signals
duke@435 3370 // to JVM_handle_linux_signal, harmlessly.
duke@435 3371 bool os::Linux::signal_handlers_are_installed = false;
duke@435 3372
duke@435 3373 // For signal-chaining
duke@435 3374 struct sigaction os::Linux::sigact[MAXSIGNUM];
duke@435 3375 unsigned int os::Linux::sigs = 0;
duke@435 3376 bool os::Linux::libjsig_is_loaded = false;
duke@435 3377 typedef struct sigaction *(*get_signal_t)(int);
duke@435 3378 get_signal_t os::Linux::get_signal_action = NULL;
duke@435 3379
duke@435 3380 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
duke@435 3381 struct sigaction *actp = NULL;
duke@435 3382
duke@435 3383 if (libjsig_is_loaded) {
duke@435 3384 // Retrieve the old signal handler from libjsig
duke@435 3385 actp = (*get_signal_action)(sig);
duke@435 3386 }
duke@435 3387 if (actp == NULL) {
duke@435 3388 // Retrieve the preinstalled signal handler from jvm
duke@435 3389 actp = get_preinstalled_handler(sig);
duke@435 3390 }
duke@435 3391
duke@435 3392 return actp;
duke@435 3393 }
duke@435 3394
duke@435 3395 static bool call_chained_handler(struct sigaction *actp, int sig,
duke@435 3396 siginfo_t *siginfo, void *context) {
duke@435 3397 // Call the old signal handler
duke@435 3398 if (actp->sa_handler == SIG_DFL) {
duke@435 3399 // It's more reasonable to let jvm treat it as an unexpected exception
duke@435 3400 // instead of taking the default action.
duke@435 3401 return false;
duke@435 3402 } else if (actp->sa_handler != SIG_IGN) {
duke@435 3403 if ((actp->sa_flags & SA_NODEFER) == 0) {
duke@435 3404 // automaticlly block the signal
duke@435 3405 sigaddset(&(actp->sa_mask), sig);
duke@435 3406 }
duke@435 3407
duke@435 3408 sa_handler_t hand;
duke@435 3409 sa_sigaction_t sa;
duke@435 3410 bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
duke@435 3411 // retrieve the chained handler
duke@435 3412 if (siginfo_flag_set) {
duke@435 3413 sa = actp->sa_sigaction;
duke@435 3414 } else {
duke@435 3415 hand = actp->sa_handler;
duke@435 3416 }
duke@435 3417
duke@435 3418 if ((actp->sa_flags & SA_RESETHAND) != 0) {
duke@435 3419 actp->sa_handler = SIG_DFL;
duke@435 3420 }
duke@435 3421
duke@435 3422 // try to honor the signal mask
duke@435 3423 sigset_t oset;
duke@435 3424 pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
duke@435 3425
duke@435 3426 // call into the chained handler
duke@435 3427 if (siginfo_flag_set) {
duke@435 3428 (*sa)(sig, siginfo, context);
duke@435 3429 } else {
duke@435 3430 (*hand)(sig);
duke@435 3431 }
duke@435 3432
duke@435 3433 // restore the signal mask
duke@435 3434 pthread_sigmask(SIG_SETMASK, &oset, 0);
duke@435 3435 }
duke@435 3436 // Tell jvm's signal handler the signal is taken care of.
duke@435 3437 return true;
duke@435 3438 }
duke@435 3439
duke@435 3440 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
duke@435 3441 bool chained = false;
duke@435 3442 // signal-chaining
duke@435 3443 if (UseSignalChaining) {
duke@435 3444 struct sigaction *actp = get_chained_signal_action(sig);
duke@435 3445 if (actp != NULL) {
duke@435 3446 chained = call_chained_handler(actp, sig, siginfo, context);
duke@435 3447 }
duke@435 3448 }
duke@435 3449 return chained;
duke@435 3450 }
duke@435 3451
duke@435 3452 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
duke@435 3453 if ((( (unsigned int)1 << sig ) & sigs) != 0) {
duke@435 3454 return &sigact[sig];
duke@435 3455 }
duke@435 3456 return NULL;
duke@435 3457 }
duke@435 3458
duke@435 3459 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
duke@435 3460 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3461 sigact[sig] = oldAct;
duke@435 3462 sigs |= (unsigned int)1 << sig;
duke@435 3463 }
duke@435 3464
duke@435 3465 // for diagnostic
duke@435 3466 int os::Linux::sigflags[MAXSIGNUM];
duke@435 3467
duke@435 3468 int os::Linux::get_our_sigflags(int sig) {
duke@435 3469 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3470 return sigflags[sig];
duke@435 3471 }
duke@435 3472
duke@435 3473 void os::Linux::set_our_sigflags(int sig, int flags) {
duke@435 3474 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3475 sigflags[sig] = flags;
duke@435 3476 }
duke@435 3477
duke@435 3478 void os::Linux::set_signal_handler(int sig, bool set_installed) {
duke@435 3479 // Check for overwrite.
duke@435 3480 struct sigaction oldAct;
duke@435 3481 sigaction(sig, (struct sigaction*)NULL, &oldAct);
duke@435 3482
duke@435 3483 void* oldhand = oldAct.sa_sigaction
duke@435 3484 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3485 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3486 if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
duke@435 3487 oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
duke@435 3488 oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
duke@435 3489 if (AllowUserSignalHandlers || !set_installed) {
duke@435 3490 // Do not overwrite; user takes responsibility to forward to us.
duke@435 3491 return;
duke@435 3492 } else if (UseSignalChaining) {
duke@435 3493 // save the old handler in jvm
duke@435 3494 save_preinstalled_handler(sig, oldAct);
duke@435 3495 // libjsig also interposes the sigaction() call below and saves the
duke@435 3496 // old sigaction on it own.
duke@435 3497 } else {
jcoomes@1845 3498 fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
jcoomes@1845 3499 "%#lx for signal %d.", (long)oldhand, sig));
duke@435 3500 }
duke@435 3501 }
duke@435 3502
duke@435 3503 struct sigaction sigAct;
duke@435 3504 sigfillset(&(sigAct.sa_mask));
duke@435 3505 sigAct.sa_handler = SIG_DFL;
duke@435 3506 if (!set_installed) {
duke@435 3507 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3508 } else {
duke@435 3509 sigAct.sa_sigaction = signalHandler;
duke@435 3510 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3511 }
duke@435 3512 // Save flags, which are set by ours
duke@435 3513 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3514 sigflags[sig] = sigAct.sa_flags;
duke@435 3515
duke@435 3516 int ret = sigaction(sig, &sigAct, &oldAct);
duke@435 3517 assert(ret == 0, "check");
duke@435 3518
duke@435 3519 void* oldhand2 = oldAct.sa_sigaction
duke@435 3520 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3521 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3522 assert(oldhand2 == oldhand, "no concurrent signal handler installation");
duke@435 3523 }
duke@435 3524
duke@435 3525 // install signal handlers for signals that HotSpot needs to
duke@435 3526 // handle in order to support Java-level exception handling.
duke@435 3527
duke@435 3528 void os::Linux::install_signal_handlers() {
duke@435 3529 if (!signal_handlers_are_installed) {
duke@435 3530 signal_handlers_are_installed = true;
duke@435 3531
duke@435 3532 // signal-chaining
duke@435 3533 typedef void (*signal_setting_t)();
duke@435 3534 signal_setting_t begin_signal_setting = NULL;
duke@435 3535 signal_setting_t end_signal_setting = NULL;
duke@435 3536 begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3537 dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
duke@435 3538 if (begin_signal_setting != NULL) {
duke@435 3539 end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3540 dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
duke@435 3541 get_signal_action = CAST_TO_FN_PTR(get_signal_t,
duke@435 3542 dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
duke@435 3543 libjsig_is_loaded = true;
duke@435 3544 assert(UseSignalChaining, "should enable signal-chaining");
duke@435 3545 }
duke@435 3546 if (libjsig_is_loaded) {
duke@435 3547 // Tell libjsig jvm is setting signal handlers
duke@435 3548 (*begin_signal_setting)();
duke@435 3549 }
duke@435 3550
duke@435 3551 set_signal_handler(SIGSEGV, true);
duke@435 3552 set_signal_handler(SIGPIPE, true);
duke@435 3553 set_signal_handler(SIGBUS, true);
duke@435 3554 set_signal_handler(SIGILL, true);
duke@435 3555 set_signal_handler(SIGFPE, true);
duke@435 3556 set_signal_handler(SIGXFSZ, true);
duke@435 3557
duke@435 3558 if (libjsig_is_loaded) {
duke@435 3559 // Tell libjsig jvm finishes setting signal handlers
duke@435 3560 (*end_signal_setting)();
duke@435 3561 }
duke@435 3562
duke@435 3563 // We don't activate signal checker if libjsig is in place, we trust ourselves
duke@435 3564 // and if UserSignalHandler is installed all bets are off
duke@435 3565 if (CheckJNICalls) {
duke@435 3566 if (libjsig_is_loaded) {
duke@435 3567 tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
duke@435 3568 check_signals = false;
duke@435 3569 }
duke@435 3570 if (AllowUserSignalHandlers) {
duke@435 3571 tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
duke@435 3572 check_signals = false;
duke@435 3573 }
duke@435 3574 }
duke@435 3575 }
duke@435 3576 }
duke@435 3577
duke@435 3578 // This is the fastest way to get thread cpu time on Linux.
