src/os/linux/vm/os_linux.cpp

Thu, 22 Sep 2011 16:48:41 +0100

author
kevinw
date
Thu, 22 Sep 2011 16:48:41 +0100
changeset 3152
3607aac85aa9
parent 3113
27702f012017
child 3162
5d871c1ff17c
permissions
-rw-r--r--

7051189: Need to suppress info message if -xcheck:jni used with libjsig.so
Reviewed-by: coleenp, minqi

duke@435 1 /*
ctornqvi@2520 2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
coleenp@1755 25 # define __STDC_FORMAT_MACROS
coleenp@1755 26
stefank@2314 27 // no precompiled headers
stefank@2314 28 #include "classfile/classLoader.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "classfile/vmSymbols.hpp"
stefank@2314 31 #include "code/icBuffer.hpp"
stefank@2314 32 #include "code/vtableStubs.hpp"
stefank@2314 33 #include "compiler/compileBroker.hpp"
stefank@2314 34 #include "interpreter/interpreter.hpp"
stefank@2314 35 #include "jvm_linux.h"
stefank@2314 36 #include "memory/allocation.inline.hpp"
stefank@2314 37 #include "memory/filemap.hpp"
stefank@2314 38 #include "mutex_linux.inline.hpp"
stefank@2314 39 #include "oops/oop.inline.hpp"
stefank@2314 40 #include "os_share_linux.hpp"
stefank@2314 41 #include "prims/jniFastGetField.hpp"
stefank@2314 42 #include "prims/jvm.h"
stefank@2314 43 #include "prims/jvm_misc.hpp"
stefank@2314 44 #include "runtime/arguments.hpp"
stefank@2314 45 #include "runtime/extendedPC.hpp"
stefank@2314 46 #include "runtime/globals.hpp"
stefank@2314 47 #include "runtime/interfaceSupport.hpp"
stefank@2314 48 #include "runtime/java.hpp"
stefank@2314 49 #include "runtime/javaCalls.hpp"
stefank@2314 50 #include "runtime/mutexLocker.hpp"
stefank@2314 51 #include "runtime/objectMonitor.hpp"
stefank@2314 52 #include "runtime/osThread.hpp"
stefank@2314 53 #include "runtime/perfMemory.hpp"
stefank@2314 54 #include "runtime/sharedRuntime.hpp"
stefank@2314 55 #include "runtime/statSampler.hpp"
stefank@2314 56 #include "runtime/stubRoutines.hpp"
stefank@2314 57 #include "runtime/threadCritical.hpp"
stefank@2314 58 #include "runtime/timer.hpp"
stefank@2314 59 #include "services/attachListener.hpp"
stefank@2314 60 #include "services/runtimeService.hpp"
stefank@2314 61 #include "thread_linux.inline.hpp"
zgu@2364 62 #include "utilities/decoder.hpp"
stefank@2314 63 #include "utilities/defaultStream.hpp"
stefank@2314 64 #include "utilities/events.hpp"
stefank@2314 65 #include "utilities/growableArray.hpp"
stefank@2314 66 #include "utilities/vmError.hpp"
stefank@2314 67 #ifdef TARGET_ARCH_x86
stefank@2314 68 # include "assembler_x86.inline.hpp"
stefank@2314 69 # include "nativeInst_x86.hpp"
stefank@2314 70 #endif
stefank@2314 71 #ifdef TARGET_ARCH_sparc
stefank@2314 72 # include "assembler_sparc.inline.hpp"
stefank@2314 73 # include "nativeInst_sparc.hpp"
stefank@2314 74 #endif
stefank@2314 75 #ifdef TARGET_ARCH_zero
stefank@2314 76 # include "assembler_zero.inline.hpp"
stefank@2314 77 # include "nativeInst_zero.hpp"
stefank@2314 78 #endif
bobv@2508 79 #ifdef TARGET_ARCH_arm
bobv@2508 80 # include "assembler_arm.inline.hpp"
bobv@2508 81 # include "nativeInst_arm.hpp"
bobv@2508 82 #endif
bobv@2508 83 #ifdef TARGET_ARCH_ppc
bobv@2508 84 # include "assembler_ppc.inline.hpp"
bobv@2508 85 # include "nativeInst_ppc.hpp"
bobv@2508 86 #endif
stefank@2314 87 #ifdef COMPILER1
stefank@2314 88 #include "c1/c1_Runtime1.hpp"
stefank@2314 89 #endif
stefank@2314 90 #ifdef COMPILER2
stefank@2314 91 #include "opto/runtime.hpp"
stefank@2314 92 #endif
duke@435 93
duke@435 94 // put OS-includes here
duke@435 95 # include <sys/types.h>
duke@435 96 # include <sys/mman.h>
bobv@2036 97 # include <sys/stat.h>
bobv@2036 98 # include <sys/select.h>
duke@435 99 # include <pthread.h>
duke@435 100 # include <signal.h>
duke@435 101 # include <errno.h>
duke@435 102 # include <dlfcn.h>
duke@435 103 # include <stdio.h>
duke@435 104 # include <unistd.h>
duke@435 105 # include <sys/resource.h>
duke@435 106 # include <pthread.h>
duke@435 107 # include <sys/stat.h>
duke@435 108 # include <sys/time.h>
duke@435 109 # include <sys/times.h>
duke@435 110 # include <sys/utsname.h>
duke@435 111 # include <sys/socket.h>
duke@435 112 # include <sys/wait.h>
duke@435 113 # include <pwd.h>
duke@435 114 # include <poll.h>
duke@435 115 # include <semaphore.h>
duke@435 116 # include <fcntl.h>
duke@435 117 # include <string.h>
duke@435 118 # include <syscall.h>
duke@435 119 # include <sys/sysinfo.h>
duke@435 120 # include <gnu/libc-version.h>
duke@435 121 # include <sys/ipc.h>
duke@435 122 # include <sys/shm.h>
duke@435 123 # include <link.h>
coleenp@1755 124 # include <stdint.h>
coleenp@1755 125 # include <inttypes.h>
dholmes@2375 126 # include <sys/ioctl.h>
duke@435 127
duke@435 128 #define MAX_PATH (2 * K)
duke@435 129
duke@435 130 // for timer info max values which include all bits
duke@435 131 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 132 #define SEC_IN_NANOSECS 1000000000LL
duke@435 133
ctornqvi@2520 134 #define LARGEPAGES_BIT (1 << 6)
duke@435 135 ////////////////////////////////////////////////////////////////////////////////
duke@435 136 // global variables
duke@435 137 julong os::Linux::_physical_memory = 0;
duke@435 138
duke@435 139 address os::Linux::_initial_thread_stack_bottom = NULL;
duke@435 140 uintptr_t os::Linux::_initial_thread_stack_size = 0;
duke@435 141
duke@435 142 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
duke@435 143 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
duke@435 144 Mutex* os::Linux::_createThread_lock = NULL;
duke@435 145 pthread_t os::Linux::_main_thread;
duke@435 146 int os::Linux::_page_size = -1;
duke@435 147 bool os::Linux::_is_floating_stack = false;
duke@435 148 bool os::Linux::_is_NPTL = false;
duke@435 149 bool os::Linux::_supports_fast_thread_cpu_time = false;
xlu@634 150 const char * os::Linux::_glibc_version = NULL;
xlu@634 151 const char * os::Linux::_libpthread_version = NULL;
duke@435 152
duke@435 153 static jlong initial_time_count=0;
duke@435 154
duke@435 155 static int clock_tics_per_sec = 100;
duke@435 156
duke@435 157 // For diagnostics to print a message once. see run_periodic_checks
duke@435 158 static sigset_t check_signal_done;
duke@435 159 static bool check_signals = true;;
duke@435 160
duke@435 161 static pid_t _initial_pid = 0;
duke@435 162
duke@435 163 /* Signal number used to suspend/resume a thread */
duke@435 164
duke@435 165 /* do not use any signal number less than SIGSEGV, see 4355769 */
duke@435 166 static int SR_signum = SIGUSR2;
duke@435 167 sigset_t SR_sigset;
duke@435 168
kamg@677 169 /* Used to protect dlsym() calls */
kamg@677 170 static pthread_mutex_t dl_mutex;
kamg@677 171
jcoomes@2999 172 #ifdef JAVASE_EMBEDDED
jcoomes@2999 173 class MemNotifyThread: public Thread {
jcoomes@2999 174 friend class VMStructs;
jcoomes@2999 175 public:
jcoomes@2999 176 virtual void run();
jcoomes@2999 177
jcoomes@2999 178 private:
jcoomes@2999 179 static MemNotifyThread* _memnotify_thread;
jcoomes@2999 180 int _fd;
jcoomes@2999 181
jcoomes@2999 182 public:
jcoomes@2999 183
jcoomes@2999 184 // Constructor
jcoomes@2999 185 MemNotifyThread(int fd);
jcoomes@2999 186
jcoomes@2999 187 // Tester
jcoomes@2999 188 bool is_memnotify_thread() const { return true; }
jcoomes@2999 189
jcoomes@2999 190 // Printing
jcoomes@2999 191 char* name() const { return (char*)"Linux MemNotify Thread"; }
jcoomes@2999 192
jcoomes@2999 193 // Returns the single instance of the MemNotifyThread
jcoomes@2999 194 static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
jcoomes@2999 195
jcoomes@2999 196 // Create and start the single instance of MemNotifyThread
jcoomes@2999 197 static void start();
jcoomes@2999 198 };
jcoomes@2999 199 #endif // JAVASE_EMBEDDED
jcoomes@2999 200
duke@435 201 // utility functions
duke@435 202
duke@435 203 static int SR_initialize();
duke@435 204 static int SR_finalize();
duke@435 205
duke@435 206 julong os::available_memory() {
duke@435 207 return Linux::available_memory();
duke@435 208 }
duke@435 209
duke@435 210 julong os::Linux::available_memory() {
duke@435 211 // values in struct sysinfo are "unsigned long"
duke@435 212 struct sysinfo si;
duke@435 213 sysinfo(&si);
duke@435 214
duke@435 215 return (julong)si.freeram * si.mem_unit;
duke@435 216 }
duke@435 217
duke@435 218 julong os::physical_memory() {
duke@435 219 return Linux::physical_memory();
duke@435 220 }
duke@435 221
phh@455 222 julong os::allocatable_physical_memory(julong size) {
phh@455 223 #ifdef _LP64
phh@455 224 return size;
phh@455 225 #else
phh@455 226 julong result = MIN2(size, (julong)3800*M);
phh@455 227 if (!is_allocatable(result)) {
phh@455 228 // See comments under solaris for alignment considerations
phh@455 229 julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
phh@455 230 result = MIN2(size, reasonable_size);
phh@455 231 }
phh@455 232 return result;
phh@455 233 #endif // _LP64
phh@455 234 }
phh@455 235
duke@435 236 ////////////////////////////////////////////////////////////////////////////////
duke@435 237 // environment support
duke@435 238
duke@435 239 bool os::getenv(const char* name, char* buf, int len) {
duke@435 240 const char* val = ::getenv(name);
duke@435 241 if (val != NULL && strlen(val) < (size_t)len) {
duke@435 242 strcpy(buf, val);
duke@435 243 return true;
duke@435 244 }
duke@435 245 if (len > 0) buf[0] = 0; // return a null string
duke@435 246 return false;
duke@435 247 }
duke@435 248
duke@435 249
duke@435 250 // Return true if user is running as root.
duke@435 251
duke@435 252 bool os::have_special_privileges() {
duke@435 253 static bool init = false;
duke@435 254 static bool privileges = false;
duke@435 255 if (!init) {
duke@435 256 privileges = (getuid() != geteuid()) || (getgid() != getegid());
duke@435 257 init = true;
duke@435 258 }
duke@435 259 return privileges;
duke@435 260 }
duke@435 261
duke@435 262
duke@435 263 #ifndef SYS_gettid
duke@435 264 // i386: 224, ia64: 1105, amd64: 186, sparc 143
duke@435 265 #ifdef __ia64__
duke@435 266 #define SYS_gettid 1105
duke@435 267 #elif __i386__
duke@435 268 #define SYS_gettid 224
duke@435 269 #elif __amd64__
duke@435 270 #define SYS_gettid 186
duke@435 271 #elif __sparc__
duke@435 272 #define SYS_gettid 143
duke@435 273 #else
duke@435 274 #error define gettid for the arch
duke@435 275 #endif
duke@435 276 #endif
duke@435 277
duke@435 278 // Cpu architecture string
never@1445 279 #if defined(ZERO)
never@1445 280 static char cpu_arch[] = ZERO_LIBARCH;
never@1445 281 #elif defined(IA64)
duke@435 282 static char cpu_arch[] = "ia64";
duke@435 283 #elif defined(IA32)
duke@435 284 static char cpu_arch[] = "i386";
duke@435 285 #elif defined(AMD64)
duke@435 286 static char cpu_arch[] = "amd64";
bobv@2036 287 #elif defined(ARM)
bobv@2036 288 static char cpu_arch[] = "arm";
bobv@2036 289 #elif defined(PPC)
bobv@2036 290 static char cpu_arch[] = "ppc";
duke@435 291 #elif defined(SPARC)
duke@435 292 # ifdef _LP64
duke@435 293 static char cpu_arch[] = "sparcv9";
duke@435 294 # else
duke@435 295 static char cpu_arch[] = "sparc";
duke@435 296 # endif
duke@435 297 #else
duke@435 298 #error Add appropriate cpu_arch setting
duke@435 299 #endif
duke@435 300
duke@435 301
duke@435 302 // pid_t gettid()
duke@435 303 //
duke@435 304 // Returns the kernel thread id of the currently running thread. Kernel
duke@435 305 // thread id is used to access /proc.
duke@435 306 //
duke@435 307 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
duke@435 308 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
duke@435 309 //
duke@435 310 pid_t os::Linux::gettid() {
duke@435 311 int rslt = syscall(SYS_gettid);
duke@435 312 if (rslt == -1) {
duke@435 313 // old kernel, no NPTL support
duke@435 314 return getpid();
duke@435 315 } else {
duke@435 316 return (pid_t)rslt;
duke@435 317 }
duke@435 318 }
duke@435 319
duke@435 320 // Most versions of linux have a bug where the number of processors are
duke@435 321 // determined by looking at the /proc file system. In a chroot environment,
duke@435 322 // the system call returns 1. This causes the VM to act as if it is
duke@435 323 // a single processor and elide locking (see is_MP() call).
duke@435 324 static bool unsafe_chroot_detected = false;
xlu@634 325 static const char *unstable_chroot_error = "/proc file system not found.\n"
xlu@634 326 "Java may be unstable running multithreaded in a chroot "
xlu@634 327 "environment on Linux when /proc filesystem is not mounted.";
duke@435 328
duke@435 329 void os::Linux::initialize_system_info() {
phh@1558 330 set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
phh@1558 331 if (processor_count() == 1) {
duke@435 332 pid_t pid = os::Linux::gettid();
duke@435 333 char fname[32];
duke@435 334 jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
duke@435 335 FILE *fp = fopen(fname, "r");
duke@435 336 if (fp == NULL) {
duke@435 337 unsafe_chroot_detected = true;
duke@435 338 } else {
duke@435 339 fclose(fp);
duke@435 340 }
duke@435 341 }
duke@435 342 _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
phh@1558 343 assert(processor_count() > 0, "linux error");
duke@435 344 }
duke@435 345
duke@435 346 void os::init_system_properties_values() {
duke@435 347 // char arch[12];
duke@435 348 // sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
duke@435 349
duke@435 350 // The next steps are taken in the product version:
duke@435 351 //
duke@435 352 // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
duke@435 353 // This library should be located at:
duke@435 354 // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
duke@435 355 //
duke@435 356 // If "/jre/lib/" appears at the right place in the path, then we
duke@435 357 // assume libjvm[_g].so is installed in a JDK and we use this path.
duke@435 358 //
duke@435 359 // Otherwise exit with message: "Could not create the Java virtual machine."
duke@435 360 //
duke@435 361 // The following extra steps are taken in the debugging version:
duke@435 362 //
duke@435 363 // If "/jre/lib/" does NOT appear at the right place in the path
duke@435 364 // instead of exit check for $JAVA_HOME environment variable.
duke@435 365 //
duke@435 366 // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
duke@435 367 // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
duke@435 368 // it looks like libjvm[_g].so is installed there
duke@435 369 // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
duke@435 370 //
duke@435 371 // Otherwise exit.
duke@435 372 //
duke@435 373 // Important note: if the location of libjvm.so changes this
duke@435 374 // code needs to be changed accordingly.
duke@435 375
duke@435 376 // The next few definitions allow the code to be verbatim:
duke@435 377 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
duke@435 378 #define getenv(n) ::getenv(n)
duke@435 379
duke@435 380 /*
duke@435 381 * See ld(1):
duke@435 382 * The linker uses the following search paths to locate required
duke@435 383 * shared libraries:
duke@435 384 * 1: ...
duke@435 385 * ...
duke@435 386 * 7: The default directories, normally /lib and /usr/lib.
duke@435 387 */
kvn@944 388 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
kvn@944 389 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
kvn@944 390 #else
duke@435 391 #define DEFAULT_LIBPATH "/lib:/usr/lib"
kvn@944 392 #endif
duke@435 393
duke@435 394 #define EXTENSIONS_DIR "/lib/ext"
duke@435 395 #define ENDORSED_DIR "/lib/endorsed"
duke@435 396 #define REG_DIR "/usr/java/packages"
duke@435 397
duke@435 398 {
duke@435 399 /* sysclasspath, java_home, dll_dir */
duke@435 400 {
duke@435 401 char *home_path;
duke@435 402 char *dll_path;
duke@435 403 char *pslash;
duke@435 404 char buf[MAXPATHLEN];
duke@435 405 os::jvm_path(buf, sizeof(buf));
duke@435 406
duke@435 407 // Found the full path to libjvm.so.
duke@435 408 // Now cut the path to <java_home>/jre if we can.
duke@435 409 *(strrchr(buf, '/')) = '\0'; /* get rid of /libjvm.so */
duke@435 410 pslash = strrchr(buf, '/');
duke@435 411 if (pslash != NULL)
duke@435 412 *pslash = '\0'; /* get rid of /{client|server|hotspot} */
duke@435 413 dll_path = malloc(strlen(buf) + 1);
duke@435 414 if (dll_path == NULL)
duke@435 415 return;
duke@435 416 strcpy(dll_path, buf);
duke@435 417 Arguments::set_dll_dir(dll_path);
duke@435 418
duke@435 419 if (pslash != NULL) {
duke@435 420 pslash = strrchr(buf, '/');
duke@435 421 if (pslash != NULL) {
duke@435 422 *pslash = '\0'; /* get rid of /<arch> */
duke@435 423 pslash = strrchr(buf, '/');
duke@435 424 if (pslash != NULL)
duke@435 425 *pslash = '\0'; /* get rid of /lib */
duke@435 426 }
duke@435 427 }
duke@435 428
duke@435 429 home_path = malloc(strlen(buf) + 1);
duke@435 430 if (home_path == NULL)
duke@435 431 return;
duke@435 432 strcpy(home_path, buf);
duke@435 433 Arguments::set_java_home(home_path);
duke@435 434
duke@435 435 if (!set_boot_path('/', ':'))
duke@435 436 return;
duke@435 437 }
duke@435 438
duke@435 439 /*
duke@435 440 * Where to look for native libraries
duke@435 441 *
duke@435 442 * Note: Due to a legacy implementation, most of the library path
duke@435 443 * is set in the launcher. This was to accomodate linking restrictions
duke@435 444 * on legacy Linux implementations (which are no longer supported).
duke@435 445 * Eventually, all the library path setting will be done here.
duke@435 446 *
duke@435 447 * However, to prevent the proliferation of improperly built native
duke@435 448 * libraries, the new path component /usr/java/packages is added here.
duke@435 449 * Eventually, all the library path setting will be done here.
duke@435 450 */
duke@435 451 {
duke@435 452 char *ld_library_path;
duke@435 453
duke@435 454 /*
duke@435 455 * Construct the invariant part of ld_library_path. Note that the
duke@435 456 * space for the colon and the trailing null are provided by the
duke@435 457 * nulls included by the sizeof operator (so actually we allocate
duke@435 458 * a byte more than necessary).
duke@435 459 */
duke@435 460 ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
duke@435 461 strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
duke@435 462 sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
duke@435 463
duke@435 464 /*
duke@435 465 * Get the user setting of LD_LIBRARY_PATH, and prepended it. It
duke@435 466 * should always exist (until the legacy problem cited above is
duke@435 467 * addressed).
duke@435 468 */
duke@435 469 char *v = getenv("LD_LIBRARY_PATH");
duke@435 470 if (v != NULL) {
duke@435 471 char *t = ld_library_path;
duke@435 472 /* That's +1 for the colon and +1 for the trailing '\0' */
duke@435 473 ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
duke@435 474 sprintf(ld_library_path, "%s:%s", v, t);
duke@435 475 }
duke@435 476 Arguments::set_library_path(ld_library_path);
duke@435 477 }
duke@435 478
duke@435 479 /*
duke@435 480 * Extensions directories.
duke@435 481 *
duke@435 482 * Note that the space for the colon and the trailing null are provided
duke@435 483 * by the nulls included by the sizeof operator (so actually one byte more
duke@435 484 * than necessary is allocated).
duke@435 485 */
duke@435 486 {
duke@435 487 char *buf = malloc(strlen(Arguments::get_java_home()) +
duke@435 488 sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
duke@435 489 sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
duke@435 490 Arguments::get_java_home());
duke@435 491 Arguments::set_ext_dirs(buf);
duke@435 492 }
duke@435 493
duke@435 494 /* Endorsed standards default directory. */
duke@435 495 {
duke@435 496 char * buf;
duke@435 497 buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
duke@435 498 sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
duke@435 499 Arguments::set_endorsed_dirs(buf);
duke@435 500 }
duke@435 501 }
duke@435 502
duke@435 503 #undef malloc
duke@435 504 #undef getenv
duke@435 505 #undef EXTENSIONS_DIR
duke@435 506 #undef ENDORSED_DIR
duke@435 507
duke@435 508 // Done
duke@435 509 return;
duke@435 510 }
duke@435 511
duke@435 512 ////////////////////////////////////////////////////////////////////////////////
duke@435 513 // breakpoint support
duke@435 514
duke@435 515 void os::breakpoint() {
duke@435 516 BREAKPOINT;
duke@435 517 }
duke@435 518
duke@435 519 extern "C" void breakpoint() {
duke@435 520 // use debugger to set breakpoint here
duke@435 521 }
duke@435 522
duke@435 523 ////////////////////////////////////////////////////////////////////////////////
duke@435 524 // signal support
duke@435 525
duke@435 526 debug_only(static bool signal_sets_initialized = false);
duke@435 527 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
duke@435 528
duke@435 529 bool os::Linux::is_sig_ignored(int sig) {
duke@435 530 struct sigaction oact;
duke@435 531 sigaction(sig, (struct sigaction*)NULL, &oact);
duke@435 532 void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
duke@435 533 : CAST_FROM_FN_PTR(void*, oact.sa_handler);
duke@435 534 if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
duke@435 535 return true;
duke@435 536 else
duke@435 537 return false;
duke@435 538 }
duke@435 539
duke@435 540 void os::Linux::signal_sets_init() {
duke@435 541 // Should also have an assertion stating we are still single-threaded.
duke@435 542 assert(!signal_sets_initialized, "Already initialized");
duke@435 543 // Fill in signals that are necessarily unblocked for all threads in
duke@435 544 // the VM. Currently, we unblock the following signals:
duke@435 545 // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
duke@435 546 // by -Xrs (=ReduceSignalUsage));
duke@435 547 // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
duke@435 548 // other threads. The "ReduceSignalUsage" boolean tells us not to alter
duke@435 549 // the dispositions or masks wrt these signals.
duke@435 550 // Programs embedding the VM that want to use the above signals for their
duke@435 551 // own purposes must, at this time, use the "-Xrs" option to prevent
duke@435 552 // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
duke@435 553 // (See bug 4345157, and other related bugs).
duke@435 554 // In reality, though, unblocking these signals is really a nop, since
duke@435 555 // these signals are not blocked by default.
duke@435 556 sigemptyset(&unblocked_sigs);
duke@435 557 sigemptyset(&allowdebug_blocked_sigs);
duke@435 558 sigaddset(&unblocked_sigs, SIGILL);
duke@435 559 sigaddset(&unblocked_sigs, SIGSEGV);
duke@435 560 sigaddset(&unblocked_sigs, SIGBUS);
duke@435 561 sigaddset(&unblocked_sigs, SIGFPE);
duke@435 562 sigaddset(&unblocked_sigs, SR_signum);
duke@435 563
duke@435 564 if (!ReduceSignalUsage) {
duke@435 565 if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
duke@435 566 sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 567 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 568 }
duke@435 569 if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
duke@435 570 sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 571 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 572 }
duke@435 573 if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
duke@435 574 sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 575 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 576 }
duke@435 577 }
duke@435 578 // Fill in signals that are blocked by all but the VM thread.
duke@435 579 sigemptyset(&vm_sigs);
duke@435 580 if (!ReduceSignalUsage)
duke@435 581 sigaddset(&vm_sigs, BREAK_SIGNAL);
duke@435 582 debug_only(signal_sets_initialized = true);
duke@435 583
duke@435 584 }
duke@435 585
duke@435 586 // These are signals that are unblocked while a thread is running Java.
duke@435 587 // (For some reason, they get blocked by default.)
duke@435 588 sigset_t* os::Linux::unblocked_signals() {
duke@435 589 assert(signal_sets_initialized, "Not initialized");
duke@435 590 return &unblocked_sigs;
duke@435 591 }
duke@435 592
duke@435 593 // These are the signals that are blocked while a (non-VM) thread is
duke@435 594 // running Java. Only the VM thread handles these signals.
duke@435 595 sigset_t* os::Linux::vm_signals() {
duke@435 596 assert(signal_sets_initialized, "Not initialized");
duke@435 597 return &vm_sigs;
duke@435 598 }
duke@435 599
duke@435 600 // These are signals that are blocked during cond_wait to allow debugger in
duke@435 601 sigset_t* os::Linux::allowdebug_blocked_signals() {
duke@435 602 assert(signal_sets_initialized, "Not initialized");
duke@435 603 return &allowdebug_blocked_sigs;
duke@435 604 }
duke@435 605
duke@435 606 void os::Linux::hotspot_sigmask(Thread* thread) {
duke@435 607
duke@435 608 //Save caller's signal mask before setting VM signal mask
duke@435 609 sigset_t caller_sigmask;
duke@435 610 pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
duke@435 611
duke@435 612 OSThread* osthread = thread->osthread();
duke@435 613 osthread->set_caller_sigmask(caller_sigmask);
duke@435 614
duke@435 615 pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
duke@435 616
duke@435 617 if (!ReduceSignalUsage) {
duke@435 618 if (thread->is_VM_thread()) {
duke@435 619 // Only the VM thread handles BREAK_SIGNAL ...
duke@435 620 pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
duke@435 621 } else {
duke@435 622 // ... all other threads block BREAK_SIGNAL
duke@435 623 pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
duke@435 624 }
duke@435 625 }
duke@435 626 }
duke@435 627
duke@435 628 //////////////////////////////////////////////////////////////////////////////
duke@435 629 // detecting pthread library
duke@435 630
duke@435 631 void os::Linux::libpthread_init() {
duke@435 632 // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
duke@435 633 // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
duke@435 634 // generic name for earlier versions.
duke@435 635 // Define macros here so we can build HotSpot on old systems.
duke@435 636 # ifndef _CS_GNU_LIBC_VERSION
duke@435 637 # define _CS_GNU_LIBC_VERSION 2
duke@435 638 # endif
duke@435 639 # ifndef _CS_GNU_LIBPTHREAD_VERSION
duke@435 640 # define _CS_GNU_LIBPTHREAD_VERSION 3
duke@435 641 # endif
duke@435 642
duke@435 643 size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
duke@435 644 if (n > 0) {
duke@435 645 char *str = (char *)malloc(n);
duke@435 646 confstr(_CS_GNU_LIBC_VERSION, str, n);
duke@435 647 os::Linux::set_glibc_version(str);
duke@435 648 } else {
duke@435 649 // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
duke@435 650 static char _gnu_libc_version[32];
duke@435 651 jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
duke@435 652 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
duke@435 653 os::Linux::set_glibc_version(_gnu_libc_version);
duke@435 654 }
duke@435 655
duke@435 656 n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
duke@435 657 if (n > 0) {
duke@435 658 char *str = (char *)malloc(n);
duke@435 659 confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
duke@435 660 // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
duke@435 661 // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
xlu@634 662 // is the case. LinuxThreads has a hard limit on max number of threads.
xlu@634 663 // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
xlu@634 664 // On the other hand, NPTL does not have such a limit, sysconf()
xlu@634 665 // will return -1 and errno is not changed. Check if it is really NPTL.
duke@435 666 if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
xlu@634 667 strstr(str, "NPTL") &&
xlu@634 668 sysconf(_SC_THREAD_THREADS_MAX) > 0) {
xlu@634 669 free(str);
xlu@634 670 os::Linux::set_libpthread_version("linuxthreads");
xlu@634 671 } else {
xlu@634 672 os::Linux::set_libpthread_version(str);
duke@435 673 }
duke@435 674 } else {
xlu@634 675 // glibc before 2.3.2 only has LinuxThreads.
xlu@634 676 os::Linux::set_libpthread_version("linuxthreads");
duke@435 677 }
duke@435 678
duke@435 679 if (strstr(libpthread_version(), "NPTL")) {
duke@435 680 os::Linux::set_is_NPTL();
duke@435 681 } else {
duke@435 682 os::Linux::set_is_LinuxThreads();
duke@435 683 }
duke@435 684
duke@435 685 // LinuxThreads have two flavors: floating-stack mode, which allows variable
duke@435 686 // stack size; and fixed-stack mode. NPTL is always floating-stack.
duke@435 687 if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
duke@435 688 os::Linux::set_is_floating_stack();
duke@435 689 }
duke@435 690 }
duke@435 691
duke@435 692 /////////////////////////////////////////////////////////////////////////////
duke@435 693 // thread stack
duke@435 694
duke@435 695 // Force Linux kernel to expand current thread stack. If "bottom" is close
duke@435 696 // to the stack guard, caller should block all signals.
duke@435 697 //
duke@435 698 // MAP_GROWSDOWN:
duke@435 699 // A special mmap() flag that is used to implement thread stacks. It tells
duke@435 700 // kernel that the memory region should extend downwards when needed. This
duke@435 701 // allows early versions of LinuxThreads to only mmap the first few pages
duke@435 702 // when creating a new thread. Linux kernel will automatically expand thread
duke@435 703 // stack as needed (on page faults).
