src/os/linux/vm/os_linux.cpp

Tue, 01 Feb 2011 11:23:19 -0500

author
coleenp
date
Tue, 01 Feb 2011 11:23:19 -0500
changeset 2507
d70fe6ab4436
parent 2450
34d64ad817f4
child 2509
9cd8a2c2d584
permissions
-rw-r--r--

6588413: Use -fvisibility=hidden for gcc compiles
Summary: Add option for gcc 4 and above, define JNIEXPORT and JNIIMPORT to visibility=default, add for jio_snprintf and others since -fvisibility=hidden overrides --version-script definitions.
Reviewed-by: kamg, never

duke@435 1 /*
acorn@2220 2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
coleenp@1755 25 # define __STDC_FORMAT_MACROS
coleenp@1755 26
stefank@2314 27 // no precompiled headers
stefank@2314 28 #include "classfile/classLoader.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "classfile/vmSymbols.hpp"
stefank@2314 31 #include "code/icBuffer.hpp"
stefank@2314 32 #include "code/vtableStubs.hpp"
stefank@2314 33 #include "compiler/compileBroker.hpp"
stefank@2314 34 #include "interpreter/interpreter.hpp"
stefank@2314 35 #include "jvm_linux.h"
stefank@2314 36 #include "memory/allocation.inline.hpp"
stefank@2314 37 #include "memory/filemap.hpp"
stefank@2314 38 #include "mutex_linux.inline.hpp"
stefank@2314 39 #include "oops/oop.inline.hpp"
stefank@2314 40 #include "os_share_linux.hpp"
stefank@2314 41 #include "prims/jniFastGetField.hpp"
stefank@2314 42 #include "prims/jvm.h"
stefank@2314 43 #include "prims/jvm_misc.hpp"
stefank@2314 44 #include "runtime/arguments.hpp"
stefank@2314 45 #include "runtime/extendedPC.hpp"
stefank@2314 46 #include "runtime/globals.hpp"
stefank@2314 47 #include "runtime/interfaceSupport.hpp"
stefank@2314 48 #include "runtime/java.hpp"
stefank@2314 49 #include "runtime/javaCalls.hpp"
stefank@2314 50 #include "runtime/mutexLocker.hpp"
stefank@2314 51 #include "runtime/objectMonitor.hpp"
stefank@2314 52 #include "runtime/osThread.hpp"
stefank@2314 53 #include "runtime/perfMemory.hpp"
stefank@2314 54 #include "runtime/sharedRuntime.hpp"
stefank@2314 55 #include "runtime/statSampler.hpp"
stefank@2314 56 #include "runtime/stubRoutines.hpp"
stefank@2314 57 #include "runtime/threadCritical.hpp"
stefank@2314 58 #include "runtime/timer.hpp"
stefank@2314 59 #include "services/attachListener.hpp"
stefank@2314 60 #include "services/runtimeService.hpp"
stefank@2314 61 #include "thread_linux.inline.hpp"
zgu@2364 62 #include "utilities/decoder.hpp"
stefank@2314 63 #include "utilities/defaultStream.hpp"
stefank@2314 64 #include "utilities/events.hpp"
stefank@2314 65 #include "utilities/growableArray.hpp"
stefank@2314 66 #include "utilities/vmError.hpp"
stefank@2314 67 #ifdef TARGET_ARCH_x86
stefank@2314 68 # include "assembler_x86.inline.hpp"
stefank@2314 69 # include "nativeInst_x86.hpp"
stefank@2314 70 #endif
stefank@2314 71 #ifdef TARGET_ARCH_sparc
stefank@2314 72 # include "assembler_sparc.inline.hpp"
stefank@2314 73 # include "nativeInst_sparc.hpp"
stefank@2314 74 #endif
stefank@2314 75 #ifdef TARGET_ARCH_zero
stefank@2314 76 # include "assembler_zero.inline.hpp"
stefank@2314 77 # include "nativeInst_zero.hpp"
stefank@2314 78 #endif
stefank@2314 79 #ifdef COMPILER1
stefank@2314 80 #include "c1/c1_Runtime1.hpp"
stefank@2314 81 #endif
stefank@2314 82 #ifdef COMPILER2
stefank@2314 83 #include "opto/runtime.hpp"
stefank@2314 84 #endif
duke@435 85
duke@435 86 // put OS-includes here
duke@435 87 # include <sys/types.h>
duke@435 88 # include <sys/mman.h>
bobv@2036 89 # include <sys/stat.h>
bobv@2036 90 # include <sys/select.h>
duke@435 91 # include <pthread.h>
duke@435 92 # include <signal.h>
duke@435 93 # include <errno.h>
duke@435 94 # include <dlfcn.h>
duke@435 95 # include <stdio.h>
duke@435 96 # include <unistd.h>
duke@435 97 # include <sys/resource.h>
duke@435 98 # include <pthread.h>
duke@435 99 # include <sys/stat.h>
duke@435 100 # include <sys/time.h>
duke@435 101 # include <sys/times.h>
duke@435 102 # include <sys/utsname.h>
duke@435 103 # include <sys/socket.h>
duke@435 104 # include <sys/wait.h>
duke@435 105 # include <pwd.h>
duke@435 106 # include <poll.h>
duke@435 107 # include <semaphore.h>
duke@435 108 # include <fcntl.h>
duke@435 109 # include <string.h>
duke@435 110 # include <syscall.h>
duke@435 111 # include <sys/sysinfo.h>
duke@435 112 # include <gnu/libc-version.h>
duke@435 113 # include <sys/ipc.h>
duke@435 114 # include <sys/shm.h>
duke@435 115 # include <link.h>
coleenp@1755 116 # include <stdint.h>
coleenp@1755 117 # include <inttypes.h>
dholmes@2375 118 # include <sys/ioctl.h>
duke@435 119
duke@435 120 #define MAX_PATH (2 * K)
duke@435 121
duke@435 122 // for timer info max values which include all bits
duke@435 123 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 124 #define SEC_IN_NANOSECS 1000000000LL
duke@435 125
duke@435 126 ////////////////////////////////////////////////////////////////////////////////
duke@435 127 // global variables
duke@435 128 julong os::Linux::_physical_memory = 0;
duke@435 129
duke@435 130 address os::Linux::_initial_thread_stack_bottom = NULL;
duke@435 131 uintptr_t os::Linux::_initial_thread_stack_size = 0;
duke@435 132
duke@435 133 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
duke@435 134 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
duke@435 135 Mutex* os::Linux::_createThread_lock = NULL;
duke@435 136 pthread_t os::Linux::_main_thread;
duke@435 137 int os::Linux::_page_size = -1;
duke@435 138 bool os::Linux::_is_floating_stack = false;
duke@435 139 bool os::Linux::_is_NPTL = false;
duke@435 140 bool os::Linux::_supports_fast_thread_cpu_time = false;
xlu@634 141 const char * os::Linux::_glibc_version = NULL;
xlu@634 142 const char * os::Linux::_libpthread_version = NULL;
duke@435 143
duke@435 144 static jlong initial_time_count=0;
duke@435 145
duke@435 146 static int clock_tics_per_sec = 100;
duke@435 147
duke@435 148 // For diagnostics to print a message once. see run_periodic_checks
duke@435 149 static sigset_t check_signal_done;
duke@435 150 static bool check_signals = true;;
duke@435 151
duke@435 152 static pid_t _initial_pid = 0;
duke@435 153
duke@435 154 /* Signal number used to suspend/resume a thread */
duke@435 155
duke@435 156 /* do not use any signal number less than SIGSEGV, see 4355769 */
duke@435 157 static int SR_signum = SIGUSR2;
duke@435 158 sigset_t SR_sigset;
duke@435 159
kamg@677 160 /* Used to protect dlsym() calls */
kamg@677 161 static pthread_mutex_t dl_mutex;
kamg@677 162
duke@435 163 ////////////////////////////////////////////////////////////////////////////////
duke@435 164 // utility functions
duke@435 165
duke@435 166 static int SR_initialize();
duke@435 167 static int SR_finalize();
duke@435 168
duke@435 169 julong os::available_memory() {
duke@435 170 return Linux::available_memory();
duke@435 171 }
duke@435 172
duke@435 173 julong os::Linux::available_memory() {
duke@435 174 // values in struct sysinfo are "unsigned long"
duke@435 175 struct sysinfo si;
duke@435 176 sysinfo(&si);
duke@435 177
duke@435 178 return (julong)si.freeram * si.mem_unit;
duke@435 179 }
duke@435 180
duke@435 181 julong os::physical_memory() {
duke@435 182 return Linux::physical_memory();
duke@435 183 }
duke@435 184
phh@455 185 julong os::allocatable_physical_memory(julong size) {
phh@455 186 #ifdef _LP64
phh@455 187 return size;
phh@455 188 #else
phh@455 189 julong result = MIN2(size, (julong)3800*M);
phh@455 190 if (!is_allocatable(result)) {
phh@455 191 // See comments under solaris for alignment considerations
phh@455 192 julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
phh@455 193 result = MIN2(size, reasonable_size);
phh@455 194 }
phh@455 195 return result;
phh@455 196 #endif // _LP64
phh@455 197 }
phh@455 198
duke@435 199 ////////////////////////////////////////////////////////////////////////////////
duke@435 200 // environment support
duke@435 201
duke@435 202 bool os::getenv(const char* name, char* buf, int len) {
duke@435 203 const char* val = ::getenv(name);
duke@435 204 if (val != NULL && strlen(val) < (size_t)len) {
duke@435 205 strcpy(buf, val);
duke@435 206 return true;
duke@435 207 }
duke@435 208 if (len > 0) buf[0] = 0; // return a null string
duke@435 209 return false;
duke@435 210 }
duke@435 211
duke@435 212
duke@435 213 // Return true if user is running as root.
duke@435 214
duke@435 215 bool os::have_special_privileges() {
duke@435 216 static bool init = false;
duke@435 217 static bool privileges = false;
duke@435 218 if (!init) {
duke@435 219 privileges = (getuid() != geteuid()) || (getgid() != getegid());
duke@435 220 init = true;
duke@435 221 }
duke@435 222 return privileges;
duke@435 223 }
duke@435 224
duke@435 225
duke@435 226 #ifndef SYS_gettid
duke@435 227 // i386: 224, ia64: 1105, amd64: 186, sparc 143
duke@435 228 #ifdef __ia64__
duke@435 229 #define SYS_gettid 1105
duke@435 230 #elif __i386__
duke@435 231 #define SYS_gettid 224
duke@435 232 #elif __amd64__
duke@435 233 #define SYS_gettid 186
duke@435 234 #elif __sparc__
duke@435 235 #define SYS_gettid 143
duke@435 236 #else
duke@435 237 #error define gettid for the arch
duke@435 238 #endif
duke@435 239 #endif
duke@435 240
duke@435 241 // Cpu architecture string
never@1445 242 #if defined(ZERO)
never@1445 243 static char cpu_arch[] = ZERO_LIBARCH;
never@1445 244 #elif defined(IA64)
duke@435 245 static char cpu_arch[] = "ia64";
duke@435 246 #elif defined(IA32)
duke@435 247 static char cpu_arch[] = "i386";
duke@435 248 #elif defined(AMD64)
duke@435 249 static char cpu_arch[] = "amd64";
bobv@2036 250 #elif defined(ARM)
bobv@2036 251 static char cpu_arch[] = "arm";
bobv@2036 252 #elif defined(PPC)
bobv@2036 253 static char cpu_arch[] = "ppc";
duke@435 254 #elif defined(SPARC)
duke@435 255 # ifdef _LP64
duke@435 256 static char cpu_arch[] = "sparcv9";
duke@435 257 # else
duke@435 258 static char cpu_arch[] = "sparc";
duke@435 259 # endif
duke@435 260 #else
duke@435 261 #error Add appropriate cpu_arch setting
duke@435 262 #endif
duke@435 263
duke@435 264
duke@435 265 // pid_t gettid()
duke@435 266 //
duke@435 267 // Returns the kernel thread id of the currently running thread. Kernel
duke@435 268 // thread id is used to access /proc.
duke@435 269 //
duke@435 270 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
duke@435 271 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
duke@435 272 //
duke@435 273 pid_t os::Linux::gettid() {
duke@435 274 int rslt = syscall(SYS_gettid);
duke@435 275 if (rslt == -1) {
duke@435 276 // old kernel, no NPTL support
duke@435 277 return getpid();
duke@435 278 } else {
duke@435 279 return (pid_t)rslt;
duke@435 280 }
duke@435 281 }
duke@435 282
duke@435 283 // Most versions of linux have a bug where the number of processors are
duke@435 284 // determined by looking at the /proc file system. In a chroot environment,
duke@435 285 // the system call returns 1. This causes the VM to act as if it is
duke@435 286 // a single processor and elide locking (see is_MP() call).
duke@435 287 static bool unsafe_chroot_detected = false;
xlu@634 288 static const char *unstable_chroot_error = "/proc file system not found.\n"
xlu@634 289 "Java may be unstable running multithreaded in a chroot "
xlu@634 290 "environment on Linux when /proc filesystem is not mounted.";
duke@435 291
duke@435 292 void os::Linux::initialize_system_info() {
phh@1558 293 set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
phh@1558 294 if (processor_count() == 1) {
duke@435 295 pid_t pid = os::Linux::gettid();
duke@435 296 char fname[32];
duke@435 297 jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
duke@435 298 FILE *fp = fopen(fname, "r");
duke@435 299 if (fp == NULL) {
duke@435 300 unsafe_chroot_detected = true;
duke@435 301 } else {
duke@435 302 fclose(fp);
duke@435 303 }
duke@435 304 }
duke@435 305 _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
phh@1558 306 assert(processor_count() > 0, "linux error");
duke@435 307 }
duke@435 308
duke@435 309 void os::init_system_properties_values() {
duke@435 310 // char arch[12];
duke@435 311 // sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
duke@435 312
duke@435 313 // The next steps are taken in the product version:
duke@435 314 //
duke@435 315 // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
duke@435 316 // This library should be located at:
duke@435 317 // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
duke@435 318 //
duke@435 319 // If "/jre/lib/" appears at the right place in the path, then we
duke@435 320 // assume libjvm[_g].so is installed in a JDK and we use this path.
duke@435 321 //
duke@435 322 // Otherwise exit with message: "Could not create the Java virtual machine."
duke@435 323 //
duke@435 324 // The following extra steps are taken in the debugging version:
duke@435 325 //
duke@435 326 // If "/jre/lib/" does NOT appear at the right place in the path
duke@435 327 // instead of exit check for $JAVA_HOME environment variable.
duke@435 328 //
duke@435 329 // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
duke@435 330 // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
duke@435 331 // it looks like libjvm[_g].so is installed there
duke@435 332 // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
duke@435 333 //
duke@435 334 // Otherwise exit.
duke@435 335 //
duke@435 336 // Important note: if the location of libjvm.so changes this
duke@435 337 // code needs to be changed accordingly.
duke@435 338
duke@435 339 // The next few definitions allow the code to be verbatim:
duke@435 340 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
duke@435 341 #define getenv(n) ::getenv(n)
duke@435 342
duke@435 343 /*
duke@435 344 * See ld(1):
duke@435 345 * The linker uses the following search paths to locate required
duke@435 346 * shared libraries:
duke@435 347 * 1: ...
duke@435 348 * ...
duke@435 349 * 7: The default directories, normally /lib and /usr/lib.
duke@435 350 */
kvn@944 351 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
kvn@944 352 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
kvn@944 353 #else
duke@435 354 #define DEFAULT_LIBPATH "/lib:/usr/lib"
kvn@944 355 #endif
duke@435 356
duke@435 357 #define EXTENSIONS_DIR "/lib/ext"
duke@435 358 #define ENDORSED_DIR "/lib/endorsed"
duke@435 359 #define REG_DIR "/usr/java/packages"
duke@435 360
duke@435 361 {
duke@435 362 /* sysclasspath, java_home, dll_dir */
duke@435 363 {
duke@435 364 char *home_path;
duke@435 365 char *dll_path;
duke@435 366 char *pslash;
duke@435 367 char buf[MAXPATHLEN];
duke@435 368 os::jvm_path(buf, sizeof(buf));
duke@435 369
duke@435 370 // Found the full path to libjvm.so.
duke@435 371 // Now cut the path to <java_home>/jre if we can.
duke@435 372 *(strrchr(buf, '/')) = '\0'; /* get rid of /libjvm.so */
duke@435 373 pslash = strrchr(buf, '/');
duke@435 374 if (pslash != NULL)
duke@435 375 *pslash = '\0'; /* get rid of /{client|server|hotspot} */
duke@435 376 dll_path = malloc(strlen(buf) + 1);
duke@435 377 if (dll_path == NULL)
duke@435 378 return;
duke@435 379 strcpy(dll_path, buf);
duke@435 380 Arguments::set_dll_dir(dll_path);
duke@435 381
duke@435 382 if (pslash != NULL) {
duke@435 383 pslash = strrchr(buf, '/');
duke@435 384 if (pslash != NULL) {
duke@435 385 *pslash = '\0'; /* get rid of /<arch> */
duke@435 386 pslash = strrchr(buf, '/');
duke@435 387 if (pslash != NULL)
duke@435 388 *pslash = '\0'; /* get rid of /lib */
duke@435 389 }
duke@435 390 }
duke@435 391
duke@435 392 home_path = malloc(strlen(buf) + 1);
duke@435 393 if (home_path == NULL)
duke@435 394 return;
duke@435 395 strcpy(home_path, buf);
duke@435 396 Arguments::set_java_home(home_path);
duke@435 397
duke@435 398 if (!set_boot_path('/', ':'))
duke@435 399 return;
duke@435 400 }
duke@435 401
duke@435 402 /*
duke@435 403 * Where to look for native libraries
duke@435 404 *
duke@435 405 * Note: Due to a legacy implementation, most of the library path
duke@435 406 * is set in the launcher. This was to accomodate linking restrictions
duke@435 407 * on legacy Linux implementations (which are no longer supported).
duke@435 408 * Eventually, all the library path setting will be done here.
duke@435 409 *
duke@435 410 * However, to prevent the proliferation of improperly built native
duke@435 411 * libraries, the new path component /usr/java/packages is added here.
duke@435 412 * Eventually, all the library path setting will be done here.
duke@435 413 */
duke@435 414 {
duke@435 415 char *ld_library_path;
duke@435 416
duke@435 417 /*
duke@435 418 * Construct the invariant part of ld_library_path. Note that the
duke@435 419 * space for the colon and the trailing null are provided by the
duke@435 420 * nulls included by the sizeof operator (so actually we allocate
duke@435 421 * a byte more than necessary).
duke@435 422 */
duke@435 423 ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
duke@435 424 strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
duke@435 425 sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
duke@435 426
duke@435 427 /*
duke@435 428 * Get the user setting of LD_LIBRARY_PATH, and prepended it. It
duke@435 429 * should always exist (until the legacy problem cited above is
duke@435 430 * addressed).
duke@435 431 */
duke@435 432 char *v = getenv("LD_LIBRARY_PATH");
duke@435 433 if (v != NULL) {
duke@435 434 char *t = ld_library_path;
duke@435 435 /* That's +1 for the colon and +1 for the trailing '\0' */
duke@435 436 ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
duke@435 437 sprintf(ld_library_path, "%s:%s", v, t);
duke@435 438 }
duke@435 439 Arguments::set_library_path(ld_library_path);
duke@435 440 }
duke@435 441
duke@435 442 /*
duke@435 443 * Extensions directories.
duke@435 444 *
duke@435 445 * Note that the space for the colon and the trailing null are provided
duke@435 446 * by the nulls included by the sizeof operator (so actually one byte more
duke@435 447 * than necessary is allocated).
duke@435 448 */
duke@435 449 {
duke@435 450 char *buf = malloc(strlen(Arguments::get_java_home()) +
duke@435 451 sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
duke@435 452 sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
duke@435 453 Arguments::get_java_home());
duke@435 454 Arguments::set_ext_dirs(buf);
duke@435 455 }
duke@435 456
duke@435 457 /* Endorsed standards default directory. */
duke@435 458 {
duke@435 459 char * buf;
duke@435 460 buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
duke@435 461 sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
duke@435 462 Arguments::set_endorsed_dirs(buf);
duke@435 463 }
duke@435 464 }
duke@435 465
duke@435 466 #undef malloc
duke@435 467 #undef getenv
duke@435 468 #undef EXTENSIONS_DIR
duke@435 469 #undef ENDORSED_DIR
duke@435 470
duke@435 471 // Done
duke@435 472 return;
duke@435 473 }
duke@435 474
duke@435 475 ////////////////////////////////////////////////////////////////////////////////
duke@435 476 // breakpoint support
duke@435 477
duke@435 478 void os::breakpoint() {
duke@435 479 BREAKPOINT;
duke@435 480 }
duke@435 481
duke@435 482 extern "C" void breakpoint() {
duke@435 483 // use debugger to set breakpoint here
duke@435 484 }
duke@435 485
duke@435 486 ////////////////////////////////////////////////////////////////////////////////
duke@435 487 // signal support
duke@435 488
duke@435 489 debug_only(static bool signal_sets_initialized = false);
duke@435 490 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
duke@435 491
duke@435 492 bool os::Linux::is_sig_ignored(int sig) {
duke@435 493 struct sigaction oact;
duke@435 494 sigaction(sig, (struct sigaction*)NULL, &oact);
duke@435 495 void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
duke@435 496 : CAST_FROM_FN_PTR(void*, oact.sa_handler);
duke@435 497 if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
duke@435 498 return true;
duke@435 499 else
duke@435 500 return false;
duke@435 501 }
duke@435 502
duke@435 503 void os::Linux::signal_sets_init() {
duke@435 504 // Should also have an assertion stating we are still single-threaded.
duke@435 505 assert(!signal_sets_initialized, "Already initialized");
duke@435 506 // Fill in signals that are necessarily unblocked for all threads in
duke@435 507 // the VM. Currently, we unblock the following signals:
duke@435 508 // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
duke@435 509 // by -Xrs (=ReduceSignalUsage));
duke@435 510 // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
duke@435 511 // other threads. The "ReduceSignalUsage" boolean tells us not to alter
duke@435 512 // the dispositions or masks wrt these signals.
duke@435 513 // Programs embedding the VM that want to use the above signals for their
duke@435 514 // own purposes must, at this time, use the "-Xrs" option to prevent
duke@435 515 // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
duke@435 516 // (See bug 4345157, and other related bugs).
duke@435 517 // In reality, though, unblocking these signals is really a nop, since
duke@435 518 // these signals are not blocked by default.
duke@435 519 sigemptyset(&unblocked_sigs);
duke@435 520 sigemptyset(&allowdebug_blocked_sigs);
duke@435 521 sigaddset(&unblocked_sigs, SIGILL);
duke@435 522 sigaddset(&unblocked_sigs, SIGSEGV);
duke@435 523 sigaddset(&unblocked_sigs, SIGBUS);
duke@435 524 sigaddset(&unblocked_sigs, SIGFPE);
duke@435 525 sigaddset(&unblocked_sigs, SR_signum);
duke@435 526
duke@435 527 if (!ReduceSignalUsage) {
duke@435 528 if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
duke@435 529 sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 530 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 531 }
duke@435 532 if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
duke@435 533 sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 534 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 535 }
duke@435 536 if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
duke@435 537 sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 538 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 539 }
duke@435 540 }
duke@435 541 // Fill in signals that are blocked by all but the VM thread.
duke@435 542 sigemptyset(&vm_sigs);
duke@435 543 if (!ReduceSignalUsage)
duke@435 544 sigaddset(&vm_sigs, BREAK_SIGNAL);
duke@435 545 debug_only(signal_sets_initialized = true);
duke@435 546
duke@435 547 }
duke@435 548
duke@435 549 // These are signals that are unblocked while a thread is running Java.
duke@435 550 // (For some reason, they get blocked by default.)
duke@435 551 sigset_t* os::Linux::unblocked_signals() {
duke@435 552 assert(signal_sets_initialized, "Not initialized");
duke@435 553 return &unblocked_sigs;
duke@435 554 }
duke@435 555
duke@435 556 // These are the signals that are blocked while a (non-VM) thread is
duke@435 557 // running Java. Only the VM thread handles these signals.
duke@435 558 sigset_t* os::Linux::vm_signals() {
duke@435 559 assert(signal_sets_initialized, "Not initialized");
duke@435 560 return &vm_sigs;
duke@435 561 }
duke@435 562
duke@435 563 // These are signals that are blocked during cond_wait to allow debugger in
duke@435 564 sigset_t* os::Linux::allowdebug_blocked_signals() {
duke@435 565 assert(signal_sets_initialized, "Not initialized");
duke@435 566 return &allowdebug_blocked_sigs;
duke@435 567 }
duke@435 568
duke@435 569 void os::Linux::hotspot_sigmask(Thread* thread) {
duke@435 570
duke@435 571 //Save caller's signal mask before setting VM signal mask
duke@435 572 sigset_t caller_sigmask;
duke@435 573 pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
duke@435 574
duke@435 575 OSThread* osthread = thread->osthread();
duke@435 576 osthread->set_caller_sigmask(caller_sigmask);
duke@435 577
duke@435 578 pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
duke@435 579
duke@435 580 if (!ReduceSignalUsage) {
duke@435 581 if (thread->is_VM_thread()) {
duke@435 582 // Only the VM thread handles BREAK_SIGNAL ...
duke@435 583 pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
duke@435 584 } else {
duke@435 585 // ... all other threads block BREAK_SIGNAL
duke@435 586 pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
duke@435 587 }
duke@435 588 }
duke@435 589 }
duke@435 590
duke@435 591 //////////////////////////////////////////////////////////////////////////////
duke@435 592 // detecting pthread library
duke@435 593
duke@435 594 void os::Linux::libpthread_init() {
duke@435 595 // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
duke@435 596 // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
duke@435 597 // generic name for earlier versions.
duke@435 598 // Define macros here so we can build HotSpot on old systems.
duke@435 599 # ifndef _CS_GNU_LIBC_VERSION
duke@435 600 # define _CS_GNU_LIBC_VERSION 2
duke@435 601 # endif
duke@435 602 # ifndef _CS_GNU_LIBPTHREAD_VERSION
duke@435 603 # define _CS_GNU_LIBPTHREAD_VERSION 3
duke@435 604 # endif
duke@435 605
duke@435 606 size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
duke@435 607 if (n > 0) {
duke@435 608 char *str = (char *)malloc(n);
duke@435 609 confstr(_CS_GNU_LIBC_VERSION, str, n);
duke@435 610 os::Linux::set_glibc_version(str);
duke@435 611 } else {
duke@435 612 // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
duke@435 613 static char _gnu_libc_version[32];
duke@435 614 jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
duke@435 615 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
duke@435 616 os::Linux::set_glibc_version(_gnu_libc_version);
duke@435 617 }
duke@435 618
duke@435 619 n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
duke@435 620 if (n > 0) {
duke@435 621 char *str = (char *)malloc(n);
duke@435 622 confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
duke@435 623 // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
duke@435 624 // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
xlu@634 625 // is the case. LinuxThreads has a hard limit on max number of threads.
xlu@634 626 // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
xlu@634 627 // On the other hand, NPTL does not have such a limit, sysconf()
xlu@634 628 // will return -1 and errno is not changed. Check if it is really NPTL.