duke@435 3579 // Returns cpu time (user+sys) for any thread, not only for current.
duke@435 3580 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
duke@435 3581 // It might work on 2.6.10+ with a special kernel/glibc patch.
duke@435 3582 // For reference, please, see IEEE Std 1003.1-2004:
duke@435 3583 // http://www.unix.org/single_unix_specification
duke@435 3584
duke@435 3585 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
duke@435 3586 struct timespec tp;
duke@435 3587 int rc = os::Linux::clock_gettime(clockid, &tp);
duke@435 3588 assert(rc == 0, "clock_gettime is expected to return 0 code");
duke@435 3589
duke@435 3590 return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
duke@435 3591 }
duke@435 3592
duke@435 3593 /////
duke@435 3594 // glibc on Linux platform uses non-documented flag
duke@435 3595 // to indicate, that some special sort of signal
duke@435 3596 // trampoline is used.
duke@435 3597 // We will never set this flag, and we should
duke@435 3598 // ignore this flag in our diagnostic
duke@435 3599 #ifdef SIGNIFICANT_SIGNAL_MASK
duke@435 3600 #undef SIGNIFICANT_SIGNAL_MASK
duke@435 3601 #endif
duke@435 3602 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
duke@435 3603
duke@435 3604 static const char* get_signal_handler_name(address handler,
duke@435 3605 char* buf, int buflen) {
duke@435 3606 int offset;
duke@435 3607 bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
duke@435 3608 if (found) {
duke@435 3609 // skip directory names
duke@435 3610 const char *p1, *p2;
duke@435 3611 p1 = buf;
duke@435 3612 size_t len = strlen(os::file_separator());
duke@435 3613 while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
duke@435 3614 jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
duke@435 3615 } else {
duke@435 3616 jio_snprintf(buf, buflen, PTR_FORMAT, handler);
duke@435 3617 }
duke@435 3618 return buf;
duke@435 3619 }
duke@435 3620
duke@435 3621 static void print_signal_handler(outputStream* st, int sig,
duke@435 3622 char* buf, size_t buflen) {
duke@435 3623 struct sigaction sa;
duke@435 3624
duke@435 3625 sigaction(sig, NULL, &sa);
duke@435 3626
duke@435 3627 // See comment for SIGNIFICANT_SIGNAL_MASK define
duke@435 3628 sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3629
duke@435 3630 st->print("%s: ", os::exception_name(sig, buf, buflen));
duke@435 3631
duke@435 3632 address handler = (sa.sa_flags & SA_SIGINFO)
duke@435 3633 ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
duke@435 3634 : CAST_FROM_FN_PTR(address, sa.sa_handler);
duke@435 3635
duke@435 3636 if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
duke@435 3637 st->print("SIG_DFL");
duke@435 3638 } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
duke@435 3639 st->print("SIG_IGN");
duke@435 3640 } else {
duke@435 3641 st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
duke@435 3642 }
duke@435 3643
duke@435 3644 st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
duke@435 3645
duke@435 3646 address rh = VMError::get_resetted_sighandler(sig);
duke@435 3647 // May be, handler was resetted by VMError?
duke@435 3648 if(rh != NULL) {
duke@435 3649 handler = rh;
duke@435 3650 sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
duke@435 3651 }
duke@435 3652
duke@435 3653 st->print(", sa_flags=" PTR32_FORMAT, sa.sa_flags);
duke@435 3654
duke@435 3655 // Check: is it our handler?
duke@435 3656 if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
duke@435 3657 handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
duke@435 3658 // It is our signal handler
duke@435 3659 // check for flags, reset system-used one!
duke@435 3660 if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 3661 st->print(
duke@435 3662 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
duke@435 3663 os::Linux::get_our_sigflags(sig));
duke@435 3664 }
duke@435 3665 }
duke@435 3666 st->cr();
duke@435 3667 }
duke@435 3668
duke@435 3669
duke@435 3670 #define DO_SIGNAL_CHECK(sig) \
duke@435 3671 if (!sigismember(&check_signal_done, sig)) \
duke@435 3672 os::Linux::check_signal_handler(sig)
duke@435 3673
duke@435 3674 // This method is a periodic task to check for misbehaving JNI applications
duke@435 3675 // under CheckJNI, we can add any periodic checks here
duke@435 3676
duke@435 3677 void os::run_periodic_checks() {
duke@435 3678
duke@435 3679 if (check_signals == false) return;
duke@435 3680
duke@435 3681 // SEGV and BUS if overridden could potentially prevent
duke@435 3682 // generation of hs*.log in the event of a crash, debugging
duke@435 3683 // such a case can be very challenging, so we absolutely
duke@435 3684 // check the following for a good measure:
duke@435 3685 DO_SIGNAL_CHECK(SIGSEGV);
duke@435 3686 DO_SIGNAL_CHECK(SIGILL);
duke@435 3687 DO_SIGNAL_CHECK(SIGFPE);
duke@435 3688 DO_SIGNAL_CHECK(SIGBUS);
duke@435 3689 DO_SIGNAL_CHECK(SIGPIPE);
duke@435 3690 DO_SIGNAL_CHECK(SIGXFSZ);
duke@435 3691
duke@435 3692
duke@435 3693 // ReduceSignalUsage allows the user to override these handlers
duke@435 3694 // see comments at the very top and jvm_solaris.h
duke@435 3695 if (!ReduceSignalUsage) {
duke@435 3696 DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
duke@435 3697 DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
duke@435 3698 DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
duke@435 3699 DO_SIGNAL_CHECK(BREAK_SIGNAL);
duke@435 3700 }
duke@435 3701
duke@435 3702 DO_SIGNAL_CHECK(SR_signum);
duke@435 3703 DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
duke@435 3704 }
duke@435 3705
duke@435 3706 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
duke@435 3707
duke@435 3708 static os_sigaction_t os_sigaction = NULL;
duke@435 3709
duke@435 3710 void os::Linux::check_signal_handler(int sig) {
duke@435 3711 char buf[O_BUFLEN];
duke@435 3712 address jvmHandler = NULL;
duke@435 3713
duke@435 3714
duke@435 3715 struct sigaction act;
duke@435 3716 if (os_sigaction == NULL) {
duke@435 3717 // only trust the default sigaction, in case it has been interposed
duke@435 3718 os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
duke@435 3719 if (os_sigaction == NULL) return;
duke@435 3720 }
duke@435 3721
duke@435 3722 os_sigaction(sig, (struct sigaction*)NULL, &act);
duke@435 3723
duke@435 3724
duke@435 3725 act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3726
duke@435 3727 address thisHandler = (act.sa_flags & SA_SIGINFO)
duke@435 3728 ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
duke@435 3729 : CAST_FROM_FN_PTR(address, act.sa_handler) ;
duke@435 3730
duke@435 3731
duke@435 3732 switch(sig) {
duke@435 3733 case SIGSEGV:
duke@435 3734 case SIGBUS:
duke@435 3735 case SIGFPE:
duke@435 3736 case SIGPIPE:
duke@435 3737 case SIGILL:
duke@435 3738 case SIGXFSZ:
duke@435 3739 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
duke@435 3740 break;
duke@435 3741
duke@435 3742 case SHUTDOWN1_SIGNAL:
duke@435 3743 case SHUTDOWN2_SIGNAL:
duke@435 3744 case SHUTDOWN3_SIGNAL:
duke@435 3745 case BREAK_SIGNAL:
duke@435 3746 jvmHandler = (address)user_handler();
duke@435 3747 break;
duke@435 3748
duke@435 3749 case INTERRUPT_SIGNAL:
duke@435 3750 jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
duke@435 3751 break;
duke@435 3752
duke@435 3753 default:
duke@435 3754 if (sig == SR_signum) {
duke@435 3755 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
duke@435 3756 } else {
duke@435 3757 return;
duke@435 3758 }
duke@435 3759 break;
duke@435 3760 }
duke@435 3761
duke@435 3762 if (thisHandler != jvmHandler) {
duke@435 3763 tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
duke@435 3764 tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
duke@435 3765 tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
duke@435 3766 // No need to check this sig any longer
duke@435 3767 sigaddset(&check_signal_done, sig);
duke@435 3768 } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 3769 tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
duke@435 3770 tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
duke@435 3771 tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
duke@435 3772 // No need to check this sig any longer
duke@435 3773 sigaddset(&check_signal_done, sig);
duke@435 3774 }
duke@435 3775
duke@435 3776 // Dump all the signal
duke@435 3777 if (sigismember(&check_signal_done, sig)) {
duke@435 3778 print_signal_handlers(tty, buf, O_BUFLEN);
duke@435 3779 }
duke@435 3780 }
duke@435 3781
duke@435 3782 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
duke@435 3783
duke@435 3784 extern bool signal_name(int signo, char* buf, size_t len);
duke@435 3785
duke@435 3786 const char* os::exception_name(int exception_code, char* buf, size_t size) {
duke@435 3787 if (0 < exception_code && exception_code <= SIGRTMAX) {
duke@435 3788 // signal
duke@435 3789 if (!signal_name(exception_code, buf, size)) {
duke@435 3790 jio_snprintf(buf, size, "SIG%d", exception_code);
duke@435 3791 }
duke@435 3792 return buf;
duke@435 3793 } else {
duke@435 3794 return NULL;
duke@435 3795 }
duke@435 3796 }
duke@435 3797
duke@435 3798 // this is called _before_ the most of global arguments have been parsed
duke@435 3799 void os::init(void) {
duke@435 3800 char dummy; /* used to get a guess on initial stack address */
duke@435 3801 // first_hrtime = gethrtime();
duke@435 3802
duke@435 3803 // With LinuxThreads the JavaMain thread pid (primordial thread)
duke@435 3804 // is different than the pid of the java launcher thread.