duke@435 704 //
duke@435 705 // However, because the memory region of a MAP_GROWSDOWN stack can grow on
duke@435 706 // demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
duke@435 707 // region, it's hard to tell if the fault is due to a legitimate stack
duke@435 708 // access or because of reading/writing non-exist memory (e.g. buffer
duke@435 709 // overrun). As a rule, if the fault happens below current stack pointer,
duke@435 710 // Linux kernel does not expand stack, instead a SIGSEGV is sent to the
duke@435 711 // application (see Linux kernel fault.c).
duke@435 712 //
duke@435 713 // This Linux feature can cause SIGSEGV when VM bangs thread stack for
duke@435 714 // stack overflow detection.
duke@435 715 //
duke@435 716 // Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
duke@435 717 // not use this flag. However, the stack of initial thread is not created
duke@435 718 // by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
duke@435 719 // unlikely) that user code can create a thread with MAP_GROWSDOWN stack
duke@435 720 // and then attach the thread to JVM.
duke@435 721 //
duke@435 722 // To get around the problem and allow stack banging on Linux, we need to
duke@435 723 // manually expand thread stack after receiving the SIGSEGV.
duke@435 724 //
duke@435 725 // There are two ways to expand thread stack to address "bottom", we used
duke@435 726 // both of them in JVM before 1.5:
duke@435 727 // 1. adjust stack pointer first so that it is below "bottom", and then
duke@435 728 // touch "bottom"
duke@435 729 // 2. mmap() the page in question
duke@435 730 //
duke@435 731 // Now alternate signal stack is gone, it's harder to use 2. For instance,
duke@435 732 // if current sp is already near the lower end of page 101, and we need to
duke@435 733 // call mmap() to map page 100, it is possible that part of the mmap() frame
duke@435 734 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
duke@435 735 // That will destroy the mmap() frame and cause VM to crash.
duke@435 736 //
duke@435 737 // The following code works by adjusting sp first, then accessing the "bottom"
duke@435 738 // page to force a page fault. Linux kernel will then automatically expand the
duke@435 739 // stack mapping.
duke@435 740 //
duke@435 741 // _expand_stack_to() assumes its frame size is less than page size, which
duke@435 742 // should always be true if the function is not inlined.
duke@435 743
duke@435 744 #if __GNUC__ < 3 // gcc 2.x does not support noinline attribute
duke@435 745 #define NOINLINE
duke@435 746 #else
duke@435 747 #define NOINLINE __attribute__ ((noinline))
duke@435 748 #endif
duke@435 749
duke@435 750 static void _expand_stack_to(address bottom) NOINLINE;
duke@435 751
duke@435 752 static void _expand_stack_to(address bottom) {
duke@435 753 address sp;
duke@435 754 size_t size;
duke@435 755 volatile char *p;
duke@435 756
duke@435 757 // Adjust bottom to point to the largest address within the same page, it
duke@435 758 // gives us a one-page buffer if alloca() allocates slightly more memory.
duke@435 759 bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
duke@435 760 bottom += os::Linux::page_size() - 1;
duke@435 761
duke@435 762 // sp might be slightly above current stack pointer; if that's the case, we
duke@435 763 // will alloca() a little more space than necessary, which is OK. Don't use
duke@435 764 // os::current_stack_pointer(), as its result can be slightly below current
duke@435 765 // stack pointer, causing us to not alloca enough to reach "bottom".
duke@435 766 sp = (address)&sp;
duke@435 767
duke@435 768 if (sp > bottom) {
duke@435 769 size = sp - bottom;
duke@435 770 p = (volatile char *)alloca(size);
duke@435 771 assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
duke@435 772 p[0] = '\0';
duke@435 773 }
duke@435 774 }
duke@435 775
duke@435 776 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
duke@435 777 assert(t!=NULL, "just checking");
duke@435 778 assert(t->osthread()->expanding_stack(), "expand should be set");
duke@435 779 assert(t->stack_base() != NULL, "stack_base was not initialized");
duke@435 780
duke@435 781 if (addr < t->stack_base() && addr >= t->stack_yellow_zone_base()) {
duke@435 782 sigset_t mask_all, old_sigset;
duke@435 783 sigfillset(&mask_all);
duke@435 784 pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
duke@435 785 _expand_stack_to(addr);
duke@435 786 pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
duke@435 787 return true;
duke@435 788 }
duke@435 789 return false;
duke@435 790 }
duke@435 791
duke@435 792 //////////////////////////////////////////////////////////////////////////////
duke@435 793 // create new thread
duke@435 794
duke@435 795 static address highest_vm_reserved_address();
duke@435 796
duke@435 797 // check if it's safe to start a new thread
duke@435 798 static bool _thread_safety_check(Thread* thread) {
duke@435 799 if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
duke@435 800 // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
duke@435 801 // Heap is mmap'ed at lower end of memory space. Thread stacks are
duke@435 802 // allocated (MAP_FIXED) from high address space. Every thread stack
duke@435 803 // occupies a fixed size slot (usually 2Mbytes, but user can change
duke@435 804 // it to other values if they rebuild LinuxThreads).
duke@435 805 //
duke@435 806 // Problem with MAP_FIXED is that mmap() can still succeed even part of
duke@435 807 // the memory region has already been mmap'ed. That means if we have too
duke@435 808 // many threads and/or very large heap, eventually thread stack will
duke@435 809 // collide with heap.
duke@435 810 //
duke@435 811 // Here we try to prevent heap/stack collision by comparing current
duke@435 812 // stack bottom with the highest address that has been mmap'ed by JVM
duke@435 813 // plus a safety margin for memory maps created by native code.
duke@435 814 //
duke@435 815 // This feature can be disabled by setting ThreadSafetyMargin to 0
duke@435 816 //
duke@435 817 if (ThreadSafetyMargin > 0) {
duke@435 818 address stack_bottom = os::current_stack_base() - os::current_stack_size();
duke@435 819
duke@435 820 // not safe if our stack extends below the safety margin
duke@435 821 return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
duke@435 822 } else {
duke@435 823 return true;
duke@435 824 }
duke@435 825 } else {
duke@435 826 // Floating stack LinuxThreads or NPTL:
duke@435 827 // Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
duke@435 828 // there's not enough space left, pthread_create() will fail. If we come
duke@435 829 // here, that means enough space has been reserved for stack.
duke@435 830 return true;
duke@435 831 }
duke@435 832 }
duke@435 833
duke@435 834 // Thread start routine for all newly created threads
duke@435 835 static void *java_start(Thread *thread) {
duke@435 836 // Try to randomize the cache line index of hot stack frames.
duke@435 837 // This helps when threads of the same stack traces evict each other's
duke@435 838 // cache lines. The threads can be either from the same JVM instance, or
duke@435 839 // from different JVM instances. The benefit is especially true for
duke@435 840 // processors with hyperthreading technology.
duke@435 841 static int counter = 0;
duke@435 842 int pid = os::current_process_id();
duke@435 843 alloca(((pid ^ counter++) & 7) * 128);
duke@435 844
duke@435 845 ThreadLocalStorage::set_thread(thread);
duke@435 846
duke@435 847 OSThread* osthread = thread->osthread();
duke@435 848 Monitor* sync = osthread->startThread_lock();
duke@435 849
duke@435 850 // non floating stack LinuxThreads needs extra check, see above
duke@435 851 if (!_thread_safety_check(thread)) {
duke@435 852 // notify parent thread
duke@435 853 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 854 osthread->set_state(ZOMBIE);
duke@435 855 sync->notify_all();
duke@435 856 return NULL;
duke@435 857 }
duke@435 858
duke@435 859 // thread_id is kernel thread id (similar to Solaris LWP id)
duke@435 860 osthread->set_thread_id(os::Linux::gettid());
duke@435 861
duke@435 862 if (UseNUMA) {
duke@435 863 int lgrp_id = os::numa_get_group_id();
duke@435 864 if (lgrp_id != -1) {
duke@435 865 thread->set_lgrp_id(lgrp_id);
duke@435 866 }
duke@435 867 }
duke@435 868 // initialize signal mask for this thread
duke@435 869 os::Linux::hotspot_sigmask(thread);
duke@435 870
duke@435 871 // initialize floating point control register
duke@435 872 os::Linux::init_thread_fpu_state();
duke@435 873
duke@435 874 // handshaking with parent thread
duke@435 875 {
duke@435 876 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 877
duke@435 878 // notify parent thread
duke@435 879 osthread->set_state(INITIALIZED);
duke@435 880 sync->notify_all();
duke@435 881
duke@435 882 // wait until os::start_thread()
duke@435 883 while (osthread->get_state() == INITIALIZED) {
duke@435 884 sync->wait(Mutex::_no_safepoint_check_flag);
duke@435 885 }
duke@435 886 }
duke@435 887
duke@435 888 // call one more level start routine
duke@435 889 thread->run();
duke@435 890
duke@435 891 return 0;
duke@435 892 }
duke@435 893
duke@435 894 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 895 assert(thread->osthread() == NULL, "caller responsible");
duke@435 896
duke@435 897 // Allocate the OSThread object
duke@435 898 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 899 if (osthread == NULL) {
duke@435 900 return false;
duke@435 901 }
duke@435 902
duke@435 903 // set the correct thread state
duke@435 904 osthread->set_thread_type(thr_type);
duke@435 905
duke@435 906 // Initial state is ALLOCATED but not INITIALIZED
duke@435 907 osthread->set_state(ALLOCATED);
duke@435 908
duke@435 909 thread->set_osthread(osthread);
duke@435 910
duke@435 911 // init thread attributes
duke@435 912 pthread_attr_t attr;
duke@435 913 pthread_attr_init(&attr);
duke@435 914 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
duke@435 915
duke@435 916 // stack size
duke@435 917 if (os::Linux::supports_variable_stack_size()) {
duke@435 918 // calculate stack size if it's not specified by caller
duke@435 919 if (stack_size == 0) {
duke@435 920 stack_size = os::Linux::default_stack_size(thr_type);
duke@435 921
duke@435 922 switch (thr_type) {
duke@435 923 case os::java_thread:
coleenp@2222 924 // Java threads use ThreadStackSize which default value can be
coleenp@2222 925 // changed with the flag -Xss
coleenp@2222 926 assert (JavaThread::stack_size_at_create() > 0, "this should be set");
coleenp@2222 927 stack_size = JavaThread::stack_size_at_create();
duke@435 928 break;
duke@435 929 case os::compiler_thread:
duke@435 930 if (CompilerThreadStackSize > 0) {
duke@435 931 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 932 break;
duke@435 933 } // else fall through:
duke@435 934 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 935 case os::vm_thread:
duke@435 936 case os::pgc_thread:
duke@435 937 case os::cgc_thread:
duke@435 938 case os::watcher_thread:
duke@435 939 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 940 break;
duke@435 941 }
duke@435 942 }
duke@435 943
duke@435 944 stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
duke@435 945 pthread_attr_setstacksize(&attr, stack_size);
duke@435 946 } else {
duke@435 947 // let pthread_create() pick the default value.
duke@435 948 }
duke@435 949
duke@435 950 // glibc guard page
duke@435 951 pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
duke@435 952
duke@435 953 ThreadState state;
duke@435 954
duke@435 955 {
duke@435 956 // Serialize thread creation if we are running with fixed stack LinuxThreads
duke@435 957 bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
duke@435 958 if (lock) {
duke@435 959 os::Linux::createThread_lock()->lock_without_safepoint_check();
duke@435 960 }
duke@435 961
duke@435 962 pthread_t tid;
duke@435 963 int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
duke@435 964
duke@435 965 pthread_attr_destroy(&attr);
duke@435 966
duke@435 967 if (ret != 0) {
duke@435 968 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 969 perror("pthread_create()");
duke@435 970 }
duke@435 971 // Need to clean up stuff we've allocated so far
duke@435 972 thread->set_osthread(NULL);
duke@435 973 delete osthread;
duke@435 974 if (lock) os::Linux::createThread_lock()->unlock();
duke@435 975 return false;
duke@435 976 }
duke@435 977
duke@435 978 // Store pthread info into the OSThread
duke@435 979 osthread->set_pthread_id(tid);
duke@435 980
duke@435 981 // Wait until child thread is either initialized or aborted
duke@435 982 {
duke@435 983 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 984 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 985 while ((state = osthread->get_state()) == ALLOCATED) {
duke@435 986 sync_with_child->wait(Mutex::_no_safepoint_check_flag);
duke@435 987 }
duke@435 988 }
duke@435 989
duke@435 990 if (lock) {
duke@435 991 os::Linux::createThread_lock()->unlock();
duke@435 992 }
duke@435 993 }
duke@435 994
duke@435 995 // Aborted due to thread limit being reached
duke@435 996 if (state == ZOMBIE) {
duke@435 997 thread->set_osthread(NULL);
duke@435 998 delete osthread;
duke@435 999 return false;
duke@435 1000 }
duke@435 1001
duke@435 1002 // The thread is returned suspended (in state INITIALIZED),
duke@435 1003 // and is started higher up in the call chain
duke@435 1004 assert(state == INITIALIZED, "race condition");
duke@435 1005 return true;
duke@435 1006 }
duke@435 1007
duke@435 1008 /////////////////////////////////////////////////////////////////////////////
duke@435 1009 // attach existing thread
duke@435 1010
duke@435 1011 // bootstrap the main thread
duke@435 1012 bool os::create_main_thread(JavaThread* thread) {
duke@435 1013 assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
duke@435 1014 return create_attached_thread(thread);
duke@435 1015 }
duke@435 1016
duke@435 1017 bool os::create_attached_thread(JavaThread* thread) {
duke@435 1018 #ifdef ASSERT
duke@435 1019 thread->verify_not_published();
duke@435 1020 #endif
duke@435 1021
duke@435 1022 // Allocate the OSThread object
duke@435 1023 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 1024
duke@435 1025 if (osthread == NULL) {
duke@435 1026 return false;
duke@435 1027 }
duke@435 1028
duke@435 1029 // Store pthread info into the OSThread
duke@435 1030 osthread->set_thread_id(os::Linux::gettid());
duke@435 1031 osthread->set_pthread_id(::pthread_self());
duke@435 1032
duke@435 1033 // initialize floating point control register
duke@435 1034 os::Linux::init_thread_fpu_state();
duke@435 1035
duke@435 1036 // Initial thread state is RUNNABLE
duke@435 1037 osthread->set_state(RUNNABLE);
duke@435 1038
duke@435 1039 thread->set_osthread(osthread);
duke@435 1040
duke@435 1041 if (UseNUMA) {
duke@435 1042 int lgrp_id = os::numa_get_group_id();
duke@435 1043 if (lgrp_id != -1) {
duke@435 1044 thread->set_lgrp_id(lgrp_id);
duke@435 1045 }
duke@435 1046 }
duke@435 1047
duke@435 1048 if (os::Linux::is_initial_thread()) {
duke@435 1049 // If current thread is initial thread, its stack is mapped on demand,
duke@435 1050 // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
duke@435 1051 // the entire stack region to avoid SEGV in stack banging.
duke@435 1052 // It is also useful to get around the heap-stack-gap problem on SuSE
duke@435 1053 // kernel (see 4821821 for details). We first expand stack to the top
duke@435 1054 // of yellow zone, then enable stack yellow zone (order is significant,
duke@435 1055 // enabling yellow zone first will crash JVM on SuSE Linux), so there
duke@435 1056 // is no gap between the last two virtual memory regions.
duke@435 1057
duke@435 1058 JavaThread *jt = (JavaThread *)thread;
duke@435 1059 address addr = jt->stack_yellow_zone_base();
duke@435 1060 assert(addr != NULL, "initialization problem?");
duke@435 1061 assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
duke@435 1062
duke@435 1063 osthread->set_expanding_stack();
duke@435 1064 os::Linux::manually_expand_stack(jt, addr);
duke@435 1065 osthread->clear_expanding_stack();
duke@435 1066 }
duke@435 1067
duke@435 1068 // initialize signal mask for this thread
duke@435 1069 // and save the caller's signal mask
duke@435 1070 os::Linux::hotspot_sigmask(thread);
duke@435 1071
duke@435 1072 return true;
duke@435 1073 }
duke@435 1074
duke@435 1075 void os::pd_start_thread(Thread* thread) {
duke@435 1076 OSThread * osthread = thread->osthread();
duke@435 1077 assert(osthread->get_state() != INITIALIZED, "just checking");
duke@435 1078 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 1079 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 1080 sync_with_child->notify();
duke@435 1081 }
duke@435 1082
duke@435 1083 // Free Linux resources related to the OSThread
duke@435 1084 void os::free_thread(OSThread* osthread) {
duke@435 1085 assert(osthread != NULL, "osthread not set");
duke@435 1086
duke@435 1087 if (Thread::current()->osthread() == osthread) {
duke@435 1088 // Restore caller's signal mask
duke@435 1089 sigset_t sigmask = osthread->caller_sigmask();
duke@435 1090 pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
duke@435 1091 }
duke@435 1092
duke@435 1093 delete osthread;
duke@435 1094 }
duke@435 1095
duke@435 1096 //////////////////////////////////////////////////////////////////////////////
duke@435 1097 // thread local storage
duke@435 1098
duke@435 1099 int os::allocate_thread_local_storage() {
duke@435 1100 pthread_key_t key;
duke@435 1101 int rslt = pthread_key_create(&key, NULL);
duke@435 1102 assert(rslt == 0, "cannot allocate thread local storage");
duke@435 1103 return (int)key;
duke@435 1104 }
duke@435 1105
duke@435 1106 // Note: This is currently not used by VM, as we don't destroy TLS key
duke@435 1107 // on VM exit.
duke@435 1108 void os::free_thread_local_storage(int index) {
duke@435 1109 int rslt = pthread_key_delete((pthread_key_t)index);
duke@435 1110 assert(rslt == 0, "invalid index");
duke@435 1111 }
duke@435 1112
duke@435 1113 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 1114 int rslt = pthread_setspecific((pthread_key_t)index, value);
duke@435 1115 assert(rslt == 0, "pthread_setspecific failed");
duke@435 1116 }
duke@435 1117
duke@435 1118 extern "C" Thread* get_thread() {
duke@435 1119 return ThreadLocalStorage::thread();
duke@435 1120 }
duke@435 1121
duke@435 1122 //////////////////////////////////////////////////////////////////////////////
duke@435 1123 // initial thread
duke@435 1124
duke@435 1125 // Check if current thread is the initial thread, similar to Solaris thr_main.
duke@435 1126 bool os::Linux::is_initial_thread(void) {
duke@435 1127 char dummy;
duke@435 1128 // If called before init complete, thread stack bottom will be null.
duke@435 1129 // Can be called if fatal error occurs before initialization.
duke@435 1130 if (initial_thread_stack_bottom() == NULL) return false;
duke@435 1131 assert(initial_thread_stack_bottom() != NULL &&
duke@435 1132 initial_thread_stack_size() != 0,
duke@435 1133 "os::init did not locate initial thread's stack region");
duke@435 1134 if ((address)&dummy >= initial_thread_stack_bottom() &&
duke@435 1135 (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
duke@435 1136 return true;
duke@435 1137 else return false;
duke@435 1138 }
duke@435 1139
duke@435 1140 // Find the virtual memory area that contains addr
duke@435 1141 static bool find_vma(address addr, address* vma_low, address* vma_high) {
duke@435 1142 FILE *fp = fopen("/proc/self/maps", "r");
duke@435 1143 if (fp) {
duke@435 1144 address low, high;
duke@435 1145 while (!feof(fp)) {
duke@435 1146 if (fscanf(fp, "%p-%p", &low, &high) == 2) {
duke@435 1147 if (low <= addr && addr < high) {
duke@435 1148 if (vma_low) *vma_low = low;
duke@435 1149 if (vma_high) *vma_high = high;
duke@435 1150 fclose (fp);
duke@435 1151 return true;
duke@435 1152 }
duke@435 1153 }
duke@435 1154 for (;;) {
duke@435 1155 int ch = fgetc(fp);
duke@435 1156 if (ch == EOF || ch == (int)'\n') break;
duke@435 1157 }
duke@435 1158 }
duke@435 1159 fclose(fp);
duke@435 1160 }
duke@435 1161 return false;
duke@435 1162 }
duke@435 1163
duke@435 1164 // Locate initial thread stack. This special handling of initial thread stack
duke@435 1165 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
duke@435 1166 // bogus value for initial thread.
duke@435 1167 void os::Linux::capture_initial_stack(size_t max_size) {
duke@435 1168 // stack size is the easy part, get it from RLIMIT_STACK
duke@435 1169 size_t stack_size;
duke@435 1170 struct rlimit rlim;
duke@435 1171 getrlimit(RLIMIT_STACK, &rlim);
duke@435 1172 stack_size = rlim.rlim_cur;
duke@435 1173
duke@435 1174 // 6308388: a bug in ld.so will relocate its own .data section to the
duke@435 1175 // lower end of primordial stack; reduce ulimit -s value a little bit
duke@435 1176 // so we won't install guard page on ld.so's data section.
duke@435 1177 stack_size -= 2 * page_size();
duke@435 1178
duke@435 1179 // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
duke@435 1180 // 7.1, in both cases we will get 2G in return value.
duke@435 1181 // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
duke@435 1182 // SuSE 7.2, Debian) can not handle alternate signal stack correctly
duke@435 1183 // for initial thread if its stack size exceeds 6M. Cap it at 2M,
duke@435 1184 // in case other parts in glibc still assumes 2M max stack size.
duke@435 1185 // FIXME: alt signal stack is gone, maybe we can relax this constraint?
duke@435 1186 #ifndef IA64
duke@435 1187 if (stack_size > 2 * K * K) stack_size = 2 * K * K;
duke@435 1188 #else
duke@435 1189 // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
duke@435 1190 if (stack_size > 4 * K * K) stack_size = 4 * K * K;
duke@435 1191 #endif
duke@435 1192
duke@435 1193 // Try to figure out where the stack base (top) is. This is harder.
duke@435 1194 //
duke@435 1195 // When an application is started, glibc saves the initial stack pointer in
duke@435 1196 // a global variable "__libc_stack_end", which is then used by system
duke@435 1197 // libraries. __libc_stack_end should be pretty close to stack top. The
duke@435 1198 // variable is available since the very early days. However, because it is
duke@435 1199 // a private interface, it could disappear in the future.
duke@435 1200 //
duke@435 1201 // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
duke@435 1202 // to __libc_stack_end, it is very close to stack top, but isn't the real
duke@435 1203 // stack top. Note that /proc may not exist if VM is running as a chroot
duke@435 1204 // program, so reading /proc/<pid>/stat could fail. Also the contents of
duke@435 1205 // /proc/<pid>/stat could change in the future (though unlikely).
duke@435 1206 //
duke@435 1207 // We try __libc_stack_end first. If that doesn't work, look for
duke@435 1208 // /proc/<pid>/stat. If neither of them works, we use current stack pointer
duke@435 1209 // as a hint, which should work well in most cases.
duke@435 1210
duke@435 1211 uintptr_t stack_start;
duke@435 1212
duke@435 1213 // try __libc_stack_end first
duke@435 1214 uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
duke@435 1215 if (p && *p) {
duke@435 1216 stack_start = *p;
duke@435 1217 } else {
duke@435 1218 // see if we can get the start_stack field from /proc/self/stat
duke@435 1219 FILE *fp;
duke@435 1220 int pid;
duke@435 1221 char state;
duke@435 1222 int ppid;
duke@435 1223 int pgrp;
duke@435 1224 int session;
duke@435 1225 int nr;
duke@435 1226 int tpgrp;
duke@435 1227 unsigned long flags;
duke@435 1228 unsigned long minflt;
duke@435 1229 unsigned long cminflt;
duke@435 1230 unsigned long majflt;
duke@435 1231 unsigned long cmajflt;
duke@435 1232 unsigned long utime;
duke@435 1233 unsigned long stime;
duke@435 1234 long cutime;
duke@435 1235 long cstime;
duke@435 1236 long prio;
duke@435 1237 long nice;
duke@435 1238 long junk;
duke@435 1239 long it_real;
duke@435 1240 uintptr_t start;
duke@435 1241 uintptr_t vsize;
bobv@2036 1242 intptr_t rss;
bobv@2036 1243 uintptr_t rsslim;
duke@435 1244 uintptr_t scodes;
duke@435 1245 uintptr_t ecode;
duke@435 1246 int i;
duke@435 1247
duke@435 1248 // Figure what the primordial thread stack base is. Code is inspired
duke@435 1249 // by email from Hans Boehm. /proc/self/stat begins with current pid,
duke@435 1250 // followed by command name surrounded by parentheses, state, etc.
duke@435 1251 char stat[2048];
duke@435 1252 int statlen;
duke@435 1253
duke@435 1254 fp = fopen("/proc/self/stat", "r");
duke@435 1255 if (fp) {
duke@435 1256 statlen = fread(stat, 1, 2047, fp);
duke@435 1257 stat[statlen] = '\0';
duke@435 1258 fclose(fp);
duke@435 1259
duke@435 1260 // Skip pid and the command string. Note that we could be dealing with
duke@435 1261 // weird command names, e.g. user could decide to rename java launcher
duke@435 1262 // to "java 1.4.2 :)", then the stat file would look like
duke@435 1263 // 1234 (java 1.4.2 :)) R ... ...
duke@435 1264 // We don't really need to know the command string, just find the last
duke@435 1265 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 1266 char * s = strrchr(stat, ')');
duke@435 1267
duke@435 1268 i = 0;
duke@435 1269 if (s) {
duke@435 1270 // Skip blank chars
duke@435 1271 do s++; while (isspace(*s));
duke@435 1272
bobv@2036 1273 #define _UFM UINTX_FORMAT
bobv@2036 1274 #define _DFM INTX_FORMAT
bobv@2036 1275
bobv@2036 1276 /* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 */
bobv@2036 1277 /* 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 */
bobv@2036 1278 i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
duke@435 1279 &state, /* 3 %c */
duke@435 1280 &ppid, /* 4 %d */
duke@435 1281 &pgrp, /* 5 %d */
duke@435 1282 &session, /* 6 %d */
duke@435 1283 &nr, /* 7 %d */
duke@435 1284 &tpgrp, /* 8 %d */
duke@435 1285 &flags, /* 9 %lu */
duke@435 1286 &minflt, /* 10 %lu */
duke@435 1287 &cminflt, /* 11 %lu */
duke@435 1288 &majflt, /* 12 %lu */
duke@435 1289 &cmajflt, /* 13 %lu */
duke@435 1290 &utime, /* 14 %lu */
duke@435 1291 &stime, /* 15 %lu */
duke@435 1292 &cutime, /* 16 %ld */
duke@435 1293 &cstime, /* 17 %ld */
duke@435 1294 &prio, /* 18 %ld */
duke@435 1295 &nice, /* 19 %ld */
duke@435 1296 &junk, /* 20 %ld */
duke@435 1297 &it_real, /* 21 %ld */
bobv@2036 1298 &start, /* 22 UINTX_FORMAT */
bobv@2036 1299 &vsize, /* 23 UINTX_FORMAT */
bobv@2036 1300 &rss, /* 24 INTX_FORMAT */
bobv@2036 1301 &rsslim, /* 25 UINTX_FORMAT */
bobv@2036 1302 &scodes, /* 26 UINTX_FORMAT */
bobv@2036 1303 &ecode, /* 27 UINTX_FORMAT */
bobv@2036 1304 &stack_start); /* 28 UINTX_FORMAT */
duke@435 1305 }
duke@435 1306
bobv@2036 1307 #undef _UFM
bobv@2036 1308 #undef _DFM
bobv@2036 1309
duke@435 1310 if (i != 28 - 2) {
duke@435 1311 assert(false, "Bad conversion from /proc/self/stat");
duke@435 1312 // product mode - assume we are the initial thread, good luck in the
duke@435 1313 // embedded case.
duke@435 1314 warning("Can't detect initial thread stack location - bad conversion");
duke@435 1315 stack_start = (uintptr_t) &rlim;
duke@435 1316 }
duke@435 1317 } else {
duke@435 1318 // For some reason we can't open /proc/self/stat (for example, running on
duke@435 1319 // FreeBSD with a Linux emulator, or inside chroot), this should work for
duke@435 1320 // most cases, so don't abort:
duke@435 1321 warning("Can't detect initial thread stack location - no /proc/self/stat");
duke@435 1322 stack_start = (uintptr_t) &rlim;
duke@435 1323 }
duke@435 1324 }
duke@435 1325
duke@435 1326 // Now we have a pointer (stack_start) very close to the stack top, the
duke@435 1327 // next thing to do is to figure out the exact location of stack top. We
duke@435 1328 // can find out the virtual memory area that contains stack_start by
duke@435 1329 // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
duke@435 1330 // and its upper limit is the real stack top. (again, this would fail if
duke@435 1331 // running inside chroot, because /proc may not exist.)
duke@435 1332
duke@435 1333 uintptr_t stack_top;
duke@435 1334 address low, high;
duke@435 1335 if (find_vma((address)stack_start, &low, &high)) {
duke@435 1336 // success, "high" is the true stack top. (ignore "low", because initial
duke@435 1337 // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
duke@435 1338 stack_top = (uintptr_t)high;
duke@435 1339 } else {
duke@435 1340 // failed, likely because /proc/self/maps does not exist
duke@435 1341 warning("Can't detect initial thread stack location - find_vma failed");
duke@435 1342 // best effort: stack_start is normally within a few pages below the real
duke@435 1343 // stack top, use it as stack top, and reduce stack size so we won't put
duke@435 1344 // guard page outside stack.
duke@435 1345 stack_top = stack_start;
duke@435 1346 stack_size -= 16 * page_size();
duke@435 1347 }
duke@435 1348
duke@435 1349 // stack_top could be partially down the page so align it
duke@435 1350 stack_top = align_size_up(stack_top, page_size());
duke@435 1351
duke@435 1352 if (max_size && stack_size > max_size) {
duke@435 1353 _initial_thread_stack_size = max_size;
duke@435 1354 } else {
duke@435 1355 _initial_thread_stack_size = stack_size;
duke@435 1356 }
duke@435 1357
duke@435 1358 _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
duke@435 1359 _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
duke@435 1360 }
duke@435 1361
duke@435 1362 ////////////////////////////////////////////////////////////////////////////////
duke@435 1363 // time support
duke@435 1364
duke@435 1365 // Time since start-up in seconds to a fine granularity.
duke@435 1366 // Used by VMSelfDestructTimer and the MemProfiler.
duke@435 1367 double os::elapsedTime() {
duke@435 1368
duke@435 1369 return (double)(os::elapsed_counter()) * 0.000001;
duke@435 1370 }
duke@435 1371
duke@435 1372 jlong os::elapsed_counter() {
duke@435 1373 timeval time;
duke@435 1374 int status = gettimeofday(&time, NULL);
duke@435 1375 return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
duke@435 1376 }
duke@435 1377
duke@435 1378 jlong os::elapsed_frequency() {
duke@435 1379 return (1000 * 1000);
duke@435 1380 }
duke@435 1381
ysr@777 1382 // For now, we say that linux does not support vtime. I have no idea
ysr@777 1383 // whether it can actually be made to (DLD, 9/13/05).