duke@435 629 if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
xlu@634 630 strstr(str, "NPTL") &&
xlu@634 631 sysconf(_SC_THREAD_THREADS_MAX) > 0) {
xlu@634 632 free(str);
xlu@634 633 os::Linux::set_libpthread_version("linuxthreads");
xlu@634 634 } else {
xlu@634 635 os::Linux::set_libpthread_version(str);
duke@435 636 }
duke@435 637 } else {
xlu@634 638 // glibc before 2.3.2 only has LinuxThreads.
xlu@634 639 os::Linux::set_libpthread_version("linuxthreads");
duke@435 640 }
duke@435 641
duke@435 642 if (strstr(libpthread_version(), "NPTL")) {
duke@435 643 os::Linux::set_is_NPTL();
duke@435 644 } else {
duke@435 645 os::Linux::set_is_LinuxThreads();
duke@435 646 }
duke@435 647
duke@435 648 // LinuxThreads have two flavors: floating-stack mode, which allows variable
duke@435 649 // stack size; and fixed-stack mode. NPTL is always floating-stack.
duke@435 650 if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
duke@435 651 os::Linux::set_is_floating_stack();
duke@435 652 }
duke@435 653 }
duke@435 654
duke@435 655 /////////////////////////////////////////////////////////////////////////////
duke@435 656 // thread stack
duke@435 657
duke@435 658 // Force Linux kernel to expand current thread stack. If "bottom" is close
duke@435 659 // to the stack guard, caller should block all signals.
duke@435 660 //
duke@435 661 // MAP_GROWSDOWN:
duke@435 662 // A special mmap() flag that is used to implement thread stacks. It tells
duke@435 663 // kernel that the memory region should extend downwards when needed. This
duke@435 664 // allows early versions of LinuxThreads to only mmap the first few pages
duke@435 665 // when creating a new thread. Linux kernel will automatically expand thread
duke@435 666 // stack as needed (on page faults).
duke@435 667 //
duke@435 668 // However, because the memory region of a MAP_GROWSDOWN stack can grow on
duke@435 669 // demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
duke@435 670 // region, it's hard to tell if the fault is due to a legitimate stack
duke@435 671 // access or because of reading/writing non-exist memory (e.g. buffer
duke@435 672 // overrun). As a rule, if the fault happens below current stack pointer,
duke@435 673 // Linux kernel does not expand stack, instead a SIGSEGV is sent to the
duke@435 674 // application (see Linux kernel fault.c).
duke@435 675 //
duke@435 676 // This Linux feature can cause SIGSEGV when VM bangs thread stack for
duke@435 677 // stack overflow detection.
duke@435 678 //
duke@435 679 // Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
duke@435 680 // not use this flag. However, the stack of initial thread is not created
duke@435 681 // by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
duke@435 682 // unlikely) that user code can create a thread with MAP_GROWSDOWN stack
duke@435 683 // and then attach the thread to JVM.
duke@435 684 //
duke@435 685 // To get around the problem and allow stack banging on Linux, we need to
duke@435 686 // manually expand thread stack after receiving the SIGSEGV.
duke@435 687 //
duke@435 688 // There are two ways to expand thread stack to address "bottom", we used
duke@435 689 // both of them in JVM before 1.5:
duke@435 690 // 1. adjust stack pointer first so that it is below "bottom", and then
duke@435 691 // touch "bottom"
duke@435 692 // 2. mmap() the page in question
duke@435 693 //
duke@435 694 // Now alternate signal stack is gone, it's harder to use 2. For instance,
duke@435 695 // if current sp is already near the lower end of page 101, and we need to
duke@435 696 // call mmap() to map page 100, it is possible that part of the mmap() frame
duke@435 697 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
duke@435 698 // That will destroy the mmap() frame and cause VM to crash.
duke@435 699 //
duke@435 700 // The following code works by adjusting sp first, then accessing the "bottom"
duke@435 701 // page to force a page fault. Linux kernel will then automatically expand the
duke@435 702 // stack mapping.
duke@435 703 //
duke@435 704 // _expand_stack_to() assumes its frame size is less than page size, which
duke@435 705 // should always be true if the function is not inlined.
duke@435 706
duke@435 707 #if __GNUC__ < 3 // gcc 2.x does not support noinline attribute
duke@435 708 #define NOINLINE
duke@435 709 #else
duke@435 710 #define NOINLINE __attribute__ ((noinline))
duke@435 711 #endif
duke@435 712
duke@435 713 static void _expand_stack_to(address bottom) NOINLINE;
duke@435 714
duke@435 715 static void _expand_stack_to(address bottom) {
duke@435 716 address sp;
duke@435 717 size_t size;
duke@435 718 volatile char *p;
duke@435 719
duke@435 720 // Adjust bottom to point to the largest address within the same page, it
duke@435 721 // gives us a one-page buffer if alloca() allocates slightly more memory.
duke@435 722 bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
duke@435 723 bottom += os::Linux::page_size() - 1;
duke@435 724
duke@435 725 // sp might be slightly above current stack pointer; if that's the case, we
duke@435 726 // will alloca() a little more space than necessary, which is OK. Don't use
duke@435 727 // os::current_stack_pointer(), as its result can be slightly below current
duke@435 728 // stack pointer, causing us to not alloca enough to reach "bottom".
duke@435 729 sp = (address)&sp;
duke@435 730
duke@435 731 if (sp > bottom) {
duke@435 732 size = sp - bottom;
duke@435 733 p = (volatile char *)alloca(size);
duke@435 734 assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
duke@435 735 p[0] = '\0';
duke@435 736 }
duke@435 737 }
duke@435 738
duke@435 739 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
duke@435 740 assert(t!=NULL, "just checking");
duke@435 741 assert(t->osthread()->expanding_stack(), "expand should be set");
duke@435 742 assert(t->stack_base() != NULL, "stack_base was not initialized");
duke@435 743
duke@435 744 if (addr < t->stack_base() && addr >= t->stack_yellow_zone_base()) {
duke@435 745 sigset_t mask_all, old_sigset;
duke@435 746 sigfillset(&mask_all);
duke@435 747 pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
duke@435 748 _expand_stack_to(addr);
duke@435 749 pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
duke@435 750 return true;
duke@435 751 }
duke@435 752 return false;
duke@435 753 }
duke@435 754
duke@435 755 //////////////////////////////////////////////////////////////////////////////
duke@435 756 // create new thread
duke@435 757
duke@435 758 static address highest_vm_reserved_address();
duke@435 759
duke@435 760 // check if it's safe to start a new thread
duke@435 761 static bool _thread_safety_check(Thread* thread) {
duke@435 762 if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
duke@435 763 // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
duke@435 764 // Heap is mmap'ed at lower end of memory space. Thread stacks are
duke@435 765 // allocated (MAP_FIXED) from high address space. Every thread stack
duke@435 766 // occupies a fixed size slot (usually 2Mbytes, but user can change
duke@435 767 // it to other values if they rebuild LinuxThreads).
duke@435 768 //
duke@435 769 // Problem with MAP_FIXED is that mmap() can still succeed even part of
duke@435 770 // the memory region has already been mmap'ed. That means if we have too
duke@435 771 // many threads and/or very large heap, eventually thread stack will
duke@435 772 // collide with heap.
duke@435 773 //
duke@435 774 // Here we try to prevent heap/stack collision by comparing current
duke@435 775 // stack bottom with the highest address that has been mmap'ed by JVM
duke@435 776 // plus a safety margin for memory maps created by native code.
duke@435 777 //
duke@435 778 // This feature can be disabled by setting ThreadSafetyMargin to 0
duke@435 779 //
duke@435 780 if (ThreadSafetyMargin > 0) {
duke@435 781 address stack_bottom = os::current_stack_base() - os::current_stack_size();
duke@435 782
duke@435 783 // not safe if our stack extends below the safety margin
duke@435 784 return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
duke@435 785 } else {
duke@435 786 return true;
duke@435 787 }
duke@435 788 } else {
duke@435 789 // Floating stack LinuxThreads or NPTL:
duke@435 790 // Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
duke@435 791 // there's not enough space left, pthread_create() will fail. If we come
duke@435 792 // here, that means enough space has been reserved for stack.
duke@435 793 return true;
duke@435 794 }
duke@435 795 }
duke@435 796
duke@435 797 // Thread start routine for all newly created threads
duke@435 798 static void *java_start(Thread *thread) {
duke@435 799 // Try to randomize the cache line index of hot stack frames.
duke@435 800 // This helps when threads of the same stack traces evict each other's
duke@435 801 // cache lines. The threads can be either from the same JVM instance, or
duke@435 802 // from different JVM instances. The benefit is especially true for
duke@435 803 // processors with hyperthreading technology.
duke@435 804 static int counter = 0;
duke@435 805 int pid = os::current_process_id();
duke@435 806 alloca(((pid ^ counter++) & 7) * 128);
duke@435 807
duke@435 808 ThreadLocalStorage::set_thread(thread);
duke@435 809
duke@435 810 OSThread* osthread = thread->osthread();
duke@435 811 Monitor* sync = osthread->startThread_lock();
duke@435 812
duke@435 813 // non floating stack LinuxThreads needs extra check, see above
duke@435 814 if (!_thread_safety_check(thread)) {
duke@435 815 // notify parent thread
duke@435 816 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 817 osthread->set_state(ZOMBIE);
duke@435 818 sync->notify_all();
duke@435 819 return NULL;
duke@435 820 }
duke@435 821
duke@435 822 // thread_id is kernel thread id (similar to Solaris LWP id)
duke@435 823 osthread->set_thread_id(os::Linux::gettid());
duke@435 824
duke@435 825 if (UseNUMA) {
duke@435 826 int lgrp_id = os::numa_get_group_id();
duke@435 827 if (lgrp_id != -1) {
duke@435 828 thread->set_lgrp_id(lgrp_id);
duke@435 829 }
duke@435 830 }
duke@435 831 // initialize signal mask for this thread
duke@435 832 os::Linux::hotspot_sigmask(thread);
duke@435 833
duke@435 834 // initialize floating point control register
duke@435 835 os::Linux::init_thread_fpu_state();
duke@435 836
duke@435 837 // handshaking with parent thread
duke@435 838 {
duke@435 839 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 840
duke@435 841 // notify parent thread
duke@435 842 osthread->set_state(INITIALIZED);
duke@435 843 sync->notify_all();
duke@435 844
duke@435 845 // wait until os::start_thread()
duke@435 846 while (osthread->get_state() == INITIALIZED) {
duke@435 847 sync->wait(Mutex::_no_safepoint_check_flag);
duke@435 848 }
duke@435 849 }
duke@435 850
duke@435 851 // call one more level start routine
duke@435 852 thread->run();
duke@435 853
duke@435 854 return 0;
duke@435 855 }
duke@435 856
duke@435 857 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 858 assert(thread->osthread() == NULL, "caller responsible");
duke@435 859
duke@435 860 // Allocate the OSThread object
duke@435 861 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 862 if (osthread == NULL) {
duke@435 863 return false;
duke@435 864 }
duke@435 865
duke@435 866 // set the correct thread state
duke@435 867 osthread->set_thread_type(thr_type);
duke@435 868
duke@435 869 // Initial state is ALLOCATED but not INITIALIZED
duke@435 870 osthread->set_state(ALLOCATED);
duke@435 871
duke@435 872 thread->set_osthread(osthread);
duke@435 873
duke@435 874 // init thread attributes
duke@435 875 pthread_attr_t attr;
duke@435 876 pthread_attr_init(&attr);
duke@435 877 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
duke@435 878
duke@435 879 // stack size
duke@435 880 if (os::Linux::supports_variable_stack_size()) {
duke@435 881 // calculate stack size if it's not specified by caller
duke@435 882 if (stack_size == 0) {
duke@435 883 stack_size = os::Linux::default_stack_size(thr_type);
duke@435 884
duke@435 885 switch (thr_type) {
duke@435 886 case os::java_thread:
coleenp@2222 887 // Java threads use ThreadStackSize which default value can be
coleenp@2222 888 // changed with the flag -Xss
coleenp@2222 889 assert (JavaThread::stack_size_at_create() > 0, "this should be set");
coleenp@2222 890 stack_size = JavaThread::stack_size_at_create();
duke@435 891 break;
duke@435 892 case os::compiler_thread:
duke@435 893 if (CompilerThreadStackSize > 0) {
duke@435 894 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 895 break;
duke@435 896 } // else fall through:
duke@435 897 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 898 case os::vm_thread:
duke@435 899 case os::pgc_thread:
duke@435 900 case os::cgc_thread:
duke@435 901 case os::watcher_thread:
duke@435 902 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 903 break;
duke@435 904 }
duke@435 905 }
duke@435 906
duke@435 907 stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
duke@435 908 pthread_attr_setstacksize(&attr, stack_size);
duke@435 909 } else {
duke@435 910 // let pthread_create() pick the default value.
duke@435 911 }
duke@435 912
duke@435 913 // glibc guard page
duke@435 914 pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
duke@435 915
duke@435 916 ThreadState state;
duke@435 917
duke@435 918 {
duke@435 919 // Serialize thread creation if we are running with fixed stack LinuxThreads
duke@435 920 bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
duke@435 921 if (lock) {
duke@435 922 os::Linux::createThread_lock()->lock_without_safepoint_check();
duke@435 923 }
duke@435 924
duke@435 925 pthread_t tid;
duke@435 926 int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
duke@435 927
duke@435 928 pthread_attr_destroy(&attr);
duke@435 929
duke@435 930 if (ret != 0) {
duke@435 931 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 932 perror("pthread_create()");
duke@435 933 }
duke@435 934 // Need to clean up stuff we've allocated so far
duke@435 935 thread->set_osthread(NULL);
duke@435 936 delete osthread;
duke@435 937 if (lock) os::Linux::createThread_lock()->unlock();
duke@435 938 return false;
duke@435 939 }
duke@435 940
duke@435 941 // Store pthread info into the OSThread
duke@435 942 osthread->set_pthread_id(tid);
duke@435 943
duke@435 944 // Wait until child thread is either initialized or aborted
duke@435 945 {
duke@435 946 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 947 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 948 while ((state = osthread->get_state()) == ALLOCATED) {
duke@435 949 sync_with_child->wait(Mutex::_no_safepoint_check_flag);
duke@435 950 }
duke@435 951 }
duke@435 952
duke@435 953 if (lock) {
duke@435 954 os::Linux::createThread_lock()->unlock();
duke@435 955 }
duke@435 956 }
duke@435 957
duke@435 958 // Aborted due to thread limit being reached
duke@435 959 if (state == ZOMBIE) {
duke@435 960 thread->set_osthread(NULL);
duke@435 961 delete osthread;
duke@435 962 return false;
duke@435 963 }
duke@435 964
duke@435 965 // The thread is returned suspended (in state INITIALIZED),
duke@435 966 // and is started higher up in the call chain
duke@435 967 assert(state == INITIALIZED, "race condition");
duke@435 968 return true;
duke@435 969 }
duke@435 970
duke@435 971 /////////////////////////////////////////////////////////////////////////////
duke@435 972 // attach existing thread
duke@435 973
duke@435 974 // bootstrap the main thread
duke@435 975 bool os::create_main_thread(JavaThread* thread) {
duke@435 976 assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
duke@435 977 return create_attached_thread(thread);
duke@435 978 }
duke@435 979
duke@435 980 bool os::create_attached_thread(JavaThread* thread) {
duke@435 981 #ifdef ASSERT
duke@435 982 thread->verify_not_published();
duke@435 983 #endif
duke@435 984
duke@435 985 // Allocate the OSThread object
duke@435 986 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 987
duke@435 988 if (osthread == NULL) {
duke@435 989 return false;
duke@435 990 }
duke@435 991
duke@435 992 // Store pthread info into the OSThread
duke@435 993 osthread->set_thread_id(os::Linux::gettid());
duke@435 994 osthread->set_pthread_id(::pthread_self());
duke@435 995
duke@435 996 // initialize floating point control register
duke@435 997 os::Linux::init_thread_fpu_state();
duke@435 998
duke@435 999 // Initial thread state is RUNNABLE
duke@435 1000 osthread->set_state(RUNNABLE);
duke@435 1001
duke@435 1002 thread->set_osthread(osthread);
duke@435 1003
duke@435 1004 if (UseNUMA) {
duke@435 1005 int lgrp_id = os::numa_get_group_id();
duke@435 1006 if (lgrp_id != -1) {
duke@435 1007 thread->set_lgrp_id(lgrp_id);
duke@435 1008 }
duke@435 1009 }
duke@435 1010
duke@435 1011 if (os::Linux::is_initial_thread()) {
duke@435 1012 // If current thread is initial thread, its stack is mapped on demand,
duke@435 1013 // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
duke@435 1014 // the entire stack region to avoid SEGV in stack banging.
duke@435 1015 // It is also useful to get around the heap-stack-gap problem on SuSE
duke@435 1016 // kernel (see 4821821 for details). We first expand stack to the top
duke@435 1017 // of yellow zone, then enable stack yellow zone (order is significant,
duke@435 1018 // enabling yellow zone first will crash JVM on SuSE Linux), so there
duke@435 1019 // is no gap between the last two virtual memory regions.
duke@435 1020
duke@435 1021 JavaThread *jt = (JavaThread *)thread;
duke@435 1022 address addr = jt->stack_yellow_zone_base();
duke@435 1023 assert(addr != NULL, "initialization problem?");
duke@435 1024 assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
duke@435 1025
duke@435 1026 osthread->set_expanding_stack();
duke@435 1027 os::Linux::manually_expand_stack(jt, addr);
duke@435 1028 osthread->clear_expanding_stack();
duke@435 1029 }
duke@435 1030
duke@435 1031 // initialize signal mask for this thread
duke@435 1032 // and save the caller's signal mask
duke@435 1033 os::Linux::hotspot_sigmask(thread);
duke@435 1034
duke@435 1035 return true;
duke@435 1036 }
duke@435 1037
duke@435 1038 void os::pd_start_thread(Thread* thread) {
duke@435 1039 OSThread * osthread = thread->osthread();
duke@435 1040 assert(osthread->get_state() != INITIALIZED, "just checking");
duke@435 1041 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 1042 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 1043 sync_with_child->notify();
duke@435 1044 }
duke@435 1045
duke@435 1046 // Free Linux resources related to the OSThread
duke@435 1047 void os::free_thread(OSThread* osthread) {
duke@435 1048 assert(osthread != NULL, "osthread not set");
duke@435 1049
duke@435 1050 if (Thread::current()->osthread() == osthread) {
duke@435 1051 // Restore caller's signal mask
duke@435 1052 sigset_t sigmask = osthread->caller_sigmask();
duke@435 1053 pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
duke@435 1054 }
duke@435 1055
duke@435 1056 delete osthread;
duke@435 1057 }
duke@435 1058
duke@435 1059 //////////////////////////////////////////////////////////////////////////////
duke@435 1060 // thread local storage
duke@435 1061
duke@435 1062 int os::allocate_thread_local_storage() {
duke@435 1063 pthread_key_t key;
duke@435 1064 int rslt = pthread_key_create(&key, NULL);
duke@435 1065 assert(rslt == 0, "cannot allocate thread local storage");
duke@435 1066 return (int)key;
duke@435 1067 }
duke@435 1068
duke@435 1069 // Note: This is currently not used by VM, as we don't destroy TLS key
duke@435 1070 // on VM exit.
duke@435 1071 void os::free_thread_local_storage(int index) {
duke@435 1072 int rslt = pthread_key_delete((pthread_key_t)index);
duke@435 1073 assert(rslt == 0, "invalid index");
duke@435 1074 }
duke@435 1075
duke@435 1076 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 1077 int rslt = pthread_setspecific((pthread_key_t)index, value);
duke@435 1078 assert(rslt == 0, "pthread_setspecific failed");
duke@435 1079 }
duke@435 1080
duke@435 1081 extern "C" Thread* get_thread() {
duke@435 1082 return ThreadLocalStorage::thread();
duke@435 1083 }
duke@435 1084
duke@435 1085 //////////////////////////////////////////////////////////////////////////////
duke@435 1086 // initial thread
duke@435 1087
duke@435 1088 // Check if current thread is the initial thread, similar to Solaris thr_main.
duke@435 1089 bool os::Linux::is_initial_thread(void) {
duke@435 1090 char dummy;
duke@435 1091 // If called before init complete, thread stack bottom will be null.
duke@435 1092 // Can be called if fatal error occurs before initialization.
duke@435 1093 if (initial_thread_stack_bottom() == NULL) return false;
duke@435 1094 assert(initial_thread_stack_bottom() != NULL &&
duke@435 1095 initial_thread_stack_size() != 0,
duke@435 1096 "os::init did not locate initial thread's stack region");
duke@435 1097 if ((address)&dummy >= initial_thread_stack_bottom() &&
duke@435 1098 (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
duke@435 1099 return true;
duke@435 1100 else return false;
duke@435 1101 }
duke@435 1102
duke@435 1103 // Find the virtual memory area that contains addr
duke@435 1104 static bool find_vma(address addr, address* vma_low, address* vma_high) {
duke@435 1105 FILE *fp = fopen("/proc/self/maps", "r");
duke@435 1106 if (fp) {
duke@435 1107 address low, high;
duke@435 1108 while (!feof(fp)) {
duke@435 1109 if (fscanf(fp, "%p-%p", &low, &high) == 2) {
duke@435 1110 if (low <= addr && addr < high) {
duke@435 1111 if (vma_low) *vma_low = low;
duke@435 1112 if (vma_high) *vma_high = high;
duke@435 1113 fclose (fp);
duke@435 1114 return true;
duke@435 1115 }
duke@435 1116 }
duke@435 1117 for (;;) {
duke@435 1118 int ch = fgetc(fp);
duke@435 1119 if (ch == EOF || ch == (int)'\n') break;
duke@435 1120 }
duke@435 1121 }
duke@435 1122 fclose(fp);
duke@435 1123 }
duke@435 1124 return false;
duke@435 1125 }
duke@435 1126
duke@435 1127 // Locate initial thread stack. This special handling of initial thread stack
duke@435 1128 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
duke@435 1129 // bogus value for initial thread.
duke@435 1130 void os::Linux::capture_initial_stack(size_t max_size) {
duke@435 1131 // stack size is the easy part, get it from RLIMIT_STACK
duke@435 1132 size_t stack_size;
duke@435 1133 struct rlimit rlim;
duke@435 1134 getrlimit(RLIMIT_STACK, &rlim);
duke@435 1135 stack_size = rlim.rlim_cur;
duke@435 1136
duke@435 1137 // 6308388: a bug in ld.so will relocate its own .data section to the
duke@435 1138 // lower end of primordial stack; reduce ulimit -s value a little bit
duke@435 1139 // so we won't install guard page on ld.so's data section.
duke@435 1140 stack_size -= 2 * page_size();
duke@435 1141
duke@435 1142 // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
duke@435 1143 // 7.1, in both cases we will get 2G in return value.
duke@435 1144 // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
duke@435 1145 // SuSE 7.2, Debian) can not handle alternate signal stack correctly
duke@435 1146 // for initial thread if its stack size exceeds 6M. Cap it at 2M,
duke@435 1147 // in case other parts in glibc still assumes 2M max stack size.
duke@435 1148 // FIXME: alt signal stack is gone, maybe we can relax this constraint?
duke@435 1149 #ifndef IA64
duke@435 1150 if (stack_size > 2 * K * K) stack_size = 2 * K * K;
duke@435 1151 #else
duke@435 1152 // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
duke@435 1153 if (stack_size > 4 * K * K) stack_size = 4 * K * K;
duke@435 1154 #endif
duke@435 1155
duke@435 1156 // Try to figure out where the stack base (top) is. This is harder.
duke@435 1157 //
duke@435 1158 // When an application is started, glibc saves the initial stack pointer in
duke@435 1159 // a global variable "__libc_stack_end", which is then used by system
duke@435 1160 // libraries. __libc_stack_end should be pretty close to stack top. The
duke@435 1161 // variable is available since the very early days. However, because it is
duke@435 1162 // a private interface, it could disappear in the future.
duke@435 1163 //
duke@435 1164 // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
duke@435 1165 // to __libc_stack_end, it is very close to stack top, but isn't the real
duke@435 1166 // stack top. Note that /proc may not exist if VM is running as a chroot
duke@435 1167 // program, so reading /proc/<pid>/stat could fail. Also the contents of
duke@435 1168 // /proc/<pid>/stat could change in the future (though unlikely).
duke@435 1169 //
duke@435 1170 // We try __libc_stack_end first. If that doesn't work, look for
duke@435 1171 // /proc/<pid>/stat. If neither of them works, we use current stack pointer
duke@435 1172 // as a hint, which should work well in most cases.
duke@435 1173
duke@435 1174 uintptr_t stack_start;
duke@435 1175
duke@435 1176 // try __libc_stack_end first
duke@435 1177 uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
duke@435 1178 if (p && *p) {
duke@435 1179 stack_start = *p;
duke@435 1180 } else {
duke@435 1181 // see if we can get the start_stack field from /proc/self/stat
duke@435 1182 FILE *fp;
duke@435 1183 int pid;
duke@435 1184 char state;
duke@435 1185 int ppid;
duke@435 1186 int pgrp;
duke@435 1187 int session;
duke@435 1188 int nr;
duke@435 1189 int tpgrp;
duke@435 1190 unsigned long flags;
duke@435 1191 unsigned long minflt;
duke@435 1192 unsigned long cminflt;
duke@435 1193 unsigned long majflt;
duke@435 1194 unsigned long cmajflt;
duke@435 1195 unsigned long utime;
duke@435 1196 unsigned long stime;
duke@435 1197 long cutime;
duke@435 1198 long cstime;
duke@435 1199 long prio;
duke@435 1200 long nice;
duke@435 1201 long junk;
duke@435 1202 long it_real;
duke@435 1203 uintptr_t start;
duke@435 1204 uintptr_t vsize;
bobv@2036 1205 intptr_t rss;
bobv@2036 1206 uintptr_t rsslim;
duke@435 1207 uintptr_t scodes;
duke@435 1208 uintptr_t ecode;
duke@435 1209 int i;
duke@435 1210
duke@435 1211 // Figure what the primordial thread stack base is. Code is inspired
duke@435 1212 // by email from Hans Boehm. /proc/self/stat begins with current pid,
duke@435 1213 // followed by command name surrounded by parentheses, state, etc.
duke@435 1214 char stat[2048];
duke@435 1215 int statlen;
duke@435 1216
duke@435 1217 fp = fopen("/proc/self/stat", "r");
duke@435 1218 if (fp) {
duke@435 1219 statlen = fread(stat, 1, 2047, fp);
duke@435 1220 stat[statlen] = '\0';
duke@435 1221 fclose(fp);
duke@435 1222
duke@435 1223 // Skip pid and the command string. Note that we could be dealing with
duke@435 1224 // weird command names, e.g. user could decide to rename java launcher
duke@435 1225 // to "java 1.4.2 :)", then the stat file would look like
duke@435 1226 // 1234 (java 1.4.2 :)) R ... ...