duke@435 3805 // So, on Linux, the launcher thread pid is passed to the VM
duke@435 3806 // via the sun.java.launcher.pid property.
duke@435 3807 // Use this property instead of getpid() if it was correctly passed.
duke@435 3808 // See bug 6351349.
duke@435 3809 pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
duke@435 3810
duke@435 3811 _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
duke@435 3812
duke@435 3813 clock_tics_per_sec = sysconf(_SC_CLK_TCK);
duke@435 3814
duke@435 3815 init_random(1234567);
duke@435 3816
duke@435 3817 ThreadCritical::initialize();
duke@435 3818
duke@435 3819 Linux::set_page_size(sysconf(_SC_PAGESIZE));
duke@435 3820 if (Linux::page_size() == -1) {
jcoomes@1845 3821 fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
jcoomes@1845 3822 strerror(errno)));
duke@435 3823 }
duke@435 3824 init_page_sizes((size_t) Linux::page_size());
duke@435 3825
duke@435 3826 Linux::initialize_system_info();
duke@435 3827
duke@435 3828 // main_thread points to the aboriginal thread
duke@435 3829 Linux::_main_thread = pthread_self();
duke@435 3830
duke@435 3831 Linux::clock_init();
duke@435 3832 initial_time_count = os::elapsed_counter();
kamg@677 3833 pthread_mutex_init(&dl_mutex, NULL);
duke@435 3834 }
duke@435 3835
duke@435 3836 // To install functions for atexit system call
duke@435 3837 extern "C" {
duke@435 3838 static void perfMemory_exit_helper() {
duke@435 3839 perfMemory_exit();
duke@435 3840 }
duke@435 3841 }
duke@435 3842
duke@435 3843 // this is called _after_ the global arguments have been parsed
duke@435 3844 jint os::init_2(void)
duke@435 3845 {
duke@435 3846 Linux::fast_thread_clock_init();
duke@435 3847
duke@435 3848 // Allocate a single page and mark it as readable for safepoint polling
duke@435 3849 address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 3850 guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
duke@435 3851
duke@435 3852 os::set_polling_page( polling_page );
duke@435 3853
duke@435 3854 #ifndef PRODUCT
duke@435 3855 if(Verbose && PrintMiscellaneous)
duke@435 3856 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 3857 #endif
duke@435 3858
duke@435 3859 if (!UseMembar) {
duke@435 3860 address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 3861 guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
duke@435 3862 os::set_memory_serialize_page( mem_serialize_page );
duke@435 3863
duke@435 3864 #ifndef PRODUCT
duke@435 3865 if(Verbose && PrintMiscellaneous)
duke@435 3866 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 3867 #endif
duke@435 3868 }
duke@435 3869
duke@435 3870 FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
duke@435 3871
duke@435 3872 // initialize suspend/resume support - must do this before signal_sets_init()
duke@435 3873 if (SR_initialize() != 0) {
duke@435 3874 perror("SR_initialize failed");
duke@435 3875 return JNI_ERR;
duke@435 3876 }
duke@435 3877
duke@435 3878 Linux::signal_sets_init();
duke@435 3879 Linux::install_signal_handlers();
duke@435 3880
duke@435 3881 size_t threadStackSizeInBytes = ThreadStackSize * K;
duke@435 3882 if (threadStackSizeInBytes != 0 &&
duke@435 3883 threadStackSizeInBytes < Linux::min_stack_allowed) {
duke@435 3884 tty->print_cr("\nThe stack size specified is too small, "
duke@435 3885 "Specify at least %dk",
duke@435 3886 Linux::min_stack_allowed / K);
duke@435 3887 return JNI_ERR;
duke@435 3888 }
duke@435 3889
duke@435 3890 // Make the stack size a multiple of the page size so that
duke@435 3891 // the yellow/red zones can be guarded.
duke@435 3892 JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
duke@435 3893 vm_page_size()));
duke@435 3894
duke@435 3895 Linux::capture_initial_stack(JavaThread::stack_size_at_create());
duke@435 3896
duke@435 3897 Linux::libpthread_init();
duke@435 3898 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 3899 tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
duke@435 3900 Linux::glibc_version(), Linux::libpthread_version(),
duke@435 3901 Linux::is_floating_stack() ? "floating stack" : "fixed stack");
duke@435 3902 }
duke@435 3903
iveresov@576 3904 if (UseNUMA) {
iveresov@897 3905 if (!Linux::libnuma_init()) {
iveresov@897 3906 UseNUMA = false;
iveresov@897 3907 } else {
iveresov@897 3908 if ((Linux::numa_max_node() < 1)) {
iveresov@897 3909 // There's only one node(they start from 0), disable NUMA.
iveresov@897 3910 UseNUMA = false;
iveresov@897 3911 }
iveresov@897 3912 }
iveresov@897 3913 if (!UseNUMA && ForceNUMA) {
iveresov@897 3914 UseNUMA = true;
iveresov@897 3915 }
iveresov@576 3916 }
iveresov@576 3917
duke@435 3918 if (MaxFDLimit) {
duke@435 3919 // set the number of file descriptors to max. print out error
duke@435 3920 // if getrlimit/setrlimit fails but continue regardless.
duke@435 3921 struct rlimit nbr_files;
duke@435 3922 int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 3923 if (status != 0) {
duke@435 3924 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 3925 perror("os::init_2 getrlimit failed");
duke@435 3926 } else {
duke@435 3927 nbr_files.rlim_cur = nbr_files.rlim_max;
duke@435 3928 status = setrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 3929 if (status != 0) {
duke@435 3930 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 3931 perror("os::init_2 setrlimit failed");
duke@435 3932 }
duke@435 3933 }
duke@435 3934 }
duke@435 3935
duke@435 3936 // Initialize lock used to serialize thread creation (see os::create_thread)
duke@435 3937 Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
duke@435 3938
duke@435 3939 // Initialize HPI.
duke@435 3940 jint hpi_result = hpi::initialize();
duke@435 3941 if (hpi_result != JNI_OK) {
duke@435 3942 tty->print_cr("There was an error trying to initialize the HPI library.");
duke@435 3943 return hpi_result;
duke@435 3944 }
duke@435 3945
duke@435 3946 // at-exit methods are called in the reverse order of their registration.
duke@435 3947 // atexit functions are called on return from main or as a result of a
duke@435 3948 // call to exit(3C). There can be only 32 of these functions registered
duke@435 3949 // and atexit() does not set errno.
duke@435 3950
duke@435 3951 if (PerfAllowAtExitRegistration) {
duke@435 3952 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 3953 // atexit functions can be delayed until process exit time, which
duke@435 3954 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 3955 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 3956
duke@435 3957 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 3958 // the future if the appropriate cleanup code can be added to the
duke@435 3959 // VM_Exit VMOperation's doit method.