ysr@777 1384
ysr@777 1385 bool os::supports_vtime() { return false; }
ysr@777 1386 bool os::enable_vtime() { return false; }
ysr@777 1387 bool os::vtime_enabled() { return false; }
ysr@777 1388 double os::elapsedVTime() {
ysr@777 1389 // better than nothing, but not much
ysr@777 1390 return elapsedTime();
ysr@777 1391 }
ysr@777 1392
sbohne@496 1393 jlong os::javaTimeMillis() {
duke@435 1394 timeval time;
duke@435 1395 int status = gettimeofday(&time, NULL);
duke@435 1396 assert(status != -1, "linux error");
duke@435 1397 return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
duke@435 1398 }
duke@435 1399
duke@435 1400 #ifndef CLOCK_MONOTONIC
duke@435 1401 #define CLOCK_MONOTONIC (1)
duke@435 1402 #endif
duke@435 1403
duke@435 1404 void os::Linux::clock_init() {
duke@435 1405 // we do dlopen's in this particular order due to bug in linux
duke@435 1406 // dynamical loader (see 6348968) leading to crash on exit
duke@435 1407 void* handle = dlopen("librt.so.1", RTLD_LAZY);
duke@435 1408 if (handle == NULL) {
duke@435 1409 handle = dlopen("librt.so", RTLD_LAZY);
duke@435 1410 }
duke@435 1411
duke@435 1412 if (handle) {
duke@435 1413 int (*clock_getres_func)(clockid_t, struct timespec*) =
duke@435 1414 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
duke@435 1415 int (*clock_gettime_func)(clockid_t, struct timespec*) =
duke@435 1416 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
duke@435 1417 if (clock_getres_func && clock_gettime_func) {
duke@435 1418 // See if monotonic clock is supported by the kernel. Note that some
duke@435 1419 // early implementations simply return kernel jiffies (updated every
duke@435 1420 // 1/100 or 1/1000 second). It would be bad to use such a low res clock
duke@435 1421 // for nano time (though the monotonic property is still nice to have).
duke@435 1422 // It's fixed in newer kernels, however clock_getres() still returns
duke@435 1423 // 1/HZ. We check if clock_getres() works, but will ignore its reported
duke@435 1424 // resolution for now. Hopefully as people move to new kernels, this
duke@435 1425 // won't be a problem.
duke@435 1426 struct timespec res;
duke@435 1427 struct timespec tp;
duke@435 1428 if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
duke@435 1429 clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
duke@435 1430 // yes, monotonic clock is supported
duke@435 1431 _clock_gettime = clock_gettime_func;
duke@435 1432 } else {
duke@435 1433 // close librt if there is no monotonic clock
duke@435 1434 dlclose(handle);
duke@435 1435 }
duke@435 1436 }
duke@435 1437 }
duke@435 1438 }
duke@435 1439
duke@435 1440 #ifndef SYS_clock_getres
duke@435 1441
duke@435 1442 #if defined(IA32) || defined(AMD64)
duke@435 1443 #define SYS_clock_getres IA32_ONLY(266) AMD64_ONLY(229)
bobv@2036 1444 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1445 #else
bobv@2036 1446 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
bobv@2036 1447 #define sys_clock_getres(x,y) -1
duke@435 1448 #endif
duke@435 1449
bobv@2036 1450 #else
bobv@2036 1451 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1452 #endif
duke@435 1453
duke@435 1454 void os::Linux::fast_thread_clock_init() {
duke@435 1455 if (!UseLinuxPosixThreadCPUClocks) {
duke@435 1456 return;
duke@435 1457 }
duke@435 1458 clockid_t clockid;
duke@435 1459 struct timespec tp;
duke@435 1460 int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
duke@435 1461 (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
duke@435 1462
duke@435 1463 // Switch to using fast clocks for thread cpu time if
duke@435 1464 // the sys_clock_getres() returns 0 error code.
duke@435 1465 // Note, that some kernels may support the current thread
duke@435 1466 // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
duke@435 1467 // returned by the pthread_getcpuclockid().
duke@435 1468 // If the fast Posix clocks are supported then the sys_clock_getres()
duke@435 1469 // must return at least tp.tv_sec == 0 which means a resolution
duke@435 1470 // better than 1 sec. This is extra check for reliability.
duke@435 1471
duke@435 1472 if(pthread_getcpuclockid_func &&
duke@435 1473 pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
duke@435 1474 sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
duke@435 1475
duke@435 1476 _supports_fast_thread_cpu_time = true;
duke@435 1477 _pthread_getcpuclockid = pthread_getcpuclockid_func;
duke@435 1478 }
duke@435 1479 }
duke@435 1480
duke@435 1481 jlong os::javaTimeNanos() {
duke@435 1482 if (Linux::supports_monotonic_clock()) {
duke@435 1483 struct timespec tp;
duke@435 1484 int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
duke@435 1485 assert(status == 0, "gettime error");
duke@435 1486 jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
duke@435 1487 return result;
duke@435 1488 } else {
duke@435 1489 timeval time;
duke@435 1490 int status = gettimeofday(&time, NULL);
duke@435 1491 assert(status != -1, "linux error");
duke@435 1492 jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
duke@435 1493 return 1000 * usecs;
duke@435 1494 }
duke@435 1495 }
duke@435 1496
duke@435 1497 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 1498 if (Linux::supports_monotonic_clock()) {
duke@435 1499 info_ptr->max_value = ALL_64_BITS;
duke@435 1500
duke@435 1501 // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
duke@435 1502 info_ptr->may_skip_backward = false; // not subject to resetting or drifting
duke@435 1503 info_ptr->may_skip_forward = false; // not subject to resetting or drifting
duke@435 1504 } else {
duke@435 1505 // gettimeofday - based on time in seconds since the Epoch thus does not wrap
duke@435 1506 info_ptr->max_value = ALL_64_BITS;
duke@435 1507
duke@435 1508 // gettimeofday is a real time clock so it skips
duke@435 1509 info_ptr->may_skip_backward = true;
duke@435 1510 info_ptr->may_skip_forward = true;
duke@435 1511 }
duke@435 1512
duke@435 1513 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 1514 }
duke@435 1515
duke@435 1516 // Return the real, user, and system times in seconds from an
duke@435 1517 // arbitrary fixed point in the past.
duke@435 1518 bool os::getTimesSecs(double* process_real_time,
duke@435 1519 double* process_user_time,
duke@435 1520 double* process_system_time) {
duke@435 1521 struct tms ticks;
duke@435 1522 clock_t real_ticks = times(&ticks);
duke@435 1523
duke@435 1524 if (real_ticks == (clock_t) (-1)) {
duke@435 1525 return false;
duke@435 1526 } else {
duke@435 1527 double ticks_per_second = (double) clock_tics_per_sec;
duke@435 1528 *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
duke@435 1529 *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
duke@435 1530 *process_real_time = ((double) real_ticks) / ticks_per_second;
duke@435 1531
duke@435 1532 return true;
duke@435 1533 }
duke@435 1534 }
duke@435 1535
duke@435 1536
duke@435 1537 char * os::local_time_string(char *buf, size_t buflen) {
duke@435 1538 struct tm t;
duke@435 1539 time_t long_time;
duke@435 1540 time(&long_time);
duke@435 1541 localtime_r(&long_time, &t);
duke@435 1542 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 1543 t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
duke@435 1544 t.tm_hour, t.tm_min, t.tm_sec);
duke@435 1545 return buf;
duke@435 1546 }
duke@435 1547
ysr@983 1548 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 1549 return localtime_r(clock, res);
ysr@983 1550 }
ysr@983 1551
duke@435 1552 ////////////////////////////////////////////////////////////////////////////////
duke@435 1553 // runtime exit support
duke@435 1554
duke@435 1555 // Note: os::shutdown() might be called very early during initialization, or
duke@435 1556 // called from signal handler. Before adding something to os::shutdown(), make
duke@435 1557 // sure it is async-safe and can handle partially initialized VM.
duke@435 1558 void os::shutdown() {
duke@435 1559
duke@435 1560 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 1561 perfMemory_exit();
duke@435 1562
duke@435 1563 // needs to remove object in file system
duke@435 1564 AttachListener::abort();
duke@435 1565
duke@435 1566 // flush buffered output, finish log files
duke@435 1567 ostream_abort();
duke@435 1568
duke@435 1569 // Check for abort hook
duke@435 1570 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 1571 if (abort_hook != NULL) {
duke@435 1572 abort_hook();
duke@435 1573 }
duke@435 1574
duke@435 1575 }
duke@435 1576
duke@435 1577 // Note: os::abort() might be called very early during initialization, or
duke@435 1578 // called from signal handler. Before adding something to os::abort(), make
duke@435 1579 // sure it is async-safe and can handle partially initialized VM.
duke@435 1580 void os::abort(bool dump_core) {
duke@435 1581 os::shutdown();
duke@435 1582 if (dump_core) {
duke@435 1583 #ifndef PRODUCT
duke@435 1584 fdStream out(defaultStream::output_fd());
duke@435 1585 out.print_raw("Current thread is ");
duke@435 1586 char buf[16];
duke@435 1587 jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
duke@435 1588 out.print_raw_cr(buf);
duke@435 1589 out.print_raw_cr("Dumping core ...");
duke@435 1590 #endif
duke@435 1591 ::abort(); // dump core
duke@435 1592 }
duke@435 1593
duke@435 1594 ::exit(1);
duke@435 1595 }
duke@435 1596
duke@435 1597 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1598 void os::die() {
duke@435 1599 // _exit() on LinuxThreads only kills current thread
duke@435 1600 ::abort();
duke@435 1601 }
duke@435 1602
duke@435 1603 // unused on linux for now.
duke@435 1604 void os::set_error_file(const char *logfile) {}
duke@435 1605
ikrylov@2322 1606
ikrylov@2322 1607 // This method is a copy of JDK's sysGetLastErrorString
ikrylov@2322 1608 // from src/solaris/hpi/src/system_md.c
ikrylov@2322 1609
ikrylov@2322 1610 size_t os::lasterror(char *buf, size_t len) {
ikrylov@2322 1611
ikrylov@2322 1612 if (errno == 0) return 0;
ikrylov@2322 1613
ikrylov@2322 1614 const char *s = ::strerror(errno);
ikrylov@2322 1615 size_t n = ::strlen(s);
ikrylov@2322 1616 if (n >= len) {
ikrylov@2322 1617 n = len - 1;
ikrylov@2322 1618 }
ikrylov@2322 1619 ::strncpy(buf, s, n);
ikrylov@2322 1620 buf[n] = '\0';
ikrylov@2322 1621 return n;
ikrylov@2322 1622 }
ikrylov@2322 1623
duke@435 1624 intx os::current_thread_id() { return (intx)pthread_self(); }
duke@435 1625 int os::current_process_id() {
duke@435 1626
duke@435 1627 // Under the old linux thread library, linux gives each thread
duke@435 1628 // its own process id. Because of this each thread will return
duke@435 1629 // a different pid if this method were to return the result
duke@435 1630 // of getpid(2). Linux provides no api that returns the pid
duke@435 1631 // of the launcher thread for the vm. This implementation
duke@435 1632 // returns a unique pid, the pid of the launcher thread
duke@435 1633 // that starts the vm 'process'.
duke@435 1634
duke@435 1635 // Under the NPTL, getpid() returns the same pid as the
duke@435 1636 // launcher thread rather than a unique pid per thread.
duke@435 1637 // Use gettid() if you want the old pre NPTL behaviour.
duke@435 1638
duke@435 1639 // if you are looking for the result of a call to getpid() that
duke@435 1640 // returns a unique pid for the calling thread, then look at the
duke@435 1641 // OSThread::thread_id() method in osThread_linux.hpp file
duke@435 1642
duke@435 1643 return (int)(_initial_pid ? _initial_pid : getpid());
duke@435 1644 }
duke@435 1645
duke@435 1646 // DLL functions
duke@435 1647
duke@435 1648 const char* os::dll_file_extension() { return ".so"; }
duke@435 1649
coleenp@2450 1650 // This must be hard coded because it's the system's temporary
coleenp@2450 1651 // directory not the java application's temp directory, ala java.io.tmpdir.
coleenp@2450 1652 const char* os::get_temp_directory() { return "/tmp"; }
duke@435 1653
phh@1126 1654 static bool file_exists(const char* filename) {
phh@1126 1655 struct stat statbuf;
phh@1126 1656 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1657 return false;
phh@1126 1658 }
phh@1126 1659 return os::stat(filename, &statbuf) == 0;
phh@1126 1660 }
phh@1126 1661
phh@1126 1662 void os::dll_build_name(char* buffer, size_t buflen,
phh@1126 1663 const char* pname, const char* fname) {
phh@1126 1664 // Copied from libhpi
kamg@677 1665 const size_t pnamelen = pname ? strlen(pname) : 0;
kamg@677 1666
phh@1126 1667 // Quietly truncate on buffer overflow. Should be an error.
kamg@677 1668 if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
kamg@677 1669 *buffer = '\0';
kamg@677 1670 return;
kamg@677 1671 }
kamg@677 1672
kamg@677 1673 if (pnamelen == 0) {
phh@1126 1674 snprintf(buffer, buflen, "lib%s.so", fname);
phh@1126 1675 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1676 int n;
phh@1126 1677 char** pelements = split_path(pname, &n);
phh@1126 1678 for (int i = 0 ; i < n ; i++) {
phh@1126 1679 // Really shouldn't be NULL, but check can't hurt
phh@1126 1680 if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
phh@1126 1681 continue; // skip the empty path values
phh@1126 1682 }
phh@1126 1683 snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
phh@1126 1684 if (file_exists(buffer)) {
phh@1126 1685 break;
phh@1126 1686 }
phh@1126 1687 }
phh@1126 1688 // release the storage
phh@1126 1689 for (int i = 0 ; i < n ; i++) {
phh@1126 1690 if (pelements[i] != NULL) {
phh@1126 1691 FREE_C_HEAP_ARRAY(char, pelements[i]);
phh@1126 1692 }
phh@1126 1693 }
phh@1126 1694 if (pelements != NULL) {
phh@1126 1695 FREE_C_HEAP_ARRAY(char*, pelements);
phh@1126 1696 }
kamg@677 1697 } else {
phh@1126 1698 snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
kamg@677 1699 }
kamg@677 1700 }
kamg@677 1701
duke@435 1702 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1703 return getcwd(buf, buflen);
duke@435 1704 }
duke@435 1705
duke@435 1706 // check if addr is inside libjvm[_g].so
duke@435 1707 bool os::address_is_in_vm(address addr) {
duke@435 1708 static address libjvm_base_addr;
duke@435 1709 Dl_info dlinfo;
duke@435 1710
duke@435 1711 if (libjvm_base_addr == NULL) {
duke@435 1712 dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
duke@435 1713 libjvm_base_addr = (address)dlinfo.dli_fbase;
duke@435 1714 assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
duke@435 1715 }
duke@435 1716
duke@435 1717 if (dladdr((void *)addr, &dlinfo)) {
duke@435 1718 if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
duke@435 1719 }
duke@435 1720
duke@435 1721 return false;
duke@435 1722 }
duke@435 1723
duke@435 1724 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1725 int buflen, int *offset) {
duke@435 1726 Dl_info dlinfo;
duke@435 1727
duke@435 1728 if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
zgu@2364 1729 if (buf != NULL) {
zgu@2364 1730 if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
zgu@2364 1731 jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
zgu@2364 1732 }
zgu@2364 1733 }
zgu@2364 1734 if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
duke@435 1735 return true;
zgu@2364 1736 } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
zgu@2364 1737 if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
zgu@2364 1738 dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
zgu@2364 1739 return true;
zgu@2364 1740 }
duke@435 1741 }
zgu@2364 1742
zgu@2364 1743 if (buf != NULL) buf[0] = '\0';
zgu@2364 1744 if (offset != NULL) *offset = -1;
zgu@2364 1745 return false;
duke@435 1746 }
duke@435 1747
duke@435 1748 struct _address_to_library_name {
duke@435 1749 address addr; // input : memory address
duke@435 1750 size_t buflen; // size of fname
duke@435 1751 char* fname; // output: library name
duke@435 1752 address base; // library base addr
duke@435 1753 };
duke@435 1754
duke@435 1755 static int address_to_library_name_callback(struct dl_phdr_info *info,
duke@435 1756 size_t size, void *data) {
duke@435 1757 int i;
duke@435 1758 bool found = false;
duke@435 1759 address libbase = NULL;
duke@435 1760 struct _address_to_library_name * d = (struct _address_to_library_name *)data;
duke@435 1761
duke@435 1762 // iterate through all loadable segments
duke@435 1763 for (i = 0; i < info->dlpi_phnum; i++) {
duke@435 1764 address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
duke@435 1765 if (info->dlpi_phdr[i].p_type == PT_LOAD) {
duke@435 1766 // base address of a library is the lowest address of its loaded
duke@435 1767 // segments.
duke@435 1768 if (libbase == NULL || libbase > segbase) {
duke@435 1769 libbase = segbase;
duke@435 1770 }
duke@435 1771 // see if 'addr' is within current segment
duke@435 1772 if (segbase <= d->addr &&
duke@435 1773 d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
duke@435 1774 found = true;
duke@435 1775 }
duke@435 1776 }
duke@435 1777 }
duke@435 1778
duke@435 1779 // dlpi_name is NULL or empty if the ELF file is executable, return 0
duke@435 1780 // so dll_address_to_library_name() can fall through to use dladdr() which
duke@435 1781 // can figure out executable name from argv[0].
duke@435 1782 if (found && info->dlpi_name && info->dlpi_name[0]) {
duke@435 1783 d->base = libbase;
duke@435 1784 if (d->fname) {
duke@435 1785 jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
duke@435 1786 }
duke@435 1787 return 1;
duke@435 1788 }
duke@435 1789 return 0;
duke@435 1790 }
duke@435 1791
duke@435 1792 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1793 int buflen, int* offset) {
duke@435 1794 Dl_info dlinfo;
duke@435 1795 struct _address_to_library_name data;
duke@435 1796
duke@435 1797 // There is a bug in old glibc dladdr() implementation that it could resolve
duke@435 1798 // to wrong library name if the .so file has a base address != NULL. Here
duke@435 1799 // we iterate through the program headers of all loaded libraries to find
duke@435 1800 // out which library 'addr' really belongs to. This workaround can be
duke@435 1801 // removed once the minimum requirement for glibc is moved to 2.3.x.
duke@435 1802 data.addr = addr;
duke@435 1803 data.fname = buf;
duke@435 1804 data.buflen = buflen;
duke@435 1805 data.base = NULL;
duke@435 1806 int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
duke@435 1807
duke@435 1808 if (rslt) {
duke@435 1809 // buf already contains library name
duke@435 1810 if (offset) *offset = addr - data.base;
duke@435 1811 return true;
duke@435 1812 } else if (dladdr((void*)addr, &dlinfo)){
duke@435 1813 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
duke@435 1814 if (offset) *offset = addr - (address)dlinfo.dli_fbase;
duke@435 1815 return true;
duke@435 1816 } else {
duke@435 1817 if (buf) buf[0] = '\0';
duke@435 1818 if (offset) *offset = -1;
duke@435 1819 return false;
duke@435 1820 }
duke@435 1821 }
duke@435 1822
duke@435 1823 // Loads .dll/.so and
duke@435 1824 // in case of error it checks if .dll/.so was built for the
duke@435 1825 // same architecture as Hotspot is running on
duke@435 1826
duke@435 1827 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
duke@435 1828 {
duke@435 1829 void * result= ::dlopen(filename, RTLD_LAZY);
duke@435 1830 if (result != NULL) {
duke@435 1831 // Successful loading
duke@435 1832 return result;
duke@435 1833 }
duke@435 1834
duke@435 1835 Elf32_Ehdr elf_head;
duke@435 1836
duke@435 1837 // Read system error message into ebuf
duke@435 1838 // It may or may not be overwritten below
duke@435 1839 ::strncpy(ebuf, ::dlerror(), ebuflen-1);
duke@435 1840 ebuf[ebuflen-1]='\0';
duke@435 1841 int diag_msg_max_length=ebuflen-strlen(ebuf);
duke@435 1842 char* diag_msg_buf=ebuf+strlen(ebuf);
duke@435 1843
duke@435 1844 if (diag_msg_max_length==0) {
duke@435 1845 // No more space in ebuf for additional diagnostics message
duke@435 1846 return NULL;
duke@435 1847 }
duke@435 1848
duke@435 1849
duke@435 1850 int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
duke@435 1851
duke@435 1852 if (file_descriptor < 0) {
duke@435 1853 // Can't open library, report dlerror() message
duke@435 1854 return NULL;
duke@435 1855 }
duke@435 1856
duke@435 1857 bool failed_to_read_elf_head=
duke@435 1858 (sizeof(elf_head)!=
duke@435 1859 (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
duke@435 1860
duke@435 1861 ::close(file_descriptor);
duke@435 1862 if (failed_to_read_elf_head) {
duke@435 1863 // file i/o error - report dlerror() msg
duke@435 1864 return NULL;
duke@435 1865 }
duke@435 1866
duke@435 1867 typedef struct {
duke@435 1868 Elf32_Half code; // Actual value as defined in elf.h
duke@435 1869 Elf32_Half compat_class; // Compatibility of archs at VM's sense
duke@435 1870 char elf_class; // 32 or 64 bit
duke@435 1871 char endianess; // MSB or LSB
duke@435 1872 char* name; // String representation
duke@435 1873 } arch_t;
duke@435 1874
duke@435 1875 #ifndef EM_486
duke@435 1876 #define EM_486 6 /* Intel 80486 */
duke@435 1877 #endif
duke@435 1878
duke@435 1879 static const arch_t arch_array[]={
duke@435 1880 {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1881 {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1882 {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
duke@435 1883 {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
duke@435 1884 {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1885 {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1886 {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
duke@435 1887 {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
never@1445 1888 {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
never@1445 1889 {EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
never@1445 1890 {EM_S390, EM_S390, ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
never@1445 1891 {EM_ALPHA, EM_ALPHA, ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
never@1445 1892 {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
never@1445 1893 {EM_MIPS, EM_MIPS, ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
never@1445 1894 {EM_PARISC, EM_PARISC, ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
never@1445 1895 {EM_68K, EM_68K, ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
duke@435 1896 };
duke@435 1897
duke@435 1898 #if (defined IA32)
duke@435 1899 static Elf32_Half running_arch_code=EM_386;
duke@435 1900 #elif (defined AMD64)
duke@435 1901 static Elf32_Half running_arch_code=EM_X86_64;
duke@435 1902 #elif (defined IA64)
duke@435 1903 static Elf32_Half running_arch_code=EM_IA_64;
duke@435 1904 #elif (defined __sparc) && (defined _LP64)
duke@435 1905 static Elf32_Half running_arch_code=EM_SPARCV9;
duke@435 1906 #elif (defined __sparc) && (!defined _LP64)
duke@435 1907 static Elf32_Half running_arch_code=EM_SPARC;
duke@435 1908 #elif (defined __powerpc64__)
duke@435 1909 static Elf32_Half running_arch_code=EM_PPC64;
duke@435 1910 #elif (defined __powerpc__)
duke@435 1911 static Elf32_Half running_arch_code=EM_PPC;
never@1445 1912 #elif (defined ARM)
never@1445 1913 static Elf32_Half running_arch_code=EM_ARM;
never@1445 1914 #elif (defined S390)
never@1445 1915 static Elf32_Half running_arch_code=EM_S390;
never@1445 1916 #elif (defined ALPHA)
never@1445 1917 static Elf32_Half running_arch_code=EM_ALPHA;
never@1445 1918 #elif (defined MIPSEL)
never@1445 1919 static Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
never@1445 1920 #elif (defined PARISC)
never@1445 1921 static Elf32_Half running_arch_code=EM_PARISC;
never@1445 1922 #elif (defined MIPS)
never@1445 1923 static Elf32_Half running_arch_code=EM_MIPS;
never@1445 1924 #elif (defined M68K)
never@1445 1925 static Elf32_Half running_arch_code=EM_68K;
duke@435 1926 #else
duke@435 1927 #error Method os::dll_load requires that one of following is defined:\
never@1445 1928 IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
duke@435 1929 #endif
duke@435 1930
duke@435 1931 // Identify compatability class for VM's architecture and library's architecture
duke@435 1932 // Obtain string descriptions for architectures
duke@435 1933
duke@435 1934 arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
duke@435 1935 int running_arch_index=-1;
duke@435 1936
duke@435 1937 for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
duke@435 1938 if (running_arch_code == arch_array[i].code) {
duke@435 1939 running_arch_index = i;
duke@435 1940 }
duke@435 1941 if (lib_arch.code == arch_array[i].code) {
duke@435 1942 lib_arch.compat_class = arch_array[i].compat_class;
duke@435 1943 lib_arch.name = arch_array[i].name;
duke@435 1944 }
duke@435 1945 }
duke@435 1946
duke@435 1947 assert(running_arch_index != -1,
duke@435 1948 "Didn't find running architecture code (running_arch_code) in arch_array");
duke@435 1949 if (running_arch_index == -1) {
duke@435 1950 // Even though running architecture detection failed
duke@435 1951 // we may still continue with reporting dlerror() message
duke@435 1952 return NULL;
duke@435 1953 }
duke@435 1954
duke@435 1955 if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
duke@435 1956 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
duke@435 1957 return NULL;
duke@435 1958 }
duke@435 1959
never@1445 1960 #ifndef S390
duke@435 1961 if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
duke@435 1962 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
duke@435 1963 return NULL;
duke@435 1964 }
never@1445 1965 #endif // !S390
duke@435 1966
duke@435 1967 if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
duke@435 1968 if ( lib_arch.name!=NULL ) {
duke@435 1969 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1970 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
duke@435 1971 lib_arch.name, arch_array[running_arch_index].name);
duke@435 1972 } else {
duke@435 1973 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1974 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
duke@435 1975 lib_arch.code,
duke@435 1976 arch_array[running_arch_index].name);
duke@435 1977 }
duke@435 1978 }
duke@435 1979
duke@435 1980 return NULL;
duke@435 1981 }
duke@435 1982
kamg@677 1983 /*
kamg@677 1984 * glibc-2.0 libdl is not MT safe. If you are building with any glibc,
kamg@677 1985 * chances are you might want to run the generated bits against glibc-2.0
kamg@677 1986 * libdl.so, so always use locking for any version of glibc.
kamg@677 1987 */
kamg@677 1988 void* os::dll_lookup(void* handle, const char* name) {
kamg@677 1989 pthread_mutex_lock(&dl_mutex);
kamg@677 1990 void* res = dlsym(handle, name);
kamg@677 1991 pthread_mutex_unlock(&dl_mutex);
kamg@677 1992 return res;
kamg@677 1993 }
duke@435 1994
duke@435 1995
ikrylov@2322 1996 static bool _print_ascii_file(const char* filename, outputStream* st) {
ikrylov@2322 1997 int fd = ::open(filename, O_RDONLY);
duke@435 1998 if (fd == -1) {
duke@435 1999 return false;
duke@435 2000 }
duke@435 2001
duke@435 2002 char buf[32];
duke@435 2003 int bytes;
ikrylov@2322 2004 while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
duke@435 2005 st->print_raw(buf, bytes);
duke@435 2006 }
duke@435 2007
ikrylov@2322 2008 ::close(fd);
duke@435 2009
duke@435 2010 return true;
duke@435 2011 }
duke@435 2012
duke@435 2013 void os::print_dll_info(outputStream *st) {
duke@435 2014 st->print_cr("Dynamic libraries:");
duke@435 2015
duke@435 2016 char fname[32];
duke@435 2017 pid_t pid = os::Linux::gettid();
duke@435 2018
duke@435 2019 jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
duke@435 2020
duke@435 2021 if (!_print_ascii_file(fname, st)) {
duke@435 2022 st->print("Can not get library information for pid = %d\n", pid);
duke@435 2023 }
duke@435 2024 }
duke@435 2025
duke@435 2026
duke@435 2027 void os::print_os_info(outputStream* st) {
duke@435 2028 st->print("OS:");
duke@435 2029
duke@435 2030 // Try to identify popular distros.
duke@435 2031 // Most Linux distributions have /etc/XXX-release file, which contains
duke@435 2032 // the OS version string. Some have more than one /etc/XXX-release file
duke@435 2033 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
duke@435 2034 // so the order is important.