duke@435 1227 // We don't really need to know the command string, just find the last
duke@435 1228 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 1229 char * s = strrchr(stat, ')');
duke@435 1230
duke@435 1231 i = 0;
duke@435 1232 if (s) {
duke@435 1233 // Skip blank chars
duke@435 1234 do s++; while (isspace(*s));
duke@435 1235
bobv@2036 1236 #define _UFM UINTX_FORMAT
bobv@2036 1237 #define _DFM INTX_FORMAT
bobv@2036 1238
bobv@2036 1239 /* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 */
bobv@2036 1240 /* 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 */
bobv@2036 1241 i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
duke@435 1242 &state, /* 3 %c */
duke@435 1243 &ppid, /* 4 %d */
duke@435 1244 &pgrp, /* 5 %d */
duke@435 1245 &session, /* 6 %d */
duke@435 1246 &nr, /* 7 %d */
duke@435 1247 &tpgrp, /* 8 %d */
duke@435 1248 &flags, /* 9 %lu */
duke@435 1249 &minflt, /* 10 %lu */
duke@435 1250 &cminflt, /* 11 %lu */
duke@435 1251 &majflt, /* 12 %lu */
duke@435 1252 &cmajflt, /* 13 %lu */
duke@435 1253 &utime, /* 14 %lu */
duke@435 1254 &stime, /* 15 %lu */
duke@435 1255 &cutime, /* 16 %ld */
duke@435 1256 &cstime, /* 17 %ld */
duke@435 1257 &prio, /* 18 %ld */
duke@435 1258 &nice, /* 19 %ld */
duke@435 1259 &junk, /* 20 %ld */
duke@435 1260 &it_real, /* 21 %ld */
bobv@2036 1261 &start, /* 22 UINTX_FORMAT */
bobv@2036 1262 &vsize, /* 23 UINTX_FORMAT */
bobv@2036 1263 &rss, /* 24 INTX_FORMAT */
bobv@2036 1264 &rsslim, /* 25 UINTX_FORMAT */
bobv@2036 1265 &scodes, /* 26 UINTX_FORMAT */
bobv@2036 1266 &ecode, /* 27 UINTX_FORMAT */
bobv@2036 1267 &stack_start); /* 28 UINTX_FORMAT */
duke@435 1268 }
duke@435 1269
bobv@2036 1270 #undef _UFM
bobv@2036 1271 #undef _DFM
bobv@2036 1272
duke@435 1273 if (i != 28 - 2) {
duke@435 1274 assert(false, "Bad conversion from /proc/self/stat");
duke@435 1275 // product mode - assume we are the initial thread, good luck in the
duke@435 1276 // embedded case.
duke@435 1277 warning("Can't detect initial thread stack location - bad conversion");
duke@435 1278 stack_start = (uintptr_t) &rlim;
duke@435 1279 }
duke@435 1280 } else {
duke@435 1281 // For some reason we can't open /proc/self/stat (for example, running on
duke@435 1282 // FreeBSD with a Linux emulator, or inside chroot), this should work for
duke@435 1283 // most cases, so don't abort:
duke@435 1284 warning("Can't detect initial thread stack location - no /proc/self/stat");
duke@435 1285 stack_start = (uintptr_t) &rlim;
duke@435 1286 }
duke@435 1287 }
duke@435 1288
duke@435 1289 // Now we have a pointer (stack_start) very close to the stack top, the
duke@435 1290 // next thing to do is to figure out the exact location of stack top. We
duke@435 1291 // can find out the virtual memory area that contains stack_start by
duke@435 1292 // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
duke@435 1293 // and its upper limit is the real stack top. (again, this would fail if
duke@435 1294 // running inside chroot, because /proc may not exist.)
duke@435 1295
duke@435 1296 uintptr_t stack_top;
duke@435 1297 address low, high;
duke@435 1298 if (find_vma((address)stack_start, &low, &high)) {
duke@435 1299 // success, "high" is the true stack top. (ignore "low", because initial
duke@435 1300 // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
duke@435 1301 stack_top = (uintptr_t)high;
duke@435 1302 } else {
duke@435 1303 // failed, likely because /proc/self/maps does not exist
duke@435 1304 warning("Can't detect initial thread stack location - find_vma failed");
duke@435 1305 // best effort: stack_start is normally within a few pages below the real
duke@435 1306 // stack top, use it as stack top, and reduce stack size so we won't put
duke@435 1307 // guard page outside stack.
duke@435 1308 stack_top = stack_start;
duke@435 1309 stack_size -= 16 * page_size();
duke@435 1310 }
duke@435 1311
duke@435 1312 // stack_top could be partially down the page so align it
duke@435 1313 stack_top = align_size_up(stack_top, page_size());
duke@435 1314
duke@435 1315 if (max_size && stack_size > max_size) {
duke@435 1316 _initial_thread_stack_size = max_size;
duke@435 1317 } else {
duke@435 1318 _initial_thread_stack_size = stack_size;
duke@435 1319 }
duke@435 1320
duke@435 1321 _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
duke@435 1322 _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
duke@435 1323 }
duke@435 1324
duke@435 1325 ////////////////////////////////////////////////////////////////////////////////
duke@435 1326 // time support
duke@435 1327
duke@435 1328 // Time since start-up in seconds to a fine granularity.
duke@435 1329 // Used by VMSelfDestructTimer and the MemProfiler.
duke@435 1330 double os::elapsedTime() {
duke@435 1331
duke@435 1332 return (double)(os::elapsed_counter()) * 0.000001;
duke@435 1333 }
duke@435 1334
duke@435 1335 jlong os::elapsed_counter() {
duke@435 1336 timeval time;
duke@435 1337 int status = gettimeofday(&time, NULL);
duke@435 1338 return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
duke@435 1339 }
duke@435 1340
duke@435 1341 jlong os::elapsed_frequency() {
duke@435 1342 return (1000 * 1000);
duke@435 1343 }
duke@435 1344
ysr@777 1345 // For now, we say that linux does not support vtime. I have no idea
ysr@777 1346 // whether it can actually be made to (DLD, 9/13/05).
ysr@777 1347
ysr@777 1348 bool os::supports_vtime() { return false; }
ysr@777 1349 bool os::enable_vtime() { return false; }
ysr@777 1350 bool os::vtime_enabled() { return false; }
ysr@777 1351 double os::elapsedVTime() {
ysr@777 1352 // better than nothing, but not much
ysr@777 1353 return elapsedTime();
ysr@777 1354 }
ysr@777 1355
sbohne@496 1356 jlong os::javaTimeMillis() {
duke@435 1357 timeval time;
duke@435 1358 int status = gettimeofday(&time, NULL);
duke@435 1359 assert(status != -1, "linux error");
duke@435 1360 return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
duke@435 1361 }
duke@435 1362
duke@435 1363 #ifndef CLOCK_MONOTONIC
duke@435 1364 #define CLOCK_MONOTONIC (1)
duke@435 1365 #endif
duke@435 1366
duke@435 1367 void os::Linux::clock_init() {
duke@435 1368 // we do dlopen's in this particular order due to bug in linux
duke@435 1369 // dynamical loader (see 6348968) leading to crash on exit
duke@435 1370 void* handle = dlopen("librt.so.1", RTLD_LAZY);
duke@435 1371 if (handle == NULL) {
duke@435 1372 handle = dlopen("librt.so", RTLD_LAZY);
duke@435 1373 }
duke@435 1374
duke@435 1375 if (handle) {
duke@435 1376 int (*clock_getres_func)(clockid_t, struct timespec*) =
duke@435 1377 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
duke@435 1378 int (*clock_gettime_func)(clockid_t, struct timespec*) =
duke@435 1379 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
duke@435 1380 if (clock_getres_func && clock_gettime_func) {
duke@435 1381 // See if monotonic clock is supported by the kernel. Note that some
duke@435 1382 // early implementations simply return kernel jiffies (updated every
duke@435 1383 // 1/100 or 1/1000 second). It would be bad to use such a low res clock
duke@435 1384 // for nano time (though the monotonic property is still nice to have).
duke@435 1385 // It's fixed in newer kernels, however clock_getres() still returns
duke@435 1386 // 1/HZ. We check if clock_getres() works, but will ignore its reported
duke@435 1387 // resolution for now. Hopefully as people move to new kernels, this
duke@435 1388 // won't be a problem.
duke@435 1389 struct timespec res;
duke@435 1390 struct timespec tp;
duke@435 1391 if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
duke@435 1392 clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
duke@435 1393 // yes, monotonic clock is supported
duke@435 1394 _clock_gettime = clock_gettime_func;
duke@435 1395 } else {
duke@435 1396 // close librt if there is no monotonic clock
duke@435 1397 dlclose(handle);
duke@435 1398 }
duke@435 1399 }
duke@435 1400 }
duke@435 1401 }
duke@435 1402
duke@435 1403 #ifndef SYS_clock_getres
duke@435 1404
duke@435 1405 #if defined(IA32) || defined(AMD64)
duke@435 1406 #define SYS_clock_getres IA32_ONLY(266) AMD64_ONLY(229)
bobv@2036 1407 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1408 #else
bobv@2036 1409 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
bobv@2036 1410 #define sys_clock_getres(x,y) -1
duke@435 1411 #endif
duke@435 1412
bobv@2036 1413 #else
bobv@2036 1414 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1415 #endif
duke@435 1416
duke@435 1417 void os::Linux::fast_thread_clock_init() {
duke@435 1418 if (!UseLinuxPosixThreadCPUClocks) {
duke@435 1419 return;
duke@435 1420 }
duke@435 1421 clockid_t clockid;
duke@435 1422 struct timespec tp;
duke@435 1423 int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
duke@435 1424 (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
duke@435 1425
duke@435 1426 // Switch to using fast clocks for thread cpu time if
duke@435 1427 // the sys_clock_getres() returns 0 error code.
duke@435 1428 // Note, that some kernels may support the current thread
duke@435 1429 // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
duke@435 1430 // returned by the pthread_getcpuclockid().
duke@435 1431 // If the fast Posix clocks are supported then the sys_clock_getres()
duke@435 1432 // must return at least tp.tv_sec == 0 which means a resolution
duke@435 1433 // better than 1 sec. This is extra check for reliability.
duke@435 1434
duke@435 1435 if(pthread_getcpuclockid_func &&
duke@435 1436 pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
duke@435 1437 sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
duke@435 1438
duke@435 1439 _supports_fast_thread_cpu_time = true;
duke@435 1440 _pthread_getcpuclockid = pthread_getcpuclockid_func;
duke@435 1441 }
duke@435 1442 }
duke@435 1443
duke@435 1444 jlong os::javaTimeNanos() {
duke@435 1445 if (Linux::supports_monotonic_clock()) {
duke@435 1446 struct timespec tp;
duke@435 1447 int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
duke@435 1448 assert(status == 0, "gettime error");
duke@435 1449 jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
duke@435 1450 return result;
duke@435 1451 } else {
duke@435 1452 timeval time;
duke@435 1453 int status = gettimeofday(&time, NULL);
duke@435 1454 assert(status != -1, "linux error");
duke@435 1455 jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
duke@435 1456 return 1000 * usecs;
duke@435 1457 }
duke@435 1458 }
duke@435 1459
duke@435 1460 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 1461 if (Linux::supports_monotonic_clock()) {
duke@435 1462 info_ptr->max_value = ALL_64_BITS;
duke@435 1463
duke@435 1464 // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
duke@435 1465 info_ptr->may_skip_backward = false; // not subject to resetting or drifting
duke@435 1466 info_ptr->may_skip_forward = false; // not subject to resetting or drifting
duke@435 1467 } else {
duke@435 1468 // gettimeofday - based on time in seconds since the Epoch thus does not wrap
duke@435 1469 info_ptr->max_value = ALL_64_BITS;
duke@435 1470
duke@435 1471 // gettimeofday is a real time clock so it skips
duke@435 1472 info_ptr->may_skip_backward = true;
duke@435 1473 info_ptr->may_skip_forward = true;
duke@435 1474 }
duke@435 1475
duke@435 1476 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 1477 }
duke@435 1478
duke@435 1479 // Return the real, user, and system times in seconds from an
duke@435 1480 // arbitrary fixed point in the past.
duke@435 1481 bool os::getTimesSecs(double* process_real_time,
duke@435 1482 double* process_user_time,
duke@435 1483 double* process_system_time) {
duke@435 1484 struct tms ticks;
duke@435 1485 clock_t real_ticks = times(&ticks);
duke@435 1486
duke@435 1487 if (real_ticks == (clock_t) (-1)) {
duke@435 1488 return false;
duke@435 1489 } else {
duke@435 1490 double ticks_per_second = (double) clock_tics_per_sec;
duke@435 1491 *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
duke@435 1492 *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
duke@435 1493 *process_real_time = ((double) real_ticks) / ticks_per_second;
duke@435 1494
duke@435 1495 return true;
duke@435 1496 }
duke@435 1497 }
duke@435 1498
duke@435 1499
duke@435 1500 char * os::local_time_string(char *buf, size_t buflen) {
duke@435 1501 struct tm t;
duke@435 1502 time_t long_time;
duke@435 1503 time(&long_time);
duke@435 1504 localtime_r(&long_time, &t);
duke@435 1505 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 1506 t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
duke@435 1507 t.tm_hour, t.tm_min, t.tm_sec);
duke@435 1508 return buf;
duke@435 1509 }
duke@435 1510
ysr@983 1511 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 1512 return localtime_r(clock, res);
ysr@983 1513 }
ysr@983 1514
duke@435 1515 ////////////////////////////////////////////////////////////////////////////////
duke@435 1516 // runtime exit support
duke@435 1517
duke@435 1518 // Note: os::shutdown() might be called very early during initialization, or
duke@435 1519 // called from signal handler. Before adding something to os::shutdown(), make
duke@435 1520 // sure it is async-safe and can handle partially initialized VM.
duke@435 1521 void os::shutdown() {
duke@435 1522
duke@435 1523 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 1524 perfMemory_exit();
duke@435 1525
duke@435 1526 // needs to remove object in file system
duke@435 1527 AttachListener::abort();
duke@435 1528
duke@435 1529 // flush buffered output, finish log files
duke@435 1530 ostream_abort();
duke@435 1531
duke@435 1532 // Check for abort hook
duke@435 1533 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 1534 if (abort_hook != NULL) {
duke@435 1535 abort_hook();
duke@435 1536 }
duke@435 1537
duke@435 1538 }
duke@435 1539
duke@435 1540 // Note: os::abort() might be called very early during initialization, or
duke@435 1541 // called from signal handler. Before adding something to os::abort(), make
duke@435 1542 // sure it is async-safe and can handle partially initialized VM.
duke@435 1543 void os::abort(bool dump_core) {
duke@435 1544 os::shutdown();
duke@435 1545 if (dump_core) {
duke@435 1546 #ifndef PRODUCT
duke@435 1547 fdStream out(defaultStream::output_fd());
duke@435 1548 out.print_raw("Current thread is ");
duke@435 1549 char buf[16];
duke@435 1550 jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
duke@435 1551 out.print_raw_cr(buf);
duke@435 1552 out.print_raw_cr("Dumping core ...");
duke@435 1553 #endif
duke@435 1554 ::abort(); // dump core
duke@435 1555 }
duke@435 1556
duke@435 1557 ::exit(1);
duke@435 1558 }
duke@435 1559
duke@435 1560 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1561 void os::die() {
duke@435 1562 // _exit() on LinuxThreads only kills current thread
duke@435 1563 ::abort();
duke@435 1564 }
duke@435 1565
duke@435 1566 // unused on linux for now.
duke@435 1567 void os::set_error_file(const char *logfile) {}
duke@435 1568
ikrylov@2322 1569
ikrylov@2322 1570 // This method is a copy of JDK's sysGetLastErrorString
ikrylov@2322 1571 // from src/solaris/hpi/src/system_md.c
ikrylov@2322 1572
ikrylov@2322 1573 size_t os::lasterror(char *buf, size_t len) {
ikrylov@2322 1574
ikrylov@2322 1575 if (errno == 0) return 0;
ikrylov@2322 1576
ikrylov@2322 1577 const char *s = ::strerror(errno);
ikrylov@2322 1578 size_t n = ::strlen(s);
ikrylov@2322 1579 if (n >= len) {
ikrylov@2322 1580 n = len - 1;
ikrylov@2322 1581 }
ikrylov@2322 1582 ::strncpy(buf, s, n);
ikrylov@2322 1583 buf[n] = '\0';
ikrylov@2322 1584 return n;
ikrylov@2322 1585 }
ikrylov@2322 1586
duke@435 1587 intx os::current_thread_id() { return (intx)pthread_self(); }
duke@435 1588 int os::current_process_id() {
duke@435 1589
duke@435 1590 // Under the old linux thread library, linux gives each thread
duke@435 1591 // its own process id. Because of this each thread will return
duke@435 1592 // a different pid if this method were to return the result
duke@435 1593 // of getpid(2). Linux provides no api that returns the pid
duke@435 1594 // of the launcher thread for the vm. This implementation
duke@435 1595 // returns a unique pid, the pid of the launcher thread
duke@435 1596 // that starts the vm 'process'.
duke@435 1597
duke@435 1598 // Under the NPTL, getpid() returns the same pid as the
duke@435 1599 // launcher thread rather than a unique pid per thread.
duke@435 1600 // Use gettid() if you want the old pre NPTL behaviour.
duke@435 1601
duke@435 1602 // if you are looking for the result of a call to getpid() that
duke@435 1603 // returns a unique pid for the calling thread, then look at the
duke@435 1604 // OSThread::thread_id() method in osThread_linux.hpp file
duke@435 1605
duke@435 1606 return (int)(_initial_pid ? _initial_pid : getpid());
duke@435 1607 }
duke@435 1608
duke@435 1609 // DLL functions
duke@435 1610
duke@435 1611 const char* os::dll_file_extension() { return ".so"; }
duke@435 1612
coleenp@2450 1613 // This must be hard coded because it's the system's temporary
coleenp@2450 1614 // directory not the java application's temp directory, ala java.io.tmpdir.
coleenp@2450 1615 const char* os::get_temp_directory() { return "/tmp"; }
duke@435 1616
phh@1126 1617 static bool file_exists(const char* filename) {
phh@1126 1618 struct stat statbuf;
phh@1126 1619 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1620 return false;
phh@1126 1621 }
phh@1126 1622 return os::stat(filename, &statbuf) == 0;
phh@1126 1623 }
phh@1126 1624
phh@1126 1625 void os::dll_build_name(char* buffer, size_t buflen,
phh@1126 1626 const char* pname, const char* fname) {
phh@1126 1627 // Copied from libhpi
kamg@677 1628 const size_t pnamelen = pname ? strlen(pname) : 0;
kamg@677 1629
phh@1126 1630 // Quietly truncate on buffer overflow. Should be an error.
kamg@677 1631 if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
kamg@677 1632 *buffer = '\0';
kamg@677 1633 return;
kamg@677 1634 }
kamg@677 1635
kamg@677 1636 if (pnamelen == 0) {
phh@1126 1637 snprintf(buffer, buflen, "lib%s.so", fname);
phh@1126 1638 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1639 int n;
phh@1126 1640 char** pelements = split_path(pname, &n);
phh@1126 1641 for (int i = 0 ; i < n ; i++) {
phh@1126 1642 // Really shouldn't be NULL, but check can't hurt
phh@1126 1643 if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
phh@1126 1644 continue; // skip the empty path values
phh@1126 1645 }
phh@1126 1646 snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
phh@1126 1647 if (file_exists(buffer)) {
phh@1126 1648 break;
phh@1126 1649 }
phh@1126 1650 }
phh@1126 1651 // release the storage
phh@1126 1652 for (int i = 0 ; i < n ; i++) {
phh@1126 1653 if (pelements[i] != NULL) {
phh@1126 1654 FREE_C_HEAP_ARRAY(char, pelements[i]);
phh@1126 1655 }
phh@1126 1656 }
phh@1126 1657 if (pelements != NULL) {
phh@1126 1658 FREE_C_HEAP_ARRAY(char*, pelements);
phh@1126 1659 }
kamg@677 1660 } else {
phh@1126 1661 snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
kamg@677 1662 }
kamg@677 1663 }
kamg@677 1664
duke@435 1665 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1666 return getcwd(buf, buflen);
duke@435 1667 }
duke@435 1668
duke@435 1669 // check if addr is inside libjvm[_g].so
duke@435 1670 bool os::address_is_in_vm(address addr) {
duke@435 1671 static address libjvm_base_addr;
duke@435 1672 Dl_info dlinfo;
duke@435 1673
duke@435 1674 if (libjvm_base_addr == NULL) {
duke@435 1675 dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
duke@435 1676 libjvm_base_addr = (address)dlinfo.dli_fbase;
duke@435 1677 assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
duke@435 1678 }
duke@435 1679
duke@435 1680 if (dladdr((void *)addr, &dlinfo)) {
duke@435 1681 if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
duke@435 1682 }
duke@435 1683
duke@435 1684 return false;
duke@435 1685 }
duke@435 1686
duke@435 1687 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1688 int buflen, int *offset) {
duke@435 1689 Dl_info dlinfo;
duke@435 1690
duke@435 1691 if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
zgu@2364 1692 if (buf != NULL) {
zgu@2364 1693 if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
zgu@2364 1694 jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
zgu@2364 1695 }
zgu@2364 1696 }
zgu@2364 1697 if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
duke@435 1698 return true;
zgu@2364 1699 } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
zgu@2364 1700 if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
zgu@2364 1701 dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
zgu@2364 1702 return true;
zgu@2364 1703 }
duke@435 1704 }
zgu@2364 1705
zgu@2364 1706 if (buf != NULL) buf[0] = '\0';
zgu@2364 1707 if (offset != NULL) *offset = -1;
zgu@2364 1708 return false;
duke@435 1709 }
duke@435 1710
duke@435 1711 struct _address_to_library_name {
duke@435 1712 address addr; // input : memory address
duke@435 1713 size_t buflen; // size of fname
duke@435 1714 char* fname; // output: library name
duke@435 1715 address base; // library base addr
duke@435 1716 };
duke@435 1717
duke@435 1718 static int address_to_library_name_callback(struct dl_phdr_info *info,
duke@435 1719 size_t size, void *data) {
duke@435 1720 int i;
duke@435 1721 bool found = false;
duke@435 1722 address libbase = NULL;
duke@435 1723 struct _address_to_library_name * d = (struct _address_to_library_name *)data;
duke@435 1724
duke@435 1725 // iterate through all loadable segments
duke@435 1726 for (i = 0; i < info->dlpi_phnum; i++) {
duke@435 1727 address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
duke@435 1728 if (info->dlpi_phdr[i].p_type == PT_LOAD) {
duke@435 1729 // base address of a library is the lowest address of its loaded
duke@435 1730 // segments.
duke@435 1731 if (libbase == NULL || libbase > segbase) {
duke@435 1732 libbase = segbase;
duke@435 1733 }
duke@435 1734 // see if 'addr' is within current segment
duke@435 1735 if (segbase <= d->addr &&
duke@435 1736 d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
duke@435 1737 found = true;
duke@435 1738 }
duke@435 1739 }
duke@435 1740 }
duke@435 1741
duke@435 1742 // dlpi_name is NULL or empty if the ELF file is executable, return 0
duke@435 1743 // so dll_address_to_library_name() can fall through to use dladdr() which
duke@435 1744 // can figure out executable name from argv[0].
duke@435 1745 if (found && info->dlpi_name && info->dlpi_name[0]) {
duke@435 1746 d->base = libbase;
duke@435 1747 if (d->fname) {
duke@435 1748 jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
duke@435 1749 }
duke@435 1750 return 1;
duke@435 1751 }
duke@435 1752 return 0;
duke@435 1753 }
duke@435 1754
duke@435 1755 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1756 int buflen, int* offset) {
duke@435 1757 Dl_info dlinfo;
duke@435 1758 struct _address_to_library_name data;
duke@435 1759
duke@435 1760 // There is a bug in old glibc dladdr() implementation that it could resolve
duke@435 1761 // to wrong library name if the .so file has a base address != NULL. Here
duke@435 1762 // we iterate through the program headers of all loaded libraries to find
duke@435 1763 // out which library 'addr' really belongs to. This workaround can be
duke@435 1764 // removed once the minimum requirement for glibc is moved to 2.3.x.