duke@435 3960 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 3961 warning("os::init2 atexit(perfMemory_exit_helper) failed");
duke@435 3962 }
duke@435 3963 }
duke@435 3964
duke@435 3965 // initialize thread priority policy
duke@435 3966 prio_init();
duke@435 3967
duke@435 3968 return JNI_OK;
duke@435 3969 }
duke@435 3970
duke@435 3971 // Mark the polling page as unreadable
duke@435 3972 void os::make_polling_page_unreadable(void) {
duke@435 3973 if( !guard_memory((char*)_polling_page, Linux::page_size()) )
duke@435 3974 fatal("Could not disable polling page");
duke@435 3975 };
duke@435 3976
duke@435 3977 // Mark the polling page as readable
duke@435 3978 void os::make_polling_page_readable(void) {
coleenp@672 3979 if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
duke@435 3980 fatal("Could not enable polling page");
coleenp@672 3981 }
duke@435 3982 };
duke@435 3983
duke@435 3984 int os::active_processor_count() {
duke@435 3985 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 3986 // so just return the number of online processors.
duke@435 3987 int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
duke@435 3988 assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
duke@435 3989 return online_cpus;
duke@435 3990 }
duke@435 3991
duke@435 3992 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 3993 // Not yet implemented.
duke@435 3994 return false;
duke@435 3995 }
duke@435 3996
duke@435 3997 bool os::bind_to_processor(uint processor_id) {
duke@435 3998 // Not yet implemented.
duke@435 3999 return false;
duke@435 4000 }
duke@435 4001
duke@435 4002 ///
duke@435 4003
duke@435 4004 // Suspends the target using the signal mechanism and then grabs the PC before
duke@435 4005 // resuming the target. Used by the flat-profiler only
duke@435 4006 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 4007 // Make sure that it is called by the watcher for the VMThread
duke@435 4008 assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
duke@435 4009 assert(thread->is_VM_thread(), "Can only be called for VMThread");
duke@435 4010
duke@435 4011 ExtendedPC epc;
duke@435 4012
duke@435 4013 OSThread* osthread = thread->osthread();
duke@435 4014 if (do_suspend(osthread)) {
duke@435 4015 if (osthread->ucontext() != NULL) {
duke@435 4016 epc = os::Linux::ucontext_get_pc(osthread->ucontext());
duke@435 4017 } else {
duke@435 4018 // NULL context is unexpected, double-check this is the VMThread
duke@435 4019 guarantee(thread->is_VM_thread(), "can only be called for VMThread");
duke@435 4020 }
duke@435 4021 do_resume(osthread);
duke@435 4022 }
duke@435 4023 // failure means pthread_kill failed for some reason - arguably this is
duke@435 4024 // a fatal problem, but such problems are ignored elsewhere
duke@435 4025
duke@435 4026 return epc;
duke@435 4027 }
duke@435 4028
duke@435 4029 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
duke@435 4030 {
duke@435 4031 if (is_NPTL()) {
duke@435 4032 return pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4033 } else {
duke@435 4034 #ifndef IA64
duke@435 4035 // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
duke@435 4036 // word back to default 64bit precision if condvar is signaled. Java
duke@435 4037 // wants 53bit precision. Save and restore current value.
duke@435 4038 int fpu = get_fpu_control_word();
duke@435 4039 #endif // IA64
duke@435 4040 int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4041 #ifndef IA64
duke@435 4042 set_fpu_control_word(fpu);
duke@435 4043 #endif // IA64
duke@435 4044 return status;
duke@435 4045 }
duke@435 4046 }
duke@435 4047
duke@435 4048 ////////////////////////////////////////////////////////////////////////////////
duke@435 4049 // debug support
duke@435 4050
duke@435 4051 #ifndef PRODUCT
duke@435 4052 static address same_page(address x, address y) {
duke@435 4053 int page_bits = -os::vm_page_size();
duke@435 4054 if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
duke@435 4055 return x;
duke@435 4056 else if (x > y)
duke@435 4057 return (address)(intptr_t(y) | ~page_bits) + 1;
duke@435 4058 else
duke@435 4059 return (address)(intptr_t(y) & page_bits);
duke@435 4060 }
duke@435 4061
duke@435 4062 bool os::find(address addr) {
duke@435 4063 Dl_info dlinfo;
duke@435 4064 memset(&dlinfo, 0, sizeof(dlinfo));
duke@435 4065 if (dladdr(addr, &dlinfo)) {
duke@435 4066 tty->print(PTR_FORMAT ": ", addr);
duke@435 4067 if (dlinfo.dli_sname != NULL) {
duke@435 4068 tty->print("%s+%#x", dlinfo.dli_sname,
duke@435 4069 addr - (intptr_t)dlinfo.dli_saddr);
duke@435 4070 } else if (dlinfo.dli_fname) {
duke@435 4071 tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
duke@435 4072 } else {
duke@435 4073 tty->print("<absolute address>");
duke@435 4074 }
duke@435 4075 if (dlinfo.dli_fname) {
duke@435 4076 tty->print(" in %s", dlinfo.dli_fname);
duke@435 4077 }
duke@435 4078 if (dlinfo.dli_fbase) {
duke@435 4079 tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
duke@435 4080 }
duke@435 4081 tty->cr();
duke@435 4082
duke@435 4083 if (Verbose) {
duke@435 4084 // decode some bytes around the PC
duke@435 4085 address begin = same_page(addr-40, addr);
duke@435 4086 address end = same_page(addr+40, addr);
duke@435 4087 address lowest = (address) dlinfo.dli_sname;
duke@435 4088 if (!lowest) lowest = (address) dlinfo.dli_fbase;
duke@435 4089 if (begin < lowest) begin = lowest;
duke@435 4090 Dl_info dlinfo2;
duke@435 4091 if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
duke@435 4092 && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
duke@435 4093 end = (address) dlinfo2.dli_saddr;
duke@435 4094 Disassembler::decode(begin, end);
duke@435 4095 }
duke@435 4096 return true;
duke@435 4097 }
duke@435 4098 return false;
duke@435 4099 }
duke@435 4100
duke@435 4101 #endif
duke@435 4102
duke@435 4103 ////////////////////////////////////////////////////////////////////////////////
duke@435 4104 // misc
duke@435 4105
duke@435 4106 // This does not do anything on Linux. This is basically a hook for being
duke@435 4107 // able to use structured exception handling (thread-local exception filters)
duke@435 4108 // on, e.g., Win32.
duke@435 4109 void
duke@435 4110 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
duke@435 4111 JavaCallArguments* args, Thread* thread) {
duke@435 4112 f(value, method, args, thread);
duke@435 4113 }
duke@435 4114
duke@435 4115 void os::print_statistics() {
duke@435 4116 }
duke@435 4117
duke@435 4118 int os::message_box(const char* title, const char* message) {
duke@435 4119 int i;
duke@435 4120 fdStream err(defaultStream::error_fd());
duke@435 4121 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4122 err.cr();
duke@435 4123 err.print_raw_cr(title);
duke@435 4124 for (i = 0; i < 78; i++) err.print_raw("-");
duke@435 4125 err.cr();
duke@435 4126 err.print_raw_cr(message);
duke@435 4127 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4128 err.cr();
duke@435 4129
duke@435 4130 char buf[16];
duke@435 4131 // Prevent process from exiting upon "read error" without consuming all CPU
duke@435 4132 while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
duke@435 4133
duke@435 4134 return buf[0] == 'y' || buf[0] == 'Y';
duke@435 4135 }
duke@435 4136
duke@435 4137 int os::stat(const char *path, struct stat *sbuf) {
duke@435 4138 char pathbuf[MAX_PATH];
duke@435 4139 if (strlen(path) > MAX_PATH - 1) {
duke@435 4140 errno = ENAMETOOLONG;
duke@435 4141 return -1;
duke@435 4142 }
duke@435 4143 hpi::native_path(strcpy(pathbuf, path));
duke@435 4144 return ::stat(pathbuf, sbuf);
duke@435 4145 }
duke@435 4146
duke@435 4147 bool os::check_heap(bool force) {
duke@435 4148 return true;
duke@435 4149 }
duke@435 4150
duke@435 4151 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
duke@435 4152 return ::vsnprintf(buf, count, format, args);
duke@435 4153 }
duke@435 4154
duke@435 4155 // Is a (classpath) directory empty?
duke@435 4156 bool os::dir_is_empty(const char* path) {
duke@435 4157 DIR *dir = NULL;
duke@435 4158 struct dirent *ptr;
duke@435 4159
duke@435 4160 dir = opendir(path);
duke@435 4161 if (dir == NULL) return true;
duke@435 4162
duke@435 4163 /* Scan the directory */
duke@435 4164 bool result = true;
duke@435 4165 char buf[sizeof(struct dirent) + MAX_PATH];
duke@435 4166 while (result && (ptr = ::readdir(dir)) != NULL) {
duke@435 4167 if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
duke@435 4168 result = false;
duke@435 4169 }
duke@435 4170 }
duke@435 4171 closedir(dir);
duke@435 4172 return result;
duke@435 4173 }
duke@435 4174
duke@435 4175 // create binary file, rewriting existing file if required
duke@435 4176 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 4177 int oflags = O_WRONLY | O_CREAT;
duke@435 4178 if (!rewrite_existing) {
duke@435 4179 oflags |= O_EXCL;
duke@435 4180 }
duke@435 4181 return ::open64(path, oflags, S_IREAD | S_IWRITE);
duke@435 4182 }
duke@435 4183
duke@435 4184 // return current position of file pointer
duke@435 4185 jlong os::current_file_offset(int fd) {
duke@435 4186 return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
duke@435 4187 }
duke@435 4188
duke@435 4189 // move file pointer to the specified offset
duke@435 4190 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 4191 return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
duke@435 4192 }
duke@435 4193
duke@435 4194 // Map a block of memory.