duke@435 2035 if (!_print_ascii_file("/etc/mandrake-release", st) &&
duke@435 2036 !_print_ascii_file("/etc/sun-release", st) &&
duke@435 2037 !_print_ascii_file("/etc/redhat-release", st) &&
duke@435 2038 !_print_ascii_file("/etc/SuSE-release", st) &&
duke@435 2039 !_print_ascii_file("/etc/turbolinux-release", st) &&
duke@435 2040 !_print_ascii_file("/etc/gentoo-release", st) &&
bobv@2036 2041 !_print_ascii_file("/etc/debian_version", st) &&
bobv@2036 2042 !_print_ascii_file("/etc/ltib-release", st) &&
bobv@2036 2043 !_print_ascii_file("/etc/angstrom-version", st)) {
duke@435 2044 st->print("Linux");
duke@435 2045 }
duke@435 2046 st->cr();
duke@435 2047
duke@435 2048 // kernel
duke@435 2049 st->print("uname:");
duke@435 2050 struct utsname name;
duke@435 2051 uname(&name);
duke@435 2052 st->print(name.sysname); st->print(" ");
duke@435 2053 st->print(name.release); st->print(" ");
duke@435 2054 st->print(name.version); st->print(" ");
duke@435 2055 st->print(name.machine);
duke@435 2056 st->cr();
duke@435 2057
duke@435 2058 // Print warning if unsafe chroot environment detected
duke@435 2059 if (unsafe_chroot_detected) {
duke@435 2060 st->print("WARNING!! ");
duke@435 2061 st->print_cr(unstable_chroot_error);
duke@435 2062 }
duke@435 2063
duke@435 2064 // libc, pthread
duke@435 2065 st->print("libc:");
duke@435 2066 st->print(os::Linux::glibc_version()); st->print(" ");
duke@435 2067 st->print(os::Linux::libpthread_version()); st->print(" ");
duke@435 2068 if (os::Linux::is_LinuxThreads()) {
duke@435 2069 st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
duke@435 2070 }
duke@435 2071 st->cr();
duke@435 2072
duke@435 2073 // rlimit
duke@435 2074 st->print("rlimit:");
duke@435 2075 struct rlimit rlim;
duke@435 2076
duke@435 2077 st->print(" STACK ");
duke@435 2078 getrlimit(RLIMIT_STACK, &rlim);
duke@435 2079 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2080 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2081
duke@435 2082 st->print(", CORE ");
duke@435 2083 getrlimit(RLIMIT_CORE, &rlim);
duke@435 2084 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2085 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2086
duke@435 2087 st->print(", NPROC ");
duke@435 2088 getrlimit(RLIMIT_NPROC, &rlim);
duke@435 2089 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2090 else st->print("%d", rlim.rlim_cur);
duke@435 2091
duke@435 2092 st->print(", NOFILE ");
duke@435 2093 getrlimit(RLIMIT_NOFILE, &rlim);
duke@435 2094 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2095 else st->print("%d", rlim.rlim_cur);
duke@435 2096
duke@435 2097 st->print(", AS ");
duke@435 2098 getrlimit(RLIMIT_AS, &rlim);
duke@435 2099 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2100 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2101 st->cr();
duke@435 2102
duke@435 2103 // load average
duke@435 2104 st->print("load average:");
duke@435 2105 double loadavg[3];
duke@435 2106 os::loadavg(loadavg, 3);
duke@435 2107 st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
duke@435 2108 st->cr();
bobv@2036 2109
bobv@2036 2110 // meminfo
bobv@2036 2111 st->print("\n/proc/meminfo:\n");
bobv@2036 2112 _print_ascii_file("/proc/meminfo", st);
bobv@2036 2113 st->cr();
duke@435 2114 }
duke@435 2115
jcoomes@2997 2116 void os::pd_print_cpu_info(outputStream* st) {
jcoomes@2997 2117 st->print("\n/proc/cpuinfo:\n");
jcoomes@2997 2118 if (!_print_ascii_file("/proc/cpuinfo", st)) {
jcoomes@2997 2119 st->print(" <Not Available>");
jcoomes@2997 2120 }
jcoomes@2997 2121 st->cr();
jcoomes@2997 2122 }
jcoomes@2997 2123
duke@435 2124 void os::print_memory_info(outputStream* st) {
duke@435 2125
duke@435 2126 st->print("Memory:");
duke@435 2127 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 2128
duke@435 2129 // values in struct sysinfo are "unsigned long"
duke@435 2130 struct sysinfo si;
duke@435 2131 sysinfo(&si);
duke@435 2132
duke@435 2133 st->print(", physical " UINT64_FORMAT "k",
duke@435 2134 os::physical_memory() >> 10);
duke@435 2135 st->print("(" UINT64_FORMAT "k free)",
duke@435 2136 os::available_memory() >> 10);
duke@435 2137 st->print(", swap " UINT64_FORMAT "k",
duke@435 2138 ((jlong)si.totalswap * si.mem_unit) >> 10);
duke@435 2139 st->print("(" UINT64_FORMAT "k free)",
duke@435 2140 ((jlong)si.freeswap * si.mem_unit) >> 10);
duke@435 2141 st->cr();
duke@435 2142 }
duke@435 2143
duke@435 2144 // Taken from /usr/include/bits/siginfo.h Supposed to be architecture specific
duke@435 2145 // but they're the same for all the linux arch that we support
duke@435 2146 // and they're the same for solaris but there's no common place to put this.
duke@435 2147 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
duke@435 2148 "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
duke@435 2149 "ILL_COPROC", "ILL_BADSTK" };
duke@435 2150
duke@435 2151 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
duke@435 2152 "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
duke@435 2153 "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
duke@435 2154
duke@435 2155 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
duke@435 2156
duke@435 2157 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
duke@435 2158
duke@435 2159 void os::print_siginfo(outputStream* st, void* siginfo) {
duke@435 2160 st->print("siginfo:");
duke@435 2161
duke@435 2162 const int buflen = 100;
duke@435 2163 char buf[buflen];
duke@435 2164 siginfo_t *si = (siginfo_t*)siginfo;
duke@435 2165 st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
duke@435 2166 if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
duke@435 2167 st->print("si_errno=%s", buf);
duke@435 2168 } else {
duke@435 2169 st->print("si_errno=%d", si->si_errno);
duke@435 2170 }
duke@435 2171 const int c = si->si_code;
duke@435 2172 assert(c > 0, "unexpected si_code");
duke@435 2173 switch (si->si_signo) {
duke@435 2174 case SIGILL:
duke@435 2175 st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
duke@435 2176 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2177 break;
duke@435 2178 case SIGFPE:
duke@435 2179 st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
duke@435 2180 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2181 break;
duke@435 2182 case SIGSEGV:
duke@435 2183 st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
duke@435 2184 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2185 break;
duke@435 2186 case SIGBUS:
duke@435 2187 st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
duke@435 2188 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2189 break;
duke@435 2190 default:
duke@435 2191 st->print(", si_code=%d", si->si_code);
duke@435 2192 // no si_addr
duke@435 2193 }
duke@435 2194
duke@435 2195 if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
duke@435 2196 UseSharedSpaces) {
duke@435 2197 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 2198 if (mapinfo->is_in_shared_space(si->si_addr)) {
duke@435 2199 st->print("\n\nError accessing class data sharing archive." \
duke@435 2200 " Mapped file inaccessible during execution, " \
duke@435 2201 " possible disk/network problem.");
duke@435 2202 }
duke@435 2203 }
duke@435 2204 st->cr();
duke@435 2205 }
duke@435 2206
duke@435 2207
duke@435 2208 static void print_signal_handler(outputStream* st, int sig,
duke@435 2209 char* buf, size_t buflen);
duke@435 2210
duke@435 2211 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 2212 st->print_cr("Signal Handlers:");
duke@435 2213 print_signal_handler(st, SIGSEGV, buf, buflen);
duke@435 2214 print_signal_handler(st, SIGBUS , buf, buflen);
duke@435 2215 print_signal_handler(st, SIGFPE , buf, buflen);
duke@435 2216 print_signal_handler(st, SIGPIPE, buf, buflen);
duke@435 2217 print_signal_handler(st, SIGXFSZ, buf, buflen);
duke@435 2218 print_signal_handler(st, SIGILL , buf, buflen);
duke@435 2219 print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
duke@435 2220 print_signal_handler(st, SR_signum, buf, buflen);
duke@435 2221 print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
duke@435 2222 print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
duke@435 2223 print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
duke@435 2224 print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
duke@435 2225 }
duke@435 2226
duke@435 2227 static char saved_jvm_path[MAXPATHLEN] = {0};
duke@435 2228
duke@435 2229 // Find the full path to the current module, libjvm.so or libjvm_g.so
mchung@1997 2230 void os::jvm_path(char *buf, jint buflen) {
duke@435 2231 // Error checking.
mchung@1997 2232 if (buflen < MAXPATHLEN) {
duke@435 2233 assert(false, "must use a large-enough buffer");
duke@435 2234 buf[0] = '\0';
duke@435 2235 return;
duke@435 2236 }
duke@435 2237 // Lazy resolve the path to current module.
duke@435 2238 if (saved_jvm_path[0] != 0) {
duke@435 2239 strcpy(buf, saved_jvm_path);
duke@435 2240 return;
duke@435 2241 }
duke@435 2242
duke@435 2243 char dli_fname[MAXPATHLEN];
duke@435 2244 bool ret = dll_address_to_library_name(
duke@435 2245 CAST_FROM_FN_PTR(address, os::jvm_path),
duke@435 2246 dli_fname, sizeof(dli_fname), NULL);
duke@435 2247 assert(ret != 0, "cannot locate libjvm");
bobv@2036 2248 char *rp = realpath(dli_fname, buf);
bobv@2036 2249 if (rp == NULL)
xlu@948 2250 return;
duke@435 2251
sla@2584 2252 if (Arguments::created_by_gamma_launcher()) {
duke@435 2253 // Support for the gamma launcher. Typical value for buf is
duke@435 2254 // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so". If "/jre/lib/" appears at
duke@435 2255 // the right place in the string, then assume we are installed in a JDK and
duke@435 2256 // we're done. Otherwise, check for a JAVA_HOME environment variable and fix
duke@435 2257 // up the path so it looks like libjvm.so is installed there (append a
duke@435 2258 // fake suffix hotspot/libjvm.so).
duke@435 2259 const char *p = buf + strlen(buf) - 1;
duke@435 2260 for (int count = 0; p > buf && count < 5; ++count) {
duke@435 2261 for (--p; p > buf && *p != '/'; --p)
duke@435 2262 /* empty */ ;
duke@435 2263 }
duke@435 2264
duke@435 2265 if (strncmp(p, "/jre/lib/", 9) != 0) {
duke@435 2266 // Look for JAVA_HOME in the environment.
duke@435 2267 char* java_home_var = ::getenv("JAVA_HOME");
duke@435 2268 if (java_home_var != NULL && java_home_var[0] != 0) {
mchung@1997 2269 char* jrelib_p;
mchung@1997 2270 int len;
mchung@1997 2271
duke@435 2272 // Check the current module name "libjvm.so" or "libjvm_g.so".
duke@435 2273 p = strrchr(buf, '/');
duke@435 2274 assert(strstr(p, "/libjvm") == p, "invalid library name");
duke@435 2275 p = strstr(p, "_g") ? "_g" : "";
duke@435 2276
bobv@2036 2277 rp = realpath(java_home_var, buf);
bobv@2036 2278 if (rp == NULL)
xlu@948 2279 return;
mchung@1997 2280
mchung@1997 2281 // determine if this is a legacy image or modules image
mchung@1997 2282 // modules image doesn't have "jre" subdirectory
mchung@1997 2283 len = strlen(buf);
mchung@1997 2284 jrelib_p = buf + len;
mchung@1997 2285 snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
mchung@1997 2286 if (0 != access(buf, F_OK)) {
mchung@1997 2287 snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
mchung@1997 2288 }
mchung@1997 2289
duke@435 2290 if (0 == access(buf, F_OK)) {
duke@435 2291 // Use current module name "libjvm[_g].so" instead of
duke@435 2292 // "libjvm"debug_only("_g")".so" since for fastdebug version
duke@435 2293 // we should have "libjvm.so" but debug_only("_g") adds "_g"!
mchung@1997 2294 len = strlen(buf);
mchung@1997 2295 snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
duke@435 2296 } else {
duke@435 2297 // Go back to path of .so
bobv@2036 2298 rp = realpath(dli_fname, buf);
bobv@2036 2299 if (rp == NULL)
xlu@948 2300 return;
duke@435 2301 }
duke@435 2302 }
duke@435 2303 }
duke@435 2304 }
duke@435 2305
duke@435 2306 strcpy(saved_jvm_path, buf);
duke@435 2307 }
duke@435 2308
duke@435 2309 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 2310 // no prefix required, not even "_"
duke@435 2311 }
duke@435 2312
duke@435 2313 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 2314 // no suffix required
duke@435 2315 }
duke@435 2316
duke@435 2317 ////////////////////////////////////////////////////////////////////////////////
duke@435 2318 // sun.misc.Signal support
duke@435 2319
duke@435 2320 static volatile jint sigint_count = 0;
duke@435 2321
duke@435 2322 static void
duke@435 2323 UserHandler(int sig, void *siginfo, void *context) {
duke@435 2324 // 4511530 - sem_post is serialized and handled by the manager thread. When
duke@435 2325 // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
duke@435 2326 // don't want to flood the manager thread with sem_post requests.
duke@435 2327 if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
duke@435 2328 return;
duke@435 2329
duke@435 2330 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 2331 // handler fails to abort. Let VM die immediately.
duke@435 2332 if (sig == SIGINT && is_error_reported()) {
duke@435 2333 os::die();
duke@435 2334 }
duke@435 2335
duke@435 2336 os::signal_notify(sig);
duke@435 2337 }
duke@435 2338
duke@435 2339 void* os::user_handler() {
duke@435 2340 return CAST_FROM_FN_PTR(void*, UserHandler);
duke@435 2341 }
duke@435 2342
duke@435 2343 extern "C" {
duke@435 2344 typedef void (*sa_handler_t)(int);
duke@435 2345 typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
duke@435 2346 }
duke@435 2347
duke@435 2348 void* os::signal(int signal_number, void* handler) {
duke@435 2349 struct sigaction sigAct, oldSigAct;
duke@435 2350
duke@435 2351 sigfillset(&(sigAct.sa_mask));
duke@435 2352 sigAct.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 2353 sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
duke@435 2354
duke@435 2355 if (sigaction(signal_number, &sigAct, &oldSigAct)) {
duke@435 2356 // -1 means registration failed
duke@435 2357 return (void *)-1;
duke@435 2358 }
duke@435 2359
duke@435 2360 return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
duke@435 2361 }
duke@435 2362
duke@435 2363 void os::signal_raise(int signal_number) {
duke@435 2364 ::raise(signal_number);
duke@435 2365 }
duke@435 2366
duke@435 2367 /*
duke@435 2368 * The following code is moved from os.cpp for making this
duke@435 2369 * code platform specific, which it is by its very nature.
duke@435 2370 */
duke@435 2371
duke@435 2372 // Will be modified when max signal is changed to be dynamic
duke@435 2373 int os::sigexitnum_pd() {
duke@435 2374 return NSIG;
duke@435 2375 }
duke@435 2376
duke@435 2377 // a counter for each possible signal value
duke@435 2378 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 2379
duke@435 2380 // Linux(POSIX) specific hand shaking semaphore.
duke@435 2381 static sem_t sig_sem;
duke@435 2382
duke@435 2383 void os::signal_init_pd() {
duke@435 2384 // Initialize signal structures
duke@435 2385 ::memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 2386
duke@435 2387 // Initialize signal semaphore
duke@435 2388 ::sem_init(&sig_sem, 0, 0);
duke@435 2389 }
duke@435 2390
duke@435 2391 void os::signal_notify(int sig) {
duke@435 2392 Atomic::inc(&pending_signals[sig]);
duke@435 2393 ::sem_post(&sig_sem);
duke@435 2394 }
duke@435 2395
duke@435 2396 static int check_pending_signals(bool wait) {
duke@435 2397 Atomic::store(0, &sigint_count);
duke@435 2398 for (;;) {
duke@435 2399 for (int i = 0; i < NSIG + 1; i++) {
duke@435 2400 jint n = pending_signals[i];
duke@435 2401 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 2402 return i;
duke@435 2403 }
duke@435 2404 }
duke@435 2405 if (!wait) {
duke@435 2406 return -1;
duke@435 2407 }
duke@435 2408 JavaThread *thread = JavaThread::current();
duke@435 2409 ThreadBlockInVM tbivm(thread);
duke@435 2410
duke@435 2411 bool threadIsSuspended;
duke@435 2412 do {
duke@435 2413 thread->set_suspend_equivalent();
duke@435 2414 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 2415 ::sem_wait(&sig_sem);
duke@435 2416
duke@435 2417 // were we externally suspended while we were waiting?
duke@435 2418 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 2419 if (threadIsSuspended) {
duke@435 2420 //
duke@435 2421 // The semaphore has been incremented, but while we were waiting
duke@435 2422 // another thread suspended us. We don't want to continue running
duke@435 2423 // while suspended because that would surprise the thread that
duke@435 2424 // suspended us.
duke@435 2425 //
duke@435 2426 ::sem_post(&sig_sem);
duke@435 2427
duke@435 2428 thread->java_suspend_self();
duke@435 2429 }
duke@435 2430 } while (threadIsSuspended);
duke@435 2431 }
duke@435 2432 }
duke@435 2433
duke@435 2434 int os::signal_lookup() {
duke@435 2435 return check_pending_signals(false);
duke@435 2436 }
duke@435 2437
duke@435 2438 int os::signal_wait() {
duke@435 2439 return check_pending_signals(true);
duke@435 2440 }
duke@435 2441
duke@435 2442 ////////////////////////////////////////////////////////////////////////////////
duke@435 2443 // Virtual Memory
duke@435 2444
duke@435 2445 int os::vm_page_size() {
duke@435 2446 // Seems redundant as all get out
duke@435 2447 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2448 return os::Linux::page_size();
duke@435 2449 }
duke@435 2450
duke@435 2451 // Solaris allocates memory by pages.
duke@435 2452 int os::vm_allocation_granularity() {
duke@435 2453 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2454 return os::Linux::page_size();
duke@435 2455 }
duke@435 2456
duke@435 2457 // Rationale behind this function:
duke@435 2458 // current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
duke@435 2459 // mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
duke@435 2460 // samples for JITted code. Here we create private executable mapping over the code cache
duke@435 2461 // and then we can use standard (well, almost, as mapping can change) way to provide
duke@435 2462 // info for the reporting script by storing timestamp and location of symbol
duke@435 2463 void linux_wrap_code(char* base, size_t size) {
duke@435 2464 static volatile jint cnt = 0;
duke@435 2465
duke@435 2466 if (!UseOprofile) {
duke@435 2467 return;
duke@435 2468 }
duke@435 2469
coleenp@1852 2470 char buf[PATH_MAX+1];
duke@435 2471 int num = Atomic::add(1, &cnt);
duke@435 2472
coleenp@1788 2473 snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
coleenp@1788 2474 os::get_temp_directory(), os::current_process_id(), num);
duke@435 2475 unlink(buf);
duke@435 2476
ikrylov@2322 2477 int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
duke@435 2478
duke@435 2479 if (fd != -1) {
ikrylov@2322 2480 off_t rv = ::lseek(fd, size-2, SEEK_SET);
duke@435 2481 if (rv != (off_t)-1) {
ikrylov@2322 2482 if (::write(fd, "", 1) == 1) {
duke@435 2483 mmap(base, size,
duke@435 2484 PROT_READ|PROT_WRITE|PROT_EXEC,
duke@435 2485 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
duke@435 2486 }
duke@435 2487 }
ikrylov@2322 2488 ::close(fd);
duke@435 2489 unlink(buf);
duke@435 2490 }
duke@435 2491 }
duke@435 2492
duke@435 2493 // NOTE: Linux kernel does not really reserve the pages for us.
duke@435 2494 // All it does is to check if there are enough free pages
duke@435 2495 // left at the time of mmap(). This could be a potential
duke@435 2496 // problem.
coleenp@1091 2497 bool os::commit_memory(char* addr, size_t size, bool exec) {
coleenp@1091 2498 int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
coleenp@1091 2499 uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
duke@435 2500 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
iveresov@3085 2501 if (res != (uintptr_t) MAP_FAILED) {
iveresov@3085 2502 if (UseNUMAInterleaving) {
iveresov@3085 2503 numa_make_global(addr, size);
iveresov@3085 2504 }
iveresov@3085 2505 return true;
iveresov@3085 2506 }
iveresov@3085 2507 return false;
duke@435 2508 }
duke@435 2509
iveresov@2818 2510 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
iveresov@2818 2511 #ifndef MAP_HUGETLB
iveresov@2818 2512 #define MAP_HUGETLB 0x40000
iveresov@2818 2513 #endif
iveresov@2818 2514
iveresov@2818 2515 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
iveresov@2818 2516 #ifndef MADV_HUGEPAGE
iveresov@2818 2517 #define MADV_HUGEPAGE 14
iveresov@2818 2518 #endif
iveresov@2818 2519
coleenp@1091 2520 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
coleenp@1091 2521 bool exec) {
iveresov@2818 2522 if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
iveresov@2818 2523 int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
iveresov@2818 2524 uintptr_t res =
iveresov@2818 2525 (uintptr_t) ::mmap(addr, size, prot,
iveresov@2818 2526 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
iveresov@2818 2527 -1, 0);
iveresov@3085 2528 if (res != (uintptr_t) MAP_FAILED) {
iveresov@3085 2529 if (UseNUMAInterleaving) {
iveresov@3085 2530 numa_make_global(addr, size);
iveresov@3085 2531 }
iveresov@3085 2532 return true;
iveresov@3085 2533 }
iveresov@3113 2534 // Fall through and try to use small pages
iveresov@3113 2535 }
iveresov@3113 2536
iveresov@3113 2537 if (commit_memory(addr, size, exec)) {
iveresov@3113 2538 realign_memory(addr, size, alignment_hint);
iveresov@3113 2539 return true;
iveresov@3113 2540 }
iveresov@3113 2541 return false;
duke@435 2542 }
duke@435 2543
iveresov@2818 2544 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
iveresov@2818 2545 if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
iveresov@2818 2546 // We don't check the return value: madvise(MADV_HUGEPAGE) may not
iveresov@2818 2547 // be supported or the memory may already be backed by huge pages.
iveresov@2818 2548 ::madvise(addr, bytes, MADV_HUGEPAGE);
iveresov@2818 2549 }
iveresov@2818 2550 }
iveresov@576 2551
iveresov@576 2552 void os::free_memory(char *addr, size_t bytes) {
iveresov@3023 2553 commit_memory(addr, bytes, false);
iveresov@576 2554 }
iveresov@576 2555
iveresov@897 2556 void os::numa_make_global(char *addr, size_t bytes) {
iveresov@897 2557 Linux::numa_interleave_memory(addr, bytes);
iveresov@897 2558 }
iveresov@576 2559
iveresov@576 2560 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
iveresov@576 2561 Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
iveresov@576 2562 }
iveresov@576 2563
iveresov@576 2564 bool os::numa_topology_changed() { return false; }
iveresov@576 2565
iveresov@576 2566 size_t os::numa_get_groups_num() {
iveresov@576 2567 int max_node = Linux::numa_max_node();
iveresov@576 2568 return max_node > 0 ? max_node + 1 : 1;
iveresov@576 2569 }
iveresov@576 2570
iveresov@576 2571 int os::numa_get_group_id() {
iveresov@576 2572 int cpu_id = Linux::sched_getcpu();
iveresov@576 2573 if (cpu_id != -1) {
iveresov@576 2574 int lgrp_id = Linux::get_node_by_cpu(cpu_id);
iveresov@576 2575 if (lgrp_id != -1) {
iveresov@576 2576 return lgrp_id;
iveresov@576 2577 }
duke@435 2578 }
duke@435 2579 return 0;
duke@435 2580 }
duke@435 2581
iveresov@576 2582 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
iveresov@576 2583 for (size_t i = 0; i < size; i++) {
iveresov@576 2584 ids[i] = i;
iveresov@576 2585 }
iveresov@576 2586 return size;
iveresov@576 2587 }
iveresov@576 2588
duke@435 2589 bool os::get_page_info(char *start, page_info* info) {
duke@435 2590 return false;
duke@435 2591 }
duke@435 2592
duke@435 2593 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 2594 return end;
duke@435 2595 }
duke@435 2596
iveresov@3024 2597
iveresov@3024 2598 int os::Linux::sched_getcpu_syscall(void) {
iveresov@3024 2599 unsigned int cpu;
iveresov@3024 2600 int retval = -1;
iveresov@3024 2601
iveresov@3024 2602 #if defined(IA32)
iveresov@3087 2603 # ifndef SYS_getcpu
iveresov@3087 2604 # define SYS_getcpu 318
iveresov@3087 2605 # endif
iveresov@3024 2606 retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
iveresov@3024 2607 #elif defined(AMD64)
iveresov@3087 2608 // Unfortunately we have to bring all these macros here from vsyscall.h
iveresov@3087 2609 // to be able to compile on old linuxes.
iveresov@3087 2610 # define __NR_vgetcpu 2
iveresov@3087 2611 # define VSYSCALL_START (-10UL << 20)
iveresov@3087 2612 # define VSYSCALL_SIZE 1024
iveresov@3087 2613 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
iveresov@3024 2614 typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
iveresov@3024 2615 vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
iveresov@3024 2616 retval = vgetcpu(&cpu, NULL, NULL);
iveresov@3024 2617 #endif
iveresov@3024 2618
iveresov@3024 2619 return (retval == -1) ? retval : cpu;
iveresov@3024 2620 }
iveresov@3024 2621
coleenp@2507 2622 // Something to do with the numa-aware allocator needs these symbols
coleenp@2507 2623 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
coleenp@2507 2624 extern "C" JNIEXPORT void numa_error(char *where) { }
coleenp@2507 2625 extern "C" JNIEXPORT int fork1() { return fork(); }
iveresov@576 2626
iveresov@1198 2627
iveresov@1198 2628 // If we are running with libnuma version > 2, then we should
iveresov@1198 2629 // be trying to use symbols with versions 1.1
iveresov@1198 2630 // If we are running with earlier version, which did not have symbol versions,
iveresov@1198 2631 // we should use the base version.
iveresov@1198 2632 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
iveresov@1198 2633 void *f = dlvsym(handle, name, "libnuma_1.1");
iveresov@1198 2634 if (f == NULL) {
iveresov@1198 2635 f = dlsym(handle, name);
iveresov@1198 2636 }
iveresov@1198 2637 return f;
iveresov@1198 2638 }
iveresov@1198 2639
iveresov@897 2640 bool os::Linux::libnuma_init() {
iveresov@576 2641 // sched_getcpu() should be in libc.
iveresov@576 2642 set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
iveresov@576 2643 dlsym(RTLD_DEFAULT, "sched_getcpu")));
iveresov@576 2644
iveresov@3024 2645 // If it's not, try a direct syscall.
iveresov@3024 2646 if (sched_getcpu() == -1)
iveresov@3024 2647 set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
iveresov@3024 2648
iveresov@576 2649 if (sched_getcpu() != -1) { // Does it work?
iveresov@702 2650 void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
iveresov@576 2651 if (handle != NULL) {
iveresov@576 2652 set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
iveresov@1198 2653 libnuma_dlsym(handle, "numa_node_to_cpus")));
iveresov@576 2654 set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
iveresov@1198 2655 libnuma_dlsym(handle, "numa_max_node")));
iveresov@576 2656 set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
iveresov@1198 2657 libnuma_dlsym(handle, "numa_available")));
iveresov@576 2658 set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
iveresov@1198 2659 libnuma_dlsym(handle, "numa_tonode_memory")));
iveresov@897 2660 set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
iveresov@1198 2661 libnuma_dlsym(handle, "numa_interleave_memory")));
iveresov@897 2662
iveresov@897 2663
iveresov@576 2664 if (numa_available() != -1) {
iveresov@1198 2665 set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
iveresov@576 2666 // Create a cpu -> node mapping
iveresov@576 2667 _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
iveresov@576 2668 rebuild_cpu_to_node_map();
iveresov@897 2669 return true;
iveresov@576 2670 }
iveresov@576 2671 }
iveresov@576 2672 }
iveresov@897 2673 return false;
iveresov@576 2674 }
iveresov@576 2675
iveresov@576 2676 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
iveresov@576 2677 // The table is later used in get_node_by_cpu().
iveresov@576 2678 void os::Linux::rebuild_cpu_to_node_map() {
iveresov@897 2679 const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
iveresov@897 2680 // in libnuma (possible values are starting from 16,
iveresov@897 2681 // and continuing up with every other power of 2, but less
iveresov@897 2682 // than the maximum number of CPUs supported by kernel), and
iveresov@897 2683 // is a subject to change (in libnuma version 2 the requirements
iveresov@897 2684 // are more reasonable) we'll just hardcode the number they use
iveresov@897 2685 // in the library.
iveresov@897 2686 const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
iveresov@897 2687
iveresov@897 2688 size_t cpu_num = os::active_processor_count();
iveresov@897 2689 size_t cpu_map_size = NCPUS / BitsPerCLong;
iveresov@897 2690 size_t cpu_map_valid_size =
iveresov@897 2691 MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
iveresov@897 2692
iveresov@576 2693 cpu_to_node()->clear();
iveresov@576 2694 cpu_to_node()->at_grow(cpu_num - 1);
iveresov@897 2695 size_t node_num = numa_get_groups_num();
iveresov@897 2696
iveresov@576 2697 unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
iveresov@897 2698 for (size_t i = 0; i < node_num; i++) {
iveresov@576 2699 if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
iveresov@897 2700 for (size_t j = 0; j < cpu_map_valid_size; j++) {
iveresov@576 2701 if (cpu_map[j] != 0) {
iveresov@897 2702 for (size_t k = 0; k < BitsPerCLong; k++) {
iveresov@576 2703 if (cpu_map[j] & (1UL << k)) {
iveresov@897 2704 cpu_to_node()->at_put(j * BitsPerCLong + k, i);
iveresov@576 2705 }
iveresov@576 2706 }
iveresov@576 2707 }
iveresov@576 2708 }
iveresov@576 2709 }
iveresov@576 2710 }
iveresov@576 2711 FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
iveresov@576 2712 }
iveresov@576 2713
iveresov@576 2714 int os::Linux::get_node_by_cpu(int cpu_id) {
iveresov@576 2715 if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
iveresov@576 2716 return cpu_to_node()->at(cpu_id);
iveresov@576 2717 }
iveresov@576 2718 return -1;
iveresov@576 2719 }
iveresov@576 2720
iveresov@576 2721 GrowableArray<int>* os::Linux::_cpu_to_node;
iveresov@576 2722 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
iveresov@576 2723 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
iveresov@576 2724 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
iveresov@576 2725 os::Linux::numa_available_func_t os::Linux::_numa_available;
iveresov@576 2726 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
iveresov@897 2727 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
iveresov@897 2728 unsigned long* os::Linux::_numa_all_nodes;
iveresov@576 2729
duke@435 2730 bool os::uncommit_memory(char* addr, size_t size) {
bobv@2036 2731 uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
bobv@2036 2732 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
bobv@2036 2733 return res != (uintptr_t) MAP_FAILED;
duke@435 2734 }
duke@435 2735
coleenp@1755 2736 // Linux uses a growable mapping for the stack, and if the mapping for
coleenp@1755 2737 // the stack guard pages is not removed when we detach a thread the
coleenp@1755 2738 // stack cannot grow beyond the pages where the stack guard was
coleenp@1755 2739 // mapped. If at some point later in the process the stack expands to
coleenp@1755 2740 // that point, the Linux kernel cannot expand the stack any further
coleenp@1755 2741 // because the guard pages are in the way, and a segfault occurs.
coleenp@1755 2742 //
coleenp@1755 2743 // However, it's essential not to split the stack region by unmapping
coleenp@1755 2744 // a region (leaving a hole) that's already part of the stack mapping,
coleenp@1755 2745 // so if the stack mapping has already grown beyond the guard pages at
coleenp@1755 2746 // the time we create them, we have to truncate the stack mapping.
coleenp@1755 2747 // So, we need to know the extent of the stack mapping when
coleenp@1755 2748 // create_stack_guard_pages() is called.
coleenp@1755 2749
coleenp@1755 2750 // Find the bounds of the stack mapping. Return true for success.
coleenp@1755 2751 //
coleenp@1755 2752 // We only need this for stacks that are growable: at the time of
coleenp@1755 2753 // writing thread stacks don't use growable mappings (i.e. those
coleenp@1755 2754 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
coleenp@1755 2755 // only applies to the main thread.