duke@435 1765 data.addr = addr;
duke@435 1766 data.fname = buf;
duke@435 1767 data.buflen = buflen;
duke@435 1768 data.base = NULL;
duke@435 1769 int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
duke@435 1770
duke@435 1771 if (rslt) {
duke@435 1772 // buf already contains library name
duke@435 1773 if (offset) *offset = addr - data.base;
duke@435 1774 return true;
duke@435 1775 } else if (dladdr((void*)addr, &dlinfo)){
duke@435 1776 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
duke@435 1777 if (offset) *offset = addr - (address)dlinfo.dli_fbase;
duke@435 1778 return true;
duke@435 1779 } else {
duke@435 1780 if (buf) buf[0] = '\0';
duke@435 1781 if (offset) *offset = -1;
duke@435 1782 return false;
duke@435 1783 }
duke@435 1784 }
duke@435 1785
duke@435 1786 // Loads .dll/.so and
duke@435 1787 // in case of error it checks if .dll/.so was built for the
duke@435 1788 // same architecture as Hotspot is running on
duke@435 1789
duke@435 1790 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
duke@435 1791 {
duke@435 1792 void * result= ::dlopen(filename, RTLD_LAZY);
duke@435 1793 if (result != NULL) {
duke@435 1794 // Successful loading
duke@435 1795 return result;
duke@435 1796 }
duke@435 1797
duke@435 1798 Elf32_Ehdr elf_head;
duke@435 1799
duke@435 1800 // Read system error message into ebuf
duke@435 1801 // It may or may not be overwritten below
duke@435 1802 ::strncpy(ebuf, ::dlerror(), ebuflen-1);
duke@435 1803 ebuf[ebuflen-1]='\0';
duke@435 1804 int diag_msg_max_length=ebuflen-strlen(ebuf);
duke@435 1805 char* diag_msg_buf=ebuf+strlen(ebuf);
duke@435 1806
duke@435 1807 if (diag_msg_max_length==0) {
duke@435 1808 // No more space in ebuf for additional diagnostics message
duke@435 1809 return NULL;
duke@435 1810 }
duke@435 1811
duke@435 1812
duke@435 1813 int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
duke@435 1814
duke@435 1815 if (file_descriptor < 0) {
duke@435 1816 // Can't open library, report dlerror() message
duke@435 1817 return NULL;
duke@435 1818 }
duke@435 1819
duke@435 1820 bool failed_to_read_elf_head=
duke@435 1821 (sizeof(elf_head)!=
duke@435 1822 (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
duke@435 1823
duke@435 1824 ::close(file_descriptor);
duke@435 1825 if (failed_to_read_elf_head) {
duke@435 1826 // file i/o error - report dlerror() msg
duke@435 1827 return NULL;
duke@435 1828 }
duke@435 1829
duke@435 1830 typedef struct {
duke@435 1831 Elf32_Half code; // Actual value as defined in elf.h
duke@435 1832 Elf32_Half compat_class; // Compatibility of archs at VM's sense
duke@435 1833 char elf_class; // 32 or 64 bit
duke@435 1834 char endianess; // MSB or LSB
duke@435 1835 char* name; // String representation
duke@435 1836 } arch_t;
duke@435 1837
duke@435 1838 #ifndef EM_486
duke@435 1839 #define EM_486 6 /* Intel 80486 */
duke@435 1840 #endif
duke@435 1841
duke@435 1842 static const arch_t arch_array[]={
duke@435 1843 {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1844 {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1845 {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
duke@435 1846 {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
duke@435 1847 {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1848 {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1849 {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
duke@435 1850 {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
never@1445 1851 {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
never@1445 1852 {EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
never@1445 1853 {EM_S390, EM_S390, ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
never@1445 1854 {EM_ALPHA, EM_ALPHA, ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
never@1445 1855 {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
never@1445 1856 {EM_MIPS, EM_MIPS, ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
never@1445 1857 {EM_PARISC, EM_PARISC, ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
never@1445 1858 {EM_68K, EM_68K, ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
duke@435 1859 };
duke@435 1860
duke@435 1861 #if (defined IA32)
duke@435 1862 static Elf32_Half running_arch_code=EM_386;
duke@435 1863 #elif (defined AMD64)
duke@435 1864 static Elf32_Half running_arch_code=EM_X86_64;
duke@435 1865 #elif (defined IA64)
duke@435 1866 static Elf32_Half running_arch_code=EM_IA_64;
duke@435 1867 #elif (defined __sparc) && (defined _LP64)
duke@435 1868 static Elf32_Half running_arch_code=EM_SPARCV9;
duke@435 1869 #elif (defined __sparc) && (!defined _LP64)
duke@435 1870 static Elf32_Half running_arch_code=EM_SPARC;
duke@435 1871 #elif (defined __powerpc64__)
duke@435 1872 static Elf32_Half running_arch_code=EM_PPC64;
duke@435 1873 #elif (defined __powerpc__)
duke@435 1874 static Elf32_Half running_arch_code=EM_PPC;
never@1445 1875 #elif (defined ARM)
never@1445 1876 static Elf32_Half running_arch_code=EM_ARM;
never@1445 1877 #elif (defined S390)
never@1445 1878 static Elf32_Half running_arch_code=EM_S390;
never@1445 1879 #elif (defined ALPHA)
never@1445 1880 static Elf32_Half running_arch_code=EM_ALPHA;
never@1445 1881 #elif (defined MIPSEL)
never@1445 1882 static Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
never@1445 1883 #elif (defined PARISC)
never@1445 1884 static Elf32_Half running_arch_code=EM_PARISC;
never@1445 1885 #elif (defined MIPS)
never@1445 1886 static Elf32_Half running_arch_code=EM_MIPS;
never@1445 1887 #elif (defined M68K)
never@1445 1888 static Elf32_Half running_arch_code=EM_68K;
duke@435 1889 #else
duke@435 1890 #error Method os::dll_load requires that one of following is defined:\
never@1445 1891 IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
duke@435 1892 #endif
duke@435 1893
duke@435 1894 // Identify compatability class for VM's architecture and library's architecture
duke@435 1895 // Obtain string descriptions for architectures
duke@435 1896
duke@435 1897 arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
duke@435 1898 int running_arch_index=-1;
duke@435 1899
duke@435 1900 for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
duke@435 1901 if (running_arch_code == arch_array[i].code) {
duke@435 1902 running_arch_index = i;
duke@435 1903 }
duke@435 1904 if (lib_arch.code == arch_array[i].code) {
duke@435 1905 lib_arch.compat_class = arch_array[i].compat_class;
duke@435 1906 lib_arch.name = arch_array[i].name;
duke@435 1907 }
duke@435 1908 }
duke@435 1909
duke@435 1910 assert(running_arch_index != -1,
duke@435 1911 "Didn't find running architecture code (running_arch_code) in arch_array");
duke@435 1912 if (running_arch_index == -1) {
duke@435 1913 // Even though running architecture detection failed
duke@435 1914 // we may still continue with reporting dlerror() message
duke@435 1915 return NULL;
duke@435 1916 }
duke@435 1917
duke@435 1918 if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
duke@435 1919 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
duke@435 1920 return NULL;
duke@435 1921 }
duke@435 1922
never@1445 1923 #ifndef S390
duke@435 1924 if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
duke@435 1925 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
duke@435 1926 return NULL;
duke@435 1927 }
never@1445 1928 #endif // !S390
duke@435 1929
duke@435 1930 if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
duke@435 1931 if ( lib_arch.name!=NULL ) {
duke@435 1932 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1933 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
duke@435 1934 lib_arch.name, arch_array[running_arch_index].name);
duke@435 1935 } else {
duke@435 1936 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1937 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
duke@435 1938 lib_arch.code,
duke@435 1939 arch_array[running_arch_index].name);
duke@435 1940 }
duke@435 1941 }
duke@435 1942
duke@435 1943 return NULL;
duke@435 1944 }
duke@435 1945
kamg@677 1946 /*
kamg@677 1947 * glibc-2.0 libdl is not MT safe. If you are building with any glibc,
kamg@677 1948 * chances are you might want to run the generated bits against glibc-2.0
kamg@677 1949 * libdl.so, so always use locking for any version of glibc.
kamg@677 1950 */
kamg@677 1951 void* os::dll_lookup(void* handle, const char* name) {
kamg@677 1952 pthread_mutex_lock(&dl_mutex);
kamg@677 1953 void* res = dlsym(handle, name);
kamg@677 1954 pthread_mutex_unlock(&dl_mutex);
kamg@677 1955 return res;
kamg@677 1956 }
duke@435 1957
duke@435 1958
ikrylov@2322 1959 static bool _print_ascii_file(const char* filename, outputStream* st) {
ikrylov@2322 1960 int fd = ::open(filename, O_RDONLY);
duke@435 1961 if (fd == -1) {
duke@435 1962 return false;
duke@435 1963 }
duke@435 1964
duke@435 1965 char buf[32];
duke@435 1966 int bytes;
ikrylov@2322 1967 while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
duke@435 1968 st->print_raw(buf, bytes);
duke@435 1969 }
duke@435 1970
ikrylov@2322 1971 ::close(fd);
duke@435 1972
duke@435 1973 return true;
duke@435 1974 }
duke@435 1975
duke@435 1976 void os::print_dll_info(outputStream *st) {
duke@435 1977 st->print_cr("Dynamic libraries:");
duke@435 1978
duke@435 1979 char fname[32];
duke@435 1980 pid_t pid = os::Linux::gettid();
duke@435 1981
duke@435 1982 jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
duke@435 1983
duke@435 1984 if (!_print_ascii_file(fname, st)) {
duke@435 1985 st->print("Can not get library information for pid = %d\n", pid);
duke@435 1986 }
duke@435 1987 }
duke@435 1988
duke@435 1989
duke@435 1990 void os::print_os_info(outputStream* st) {
duke@435 1991 st->print("OS:");
duke@435 1992
duke@435 1993 // Try to identify popular distros.
duke@435 1994 // Most Linux distributions have /etc/XXX-release file, which contains
duke@435 1995 // the OS version string. Some have more than one /etc/XXX-release file
duke@435 1996 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
duke@435 1997 // so the order is important.
duke@435 1998 if (!_print_ascii_file("/etc/mandrake-release", st) &&
duke@435 1999 !_print_ascii_file("/etc/sun-release", st) &&
duke@435 2000 !_print_ascii_file("/etc/redhat-release", st) &&
duke@435 2001 !_print_ascii_file("/etc/SuSE-release", st) &&
duke@435 2002 !_print_ascii_file("/etc/turbolinux-release", st) &&
duke@435 2003 !_print_ascii_file("/etc/gentoo-release", st) &&
bobv@2036 2004 !_print_ascii_file("/etc/debian_version", st) &&
bobv@2036 2005 !_print_ascii_file("/etc/ltib-release", st) &&
bobv@2036 2006 !_print_ascii_file("/etc/angstrom-version", st)) {
duke@435 2007 st->print("Linux");
duke@435 2008 }
duke@435 2009 st->cr();
duke@435 2010
duke@435 2011 // kernel
duke@435 2012 st->print("uname:");
duke@435 2013 struct utsname name;
duke@435 2014 uname(&name);
duke@435 2015 st->print(name.sysname); st->print(" ");
duke@435 2016 st->print(name.release); st->print(" ");
duke@435 2017 st->print(name.version); st->print(" ");
duke@435 2018 st->print(name.machine);
duke@435 2019 st->cr();
duke@435 2020
duke@435 2021 // Print warning if unsafe chroot environment detected
duke@435 2022 if (unsafe_chroot_detected) {
duke@435 2023 st->print("WARNING!! ");
duke@435 2024 st->print_cr(unstable_chroot_error);
duke@435 2025 }
duke@435 2026
duke@435 2027 // libc, pthread
duke@435 2028 st->print("libc:");
duke@435 2029 st->print(os::Linux::glibc_version()); st->print(" ");
duke@435 2030 st->print(os::Linux::libpthread_version()); st->print(" ");
duke@435 2031 if (os::Linux::is_LinuxThreads()) {
duke@435 2032 st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
duke@435 2033 }
duke@435 2034 st->cr();
duke@435 2035
duke@435 2036 // rlimit
duke@435 2037 st->print("rlimit:");
duke@435 2038 struct rlimit rlim;
duke@435 2039
duke@435 2040 st->print(" STACK ");
duke@435 2041 getrlimit(RLIMIT_STACK, &rlim);
duke@435 2042 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2043 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2044
duke@435 2045 st->print(", CORE ");
duke@435 2046 getrlimit(RLIMIT_CORE, &rlim);
duke@435 2047 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2048 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2049
duke@435 2050 st->print(", NPROC ");
duke@435 2051 getrlimit(RLIMIT_NPROC, &rlim);
duke@435 2052 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2053 else st->print("%d", rlim.rlim_cur);
duke@435 2054
duke@435 2055 st->print(", NOFILE ");
duke@435 2056 getrlimit(RLIMIT_NOFILE, &rlim);
duke@435 2057 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2058 else st->print("%d", rlim.rlim_cur);
duke@435 2059
duke@435 2060 st->print(", AS ");
duke@435 2061 getrlimit(RLIMIT_AS, &rlim);
duke@435 2062 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2063 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2064 st->cr();
duke@435 2065
duke@435 2066 // load average
duke@435 2067 st->print("load average:");
duke@435 2068 double loadavg[3];
duke@435 2069 os::loadavg(loadavg, 3);
duke@435 2070 st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
duke@435 2071 st->cr();
bobv@2036 2072
bobv@2036 2073 // meminfo
bobv@2036 2074 st->print("\n/proc/meminfo:\n");
bobv@2036 2075 _print_ascii_file("/proc/meminfo", st);
bobv@2036 2076 st->cr();
duke@435 2077 }
duke@435 2078
duke@435 2079 void os::print_memory_info(outputStream* st) {
duke@435 2080
duke@435 2081 st->print("Memory:");
duke@435 2082 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 2083
duke@435 2084 // values in struct sysinfo are "unsigned long"
duke@435 2085 struct sysinfo si;
duke@435 2086 sysinfo(&si);
duke@435 2087
duke@435 2088 st->print(", physical " UINT64_FORMAT "k",
duke@435 2089 os::physical_memory() >> 10);
duke@435 2090 st->print("(" UINT64_FORMAT "k free)",
duke@435 2091 os::available_memory() >> 10);
duke@435 2092 st->print(", swap " UINT64_FORMAT "k",
duke@435 2093 ((jlong)si.totalswap * si.mem_unit) >> 10);
duke@435 2094 st->print("(" UINT64_FORMAT "k free)",
duke@435 2095 ((jlong)si.freeswap * si.mem_unit) >> 10);
duke@435 2096 st->cr();
duke@435 2097 }
duke@435 2098
duke@435 2099 // Taken from /usr/include/bits/siginfo.h Supposed to be architecture specific
duke@435 2100 // but they're the same for all the linux arch that we support
duke@435 2101 // and they're the same for solaris but there's no common place to put this.
duke@435 2102 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
duke@435 2103 "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
duke@435 2104 "ILL_COPROC", "ILL_BADSTK" };
duke@435 2105
duke@435 2106 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
duke@435 2107 "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
duke@435 2108 "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
duke@435 2109
duke@435 2110 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
duke@435 2111
duke@435 2112 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
duke@435 2113
duke@435 2114 void os::print_siginfo(outputStream* st, void* siginfo) {
duke@435 2115 st->print("siginfo:");
duke@435 2116
duke@435 2117 const int buflen = 100;
duke@435 2118 char buf[buflen];
duke@435 2119 siginfo_t *si = (siginfo_t*)siginfo;
duke@435 2120 st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
duke@435 2121 if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
duke@435 2122 st->print("si_errno=%s", buf);
duke@435 2123 } else {
duke@435 2124 st->print("si_errno=%d", si->si_errno);
duke@435 2125 }
duke@435 2126 const int c = si->si_code;
duke@435 2127 assert(c > 0, "unexpected si_code");
duke@435 2128 switch (si->si_signo) {
duke@435 2129 case SIGILL:
duke@435 2130 st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
duke@435 2131 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2132 break;
duke@435 2133 case SIGFPE:
duke@435 2134 st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
duke@435 2135 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2136 break;
duke@435 2137 case SIGSEGV:
duke@435 2138 st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
duke@435 2139 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2140 break;
duke@435 2141 case SIGBUS:
duke@435 2142 st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
duke@435 2143 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2144 break;
duke@435 2145 default:
duke@435 2146 st->print(", si_code=%d", si->si_code);
duke@435 2147 // no si_addr
duke@435 2148 }
duke@435 2149
duke@435 2150 if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
duke@435 2151 UseSharedSpaces) {
duke@435 2152 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 2153 if (mapinfo->is_in_shared_space(si->si_addr)) {
duke@435 2154 st->print("\n\nError accessing class data sharing archive." \
duke@435 2155 " Mapped file inaccessible during execution, " \
duke@435 2156 " possible disk/network problem.");
duke@435 2157 }
duke@435 2158 }
duke@435 2159 st->cr();
duke@435 2160 }
duke@435 2161
duke@435 2162
duke@435 2163 static void print_signal_handler(outputStream* st, int sig,
duke@435 2164 char* buf, size_t buflen);
duke@435 2165
duke@435 2166 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 2167 st->print_cr("Signal Handlers:");
duke@435 2168 print_signal_handler(st, SIGSEGV, buf, buflen);
duke@435 2169 print_signal_handler(st, SIGBUS , buf, buflen);
duke@435 2170 print_signal_handler(st, SIGFPE , buf, buflen);
duke@435 2171 print_signal_handler(st, SIGPIPE, buf, buflen);
duke@435 2172 print_signal_handler(st, SIGXFSZ, buf, buflen);
duke@435 2173 print_signal_handler(st, SIGILL , buf, buflen);
duke@435 2174 print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
duke@435 2175 print_signal_handler(st, SR_signum, buf, buflen);
duke@435 2176 print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
duke@435 2177 print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
duke@435 2178 print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
duke@435 2179 print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
duke@435 2180 }
duke@435 2181
duke@435 2182 static char saved_jvm_path[MAXPATHLEN] = {0};
duke@435 2183
duke@435 2184 // Find the full path to the current module, libjvm.so or libjvm_g.so
mchung@1997 2185 void os::jvm_path(char *buf, jint buflen) {
duke@435 2186 // Error checking.
mchung@1997 2187 if (buflen < MAXPATHLEN) {
duke@435 2188 assert(false, "must use a large-enough buffer");
duke@435 2189 buf[0] = '\0';
duke@435 2190 return;
duke@435 2191 }
duke@435 2192 // Lazy resolve the path to current module.
duke@435 2193 if (saved_jvm_path[0] != 0) {
duke@435 2194 strcpy(buf, saved_jvm_path);
duke@435 2195 return;
duke@435 2196 }
duke@435 2197
duke@435 2198 char dli_fname[MAXPATHLEN];
duke@435 2199 bool ret = dll_address_to_library_name(
duke@435 2200 CAST_FROM_FN_PTR(address, os::jvm_path),
duke@435 2201 dli_fname, sizeof(dli_fname), NULL);
duke@435 2202 assert(ret != 0, "cannot locate libjvm");
bobv@2036 2203 char *rp = realpath(dli_fname, buf);
bobv@2036 2204 if (rp == NULL)
xlu@948 2205 return;
duke@435 2206
duke@435 2207 if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
duke@435 2208 // Support for the gamma launcher. Typical value for buf is
duke@435 2209 // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so". If "/jre/lib/" appears at
duke@435 2210 // the right place in the string, then assume we are installed in a JDK and
duke@435 2211 // we're done. Otherwise, check for a JAVA_HOME environment variable and fix
duke@435 2212 // up the path so it looks like libjvm.so is installed there (append a
duke@435 2213 // fake suffix hotspot/libjvm.so).
duke@435 2214 const char *p = buf + strlen(buf) - 1;
duke@435 2215 for (int count = 0; p > buf && count < 5; ++count) {
duke@435 2216 for (--p; p > buf && *p != '/'; --p)
duke@435 2217 /* empty */ ;
duke@435 2218 }
duke@435 2219
duke@435 2220 if (strncmp(p, "/jre/lib/", 9) != 0) {
duke@435 2221 // Look for JAVA_HOME in the environment.
duke@435 2222 char* java_home_var = ::getenv("JAVA_HOME");
duke@435 2223 if (java_home_var != NULL && java_home_var[0] != 0) {
mchung@1997 2224 char* jrelib_p;
mchung@1997 2225 int len;
mchung@1997 2226
duke@435 2227 // Check the current module name "libjvm.so" or "libjvm_g.so".
duke@435 2228 p = strrchr(buf, '/');
duke@435 2229 assert(strstr(p, "/libjvm") == p, "invalid library name");
duke@435 2230 p = strstr(p, "_g") ? "_g" : "";
duke@435 2231
bobv@2036 2232 rp = realpath(java_home_var, buf);
bobv@2036 2233 if (rp == NULL)
xlu@948 2234 return;
mchung@1997 2235
mchung@1997 2236 // determine if this is a legacy image or modules image
mchung@1997 2237 // modules image doesn't have "jre" subdirectory
mchung@1997 2238 len = strlen(buf);
mchung@1997 2239 jrelib_p = buf + len;
mchung@1997 2240 snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
mchung@1997 2241 if (0 != access(buf, F_OK)) {
mchung@1997 2242 snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
mchung@1997 2243 }
mchung@1997 2244
duke@435 2245 if (0 == access(buf, F_OK)) {
duke@435 2246 // Use current module name "libjvm[_g].so" instead of
duke@435 2247 // "libjvm"debug_only("_g")".so" since for fastdebug version
duke@435 2248 // we should have "libjvm.so" but debug_only("_g") adds "_g"!
mchung@1997 2249 len = strlen(buf);
mchung@1997 2250 snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
duke@435 2251 } else {
duke@435 2252 // Go back to path of .so
bobv@2036 2253 rp = realpath(dli_fname, buf);
bobv@2036 2254 if (rp == NULL)
xlu@948 2255 return;
duke@435 2256 }
duke@435 2257 }
duke@435 2258 }
duke@435 2259 }
duke@435 2260
duke@435 2261 strcpy(saved_jvm_path, buf);
duke@435 2262 }
duke@435 2263
duke@435 2264 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 2265 // no prefix required, not even "_"
duke@435 2266 }
duke@435 2267
duke@435 2268 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 2269 // no suffix required
duke@435 2270 }
duke@435 2271
duke@435 2272 ////////////////////////////////////////////////////////////////////////////////
duke@435 2273 // sun.misc.Signal support
duke@435 2274
duke@435 2275 static volatile jint sigint_count = 0;
duke@435 2276
duke@435 2277 static void
duke@435 2278 UserHandler(int sig, void *siginfo, void *context) {
duke@435 2279 // 4511530 - sem_post is serialized and handled by the manager thread. When
duke@435 2280 // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
duke@435 2281 // don't want to flood the manager thread with sem_post requests.
duke@435 2282 if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
duke@435 2283 return;
duke@435 2284
duke@435 2285 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 2286 // handler fails to abort. Let VM die immediately.
duke@435 2287 if (sig == SIGINT && is_error_reported()) {
duke@435 2288 os::die();
duke@435 2289 }
duke@435 2290
duke@435 2291 os::signal_notify(sig);
duke@435 2292 }
duke@435 2293
duke@435 2294 void* os::user_handler() {
duke@435 2295 return CAST_FROM_FN_PTR(void*, UserHandler);
duke@435 2296 }
duke@435 2297
duke@435 2298 extern "C" {
duke@435 2299 typedef void (*sa_handler_t)(int);
duke@435 2300 typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
duke@435 2301 }
duke@435 2302
duke@435 2303 void* os::signal(int signal_number, void* handler) {
duke@435 2304 struct sigaction sigAct, oldSigAct;
duke@435 2305
duke@435 2306 sigfillset(&(sigAct.sa_mask));
duke@435 2307 sigAct.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 2308 sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
duke@435 2309
duke@435 2310 if (sigaction(signal_number, &sigAct, &oldSigAct)) {
duke@435 2311 // -1 means registration failed
duke@435 2312 return (void *)-1;
duke@435 2313 }
duke@435 2314
duke@435 2315 return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
duke@435 2316 }
duke@435 2317
duke@435 2318 void os::signal_raise(int signal_number) {
duke@435 2319 ::raise(signal_number);
duke@435 2320 }
duke@435 2321
duke@435 2322 /*
duke@435 2323 * The following code is moved from os.cpp for making this
duke@435 2324 * code platform specific, which it is by its very nature.
duke@435 2325 */
duke@435 2326
duke@435 2327 // Will be modified when max signal is changed to be dynamic
duke@435 2328 int os::sigexitnum_pd() {
duke@435 2329 return NSIG;
duke@435 2330 }
duke@435 2331
duke@435 2332 // a counter for each possible signal value
duke@435 2333 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 2334
duke@435 2335 // Linux(POSIX) specific hand shaking semaphore.
duke@435 2336 static sem_t sig_sem;
duke@435 2337
duke@435 2338 void os::signal_init_pd() {
duke@435 2339 // Initialize signal structures
duke@435 2340 ::memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 2341
duke@435 2342 // Initialize signal semaphore
duke@435 2343 ::sem_init(&sig_sem, 0, 0);
duke@435 2344 }
duke@435 2345
duke@435 2346 void os::signal_notify(int sig) {
duke@435 2347 Atomic::inc(&pending_signals[sig]);
duke@435 2348 ::sem_post(&sig_sem);
duke@435 2349 }
duke@435 2350
duke@435 2351 static int check_pending_signals(bool wait) {
duke@435 2352 Atomic::store(0, &sigint_count);
duke@435 2353 for (;;) {
duke@435 2354 for (int i = 0; i < NSIG + 1; i++) {
duke@435 2355 jint n = pending_signals[i];
duke@435 2356 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 2357 return i;
duke@435 2358 }
duke@435 2359 }
duke@435 2360 if (!wait) {
duke@435 2361 return -1;
duke@435 2362 }
duke@435 2363 JavaThread *thread = JavaThread::current();
duke@435 2364 ThreadBlockInVM tbivm(thread);
duke@435 2365
duke@435 2366 bool threadIsSuspended;
duke@435 2367 do {
duke@435 2368 thread->set_suspend_equivalent();
duke@435 2369 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 2370 ::sem_wait(&sig_sem);
duke@435 2371
duke@435 2372 // were we externally suspended while we were waiting?
duke@435 2373 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 2374 if (threadIsSuspended) {
duke@435 2375 //
duke@435 2376 // The semaphore has been incremented, but while we were waiting
duke@435 2377 // another thread suspended us. We don't want to continue running
duke@435 2378 // while suspended because that would surprise the thread that
duke@435 2379 // suspended us.
duke@435 2380 //
duke@435 2381 ::sem_post(&sig_sem);
duke@435 2382
duke@435 2383 thread->java_suspend_self();
duke@435 2384 }
duke@435 2385 } while (threadIsSuspended);
duke@435 2386 }
duke@435 2387 }
duke@435 2388
duke@435 2389 int os::signal_lookup() {
duke@435 2390 return check_pending_signals(false);
duke@435 2391 }
duke@435 2392
duke@435 2393 int os::signal_wait() {
duke@435 2394 return check_pending_signals(true);
duke@435 2395 }
duke@435 2396
duke@435 2397 ////////////////////////////////////////////////////////////////////////////////
duke@435 2398 // Virtual Memory
duke@435 2399
duke@435 2400 int os::vm_page_size() {
duke@435 2401 // Seems redundant as all get out
duke@435 2402 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2403 return os::Linux::page_size();
duke@435 2404 }
duke@435 2405
duke@435 2406 // Solaris allocates memory by pages.
duke@435 2407 int os::vm_allocation_granularity() {
duke@435 2408 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2409 return os::Linux::page_size();
duke@435 2410 }
duke@435 2411
duke@435 2412 // Rationale behind this function:
duke@435 2413 // current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
duke@435 2414 // mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
duke@435 2415 // samples for JITted code. Here we create private executable mapping over the code cache
duke@435 2416 // and then we can use standard (well, almost, as mapping can change) way to provide
duke@435 2417 // info for the reporting script by storing timestamp and location of symbol
duke@435 2418 void linux_wrap_code(char* base, size_t size) {
duke@435 2419 static volatile jint cnt = 0;
duke@435 2420
duke@435 2421 if (!UseOprofile) {
duke@435 2422 return;
duke@435 2423 }
duke@435 2424
coleenp@1852 2425 char buf[PATH_MAX+1];
duke@435 2426 int num = Atomic::add(1, &cnt);
duke@435 2427
coleenp@1788 2428 snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
coleenp@1788 2429 os::get_temp_directory(), os::current_process_id(), num);
duke@435 2430 unlink(buf);
duke@435 2431
ikrylov@2322 2432 int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
duke@435 2433
duke@435 2434 if (fd != -1) {
ikrylov@2322 2435 off_t rv = ::lseek(fd, size-2, SEEK_SET);
duke@435 2436 if (rv != (off_t)-1) {
ikrylov@2322 2437 if (::write(fd, "", 1) == 1) {
duke@435 2438 mmap(base, size,
duke@435 2439 PROT_READ|PROT_WRITE|PROT_EXEC,
duke@435 2440 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
duke@435 2441 }
duke@435 2442 }
ikrylov@2322 2443 ::close(fd);
duke@435 2444 unlink(buf);
duke@435 2445 }
duke@435 2446 }
duke@435 2447
duke@435 2448 // NOTE: Linux kernel does not really reserve the pages for us.
duke@435 2449 // All it does is to check if there are enough free pages
duke@435 2450 // left at the time of mmap(). This could be a potential
duke@435 2451 // problem.