duke@435 4195 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4196 char *addr, size_t bytes, bool read_only,
duke@435 4197 bool allow_exec) {
duke@435 4198 int prot;
duke@435 4199 int flags;
duke@435 4200
duke@435 4201 if (read_only) {
duke@435 4202 prot = PROT_READ;
duke@435 4203 flags = MAP_SHARED;
duke@435 4204 } else {
duke@435 4205 prot = PROT_READ | PROT_WRITE;
duke@435 4206 flags = MAP_PRIVATE;
duke@435 4207 }
duke@435 4208
duke@435 4209 if (allow_exec) {
duke@435 4210 prot |= PROT_EXEC;
duke@435 4211 }
duke@435 4212
duke@435 4213 if (addr != NULL) {
duke@435 4214 flags |= MAP_FIXED;
duke@435 4215 }
duke@435 4216
duke@435 4217 char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
duke@435 4218 fd, file_offset);
duke@435 4219 if (mapped_address == MAP_FAILED) {
duke@435 4220 return NULL;
duke@435 4221 }
duke@435 4222 return mapped_address;
duke@435 4223 }
duke@435 4224
duke@435 4225
duke@435 4226 // Remap a block of memory.
duke@435 4227 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4228 char *addr, size_t bytes, bool read_only,
duke@435 4229 bool allow_exec) {
duke@435 4230 // same as map_memory() on this OS
duke@435 4231 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 4232 allow_exec);
duke@435 4233 }
duke@435 4234
duke@435 4235
duke@435 4236 // Unmap a block of memory.
duke@435 4237 bool os::unmap_memory(char* addr, size_t bytes) {
duke@435 4238 return munmap(addr, bytes) == 0;
duke@435 4239 }
duke@435 4240
duke@435 4241 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
duke@435 4242
duke@435 4243 static clockid_t thread_cpu_clockid(Thread* thread) {
duke@435 4244 pthread_t tid = thread->osthread()->pthread_id();
duke@435 4245 clockid_t clockid;
duke@435 4246
duke@435 4247 // Get thread clockid
duke@435 4248 int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
duke@435 4249 assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
duke@435 4250 return clockid;
duke@435 4251 }
duke@435 4252
duke@435 4253 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 4254 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 4255 // of a thread.
duke@435 4256 //
duke@435 4257 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 4258 // the fast estimate available on the platform.
duke@435 4259
duke@435 4260 jlong os::current_thread_cpu_time() {
duke@435 4261 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4262 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4263 } else {
duke@435 4264 // return user + sys since the cost is the same
duke@435 4265 return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
duke@435 4266 }
duke@435 4267 }
duke@435 4268
duke@435 4269 jlong os::thread_cpu_time(Thread* thread) {
duke@435 4270 // consistent with what current_thread_cpu_time() returns
duke@435 4271 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4272 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4273 } else {
duke@435 4274 return slow_thread_cpu_time(thread, true /* user + sys */);
duke@435 4275 }
duke@435 4276 }
duke@435 4277
duke@435 4278 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 4279 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4280 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4281 } else {
duke@435 4282 return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 4283 }
duke@435 4284 }
duke@435 4285
duke@435 4286 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4287 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4288 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4289 } else {
duke@435 4290 return slow_thread_cpu_time(thread, user_sys_cpu_time);
duke@435 4291 }
duke@435 4292 }
duke@435 4293
duke@435 4294 //
duke@435 4295 // -1 on error.
duke@435 4296 //
duke@435 4297
duke@435 4298 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4299 static bool proc_pid_cpu_avail = true;
duke@435 4300 static bool proc_task_unchecked = true;
duke@435 4301 static const char *proc_stat_path = "/proc/%d/stat";
duke@435 4302 pid_t tid = thread->osthread()->thread_id();
duke@435 4303 int i;
duke@435 4304 char *s;
duke@435 4305 char stat[2048];
duke@435 4306 int statlen;
duke@435 4307 char proc_name[64];
duke@435 4308 int count;
duke@435 4309 long sys_time, user_time;
duke@435 4310 char string[64];
duke@435 4311 int idummy;
duke@435 4312 long ldummy;
duke@435 4313 FILE *fp;
duke@435 4314
duke@435 4315 // We first try accessing /proc/<pid>/cpu since this is faster to
duke@435 4316 // process. If this file is not present (linux kernels 2.5 and above)
duke@435 4317 // then we open /proc/<pid>/stat.
duke@435 4318 if ( proc_pid_cpu_avail ) {
duke@435 4319 sprintf(proc_name, "/proc/%d/cpu", tid);
duke@435 4320 fp = fopen(proc_name, "r");
duke@435 4321 if ( fp != NULL ) {
duke@435 4322 count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
duke@435 4323 fclose(fp);
duke@435 4324 if ( count != 3 ) return -1;
duke@435 4325
duke@435 4326 if (user_sys_cpu_time) {
duke@435 4327 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4328 } else {
duke@435 4329 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4330 }
duke@435 4331 }
duke@435 4332 else proc_pid_cpu_avail = false;
duke@435 4333 }
duke@435 4334
duke@435 4335 // The /proc/<tid>/stat aggregates per-process usage on
duke@435 4336 // new Linux kernels 2.6+ where NPTL is supported.
duke@435 4337 // The /proc/self/task/<tid>/stat still has the per-thread usage.
duke@435 4338 // See bug 6328462.
duke@435 4339 // There can be no directory /proc/self/task on kernels 2.4 with NPTL
duke@435 4340 // and possibly in some other cases, so we check its availability.
duke@435 4341 if (proc_task_unchecked && os::Linux::is_NPTL()) {
duke@435 4342 // This is executed only once
duke@435 4343 proc_task_unchecked = false;
duke@435 4344 fp = fopen("/proc/self/task", "r");
duke@435 4345 if (fp != NULL) {
duke@435 4346 proc_stat_path = "/proc/self/task/%d/stat";
duke@435 4347 fclose(fp);
duke@435 4348 }
duke@435 4349 }
duke@435 4350
duke@435 4351 sprintf(proc_name, proc_stat_path, tid);
duke@435 4352 fp = fopen(proc_name, "r");
duke@435 4353 if ( fp == NULL ) return -1;
duke@435 4354 statlen = fread(stat, 1, 2047, fp);
duke@435 4355 stat[statlen] = '\0';
duke@435 4356 fclose(fp);
duke@435 4357
duke@435 4358 // Skip pid and the command string. Note that we could be dealing with
duke@435 4359 // weird command names, e.g. user could decide to rename java launcher
duke@435 4360 // to "java 1.4.2 :)", then the stat file would look like
duke@435 4361 // 1234 (java 1.4.2 :)) R ... ...
duke@435 4362 // We don't really need to know the command string, just find the last
duke@435 4363 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 4364 s = strrchr(stat, ')');
duke@435 4365 i = 0;
duke@435 4366 if (s == NULL ) return -1;
duke@435 4367
duke@435 4368 // Skip blank chars
duke@435 4369 do s++; while (isspace(*s));
duke@435 4370
xlu@948 4371 count = sscanf(s,"%*c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
xlu@948 4372 &idummy, &idummy, &idummy, &idummy, &idummy,
duke@435 4373 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
duke@435 4374 &user_time, &sys_time);
xlu@948 4375 if ( count != 12 ) return -1;
duke@435 4376 if (user_sys_cpu_time) {
duke@435 4377 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4378 } else {
duke@435 4379 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4380 }
duke@435 4381 }
duke@435 4382
duke@435 4383 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4384 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4385 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4386 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4387 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4388 }
duke@435 4389
duke@435 4390 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4391 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4392 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4393 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4394 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4395 }
duke@435 4396
duke@435 4397 bool os::is_thread_cpu_time_supported() {
duke@435 4398 return true;
duke@435 4399 }
duke@435 4400
duke@435 4401 // System loadavg support. Returns -1 if load average cannot be obtained.
duke@435 4402 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4403 // so just return the system wide load average.