dsamersoff@2751 2756
dsamersoff@2751 2757 static
dsamersoff@2751 2758 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
dsamersoff@2751 2759
dsamersoff@2751 2760 char buf[128];
dsamersoff@2751 2761 int fd, sz;
dsamersoff@2751 2762
dsamersoff@2751 2763 if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
coleenp@1755 2764 return false;
dsamersoff@2751 2765 }
dsamersoff@2751 2766
dsamersoff@2751 2767 const char kw[] = "[stack]";
dsamersoff@2751 2768 const int kwlen = sizeof(kw)-1;
dsamersoff@2751 2769
dsamersoff@2751 2770 // Address part of /proc/self/maps couldn't be more than 128 bytes
dsamersoff@2751 2771 while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
dsamersoff@2751 2772 if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
dsamersoff@2751 2773 // Extract addresses
dsamersoff@2751 2774 if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
dsamersoff@2751 2775 uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
dsamersoff@2751 2776 if (sp >= *bottom && sp <= *top) {
dsamersoff@2751 2777 ::close(fd);
dsamersoff@2751 2778 return true;
dsamersoff@2751 2779 }
coleenp@1755 2780 }
dsamersoff@2751 2781 }
sla@2584 2782 }
dsamersoff@2751 2783
dsamersoff@2751 2784 ::close(fd);
coleenp@1755 2785 return false;
coleenp@1755 2786 }
coleenp@1755 2787
dsamersoff@2751 2788
coleenp@1755 2789 // If the (growable) stack mapping already extends beyond the point
coleenp@1755 2790 // where we're going to put our guard pages, truncate the mapping at
coleenp@1755 2791 // that point by munmap()ping it. This ensures that when we later
coleenp@1755 2792 // munmap() the guard pages we don't leave a hole in the stack
dholmes@2105 2793 // mapping. This only affects the main/initial thread, but guard
dholmes@2105 2794 // against future OS changes
coleenp@1755 2795 bool os::create_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2796 uintptr_t stack_extent, stack_base;
dholmes@2105 2797 bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
dholmes@2105 2798 if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
dholmes@2105 2799 assert(os::Linux::is_initial_thread(),
dholmes@2105 2800 "growable stack in non-initial thread");
coleenp@1755 2801 if (stack_extent < (uintptr_t)addr)
coleenp@1755 2802 ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
coleenp@1755 2803 }
coleenp@1755 2804
coleenp@1755 2805 return os::commit_memory(addr, size);
coleenp@1755 2806 }
coleenp@1755 2807
coleenp@1755 2808 // If this is a growable mapping, remove the guard pages entirely by
dholmes@2105 2809 // munmap()ping them. If not, just call uncommit_memory(). This only
dholmes@2105 2810 // affects the main/initial thread, but guard against future OS changes
coleenp@1755 2811 bool os::remove_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2812 uintptr_t stack_extent, stack_base;
dholmes@2105 2813 bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
dholmes@2105 2814 if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
dholmes@2105 2815 assert(os::Linux::is_initial_thread(),
dholmes@2105 2816 "growable stack in non-initial thread");
dholmes@2105 2817
coleenp@1755 2818 return ::munmap(addr, size) == 0;
coleenp@1755 2819 }
coleenp@1755 2820
coleenp@1755 2821 return os::uncommit_memory(addr, size);
coleenp@1755 2822 }
coleenp@1755 2823
duke@435 2824 static address _highest_vm_reserved_address = NULL;
duke@435 2825
duke@435 2826 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
duke@435 2827 // at 'requested_addr'. If there are existing memory mappings at the same
duke@435 2828 // location, however, they will be overwritten. If 'fixed' is false,
duke@435 2829 // 'requested_addr' is only treated as a hint, the return value may or
duke@435 2830 // may not start from the requested address. Unlike Linux mmap(), this
duke@435 2831 // function returns NULL to indicate failure.
duke@435 2832 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
duke@435 2833 char * addr;
duke@435 2834 int flags;
duke@435 2835
duke@435 2836 flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
duke@435 2837 if (fixed) {
duke@435 2838 assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
duke@435 2839 flags |= MAP_FIXED;
duke@435 2840 }
duke@435 2841
coleenp@1091 2842 // Map uncommitted pages PROT_READ and PROT_WRITE, change access
coleenp@1091 2843 // to PROT_EXEC if executable when we commit the page.
coleenp@1091 2844 addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
duke@435 2845 flags, -1, 0);
duke@435 2846
duke@435 2847 if (addr != MAP_FAILED) {
duke@435 2848 // anon_mmap() should only get called during VM initialization,
duke@435 2849 // don't need lock (actually we can skip locking even it can be called
duke@435 2850 // from multiple threads, because _highest_vm_reserved_address is just a
duke@435 2851 // hint about the upper limit of non-stack memory regions.)
duke@435 2852 if ((address)addr + bytes > _highest_vm_reserved_address) {
duke@435 2853 _highest_vm_reserved_address = (address)addr + bytes;
duke@435 2854 }
duke@435 2855 }
duke@435 2856
duke@435 2857 return addr == MAP_FAILED ? NULL : addr;
duke@435 2858 }
duke@435 2859
duke@435 2860 // Don't update _highest_vm_reserved_address, because there might be memory
duke@435 2861 // regions above addr + size. If so, releasing a memory region only creates
duke@435 2862 // a hole in the address space, it doesn't help prevent heap-stack collision.
duke@435 2863 //
duke@435 2864 static int anon_munmap(char * addr, size_t size) {
duke@435 2865 return ::munmap(addr, size) == 0;
duke@435 2866 }
duke@435 2867
duke@435 2868 char* os::reserve_memory(size_t bytes, char* requested_addr,
duke@435 2869 size_t alignment_hint) {
duke@435 2870 return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
duke@435 2871 }
duke@435 2872
duke@435 2873 bool os::release_memory(char* addr, size_t size) {
duke@435 2874 return anon_munmap(addr, size);
duke@435 2875 }
duke@435 2876
duke@435 2877 static address highest_vm_reserved_address() {
duke@435 2878 return _highest_vm_reserved_address;
duke@435 2879 }
duke@435 2880
duke@435 2881 static bool linux_mprotect(char* addr, size_t size, int prot) {
duke@435 2882 // Linux wants the mprotect address argument to be page aligned.
duke@435 2883 char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
duke@435 2884
duke@435 2885 // According to SUSv3, mprotect() should only be used with mappings
duke@435 2886 // established by mmap(), and mmap() always maps whole pages. Unaligned
duke@435 2887 // 'addr' likely indicates problem in the VM (e.g. trying to change
duke@435 2888 // protection of malloc'ed or statically allocated memory). Check the
duke@435 2889 // caller if you hit this assert.
duke@435 2890 assert(addr == bottom, "sanity check");
duke@435 2891
duke@435 2892 size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
duke@435 2893 return ::mprotect(bottom, size, prot) == 0;
duke@435 2894 }
duke@435 2895
coleenp@672 2896 // Set protections specified
coleenp@672 2897 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 2898 bool is_committed) {
coleenp@672 2899 unsigned int p = 0;
coleenp@672 2900 switch (prot) {
coleenp@672 2901 case MEM_PROT_NONE: p = PROT_NONE; break;
coleenp@672 2902 case MEM_PROT_READ: p = PROT_READ; break;
coleenp@672 2903 case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
coleenp@672 2904 case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
coleenp@672 2905 default:
coleenp@672 2906 ShouldNotReachHere();
coleenp@672 2907 }
coleenp@672 2908 // is_committed is unused.
coleenp@672 2909 return linux_mprotect(addr, bytes, p);
duke@435 2910 }
duke@435 2911
duke@435 2912 bool os::guard_memory(char* addr, size_t size) {
duke@435 2913 return linux_mprotect(addr, size, PROT_NONE);
duke@435 2914 }
duke@435 2915
duke@435 2916 bool os::unguard_memory(char* addr, size_t size) {
coleenp@912 2917 return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
duke@435 2918 }
duke@435 2919
iveresov@2818 2920 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
iveresov@2818 2921 bool result = false;
iveresov@2818 2922 void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
iveresov@2818 2923 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
iveresov@2818 2924 -1, 0);
iveresov@2818 2925
iveresov@2818 2926 if (p != (void *) -1) {
iveresov@2818 2927 // We don't know if this really is a huge page or not.
iveresov@2818 2928 FILE *fp = fopen("/proc/self/maps", "r");
iveresov@2818 2929 if (fp) {
iveresov@2818 2930 while (!feof(fp)) {
iveresov@2818 2931 char chars[257];
iveresov@2818 2932 long x = 0;
iveresov@2818 2933 if (fgets(chars, sizeof(chars), fp)) {
iveresov@2890 2934 if (sscanf(chars, "%lx-%*x", &x) == 1
iveresov@2818 2935 && x == (long)p) {
iveresov@2818 2936 if (strstr (chars, "hugepage")) {
iveresov@2818 2937 result = true;
iveresov@2818 2938 break;
iveresov@2818 2939 }
iveresov@2818 2940 }
iveresov@2818 2941 }
iveresov@2818 2942 }
iveresov@2818 2943 fclose(fp);
iveresov@2818 2944 }
iveresov@2818 2945 munmap (p, page_size);
iveresov@2818 2946 if (result)
iveresov@2818 2947 return true;
iveresov@2818 2948 }
iveresov@2818 2949
iveresov@2818 2950 if (warn) {
iveresov@2818 2951 warning("HugeTLBFS is not supported by the operating system.");
iveresov@2818 2952 }
iveresov@2818 2953
iveresov@2818 2954 return result;
iveresov@2818 2955 }
iveresov@2818 2956
ctornqvi@2520 2957 /*
ctornqvi@2520 2958 * Set the coredump_filter bits to include largepages in core dump (bit 6)
ctornqvi@2520 2959 *
ctornqvi@2520 2960 * From the coredump_filter documentation:
ctornqvi@2520 2961 *
ctornqvi@2520 2962 * - (bit 0) anonymous private memory
ctornqvi@2520 2963 * - (bit 1) anonymous shared memory
ctornqvi@2520 2964 * - (bit 2) file-backed private memory
ctornqvi@2520 2965 * - (bit 3) file-backed shared memory
ctornqvi@2520 2966 * - (bit 4) ELF header pages in file-backed private memory areas (it is
ctornqvi@2520 2967 * effective only if the bit 2 is cleared)
ctornqvi@2520 2968 * - (bit 5) hugetlb private memory
ctornqvi@2520 2969 * - (bit 6) hugetlb shared memory
ctornqvi@2520 2970 */
ctornqvi@2520 2971 static void set_coredump_filter(void) {
ctornqvi@2520 2972 FILE *f;
ctornqvi@2520 2973 long cdm;
ctornqvi@2520 2974
ctornqvi@2520 2975 if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
ctornqvi@2520 2976 return;
ctornqvi@2520 2977 }
ctornqvi@2520 2978
ctornqvi@2520 2979 if (fscanf(f, "%lx", &cdm) != 1) {
ctornqvi@2520 2980 fclose(f);
ctornqvi@2520 2981 return;
ctornqvi@2520 2982 }
ctornqvi@2520 2983
ctornqvi@2520 2984 rewind(f);
ctornqvi@2520 2985
ctornqvi@2520 2986 if ((cdm & LARGEPAGES_BIT) == 0) {
ctornqvi@2520 2987 cdm |= LARGEPAGES_BIT;
ctornqvi@2520 2988 fprintf(f, "%#lx", cdm);
ctornqvi@2520 2989 }
ctornqvi@2520 2990
ctornqvi@2520 2991 fclose(f);
ctornqvi@2520 2992 }
ctornqvi@2520 2993
duke@435 2994 // Large page support
duke@435 2995
duke@435 2996 static size_t _large_page_size = 0;
duke@435 2997
iveresov@2850 2998 void os::large_page_init() {
iveresov@2818 2999 if (!UseLargePages) {
iveresov@2818 3000 UseHugeTLBFS = false;
iveresov@2818 3001 UseSHM = false;
iveresov@2850 3002 return;
iveresov@2818 3003 }
iveresov@2818 3004
iveresov@2818 3005 if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
iveresov@2850 3006 // If UseLargePages is specified on the command line try both methods,
iveresov@2850 3007 // if it's default, then try only HugeTLBFS.
iveresov@2850 3008 if (FLAG_IS_DEFAULT(UseLargePages)) {
iveresov@2850 3009 UseHugeTLBFS = true;
iveresov@2850 3010 } else {
iveresov@2850 3011 UseHugeTLBFS = UseSHM = true;
iveresov@2850 3012 }
iveresov@2818 3013 }
duke@435 3014
duke@435 3015 if (LargePageSizeInBytes) {
duke@435 3016 _large_page_size = LargePageSizeInBytes;
duke@435 3017 } else {
duke@435 3018 // large_page_size on Linux is used to round up heap size. x86 uses either
duke@435 3019 // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
duke@435 3020 // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
duke@435 3021 // page as large as 256M.
duke@435 3022 //
duke@435 3023 // Here we try to figure out page size by parsing /proc/meminfo and looking
duke@435 3024 // for a line with the following format:
duke@435 3025 // Hugepagesize: 2048 kB
duke@435 3026 //
duke@435 3027 // If we can't determine the value (e.g. /proc is not mounted, or the text
duke@435 3028 // format has been changed), we'll use the largest page size supported by
duke@435 3029 // the processor.
duke@435 3030
never@1445 3031 #ifndef ZERO
bobv@2036 3032 _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
bobv@2036 3033 ARM_ONLY(2 * M) PPC_ONLY(4 * M);
never@1445 3034 #endif // ZERO
duke@435 3035
duke@435 3036 FILE *fp = fopen("/proc/meminfo", "r");
duke@435 3037 if (fp) {
duke@435 3038 while (!feof(fp)) {
duke@435 3039 int x = 0;
duke@435 3040 char buf[16];
duke@435 3041 if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
duke@435 3042 if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
duke@435 3043 _large_page_size = x * K;
duke@435 3044 break;
duke@435 3045 }
duke@435 3046 } else {
duke@435 3047 // skip to next line
duke@435 3048 for (;;) {
duke@435 3049 int ch = fgetc(fp);
duke@435 3050 if (ch == EOF || ch == (int)'\n') break;
duke@435 3051 }
duke@435 3052 }
duke@435 3053 }
duke@435 3054 fclose(fp);
duke@435 3055 }
duke@435 3056 }
duke@435 3057
iveresov@2818 3058 // print a warning if any large page related flag is specified on command line
iveresov@2818 3059 bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
iveresov@2818 3060
duke@435 3061 const size_t default_page_size = (size_t)Linux::page_size();
duke@435 3062 if (_large_page_size > default_page_size) {
duke@435 3063 _page_sizes[0] = _large_page_size;
duke@435 3064 _page_sizes[1] = default_page_size;
duke@435 3065 _page_sizes[2] = 0;
duke@435 3066 }
iveresov@2818 3067 UseHugeTLBFS = UseHugeTLBFS &&
iveresov@2818 3068 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
iveresov@2818 3069
iveresov@2818 3070 if (UseHugeTLBFS)
iveresov@2818 3071 UseSHM = false;
iveresov@2818 3072
iveresov@2818 3073 UseLargePages = UseHugeTLBFS || UseSHM;
iveresov@2818 3074
ctornqvi@2520 3075 set_coredump_filter();
duke@435 3076 }
duke@435 3077
duke@435 3078 #ifndef SHM_HUGETLB
duke@435 3079 #define SHM_HUGETLB 04000
duke@435 3080 #endif
duke@435 3081
coleenp@1091 3082 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
coleenp@1091 3083 // "exec" is passed in but not used. Creating the shared image for
coleenp@1091 3084 // the code cache doesn't have an SHM_X executable permission to check.
iveresov@2818 3085 assert(UseLargePages && UseSHM, "only for SHM large pages");
duke@435 3086
duke@435 3087 key_t key = IPC_PRIVATE;
duke@435 3088 char *addr;
duke@435 3089
duke@435 3090 bool warn_on_failure = UseLargePages &&
duke@435 3091 (!FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 3092 !FLAG_IS_DEFAULT(LargePageSizeInBytes)
duke@435 3093 );
duke@435 3094 char msg[128];
duke@435 3095
duke@435 3096 // Create a large shared memory region to attach to based on size.
duke@435 3097 // Currently, size is the total size of the heap
duke@435 3098 int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
duke@435 3099 if (shmid == -1) {
duke@435 3100 // Possible reasons for shmget failure:
duke@435 3101 // 1. shmmax is too small for Java heap.
duke@435 3102 // > check shmmax value: cat /proc/sys/kernel/shmmax
duke@435 3103 // > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
duke@435 3104 // 2. not enough large page memory.
duke@435 3105 // > check available large pages: cat /proc/meminfo
duke@435 3106 // > increase amount of large pages:
duke@435 3107 // echo new_value > /proc/sys/vm/nr_hugepages
duke@435 3108 // Note 1: different Linux may use different name for this property,
duke@435 3109 // e.g. on Redhat AS-3 it is "hugetlb_pool".
duke@435 3110 // Note 2: it's possible there's enough physical memory available but
duke@435 3111 // they are so fragmented after a long run that they can't
duke@435 3112 // coalesce into large pages. Try to reserve large pages when
duke@435 3113 // the system is still "fresh".
duke@435 3114 if (warn_on_failure) {
duke@435 3115 jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
duke@435 3116 warning(msg);
duke@435 3117 }
duke@435 3118 return NULL;
duke@435 3119 }
duke@435 3120
duke@435 3121 // attach to the region
kvn@1892 3122 addr = (char*)shmat(shmid, req_addr, 0);
duke@435 3123 int err = errno;
duke@435 3124
duke@435 3125 // Remove shmid. If shmat() is successful, the actual shared memory segment
duke@435 3126 // will be deleted when it's detached by shmdt() or when the process
duke@435 3127 // terminates. If shmat() is not successful this will remove the shared
duke@435 3128 // segment immediately.
duke@435 3129 shmctl(shmid, IPC_RMID, NULL);
duke@435 3130
duke@435 3131 if ((intptr_t)addr == -1) {
duke@435 3132 if (warn_on_failure) {
duke@435 3133 jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
duke@435 3134 warning(msg);
duke@435 3135 }
duke@435 3136 return NULL;
duke@435 3137 }
duke@435 3138
iveresov@3085 3139 if ((addr != NULL) && UseNUMAInterleaving) {
iveresov@3085 3140 numa_make_global(addr, bytes);
iveresov@3085 3141 }
iveresov@3085 3142
duke@435 3143 return addr;
duke@435 3144 }
duke@435 3145
duke@435 3146 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 3147 // detaching the SHM segment will also delete it, see reserve_memory_special()
duke@435 3148 int rslt = shmdt(base);
duke@435 3149 return rslt == 0;
duke@435 3150 }
duke@435 3151
duke@435 3152 size_t os::large_page_size() {
duke@435 3153 return _large_page_size;
duke@435 3154 }
duke@435 3155
iveresov@2818 3156 // HugeTLBFS allows application to commit large page memory on demand;
iveresov@2818 3157 // with SysV SHM the entire memory region must be allocated as shared
iveresov@2818 3158 // memory.
duke@435 3159 bool os::can_commit_large_page_memory() {
iveresov@2818 3160 return UseHugeTLBFS;
duke@435 3161 }
duke@435 3162
jcoomes@514 3163 bool os::can_execute_large_page_memory() {
iveresov@2818 3164 return UseHugeTLBFS;
jcoomes@514 3165 }
jcoomes@514 3166
duke@435 3167 // Reserve memory at an arbitrary address, only if that area is
duke@435 3168 // available (and not reserved for something else).
duke@435 3169
duke@435 3170 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 3171 const int max_tries = 10;
duke@435 3172 char* base[max_tries];
duke@435 3173 size_t size[max_tries];
duke@435 3174 const size_t gap = 0x000000;
duke@435 3175
duke@435 3176 // Assert only that the size is a multiple of the page size, since
duke@435 3177 // that's all that mmap requires, and since that's all we really know
duke@435 3178 // about at this low abstraction level. If we need higher alignment,
duke@435 3179 // we can either pass an alignment to this method or verify alignment
duke@435 3180 // in one of the methods further up the call chain. See bug 5044738.
duke@435 3181 assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
duke@435 3182
duke@435 3183 // Repeatedly allocate blocks until the block is allocated at the
duke@435 3184 // right spot. Give up after max_tries. Note that reserve_memory() will
duke@435 3185 // automatically update _highest_vm_reserved_address if the call is
duke@435 3186 // successful. The variable tracks the highest memory address every reserved
duke@435 3187 // by JVM. It is used to detect heap-stack collision if running with
duke@435 3188 // fixed-stack LinuxThreads. Because here we may attempt to reserve more
duke@435 3189 // space than needed, it could confuse the collision detecting code. To
duke@435 3190 // solve the problem, save current _highest_vm_reserved_address and
duke@435 3191 // calculate the correct value before return.
duke@435 3192 address old_highest = _highest_vm_reserved_address;
duke@435 3193
duke@435 3194 // Linux mmap allows caller to pass an address as hint; give it a try first,
duke@435 3195 // if kernel honors the hint then we can return immediately.
duke@435 3196 char * addr = anon_mmap(requested_addr, bytes, false);
duke@435 3197 if (addr == requested_addr) {
duke@435 3198 return requested_addr;
duke@435 3199 }
duke@435 3200
duke@435 3201 if (addr != NULL) {
duke@435 3202 // mmap() is successful but it fails to reserve at the requested address
duke@435 3203 anon_munmap(addr, bytes);
duke@435 3204 }
duke@435 3205
duke@435 3206 int i;
duke@435 3207 for (i = 0; i < max_tries; ++i) {
duke@435 3208 base[i] = reserve_memory(bytes);
duke@435 3209
duke@435 3210 if (base[i] != NULL) {
duke@435 3211 // Is this the block we wanted?
duke@435 3212 if (base[i] == requested_addr) {
duke@435 3213 size[i] = bytes;
duke@435 3214 break;
duke@435 3215 }
duke@435 3216
duke@435 3217 // Does this overlap the block we wanted? Give back the overlapped
duke@435 3218 // parts and try again.
duke@435 3219
duke@435 3220 size_t top_overlap = requested_addr + (bytes + gap) - base[i];
duke@435 3221 if (top_overlap >= 0 && top_overlap < bytes) {
duke@435 3222 unmap_memory(base[i], top_overlap);
duke@435 3223 base[i] += top_overlap;
duke@435 3224 size[i] = bytes - top_overlap;
duke@435 3225 } else {
duke@435 3226 size_t bottom_overlap = base[i] + bytes - requested_addr;
duke@435 3227 if (bottom_overlap >= 0 && bottom_overlap < bytes) {
duke@435 3228 unmap_memory(requested_addr, bottom_overlap);
duke@435 3229 size[i] = bytes - bottom_overlap;
duke@435 3230 } else {
duke@435 3231 size[i] = bytes;
duke@435 3232 }
duke@435 3233 }
duke@435 3234 }
duke@435 3235 }
duke@435 3236
duke@435 3237 // Give back the unused reserved pieces.
duke@435 3238
duke@435 3239 for (int j = 0; j < i; ++j) {
duke@435 3240 if (base[j] != NULL) {
duke@435 3241 unmap_memory(base[j], size[j]);
duke@435 3242 }
duke@435 3243 }
duke@435 3244
duke@435 3245 if (i < max_tries) {
duke@435 3246 _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
duke@435 3247 return requested_addr;
duke@435 3248 } else {
duke@435 3249 _highest_vm_reserved_address = old_highest;
duke@435 3250 return NULL;
duke@435 3251 }
duke@435 3252 }
duke@435 3253
duke@435 3254 size_t os::read(int fd, void *buf, unsigned int nBytes) {
duke@435 3255 return ::read(fd, buf, nBytes);
duke@435 3256 }
duke@435 3257
duke@435 3258 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
duke@435 3259 // Solaris uses poll(), linux uses park().
duke@435 3260 // Poll() is likely a better choice, assuming that Thread.interrupt()
duke@435 3261 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
duke@435 3262 // SIGSEGV, see 4355769.
duke@435 3263
duke@435 3264 const int NANOSECS_PER_MILLISECS = 1000000;
duke@435 3265
duke@435 3266 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
duke@435 3267 assert(thread == Thread::current(), "thread consistency check");
duke@435 3268
duke@435 3269 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 3270 slp->reset() ;
duke@435 3271 OrderAccess::fence() ;
duke@435 3272
duke@435 3273 if (interruptible) {
duke@435 3274 jlong prevtime = javaTimeNanos();
duke@435 3275
duke@435 3276 for (;;) {
duke@435 3277 if (os::is_interrupted(thread, true)) {
duke@435 3278 return OS_INTRPT;
duke@435 3279 }
duke@435 3280
duke@435 3281 jlong newtime = javaTimeNanos();
duke@435 3282
duke@435 3283 if (newtime - prevtime < 0) {
duke@435 3284 // time moving backwards, should only happen if no monotonic clock
duke@435 3285 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 3286 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 3287 } else {
duke@435 3288 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 3289 }
duke@435 3290
duke@435 3291 if(millis <= 0) {
duke@435 3292 return OS_OK;
duke@435 3293 }
duke@435 3294
duke@435 3295 prevtime = newtime;
duke@435 3296
duke@435 3297 {
duke@435 3298 assert(thread->is_Java_thread(), "sanity check");
duke@435 3299 JavaThread *jt = (JavaThread *) thread;
duke@435 3300 ThreadBlockInVM tbivm(jt);
duke@435 3301 OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
duke@435 3302
duke@435 3303 jt->set_suspend_equivalent();
duke@435 3304 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 3305 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 3306
duke@435 3307 slp->park(millis);
duke@435 3308
duke@435 3309 // were we externally suspended while we were waiting?
duke@435 3310 jt->check_and_wait_while_suspended();
duke@435 3311 }
duke@435 3312 }
duke@435 3313 } else {
duke@435 3314 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 3315 jlong prevtime = javaTimeNanos();
duke@435 3316
duke@435 3317 for (;;) {
duke@435 3318 // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
duke@435 3319 // the 1st iteration ...
duke@435 3320 jlong newtime = javaTimeNanos();
duke@435 3321
duke@435 3322 if (newtime - prevtime < 0) {
duke@435 3323 // time moving backwards, should only happen if no monotonic clock
duke@435 3324 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 3325 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 3326 } else {
duke@435 3327 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 3328 }
duke@435 3329
duke@435 3330 if(millis <= 0) break ;
duke@435 3331
duke@435 3332 prevtime = newtime;
duke@435 3333 slp->park(millis);
duke@435 3334 }
duke@435 3335 return OS_OK ;
duke@435 3336 }
duke@435 3337 }
duke@435 3338
duke@435 3339 int os::naked_sleep() {
duke@435 3340 // %% make the sleep time an integer flag. for now use 1 millisec.
duke@435 3341 return os::sleep(Thread::current(), 1, false);
duke@435 3342 }
duke@435 3343
duke@435 3344 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 3345 void os::infinite_sleep() {
duke@435 3346 while (true) { // sleep forever ...
duke@435 3347 ::sleep(100); // ... 100 seconds at a time
duke@435 3348 }
duke@435 3349 }
duke@435 3350
duke@435 3351 // Used to convert frequent JVM_Yield() to nops
duke@435 3352 bool os::dont_yield() {
duke@435 3353 return DontYieldALot;
duke@435 3354 }
duke@435 3355
duke@435 3356 void os::yield() {
duke@435 3357 sched_yield();
duke@435 3358 }
duke@435 3359
duke@435 3360 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
duke@435 3361
duke@435 3362 void os::yield_all(int attempts) {
duke@435 3363 // Yields to all threads, including threads with lower priorities
duke@435 3364 // Threads on Linux are all with same priority. The Solaris style
duke@435 3365 // os::yield_all() with nanosleep(1ms) is not necessary.
duke@435 3366 sched_yield();
duke@435 3367 }
duke@435 3368
duke@435 3369 // Called from the tight loops to possibly influence time-sharing heuristics
duke@435 3370 void os::loop_breaker(int attempts) {
duke@435 3371 os::yield_all(attempts);
duke@435 3372 }
duke@435 3373
duke@435 3374 ////////////////////////////////////////////////////////////////////////////////
duke@435 3375 // thread priority support
duke@435 3376
duke@435 3377 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
duke@435 3378 // only supports dynamic priority, static priority must be zero. For real-time
duke@435 3379 // applications, Linux supports SCHED_RR which allows static priority (1-99).
duke@435 3380 // However, for large multi-threaded applications, SCHED_RR is not only slower
duke@435 3381 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
duke@435 3382 // of 5 runs - Sep 2005).
duke@435 3383 //
duke@435 3384 // The following code actually changes the niceness of kernel-thread/LWP. It
duke@435 3385 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
duke@435 3386 // not the entire user process, and user level threads are 1:1 mapped to kernel
duke@435 3387 // threads. It has always been the case, but could change in the future. For
duke@435 3388 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
duke@435 3389 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
duke@435 3390
duke@435 3391 int os::java_to_os_priority[MaxPriority + 1] = {
duke@435 3392 19, // 0 Entry should never be used
duke@435 3393
duke@435 3394 4, // 1 MinPriority
duke@435 3395 3, // 2
duke@435 3396 2, // 3
duke@435 3397
duke@435 3398 1, // 4
duke@435 3399 0, // 5 NormPriority
duke@435 3400 -1, // 6
duke@435 3401
duke@435 3402 -2, // 7
duke@435 3403 -3, // 8
duke@435 3404 -4, // 9 NearMaxPriority
duke@435 3405
duke@435 3406 -5 // 10 MaxPriority
duke@435 3407 };
duke@435 3408
duke@435 3409 static int prio_init() {
duke@435 3410 if (ThreadPriorityPolicy == 1) {
duke@435 3411 // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
duke@435 3412 // if effective uid is not root. Perhaps, a more elegant way of doing
duke@435 3413 // this is to test CAP_SYS_NICE capability, but that will require libcap.so
duke@435 3414 if (geteuid() != 0) {
duke@435 3415 if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
duke@435 3416 warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
duke@435 3417 }
duke@435 3418 ThreadPriorityPolicy = 0;
duke@435 3419 }
duke@435 3420 }
duke@435 3421 return 0;
duke@435 3422 }
duke@435 3423
duke@435 3424 OSReturn os::set_native_priority(Thread* thread, int newpri) {
duke@435 3425 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
duke@435 3426
duke@435 3427 int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
duke@435 3428 return (ret == 0) ? OS_OK : OS_ERR;
duke@435 3429 }
duke@435 3430
duke@435 3431 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
duke@435 3432 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
duke@435 3433 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 3434 return OS_OK;
duke@435 3435 }
duke@435 3436
duke@435 3437 errno = 0;
duke@435 3438 *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
duke@435 3439 return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
duke@435 3440 }
duke@435 3441
duke@435 3442 // Hint to the underlying OS that a task switch would not be good.
duke@435 3443 // Void return because it's a hint and can fail.
duke@435 3444 void os::hint_no_preempt() {}
duke@435 3445
duke@435 3446 ////////////////////////////////////////////////////////////////////////////////
duke@435 3447 // suspend/resume support
duke@435 3448
duke@435 3449 // the low-level signal-based suspend/resume support is a remnant from the
duke@435 3450 // old VM-suspension that used to be for java-suspension, safepoints etc,
duke@435 3451 // within hotspot. Now there is a single use-case for this:
duke@435 3452 // - calling get_thread_pc() on the VMThread by the flat-profiler task
duke@435 3453 // that runs in the watcher thread.
duke@435 3454 // The remaining code is greatly simplified from the more general suspension
duke@435 3455 // code that used to be used.