coleenp@1091 2452 bool os::commit_memory(char* addr, size_t size, bool exec) {
coleenp@1091 2453 int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
coleenp@1091 2454 uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
duke@435 2455 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
duke@435 2456 return res != (uintptr_t) MAP_FAILED;
duke@435 2457 }
duke@435 2458
coleenp@1091 2459 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
coleenp@1091 2460 bool exec) {
coleenp@1091 2461 return commit_memory(addr, size, exec);
duke@435 2462 }
duke@435 2463
duke@435 2464 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
iveresov@576 2465
iveresov@576 2466 void os::free_memory(char *addr, size_t bytes) {
iveresov@1196 2467 ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
iveresov@1196 2468 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
iveresov@576 2469 }
iveresov@576 2470
iveresov@897 2471 void os::numa_make_global(char *addr, size_t bytes) {
iveresov@897 2472 Linux::numa_interleave_memory(addr, bytes);
iveresov@897 2473 }
iveresov@576 2474
iveresov@576 2475 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
iveresov@576 2476 Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
iveresov@576 2477 }
iveresov@576 2478
iveresov@576 2479 bool os::numa_topology_changed() { return false; }
iveresov@576 2480
iveresov@576 2481 size_t os::numa_get_groups_num() {
iveresov@576 2482 int max_node = Linux::numa_max_node();
iveresov@576 2483 return max_node > 0 ? max_node + 1 : 1;
iveresov@576 2484 }
iveresov@576 2485
iveresov@576 2486 int os::numa_get_group_id() {
iveresov@576 2487 int cpu_id = Linux::sched_getcpu();
iveresov@576 2488 if (cpu_id != -1) {
iveresov@576 2489 int lgrp_id = Linux::get_node_by_cpu(cpu_id);
iveresov@576 2490 if (lgrp_id != -1) {
iveresov@576 2491 return lgrp_id;
iveresov@576 2492 }
duke@435 2493 }
duke@435 2494 return 0;
duke@435 2495 }
duke@435 2496
iveresov@576 2497 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
iveresov@576 2498 for (size_t i = 0; i < size; i++) {
iveresov@576 2499 ids[i] = i;
iveresov@576 2500 }
iveresov@576 2501 return size;
iveresov@576 2502 }
iveresov@576 2503
duke@435 2504 bool os::get_page_info(char *start, page_info* info) {
duke@435 2505 return false;
duke@435 2506 }
duke@435 2507
duke@435 2508 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 2509 return end;
duke@435 2510 }
duke@435 2511
coleenp@2507 2512 // Something to do with the numa-aware allocator needs these symbols
coleenp@2507 2513 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
coleenp@2507 2514 extern "C" JNIEXPORT void numa_error(char *where) { }
coleenp@2507 2515 extern "C" JNIEXPORT int fork1() { return fork(); }
iveresov@576 2516
iveresov@1198 2517
iveresov@1198 2518 // If we are running with libnuma version > 2, then we should
iveresov@1198 2519 // be trying to use symbols with versions 1.1
iveresov@1198 2520 // If we are running with earlier version, which did not have symbol versions,
iveresov@1198 2521 // we should use the base version.
iveresov@1198 2522 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
iveresov@1198 2523 void *f = dlvsym(handle, name, "libnuma_1.1");
iveresov@1198 2524 if (f == NULL) {
iveresov@1198 2525 f = dlsym(handle, name);
iveresov@1198 2526 }
iveresov@1198 2527 return f;
iveresov@1198 2528 }
iveresov@1198 2529
iveresov@897 2530 bool os::Linux::libnuma_init() {
iveresov@576 2531 // sched_getcpu() should be in libc.
iveresov@576 2532 set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
iveresov@576 2533 dlsym(RTLD_DEFAULT, "sched_getcpu")));
iveresov@576 2534
iveresov@576 2535 if (sched_getcpu() != -1) { // Does it work?
iveresov@702 2536 void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
iveresov@576 2537 if (handle != NULL) {
iveresov@576 2538 set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
iveresov@1198 2539 libnuma_dlsym(handle, "numa_node_to_cpus")));
iveresov@576 2540 set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
iveresov@1198 2541 libnuma_dlsym(handle, "numa_max_node")));
iveresov@576 2542 set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
iveresov@1198 2543 libnuma_dlsym(handle, "numa_available")));
iveresov@576 2544 set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
iveresov@1198 2545 libnuma_dlsym(handle, "numa_tonode_memory")));
iveresov@897 2546 set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
iveresov@1198 2547 libnuma_dlsym(handle, "numa_interleave_memory")));
iveresov@897 2548
iveresov@897 2549
iveresov@576 2550 if (numa_available() != -1) {
iveresov@1198 2551 set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
iveresov@576 2552 // Create a cpu -> node mapping
iveresov@576 2553 _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
iveresov@576 2554 rebuild_cpu_to_node_map();
iveresov@897 2555 return true;
iveresov@576 2556 }
iveresov@576 2557 }
iveresov@576 2558 }
iveresov@897 2559 return false;
iveresov@576 2560 }
iveresov@576 2561
iveresov@576 2562 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
iveresov@576 2563 // The table is later used in get_node_by_cpu().
iveresov@576 2564 void os::Linux::rebuild_cpu_to_node_map() {
iveresov@897 2565 const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
iveresov@897 2566 // in libnuma (possible values are starting from 16,
iveresov@897 2567 // and continuing up with every other power of 2, but less
iveresov@897 2568 // than the maximum number of CPUs supported by kernel), and
iveresov@897 2569 // is a subject to change (in libnuma version 2 the requirements
iveresov@897 2570 // are more reasonable) we'll just hardcode the number they use
iveresov@897 2571 // in the library.
iveresov@897 2572 const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
iveresov@897 2573
iveresov@897 2574 size_t cpu_num = os::active_processor_count();
iveresov@897 2575 size_t cpu_map_size = NCPUS / BitsPerCLong;
iveresov@897 2576 size_t cpu_map_valid_size =
iveresov@897 2577 MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
iveresov@897 2578
iveresov@576 2579 cpu_to_node()->clear();
iveresov@576 2580 cpu_to_node()->at_grow(cpu_num - 1);
iveresov@897 2581 size_t node_num = numa_get_groups_num();
iveresov@897 2582
iveresov@576 2583 unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
iveresov@897 2584 for (size_t i = 0; i < node_num; i++) {
iveresov@576 2585 if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
iveresov@897 2586 for (size_t j = 0; j < cpu_map_valid_size; j++) {
iveresov@576 2587 if (cpu_map[j] != 0) {
iveresov@897 2588 for (size_t k = 0; k < BitsPerCLong; k++) {
iveresov@576 2589 if (cpu_map[j] & (1UL << k)) {
iveresov@897 2590 cpu_to_node()->at_put(j * BitsPerCLong + k, i);
iveresov@576 2591 }
iveresov@576 2592 }
iveresov@576 2593 }
iveresov@576 2594 }
iveresov@576 2595 }
iveresov@576 2596 }
iveresov@576 2597 FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
iveresov@576 2598 }
iveresov@576 2599
iveresov@576 2600 int os::Linux::get_node_by_cpu(int cpu_id) {
iveresov@576 2601 if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
iveresov@576 2602 return cpu_to_node()->at(cpu_id);
iveresov@576 2603 }
iveresov@576 2604 return -1;
iveresov@576 2605 }
iveresov@576 2606
iveresov@576 2607 GrowableArray<int>* os::Linux::_cpu_to_node;
iveresov@576 2608 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
iveresov@576 2609 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
iveresov@576 2610 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
iveresov@576 2611 os::Linux::numa_available_func_t os::Linux::_numa_available;
iveresov@576 2612 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
iveresov@897 2613 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
iveresov@897 2614 unsigned long* os::Linux::_numa_all_nodes;
iveresov@576 2615
duke@435 2616 bool os::uncommit_memory(char* addr, size_t size) {
bobv@2036 2617 uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
bobv@2036 2618 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
bobv@2036 2619 return res != (uintptr_t) MAP_FAILED;
duke@435 2620 }
duke@435 2621
coleenp@1755 2622 // Linux uses a growable mapping for the stack, and if the mapping for
coleenp@1755 2623 // the stack guard pages is not removed when we detach a thread the
coleenp@1755 2624 // stack cannot grow beyond the pages where the stack guard was
coleenp@1755 2625 // mapped. If at some point later in the process the stack expands to
coleenp@1755 2626 // that point, the Linux kernel cannot expand the stack any further
coleenp@1755 2627 // because the guard pages are in the way, and a segfault occurs.
coleenp@1755 2628 //
coleenp@1755 2629 // However, it's essential not to split the stack region by unmapping
coleenp@1755 2630 // a region (leaving a hole) that's already part of the stack mapping,
coleenp@1755 2631 // so if the stack mapping has already grown beyond the guard pages at
coleenp@1755 2632 // the time we create them, we have to truncate the stack mapping.
coleenp@1755 2633 // So, we need to know the extent of the stack mapping when
coleenp@1755 2634 // create_stack_guard_pages() is called.
coleenp@1755 2635
coleenp@1755 2636 // Find the bounds of the stack mapping. Return true for success.
coleenp@1755 2637 //
coleenp@1755 2638 // We only need this for stacks that are growable: at the time of
coleenp@1755 2639 // writing thread stacks don't use growable mappings (i.e. those
coleenp@1755 2640 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
coleenp@1755 2641 // only applies to the main thread.
coleenp@1755 2642 static bool
coleenp@1755 2643 get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
coleenp@1755 2644 {
coleenp@1755 2645 FILE *f = fopen("/proc/self/maps", "r");
coleenp@1755 2646 if (f == NULL)
coleenp@1755 2647 return false;
coleenp@1755 2648
coleenp@1755 2649 while (!feof(f)) {
coleenp@1755 2650 size_t dummy;
coleenp@1755 2651 char *str = NULL;
coleenp@1755 2652 ssize_t len = getline(&str, &dummy, f);
coleenp@1755 2653 if (len == -1) {
coleenp@1760 2654 fclose(f);
coleenp@1755 2655 return false;
coleenp@1755 2656 }
coleenp@1755 2657
coleenp@1755 2658 if (len > 0 && str[len-1] == '\n') {
coleenp@1755 2659 str[len-1] = 0;
coleenp@1755 2660 len--;
coleenp@1755 2661 }
coleenp@1755 2662
coleenp@1755 2663 static const char *stack_str = "[stack]";
coleenp@1755 2664 if (len > (ssize_t)strlen(stack_str)
coleenp@1755 2665 && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
coleenp@1755 2666 if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
coleenp@1755 2667 uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
coleenp@1755 2668 if (sp >= *bottom && sp <= *top) {
coleenp@1755 2669 free(str);
coleenp@1760 2670 fclose(f);
coleenp@1755 2671 return true;
coleenp@1755 2672 }
coleenp@1755 2673 }
coleenp@1755 2674 }
coleenp@1755 2675 free(str);
coleenp@1755 2676 }
coleenp@1760 2677 fclose(f);
coleenp@1755 2678 return false;
coleenp@1755 2679 }
coleenp@1755 2680
coleenp@1755 2681 // If the (growable) stack mapping already extends beyond the point
coleenp@1755 2682 // where we're going to put our guard pages, truncate the mapping at
coleenp@1755 2683 // that point by munmap()ping it. This ensures that when we later
coleenp@1755 2684 // munmap() the guard pages we don't leave a hole in the stack
dholmes@2105 2685 // mapping. This only affects the main/initial thread, but guard
dholmes@2105 2686 // against future OS changes
coleenp@1755 2687 bool os::create_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2688 uintptr_t stack_extent, stack_base;
dholmes@2105 2689 bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
dholmes@2105 2690 if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
dholmes@2105 2691 assert(os::Linux::is_initial_thread(),
dholmes@2105 2692 "growable stack in non-initial thread");
coleenp@1755 2693 if (stack_extent < (uintptr_t)addr)
coleenp@1755 2694 ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
coleenp@1755 2695 }
coleenp@1755 2696
coleenp@1755 2697 return os::commit_memory(addr, size);
coleenp@1755 2698 }
coleenp@1755 2699
coleenp@1755 2700 // If this is a growable mapping, remove the guard pages entirely by
dholmes@2105 2701 // munmap()ping them. If not, just call uncommit_memory(). This only
dholmes@2105 2702 // affects the main/initial thread, but guard against future OS changes
coleenp@1755 2703 bool os::remove_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2704 uintptr_t stack_extent, stack_base;
dholmes@2105 2705 bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
dholmes@2105 2706 if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
dholmes@2105 2707 assert(os::Linux::is_initial_thread(),
dholmes@2105 2708 "growable stack in non-initial thread");
dholmes@2105 2709
coleenp@1755 2710 return ::munmap(addr, size) == 0;
coleenp@1755 2711 }
coleenp@1755 2712
coleenp@1755 2713 return os::uncommit_memory(addr, size);
coleenp@1755 2714 }
coleenp@1755 2715
duke@435 2716 static address _highest_vm_reserved_address = NULL;
duke@435 2717
duke@435 2718 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
duke@435 2719 // at 'requested_addr'. If there are existing memory mappings at the same
duke@435 2720 // location, however, they will be overwritten. If 'fixed' is false,
duke@435 2721 // 'requested_addr' is only treated as a hint, the return value may or
duke@435 2722 // may not start from the requested address. Unlike Linux mmap(), this
duke@435 2723 // function returns NULL to indicate failure.
duke@435 2724 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
duke@435 2725 char * addr;
duke@435 2726 int flags;
duke@435 2727
duke@435 2728 flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
duke@435 2729 if (fixed) {
duke@435 2730 assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
duke@435 2731 flags |= MAP_FIXED;
duke@435 2732 }
duke@435 2733
coleenp@1091 2734 // Map uncommitted pages PROT_READ and PROT_WRITE, change access
coleenp@1091 2735 // to PROT_EXEC if executable when we commit the page.
coleenp@1091 2736 addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
duke@435 2737 flags, -1, 0);
duke@435 2738
duke@435 2739 if (addr != MAP_FAILED) {
duke@435 2740 // anon_mmap() should only get called during VM initialization,
duke@435 2741 // don't need lock (actually we can skip locking even it can be called
duke@435 2742 // from multiple threads, because _highest_vm_reserved_address is just a
duke@435 2743 // hint about the upper limit of non-stack memory regions.)
duke@435 2744 if ((address)addr + bytes > _highest_vm_reserved_address) {
duke@435 2745 _highest_vm_reserved_address = (address)addr + bytes;
duke@435 2746 }
duke@435 2747 }
duke@435 2748
duke@435 2749 return addr == MAP_FAILED ? NULL : addr;
duke@435 2750 }
duke@435 2751
duke@435 2752 // Don't update _highest_vm_reserved_address, because there might be memory
duke@435 2753 // regions above addr + size. If so, releasing a memory region only creates
duke@435 2754 // a hole in the address space, it doesn't help prevent heap-stack collision.
duke@435 2755 //
duke@435 2756 static int anon_munmap(char * addr, size_t size) {
duke@435 2757 return ::munmap(addr, size) == 0;
duke@435 2758 }
duke@435 2759
duke@435 2760 char* os::reserve_memory(size_t bytes, char* requested_addr,
duke@435 2761 size_t alignment_hint) {
duke@435 2762 return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
duke@435 2763 }
duke@435 2764
duke@435 2765 bool os::release_memory(char* addr, size_t size) {
duke@435 2766 return anon_munmap(addr, size);
duke@435 2767 }
duke@435 2768
duke@435 2769 static address highest_vm_reserved_address() {
duke@435 2770 return _highest_vm_reserved_address;
duke@435 2771 }
duke@435 2772
duke@435 2773 static bool linux_mprotect(char* addr, size_t size, int prot) {
duke@435 2774 // Linux wants the mprotect address argument to be page aligned.
duke@435 2775 char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
duke@435 2776
duke@435 2777 // According to SUSv3, mprotect() should only be used with mappings
duke@435 2778 // established by mmap(), and mmap() always maps whole pages. Unaligned
duke@435 2779 // 'addr' likely indicates problem in the VM (e.g. trying to change
duke@435 2780 // protection of malloc'ed or statically allocated memory). Check the
duke@435 2781 // caller if you hit this assert.
duke@435 2782 assert(addr == bottom, "sanity check");
duke@435 2783
duke@435 2784 size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
duke@435 2785 return ::mprotect(bottom, size, prot) == 0;
duke@435 2786 }
duke@435 2787
coleenp@672 2788 // Set protections specified
coleenp@672 2789 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 2790 bool is_committed) {
coleenp@672 2791 unsigned int p = 0;
coleenp@672 2792 switch (prot) {
coleenp@672 2793 case MEM_PROT_NONE: p = PROT_NONE; break;
coleenp@672 2794 case MEM_PROT_READ: p = PROT_READ; break;
coleenp@672 2795 case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
coleenp@672 2796 case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
coleenp@672 2797 default:
coleenp@672 2798 ShouldNotReachHere();
coleenp@672 2799 }
coleenp@672 2800 // is_committed is unused.
coleenp@672 2801 return linux_mprotect(addr, bytes, p);
duke@435 2802 }
duke@435 2803
duke@435 2804 bool os::guard_memory(char* addr, size_t size) {
duke@435 2805 return linux_mprotect(addr, size, PROT_NONE);
duke@435 2806 }
duke@435 2807
duke@435 2808 bool os::unguard_memory(char* addr, size_t size) {
coleenp@912 2809 return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
duke@435 2810 }
duke@435 2811
duke@435 2812 // Large page support
duke@435 2813
duke@435 2814 static size_t _large_page_size = 0;
duke@435 2815
duke@435 2816 bool os::large_page_init() {
duke@435 2817 if (!UseLargePages) return false;
duke@435 2818
duke@435 2819 if (LargePageSizeInBytes) {
duke@435 2820 _large_page_size = LargePageSizeInBytes;
duke@435 2821 } else {
duke@435 2822 // large_page_size on Linux is used to round up heap size. x86 uses either
duke@435 2823 // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
duke@435 2824 // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
duke@435 2825 // page as large as 256M.
duke@435 2826 //
duke@435 2827 // Here we try to figure out page size by parsing /proc/meminfo and looking
duke@435 2828 // for a line with the following format:
duke@435 2829 // Hugepagesize: 2048 kB
duke@435 2830 //
duke@435 2831 // If we can't determine the value (e.g. /proc is not mounted, or the text
duke@435 2832 // format has been changed), we'll use the largest page size supported by
duke@435 2833 // the processor.
duke@435 2834
never@1445 2835 #ifndef ZERO
bobv@2036 2836 _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
bobv@2036 2837 ARM_ONLY(2 * M) PPC_ONLY(4 * M);
never@1445 2838 #endif // ZERO
duke@435 2839
duke@435 2840 FILE *fp = fopen("/proc/meminfo", "r");
duke@435 2841 if (fp) {
duke@435 2842 while (!feof(fp)) {
duke@435 2843 int x = 0;
duke@435 2844 char buf[16];
duke@435 2845 if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
duke@435 2846 if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
duke@435 2847 _large_page_size = x * K;
duke@435 2848 break;
duke@435 2849 }
duke@435 2850 } else {
duke@435 2851 // skip to next line
duke@435 2852 for (;;) {
duke@435 2853 int ch = fgetc(fp);
duke@435 2854 if (ch == EOF || ch == (int)'\n') break;
duke@435 2855 }
duke@435 2856 }
duke@435 2857 }
duke@435 2858 fclose(fp);
duke@435 2859 }
duke@435 2860 }
duke@435 2861
duke@435 2862 const size_t default_page_size = (size_t)Linux::page_size();
duke@435 2863 if (_large_page_size > default_page_size) {
duke@435 2864 _page_sizes[0] = _large_page_size;
duke@435 2865 _page_sizes[1] = default_page_size;
duke@435 2866 _page_sizes[2] = 0;
duke@435 2867 }
duke@435 2868
duke@435 2869 // Large page support is available on 2.6 or newer kernel, some vendors
duke@435 2870 // (e.g. Redhat) have backported it to their 2.4 based distributions.
duke@435 2871 // We optimistically assume the support is available. If later it turns out
duke@435 2872 // not true, VM will automatically switch to use regular page size.
duke@435 2873 return true;
duke@435 2874 }
duke@435 2875
duke@435 2876 #ifndef SHM_HUGETLB
duke@435 2877 #define SHM_HUGETLB 04000
duke@435 2878 #endif
duke@435 2879
coleenp@1091 2880 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
coleenp@1091 2881 // "exec" is passed in but not used. Creating the shared image for
coleenp@1091 2882 // the code cache doesn't have an SHM_X executable permission to check.
duke@435 2883 assert(UseLargePages, "only for large pages");
duke@435 2884
duke@435 2885 key_t key = IPC_PRIVATE;
duke@435 2886 char *addr;
duke@435 2887
duke@435 2888 bool warn_on_failure = UseLargePages &&
duke@435 2889 (!FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 2890 !FLAG_IS_DEFAULT(LargePageSizeInBytes)
duke@435 2891 );
duke@435 2892 char msg[128];
duke@435 2893
duke@435 2894 // Create a large shared memory region to attach to based on size.
duke@435 2895 // Currently, size is the total size of the heap
duke@435 2896 int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
duke@435 2897 if (shmid == -1) {
duke@435 2898 // Possible reasons for shmget failure:
duke@435 2899 // 1. shmmax is too small for Java heap.
duke@435 2900 // > check shmmax value: cat /proc/sys/kernel/shmmax
duke@435 2901 // > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
duke@435 2902 // 2. not enough large page memory.
duke@435 2903 // > check available large pages: cat /proc/meminfo
duke@435 2904 // > increase amount of large pages:
duke@435 2905 // echo new_value > /proc/sys/vm/nr_hugepages
duke@435 2906 // Note 1: different Linux may use different name for this property,
duke@435 2907 // e.g. on Redhat AS-3 it is "hugetlb_pool".
duke@435 2908 // Note 2: it's possible there's enough physical memory available but
duke@435 2909 // they are so fragmented after a long run that they can't
duke@435 2910 // coalesce into large pages. Try to reserve large pages when
duke@435 2911 // the system is still "fresh".
duke@435 2912 if (warn_on_failure) {
duke@435 2913 jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
duke@435 2914 warning(msg);
duke@435 2915 }
duke@435 2916 return NULL;
duke@435 2917 }
duke@435 2918
duke@435 2919 // attach to the region
kvn@1892 2920 addr = (char*)shmat(shmid, req_addr, 0);
duke@435 2921 int err = errno;
duke@435 2922
duke@435 2923 // Remove shmid. If shmat() is successful, the actual shared memory segment
duke@435 2924 // will be deleted when it's detached by shmdt() or when the process
duke@435 2925 // terminates. If shmat() is not successful this will remove the shared
duke@435 2926 // segment immediately.
duke@435 2927 shmctl(shmid, IPC_RMID, NULL);
duke@435 2928
duke@435 2929 if ((intptr_t)addr == -1) {
duke@435 2930 if (warn_on_failure) {
duke@435 2931 jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
duke@435 2932 warning(msg);
duke@435 2933 }
duke@435 2934 return NULL;
duke@435 2935 }
duke@435 2936
duke@435 2937 return addr;
duke@435 2938 }
duke@435 2939
duke@435 2940 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 2941 // detaching the SHM segment will also delete it, see reserve_memory_special()
duke@435 2942 int rslt = shmdt(base);
duke@435 2943 return rslt == 0;
duke@435 2944 }
duke@435 2945
duke@435 2946 size_t os::large_page_size() {
duke@435 2947 return _large_page_size;
duke@435 2948 }
duke@435 2949
duke@435 2950 // Linux does not support anonymous mmap with large page memory. The only way
duke@435 2951 // to reserve large page memory without file backing is through SysV shared
duke@435 2952 // memory API. The entire memory region is committed and pinned upfront.
duke@435 2953 // Hopefully this will change in the future...
duke@435 2954 bool os::can_commit_large_page_memory() {
duke@435 2955 return false;
duke@435 2956 }
duke@435 2957
jcoomes@514 2958 bool os::can_execute_large_page_memory() {
jcoomes@514 2959 return false;
jcoomes@514 2960 }
jcoomes@514 2961
duke@435 2962 // Reserve memory at an arbitrary address, only if that area is
duke@435 2963 // available (and not reserved for something else).
duke@435 2964
duke@435 2965 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 2966 const int max_tries = 10;
duke@435 2967 char* base[max_tries];
duke@435 2968 size_t size[max_tries];
duke@435 2969 const size_t gap = 0x000000;
duke@435 2970
duke@435 2971 // Assert only that the size is a multiple of the page size, since
duke@435 2972 // that's all that mmap requires, and since that's all we really know
duke@435 2973 // about at this low abstraction level. If we need higher alignment,
duke@435 2974 // we can either pass an alignment to this method or verify alignment
duke@435 2975 // in one of the methods further up the call chain. See bug 5044738.
duke@435 2976 assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
duke@435 2977
duke@435 2978 // Repeatedly allocate blocks until the block is allocated at the
duke@435 2979 // right spot. Give up after max_tries. Note that reserve_memory() will
duke@435 2980 // automatically update _highest_vm_reserved_address if the call is
duke@435 2981 // successful. The variable tracks the highest memory address every reserved
duke@435 2982 // by JVM. It is used to detect heap-stack collision if running with
duke@435 2983 // fixed-stack LinuxThreads. Because here we may attempt to reserve more
duke@435 2984 // space than needed, it could confuse the collision detecting code. To
duke@435 2985 // solve the problem, save current _highest_vm_reserved_address and
duke@435 2986 // calculate the correct value before return.
duke@435 2987 address old_highest = _highest_vm_reserved_address;
duke@435 2988
duke@435 2989 // Linux mmap allows caller to pass an address as hint; give it a try first,
duke@435 2990 // if kernel honors the hint then we can return immediately.
duke@435 2991 char * addr = anon_mmap(requested_addr, bytes, false);
duke@435 2992 if (addr == requested_addr) {
duke@435 2993 return requested_addr;
duke@435 2994 }
duke@435 2995
duke@435 2996 if (addr != NULL) {
duke@435 2997 // mmap() is successful but it fails to reserve at the requested address
duke@435 2998 anon_munmap(addr, bytes);
duke@435 2999 }
duke@435 3000
duke@435 3001 int i;
duke@435 3002 for (i = 0; i < max_tries; ++i) {
duke@435 3003 base[i] = reserve_memory(bytes);
duke@435 3004
duke@435 3005 if (base[i] != NULL) {
duke@435 3006 // Is this the block we wanted?
duke@435 3007 if (base[i] == requested_addr) {
duke@435 3008 size[i] = bytes;
duke@435 3009 break;
duke@435 3010 }
duke@435 3011
duke@435 3012 // Does this overlap the block we wanted? Give back the overlapped
duke@435 3013 // parts and try again.
duke@435 3014
duke@435 3015 size_t top_overlap = requested_addr + (bytes + gap) - base[i];
duke@435 3016 if (top_overlap >= 0 && top_overlap < bytes) {
duke@435 3017 unmap_memory(base[i], top_overlap);
duke@435 3018 base[i] += top_overlap;
duke@435 3019 size[i] = bytes - top_overlap;
duke@435 3020 } else {
duke@435 3021 size_t bottom_overlap = base[i] + bytes - requested_addr;
duke@435 3022 if (bottom_overlap >= 0 && bottom_overlap < bytes) {
duke@435 3023 unmap_memory(requested_addr, bottom_overlap);
duke@435 3024 size[i] = bytes - bottom_overlap;
duke@435 3025 } else {
duke@435 3026 size[i] = bytes;
duke@435 3027 }
duke@435 3028 }
duke@435 3029 }
duke@435 3030 }
duke@435 3031
duke@435 3032 // Give back the unused reserved pieces.