duke@435 4404 int os::loadavg(double loadavg[], int nelem) {
duke@435 4405 return ::getloadavg(loadavg, nelem);
duke@435 4406 }
duke@435 4407
duke@435 4408 void os::pause() {
duke@435 4409 char filename[MAX_PATH];
duke@435 4410 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 4411 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 4412 } else {
duke@435 4413 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 4414 }
duke@435 4415
duke@435 4416 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 4417 if (fd != -1) {
duke@435 4418 struct stat buf;
duke@435 4419 close(fd);
duke@435 4420 while (::stat(filename, &buf) == 0) {
duke@435 4421 (void)::poll(NULL, 0, 100);
duke@435 4422 }
duke@435 4423 } else {
duke@435 4424 jio_fprintf(stderr,
duke@435 4425 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 4426 }
duke@435 4427 }
duke@435 4428
duke@435 4429 extern "C" {
duke@435 4430
duke@435 4431 /**
duke@435 4432 * NOTE: the following code is to keep the green threads code
duke@435 4433 * in the libjava.so happy. Once the green threads is removed,
duke@435 4434 * these code will no longer be needed.
duke@435 4435 */
duke@435 4436 int
duke@435 4437 jdk_waitpid(pid_t pid, int* status, int options) {
duke@435 4438 return waitpid(pid, status, options);
duke@435 4439 }
duke@435 4440
duke@435 4441 int
duke@435 4442 fork1() {
duke@435 4443 return fork();
duke@435 4444 }
duke@435 4445
duke@435 4446 int
duke@435 4447 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
duke@435 4448 return sem_init(sem, pshared, value);
duke@435 4449 }
duke@435 4450
duke@435 4451 int
duke@435 4452 jdk_sem_post(sem_t *sem) {
duke@435 4453 return sem_post(sem);
duke@435 4454 }
duke@435 4455
duke@435 4456 int
duke@435 4457 jdk_sem_wait(sem_t *sem) {
duke@435 4458 return sem_wait(sem);
duke@435 4459 }
duke@435 4460
duke@435 4461 int
duke@435 4462 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
duke@435 4463 return pthread_sigmask(how , newmask, oldmask);
duke@435 4464 }
duke@435 4465
duke@435 4466 }
duke@435 4467
duke@435 4468 // Refer to the comments in os_solaris.cpp park-unpark.
duke@435 4469 //
duke@435 4470 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
duke@435 4471 // hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
duke@435 4472 // For specifics regarding the bug see GLIBC BUGID 261237 :
duke@435 4473 // http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
duke@435 4474 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
duke@435 4475 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
duke@435 4476 // is used. (The simple C test-case provided in the GLIBC bug report manifests the
duke@435 4477 // hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
duke@435 4478 // and monitorenter when we're using 1-0 locking. All those operations may result in
duke@435 4479 // calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
duke@435 4480 // of libpthread avoids the problem, but isn't practical.
duke@435 4481 //
duke@435 4482 // Possible remedies:
duke@435 4483 //
duke@435 4484 // 1. Establish a minimum relative wait time. 50 to 100 msecs seems to work.
duke@435 4485 // This is palliative and probabilistic, however. If the thread is preempted
duke@435 4486 // between the call to compute_abstime() and pthread_cond_timedwait(), more
duke@435 4487 // than the minimum period may have passed, and the abstime may be stale (in the
duke@435 4488 // past) resultin in a hang. Using this technique reduces the odds of a hang
duke@435 4489 // but the JVM is still vulnerable, particularly on heavily loaded systems.
duke@435 4490 //
duke@435 4491 // 2. Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
duke@435 4492 // of the usual flag-condvar-mutex idiom. The write side of the pipe is set
duke@435 4493 // NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
duke@435 4494 // reduces to poll()+read(). This works well, but consumes 2 FDs per extant
duke@435 4495 // thread.
duke@435 4496 //
duke@435 4497 // 3. Embargo pthread_cond_timedwait() and implement a native "chron" thread
duke@435 4498 // that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
duke@435 4499 // a timeout request to the chron thread and then blocking via pthread_cond_wait().
duke@435 4500 // This also works well. In fact it avoids kernel-level scalability impediments
duke@435 4501 // on certain platforms that don't handle lots of active pthread_cond_timedwait()
duke@435 4502 // timers in a graceful fashion.
duke@435 4503 //
duke@435 4504 // 4. When the abstime value is in the past it appears that control returns
duke@435 4505 // correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
duke@435 4506 // Subsequent timedwait/wait calls may hang indefinitely. Given that, we
duke@435 4507 // can avoid the problem by reinitializing the condvar -- by cond_destroy()
duke@435 4508 // followed by cond_init() -- after all calls to pthread_cond_timedwait().
duke@435 4509 // It may be possible to avoid reinitialization by checking the return
duke@435 4510 // value from pthread_cond_timedwait(). In addition to reinitializing the
duke@435 4511 // condvar we must establish the invariant that cond_signal() is only called
duke@435 4512 // within critical sections protected by the adjunct mutex. This prevents
duke@435 4513 // cond_signal() from "seeing" a condvar that's in the midst of being
duke@435 4514 // reinitialized or that is corrupt. Sadly, this invariant obviates the
duke@435 4515 // desirable signal-after-unlock optimization that avoids futile context switching.
duke@435 4516 //
duke@435 4517 // I'm also concerned that some versions of NTPL might allocate an auxilliary
duke@435 4518 // structure when a condvar is used or initialized. cond_destroy() would
duke@435 4519 // release the helper structure. Our reinitialize-after-timedwait fix
duke@435 4520 // put excessive stress on malloc/free and locks protecting the c-heap.
duke@435 4521 //
duke@435 4522 // We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
duke@435 4523 // It may be possible to refine (4) by checking the kernel and NTPL verisons
duke@435 4524 // and only enabling the work-around for vulnerable environments.
duke@435 4525
duke@435 4526 // utility to compute the abstime argument to timedwait:
duke@435 4527 // millis is the relative timeout time
duke@435 4528 // abstime will be the absolute timeout time
duke@435 4529 // TODO: replace compute_abstime() with unpackTime()
duke@435 4530
duke@435 4531 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
duke@435 4532 if (millis < 0) millis = 0;
duke@435 4533 struct timeval now;
duke@435 4534 int status = gettimeofday(&now, NULL);
duke@435 4535 assert(status == 0, "gettimeofday");
duke@435 4536 jlong seconds = millis / 1000;
duke@435 4537 millis %= 1000;
duke@435 4538 if (seconds > 50000000) { // see man cond_timedwait(3T)
duke@435 4539 seconds = 50000000;
duke@435 4540 }
duke@435 4541 abstime->tv_sec = now.tv_sec + seconds;
duke@435 4542 long usec = now.tv_usec + millis * 1000;
duke@435 4543 if (usec >= 1000000) {
duke@435 4544 abstime->tv_sec += 1;
duke@435 4545 usec -= 1000000;
duke@435 4546 }
duke@435 4547 abstime->tv_nsec = usec * 1000;
duke@435 4548 return abstime;
duke@435 4549 }
duke@435 4550
duke@435 4551
duke@435 4552 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
duke@435 4553 // Conceptually TryPark() should be equivalent to park(0).
duke@435 4554
duke@435 4555 int os::PlatformEvent::TryPark() {
duke@435 4556 for (;;) {
duke@435 4557 const int v = _Event ;
duke@435 4558 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4559 if (Atomic::cmpxchg (0, &_Event, v) == v) return v ;
duke@435 4560 }
duke@435 4561 }
duke@435 4562
duke@435 4563 void os::PlatformEvent::park() { // AKA "down()"
duke@435 4564 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 4565 // may call park().
duke@435 4566 // TODO: assert that _Assoc != NULL or _Assoc == Self
duke@435 4567 int v ;
duke@435 4568 for (;;) {
duke@435 4569 v = _Event ;
duke@435 4570 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4571 }
duke@435 4572 guarantee (v >= 0, "invariant") ;
duke@435 4573 if (v == 0) {
duke@435 4574 // Do this the hard way by blocking ...
duke@435 4575 int status = pthread_mutex_lock(_mutex);
duke@435 4576 assert_status(status == 0, status, "mutex_lock");
duke@435 4577 guarantee (_nParked == 0, "invariant") ;
duke@435 4578 ++ _nParked ;
duke@435 4579 while (_Event < 0) {
duke@435 4580 status = pthread_cond_wait(_cond, _mutex);
duke@435 4581 // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
duke@435 4582 // Treat this the same as if the wait was interrupted
duke@435 4583 if (status == ETIME) { status = EINTR; }
duke@435 4584 assert_status(status == 0 || status == EINTR, status, "cond_wait");
duke@435 4585 }
duke@435 4586 -- _nParked ;
duke@435 4587
duke@435 4588 // In theory we could move the ST of 0 into _Event past the unlock(),
duke@435 4589 // but then we'd need a MEMBAR after the ST.