duke@435 3456 //
duke@435 3457 // The protocol is quite simple:
duke@435 3458 // - suspend:
duke@435 3459 // - sends a signal to the target thread
duke@435 3460 // - polls the suspend state of the osthread using a yield loop
duke@435 3461 // - target thread signal handler (SR_handler) sets suspend state
duke@435 3462 // and blocks in sigsuspend until continued
duke@435 3463 // - resume:
duke@435 3464 // - sets target osthread state to continue
duke@435 3465 // - sends signal to end the sigsuspend loop in the SR_handler
duke@435 3466 //
duke@435 3467 // Note that the SR_lock plays no role in this suspend/resume protocol.
duke@435 3468 //
duke@435 3469
duke@435 3470 static void resume_clear_context(OSThread *osthread) {
duke@435 3471 osthread->set_ucontext(NULL);
duke@435 3472 osthread->set_siginfo(NULL);
duke@435 3473
duke@435 3474 // notify the suspend action is completed, we have now resumed
duke@435 3475 osthread->sr.clear_suspended();
duke@435 3476 }
duke@435 3477
duke@435 3478 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3479 osthread->set_ucontext(context);
duke@435 3480 osthread->set_siginfo(siginfo);
duke@435 3481 }
duke@435 3482
duke@435 3483 //
duke@435 3484 // Handler function invoked when a thread's execution is suspended or
duke@435 3485 // resumed. We have to be careful that only async-safe functions are
duke@435 3486 // called here (Note: most pthread functions are not async safe and
duke@435 3487 // should be avoided.)
duke@435 3488 //
duke@435 3489 // Note: sigwait() is a more natural fit than sigsuspend() from an
duke@435 3490 // interface point of view, but sigwait() prevents the signal hander
duke@435 3491 // from being run. libpthread would get very confused by not having
duke@435 3492 // its signal handlers run and prevents sigwait()'s use with the
duke@435 3493 // mutex granting granting signal.
duke@435 3494 //
duke@435 3495 // Currently only ever called on the VMThread
duke@435 3496 //
duke@435 3497 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3498 // Save and restore errno to avoid confusing native code with EINTR
duke@435 3499 // after sigsuspend.
duke@435 3500 int old_errno = errno;
duke@435 3501
duke@435 3502 Thread* thread = Thread::current();
duke@435 3503 OSThread* osthread = thread->osthread();
duke@435 3504 assert(thread->is_VM_thread(), "Must be VMThread");
duke@435 3505 // read current suspend action
duke@435 3506 int action = osthread->sr.suspend_action();
duke@435 3507 if (action == SR_SUSPEND) {
duke@435 3508 suspend_save_context(osthread, siginfo, context);
duke@435 3509
duke@435 3510 // Notify the suspend action is about to be completed. do_suspend()
duke@435 3511 // waits until SR_SUSPENDED is set and then returns. We will wait
duke@435 3512 // here for a resume signal and that completes the suspend-other
duke@435 3513 // action. do_suspend/do_resume is always called as a pair from
duke@435 3514 // the same thread - so there are no races
duke@435 3515
duke@435 3516 // notify the caller
duke@435 3517 osthread->sr.set_suspended();
duke@435 3518
duke@435 3519 sigset_t suspend_set; // signals for sigsuspend()
duke@435 3520
duke@435 3521 // get current set of blocked signals and unblock resume signal
duke@435 3522 pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
duke@435 3523 sigdelset(&suspend_set, SR_signum);
duke@435 3524
duke@435 3525 // wait here until we are resumed
duke@435 3526 do {
duke@435 3527 sigsuspend(&suspend_set);
duke@435 3528 // ignore all returns until we get a resume signal
duke@435 3529 } while (osthread->sr.suspend_action() != SR_CONTINUE);
duke@435 3530
duke@435 3531 resume_clear_context(osthread);
duke@435 3532
duke@435 3533 } else {
duke@435 3534 assert(action == SR_CONTINUE, "unexpected sr action");
duke@435 3535 // nothing special to do - just leave the handler
duke@435 3536 }
duke@435 3537
duke@435 3538 errno = old_errno;
duke@435 3539 }
duke@435 3540
duke@435 3541
duke@435 3542 static int SR_initialize() {
duke@435 3543 struct sigaction act;
duke@435 3544 char *s;
duke@435 3545 /* Get signal number to use for suspend/resume */
duke@435 3546 if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
duke@435 3547 int sig = ::strtol(s, 0, 10);
duke@435 3548 if (sig > 0 || sig < _NSIG) {
duke@435 3549 SR_signum = sig;
duke@435 3550 }
duke@435 3551 }
duke@435 3552
duke@435 3553 assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
duke@435 3554 "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
duke@435 3555
duke@435 3556 sigemptyset(&SR_sigset);
duke@435 3557 sigaddset(&SR_sigset, SR_signum);
duke@435 3558
duke@435 3559 /* Set up signal handler for suspend/resume */
duke@435 3560 act.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 3561 act.sa_handler = (void (*)(int)) SR_handler;
duke@435 3562
duke@435 3563 // SR_signum is blocked by default.
duke@435 3564 // 4528190 - We also need to block pthread restart signal (32 on all
duke@435 3565 // supported Linux platforms). Note that LinuxThreads need to block
duke@435 3566 // this signal for all threads to work properly. So we don't have
duke@435 3567 // to use hard-coded signal number when setting up the mask.
duke@435 3568 pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
duke@435 3569
duke@435 3570 if (sigaction(SR_signum, &act, 0) == -1) {
duke@435 3571 return -1;
duke@435 3572 }
duke@435 3573
duke@435 3574 // Save signal flag
duke@435 3575 os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
duke@435 3576 return 0;
duke@435 3577 }
duke@435 3578
duke@435 3579 static int SR_finalize() {
duke@435 3580 return 0;
duke@435 3581 }
duke@435 3582
duke@435 3583
duke@435 3584 // returns true on success and false on error - really an error is fatal
duke@435 3585 // but this seems the normal response to library errors
duke@435 3586 static bool do_suspend(OSThread* osthread) {
duke@435 3587 // mark as suspended and send signal
duke@435 3588 osthread->sr.set_suspend_action(SR_SUSPEND);
duke@435 3589 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3590 assert_status(status == 0, status, "pthread_kill");
duke@435 3591
duke@435 3592 // check status and wait until notified of suspension
duke@435 3593 if (status == 0) {
duke@435 3594 for (int i = 0; !osthread->sr.is_suspended(); i++) {
duke@435 3595 os::yield_all(i);
duke@435 3596 }
duke@435 3597 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3598 return true;
duke@435 3599 }
duke@435 3600 else {
duke@435 3601 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3602 return false;
duke@435 3603 }
duke@435 3604 }
duke@435 3605
duke@435 3606 static void do_resume(OSThread* osthread) {
duke@435 3607 assert(osthread->sr.is_suspended(), "thread should be suspended");
duke@435 3608 osthread->sr.set_suspend_action(SR_CONTINUE);
duke@435 3609
duke@435 3610 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3611 assert_status(status == 0, status, "pthread_kill");
duke@435 3612 // check status and wait unit notified of resumption
duke@435 3613 if (status == 0) {
duke@435 3614 for (int i = 0; osthread->sr.is_suspended(); i++) {
duke@435 3615 os::yield_all(i);
duke@435 3616 }
duke@435 3617 }
duke@435 3618 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3619 }
duke@435 3620
duke@435 3621 ////////////////////////////////////////////////////////////////////////////////
duke@435 3622 // interrupt support
duke@435 3623
duke@435 3624 void os::interrupt(Thread* thread) {
duke@435 3625 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3626 "possibility of dangling Thread pointer");
duke@435 3627
duke@435 3628 OSThread* osthread = thread->osthread();
duke@435 3629
duke@435 3630 if (!osthread->interrupted()) {
duke@435 3631 osthread->set_interrupted(true);
duke@435 3632 // More than one thread can get here with the same value of osthread,
duke@435 3633 // resulting in multiple notifications. We do, however, want the store
duke@435 3634 // to interrupted() to be visible to other threads before we execute unpark().
duke@435 3635 OrderAccess::fence();
duke@435 3636 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 3637 if (slp != NULL) slp->unpark() ;
duke@435 3638 }
duke@435 3639
duke@435 3640 // For JSR166. Unpark even if interrupt status already was set
duke@435 3641 if (thread->is_Java_thread())
duke@435 3642 ((JavaThread*)thread)->parker()->unpark();
duke@435 3643
duke@435 3644 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3645 if (ev != NULL) ev->unpark() ;
duke@435 3646
duke@435 3647 }
duke@435 3648
duke@435 3649 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3650 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3651 "possibility of dangling Thread pointer");
duke@435 3652
duke@435 3653 OSThread* osthread = thread->osthread();
duke@435 3654
duke@435 3655 bool interrupted = osthread->interrupted();
duke@435 3656
duke@435 3657 if (interrupted && clear_interrupted) {
duke@435 3658 osthread->set_interrupted(false);
duke@435 3659 // consider thread->_SleepEvent->reset() ... optional optimization
duke@435 3660 }
duke@435 3661
duke@435 3662 return interrupted;
duke@435 3663 }
duke@435 3664
duke@435 3665 ///////////////////////////////////////////////////////////////////////////////////
duke@435 3666 // signal handling (except suspend/resume)
duke@435 3667
duke@435 3668 // This routine may be used by user applications as a "hook" to catch signals.
duke@435 3669 // The user-defined signal handler must pass unrecognized signals to this
duke@435 3670 // routine, and if it returns true (non-zero), then the signal handler must
duke@435 3671 // return immediately. If the flag "abort_if_unrecognized" is true, then this
duke@435 3672 // routine will never retun false (zero), but instead will execute a VM panic
duke@435 3673 // routine kill the process.
duke@435 3674 //
duke@435 3675 // If this routine returns false, it is OK to call it again. This allows
duke@435 3676 // the user-defined signal handler to perform checks either before or after
duke@435 3677 // the VM performs its own checks. Naturally, the user code would be making
duke@435 3678 // a serious error if it tried to handle an exception (such as a null check
duke@435 3679 // or breakpoint) that the VM was generating for its own correct operation.
duke@435 3680 //
duke@435 3681 // This routine may recognize any of the following kinds of signals:
duke@435 3682 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
duke@435 3683 // It should be consulted by handlers for any of those signals.
duke@435 3684 //
duke@435 3685 // The caller of this routine must pass in the three arguments supplied
duke@435 3686 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
duke@435 3687 // field of the structure passed to sigaction(). This routine assumes that
duke@435 3688 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
duke@435 3689 //
duke@435 3690 // Note that the VM will print warnings if it detects conflicting signal
duke@435 3691 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
duke@435 3692 //
coleenp@2507 3693 extern "C" JNIEXPORT int
duke@435 3694 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
duke@435 3695 void* ucontext, int abort_if_unrecognized);
duke@435 3696
duke@435 3697 void signalHandler(int sig, siginfo_t* info, void* uc) {
duke@435 3698 assert(info != NULL && uc != NULL, "it must be old kernel");
duke@435 3699 JVM_handle_linux_signal(sig, info, uc, true);
duke@435 3700 }
duke@435 3701
duke@435 3702
duke@435 3703 // This boolean allows users to forward their own non-matching signals
duke@435 3704 // to JVM_handle_linux_signal, harmlessly.
duke@435 3705 bool os::Linux::signal_handlers_are_installed = false;
duke@435 3706
duke@435 3707 // For signal-chaining
duke@435 3708 struct sigaction os::Linux::sigact[MAXSIGNUM];
duke@435 3709 unsigned int os::Linux::sigs = 0;
duke@435 3710 bool os::Linux::libjsig_is_loaded = false;
duke@435 3711 typedef struct sigaction *(*get_signal_t)(int);
duke@435 3712 get_signal_t os::Linux::get_signal_action = NULL;
duke@435 3713
duke@435 3714 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
duke@435 3715 struct sigaction *actp = NULL;
duke@435 3716
duke@435 3717 if (libjsig_is_loaded) {
duke@435 3718 // Retrieve the old signal handler from libjsig
duke@435 3719 actp = (*get_signal_action)(sig);
duke@435 3720 }
duke@435 3721 if (actp == NULL) {
duke@435 3722 // Retrieve the preinstalled signal handler from jvm
duke@435 3723 actp = get_preinstalled_handler(sig);
duke@435 3724 }
duke@435 3725
duke@435 3726 return actp;
duke@435 3727 }
duke@435 3728
duke@435 3729 static bool call_chained_handler(struct sigaction *actp, int sig,
duke@435 3730 siginfo_t *siginfo, void *context) {
duke@435 3731 // Call the old signal handler
duke@435 3732 if (actp->sa_handler == SIG_DFL) {
duke@435 3733 // It's more reasonable to let jvm treat it as an unexpected exception
duke@435 3734 // instead of taking the default action.
duke@435 3735 return false;
duke@435 3736 } else if (actp->sa_handler != SIG_IGN) {
duke@435 3737 if ((actp->sa_flags & SA_NODEFER) == 0) {
duke@435 3738 // automaticlly block the signal
duke@435 3739 sigaddset(&(actp->sa_mask), sig);
duke@435 3740 }
duke@435 3741
duke@435 3742 sa_handler_t hand;
duke@435 3743 sa_sigaction_t sa;
duke@435 3744 bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
duke@435 3745 // retrieve the chained handler
duke@435 3746 if (siginfo_flag_set) {
duke@435 3747 sa = actp->sa_sigaction;
duke@435 3748 } else {
duke@435 3749 hand = actp->sa_handler;
duke@435 3750 }
duke@435 3751
duke@435 3752 if ((actp->sa_flags & SA_RESETHAND) != 0) {
duke@435 3753 actp->sa_handler = SIG_DFL;
duke@435 3754 }
duke@435 3755
duke@435 3756 // try to honor the signal mask
duke@435 3757 sigset_t oset;
duke@435 3758 pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
duke@435 3759
duke@435 3760 // call into the chained handler
duke@435 3761 if (siginfo_flag_set) {
duke@435 3762 (*sa)(sig, siginfo, context);
duke@435 3763 } else {
duke@435 3764 (*hand)(sig);
duke@435 3765 }
duke@435 3766
duke@435 3767 // restore the signal mask
duke@435 3768 pthread_sigmask(SIG_SETMASK, &oset, 0);
duke@435 3769 }
duke@435 3770 // Tell jvm's signal handler the signal is taken care of.
duke@435 3771 return true;
duke@435 3772 }
duke@435 3773
duke@435 3774 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
duke@435 3775 bool chained = false;
duke@435 3776 // signal-chaining
duke@435 3777 if (UseSignalChaining) {
duke@435 3778 struct sigaction *actp = get_chained_signal_action(sig);
duke@435 3779 if (actp != NULL) {
duke@435 3780 chained = call_chained_handler(actp, sig, siginfo, context);
duke@435 3781 }
duke@435 3782 }
duke@435 3783 return chained;
duke@435 3784 }
duke@435 3785
duke@435 3786 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
duke@435 3787 if ((( (unsigned int)1 << sig ) & sigs) != 0) {
duke@435 3788 return &sigact[sig];
duke@435 3789 }
duke@435 3790 return NULL;
duke@435 3791 }
duke@435 3792
duke@435 3793 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
duke@435 3794 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3795 sigact[sig] = oldAct;
duke@435 3796 sigs |= (unsigned int)1 << sig;
duke@435 3797 }
duke@435 3798
duke@435 3799 // for diagnostic
duke@435 3800 int os::Linux::sigflags[MAXSIGNUM];
duke@435 3801
duke@435 3802 int os::Linux::get_our_sigflags(int sig) {
duke@435 3803 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3804 return sigflags[sig];
duke@435 3805 }
duke@435 3806
duke@435 3807 void os::Linux::set_our_sigflags(int sig, int flags) {
duke@435 3808 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3809 sigflags[sig] = flags;
duke@435 3810 }
duke@435 3811
duke@435 3812 void os::Linux::set_signal_handler(int sig, bool set_installed) {
duke@435 3813 // Check for overwrite.
duke@435 3814 struct sigaction oldAct;
duke@435 3815 sigaction(sig, (struct sigaction*)NULL, &oldAct);
duke@435 3816
duke@435 3817 void* oldhand = oldAct.sa_sigaction
duke@435 3818 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3819 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3820 if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
duke@435 3821 oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
duke@435 3822 oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
duke@435 3823 if (AllowUserSignalHandlers || !set_installed) {
duke@435 3824 // Do not overwrite; user takes responsibility to forward to us.
duke@435 3825 return;
duke@435 3826 } else if (UseSignalChaining) {
duke@435 3827 // save the old handler in jvm
duke@435 3828 save_preinstalled_handler(sig, oldAct);
duke@435 3829 // libjsig also interposes the sigaction() call below and saves the
duke@435 3830 // old sigaction on it own.
duke@435 3831 } else {
jcoomes@1845 3832 fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
jcoomes@1845 3833 "%#lx for signal %d.", (long)oldhand, sig));
duke@435 3834 }
duke@435 3835 }
duke@435 3836
duke@435 3837 struct sigaction sigAct;
duke@435 3838 sigfillset(&(sigAct.sa_mask));
duke@435 3839 sigAct.sa_handler = SIG_DFL;
duke@435 3840 if (!set_installed) {
duke@435 3841 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3842 } else {
duke@435 3843 sigAct.sa_sigaction = signalHandler;
duke@435 3844 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3845 }
duke@435 3846 // Save flags, which are set by ours
duke@435 3847 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3848 sigflags[sig] = sigAct.sa_flags;
duke@435 3849
duke@435 3850 int ret = sigaction(sig, &sigAct, &oldAct);
duke@435 3851 assert(ret == 0, "check");
duke@435 3852
duke@435 3853 void* oldhand2 = oldAct.sa_sigaction
duke@435 3854 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3855 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3856 assert(oldhand2 == oldhand, "no concurrent signal handler installation");
duke@435 3857 }
duke@435 3858
duke@435 3859 // install signal handlers for signals that HotSpot needs to
duke@435 3860 // handle in order to support Java-level exception handling.
duke@435 3861
duke@435 3862 void os::Linux::install_signal_handlers() {
duke@435 3863 if (!signal_handlers_are_installed) {
duke@435 3864 signal_handlers_are_installed = true;
duke@435 3865
duke@435 3866 // signal-chaining
duke@435 3867 typedef void (*signal_setting_t)();
duke@435 3868 signal_setting_t begin_signal_setting = NULL;
duke@435 3869 signal_setting_t end_signal_setting = NULL;
duke@435 3870 begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3871 dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
duke@435 3872 if (begin_signal_setting != NULL) {
duke@435 3873 end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3874 dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
duke@435 3875 get_signal_action = CAST_TO_FN_PTR(get_signal_t,
duke@435 3876 dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
duke@435 3877 libjsig_is_loaded = true;
duke@435 3878 assert(UseSignalChaining, "should enable signal-chaining");
duke@435 3879 }
duke@435 3880 if (libjsig_is_loaded) {
duke@435 3881 // Tell libjsig jvm is setting signal handlers
duke@435 3882 (*begin_signal_setting)();
duke@435 3883 }
duke@435 3884
duke@435 3885 set_signal_handler(SIGSEGV, true);
duke@435 3886 set_signal_handler(SIGPIPE, true);
duke@435 3887 set_signal_handler(SIGBUS, true);
duke@435 3888 set_signal_handler(SIGILL, true);
duke@435 3889 set_signal_handler(SIGFPE, true);
duke@435 3890 set_signal_handler(SIGXFSZ, true);
duke@435 3891
duke@435 3892 if (libjsig_is_loaded) {
duke@435 3893 // Tell libjsig jvm finishes setting signal handlers
duke@435 3894 (*end_signal_setting)();
duke@435 3895 }
duke@435 3896
duke@435 3897 // We don't activate signal checker if libjsig is in place, we trust ourselves
kevinw@3152 3898 // and if UserSignalHandler is installed all bets are off.
kevinw@3152 3899 // Log that signal checking is off only if -verbose:jni is specified.
duke@435 3900 if (CheckJNICalls) {
duke@435 3901 if (libjsig_is_loaded) {
kevinw@3152 3902 if (PrintJNIResolving) {
kevinw@3152 3903 tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
kevinw@3152 3904 }
duke@435 3905 check_signals = false;
duke@435 3906 }
duke@435 3907 if (AllowUserSignalHandlers) {
kevinw@3152 3908 if (PrintJNIResolving) {
kevinw@3152 3909 tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
kevinw@3152 3910 }
duke@435 3911 check_signals = false;
duke@435 3912 }
duke@435 3913 }
duke@435 3914 }
duke@435 3915 }
duke@435 3916
duke@435 3917 // This is the fastest way to get thread cpu time on Linux.
duke@435 3918 // Returns cpu time (user+sys) for any thread, not only for current.
duke@435 3919 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
duke@435 3920 // It might work on 2.6.10+ with a special kernel/glibc patch.
duke@435 3921 // For reference, please, see IEEE Std 1003.1-2004:
duke@435 3922 // http://www.unix.org/single_unix_specification
duke@435 3923
duke@435 3924 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
duke@435 3925 struct timespec tp;
duke@435 3926 int rc = os::Linux::clock_gettime(clockid, &tp);
duke@435 3927 assert(rc == 0, "clock_gettime is expected to return 0 code");
duke@435 3928
duke@435 3929 return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
duke@435 3930 }
duke@435 3931
duke@435 3932 /////
duke@435 3933 // glibc on Linux platform uses non-documented flag
duke@435 3934 // to indicate, that some special sort of signal
duke@435 3935 // trampoline is used.
duke@435 3936 // We will never set this flag, and we should
duke@435 3937 // ignore this flag in our diagnostic
duke@435 3938 #ifdef SIGNIFICANT_SIGNAL_MASK
duke@435 3939 #undef SIGNIFICANT_SIGNAL_MASK
duke@435 3940 #endif
duke@435 3941 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
duke@435 3942
duke@435 3943 static const char* get_signal_handler_name(address handler,
duke@435 3944 char* buf, int buflen) {
duke@435 3945 int offset;
duke@435 3946 bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
duke@435 3947 if (found) {
duke@435 3948 // skip directory names
duke@435 3949 const char *p1, *p2;
duke@435 3950 p1 = buf;
duke@435 3951 size_t len = strlen(os::file_separator());
duke@435 3952 while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
duke@435 3953 jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
duke@435 3954 } else {
duke@435 3955 jio_snprintf(buf, buflen, PTR_FORMAT, handler);
duke@435 3956 }
duke@435 3957 return buf;
duke@435 3958 }
duke@435 3959
duke@435 3960 static void print_signal_handler(outputStream* st, int sig,
duke@435 3961 char* buf, size_t buflen) {
duke@435 3962 struct sigaction sa;
duke@435 3963
duke@435 3964 sigaction(sig, NULL, &sa);
duke@435 3965
duke@435 3966 // See comment for SIGNIFICANT_SIGNAL_MASK define
duke@435 3967 sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3968
duke@435 3969 st->print("%s: ", os::exception_name(sig, buf, buflen));
duke@435 3970
duke@435 3971 address handler = (sa.sa_flags & SA_SIGINFO)
duke@435 3972 ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
duke@435 3973 : CAST_FROM_FN_PTR(address, sa.sa_handler);
duke@435 3974
duke@435 3975 if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
duke@435 3976 st->print("SIG_DFL");
duke@435 3977 } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
duke@435 3978 st->print("SIG_IGN");
duke@435 3979 } else {
duke@435 3980 st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
duke@435 3981 }
duke@435 3982
duke@435 3983 st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
duke@435 3984
duke@435 3985 address rh = VMError::get_resetted_sighandler(sig);
duke@435 3986 // May be, handler was resetted by VMError?
duke@435 3987 if(rh != NULL) {
duke@435 3988 handler = rh;
duke@435 3989 sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
duke@435 3990 }
duke@435 3991
duke@435 3992 st->print(", sa_flags=" PTR32_FORMAT, sa.sa_flags);
duke@435 3993
duke@435 3994 // Check: is it our handler?
duke@435 3995 if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
duke@435 3996 handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
duke@435 3997 // It is our signal handler
duke@435 3998 // check for flags, reset system-used one!
duke@435 3999 if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 4000 st->print(
duke@435 4001 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
duke@435 4002 os::Linux::get_our_sigflags(sig));
duke@435 4003 }
duke@435 4004 }
duke@435 4005 st->cr();
duke@435 4006 }
duke@435 4007
duke@435 4008
duke@435 4009 #define DO_SIGNAL_CHECK(sig) \
duke@435 4010 if (!sigismember(&check_signal_done, sig)) \
duke@435 4011 os::Linux::check_signal_handler(sig)
duke@435 4012
duke@435 4013 // This method is a periodic task to check for misbehaving JNI applications
duke@435 4014 // under CheckJNI, we can add any periodic checks here
duke@435 4015
duke@435 4016 void os::run_periodic_checks() {
duke@435 4017
duke@435 4018 if (check_signals == false) return;
duke@435 4019
duke@435 4020 // SEGV and BUS if overridden could potentially prevent
duke@435 4021 // generation of hs*.log in the event of a crash, debugging
duke@435 4022 // such a case can be very challenging, so we absolutely
duke@435 4023 // check the following for a good measure:
duke@435 4024 DO_SIGNAL_CHECK(SIGSEGV);
duke@435 4025 DO_SIGNAL_CHECK(SIGILL);
duke@435 4026 DO_SIGNAL_CHECK(SIGFPE);
duke@435 4027 DO_SIGNAL_CHECK(SIGBUS);
duke@435 4028 DO_SIGNAL_CHECK(SIGPIPE);
duke@435 4029 DO_SIGNAL_CHECK(SIGXFSZ);
duke@435 4030
duke@435 4031
duke@435 4032 // ReduceSignalUsage allows the user to override these handlers
duke@435 4033 // see comments at the very top and jvm_solaris.h
duke@435 4034 if (!ReduceSignalUsage) {
duke@435 4035 DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
duke@435 4036 DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
duke@435 4037 DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
duke@435 4038 DO_SIGNAL_CHECK(BREAK_SIGNAL);
duke@435 4039 }
duke@435 4040
duke@435 4041 DO_SIGNAL_CHECK(SR_signum);
duke@435 4042 DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
duke@435 4043 }
duke@435 4044
duke@435 4045 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
duke@435 4046
duke@435 4047 static os_sigaction_t os_sigaction = NULL;
duke@435 4048
duke@435 4049 void os::Linux::check_signal_handler(int sig) {
duke@435 4050 char buf[O_BUFLEN];
duke@435 4051 address jvmHandler = NULL;
duke@435 4052
duke@435 4053
duke@435 4054 struct sigaction act;
duke@435 4055 if (os_sigaction == NULL) {
duke@435 4056 // only trust the default sigaction, in case it has been interposed
duke@435 4057 os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
duke@435 4058 if (os_sigaction == NULL) return;
duke@435 4059 }
duke@435 4060
duke@435 4061 os_sigaction(sig, (struct sigaction*)NULL, &act);
duke@435 4062
duke@435 4063
duke@435 4064 act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 4065
duke@435 4066 address thisHandler = (act.sa_flags & SA_SIGINFO)
duke@435 4067 ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
duke@435 4068 : CAST_FROM_FN_PTR(address, act.sa_handler) ;
duke@435 4069
duke@435 4070
duke@435 4071 switch(sig) {
duke@435 4072 case SIGSEGV:
duke@435 4073 case SIGBUS:
duke@435 4074 case SIGFPE:
duke@435 4075 case SIGPIPE:
duke@435 4076 case SIGILL:
duke@435 4077 case SIGXFSZ:
duke@435 4078 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
duke@435 4079 break;
duke@435 4080
duke@435 4081 case SHUTDOWN1_SIGNAL:
duke@435 4082 case SHUTDOWN2_SIGNAL:
duke@435 4083 case SHUTDOWN3_SIGNAL:
duke@435 4084 case BREAK_SIGNAL:
duke@435 4085 jvmHandler = (address)user_handler();
duke@435 4086 break;
duke@435 4087
duke@435 4088 case INTERRUPT_SIGNAL:
duke@435 4089 jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
duke@435 4090 break;
duke@435 4091
duke@435 4092 default:
duke@435 4093 if (sig == SR_signum) {
duke@435 4094 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
duke@435 4095 } else {
duke@435 4096 return;
duke@435 4097 }
duke@435 4098 break;
duke@435 4099 }
duke@435 4100
duke@435 4101 if (thisHandler != jvmHandler) {
duke@435 4102 tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
duke@435 4103 tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
duke@435 4104 tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
duke@435 4105 // No need to check this sig any longer
duke@435 4106 sigaddset(&check_signal_done, sig);
duke@435 4107 } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 4108 tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
duke@435 4109 tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
duke@435 4110 tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
duke@435 4111 // No need to check this sig any longer
duke@435 4112 sigaddset(&check_signal_done, sig);
duke@435 4113 }
duke@435 4114
duke@435 4115 // Dump all the signal
duke@435 4116 if (sigismember(&check_signal_done, sig)) {
duke@435 4117 print_signal_handlers(tty, buf, O_BUFLEN);
duke@435 4118 }
duke@435 4119 }
duke@435 4120
duke@435 4121 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
duke@435 4122
duke@435 4123 extern bool signal_name(int signo, char* buf, size_t len);
duke@435 4124
duke@435 4125 const char* os::exception_name(int exception_code, char* buf, size_t size) {
duke@435 4126 if (0 < exception_code && exception_code <= SIGRTMAX) {
duke@435 4127 // signal
duke@435 4128 if (!signal_name(exception_code, buf, size)) {
duke@435 4129 jio_snprintf(buf, size, "SIG%d", exception_code);
duke@435 4130 }
duke@435 4131 return buf;
duke@435 4132 } else {
duke@435 4133 return NULL;
duke@435 4134 }
duke@435 4135 }
duke@435 4136
duke@435 4137 // this is called _before_ the most of global arguments have been parsed
duke@435 4138 void os::init(void) {
duke@435 4139 char dummy; /* used to get a guess on initial stack address */
duke@435 4140 // first_hrtime = gethrtime();
duke@435 4141
duke@435 4142 // With LinuxThreads the JavaMain thread pid (primordial thread)
duke@435 4143 // is different than the pid of the java launcher thread.
duke@435 4144 // So, on Linux, the launcher thread pid is passed to the VM
duke@435 4145 // via the sun.java.launcher.pid property.
duke@435 4146 // Use this property instead of getpid() if it was correctly passed.
duke@435 4147 // See bug 6351349.