duke@435 3033
duke@435 3034 for (int j = 0; j < i; ++j) {
duke@435 3035 if (base[j] != NULL) {
duke@435 3036 unmap_memory(base[j], size[j]);
duke@435 3037 }
duke@435 3038 }
duke@435 3039
duke@435 3040 if (i < max_tries) {
duke@435 3041 _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
duke@435 3042 return requested_addr;
duke@435 3043 } else {
duke@435 3044 _highest_vm_reserved_address = old_highest;
duke@435 3045 return NULL;
duke@435 3046 }
duke@435 3047 }
duke@435 3048
duke@435 3049 size_t os::read(int fd, void *buf, unsigned int nBytes) {
duke@435 3050 return ::read(fd, buf, nBytes);
duke@435 3051 }
duke@435 3052
duke@435 3053 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
duke@435 3054 // Solaris uses poll(), linux uses park().
duke@435 3055 // Poll() is likely a better choice, assuming that Thread.interrupt()
duke@435 3056 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
duke@435 3057 // SIGSEGV, see 4355769.
duke@435 3058
duke@435 3059 const int NANOSECS_PER_MILLISECS = 1000000;
duke@435 3060
duke@435 3061 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
duke@435 3062 assert(thread == Thread::current(), "thread consistency check");
duke@435 3063
duke@435 3064 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 3065 slp->reset() ;
duke@435 3066 OrderAccess::fence() ;
duke@435 3067
duke@435 3068 if (interruptible) {
duke@435 3069 jlong prevtime = javaTimeNanos();
duke@435 3070
duke@435 3071 for (;;) {
duke@435 3072 if (os::is_interrupted(thread, true)) {
duke@435 3073 return OS_INTRPT;
duke@435 3074 }
duke@435 3075
duke@435 3076 jlong newtime = javaTimeNanos();
duke@435 3077
duke@435 3078 if (newtime - prevtime < 0) {
duke@435 3079 // time moving backwards, should only happen if no monotonic clock
duke@435 3080 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 3081 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 3082 } else {
duke@435 3083 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 3084 }
duke@435 3085
duke@435 3086 if(millis <= 0) {
duke@435 3087 return OS_OK;
duke@435 3088 }
duke@435 3089
duke@435 3090 prevtime = newtime;
duke@435 3091
duke@435 3092 {
duke@435 3093 assert(thread->is_Java_thread(), "sanity check");
duke@435 3094 JavaThread *jt = (JavaThread *) thread;
duke@435 3095 ThreadBlockInVM tbivm(jt);
duke@435 3096 OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
duke@435 3097
duke@435 3098 jt->set_suspend_equivalent();
duke@435 3099 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 3100 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 3101
duke@435 3102 slp->park(millis);
duke@435 3103
duke@435 3104 // were we externally suspended while we were waiting?
duke@435 3105 jt->check_and_wait_while_suspended();
duke@435 3106 }
duke@435 3107 }
duke@435 3108 } else {
duke@435 3109 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 3110 jlong prevtime = javaTimeNanos();
duke@435 3111
duke@435 3112 for (;;) {
duke@435 3113 // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
duke@435 3114 // the 1st iteration ...
duke@435 3115 jlong newtime = javaTimeNanos();
duke@435 3116
duke@435 3117 if (newtime - prevtime < 0) {
duke@435 3118 // time moving backwards, should only happen if no monotonic clock
duke@435 3119 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 3120 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 3121 } else {
duke@435 3122 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 3123 }
duke@435 3124
duke@435 3125 if(millis <= 0) break ;
duke@435 3126
duke@435 3127 prevtime = newtime;
duke@435 3128 slp->park(millis);
duke@435 3129 }
duke@435 3130 return OS_OK ;
duke@435 3131 }
duke@435 3132 }
duke@435 3133
duke@435 3134 int os::naked_sleep() {
duke@435 3135 // %% make the sleep time an integer flag. for now use 1 millisec.
duke@435 3136 return os::sleep(Thread::current(), 1, false);
duke@435 3137 }
duke@435 3138
duke@435 3139 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 3140 void os::infinite_sleep() {
duke@435 3141 while (true) { // sleep forever ...
duke@435 3142 ::sleep(100); // ... 100 seconds at a time
duke@435 3143 }
duke@435 3144 }
duke@435 3145
duke@435 3146 // Used to convert frequent JVM_Yield() to nops
duke@435 3147 bool os::dont_yield() {
duke@435 3148 return DontYieldALot;
duke@435 3149 }
duke@435 3150
duke@435 3151 void os::yield() {
duke@435 3152 sched_yield();
duke@435 3153 }
duke@435 3154
duke@435 3155 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
duke@435 3156
duke@435 3157 void os::yield_all(int attempts) {
duke@435 3158 // Yields to all threads, including threads with lower priorities
duke@435 3159 // Threads on Linux are all with same priority. The Solaris style
duke@435 3160 // os::yield_all() with nanosleep(1ms) is not necessary.
duke@435 3161 sched_yield();
duke@435 3162 }
duke@435 3163
duke@435 3164 // Called from the tight loops to possibly influence time-sharing heuristics
duke@435 3165 void os::loop_breaker(int attempts) {
duke@435 3166 os::yield_all(attempts);
duke@435 3167 }
duke@435 3168
duke@435 3169 ////////////////////////////////////////////////////////////////////////////////
duke@435 3170 // thread priority support
duke@435 3171
duke@435 3172 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
duke@435 3173 // only supports dynamic priority, static priority must be zero. For real-time
duke@435 3174 // applications, Linux supports SCHED_RR which allows static priority (1-99).
duke@435 3175 // However, for large multi-threaded applications, SCHED_RR is not only slower
duke@435 3176 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
duke@435 3177 // of 5 runs - Sep 2005).
duke@435 3178 //
duke@435 3179 // The following code actually changes the niceness of kernel-thread/LWP. It
duke@435 3180 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
duke@435 3181 // not the entire user process, and user level threads are 1:1 mapped to kernel
duke@435 3182 // threads. It has always been the case, but could change in the future. For
duke@435 3183 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
duke@435 3184 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
duke@435 3185
duke@435 3186 int os::java_to_os_priority[MaxPriority + 1] = {
duke@435 3187 19, // 0 Entry should never be used
duke@435 3188
duke@435 3189 4, // 1 MinPriority
duke@435 3190 3, // 2
duke@435 3191 2, // 3
duke@435 3192
duke@435 3193 1, // 4
duke@435 3194 0, // 5 NormPriority
duke@435 3195 -1, // 6
duke@435 3196
duke@435 3197 -2, // 7
duke@435 3198 -3, // 8
duke@435 3199 -4, // 9 NearMaxPriority
duke@435 3200
duke@435 3201 -5 // 10 MaxPriority
duke@435 3202 };
duke@435 3203
duke@435 3204 static int prio_init() {
duke@435 3205 if (ThreadPriorityPolicy == 1) {
duke@435 3206 // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
duke@435 3207 // if effective uid is not root. Perhaps, a more elegant way of doing
duke@435 3208 // this is to test CAP_SYS_NICE capability, but that will require libcap.so
duke@435 3209 if (geteuid() != 0) {
duke@435 3210 if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
duke@435 3211 warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
duke@435 3212 }
duke@435 3213 ThreadPriorityPolicy = 0;
duke@435 3214 }
duke@435 3215 }
duke@435 3216 return 0;
duke@435 3217 }
duke@435 3218
duke@435 3219 OSReturn os::set_native_priority(Thread* thread, int newpri) {
duke@435 3220 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
duke@435 3221
duke@435 3222 int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
duke@435 3223 return (ret == 0) ? OS_OK : OS_ERR;
duke@435 3224 }
duke@435 3225
duke@435 3226 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
duke@435 3227 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
duke@435 3228 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 3229 return OS_OK;
duke@435 3230 }
duke@435 3231
duke@435 3232 errno = 0;
duke@435 3233 *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
duke@435 3234 return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
duke@435 3235 }
duke@435 3236
duke@435 3237 // Hint to the underlying OS that a task switch would not be good.
duke@435 3238 // Void return because it's a hint and can fail.
duke@435 3239 void os::hint_no_preempt() {}
duke@435 3240
duke@435 3241 ////////////////////////////////////////////////////////////////////////////////
duke@435 3242 // suspend/resume support
duke@435 3243
duke@435 3244 // the low-level signal-based suspend/resume support is a remnant from the
duke@435 3245 // old VM-suspension that used to be for java-suspension, safepoints etc,
duke@435 3246 // within hotspot. Now there is a single use-case for this:
duke@435 3247 // - calling get_thread_pc() on the VMThread by the flat-profiler task
duke@435 3248 // that runs in the watcher thread.
duke@435 3249 // The remaining code is greatly simplified from the more general suspension
duke@435 3250 // code that used to be used.
duke@435 3251 //
duke@435 3252 // The protocol is quite simple:
duke@435 3253 // - suspend:
duke@435 3254 // - sends a signal to the target thread
duke@435 3255 // - polls the suspend state of the osthread using a yield loop
duke@435 3256 // - target thread signal handler (SR_handler) sets suspend state
duke@435 3257 // and blocks in sigsuspend until continued
duke@435 3258 // - resume:
duke@435 3259 // - sets target osthread state to continue
duke@435 3260 // - sends signal to end the sigsuspend loop in the SR_handler
duke@435 3261 //
duke@435 3262 // Note that the SR_lock plays no role in this suspend/resume protocol.
duke@435 3263 //
duke@435 3264
duke@435 3265 static void resume_clear_context(OSThread *osthread) {
duke@435 3266 osthread->set_ucontext(NULL);
duke@435 3267 osthread->set_siginfo(NULL);
duke@435 3268
duke@435 3269 // notify the suspend action is completed, we have now resumed
duke@435 3270 osthread->sr.clear_suspended();
duke@435 3271 }
duke@435 3272
duke@435 3273 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3274 osthread->set_ucontext(context);
duke@435 3275 osthread->set_siginfo(siginfo);
duke@435 3276 }
duke@435 3277
duke@435 3278 //
duke@435 3279 // Handler function invoked when a thread's execution is suspended or
duke@435 3280 // resumed. We have to be careful that only async-safe functions are
duke@435 3281 // called here (Note: most pthread functions are not async safe and
duke@435 3282 // should be avoided.)
duke@435 3283 //
duke@435 3284 // Note: sigwait() is a more natural fit than sigsuspend() from an
duke@435 3285 // interface point of view, but sigwait() prevents the signal hander
duke@435 3286 // from being run. libpthread would get very confused by not having
duke@435 3287 // its signal handlers run and prevents sigwait()'s use with the
duke@435 3288 // mutex granting granting signal.
duke@435 3289 //
duke@435 3290 // Currently only ever called on the VMThread
duke@435 3291 //
duke@435 3292 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3293 // Save and restore errno to avoid confusing native code with EINTR
duke@435 3294 // after sigsuspend.
duke@435 3295 int old_errno = errno;
duke@435 3296
duke@435 3297 Thread* thread = Thread::current();
duke@435 3298 OSThread* osthread = thread->osthread();
duke@435 3299 assert(thread->is_VM_thread(), "Must be VMThread");
duke@435 3300 // read current suspend action
duke@435 3301 int action = osthread->sr.suspend_action();
duke@435 3302 if (action == SR_SUSPEND) {
duke@435 3303 suspend_save_context(osthread, siginfo, context);
duke@435 3304
duke@435 3305 // Notify the suspend action is about to be completed. do_suspend()
duke@435 3306 // waits until SR_SUSPENDED is set and then returns. We will wait
duke@435 3307 // here for a resume signal and that completes the suspend-other
duke@435 3308 // action. do_suspend/do_resume is always called as a pair from
duke@435 3309 // the same thread - so there are no races
duke@435 3310
duke@435 3311 // notify the caller
duke@435 3312 osthread->sr.set_suspended();
duke@435 3313
duke@435 3314 sigset_t suspend_set; // signals for sigsuspend()
duke@435 3315
duke@435 3316 // get current set of blocked signals and unblock resume signal
duke@435 3317 pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
duke@435 3318 sigdelset(&suspend_set, SR_signum);
duke@435 3319
duke@435 3320 // wait here until we are resumed
duke@435 3321 do {
duke@435 3322 sigsuspend(&suspend_set);
duke@435 3323 // ignore all returns until we get a resume signal
duke@435 3324 } while (osthread->sr.suspend_action() != SR_CONTINUE);
duke@435 3325
duke@435 3326 resume_clear_context(osthread);
duke@435 3327
duke@435 3328 } else {
duke@435 3329 assert(action == SR_CONTINUE, "unexpected sr action");
duke@435 3330 // nothing special to do - just leave the handler
duke@435 3331 }
duke@435 3332
duke@435 3333 errno = old_errno;
duke@435 3334 }
duke@435 3335
duke@435 3336
duke@435 3337 static int SR_initialize() {
duke@435 3338 struct sigaction act;
duke@435 3339 char *s;
duke@435 3340 /* Get signal number to use for suspend/resume */
duke@435 3341 if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
duke@435 3342 int sig = ::strtol(s, 0, 10);
duke@435 3343 if (sig > 0 || sig < _NSIG) {
duke@435 3344 SR_signum = sig;
duke@435 3345 }
duke@435 3346 }
duke@435 3347
duke@435 3348 assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
duke@435 3349 "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
duke@435 3350
duke@435 3351 sigemptyset(&SR_sigset);
duke@435 3352 sigaddset(&SR_sigset, SR_signum);
duke@435 3353
duke@435 3354 /* Set up signal handler for suspend/resume */
duke@435 3355 act.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 3356 act.sa_handler = (void (*)(int)) SR_handler;
duke@435 3357
duke@435 3358 // SR_signum is blocked by default.
duke@435 3359 // 4528190 - We also need to block pthread restart signal (32 on all
duke@435 3360 // supported Linux platforms). Note that LinuxThreads need to block
duke@435 3361 // this signal for all threads to work properly. So we don't have
duke@435 3362 // to use hard-coded signal number when setting up the mask.
duke@435 3363 pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
duke@435 3364
duke@435 3365 if (sigaction(SR_signum, &act, 0) == -1) {
duke@435 3366 return -1;
duke@435 3367 }
duke@435 3368
duke@435 3369 // Save signal flag
duke@435 3370 os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
duke@435 3371 return 0;
duke@435 3372 }
duke@435 3373
duke@435 3374 static int SR_finalize() {
duke@435 3375 return 0;
duke@435 3376 }
duke@435 3377
duke@435 3378
duke@435 3379 // returns true on success and false on error - really an error is fatal
duke@435 3380 // but this seems the normal response to library errors
duke@435 3381 static bool do_suspend(OSThread* osthread) {
duke@435 3382 // mark as suspended and send signal
duke@435 3383 osthread->sr.set_suspend_action(SR_SUSPEND);
duke@435 3384 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3385 assert_status(status == 0, status, "pthread_kill");
duke@435 3386
duke@435 3387 // check status and wait until notified of suspension
duke@435 3388 if (status == 0) {
duke@435 3389 for (int i = 0; !osthread->sr.is_suspended(); i++) {
duke@435 3390 os::yield_all(i);
duke@435 3391 }
duke@435 3392 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3393 return true;
duke@435 3394 }
duke@435 3395 else {
duke@435 3396 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3397 return false;
duke@435 3398 }
duke@435 3399 }
duke@435 3400
duke@435 3401 static void do_resume(OSThread* osthread) {
duke@435 3402 assert(osthread->sr.is_suspended(), "thread should be suspended");
duke@435 3403 osthread->sr.set_suspend_action(SR_CONTINUE);
duke@435 3404
duke@435 3405 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3406 assert_status(status == 0, status, "pthread_kill");
duke@435 3407 // check status and wait unit notified of resumption
duke@435 3408 if (status == 0) {
duke@435 3409 for (int i = 0; osthread->sr.is_suspended(); i++) {
duke@435 3410 os::yield_all(i);
duke@435 3411 }
duke@435 3412 }
duke@435 3413 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3414 }
duke@435 3415
duke@435 3416 ////////////////////////////////////////////////////////////////////////////////
duke@435 3417 // interrupt support
duke@435 3418
duke@435 3419 void os::interrupt(Thread* thread) {
duke@435 3420 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3421 "possibility of dangling Thread pointer");
duke@435 3422
duke@435 3423 OSThread* osthread = thread->osthread();
duke@435 3424
duke@435 3425 if (!osthread->interrupted()) {
duke@435 3426 osthread->set_interrupted(true);
duke@435 3427 // More than one thread can get here with the same value of osthread,
duke@435 3428 // resulting in multiple notifications. We do, however, want the store
duke@435 3429 // to interrupted() to be visible to other threads before we execute unpark().
duke@435 3430 OrderAccess::fence();
duke@435 3431 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 3432 if (slp != NULL) slp->unpark() ;
duke@435 3433 }
duke@435 3434
duke@435 3435 // For JSR166. Unpark even if interrupt status already was set
duke@435 3436 if (thread->is_Java_thread())
duke@435 3437 ((JavaThread*)thread)->parker()->unpark();
duke@435 3438
duke@435 3439 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3440 if (ev != NULL) ev->unpark() ;
duke@435 3441
duke@435 3442 }
duke@435 3443
duke@435 3444 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3445 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3446 "possibility of dangling Thread pointer");
duke@435 3447
duke@435 3448 OSThread* osthread = thread->osthread();
duke@435 3449
duke@435 3450 bool interrupted = osthread->interrupted();
duke@435 3451
duke@435 3452 if (interrupted && clear_interrupted) {
duke@435 3453 osthread->set_interrupted(false);
duke@435 3454 // consider thread->_SleepEvent->reset() ... optional optimization
duke@435 3455 }
duke@435 3456
duke@435 3457 return interrupted;
duke@435 3458 }
duke@435 3459
duke@435 3460 ///////////////////////////////////////////////////////////////////////////////////
duke@435 3461 // signal handling (except suspend/resume)
duke@435 3462
duke@435 3463 // This routine may be used by user applications as a "hook" to catch signals.
duke@435 3464 // The user-defined signal handler must pass unrecognized signals to this
duke@435 3465 // routine, and if it returns true (non-zero), then the signal handler must
duke@435 3466 // return immediately. If the flag "abort_if_unrecognized" is true, then this
duke@435 3467 // routine will never retun false (zero), but instead will execute a VM panic
duke@435 3468 // routine kill the process.
duke@435 3469 //
duke@435 3470 // If this routine returns false, it is OK to call it again. This allows
duke@435 3471 // the user-defined signal handler to perform checks either before or after
duke@435 3472 // the VM performs its own checks. Naturally, the user code would be making
duke@435 3473 // a serious error if it tried to handle an exception (such as a null check
duke@435 3474 // or breakpoint) that the VM was generating for its own correct operation.
duke@435 3475 //
duke@435 3476 // This routine may recognize any of the following kinds of signals:
duke@435 3477 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
duke@435 3478 // It should be consulted by handlers for any of those signals.
duke@435 3479 //
duke@435 3480 // The caller of this routine must pass in the three arguments supplied
duke@435 3481 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
duke@435 3482 // field of the structure passed to sigaction(). This routine assumes that
duke@435 3483 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
duke@435 3484 //
duke@435 3485 // Note that the VM will print warnings if it detects conflicting signal
duke@435 3486 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
duke@435 3487 //
coleenp@2507 3488 extern "C" JNIEXPORT int
duke@435 3489 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
duke@435 3490 void* ucontext, int abort_if_unrecognized);
duke@435 3491
duke@435 3492 void signalHandler(int sig, siginfo_t* info, void* uc) {
duke@435 3493 assert(info != NULL && uc != NULL, "it must be old kernel");
duke@435 3494 JVM_handle_linux_signal(sig, info, uc, true);
duke@435 3495 }
duke@435 3496
duke@435 3497
duke@435 3498 // This boolean allows users to forward their own non-matching signals
duke@435 3499 // to JVM_handle_linux_signal, harmlessly.
duke@435 3500 bool os::Linux::signal_handlers_are_installed = false;
duke@435 3501
duke@435 3502 // For signal-chaining
duke@435 3503 struct sigaction os::Linux::sigact[MAXSIGNUM];
duke@435 3504 unsigned int os::Linux::sigs = 0;
duke@435 3505 bool os::Linux::libjsig_is_loaded = false;
duke@435 3506 typedef struct sigaction *(*get_signal_t)(int);
duke@435 3507 get_signal_t os::Linux::get_signal_action = NULL;
duke@435 3508
duke@435 3509 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
duke@435 3510 struct sigaction *actp = NULL;
duke@435 3511
duke@435 3512 if (libjsig_is_loaded) {
duke@435 3513 // Retrieve the old signal handler from libjsig
duke@435 3514 actp = (*get_signal_action)(sig);
duke@435 3515 }
duke@435 3516 if (actp == NULL) {
duke@435 3517 // Retrieve the preinstalled signal handler from jvm
duke@435 3518 actp = get_preinstalled_handler(sig);
duke@435 3519 }
duke@435 3520
duke@435 3521 return actp;
duke@435 3522 }
duke@435 3523
duke@435 3524 static bool call_chained_handler(struct sigaction *actp, int sig,
duke@435 3525 siginfo_t *siginfo, void *context) {
duke@435 3526 // Call the old signal handler
duke@435 3527 if (actp->sa_handler == SIG_DFL) {
duke@435 3528 // It's more reasonable to let jvm treat it as an unexpected exception
duke@435 3529 // instead of taking the default action.
duke@435 3530 return false;
duke@435 3531 } else if (actp->sa_handler != SIG_IGN) {
duke@435 3532 if ((actp->sa_flags & SA_NODEFER) == 0) {
duke@435 3533 // automaticlly block the signal
duke@435 3534 sigaddset(&(actp->sa_mask), sig);
duke@435 3535 }
duke@435 3536
duke@435 3537 sa_handler_t hand;
duke@435 3538 sa_sigaction_t sa;
duke@435 3539 bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
duke@435 3540 // retrieve the chained handler
duke@435 3541 if (siginfo_flag_set) {
duke@435 3542 sa = actp->sa_sigaction;
duke@435 3543 } else {
duke@435 3544 hand = actp->sa_handler;
duke@435 3545 }
duke@435 3546
duke@435 3547 if ((actp->sa_flags & SA_RESETHAND) != 0) {
duke@435 3548 actp->sa_handler = SIG_DFL;
duke@435 3549 }
duke@435 3550
duke@435 3551 // try to honor the signal mask
duke@435 3552 sigset_t oset;
duke@435 3553 pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
duke@435 3554
duke@435 3555 // call into the chained handler
duke@435 3556 if (siginfo_flag_set) {
duke@435 3557 (*sa)(sig, siginfo, context);
duke@435 3558 } else {
duke@435 3559 (*hand)(sig);
duke@435 3560 }
duke@435 3561
duke@435 3562 // restore the signal mask
duke@435 3563 pthread_sigmask(SIG_SETMASK, &oset, 0);
duke@435 3564 }
duke@435 3565 // Tell jvm's signal handler the signal is taken care of.
duke@435 3566 return true;
duke@435 3567 }
duke@435 3568
duke@435 3569 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
duke@435 3570 bool chained = false;
duke@435 3571 // signal-chaining
duke@435 3572 if (UseSignalChaining) {
duke@435 3573 struct sigaction *actp = get_chained_signal_action(sig);
duke@435 3574 if (actp != NULL) {
duke@435 3575 chained = call_chained_handler(actp, sig, siginfo, context);
duke@435 3576 }
duke@435 3577 }
duke@435 3578 return chained;
duke@435 3579 }
duke@435 3580
duke@435 3581 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
duke@435 3582 if ((( (unsigned int)1 << sig ) & sigs) != 0) {
duke@435 3583 return &sigact[sig];
duke@435 3584 }
duke@435 3585 return NULL;
duke@435 3586 }
duke@435 3587
duke@435 3588 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
duke@435 3589 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3590 sigact[sig] = oldAct;
duke@435 3591 sigs |= (unsigned int)1 << sig;
duke@435 3592 }
duke@435 3593
duke@435 3594 // for diagnostic
duke@435 3595 int os::Linux::sigflags[MAXSIGNUM];
duke@435 3596
duke@435 3597 int os::Linux::get_our_sigflags(int sig) {
duke@435 3598 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3599 return sigflags[sig];
duke@435 3600 }
duke@435 3601
duke@435 3602 void os::Linux::set_our_sigflags(int sig, int flags) {
duke@435 3603 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3604 sigflags[sig] = flags;
duke@435 3605 }
duke@435 3606
duke@435 3607 void os::Linux::set_signal_handler(int sig, bool set_installed) {
duke@435 3608 // Check for overwrite.
duke@435 3609 struct sigaction oldAct;
duke@435 3610 sigaction(sig, (struct sigaction*)NULL, &oldAct);
duke@435 3611
duke@435 3612 void* oldhand = oldAct.sa_sigaction
duke@435 3613 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3614 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3615 if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
duke@435 3616 oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
duke@435 3617 oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
duke@435 3618 if (AllowUserSignalHandlers || !set_installed) {
duke@435 3619 // Do not overwrite; user takes responsibility to forward to us.
duke@435 3620 return;
duke@435 3621 } else if (UseSignalChaining) {
duke@435 3622 // save the old handler in jvm
duke@435 3623 save_preinstalled_handler(sig, oldAct);
duke@435 3624 // libjsig also interposes the sigaction() call below and saves the
duke@435 3625 // old sigaction on it own.
duke@435 3626 } else {
jcoomes@1845 3627 fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
jcoomes@1845 3628 "%#lx for signal %d.", (long)oldhand, sig));
duke@435 3629 }
duke@435 3630 }
duke@435 3631
duke@435 3632 struct sigaction sigAct;
duke@435 3633 sigfillset(&(sigAct.sa_mask));
duke@435 3634 sigAct.sa_handler = SIG_DFL;
duke@435 3635 if (!set_installed) {
duke@435 3636 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3637 } else {
duke@435 3638 sigAct.sa_sigaction = signalHandler;
duke@435 3639 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3640 }
duke@435 3641 // Save flags, which are set by ours
duke@435 3642 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3643 sigflags[sig] = sigAct.sa_flags;
duke@435 3644
duke@435 3645 int ret = sigaction(sig, &sigAct, &oldAct);
duke@435 3646 assert(ret == 0, "check");
duke@435 3647
duke@435 3648 void* oldhand2 = oldAct.sa_sigaction
duke@435 3649 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3650 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3651 assert(oldhand2 == oldhand, "no concurrent signal handler installation");
duke@435 3652 }
duke@435 3653
duke@435 3654 // install signal handlers for signals that HotSpot needs to
duke@435 3655 // handle in order to support Java-level exception handling.