duke@435 4590 _Event = 0 ;
duke@435 4591 status = pthread_mutex_unlock(_mutex);
duke@435 4592 assert_status(status == 0, status, "mutex_unlock");
duke@435 4593 }
duke@435 4594 guarantee (_Event >= 0, "invariant") ;
duke@435 4595 }
duke@435 4596
duke@435 4597 int os::PlatformEvent::park(jlong millis) {
duke@435 4598 guarantee (_nParked == 0, "invariant") ;
duke@435 4599
duke@435 4600 int v ;
duke@435 4601 for (;;) {
duke@435 4602 v = _Event ;
duke@435 4603 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4604 }
duke@435 4605 guarantee (v >= 0, "invariant") ;
duke@435 4606 if (v != 0) return OS_OK ;
duke@435 4607
duke@435 4608 // We do this the hard way, by blocking the thread.
duke@435 4609 // Consider enforcing a minimum timeout value.
duke@435 4610 struct timespec abst;
duke@435 4611 compute_abstime(&abst, millis);
duke@435 4612
duke@435 4613 int ret = OS_TIMEOUT;
duke@435 4614 int status = pthread_mutex_lock(_mutex);
duke@435 4615 assert_status(status == 0, status, "mutex_lock");
duke@435 4616 guarantee (_nParked == 0, "invariant") ;
duke@435 4617 ++_nParked ;
duke@435 4618
duke@435 4619 // Object.wait(timo) will return because of
duke@435 4620 // (a) notification
duke@435 4621 // (b) timeout
duke@435 4622 // (c) thread.interrupt
duke@435 4623 //
duke@435 4624 // Thread.interrupt and object.notify{All} both call Event::set.
duke@435 4625 // That is, we treat thread.interrupt as a special case of notification.
duke@435 4626 // The underlying Solaris implementation, cond_timedwait, admits
duke@435 4627 // spurious/premature wakeups, but the JLS/JVM spec prevents the
duke@435 4628 // JVM from making those visible to Java code. As such, we must
duke@435 4629 // filter out spurious wakeups. We assume all ETIME returns are valid.
duke@435 4630 //
duke@435 4631 // TODO: properly differentiate simultaneous notify+interrupt.
duke@435 4632 // In that case, we should propagate the notify to another waiter.
duke@435 4633
duke@435 4634 while (_Event < 0) {
duke@435 4635 status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
duke@435 4636 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4637 pthread_cond_destroy (_cond);
duke@435 4638 pthread_cond_init (_cond, NULL) ;
duke@435 4639 }
duke@435 4640 assert_status(status == 0 || status == EINTR ||
duke@435 4641 status == ETIME || status == ETIMEDOUT,
duke@435 4642 status, "cond_timedwait");
duke@435 4643 if (!FilterSpuriousWakeups) break ; // previous semantics
duke@435 4644 if (status == ETIME || status == ETIMEDOUT) break ;
duke@435 4645 // We consume and ignore EINTR and spurious wakeups.
duke@435 4646 }
duke@435 4647 --_nParked ;
duke@435 4648 if (_Event >= 0) {
duke@435 4649 ret = OS_OK;
duke@435 4650 }
duke@435 4651 _Event = 0 ;
duke@435 4652 status = pthread_mutex_unlock(_mutex);
duke@435 4653 assert_status(status == 0, status, "mutex_unlock");
duke@435 4654 assert (_nParked == 0, "invariant") ;
duke@435 4655 return ret;
duke@435 4656 }
duke@435 4657
duke@435 4658 void os::PlatformEvent::unpark() {
duke@435 4659 int v, AnyWaiters ;
duke@435 4660 for (;;) {
duke@435 4661 v = _Event ;
duke@435 4662 if (v > 0) {
duke@435 4663 // The LD of _Event could have reordered or be satisfied
duke@435 4664 // by a read-aside from this processor's write buffer.
duke@435 4665 // To avoid problems execute a barrier and then
duke@435 4666 // ratify the value.
duke@435 4667 OrderAccess::fence() ;
duke@435 4668 if (_Event == v) return ;
duke@435 4669 continue ;
duke@435 4670 }
duke@435 4671 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 4672 }
duke@435 4673 if (v < 0) {
duke@435 4674 // Wait for the thread associated with the event to vacate
duke@435 4675 int status = pthread_mutex_lock(_mutex);
duke@435 4676 assert_status(status == 0, status, "mutex_lock");
duke@435 4677 AnyWaiters = _nParked ;
duke@435 4678 assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
duke@435 4679 if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4680 AnyWaiters = 0 ;
duke@435 4681 pthread_cond_signal (_cond);
duke@435 4682 }
duke@435 4683 status = pthread_mutex_unlock(_mutex);
duke@435 4684 assert_status(status == 0, status, "mutex_unlock");
duke@435 4685 if (AnyWaiters != 0) {
duke@435 4686 status = pthread_cond_signal(_cond);
duke@435 4687 assert_status(status == 0, status, "cond_signal");
duke@435 4688 }
duke@435 4689 }
duke@435 4690
duke@435 4691 // Note that we signal() _after dropping the lock for "immortal" Events.
duke@435 4692 // This is safe and avoids a common class of futile wakeups. In rare
duke@435 4693 // circumstances this can cause a thread to return prematurely from
duke@435 4694 // cond_{timed}wait() but the spurious wakeup is benign and the victim will
duke@435 4695 // simply re-test the condition and re-park itself.
duke@435 4696 }
duke@435 4697
duke@435 4698
duke@435 4699 // JSR166
duke@435 4700 // -------------------------------------------------------
duke@435 4701
duke@435 4702 /*
duke@435 4703 * The solaris and linux implementations of park/unpark are fairly
duke@435 4704 * conservative for now, but can be improved. They currently use a
duke@435 4705 * mutex/condvar pair, plus a a count.
duke@435 4706 * Park decrements count if > 0, else does a condvar wait. Unpark
duke@435 4707 * sets count to 1 and signals condvar. Only one thread ever waits
duke@435 4708 * on the condvar. Contention seen when trying to park implies that someone
duke@435 4709 * is unparking you, so don't wait. And spurious returns are fine, so there
duke@435 4710 * is no need to track notifications.
duke@435 4711 */
duke@435 4712
duke@435 4713
duke@435 4714 #define NANOSECS_PER_SEC 1000000000
duke@435 4715 #define NANOSECS_PER_MILLISEC 1000000
duke@435 4716 #define MAX_SECS 100000000
duke@435 4717 /*
duke@435 4718 * This code is common to linux and solaris and will be moved to a
duke@435 4719 * common place in dolphin.
duke@435 4720 *
duke@435 4721 * The passed in time value is either a relative time in nanoseconds
duke@435 4722 * or an absolute time in milliseconds. Either way it has to be unpacked
duke@435 4723 * into suitable seconds and nanoseconds components and stored in the
duke@435 4724 * given timespec structure.
duke@435 4725 * Given time is a 64-bit value and the time_t used in the timespec is only
duke@435 4726 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
duke@435 4727 * overflow if times way in the future are given. Further on Solaris versions
duke@435 4728 * prior to 10 there is a restriction (see cond_timedwait) that the specified
duke@435 4729 * number of seconds, in abstime, is less than current_time + 100,000,000.
duke@435 4730 * As it will be 28 years before "now + 100000000" will overflow we can
duke@435 4731 * ignore overflow and just impose a hard-limit on seconds using the value
duke@435 4732 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
duke@435 4733 * years from "now".
duke@435 4734 */
duke@435 4735
duke@435 4736 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
duke@435 4737 assert (time > 0, "convertTime");
duke@435 4738
duke@435 4739 struct timeval now;
duke@435 4740 int status = gettimeofday(&now, NULL);
duke@435 4741 assert(status == 0, "gettimeofday");
duke@435 4742
duke@435 4743 time_t max_secs = now.tv_sec + MAX_SECS;
duke@435 4744
duke@435 4745 if (isAbsolute) {
duke@435 4746 jlong secs = time / 1000;
duke@435 4747 if (secs > max_secs) {
duke@435 4748 absTime->tv_sec = max_secs;
duke@435 4749 }
duke@435 4750 else {
duke@435 4751 absTime->tv_sec = secs;
duke@435 4752 }
duke@435 4753 absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
duke@435 4754 }
duke@435 4755 else {
duke@435 4756 jlong secs = time / NANOSECS_PER_SEC;
duke@435 4757 if (secs >= MAX_SECS) {
duke@435 4758 absTime->tv_sec = max_secs;
duke@435 4759 absTime->tv_nsec = 0;
duke@435 4760 }
duke@435 4761 else {
duke@435 4762 absTime->tv_sec = now.tv_sec + secs;
duke@435 4763 absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
duke@435 4764 if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
duke@435 4765 absTime->tv_nsec -= NANOSECS_PER_SEC;
duke@435 4766 ++absTime->tv_sec; // note: this must be <= max_secs
duke@435 4767 }
duke@435 4768 }
duke@435 4769 }
duke@435 4770 assert(absTime->tv_sec >= 0, "tv_sec < 0");
duke@435 4771 assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
duke@435 4772 assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
duke@435 4773 assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
duke@435 4774 }
duke@435 4775
duke@435 4776 void Parker::park(bool isAbsolute, jlong time) {
duke@435 4777 // Optional fast-path check:
duke@435 4778 // Return immediately if a permit is available.