duke@435 4148 pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
duke@435 4149
duke@435 4150 _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
duke@435 4151
duke@435 4152 clock_tics_per_sec = sysconf(_SC_CLK_TCK);
duke@435 4153
duke@435 4154 init_random(1234567);
duke@435 4155
duke@435 4156 ThreadCritical::initialize();
duke@435 4157
duke@435 4158 Linux::set_page_size(sysconf(_SC_PAGESIZE));
duke@435 4159 if (Linux::page_size() == -1) {
jcoomes@1845 4160 fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
jcoomes@1845 4161 strerror(errno)));
duke@435 4162 }
duke@435 4163 init_page_sizes((size_t) Linux::page_size());
duke@435 4164
duke@435 4165 Linux::initialize_system_info();
duke@435 4166
duke@435 4167 // main_thread points to the aboriginal thread
duke@435 4168 Linux::_main_thread = pthread_self();
duke@435 4169
duke@435 4170 Linux::clock_init();
duke@435 4171 initial_time_count = os::elapsed_counter();
kamg@677 4172 pthread_mutex_init(&dl_mutex, NULL);
duke@435 4173 }
duke@435 4174
duke@435 4175 // To install functions for atexit system call
duke@435 4176 extern "C" {
duke@435 4177 static void perfMemory_exit_helper() {
duke@435 4178 perfMemory_exit();
duke@435 4179 }
duke@435 4180 }
duke@435 4181
duke@435 4182 // this is called _after_ the global arguments have been parsed
duke@435 4183 jint os::init_2(void)
duke@435 4184 {
duke@435 4185 Linux::fast_thread_clock_init();
duke@435 4186
duke@435 4187 // Allocate a single page and mark it as readable for safepoint polling
duke@435 4188 address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 4189 guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
duke@435 4190
duke@435 4191 os::set_polling_page( polling_page );
duke@435 4192
duke@435 4193 #ifndef PRODUCT
duke@435 4194 if(Verbose && PrintMiscellaneous)
duke@435 4195 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 4196 #endif
duke@435 4197
duke@435 4198 if (!UseMembar) {
duke@435 4199 address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 4200 guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
duke@435 4201 os::set_memory_serialize_page( mem_serialize_page );
duke@435 4202
duke@435 4203 #ifndef PRODUCT
duke@435 4204 if(Verbose && PrintMiscellaneous)
duke@435 4205 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 4206 #endif
duke@435 4207 }
duke@435 4208
iveresov@2850 4209 os::large_page_init();
duke@435 4210
duke@435 4211 // initialize suspend/resume support - must do this before signal_sets_init()
duke@435 4212 if (SR_initialize() != 0) {
duke@435 4213 perror("SR_initialize failed");
duke@435 4214 return JNI_ERR;
duke@435 4215 }
duke@435 4216
duke@435 4217 Linux::signal_sets_init();
duke@435 4218 Linux::install_signal_handlers();
duke@435 4219
coleenp@2222 4220 // Check minimum allowable stack size for thread creation and to initialize
coleenp@2222 4221 // the java system classes, including StackOverflowError - depends on page
coleenp@2222 4222 // size. Add a page for compiler2 recursion in main thread.
coleenp@2222 4223 // Add in 2*BytesPerWord times page size to account for VM stack during
coleenp@2222 4224 // class initialization depending on 32 or 64 bit VM.
coleenp@2222 4225 os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
coleenp@2222 4226 (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
coleenp@2222 4227 2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
coleenp@2222 4228
duke@435 4229 size_t threadStackSizeInBytes = ThreadStackSize * K;
duke@435 4230 if (threadStackSizeInBytes != 0 &&
coleenp@2222 4231 threadStackSizeInBytes < os::Linux::min_stack_allowed) {
duke@435 4232 tty->print_cr("\nThe stack size specified is too small, "
duke@435 4233 "Specify at least %dk",
coleenp@2222 4234 os::Linux::min_stack_allowed/ K);
duke@435 4235 return JNI_ERR;
duke@435 4236 }
duke@435 4237
duke@435 4238 // Make the stack size a multiple of the page size so that
duke@435 4239 // the yellow/red zones can be guarded.
duke@435 4240 JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
duke@435 4241 vm_page_size()));
duke@435 4242
duke@435 4243 Linux::capture_initial_stack(JavaThread::stack_size_at_create());
duke@435 4244
duke@435 4245 Linux::libpthread_init();
duke@435 4246 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 4247 tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
duke@435 4248 Linux::glibc_version(), Linux::libpthread_version(),
duke@435 4249 Linux::is_floating_stack() ? "floating stack" : "fixed stack");
duke@435 4250 }
duke@435 4251
iveresov@576 4252 if (UseNUMA) {
iveresov@897 4253 if (!Linux::libnuma_init()) {
iveresov@897 4254 UseNUMA = false;
iveresov@897 4255 } else {
iveresov@897 4256 if ((Linux::numa_max_node() < 1)) {
iveresov@897 4257 // There's only one node(they start from 0), disable NUMA.
iveresov@897 4258 UseNUMA = false;
iveresov@897 4259 }
iveresov@897 4260 }
iveresov@2824 4261 // With SHM large pages we cannot uncommit a page, so there's not way
iveresov@2824 4262 // we can make the adaptive lgrp chunk resizing work. If the user specified
iveresov@2824 4263 // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
iveresov@2824 4264 // disable adaptive resizing.
iveresov@2824 4265 if (UseNUMA && UseLargePages && UseSHM) {
iveresov@2824 4266 if (!FLAG_IS_DEFAULT(UseNUMA)) {
iveresov@2824 4267 if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
iveresov@2824 4268 UseLargePages = false;
iveresov@2824 4269 } else {
iveresov@2824 4270 warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
iveresov@2824 4271 UseAdaptiveSizePolicy = false;
iveresov@2824 4272 UseAdaptiveNUMAChunkSizing = false;
iveresov@2824 4273 }
iveresov@2824 4274 } else {
iveresov@2824 4275 UseNUMA = false;
iveresov@2824 4276 }
iveresov@2824 4277 }
iveresov@897 4278 if (!UseNUMA && ForceNUMA) {
iveresov@897 4279 UseNUMA = true;
iveresov@897 4280 }
iveresov@576 4281 }
iveresov@576 4282
duke@435 4283 if (MaxFDLimit) {
duke@435 4284 // set the number of file descriptors to max. print out error
duke@435 4285 // if getrlimit/setrlimit fails but continue regardless.
duke@435 4286 struct rlimit nbr_files;
duke@435 4287 int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 4288 if (status != 0) {
duke@435 4289 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 4290 perror("os::init_2 getrlimit failed");
duke@435 4291 } else {
duke@435 4292 nbr_files.rlim_cur = nbr_files.rlim_max;
duke@435 4293 status = setrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 4294 if (status != 0) {
duke@435 4295 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 4296 perror("os::init_2 setrlimit failed");
duke@435 4297 }
duke@435 4298 }
duke@435 4299 }
duke@435 4300
duke@435 4301 // Initialize lock used to serialize thread creation (see os::create_thread)
duke@435 4302 Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
duke@435 4303
duke@435 4304 // at-exit methods are called in the reverse order of their registration.
duke@435 4305 // atexit functions are called on return from main or as a result of a
duke@435 4306 // call to exit(3C). There can be only 32 of these functions registered
duke@435 4307 // and atexit() does not set errno.
duke@435 4308
duke@435 4309 if (PerfAllowAtExitRegistration) {
duke@435 4310 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 4311 // atexit functions can be delayed until process exit time, which
duke@435 4312 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 4313 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 4314
duke@435 4315 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 4316 // the future if the appropriate cleanup code can be added to the
duke@435 4317 // VM_Exit VMOperation's doit method.
duke@435 4318 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 4319 warning("os::init2 atexit(perfMemory_exit_helper) failed");
duke@435 4320 }
duke@435 4321 }
duke@435 4322
duke@435 4323 // initialize thread priority policy
duke@435 4324 prio_init();
duke@435 4325
duke@435 4326 return JNI_OK;
duke@435 4327 }
duke@435 4328
bobv@2036 4329 // this is called at the end of vm_initialization
jcoomes@2999 4330 void os::init_3(void)
jcoomes@2999 4331 {
jcoomes@2999 4332 #ifdef JAVASE_EMBEDDED
jcoomes@2999 4333 // Start the MemNotifyThread
jcoomes@2999 4334 if (LowMemoryProtection) {
jcoomes@2999 4335 MemNotifyThread::start();
jcoomes@2999 4336 }
jcoomes@2999 4337 return;
jcoomes@2999 4338 #endif
jcoomes@2999 4339 }
bobv@2036 4340
duke@435 4341 // Mark the polling page as unreadable
duke@435 4342 void os::make_polling_page_unreadable(void) {
duke@435 4343 if( !guard_memory((char*)_polling_page, Linux::page_size()) )
duke@435 4344 fatal("Could not disable polling page");
duke@435 4345 };
duke@435 4346
duke@435 4347 // Mark the polling page as readable
duke@435 4348 void os::make_polling_page_readable(void) {
coleenp@672 4349 if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
duke@435 4350 fatal("Could not enable polling page");
coleenp@672 4351 }
duke@435 4352 };
duke@435 4353
duke@435 4354 int os::active_processor_count() {
duke@435 4355 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4356 // so just return the number of online processors.
duke@435 4357 int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
duke@435 4358 assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
duke@435 4359 return online_cpus;
duke@435 4360 }
duke@435 4361
duke@435 4362 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 4363 // Not yet implemented.
duke@435 4364 return false;
duke@435 4365 }
duke@435 4366
duke@435 4367 bool os::bind_to_processor(uint processor_id) {
duke@435 4368 // Not yet implemented.
duke@435 4369 return false;
duke@435 4370 }
duke@435 4371
duke@435 4372 ///
duke@435 4373
duke@435 4374 // Suspends the target using the signal mechanism and then grabs the PC before
duke@435 4375 // resuming the target. Used by the flat-profiler only
duke@435 4376 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 4377 // Make sure that it is called by the watcher for the VMThread
duke@435 4378 assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
duke@435 4379 assert(thread->is_VM_thread(), "Can only be called for VMThread");
duke@435 4380
duke@435 4381 ExtendedPC epc;
duke@435 4382
duke@435 4383 OSThread* osthread = thread->osthread();
duke@435 4384 if (do_suspend(osthread)) {
duke@435 4385 if (osthread->ucontext() != NULL) {
duke@435 4386 epc = os::Linux::ucontext_get_pc(osthread->ucontext());
duke@435 4387 } else {
duke@435 4388 // NULL context is unexpected, double-check this is the VMThread
duke@435 4389 guarantee(thread->is_VM_thread(), "can only be called for VMThread");
duke@435 4390 }
duke@435 4391 do_resume(osthread);
duke@435 4392 }
duke@435 4393 // failure means pthread_kill failed for some reason - arguably this is
duke@435 4394 // a fatal problem, but such problems are ignored elsewhere
duke@435 4395
duke@435 4396 return epc;
duke@435 4397 }
duke@435 4398
duke@435 4399 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
duke@435 4400 {
duke@435 4401 if (is_NPTL()) {
duke@435 4402 return pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4403 } else {
duke@435 4404 #ifndef IA64
duke@435 4405 // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
duke@435 4406 // word back to default 64bit precision if condvar is signaled. Java
duke@435 4407 // wants 53bit precision. Save and restore current value.
duke@435 4408 int fpu = get_fpu_control_word();
duke@435 4409 #endif // IA64
duke@435 4410 int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4411 #ifndef IA64
duke@435 4412 set_fpu_control_word(fpu);
duke@435 4413 #endif // IA64
duke@435 4414 return status;
duke@435 4415 }
duke@435 4416 }
duke@435 4417
duke@435 4418 ////////////////////////////////////////////////////////////////////////////////
duke@435 4419 // debug support
duke@435 4420
duke@435 4421 static address same_page(address x, address y) {
duke@435 4422 int page_bits = -os::vm_page_size();
duke@435 4423 if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
duke@435 4424 return x;
duke@435 4425 else if (x > y)
duke@435 4426 return (address)(intptr_t(y) | ~page_bits) + 1;
duke@435 4427 else
duke@435 4428 return (address)(intptr_t(y) & page_bits);
duke@435 4429 }
duke@435 4430
bobv@2036 4431 bool os::find(address addr, outputStream* st) {
duke@435 4432 Dl_info dlinfo;
duke@435 4433 memset(&dlinfo, 0, sizeof(dlinfo));
duke@435 4434 if (dladdr(addr, &dlinfo)) {
bobv@2036 4435 st->print(PTR_FORMAT ": ", addr);
duke@435 4436 if (dlinfo.dli_sname != NULL) {
bobv@2036 4437 st->print("%s+%#x", dlinfo.dli_sname,
duke@435 4438 addr - (intptr_t)dlinfo.dli_saddr);
duke@435 4439 } else if (dlinfo.dli_fname) {
bobv@2036 4440 st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
duke@435 4441 } else {
bobv@2036 4442 st->print("<absolute address>");
duke@435 4443 }
duke@435 4444 if (dlinfo.dli_fname) {
bobv@2036 4445 st->print(" in %s", dlinfo.dli_fname);
duke@435 4446 }
duke@435 4447 if (dlinfo.dli_fbase) {
bobv@2036 4448 st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
duke@435 4449 }
bobv@2036 4450 st->cr();
duke@435 4451
duke@435 4452 if (Verbose) {
duke@435 4453 // decode some bytes around the PC
duke@435 4454 address begin = same_page(addr-40, addr);
duke@435 4455 address end = same_page(addr+40, addr);
duke@435 4456 address lowest = (address) dlinfo.dli_sname;
duke@435 4457 if (!lowest) lowest = (address) dlinfo.dli_fbase;
duke@435 4458 if (begin < lowest) begin = lowest;
duke@435 4459 Dl_info dlinfo2;
duke@435 4460 if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
duke@435 4461 && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
duke@435 4462 end = (address) dlinfo2.dli_saddr;
bobv@2036 4463 Disassembler::decode(begin, end, st);
duke@435 4464 }
duke@435 4465 return true;
duke@435 4466 }
duke@435 4467 return false;
duke@435 4468 }
duke@435 4469
duke@435 4470 ////////////////////////////////////////////////////////////////////////////////
duke@435 4471 // misc
duke@435 4472
duke@435 4473 // This does not do anything on Linux. This is basically a hook for being
duke@435 4474 // able to use structured exception handling (thread-local exception filters)
duke@435 4475 // on, e.g., Win32.
duke@435 4476 void
duke@435 4477 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
duke@435 4478 JavaCallArguments* args, Thread* thread) {
duke@435 4479 f(value, method, args, thread);
duke@435 4480 }
duke@435 4481
duke@435 4482 void os::print_statistics() {
duke@435 4483 }
duke@435 4484
duke@435 4485 int os::message_box(const char* title, const char* message) {
duke@435 4486 int i;
duke@435 4487 fdStream err(defaultStream::error_fd());
duke@435 4488 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4489 err.cr();
duke@435 4490 err.print_raw_cr(title);
duke@435 4491 for (i = 0; i < 78; i++) err.print_raw("-");
duke@435 4492 err.cr();
duke@435 4493 err.print_raw_cr(message);
duke@435 4494 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4495 err.cr();
duke@435 4496
duke@435 4497 char buf[16];
duke@435 4498 // Prevent process from exiting upon "read error" without consuming all CPU
duke@435 4499 while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
duke@435 4500
duke@435 4501 return buf[0] == 'y' || buf[0] == 'Y';
duke@435 4502 }
duke@435 4503
duke@435 4504 int os::stat(const char *path, struct stat *sbuf) {
duke@435 4505 char pathbuf[MAX_PATH];
duke@435 4506 if (strlen(path) > MAX_PATH - 1) {
duke@435 4507 errno = ENAMETOOLONG;
duke@435 4508 return -1;
duke@435 4509 }
ikrylov@2322 4510 os::native_path(strcpy(pathbuf, path));
duke@435 4511 return ::stat(pathbuf, sbuf);
duke@435 4512 }
duke@435 4513
duke@435 4514 bool os::check_heap(bool force) {
duke@435 4515 return true;
duke@435 4516 }
duke@435 4517
duke@435 4518 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
duke@435 4519 return ::vsnprintf(buf, count, format, args);
duke@435 4520 }
duke@435 4521
duke@435 4522 // Is a (classpath) directory empty?
duke@435 4523 bool os::dir_is_empty(const char* path) {
duke@435 4524 DIR *dir = NULL;
duke@435 4525 struct dirent *ptr;
duke@435 4526
duke@435 4527 dir = opendir(path);
duke@435 4528 if (dir == NULL) return true;
duke@435 4529
duke@435 4530 /* Scan the directory */
duke@435 4531 bool result = true;
duke@435 4532 char buf[sizeof(struct dirent) + MAX_PATH];
duke@435 4533 while (result && (ptr = ::readdir(dir)) != NULL) {
duke@435 4534 if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
duke@435 4535 result = false;
duke@435 4536 }
duke@435 4537 }
duke@435 4538 closedir(dir);
duke@435 4539 return result;
duke@435 4540 }
duke@435 4541
ikrylov@2322 4542 // This code originates from JDK's sysOpen and open64_w
ikrylov@2322 4543 // from src/solaris/hpi/src/system_md.c
ikrylov@2322 4544
ikrylov@2322 4545 #ifndef O_DELETE
ikrylov@2322 4546 #define O_DELETE 0x10000
ikrylov@2322 4547 #endif
ikrylov@2322 4548
ikrylov@2322 4549 // Open a file. Unlink the file immediately after open returns
ikrylov@2322 4550 // if the specified oflag has the O_DELETE flag set.
ikrylov@2322 4551 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
ikrylov@2322 4552
ikrylov@2322 4553 int os::open(const char *path, int oflag, int mode) {
ikrylov@2322 4554
ikrylov@2322 4555 if (strlen(path) > MAX_PATH - 1) {
ikrylov@2322 4556 errno = ENAMETOOLONG;
ikrylov@2322 4557 return -1;
ikrylov@2322 4558 }
ikrylov@2322 4559 int fd;
ikrylov@2322 4560 int o_delete = (oflag & O_DELETE);
ikrylov@2322 4561 oflag = oflag & ~O_DELETE;
ikrylov@2322 4562
ikrylov@2322 4563 fd = ::open64(path, oflag, mode);
ikrylov@2322 4564 if (fd == -1) return -1;
ikrylov@2322 4565
ikrylov@2322 4566 //If the open succeeded, the file might still be a directory
ikrylov@2322 4567 {
ikrylov@2322 4568 struct stat64 buf64;
ikrylov@2322 4569 int ret = ::fstat64(fd, &buf64);
ikrylov@2322 4570 int st_mode = buf64.st_mode;
ikrylov@2322 4571
ikrylov@2322 4572 if (ret != -1) {
ikrylov@2322 4573 if ((st_mode & S_IFMT) == S_IFDIR) {
ikrylov@2322 4574 errno = EISDIR;
ikrylov@2322 4575 ::close(fd);
ikrylov@2322 4576 return -1;
ikrylov@2322 4577 }
ikrylov@2322 4578 } else {
ikrylov@2322 4579 ::close(fd);
ikrylov@2322 4580 return -1;
ikrylov@2322 4581 }
ikrylov@2322 4582 }
ikrylov@2322 4583
ikrylov@2322 4584 /*
ikrylov@2322 4585 * All file descriptors that are opened in the JVM and not
ikrylov@2322 4586 * specifically destined for a subprocess should have the
ikrylov@2322 4587 * close-on-exec flag set. If we don't set it, then careless 3rd
ikrylov@2322 4588 * party native code might fork and exec without closing all
ikrylov@2322 4589 * appropriate file descriptors (e.g. as we do in closeDescriptors in
ikrylov@2322 4590 * UNIXProcess.c), and this in turn might:
ikrylov@2322 4591 *
ikrylov@2322 4592 * - cause end-of-file to fail to be detected on some file
ikrylov@2322 4593 * descriptors, resulting in mysterious hangs, or
ikrylov@2322 4594 *
ikrylov@2322 4595 * - might cause an fopen in the subprocess to fail on a system
ikrylov@2322 4596 * suffering from bug 1085341.
ikrylov@2322 4597 *
ikrylov@2322 4598 * (Yes, the default setting of the close-on-exec flag is a Unix
ikrylov@2322 4599 * design flaw)
ikrylov@2322 4600 *
ikrylov@2322 4601 * See:
ikrylov@2322 4602 * 1085341: 32-bit stdio routines should support file descriptors >255
ikrylov@2322 4603 * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
ikrylov@2322 4604 * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
ikrylov@2322 4605 */
ikrylov@2322 4606 #ifdef FD_CLOEXEC
ikrylov@2322 4607 {
ikrylov@2322 4608 int flags = ::fcntl(fd, F_GETFD);
ikrylov@2322 4609 if (flags != -1)
ikrylov@2322 4610 ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
ikrylov@2322 4611 }
ikrylov@2322 4612 #endif
ikrylov@2322 4613
ikrylov@2322 4614 if (o_delete != 0) {
ikrylov@2322 4615 ::unlink(path);
ikrylov@2322 4616 }
ikrylov@2322 4617 return fd;
ikrylov@2322 4618 }
ikrylov@2322 4619
ikrylov@2322 4620
duke@435 4621 // create binary file, rewriting existing file if required
duke@435 4622 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 4623 int oflags = O_WRONLY | O_CREAT;
duke@435 4624 if (!rewrite_existing) {
duke@435 4625 oflags |= O_EXCL;
duke@435 4626 }
duke@435 4627 return ::open64(path, oflags, S_IREAD | S_IWRITE);
duke@435 4628 }
duke@435 4629
duke@435 4630 // return current position of file pointer
duke@435 4631 jlong os::current_file_offset(int fd) {
duke@435 4632 return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
duke@435 4633 }
duke@435 4634
duke@435 4635 // move file pointer to the specified offset
duke@435 4636 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 4637 return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
duke@435 4638 }
duke@435 4639
ikrylov@2322 4640 // This code originates from JDK's sysAvailable
ikrylov@2322 4641 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
ikrylov@2322 4642
ikrylov@2322 4643 int os::available(int fd, jlong *bytes) {
ikrylov@2322 4644 jlong cur, end;
ikrylov@2322 4645 int mode;
ikrylov@2322 4646 struct stat64 buf64;
ikrylov@2322 4647
ikrylov@2322 4648 if (::fstat64(fd, &buf64) >= 0) {
ikrylov@2322 4649 mode = buf64.st_mode;
ikrylov@2322 4650 if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
ikrylov@2322 4651 /*
ikrylov@2322 4652 * XXX: is the following call interruptible? If so, this might
ikrylov@2322 4653 * need to go through the INTERRUPT_IO() wrapper as for other
ikrylov@2322 4654 * blocking, interruptible calls in this file.
ikrylov@2322 4655 */
ikrylov@2322 4656 int n;
ikrylov@2322 4657 if (::ioctl(fd, FIONREAD, &n) >= 0) {
ikrylov@2322 4658 *bytes = n;
ikrylov@2322 4659 return 1;
ikrylov@2322 4660 }
ikrylov@2322 4661 }
ikrylov@2322 4662 }
ikrylov@2322 4663 if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
ikrylov@2322 4664 return 0;
ikrylov@2322 4665 } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
ikrylov@2322 4666 return 0;
ikrylov@2322 4667 } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
ikrylov@2322 4668 return 0;
ikrylov@2322 4669 }
ikrylov@2322 4670 *bytes = end - cur;
ikrylov@2322 4671 return 1;
ikrylov@2322 4672 }
ikrylov@2322 4673
dholmes@2375 4674 int os::socket_available(int fd, jint *pbytes) {
dholmes@2375 4675 // Linux doc says EINTR not returned, unlike Solaris
dholmes@2375 4676 int ret = ::ioctl(fd, FIONREAD, pbytes);
dholmes@2375 4677
dholmes@2375 4678 //%% note ioctl can return 0 when successful, JVM_SocketAvailable
dholmes@2375 4679 // is expected to return 0 on failure and 1 on success to the jdk.
dholmes@2375 4680 return (ret < 0) ? 0 : 1;
dholmes@2375 4681 }
dholmes@2375 4682
duke@435 4683 // Map a block of memory.
duke@435 4684 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4685 char *addr, size_t bytes, bool read_only,
duke@435 4686 bool allow_exec) {
duke@435 4687 int prot;
duke@435 4688 int flags;
duke@435 4689
duke@435 4690 if (read_only) {
duke@435 4691 prot = PROT_READ;
duke@435 4692 flags = MAP_SHARED;
duke@435 4693 } else {
duke@435 4694 prot = PROT_READ | PROT_WRITE;
duke@435 4695 flags = MAP_PRIVATE;
duke@435 4696 }
duke@435 4697
duke@435 4698 if (allow_exec) {
duke@435 4699 prot |= PROT_EXEC;
duke@435 4700 }
duke@435 4701
duke@435 4702 if (addr != NULL) {
duke@435 4703 flags |= MAP_FIXED;
duke@435 4704 }
duke@435 4705
duke@435 4706 char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
duke@435 4707 fd, file_offset);
duke@435 4708 if (mapped_address == MAP_FAILED) {
duke@435 4709 return NULL;
duke@435 4710 }
duke@435 4711 return mapped_address;
duke@435 4712 }
duke@435 4713
duke@435 4714
duke@435 4715 // Remap a block of memory.
duke@435 4716 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4717 char *addr, size_t bytes, bool read_only,
duke@435 4718 bool allow_exec) {
duke@435 4719 // same as map_memory() on this OS
duke@435 4720 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 4721 allow_exec);
duke@435 4722 }
duke@435 4723
duke@435 4724
duke@435 4725 // Unmap a block of memory.
duke@435 4726 bool os::unmap_memory(char* addr, size_t bytes) {
duke@435 4727 return munmap(addr, bytes) == 0;
duke@435 4728 }
duke@435 4729
duke@435 4730 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
duke@435 4731
duke@435 4732 static clockid_t thread_cpu_clockid(Thread* thread) {
duke@435 4733 pthread_t tid = thread->osthread()->pthread_id();
duke@435 4734 clockid_t clockid;
duke@435 4735
duke@435 4736 // Get thread clockid
duke@435 4737 int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
duke@435 4738 assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
duke@435 4739 return clockid;
duke@435 4740 }
duke@435 4741
duke@435 4742 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 4743 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 4744 // of a thread.
duke@435 4745 //
duke@435 4746 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 4747 // the fast estimate available on the platform.
duke@435 4748
duke@435 4749 jlong os::current_thread_cpu_time() {
duke@435 4750 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4751 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4752 } else {
duke@435 4753 // return user + sys since the cost is the same
duke@435 4754 return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
duke@435 4755 }
duke@435 4756 }
duke@435 4757
duke@435 4758 jlong os::thread_cpu_time(Thread* thread) {
duke@435 4759 // consistent with what current_thread_cpu_time() returns
duke@435 4760 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4761 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4762 } else {
duke@435 4763 return slow_thread_cpu_time(thread, true /* user + sys */);
duke@435 4764 }
duke@435 4765 }
duke@435 4766
duke@435 4767 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 4768 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4769 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4770 } else {
duke@435 4771 return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 4772 }
duke@435 4773 }
duke@435 4774
duke@435 4775 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4776 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4777 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4778 } else {
duke@435 4779 return slow_thread_cpu_time(thread, user_sys_cpu_time);
duke@435 4780 }
duke@435 4781 }
duke@435 4782
duke@435 4783 //
duke@435 4784 // -1 on error.
duke@435 4785 //
duke@435 4786
duke@435 4787 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4788 static bool proc_pid_cpu_avail = true;
duke@435 4789 static bool proc_task_unchecked = true;
duke@435 4790 static const char *proc_stat_path = "/proc/%d/stat";
duke@435 4791 pid_t tid = thread->osthread()->thread_id();
duke@435 4792 int i;
duke@435 4793 char *s;
duke@435 4794 char stat[2048];
duke@435 4795 int statlen;
duke@435 4796 char proc_name[64];
duke@435 4797 int count;
duke@435 4798 long sys_time, user_time;
duke@435 4799 char string[64];
bobv@2036 4800 char cdummy;
duke@435 4801 int idummy;
duke@435 4802 long ldummy;
duke@435 4803 FILE *fp;
duke@435 4804
duke@435 4805 // We first try accessing /proc/<pid>/cpu since this is faster to
duke@435 4806 // process. If this file is not present (linux kernels 2.5 and above)
duke@435 4807 // then we open /proc/<pid>/stat.
duke@435 4808 if ( proc_pid_cpu_avail ) {
duke@435 4809 sprintf(proc_name, "/proc/%d/cpu", tid);
duke@435 4810 fp = fopen(proc_name, "r");
duke@435 4811 if ( fp != NULL ) {
duke@435 4812 count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
duke@435 4813 fclose(fp);
duke@435 4814 if ( count != 3 ) return -1;
duke@435 4815
duke@435 4816 if (user_sys_cpu_time) {
duke@435 4817 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4818 } else {
duke@435 4819 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4820 }
duke@435 4821 }
duke@435 4822 else proc_pid_cpu_avail = false;
duke@435 4823 }
duke@435 4824
duke@435 4825 // The /proc/<tid>/stat aggregates per-process usage on
duke@435 4826 // new Linux kernels 2.6+ where NPTL is supported.
duke@435 4827 // The /proc/self/task/<tid>/stat still has the per-thread usage.
duke@435 4828 // See bug 6328462.
duke@435 4829 // There can be no directory /proc/self/task on kernels 2.4 with NPTL
duke@435 4830 // and possibly in some other cases, so we check its availability.
duke@435 4831 if (proc_task_unchecked && os::Linux::is_NPTL()) {
duke@435 4832 // This is executed only once
duke@435 4833 proc_task_unchecked = false;
duke@435 4834 fp = fopen("/proc/self/task", "r");
duke@435 4835 if (fp != NULL) {
duke@435 4836 proc_stat_path = "/proc/self/task/%d/stat";
duke@435 4837 fclose(fp);
duke@435 4838 }
duke@435 4839 }
duke@435 4840
duke@435 4841 sprintf(proc_name, proc_stat_path, tid);
duke@435 4842 fp = fopen(proc_name, "r");
duke@435 4843 if ( fp == NULL ) return -1;
duke@435 4844 statlen = fread(stat, 1, 2047, fp);
duke@435 4845 stat[statlen] = '\0';
duke@435 4846 fclose(fp);
duke@435 4847
duke@435 4848 // Skip pid and the command string. Note that we could be dealing with
duke@435 4849 // weird command names, e.g. user could decide to rename java launcher
duke@435 4850 // to "java 1.4.2 :)", then the stat file would look like
duke@435 4851 // 1234 (java 1.4.2 :)) R ... ...
duke@435 4852 // We don't really need to know the command string, just find the last
duke@435 4853 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 4854 s = strrchr(stat, ')');
duke@435 4855 i = 0;
duke@435 4856 if (s == NULL ) return -1;
duke@435 4857
duke@435 4858 // Skip blank chars
duke@435 4859 do s++; while (isspace(*s));
duke@435 4860
bobv@2036 4861 count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
bobv@2036 4862 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
duke@435 4863 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
duke@435 4864 &user_time, &sys_time);
bobv@2036 4865 if ( count != 13 ) return -1;
duke@435 4866 if (user_sys_cpu_time) {
duke@435 4867 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4868 } else {
duke@435 4869 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4870 }
duke@435 4871 }
duke@435 4872
duke@435 4873 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4874 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4875 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4876 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4877 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4878 }
duke@435 4879
duke@435 4880 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4881 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4882 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4883 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4884 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4885 }
duke@435 4886
duke@435 4887 bool os::is_thread_cpu_time_supported() {
duke@435 4888 return true;
duke@435 4889 }
duke@435 4890
duke@435 4891 // System loadavg support. Returns -1 if load average cannot be obtained.