duke@435 3656
duke@435 3657 void os::Linux::install_signal_handlers() {
duke@435 3658 if (!signal_handlers_are_installed) {
duke@435 3659 signal_handlers_are_installed = true;
duke@435 3660
duke@435 3661 // signal-chaining
duke@435 3662 typedef void (*signal_setting_t)();
duke@435 3663 signal_setting_t begin_signal_setting = NULL;
duke@435 3664 signal_setting_t end_signal_setting = NULL;
duke@435 3665 begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3666 dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
duke@435 3667 if (begin_signal_setting != NULL) {
duke@435 3668 end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3669 dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
duke@435 3670 get_signal_action = CAST_TO_FN_PTR(get_signal_t,
duke@435 3671 dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
duke@435 3672 libjsig_is_loaded = true;
duke@435 3673 assert(UseSignalChaining, "should enable signal-chaining");
duke@435 3674 }
duke@435 3675 if (libjsig_is_loaded) {
duke@435 3676 // Tell libjsig jvm is setting signal handlers
duke@435 3677 (*begin_signal_setting)();
duke@435 3678 }
duke@435 3679
duke@435 3680 set_signal_handler(SIGSEGV, true);
duke@435 3681 set_signal_handler(SIGPIPE, true);
duke@435 3682 set_signal_handler(SIGBUS, true);
duke@435 3683 set_signal_handler(SIGILL, true);
duke@435 3684 set_signal_handler(SIGFPE, true);
duke@435 3685 set_signal_handler(SIGXFSZ, true);
duke@435 3686
duke@435 3687 if (libjsig_is_loaded) {
duke@435 3688 // Tell libjsig jvm finishes setting signal handlers
duke@435 3689 (*end_signal_setting)();
duke@435 3690 }
duke@435 3691
duke@435 3692 // We don't activate signal checker if libjsig is in place, we trust ourselves
duke@435 3693 // and if UserSignalHandler is installed all bets are off
duke@435 3694 if (CheckJNICalls) {
duke@435 3695 if (libjsig_is_loaded) {
duke@435 3696 tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
duke@435 3697 check_signals = false;
duke@435 3698 }
duke@435 3699 if (AllowUserSignalHandlers) {
duke@435 3700 tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
duke@435 3701 check_signals = false;
duke@435 3702 }
duke@435 3703 }
duke@435 3704 }
duke@435 3705 }
duke@435 3706
duke@435 3707 // This is the fastest way to get thread cpu time on Linux.
duke@435 3708 // Returns cpu time (user+sys) for any thread, not only for current.
duke@435 3709 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
duke@435 3710 // It might work on 2.6.10+ with a special kernel/glibc patch.
duke@435 3711 // For reference, please, see IEEE Std 1003.1-2004:
duke@435 3712 // http://www.unix.org/single_unix_specification
duke@435 3713
duke@435 3714 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
duke@435 3715 struct timespec tp;
duke@435 3716 int rc = os::Linux::clock_gettime(clockid, &tp);
duke@435 3717 assert(rc == 0, "clock_gettime is expected to return 0 code");
duke@435 3718
duke@435 3719 return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
duke@435 3720 }
duke@435 3721
duke@435 3722 /////
duke@435 3723 // glibc on Linux platform uses non-documented flag
duke@435 3724 // to indicate, that some special sort of signal
duke@435 3725 // trampoline is used.
duke@435 3726 // We will never set this flag, and we should
duke@435 3727 // ignore this flag in our diagnostic
duke@435 3728 #ifdef SIGNIFICANT_SIGNAL_MASK
duke@435 3729 #undef SIGNIFICANT_SIGNAL_MASK
duke@435 3730 #endif
duke@435 3731 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
duke@435 3732
duke@435 3733 static const char* get_signal_handler_name(address handler,
duke@435 3734 char* buf, int buflen) {
duke@435 3735 int offset;
duke@435 3736 bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
duke@435 3737 if (found) {
duke@435 3738 // skip directory names
duke@435 3739 const char *p1, *p2;
duke@435 3740 p1 = buf;
duke@435 3741 size_t len = strlen(os::file_separator());
duke@435 3742 while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
duke@435 3743 jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
duke@435 3744 } else {
duke@435 3745 jio_snprintf(buf, buflen, PTR_FORMAT, handler);
duke@435 3746 }
duke@435 3747 return buf;
duke@435 3748 }
duke@435 3749
duke@435 3750 static void print_signal_handler(outputStream* st, int sig,
duke@435 3751 char* buf, size_t buflen) {
duke@435 3752 struct sigaction sa;
duke@435 3753
duke@435 3754 sigaction(sig, NULL, &sa);
duke@435 3755
duke@435 3756 // See comment for SIGNIFICANT_SIGNAL_MASK define
duke@435 3757 sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3758
duke@435 3759 st->print("%s: ", os::exception_name(sig, buf, buflen));
duke@435 3760
duke@435 3761 address handler = (sa.sa_flags & SA_SIGINFO)
duke@435 3762 ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
duke@435 3763 : CAST_FROM_FN_PTR(address, sa.sa_handler);
duke@435 3764
duke@435 3765 if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
duke@435 3766 st->print("SIG_DFL");
duke@435 3767 } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
duke@435 3768 st->print("SIG_IGN");
duke@435 3769 } else {
duke@435 3770 st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
duke@435 3771 }
duke@435 3772
duke@435 3773 st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
duke@435 3774
duke@435 3775 address rh = VMError::get_resetted_sighandler(sig);
duke@435 3776 // May be, handler was resetted by VMError?
duke@435 3777 if(rh != NULL) {
duke@435 3778 handler = rh;
duke@435 3779 sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
duke@435 3780 }
duke@435 3781
duke@435 3782 st->print(", sa_flags=" PTR32_FORMAT, sa.sa_flags);
duke@435 3783
duke@435 3784 // Check: is it our handler?
duke@435 3785 if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
duke@435 3786 handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
duke@435 3787 // It is our signal handler
duke@435 3788 // check for flags, reset system-used one!
duke@435 3789 if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 3790 st->print(
duke@435 3791 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
duke@435 3792 os::Linux::get_our_sigflags(sig));
duke@435 3793 }
duke@435 3794 }
duke@435 3795 st->cr();
duke@435 3796 }
duke@435 3797
duke@435 3798
duke@435 3799 #define DO_SIGNAL_CHECK(sig) \
duke@435 3800 if (!sigismember(&check_signal_done, sig)) \
duke@435 3801 os::Linux::check_signal_handler(sig)
duke@435 3802
duke@435 3803 // This method is a periodic task to check for misbehaving JNI applications
duke@435 3804 // under CheckJNI, we can add any periodic checks here
duke@435 3805
duke@435 3806 void os::run_periodic_checks() {
duke@435 3807
duke@435 3808 if (check_signals == false) return;
duke@435 3809
duke@435 3810 // SEGV and BUS if overridden could potentially prevent
duke@435 3811 // generation of hs*.log in the event of a crash, debugging
duke@435 3812 // such a case can be very challenging, so we absolutely
duke@435 3813 // check the following for a good measure:
duke@435 3814 DO_SIGNAL_CHECK(SIGSEGV);
duke@435 3815 DO_SIGNAL_CHECK(SIGILL);
duke@435 3816 DO_SIGNAL_CHECK(SIGFPE);
duke@435 3817 DO_SIGNAL_CHECK(SIGBUS);
duke@435 3818 DO_SIGNAL_CHECK(SIGPIPE);
duke@435 3819 DO_SIGNAL_CHECK(SIGXFSZ);
duke@435 3820
duke@435 3821
duke@435 3822 // ReduceSignalUsage allows the user to override these handlers
duke@435 3823 // see comments at the very top and jvm_solaris.h
duke@435 3824 if (!ReduceSignalUsage) {
duke@435 3825 DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
duke@435 3826 DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
duke@435 3827 DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
duke@435 3828 DO_SIGNAL_CHECK(BREAK_SIGNAL);
duke@435 3829 }
duke@435 3830
duke@435 3831 DO_SIGNAL_CHECK(SR_signum);
duke@435 3832 DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
duke@435 3833 }
duke@435 3834
duke@435 3835 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
duke@435 3836
duke@435 3837 static os_sigaction_t os_sigaction = NULL;
duke@435 3838
duke@435 3839 void os::Linux::check_signal_handler(int sig) {
duke@435 3840 char buf[O_BUFLEN];
duke@435 3841 address jvmHandler = NULL;
duke@435 3842
duke@435 3843
duke@435 3844 struct sigaction act;
duke@435 3845 if (os_sigaction == NULL) {
duke@435 3846 // only trust the default sigaction, in case it has been interposed
duke@435 3847 os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
duke@435 3848 if (os_sigaction == NULL) return;
duke@435 3849 }
duke@435 3850
duke@435 3851 os_sigaction(sig, (struct sigaction*)NULL, &act);
duke@435 3852
duke@435 3853
duke@435 3854 act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3855
duke@435 3856 address thisHandler = (act.sa_flags & SA_SIGINFO)
duke@435 3857 ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
duke@435 3858 : CAST_FROM_FN_PTR(address, act.sa_handler) ;
duke@435 3859
duke@435 3860
duke@435 3861 switch(sig) {
duke@435 3862 case SIGSEGV:
duke@435 3863 case SIGBUS:
duke@435 3864 case SIGFPE:
duke@435 3865 case SIGPIPE:
duke@435 3866 case SIGILL:
duke@435 3867 case SIGXFSZ:
duke@435 3868 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
duke@435 3869 break;
duke@435 3870
duke@435 3871 case SHUTDOWN1_SIGNAL:
duke@435 3872 case SHUTDOWN2_SIGNAL:
duke@435 3873 case SHUTDOWN3_SIGNAL:
duke@435 3874 case BREAK_SIGNAL:
duke@435 3875 jvmHandler = (address)user_handler();
duke@435 3876 break;
duke@435 3877
duke@435 3878 case INTERRUPT_SIGNAL:
duke@435 3879 jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
duke@435 3880 break;
duke@435 3881
duke@435 3882 default:
duke@435 3883 if (sig == SR_signum) {
duke@435 3884 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
duke@435 3885 } else {
duke@435 3886 return;
duke@435 3887 }
duke@435 3888 break;
duke@435 3889 }
duke@435 3890
duke@435 3891 if (thisHandler != jvmHandler) {
duke@435 3892 tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
duke@435 3893 tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
duke@435 3894 tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
duke@435 3895 // No need to check this sig any longer
duke@435 3896 sigaddset(&check_signal_done, sig);
duke@435 3897 } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 3898 tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
duke@435 3899 tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
duke@435 3900 tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
duke@435 3901 // No need to check this sig any longer
duke@435 3902 sigaddset(&check_signal_done, sig);
duke@435 3903 }
duke@435 3904
duke@435 3905 // Dump all the signal
duke@435 3906 if (sigismember(&check_signal_done, sig)) {
duke@435 3907 print_signal_handlers(tty, buf, O_BUFLEN);
duke@435 3908 }
duke@435 3909 }
duke@435 3910
duke@435 3911 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
duke@435 3912
duke@435 3913 extern bool signal_name(int signo, char* buf, size_t len);
duke@435 3914
duke@435 3915 const char* os::exception_name(int exception_code, char* buf, size_t size) {
duke@435 3916 if (0 < exception_code && exception_code <= SIGRTMAX) {
duke@435 3917 // signal
duke@435 3918 if (!signal_name(exception_code, buf, size)) {
duke@435 3919 jio_snprintf(buf, size, "SIG%d", exception_code);
duke@435 3920 }
duke@435 3921 return buf;
duke@435 3922 } else {
duke@435 3923 return NULL;
duke@435 3924 }
duke@435 3925 }
duke@435 3926
duke@435 3927 // this is called _before_ the most of global arguments have been parsed
duke@435 3928 void os::init(void) {
duke@435 3929 char dummy; /* used to get a guess on initial stack address */
duke@435 3930 // first_hrtime = gethrtime();
duke@435 3931
duke@435 3932 // With LinuxThreads the JavaMain thread pid (primordial thread)
duke@435 3933 // is different than the pid of the java launcher thread.
duke@435 3934 // So, on Linux, the launcher thread pid is passed to the VM
duke@435 3935 // via the sun.java.launcher.pid property.
duke@435 3936 // Use this property instead of getpid() if it was correctly passed.
duke@435 3937 // See bug 6351349.
duke@435 3938 pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
duke@435 3939
duke@435 3940 _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
duke@435 3941
duke@435 3942 clock_tics_per_sec = sysconf(_SC_CLK_TCK);
duke@435 3943
duke@435 3944 init_random(1234567);
duke@435 3945
duke@435 3946 ThreadCritical::initialize();
duke@435 3947
duke@435 3948 Linux::set_page_size(sysconf(_SC_PAGESIZE));
duke@435 3949 if (Linux::page_size() == -1) {
jcoomes@1845 3950 fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
jcoomes@1845 3951 strerror(errno)));
duke@435 3952 }
duke@435 3953 init_page_sizes((size_t) Linux::page_size());
duke@435 3954
duke@435 3955 Linux::initialize_system_info();
duke@435 3956
duke@435 3957 // main_thread points to the aboriginal thread
duke@435 3958 Linux::_main_thread = pthread_self();
duke@435 3959
duke@435 3960 Linux::clock_init();
duke@435 3961 initial_time_count = os::elapsed_counter();
kamg@677 3962 pthread_mutex_init(&dl_mutex, NULL);
duke@435 3963 }
duke@435 3964
duke@435 3965 // To install functions for atexit system call
duke@435 3966 extern "C" {
duke@435 3967 static void perfMemory_exit_helper() {
duke@435 3968 perfMemory_exit();
duke@435 3969 }
duke@435 3970 }
duke@435 3971
duke@435 3972 // this is called _after_ the global arguments have been parsed
duke@435 3973 jint os::init_2(void)
duke@435 3974 {
duke@435 3975 Linux::fast_thread_clock_init();
duke@435 3976
duke@435 3977 // Allocate a single page and mark it as readable for safepoint polling
duke@435 3978 address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 3979 guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
duke@435 3980
duke@435 3981 os::set_polling_page( polling_page );
duke@435 3982
duke@435 3983 #ifndef PRODUCT
duke@435 3984 if(Verbose && PrintMiscellaneous)
duke@435 3985 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 3986 #endif
duke@435 3987
duke@435 3988 if (!UseMembar) {
duke@435 3989 address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 3990 guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
duke@435 3991 os::set_memory_serialize_page( mem_serialize_page );
duke@435 3992
duke@435 3993 #ifndef PRODUCT
duke@435 3994 if(Verbose && PrintMiscellaneous)
duke@435 3995 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 3996 #endif
duke@435 3997 }
duke@435 3998
duke@435 3999 FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
duke@435 4000
duke@435 4001 // initialize suspend/resume support - must do this before signal_sets_init()
duke@435 4002 if (SR_initialize() != 0) {
duke@435 4003 perror("SR_initialize failed");
duke@435 4004 return JNI_ERR;
duke@435 4005 }
duke@435 4006
duke@435 4007 Linux::signal_sets_init();
duke@435 4008 Linux::install_signal_handlers();
duke@435 4009
coleenp@2222 4010 // Check minimum allowable stack size for thread creation and to initialize
coleenp@2222 4011 // the java system classes, including StackOverflowError - depends on page
coleenp@2222 4012 // size. Add a page for compiler2 recursion in main thread.
coleenp@2222 4013 // Add in 2*BytesPerWord times page size to account for VM stack during
coleenp@2222 4014 // class initialization depending on 32 or 64 bit VM.
coleenp@2222 4015 os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
coleenp@2222 4016 (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
coleenp@2222 4017 2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
coleenp@2222 4018
duke@435 4019 size_t threadStackSizeInBytes = ThreadStackSize * K;
duke@435 4020 if (threadStackSizeInBytes != 0 &&
coleenp@2222 4021 threadStackSizeInBytes < os::Linux::min_stack_allowed) {
duke@435 4022 tty->print_cr("\nThe stack size specified is too small, "
duke@435 4023 "Specify at least %dk",
coleenp@2222 4024 os::Linux::min_stack_allowed/ K);
duke@435 4025 return JNI_ERR;
duke@435 4026 }
duke@435 4027
duke@435 4028 // Make the stack size a multiple of the page size so that
duke@435 4029 // the yellow/red zones can be guarded.
duke@435 4030 JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
duke@435 4031 vm_page_size()));
duke@435 4032
duke@435 4033 Linux::capture_initial_stack(JavaThread::stack_size_at_create());
duke@435 4034
duke@435 4035 Linux::libpthread_init();
duke@435 4036 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 4037 tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
duke@435 4038 Linux::glibc_version(), Linux::libpthread_version(),
duke@435 4039 Linux::is_floating_stack() ? "floating stack" : "fixed stack");
duke@435 4040 }
duke@435 4041
iveresov@576 4042 if (UseNUMA) {
iveresov@897 4043 if (!Linux::libnuma_init()) {
iveresov@897 4044 UseNUMA = false;
iveresov@897 4045 } else {
iveresov@897 4046 if ((Linux::numa_max_node() < 1)) {
iveresov@897 4047 // There's only one node(they start from 0), disable NUMA.
iveresov@897 4048 UseNUMA = false;
iveresov@897 4049 }
iveresov@897 4050 }
iveresov@897 4051 if (!UseNUMA && ForceNUMA) {
iveresov@897 4052 UseNUMA = true;
iveresov@897 4053 }
iveresov@576 4054 }
iveresov@576 4055
duke@435 4056 if (MaxFDLimit) {
duke@435 4057 // set the number of file descriptors to max. print out error
duke@435 4058 // if getrlimit/setrlimit fails but continue regardless.
duke@435 4059 struct rlimit nbr_files;
duke@435 4060 int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 4061 if (status != 0) {
duke@435 4062 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 4063 perror("os::init_2 getrlimit failed");
duke@435 4064 } else {
duke@435 4065 nbr_files.rlim_cur = nbr_files.rlim_max;
duke@435 4066 status = setrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 4067 if (status != 0) {
duke@435 4068 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 4069 perror("os::init_2 setrlimit failed");
duke@435 4070 }
duke@435 4071 }
duke@435 4072 }
duke@435 4073
duke@435 4074 // Initialize lock used to serialize thread creation (see os::create_thread)
duke@435 4075 Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
duke@435 4076
duke@435 4077 // at-exit methods are called in the reverse order of their registration.
duke@435 4078 // atexit functions are called on return from main or as a result of a
duke@435 4079 // call to exit(3C). There can be only 32 of these functions registered
duke@435 4080 // and atexit() does not set errno.
duke@435 4081
duke@435 4082 if (PerfAllowAtExitRegistration) {
duke@435 4083 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 4084 // atexit functions can be delayed until process exit time, which
duke@435 4085 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 4086 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 4087
duke@435 4088 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 4089 // the future if the appropriate cleanup code can be added to the
duke@435 4090 // VM_Exit VMOperation's doit method.
duke@435 4091 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 4092 warning("os::init2 atexit(perfMemory_exit_helper) failed");
duke@435 4093 }
duke@435 4094 }
duke@435 4095
duke@435 4096 // initialize thread priority policy
duke@435 4097 prio_init();
duke@435 4098
duke@435 4099 return JNI_OK;
duke@435 4100 }
duke@435 4101
bobv@2036 4102 // this is called at the end of vm_initialization
bobv@2036 4103 void os::init_3(void) { }
bobv@2036 4104
duke@435 4105 // Mark the polling page as unreadable
duke@435 4106 void os::make_polling_page_unreadable(void) {
duke@435 4107 if( !guard_memory((char*)_polling_page, Linux::page_size()) )
duke@435 4108 fatal("Could not disable polling page");
duke@435 4109 };
duke@435 4110
duke@435 4111 // Mark the polling page as readable
duke@435 4112 void os::make_polling_page_readable(void) {
coleenp@672 4113 if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
duke@435 4114 fatal("Could not enable polling page");
coleenp@672 4115 }
duke@435 4116 };
duke@435 4117
duke@435 4118 int os::active_processor_count() {
duke@435 4119 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4120 // so just return the number of online processors.
duke@435 4121 int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
duke@435 4122 assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
duke@435 4123 return online_cpus;
duke@435 4124 }
duke@435 4125
duke@435 4126 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 4127 // Not yet implemented.
duke@435 4128 return false;
duke@435 4129 }
duke@435 4130
duke@435 4131 bool os::bind_to_processor(uint processor_id) {
duke@435 4132 // Not yet implemented.
duke@435 4133 return false;
duke@435 4134 }
duke@435 4135
duke@435 4136 ///
duke@435 4137
duke@435 4138 // Suspends the target using the signal mechanism and then grabs the PC before
duke@435 4139 // resuming the target. Used by the flat-profiler only
duke@435 4140 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 4141 // Make sure that it is called by the watcher for the VMThread
duke@435 4142 assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
duke@435 4143 assert(thread->is_VM_thread(), "Can only be called for VMThread");
duke@435 4144
duke@435 4145 ExtendedPC epc;
duke@435 4146
duke@435 4147 OSThread* osthread = thread->osthread();
duke@435 4148 if (do_suspend(osthread)) {
duke@435 4149 if (osthread->ucontext() != NULL) {
duke@435 4150 epc = os::Linux::ucontext_get_pc(osthread->ucontext());
duke@435 4151 } else {
duke@435 4152 // NULL context is unexpected, double-check this is the VMThread
duke@435 4153 guarantee(thread->is_VM_thread(), "can only be called for VMThread");
duke@435 4154 }
duke@435 4155 do_resume(osthread);
duke@435 4156 }
duke@435 4157 // failure means pthread_kill failed for some reason - arguably this is
duke@435 4158 // a fatal problem, but such problems are ignored elsewhere
duke@435 4159
duke@435 4160 return epc;
duke@435 4161 }
duke@435 4162
duke@435 4163 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
duke@435 4164 {
duke@435 4165 if (is_NPTL()) {
duke@435 4166 return pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4167 } else {
duke@435 4168 #ifndef IA64
duke@435 4169 // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
duke@435 4170 // word back to default 64bit precision if condvar is signaled. Java
duke@435 4171 // wants 53bit precision. Save and restore current value.
duke@435 4172 int fpu = get_fpu_control_word();
duke@435 4173 #endif // IA64
duke@435 4174 int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4175 #ifndef IA64
duke@435 4176 set_fpu_control_word(fpu);
duke@435 4177 #endif // IA64
duke@435 4178 return status;
duke@435 4179 }
duke@435 4180 }
duke@435 4181
duke@435 4182 ////////////////////////////////////////////////////////////////////////////////
duke@435 4183 // debug support
duke@435 4184
duke@435 4185 static address same_page(address x, address y) {
duke@435 4186 int page_bits = -os::vm_page_size();
duke@435 4187 if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
duke@435 4188 return x;
duke@435 4189 else if (x > y)
duke@435 4190 return (address)(intptr_t(y) | ~page_bits) + 1;
duke@435 4191 else
duke@435 4192 return (address)(intptr_t(y) & page_bits);
duke@435 4193 }
duke@435 4194
bobv@2036 4195 bool os::find(address addr, outputStream* st) {
duke@435 4196 Dl_info dlinfo;
duke@435 4197 memset(&dlinfo, 0, sizeof(dlinfo));
duke@435 4198 if (dladdr(addr, &dlinfo)) {
bobv@2036 4199 st->print(PTR_FORMAT ": ", addr);
duke@435 4200 if (dlinfo.dli_sname != NULL) {
bobv@2036 4201 st->print("%s+%#x", dlinfo.dli_sname,
duke@435 4202 addr - (intptr_t)dlinfo.dli_saddr);
duke@435 4203 } else if (dlinfo.dli_fname) {
bobv@2036 4204 st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
duke@435 4205 } else {
bobv@2036 4206 st->print("<absolute address>");
duke@435 4207 }
duke@435 4208 if (dlinfo.dli_fname) {
bobv@2036 4209 st->print(" in %s", dlinfo.dli_fname);
duke@435 4210 }
duke@435 4211 if (dlinfo.dli_fbase) {
bobv@2036 4212 st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
duke@435 4213 }
bobv@2036 4214 st->cr();
duke@435 4215
duke@435 4216 if (Verbose) {
duke@435 4217 // decode some bytes around the PC
duke@435 4218 address begin = same_page(addr-40, addr);
duke@435 4219 address end = same_page(addr+40, addr);
duke@435 4220 address lowest = (address) dlinfo.dli_sname;
duke@435 4221 if (!lowest) lowest = (address) dlinfo.dli_fbase;
duke@435 4222 if (begin < lowest) begin = lowest;
duke@435 4223 Dl_info dlinfo2;
duke@435 4224 if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
duke@435 4225 && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
duke@435 4226 end = (address) dlinfo2.dli_saddr;
bobv@2036 4227 Disassembler::decode(begin, end, st);
duke@435 4228 }
duke@435 4229 return true;
duke@435 4230 }
duke@435 4231 return false;
duke@435 4232 }
duke@435 4233
duke@435 4234 ////////////////////////////////////////////////////////////////////////////////
duke@435 4235 // misc
duke@435 4236
duke@435 4237 // This does not do anything on Linux. This is basically a hook for being
duke@435 4238 // able to use structured exception handling (thread-local exception filters)
duke@435 4239 // on, e.g., Win32.
duke@435 4240 void
duke@435 4241 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
duke@435 4242 JavaCallArguments* args, Thread* thread) {
duke@435 4243 f(value, method, args, thread);
duke@435 4244 }
duke@435 4245
duke@435 4246 void os::print_statistics() {
duke@435 4247 }
duke@435 4248
duke@435 4249 int os::message_box(const char* title, const char* message) {
duke@435 4250 int i;
duke@435 4251 fdStream err(defaultStream::error_fd());
duke@435 4252 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4253 err.cr();
duke@435 4254 err.print_raw_cr(title);
duke@435 4255 for (i = 0; i < 78; i++) err.print_raw("-");
duke@435 4256 err.cr();
duke@435 4257 err.print_raw_cr(message);
duke@435 4258 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4259 err.cr();
duke@435 4260
duke@435 4261 char buf[16];
duke@435 4262 // Prevent process from exiting upon "read error" without consuming all CPU
duke@435 4263 while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
duke@435 4264
duke@435 4265 return buf[0] == 'y' || buf[0] == 'Y';
duke@435 4266 }
duke@435 4267
duke@435 4268 int os::stat(const char *path, struct stat *sbuf) {
duke@435 4269 char pathbuf[MAX_PATH];
duke@435 4270 if (strlen(path) > MAX_PATH - 1) {
duke@435 4271 errno = ENAMETOOLONG;
duke@435 4272 return -1;
duke@435 4273 }
ikrylov@2322 4274 os::native_path(strcpy(pathbuf, path));
duke@435 4275 return ::stat(pathbuf, sbuf);
duke@435 4276 }
duke@435 4277
duke@435 4278 bool os::check_heap(bool force) {
duke@435 4279 return true;
duke@435 4280 }
duke@435 4281
duke@435 4282 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
duke@435 4283 return ::vsnprintf(buf, count, format, args);
duke@435 4284 }
duke@435 4285
duke@435 4286 // Is a (classpath) directory empty?
duke@435 4287 bool os::dir_is_empty(const char* path) {
duke@435 4288 DIR *dir = NULL;
duke@435 4289 struct dirent *ptr;
duke@435 4290
duke@435 4291 dir = opendir(path);
duke@435 4292 if (dir == NULL) return true;
duke@435 4293
duke@435 4294 /* Scan the directory */
duke@435 4295 bool result = true;
duke@435 4296 char buf[sizeof(struct dirent) + MAX_PATH];
duke@435 4297 while (result && (ptr = ::readdir(dir)) != NULL) {
duke@435 4298 if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
duke@435 4299 result = false;
duke@435 4300 }
duke@435 4301 }
duke@435 4302 closedir(dir);
duke@435 4303 return result;
duke@435 4304 }
duke@435 4305
ikrylov@2322 4306 // This code originates from JDK's sysOpen and open64_w
ikrylov@2322 4307 // from src/solaris/hpi/src/system_md.c
ikrylov@2322 4308
ikrylov@2322 4309 #ifndef O_DELETE
ikrylov@2322 4310 #define O_DELETE 0x10000
ikrylov@2322 4311 #endif
ikrylov@2322 4312
ikrylov@2322 4313 // Open a file. Unlink the file immediately after open returns
ikrylov@2322 4314 // if the specified oflag has the O_DELETE flag set.