duke@435 4779 if (_counter > 0) {
duke@435 4780 _counter = 0 ;
dholmes@1552 4781 OrderAccess::fence();
duke@435 4782 return ;
duke@435 4783 }
duke@435 4784
duke@435 4785 Thread* thread = Thread::current();
duke@435 4786 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 4787 JavaThread *jt = (JavaThread *)thread;
duke@435 4788
duke@435 4789 // Optional optimization -- avoid state transitions if there's an interrupt pending.
duke@435 4790 // Check interrupt before trying to wait
duke@435 4791 if (Thread::is_interrupted(thread, false)) {
duke@435 4792 return;
duke@435 4793 }
duke@435 4794
duke@435 4795 // Next, demultiplex/decode time arguments
duke@435 4796 timespec absTime;
duke@435 4797 if (time < 0) { // don't wait at all
duke@435 4798 return;
duke@435 4799 }
duke@435 4800 if (time > 0) {
duke@435 4801 unpackTime(&absTime, isAbsolute, time);
duke@435 4802 }
duke@435 4803
duke@435 4804
duke@435 4805 // Enter safepoint region
duke@435 4806 // Beware of deadlocks such as 6317397.
duke@435 4807 // The per-thread Parker:: mutex is a classic leaf-lock.
duke@435 4808 // In particular a thread must never block on the Threads_lock while
duke@435 4809 // holding the Parker:: mutex. If safepoints are pending both the
duke@435 4810 // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
duke@435 4811 ThreadBlockInVM tbivm(jt);
duke@435 4812
duke@435 4813 // Don't wait if cannot get lock since interference arises from
duke@435 4814 // unblocking. Also. check interrupt before trying wait
duke@435 4815 if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
duke@435 4816 return;
duke@435 4817 }
duke@435 4818
duke@435 4819 int status ;
duke@435 4820 if (_counter > 0) { // no wait needed
duke@435 4821 _counter = 0;
duke@435 4822 status = pthread_mutex_unlock(_mutex);
duke@435 4823 assert (status == 0, "invariant") ;
dholmes@1552 4824 OrderAccess::fence();
duke@435 4825 return;
duke@435 4826 }
duke@435 4827
duke@435 4828 #ifdef ASSERT
duke@435 4829 // Don't catch signals while blocked; let the running threads have the signals.
duke@435 4830 // (This allows a debugger to break into the running thread.)
duke@435 4831 sigset_t oldsigs;
duke@435 4832 sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
duke@435 4833 pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
duke@435 4834 #endif
duke@435 4835
duke@435 4836 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 4837 jt->set_suspend_equivalent();
duke@435 4838 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 4839
duke@435 4840 if (time == 0) {
duke@435 4841 status = pthread_cond_wait (_cond, _mutex) ;
duke@435 4842 } else {
duke@435 4843 status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
duke@435 4844 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4845 pthread_cond_destroy (_cond) ;
duke@435 4846 pthread_cond_init (_cond, NULL);
duke@435 4847 }
duke@435 4848 }
duke@435 4849 assert_status(status == 0 || status == EINTR ||
duke@435 4850 status == ETIME || status == ETIMEDOUT,
duke@435 4851 status, "cond_timedwait");
duke@435 4852
duke@435 4853 #ifdef ASSERT
duke@435 4854 pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
duke@435 4855 #endif
duke@435 4856
duke@435 4857 _counter = 0 ;
duke@435 4858 status = pthread_mutex_unlock(_mutex) ;
duke@435 4859 assert_status(status == 0, status, "invariant") ;
duke@435 4860 // If externally suspended while waiting, re-suspend
duke@435 4861 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 4862 jt->java_suspend_self();
duke@435 4863 }
duke@435 4864
dholmes@1552 4865 OrderAccess::fence();
duke@435 4866 }
duke@435 4867
duke@435 4868 void Parker::unpark() {
duke@435 4869 int s, status ;
duke@435 4870 status = pthread_mutex_lock(_mutex);
duke@435 4871 assert (status == 0, "invariant") ;
duke@435 4872 s = _counter;
duke@435 4873 _counter = 1;
duke@435 4874 if (s < 1) {
duke@435 4875 if (WorkAroundNPTLTimedWaitHang) {
duke@435 4876 status = pthread_cond_signal (_cond) ;
duke@435 4877 assert (status == 0, "invariant") ;
duke@435 4878 status = pthread_mutex_unlock(_mutex);
duke@435 4879 assert (status == 0, "invariant") ;
duke@435 4880 } else {
duke@435 4881 status = pthread_mutex_unlock(_mutex);
duke@435 4882 assert (status == 0, "invariant") ;
duke@435 4883 status = pthread_cond_signal (_cond) ;
duke@435 4884 assert (status == 0, "invariant") ;
duke@435 4885 }
duke@435 4886 } else {
duke@435 4887 pthread_mutex_unlock(_mutex);
duke@435 4888 assert (status == 0, "invariant") ;
duke@435 4889 }
duke@435 4890 }
duke@435 4891
duke@435 4892
duke@435 4893 extern char** environ;
duke@435 4894
duke@435 4895 #ifndef __NR_fork
duke@435 4896 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
duke@435 4897 #endif
duke@435 4898
duke@435 4899 #ifndef __NR_execve
duke@435 4900 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
duke@435 4901 #endif
duke@435 4902
duke@435 4903 // Run the specified command in a separate process. Return its exit value,
duke@435 4904 // or -1 on failure (e.g. can't fork a new process).
duke@435 4905 // Unlike system(), this function can be called from signal handler. It
duke@435 4906 // doesn't block SIGINT et al.
duke@435 4907 int os::fork_and_exec(char* cmd) {
xlu@634 4908 const char * argv[4] = {"sh", "-c", cmd, NULL};
duke@435 4909
duke@435 4910 // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
duke@435 4911 // pthread_atfork handlers and reset pthread library. All we need is a
duke@435 4912 // separate process to execve. Make a direct syscall to fork process.
duke@435 4913 // On IA64 there's no fork syscall, we have to use fork() and hope for
duke@435 4914 // the best...
duke@435 4915 pid_t pid = NOT_IA64(syscall(__NR_fork);)
duke@435 4916 IA64_ONLY(fork();)
duke@435 4917
duke@435 4918 if (pid < 0) {
duke@435 4919 // fork failed
duke@435 4920 return -1;
duke@435 4921
duke@435 4922 } else if (pid == 0) {
duke@435 4923 // child process
duke@435 4924
duke@435 4925 // execve() in LinuxThreads will call pthread_kill_other_threads_np()
duke@435 4926 // first to kill every thread on the thread list. Because this list is
duke@435 4927 // not reset by fork() (see notes above), execve() will instead kill
duke@435 4928 // every thread in the parent process. We know this is the only thread
duke@435 4929 // in the new process, so make a system call directly.
duke@435 4930 // IA64 should use normal execve() from glibc to match the glibc fork()
duke@435 4931 // above.
duke@435 4932 NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
xlu@634 4933 IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
duke@435 4934
duke@435 4935 // execve failed
duke@435 4936 _exit(-1);
duke@435 4937
duke@435 4938 } else {
duke@435 4939 // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
duke@435 4940 // care about the actual exit code, for now.
duke@435 4941
duke@435 4942 int status;
duke@435 4943
duke@435 4944 // Wait for the child process to exit. This returns immediately if
duke@435 4945 // the child has already exited. */
duke@435 4946 while (waitpid(pid, &status, 0) < 0) {
duke@435 4947 switch (errno) {
duke@435 4948 case ECHILD: return 0;
duke@435 4949 case EINTR: break;
duke@435 4950 default: return -1;
duke@435 4951 }
duke@435 4952 }
duke@435 4953
duke@435 4954 if (WIFEXITED(status)) {
duke@435 4955 // The child exited normally; get its exit code.
duke@435 4956 return WEXITSTATUS(status);
duke@435 4957 } else if (WIFSIGNALED(status)) {
duke@435 4958 // The child exited because of a signal
duke@435 4959 // The best value to return is 0x80 + signal number,
duke@435 4960 // because that is what all Unix shells do, and because
duke@435 4961 // it allows callers to distinguish between process exit and
duke@435 4962 // process death by signal.
duke@435 4963 return 0x80 + WTERMSIG(status);
duke@435 4964 } else {
duke@435 4965 // Unknown exit code; pass it through
duke@435 4966 return status;
duke@435 4967 }
duke@435 4968 }
duke@435 4969 }

mercurial