duke@435 4892 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4893 // so just return the system wide load average.
duke@435 4894 int os::loadavg(double loadavg[], int nelem) {
duke@435 4895 return ::getloadavg(loadavg, nelem);
duke@435 4896 }
duke@435 4897
duke@435 4898 void os::pause() {
duke@435 4899 char filename[MAX_PATH];
duke@435 4900 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 4901 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 4902 } else {
duke@435 4903 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 4904 }
duke@435 4905
duke@435 4906 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 4907 if (fd != -1) {
duke@435 4908 struct stat buf;
ikrylov@2322 4909 ::close(fd);
duke@435 4910 while (::stat(filename, &buf) == 0) {
duke@435 4911 (void)::poll(NULL, 0, 100);
duke@435 4912 }
duke@435 4913 } else {
duke@435 4914 jio_fprintf(stderr,
duke@435 4915 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 4916 }
duke@435 4917 }
duke@435 4918
duke@435 4919
duke@435 4920 // Refer to the comments in os_solaris.cpp park-unpark.
duke@435 4921 //
duke@435 4922 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
duke@435 4923 // hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
duke@435 4924 // For specifics regarding the bug see GLIBC BUGID 261237 :
duke@435 4925 // http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
duke@435 4926 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
duke@435 4927 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
duke@435 4928 // is used. (The simple C test-case provided in the GLIBC bug report manifests the
duke@435 4929 // hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
duke@435 4930 // and monitorenter when we're using 1-0 locking. All those operations may result in
duke@435 4931 // calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
duke@435 4932 // of libpthread avoids the problem, but isn't practical.
duke@435 4933 //
duke@435 4934 // Possible remedies:
duke@435 4935 //
duke@435 4936 // 1. Establish a minimum relative wait time. 50 to 100 msecs seems to work.
duke@435 4937 // This is palliative and probabilistic, however. If the thread is preempted
duke@435 4938 // between the call to compute_abstime() and pthread_cond_timedwait(), more
duke@435 4939 // than the minimum period may have passed, and the abstime may be stale (in the
duke@435 4940 // past) resultin in a hang. Using this technique reduces the odds of a hang
duke@435 4941 // but the JVM is still vulnerable, particularly on heavily loaded systems.
duke@435 4942 //
duke@435 4943 // 2. Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
duke@435 4944 // of the usual flag-condvar-mutex idiom. The write side of the pipe is set
duke@435 4945 // NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
duke@435 4946 // reduces to poll()+read(). This works well, but consumes 2 FDs per extant
duke@435 4947 // thread.
duke@435 4948 //
duke@435 4949 // 3. Embargo pthread_cond_timedwait() and implement a native "chron" thread
duke@435 4950 // that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
duke@435 4951 // a timeout request to the chron thread and then blocking via pthread_cond_wait().
duke@435 4952 // This also works well. In fact it avoids kernel-level scalability impediments
duke@435 4953 // on certain platforms that don't handle lots of active pthread_cond_timedwait()
duke@435 4954 // timers in a graceful fashion.
duke@435 4955 //
duke@435 4956 // 4. When the abstime value is in the past it appears that control returns
duke@435 4957 // correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
duke@435 4958 // Subsequent timedwait/wait calls may hang indefinitely. Given that, we
duke@435 4959 // can avoid the problem by reinitializing the condvar -- by cond_destroy()
duke@435 4960 // followed by cond_init() -- after all calls to pthread_cond_timedwait().
duke@435 4961 // It may be possible to avoid reinitialization by checking the return
duke@435 4962 // value from pthread_cond_timedwait(). In addition to reinitializing the
duke@435 4963 // condvar we must establish the invariant that cond_signal() is only called
duke@435 4964 // within critical sections protected by the adjunct mutex. This prevents
duke@435 4965 // cond_signal() from "seeing" a condvar that's in the midst of being
duke@435 4966 // reinitialized or that is corrupt. Sadly, this invariant obviates the
duke@435 4967 // desirable signal-after-unlock optimization that avoids futile context switching.
duke@435 4968 //
duke@435 4969 // I'm also concerned that some versions of NTPL might allocate an auxilliary
duke@435 4970 // structure when a condvar is used or initialized. cond_destroy() would
duke@435 4971 // release the helper structure. Our reinitialize-after-timedwait fix
duke@435 4972 // put excessive stress on malloc/free and locks protecting the c-heap.
duke@435 4973 //
duke@435 4974 // We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
duke@435 4975 // It may be possible to refine (4) by checking the kernel and NTPL verisons
duke@435 4976 // and only enabling the work-around for vulnerable environments.
duke@435 4977
duke@435 4978 // utility to compute the abstime argument to timedwait:
duke@435 4979 // millis is the relative timeout time
duke@435 4980 // abstime will be the absolute timeout time
duke@435 4981 // TODO: replace compute_abstime() with unpackTime()
duke@435 4982
duke@435 4983 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
duke@435 4984 if (millis < 0) millis = 0;
duke@435 4985 struct timeval now;
duke@435 4986 int status = gettimeofday(&now, NULL);
duke@435 4987 assert(status == 0, "gettimeofday");
duke@435 4988 jlong seconds = millis / 1000;
duke@435 4989 millis %= 1000;
duke@435 4990 if (seconds > 50000000) { // see man cond_timedwait(3T)
duke@435 4991 seconds = 50000000;
duke@435 4992 }
duke@435 4993 abstime->tv_sec = now.tv_sec + seconds;
duke@435 4994 long usec = now.tv_usec + millis * 1000;
duke@435 4995 if (usec >= 1000000) {
duke@435 4996 abstime->tv_sec += 1;
duke@435 4997 usec -= 1000000;
duke@435 4998 }
duke@435 4999 abstime->tv_nsec = usec * 1000;
duke@435 5000 return abstime;
duke@435 5001 }
duke@435 5002
duke@435 5003
duke@435 5004 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
duke@435 5005 // Conceptually TryPark() should be equivalent to park(0).
duke@435 5006
duke@435 5007 int os::PlatformEvent::TryPark() {
duke@435 5008 for (;;) {
duke@435 5009 const int v = _Event ;
duke@435 5010 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 5011 if (Atomic::cmpxchg (0, &_Event, v) == v) return v ;
duke@435 5012 }
duke@435 5013 }
duke@435 5014
duke@435 5015 void os::PlatformEvent::park() { // AKA "down()"
duke@435 5016 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 5017 // may call park().
duke@435 5018 // TODO: assert that _Assoc != NULL or _Assoc == Self
duke@435 5019 int v ;
duke@435 5020 for (;;) {
duke@435 5021 v = _Event ;
duke@435 5022 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 5023 }
duke@435 5024 guarantee (v >= 0, "invariant") ;
duke@435 5025 if (v == 0) {
duke@435 5026 // Do this the hard way by blocking ...
duke@435 5027 int status = pthread_mutex_lock(_mutex);
duke@435 5028 assert_status(status == 0, status, "mutex_lock");
duke@435 5029 guarantee (_nParked == 0, "invariant") ;
duke@435 5030 ++ _nParked ;
duke@435 5031 while (_Event < 0) {
duke@435 5032 status = pthread_cond_wait(_cond, _mutex);
duke@435 5033 // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
duke@435 5034 // Treat this the same as if the wait was interrupted
duke@435 5035 if (status == ETIME) { status = EINTR; }
duke@435 5036 assert_status(status == 0 || status == EINTR, status, "cond_wait");
duke@435 5037 }
duke@435 5038 -- _nParked ;
duke@435 5039
duke@435 5040 // In theory we could move the ST of 0 into _Event past the unlock(),
duke@435 5041 // but then we'd need a MEMBAR after the ST.
duke@435 5042 _Event = 0 ;
duke@435 5043 status = pthread_mutex_unlock(_mutex);
duke@435 5044 assert_status(status == 0, status, "mutex_unlock");
duke@435 5045 }
duke@435 5046 guarantee (_Event >= 0, "invariant") ;
duke@435 5047 }
duke@435 5048
duke@435 5049 int os::PlatformEvent::park(jlong millis) {
duke@435 5050 guarantee (_nParked == 0, "invariant") ;
duke@435 5051
duke@435 5052 int v ;
duke@435 5053 for (;;) {
duke@435 5054 v = _Event ;
duke@435 5055 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 5056 }
duke@435 5057 guarantee (v >= 0, "invariant") ;
duke@435 5058 if (v != 0) return OS_OK ;
duke@435 5059
duke@435 5060 // We do this the hard way, by blocking the thread.
duke@435 5061 // Consider enforcing a minimum timeout value.
duke@435 5062 struct timespec abst;
duke@435 5063 compute_abstime(&abst, millis);
duke@435 5064
duke@435 5065 int ret = OS_TIMEOUT;
duke@435 5066 int status = pthread_mutex_lock(_mutex);
duke@435 5067 assert_status(status == 0, status, "mutex_lock");
duke@435 5068 guarantee (_nParked == 0, "invariant") ;
duke@435 5069 ++_nParked ;
duke@435 5070
duke@435 5071 // Object.wait(timo) will return because of
duke@435 5072 // (a) notification
duke@435 5073 // (b) timeout
duke@435 5074 // (c) thread.interrupt
duke@435 5075 //
duke@435 5076 // Thread.interrupt and object.notify{All} both call Event::set.
duke@435 5077 // That is, we treat thread.interrupt as a special case of notification.
duke@435 5078 // The underlying Solaris implementation, cond_timedwait, admits
duke@435 5079 // spurious/premature wakeups, but the JLS/JVM spec prevents the
duke@435 5080 // JVM from making those visible to Java code. As such, we must
duke@435 5081 // filter out spurious wakeups. We assume all ETIME returns are valid.
duke@435 5082 //
duke@435 5083 // TODO: properly differentiate simultaneous notify+interrupt.
duke@435 5084 // In that case, we should propagate the notify to another waiter.
duke@435 5085
duke@435 5086 while (_Event < 0) {
duke@435 5087 status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
duke@435 5088 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 5089 pthread_cond_destroy (_cond);
duke@435 5090 pthread_cond_init (_cond, NULL) ;
duke@435 5091 }
duke@435 5092 assert_status(status == 0 || status == EINTR ||
duke@435 5093 status == ETIME || status == ETIMEDOUT,
duke@435 5094 status, "cond_timedwait");
duke@435 5095 if (!FilterSpuriousWakeups) break ; // previous semantics
duke@435 5096 if (status == ETIME || status == ETIMEDOUT) break ;
duke@435 5097 // We consume and ignore EINTR and spurious wakeups.
duke@435 5098 }
duke@435 5099 --_nParked ;
duke@435 5100 if (_Event >= 0) {
duke@435 5101 ret = OS_OK;
duke@435 5102 }
duke@435 5103 _Event = 0 ;
duke@435 5104 status = pthread_mutex_unlock(_mutex);
duke@435 5105 assert_status(status == 0, status, "mutex_unlock");
duke@435 5106 assert (_nParked == 0, "invariant") ;
duke@435 5107 return ret;
duke@435 5108 }
duke@435 5109
duke@435 5110 void os::PlatformEvent::unpark() {
duke@435 5111 int v, AnyWaiters ;
duke@435 5112 for (;;) {
duke@435 5113 v = _Event ;
duke@435 5114 if (v > 0) {
duke@435 5115 // The LD of _Event could have reordered or be satisfied
duke@435 5116 // by a read-aside from this processor's write buffer.
duke@435 5117 // To avoid problems execute a barrier and then
duke@435 5118 // ratify the value.
duke@435 5119 OrderAccess::fence() ;
duke@435 5120 if (_Event == v) return ;
duke@435 5121 continue ;
duke@435 5122 }
duke@435 5123 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 5124 }
duke@435 5125 if (v < 0) {
duke@435 5126 // Wait for the thread associated with the event to vacate
duke@435 5127 int status = pthread_mutex_lock(_mutex);
duke@435 5128 assert_status(status == 0, status, "mutex_lock");
duke@435 5129 AnyWaiters = _nParked ;
duke@435 5130 assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
duke@435 5131 if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 5132 AnyWaiters = 0 ;
duke@435 5133 pthread_cond_signal (_cond);
duke@435 5134 }
duke@435 5135 status = pthread_mutex_unlock(_mutex);
duke@435 5136 assert_status(status == 0, status, "mutex_unlock");
duke@435 5137 if (AnyWaiters != 0) {
duke@435 5138 status = pthread_cond_signal(_cond);
duke@435 5139 assert_status(status == 0, status, "cond_signal");
duke@435 5140 }
duke@435 5141 }
duke@435 5142
duke@435 5143 // Note that we signal() _after dropping the lock for "immortal" Events.
duke@435 5144 // This is safe and avoids a common class of futile wakeups. In rare
duke@435 5145 // circumstances this can cause a thread to return prematurely from
duke@435 5146 // cond_{timed}wait() but the spurious wakeup is benign and the victim will
duke@435 5147 // simply re-test the condition and re-park itself.
duke@435 5148 }
duke@435 5149
duke@435 5150
duke@435 5151 // JSR166
duke@435 5152 // -------------------------------------------------------
duke@435 5153
duke@435 5154 /*
duke@435 5155 * The solaris and linux implementations of park/unpark are fairly
duke@435 5156 * conservative for now, but can be improved. They currently use a
duke@435 5157 * mutex/condvar pair, plus a a count.
duke@435 5158 * Park decrements count if > 0, else does a condvar wait. Unpark
duke@435 5159 * sets count to 1 and signals condvar. Only one thread ever waits
duke@435 5160 * on the condvar. Contention seen when trying to park implies that someone
duke@435 5161 * is unparking you, so don't wait. And spurious returns are fine, so there
duke@435 5162 * is no need to track notifications.
duke@435 5163 */
duke@435 5164
duke@435 5165
duke@435 5166 #define NANOSECS_PER_SEC 1000000000
duke@435 5167 #define NANOSECS_PER_MILLISEC 1000000
duke@435 5168 #define MAX_SECS 100000000
duke@435 5169 /*
duke@435 5170 * This code is common to linux and solaris and will be moved to a
duke@435 5171 * common place in dolphin.
duke@435 5172 *
duke@435 5173 * The passed in time value is either a relative time in nanoseconds
duke@435 5174 * or an absolute time in milliseconds. Either way it has to be unpacked
duke@435 5175 * into suitable seconds and nanoseconds components and stored in the
duke@435 5176 * given timespec structure.
duke@435 5177 * Given time is a 64-bit value and the time_t used in the timespec is only
duke@435 5178 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
duke@435 5179 * overflow if times way in the future are given. Further on Solaris versions
duke@435 5180 * prior to 10 there is a restriction (see cond_timedwait) that the specified
duke@435 5181 * number of seconds, in abstime, is less than current_time + 100,000,000.
duke@435 5182 * As it will be 28 years before "now + 100000000" will overflow we can
duke@435 5183 * ignore overflow and just impose a hard-limit on seconds using the value
duke@435 5184 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
duke@435 5185 * years from "now".
duke@435 5186 */
duke@435 5187
duke@435 5188 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
duke@435 5189 assert (time > 0, "convertTime");
duke@435 5190
duke@435 5191 struct timeval now;
duke@435 5192 int status = gettimeofday(&now, NULL);
duke@435 5193 assert(status == 0, "gettimeofday");
duke@435 5194
duke@435 5195 time_t max_secs = now.tv_sec + MAX_SECS;
duke@435 5196
duke@435 5197 if (isAbsolute) {
duke@435 5198 jlong secs = time / 1000;
duke@435 5199 if (secs > max_secs) {
duke@435 5200 absTime->tv_sec = max_secs;
duke@435 5201 }
duke@435 5202 else {
duke@435 5203 absTime->tv_sec = secs;
duke@435 5204 }
duke@435 5205 absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
duke@435 5206 }
duke@435 5207 else {
duke@435 5208 jlong secs = time / NANOSECS_PER_SEC;
duke@435 5209 if (secs >= MAX_SECS) {
duke@435 5210 absTime->tv_sec = max_secs;
duke@435 5211 absTime->tv_nsec = 0;
duke@435 5212 }
duke@435 5213 else {
duke@435 5214 absTime->tv_sec = now.tv_sec + secs;
duke@435 5215 absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
duke@435 5216 if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
duke@435 5217 absTime->tv_nsec -= NANOSECS_PER_SEC;
duke@435 5218 ++absTime->tv_sec; // note: this must be <= max_secs
duke@435 5219 }
duke@435 5220 }
duke@435 5221 }
duke@435 5222 assert(absTime->tv_sec >= 0, "tv_sec < 0");
duke@435 5223 assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
duke@435 5224 assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
duke@435 5225 assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
duke@435 5226 }
duke@435 5227
duke@435 5228 void Parker::park(bool isAbsolute, jlong time) {
duke@435 5229 // Optional fast-path check:
duke@435 5230 // Return immediately if a permit is available.
duke@435 5231 if (_counter > 0) {
duke@435 5232 _counter = 0 ;
dholmes@1552 5233 OrderAccess::fence();
duke@435 5234 return ;
duke@435 5235 }
duke@435 5236
duke@435 5237 Thread* thread = Thread::current();
duke@435 5238 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 5239 JavaThread *jt = (JavaThread *)thread;
duke@435 5240
duke@435 5241 // Optional optimization -- avoid state transitions if there's an interrupt pending.
duke@435 5242 // Check interrupt before trying to wait
duke@435 5243 if (Thread::is_interrupted(thread, false)) {
duke@435 5244 return;
duke@435 5245 }
duke@435 5246
duke@435 5247 // Next, demultiplex/decode time arguments
duke@435 5248 timespec absTime;
acorn@2220 5249 if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
duke@435 5250 return;
duke@435 5251 }
duke@435 5252 if (time > 0) {
duke@435 5253 unpackTime(&absTime, isAbsolute, time);
duke@435 5254 }
duke@435 5255
duke@435 5256
duke@435 5257 // Enter safepoint region
duke@435 5258 // Beware of deadlocks such as 6317397.
duke@435 5259 // The per-thread Parker:: mutex is a classic leaf-lock.
duke@435 5260 // In particular a thread must never block on the Threads_lock while
duke@435 5261 // holding the Parker:: mutex. If safepoints are pending both the
duke@435 5262 // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
duke@435 5263 ThreadBlockInVM tbivm(jt);
duke@435 5264
duke@435 5265 // Don't wait if cannot get lock since interference arises from
duke@435 5266 // unblocking. Also. check interrupt before trying wait
duke@435 5267 if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
duke@435 5268 return;
duke@435 5269 }
duke@435 5270
duke@435 5271 int status ;
duke@435 5272 if (_counter > 0) { // no wait needed
duke@435 5273 _counter = 0;
duke@435 5274 status = pthread_mutex_unlock(_mutex);
duke@435 5275 assert (status == 0, "invariant") ;
dholmes@1552 5276 OrderAccess::fence();
duke@435 5277 return;
duke@435 5278 }
duke@435 5279
duke@435 5280 #ifdef ASSERT
duke@435 5281 // Don't catch signals while blocked; let the running threads have the signals.
duke@435 5282 // (This allows a debugger to break into the running thread.)
duke@435 5283 sigset_t oldsigs;
duke@435 5284 sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
duke@435 5285 pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
duke@435 5286 #endif
duke@435 5287
duke@435 5288 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 5289 jt->set_suspend_equivalent();
duke@435 5290 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 5291
duke@435 5292 if (time == 0) {
duke@435 5293 status = pthread_cond_wait (_cond, _mutex) ;
duke@435 5294 } else {
duke@435 5295 status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
duke@435 5296 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 5297 pthread_cond_destroy (_cond) ;
duke@435 5298 pthread_cond_init (_cond, NULL);
duke@435 5299 }
duke@435 5300 }
duke@435 5301 assert_status(status == 0 || status == EINTR ||
duke@435 5302 status == ETIME || status == ETIMEDOUT,
duke@435 5303 status, "cond_timedwait");
duke@435 5304
duke@435 5305 #ifdef ASSERT
duke@435 5306 pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
duke@435 5307 #endif
duke@435 5308
duke@435 5309 _counter = 0 ;
duke@435 5310 status = pthread_mutex_unlock(_mutex) ;
duke@435 5311 assert_status(status == 0, status, "invariant") ;
duke@435 5312 // If externally suspended while waiting, re-suspend
duke@435 5313 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 5314 jt->java_suspend_self();
duke@435 5315 }
duke@435 5316
dholmes@1552 5317 OrderAccess::fence();
duke@435 5318 }
duke@435 5319
duke@435 5320 void Parker::unpark() {
duke@435 5321 int s, status ;
duke@435 5322 status = pthread_mutex_lock(_mutex);
duke@435 5323 assert (status == 0, "invariant") ;
duke@435 5324 s = _counter;
duke@435 5325 _counter = 1;
duke@435 5326 if (s < 1) {
duke@435 5327 if (WorkAroundNPTLTimedWaitHang) {
duke@435 5328 status = pthread_cond_signal (_cond) ;
duke@435 5329 assert (status == 0, "invariant") ;
duke@435 5330 status = pthread_mutex_unlock(_mutex);
duke@435 5331 assert (status == 0, "invariant") ;
duke@435 5332 } else {
duke@435 5333 status = pthread_mutex_unlock(_mutex);
duke@435 5334 assert (status == 0, "invariant") ;
duke@435 5335 status = pthread_cond_signal (_cond) ;
duke@435 5336 assert (status == 0, "invariant") ;
duke@435 5337 }
duke@435 5338 } else {
duke@435 5339 pthread_mutex_unlock(_mutex);
duke@435 5340 assert (status == 0, "invariant") ;
duke@435 5341 }
duke@435 5342 }
duke@435 5343
duke@435 5344
duke@435 5345 extern char** environ;
duke@435 5346
duke@435 5347 #ifndef __NR_fork
duke@435 5348 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
duke@435 5349 #endif
duke@435 5350
duke@435 5351 #ifndef __NR_execve
duke@435 5352 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
duke@435 5353 #endif
duke@435 5354
duke@435 5355 // Run the specified command in a separate process. Return its exit value,
duke@435 5356 // or -1 on failure (e.g. can't fork a new process).
duke@435 5357 // Unlike system(), this function can be called from signal handler. It
duke@435 5358 // doesn't block SIGINT et al.
duke@435 5359 int os::fork_and_exec(char* cmd) {
xlu@634 5360 const char * argv[4] = {"sh", "-c", cmd, NULL};
duke@435 5361
duke@435 5362 // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
duke@435 5363 // pthread_atfork handlers and reset pthread library. All we need is a
duke@435 5364 // separate process to execve. Make a direct syscall to fork process.
duke@435 5365 // On IA64 there's no fork syscall, we have to use fork() and hope for
duke@435 5366 // the best...
duke@435 5367 pid_t pid = NOT_IA64(syscall(__NR_fork);)
duke@435 5368 IA64_ONLY(fork();)
duke@435 5369
duke@435 5370 if (pid < 0) {
duke@435 5371 // fork failed
duke@435 5372 return -1;
duke@435 5373
duke@435 5374 } else if (pid == 0) {
duke@435 5375 // child process
duke@435 5376
duke@435 5377 // execve() in LinuxThreads will call pthread_kill_other_threads_np()
duke@435 5378 // first to kill every thread on the thread list. Because this list is
duke@435 5379 // not reset by fork() (see notes above), execve() will instead kill
duke@435 5380 // every thread in the parent process. We know this is the only thread
duke@435 5381 // in the new process, so make a system call directly.
duke@435 5382 // IA64 should use normal execve() from glibc to match the glibc fork()
duke@435 5383 // above.
duke@435 5384 NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
xlu@634 5385 IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
duke@435 5386
duke@435 5387 // execve failed
duke@435 5388 _exit(-1);
duke@435 5389
duke@435 5390 } else {
duke@435 5391 // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
duke@435 5392 // care about the actual exit code, for now.
duke@435 5393
duke@435 5394 int status;
duke@435 5395
duke@435 5396 // Wait for the child process to exit. This returns immediately if
duke@435 5397 // the child has already exited. */
duke@435 5398 while (waitpid(pid, &status, 0) < 0) {
duke@435 5399 switch (errno) {
duke@435 5400 case ECHILD: return 0;
duke@435 5401 case EINTR: break;
duke@435 5402 default: return -1;
duke@435 5403 }
duke@435 5404 }
duke@435 5405
duke@435 5406 if (WIFEXITED(status)) {
duke@435 5407 // The child exited normally; get its exit code.
duke@435 5408 return WEXITSTATUS(status);
duke@435 5409 } else if (WIFSIGNALED(status)) {
duke@435 5410 // The child exited because of a signal
duke@435 5411 // The best value to return is 0x80 + signal number,
duke@435 5412 // because that is what all Unix shells do, and because
duke@435 5413 // it allows callers to distinguish between process exit and
duke@435 5414 // process death by signal.
duke@435 5415 return 0x80 + WTERMSIG(status);
duke@435 5416 } else {
duke@435 5417 // Unknown exit code; pass it through
duke@435 5418 return status;
duke@435 5419 }
duke@435 5420 }
duke@435 5421 }
bobv@2036 5422
bobv@2036 5423 // is_headless_jre()
bobv@2036 5424 //
bobv@2036 5425 // Test for the existence of libmawt in motif21 or xawt directories
bobv@2036 5426 // in order to report if we are running in a headless jre
bobv@2036 5427 //
bobv@2036 5428 bool os::is_headless_jre() {
bobv@2036 5429 struct stat statbuf;
bobv@2036 5430 char buf[MAXPATHLEN];
bobv@2036 5431 char libmawtpath[MAXPATHLEN];
bobv@2036 5432 const char *xawtstr = "/xawt/libmawt.so";
bobv@2036 5433 const char *motifstr = "/motif21/libmawt.so";
bobv@2036 5434 char *p;
bobv@2036 5435
bobv@2036 5436 // Get path to libjvm.so
bobv@2036 5437 os::jvm_path(buf, sizeof(buf));
bobv@2036 5438
bobv@2036 5439 // Get rid of libjvm.so
bobv@2036 5440 p = strrchr(buf, '/');
bobv@2036 5441 if (p == NULL) return false;
bobv@2036 5442 else *p = '\0';
bobv@2036 5443
bobv@2036 5444 // Get rid of client or server
bobv@2036 5445 p = strrchr(buf, '/');
bobv@2036 5446 if (p == NULL) return false;
bobv@2036 5447 else *p = '\0';
bobv@2036 5448
bobv@2036 5449 // check xawt/libmawt.so
bobv@2036 5450 strcpy(libmawtpath, buf);
bobv@2036 5451 strcat(libmawtpath, xawtstr);
bobv@2036 5452 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 5453
bobv@2036 5454 // check motif21/libmawt.so
bobv@2036 5455 strcpy(libmawtpath, buf);
bobv@2036 5456 strcat(libmawtpath, motifstr);
bobv@2036 5457 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 5458
bobv@2036 5459 return true;
bobv@2036 5460 }
bobv@2036 5461
jcoomes@2999 5462
jcoomes@2999 5463 #ifdef JAVASE_EMBEDDED
jcoomes@2999 5464 //
jcoomes@2999 5465 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
jcoomes@2999 5466 //
jcoomes@2999 5467 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
jcoomes@2999 5468
jcoomes@2999 5469 // ctor
jcoomes@2999 5470 //
jcoomes@2999 5471 MemNotifyThread::MemNotifyThread(int fd): Thread() {
jcoomes@2999 5472 assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
jcoomes@2999 5473 _fd = fd;
jcoomes@2999 5474
jcoomes@2999 5475 if (os::create_thread(this, os::os_thread)) {
jcoomes@2999 5476 _memnotify_thread = this;
jcoomes@2999 5477 os::set_priority(this, NearMaxPriority);
jcoomes@2999 5478 os::start_thread(this);
jcoomes@2999 5479 }
jcoomes@2999 5480 }
jcoomes@2999 5481
jcoomes@2999 5482 // Where all the work gets done
jcoomes@2999 5483 //
jcoomes@2999 5484 void MemNotifyThread::run() {
jcoomes@2999 5485 assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
jcoomes@2999 5486
jcoomes@2999 5487 // Set up the select arguments
jcoomes@2999 5488 fd_set rfds;
jcoomes@2999 5489 if (_fd != -1) {
jcoomes@2999 5490 FD_ZERO(&rfds);
jcoomes@2999 5491 FD_SET(_fd, &rfds);
jcoomes@2999 5492 }
jcoomes@2999 5493
jcoomes@2999 5494 // Now wait for the mem_notify device to wake up
jcoomes@2999 5495 while (1) {
jcoomes@2999 5496 // Wait for the mem_notify device to signal us..
jcoomes@2999 5497 int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
jcoomes@2999 5498 if (rc == -1) {
jcoomes@2999 5499 perror("select!\n");
jcoomes@2999 5500 break;
jcoomes@2999 5501 } else if (rc) {
jcoomes@2999 5502 //ssize_t free_before = os::available_memory();
jcoomes@2999 5503 //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
jcoomes@2999 5504
jcoomes@2999 5505 // The kernel is telling us there is not much memory left...
jcoomes@2999 5506 // try to do something about that
jcoomes@2999 5507
jcoomes@2999 5508 // If we are not already in a GC, try one.
jcoomes@2999 5509 if (!Universe::heap()->is_gc_active()) {
jcoomes@2999 5510 Universe::heap()->collect(GCCause::_allocation_failure);
jcoomes@2999 5511
jcoomes@2999 5512 //ssize_t free_after = os::available_memory();
jcoomes@2999 5513 //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
jcoomes@2999 5514 //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
jcoomes@2999 5515 }
jcoomes@2999 5516 // We might want to do something like the following if we find the GC's are not helping...
jcoomes@2999 5517 // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
jcoomes@2999 5518 }
jcoomes@2999 5519 }
jcoomes@2999 5520 }
jcoomes@2999 5521
jcoomes@2999 5522 //
jcoomes@2999 5523 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
jcoomes@2999 5524 //
jcoomes@2999 5525 void MemNotifyThread::start() {
jcoomes@2999 5526 int fd;
jcoomes@2999 5527 fd = open ("/dev/mem_notify", O_RDONLY, 0);
jcoomes@2999 5528 if (fd < 0) {
jcoomes@2999 5529 return;
jcoomes@2999 5530 }
jcoomes@2999 5531
jcoomes@2999 5532 if (memnotify_thread() == NULL) {
jcoomes@2999 5533 new MemNotifyThread(fd);
jcoomes@2999 5534 }
jcoomes@2999 5535 }
jcoomes@2999 5536 #endif // JAVASE_EMBEDDED

mercurial