ikrylov@2322 4315 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
ikrylov@2322 4316
ikrylov@2322 4317 int os::open(const char *path, int oflag, int mode) {
ikrylov@2322 4318
ikrylov@2322 4319 if (strlen(path) > MAX_PATH - 1) {
ikrylov@2322 4320 errno = ENAMETOOLONG;
ikrylov@2322 4321 return -1;
ikrylov@2322 4322 }
ikrylov@2322 4323 int fd;
ikrylov@2322 4324 int o_delete = (oflag & O_DELETE);
ikrylov@2322 4325 oflag = oflag & ~O_DELETE;
ikrylov@2322 4326
ikrylov@2322 4327 fd = ::open64(path, oflag, mode);
ikrylov@2322 4328 if (fd == -1) return -1;
ikrylov@2322 4329
ikrylov@2322 4330 //If the open succeeded, the file might still be a directory
ikrylov@2322 4331 {
ikrylov@2322 4332 struct stat64 buf64;
ikrylov@2322 4333 int ret = ::fstat64(fd, &buf64);
ikrylov@2322 4334 int st_mode = buf64.st_mode;
ikrylov@2322 4335
ikrylov@2322 4336 if (ret != -1) {
ikrylov@2322 4337 if ((st_mode & S_IFMT) == S_IFDIR) {
ikrylov@2322 4338 errno = EISDIR;
ikrylov@2322 4339 ::close(fd);
ikrylov@2322 4340 return -1;
ikrylov@2322 4341 }
ikrylov@2322 4342 } else {
ikrylov@2322 4343 ::close(fd);
ikrylov@2322 4344 return -1;
ikrylov@2322 4345 }
ikrylov@2322 4346 }
ikrylov@2322 4347
ikrylov@2322 4348 /*
ikrylov@2322 4349 * All file descriptors that are opened in the JVM and not
ikrylov@2322 4350 * specifically destined for a subprocess should have the
ikrylov@2322 4351 * close-on-exec flag set. If we don't set it, then careless 3rd
ikrylov@2322 4352 * party native code might fork and exec without closing all
ikrylov@2322 4353 * appropriate file descriptors (e.g. as we do in closeDescriptors in
ikrylov@2322 4354 * UNIXProcess.c), and this in turn might:
ikrylov@2322 4355 *
ikrylov@2322 4356 * - cause end-of-file to fail to be detected on some file
ikrylov@2322 4357 * descriptors, resulting in mysterious hangs, or
ikrylov@2322 4358 *
ikrylov@2322 4359 * - might cause an fopen in the subprocess to fail on a system
ikrylov@2322 4360 * suffering from bug 1085341.
ikrylov@2322 4361 *
ikrylov@2322 4362 * (Yes, the default setting of the close-on-exec flag is a Unix
ikrylov@2322 4363 * design flaw)
ikrylov@2322 4364 *
ikrylov@2322 4365 * See:
ikrylov@2322 4366 * 1085341: 32-bit stdio routines should support file descriptors >255
ikrylov@2322 4367 * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
ikrylov@2322 4368 * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
ikrylov@2322 4369 */
ikrylov@2322 4370 #ifdef FD_CLOEXEC
ikrylov@2322 4371 {
ikrylov@2322 4372 int flags = ::fcntl(fd, F_GETFD);
ikrylov@2322 4373 if (flags != -1)
ikrylov@2322 4374 ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
ikrylov@2322 4375 }
ikrylov@2322 4376 #endif
ikrylov@2322 4377
ikrylov@2322 4378 if (o_delete != 0) {
ikrylov@2322 4379 ::unlink(path);
ikrylov@2322 4380 }
ikrylov@2322 4381 return fd;
ikrylov@2322 4382 }
ikrylov@2322 4383
ikrylov@2322 4384
duke@435 4385 // create binary file, rewriting existing file if required
duke@435 4386 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 4387 int oflags = O_WRONLY | O_CREAT;
duke@435 4388 if (!rewrite_existing) {
duke@435 4389 oflags |= O_EXCL;
duke@435 4390 }
duke@435 4391 return ::open64(path, oflags, S_IREAD | S_IWRITE);
duke@435 4392 }
duke@435 4393
duke@435 4394 // return current position of file pointer
duke@435 4395 jlong os::current_file_offset(int fd) {
duke@435 4396 return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
duke@435 4397 }
duke@435 4398
duke@435 4399 // move file pointer to the specified offset
duke@435 4400 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 4401 return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
duke@435 4402 }
duke@435 4403
ikrylov@2322 4404 // This code originates from JDK's sysAvailable
ikrylov@2322 4405 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
ikrylov@2322 4406
ikrylov@2322 4407 int os::available(int fd, jlong *bytes) {
ikrylov@2322 4408 jlong cur, end;
ikrylov@2322 4409 int mode;
ikrylov@2322 4410 struct stat64 buf64;
ikrylov@2322 4411
ikrylov@2322 4412 if (::fstat64(fd, &buf64) >= 0) {
ikrylov@2322 4413 mode = buf64.st_mode;
ikrylov@2322 4414 if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
ikrylov@2322 4415 /*
ikrylov@2322 4416 * XXX: is the following call interruptible? If so, this might
ikrylov@2322 4417 * need to go through the INTERRUPT_IO() wrapper as for other
ikrylov@2322 4418 * blocking, interruptible calls in this file.
ikrylov@2322 4419 */
ikrylov@2322 4420 int n;
ikrylov@2322 4421 if (::ioctl(fd, FIONREAD, &n) >= 0) {
ikrylov@2322 4422 *bytes = n;
ikrylov@2322 4423 return 1;
ikrylov@2322 4424 }
ikrylov@2322 4425 }
ikrylov@2322 4426 }
ikrylov@2322 4427 if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
ikrylov@2322 4428 return 0;
ikrylov@2322 4429 } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
ikrylov@2322 4430 return 0;
ikrylov@2322 4431 } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
ikrylov@2322 4432 return 0;
ikrylov@2322 4433 }
ikrylov@2322 4434 *bytes = end - cur;
ikrylov@2322 4435 return 1;
ikrylov@2322 4436 }
ikrylov@2322 4437
dholmes@2375 4438 int os::socket_available(int fd, jint *pbytes) {
dholmes@2375 4439 // Linux doc says EINTR not returned, unlike Solaris
dholmes@2375 4440 int ret = ::ioctl(fd, FIONREAD, pbytes);
dholmes@2375 4441
dholmes@2375 4442 //%% note ioctl can return 0 when successful, JVM_SocketAvailable
dholmes@2375 4443 // is expected to return 0 on failure and 1 on success to the jdk.
dholmes@2375 4444 return (ret < 0) ? 0 : 1;
dholmes@2375 4445 }
dholmes@2375 4446
duke@435 4447 // Map a block of memory.
duke@435 4448 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4449 char *addr, size_t bytes, bool read_only,
duke@435 4450 bool allow_exec) {
duke@435 4451 int prot;
duke@435 4452 int flags;
duke@435 4453
duke@435 4454 if (read_only) {
duke@435 4455 prot = PROT_READ;
duke@435 4456 flags = MAP_SHARED;
duke@435 4457 } else {
duke@435 4458 prot = PROT_READ | PROT_WRITE;
duke@435 4459 flags = MAP_PRIVATE;
duke@435 4460 }
duke@435 4461
duke@435 4462 if (allow_exec) {
duke@435 4463 prot |= PROT_EXEC;
duke@435 4464 }
duke@435 4465
duke@435 4466 if (addr != NULL) {
duke@435 4467 flags |= MAP_FIXED;
duke@435 4468 }
duke@435 4469
duke@435 4470 char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
duke@435 4471 fd, file_offset);
duke@435 4472 if (mapped_address == MAP_FAILED) {
duke@435 4473 return NULL;
duke@435 4474 }
duke@435 4475 return mapped_address;
duke@435 4476 }
duke@435 4477
duke@435 4478
duke@435 4479 // Remap a block of memory.
duke@435 4480 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4481 char *addr, size_t bytes, bool read_only,
duke@435 4482 bool allow_exec) {
duke@435 4483 // same as map_memory() on this OS
duke@435 4484 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 4485 allow_exec);
duke@435 4486 }
duke@435 4487
duke@435 4488
duke@435 4489 // Unmap a block of memory.
duke@435 4490 bool os::unmap_memory(char* addr, size_t bytes) {
duke@435 4491 return munmap(addr, bytes) == 0;
duke@435 4492 }
duke@435 4493
duke@435 4494 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
duke@435 4495
duke@435 4496 static clockid_t thread_cpu_clockid(Thread* thread) {
duke@435 4497 pthread_t tid = thread->osthread()->pthread_id();
duke@435 4498 clockid_t clockid;
duke@435 4499
duke@435 4500 // Get thread clockid
duke@435 4501 int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
duke@435 4502 assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
duke@435 4503 return clockid;
duke@435 4504 }
duke@435 4505
duke@435 4506 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 4507 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 4508 // of a thread.
duke@435 4509 //
duke@435 4510 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 4511 // the fast estimate available on the platform.
duke@435 4512
duke@435 4513 jlong os::current_thread_cpu_time() {
duke@435 4514 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4515 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4516 } else {
duke@435 4517 // return user + sys since the cost is the same
duke@435 4518 return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
duke@435 4519 }
duke@435 4520 }
duke@435 4521
duke@435 4522 jlong os::thread_cpu_time(Thread* thread) {
duke@435 4523 // consistent with what current_thread_cpu_time() returns
duke@435 4524 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4525 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4526 } else {
duke@435 4527 return slow_thread_cpu_time(thread, true /* user + sys */);
duke@435 4528 }
duke@435 4529 }
duke@435 4530
duke@435 4531 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 4532 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4533 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4534 } else {
duke@435 4535 return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 4536 }
duke@435 4537 }
duke@435 4538
duke@435 4539 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4540 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4541 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4542 } else {
duke@435 4543 return slow_thread_cpu_time(thread, user_sys_cpu_time);
duke@435 4544 }
duke@435 4545 }
duke@435 4546
duke@435 4547 //
duke@435 4548 // -1 on error.
duke@435 4549 //
duke@435 4550
duke@435 4551 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4552 static bool proc_pid_cpu_avail = true;
duke@435 4553 static bool proc_task_unchecked = true;
duke@435 4554 static const char *proc_stat_path = "/proc/%d/stat";
duke@435 4555 pid_t tid = thread->osthread()->thread_id();
duke@435 4556 int i;
duke@435 4557 char *s;
duke@435 4558 char stat[2048];
duke@435 4559 int statlen;
duke@435 4560 char proc_name[64];
duke@435 4561 int count;
duke@435 4562 long sys_time, user_time;
duke@435 4563 char string[64];
bobv@2036 4564 char cdummy;
duke@435 4565 int idummy;
duke@435 4566 long ldummy;
duke@435 4567 FILE *fp;
duke@435 4568
duke@435 4569 // We first try accessing /proc/<pid>/cpu since this is faster to
duke@435 4570 // process. If this file is not present (linux kernels 2.5 and above)
duke@435 4571 // then we open /proc/<pid>/stat.
duke@435 4572 if ( proc_pid_cpu_avail ) {
duke@435 4573 sprintf(proc_name, "/proc/%d/cpu", tid);
duke@435 4574 fp = fopen(proc_name, "r");
duke@435 4575 if ( fp != NULL ) {
duke@435 4576 count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
duke@435 4577 fclose(fp);
duke@435 4578 if ( count != 3 ) return -1;
duke@435 4579
duke@435 4580 if (user_sys_cpu_time) {
duke@435 4581 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4582 } else {
duke@435 4583 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4584 }
duke@435 4585 }
duke@435 4586 else proc_pid_cpu_avail = false;
duke@435 4587 }
duke@435 4588
duke@435 4589 // The /proc/<tid>/stat aggregates per-process usage on
duke@435 4590 // new Linux kernels 2.6+ where NPTL is supported.
duke@435 4591 // The /proc/self/task/<tid>/stat still has the per-thread usage.
duke@435 4592 // See bug 6328462.
duke@435 4593 // There can be no directory /proc/self/task on kernels 2.4 with NPTL
duke@435 4594 // and possibly in some other cases, so we check its availability.
duke@435 4595 if (proc_task_unchecked && os::Linux::is_NPTL()) {
duke@435 4596 // This is executed only once
duke@435 4597 proc_task_unchecked = false;
duke@435 4598 fp = fopen("/proc/self/task", "r");
duke@435 4599 if (fp != NULL) {
duke@435 4600 proc_stat_path = "/proc/self/task/%d/stat";
duke@435 4601 fclose(fp);
duke@435 4602 }
duke@435 4603 }
duke@435 4604
duke@435 4605 sprintf(proc_name, proc_stat_path, tid);
duke@435 4606 fp = fopen(proc_name, "r");
duke@435 4607 if ( fp == NULL ) return -1;
duke@435 4608 statlen = fread(stat, 1, 2047, fp);
duke@435 4609 stat[statlen] = '\0';
duke@435 4610 fclose(fp);
duke@435 4611
duke@435 4612 // Skip pid and the command string. Note that we could be dealing with
duke@435 4613 // weird command names, e.g. user could decide to rename java launcher
duke@435 4614 // to "java 1.4.2 :)", then the stat file would look like
duke@435 4615 // 1234 (java 1.4.2 :)) R ... ...
duke@435 4616 // We don't really need to know the command string, just find the last
duke@435 4617 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 4618 s = strrchr(stat, ')');
duke@435 4619 i = 0;
duke@435 4620 if (s == NULL ) return -1;
duke@435 4621
duke@435 4622 // Skip blank chars
duke@435 4623 do s++; while (isspace(*s));
duke@435 4624
bobv@2036 4625 count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
bobv@2036 4626 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
duke@435 4627 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
duke@435 4628 &user_time, &sys_time);
bobv@2036 4629 if ( count != 13 ) return -1;
duke@435 4630 if (user_sys_cpu_time) {
duke@435 4631 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4632 } else {
duke@435 4633 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4634 }
duke@435 4635 }
duke@435 4636
duke@435 4637 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4638 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4639 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4640 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4641 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4642 }
duke@435 4643
duke@435 4644 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4645 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4646 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4647 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4648 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4649 }
duke@435 4650
duke@435 4651 bool os::is_thread_cpu_time_supported() {
duke@435 4652 return true;
duke@435 4653 }
duke@435 4654
duke@435 4655 // System loadavg support. Returns -1 if load average cannot be obtained.
duke@435 4656 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4657 // so just return the system wide load average.
duke@435 4658 int os::loadavg(double loadavg[], int nelem) {
duke@435 4659 return ::getloadavg(loadavg, nelem);
duke@435 4660 }
duke@435 4661
duke@435 4662 void os::pause() {
duke@435 4663 char filename[MAX_PATH];
duke@435 4664 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 4665 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 4666 } else {
duke@435 4667 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 4668 }
duke@435 4669
duke@435 4670 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 4671 if (fd != -1) {
duke@435 4672 struct stat buf;
ikrylov@2322 4673 ::close(fd);
duke@435 4674 while (::stat(filename, &buf) == 0) {
duke@435 4675 (void)::poll(NULL, 0, 100);
duke@435 4676 }
duke@435 4677 } else {
duke@435 4678 jio_fprintf(stderr,
duke@435 4679 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 4680 }
duke@435 4681 }
duke@435 4682
duke@435 4683
duke@435 4684 // Refer to the comments in os_solaris.cpp park-unpark.
duke@435 4685 //
duke@435 4686 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
duke@435 4687 // hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
duke@435 4688 // For specifics regarding the bug see GLIBC BUGID 261237 :
duke@435 4689 // http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
duke@435 4690 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
duke@435 4691 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
duke@435 4692 // is used. (The simple C test-case provided in the GLIBC bug report manifests the
duke@435 4693 // hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
duke@435 4694 // and monitorenter when we're using 1-0 locking. All those operations may result in
duke@435 4695 // calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
duke@435 4696 // of libpthread avoids the problem, but isn't practical.
duke@435 4697 //
duke@435 4698 // Possible remedies:
duke@435 4699 //
duke@435 4700 // 1. Establish a minimum relative wait time. 50 to 100 msecs seems to work.
duke@435 4701 // This is palliative and probabilistic, however. If the thread is preempted
duke@435 4702 // between the call to compute_abstime() and pthread_cond_timedwait(), more
duke@435 4703 // than the minimum period may have passed, and the abstime may be stale (in the
duke@435 4704 // past) resultin in a hang. Using this technique reduces the odds of a hang
duke@435 4705 // but the JVM is still vulnerable, particularly on heavily loaded systems.
duke@435 4706 //
duke@435 4707 // 2. Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
duke@435 4708 // of the usual flag-condvar-mutex idiom. The write side of the pipe is set
duke@435 4709 // NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
duke@435 4710 // reduces to poll()+read(). This works well, but consumes 2 FDs per extant
duke@435 4711 // thread.
duke@435 4712 //
duke@435 4713 // 3. Embargo pthread_cond_timedwait() and implement a native "chron" thread
duke@435 4714 // that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
duke@435 4715 // a timeout request to the chron thread and then blocking via pthread_cond_wait().
duke@435 4716 // This also works well. In fact it avoids kernel-level scalability impediments
duke@435 4717 // on certain platforms that don't handle lots of active pthread_cond_timedwait()
duke@435 4718 // timers in a graceful fashion.
duke@435 4719 //
duke@435 4720 // 4. When the abstime value is in the past it appears that control returns
duke@435 4721 // correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
duke@435 4722 // Subsequent timedwait/wait calls may hang indefinitely. Given that, we
duke@435 4723 // can avoid the problem by reinitializing the condvar -- by cond_destroy()
duke@435 4724 // followed by cond_init() -- after all calls to pthread_cond_timedwait().
duke@435 4725 // It may be possible to avoid reinitialization by checking the return
duke@435 4726 // value from pthread_cond_timedwait(). In addition to reinitializing the
duke@435 4727 // condvar we must establish the invariant that cond_signal() is only called
duke@435 4728 // within critical sections protected by the adjunct mutex. This prevents
duke@435 4729 // cond_signal() from "seeing" a condvar that's in the midst of being
duke@435 4730 // reinitialized or that is corrupt. Sadly, this invariant obviates the
duke@435 4731 // desirable signal-after-unlock optimization that avoids futile context switching.
duke@435 4732 //
duke@435 4733 // I'm also concerned that some versions of NTPL might allocate an auxilliary
duke@435 4734 // structure when a condvar is used or initialized. cond_destroy() would
duke@435 4735 // release the helper structure. Our reinitialize-after-timedwait fix
duke@435 4736 // put excessive stress on malloc/free and locks protecting the c-heap.
duke@435 4737 //
duke@435 4738 // We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
duke@435 4739 // It may be possible to refine (4) by checking the kernel and NTPL verisons
duke@435 4740 // and only enabling the work-around for vulnerable environments.
duke@435 4741
duke@435 4742 // utility to compute the abstime argument to timedwait:
duke@435 4743 // millis is the relative timeout time
duke@435 4744 // abstime will be the absolute timeout time
duke@435 4745 // TODO: replace compute_abstime() with unpackTime()
duke@435 4746
duke@435 4747 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
duke@435 4748 if (millis < 0) millis = 0;
duke@435 4749 struct timeval now;
duke@435 4750 int status = gettimeofday(&now, NULL);
duke@435 4751 assert(status == 0, "gettimeofday");
duke@435 4752 jlong seconds = millis / 1000;
duke@435 4753 millis %= 1000;
duke@435 4754 if (seconds > 50000000) { // see man cond_timedwait(3T)
duke@435 4755 seconds = 50000000;
duke@435 4756 }
duke@435 4757 abstime->tv_sec = now.tv_sec + seconds;
duke@435 4758 long usec = now.tv_usec + millis * 1000;
duke@435 4759 if (usec >= 1000000) {
duke@435 4760 abstime->tv_sec += 1;
duke@435 4761 usec -= 1000000;
duke@435 4762 }
duke@435 4763 abstime->tv_nsec = usec * 1000;
duke@435 4764 return abstime;
duke@435 4765 }
duke@435 4766
duke@435 4767
duke@435 4768 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
duke@435 4769 // Conceptually TryPark() should be equivalent to park(0).
duke@435 4770
duke@435 4771 int os::PlatformEvent::TryPark() {
duke@435 4772 for (;;) {
duke@435 4773 const int v = _Event ;
duke@435 4774 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4775 if (Atomic::cmpxchg (0, &_Event, v) == v) return v ;
duke@435 4776 }
duke@435 4777 }
duke@435 4778
duke@435 4779 void os::PlatformEvent::park() { // AKA "down()"
duke@435 4780 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 4781 // may call park().
duke@435 4782 // TODO: assert that _Assoc != NULL or _Assoc == Self
duke@435 4783 int v ;
duke@435 4784 for (;;) {
duke@435 4785 v = _Event ;
duke@435 4786 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4787 }
duke@435 4788 guarantee (v >= 0, "invariant") ;
duke@435 4789 if (v == 0) {
duke@435 4790 // Do this the hard way by blocking ...
duke@435 4791 int status = pthread_mutex_lock(_mutex);
duke@435 4792 assert_status(status == 0, status, "mutex_lock");
duke@435 4793 guarantee (_nParked == 0, "invariant") ;
duke@435 4794 ++ _nParked ;
duke@435 4795 while (_Event < 0) {
duke@435 4796 status = pthread_cond_wait(_cond, _mutex);
duke@435 4797 // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
duke@435 4798 // Treat this the same as if the wait was interrupted
duke@435 4799 if (status == ETIME) { status = EINTR; }
duke@435 4800 assert_status(status == 0 || status == EINTR, status, "cond_wait");
duke@435 4801 }
duke@435 4802 -- _nParked ;
duke@435 4803
duke@435 4804 // In theory we could move the ST of 0 into _Event past the unlock(),
duke@435 4805 // but then we'd need a MEMBAR after the ST.
duke@435 4806 _Event = 0 ;
duke@435 4807 status = pthread_mutex_unlock(_mutex);
duke@435 4808 assert_status(status == 0, status, "mutex_unlock");
duke@435 4809 }
duke@435 4810 guarantee (_Event >= 0, "invariant") ;
duke@435 4811 }
duke@435 4812
duke@435 4813 int os::PlatformEvent::park(jlong millis) {
duke@435 4814 guarantee (_nParked == 0, "invariant") ;
duke@435 4815
duke@435 4816 int v ;
duke@435 4817 for (;;) {
duke@435 4818 v = _Event ;
duke@435 4819 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4820 }
duke@435 4821 guarantee (v >= 0, "invariant") ;
duke@435 4822 if (v != 0) return OS_OK ;
duke@435 4823
duke@435 4824 // We do this the hard way, by blocking the thread.
duke@435 4825 // Consider enforcing a minimum timeout value.
duke@435 4826 struct timespec abst;
duke@435 4827 compute_abstime(&abst, millis);
duke@435 4828
duke@435 4829 int ret = OS_TIMEOUT;
duke@435 4830 int status = pthread_mutex_lock(_mutex);
duke@435 4831 assert_status(status == 0, status, "mutex_lock");
duke@435 4832 guarantee (_nParked == 0, "invariant") ;
duke@435 4833 ++_nParked ;
duke@435 4834
duke@435 4835 // Object.wait(timo) will return because of
duke@435 4836 // (a) notification
duke@435 4837 // (b) timeout
duke@435 4838 // (c) thread.interrupt
duke@435 4839 //
duke@435 4840 // Thread.interrupt and object.notify{All} both call Event::set.
duke@435 4841 // That is, we treat thread.interrupt as a special case of notification.
duke@435 4842 // The underlying Solaris implementation, cond_timedwait, admits
duke@435 4843 // spurious/premature wakeups, but the JLS/JVM spec prevents the
duke@435 4844 // JVM from making those visible to Java code. As such, we must
duke@435 4845 // filter out spurious wakeups. We assume all ETIME returns are valid.
duke@435 4846 //
duke@435 4847 // TODO: properly differentiate simultaneous notify+interrupt.
duke@435 4848 // In that case, we should propagate the notify to another waiter.
duke@435 4849
duke@435 4850 while (_Event < 0) {
duke@435 4851 status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
duke@435 4852 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4853 pthread_cond_destroy (_cond);
duke@435 4854 pthread_cond_init (_cond, NULL) ;
duke@435 4855 }
duke@435 4856 assert_status(status == 0 || status == EINTR ||
duke@435 4857 status == ETIME || status == ETIMEDOUT,
duke@435 4858 status, "cond_timedwait");
duke@435 4859 if (!FilterSpuriousWakeups) break ; // previous semantics
duke@435 4860 if (status == ETIME || status == ETIMEDOUT) break ;
duke@435 4861 // We consume and ignore EINTR and spurious wakeups.
duke@435 4862 }
duke@435 4863 --_nParked ;
duke@435 4864 if (_Event >= 0) {
duke@435 4865 ret = OS_OK;
duke@435 4866 }
duke@435 4867 _Event = 0 ;
duke@435 4868 status = pthread_mutex_unlock(_mutex);
duke@435 4869 assert_status(status == 0, status, "mutex_unlock");
duke@435 4870 assert (_nParked == 0, "invariant") ;
duke@435 4871 return ret;
duke@435 4872 }
duke@435 4873
duke@435 4874 void os::PlatformEvent::unpark() {
duke@435 4875 int v, AnyWaiters ;
duke@435 4876 for (;;) {
duke@435 4877 v = _Event ;
duke@435 4878 if (v > 0) {
duke@435 4879 // The LD of _Event could have reordered or be satisfied
duke@435 4880 // by a read-aside from this processor's write buffer.
duke@435 4881 // To avoid problems execute a barrier and then
duke@435 4882 // ratify the value.
duke@435 4883 OrderAccess::fence() ;
duke@435 4884 if (_Event == v) return ;
duke@435 4885 continue ;
duke@435 4886 }
duke@435 4887 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 4888 }
duke@435 4889 if (v < 0) {
duke@435 4890 // Wait for the thread associated with the event to vacate
duke@435 4891 int status = pthread_mutex_lock(_mutex);
duke@435 4892 assert_status(status == 0, status, "mutex_lock");
duke@435 4893 AnyWaiters = _nParked ;
duke@435 4894 assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
duke@435 4895 if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4896 AnyWaiters = 0 ;
duke@435 4897 pthread_cond_signal (_cond);
duke@435 4898 }
duke@435 4899 status = pthread_mutex_unlock(_mutex);
duke@435 4900 assert_status(status == 0, status, "mutex_unlock");
duke@435 4901 if (AnyWaiters != 0) {
duke@435 4902 status = pthread_cond_signal(_cond);
duke@435 4903 assert_status(status == 0, status, "cond_signal");
duke@435 4904 }
duke@435 4905 }
duke@435 4906
duke@435 4907 // Note that we signal() _after dropping the lock for "immortal" Events.
duke@435 4908 // This is safe and avoids a common class of futile wakeups. In rare
duke@435 4909 // circumstances this can cause a thread to return prematurely from
duke@435 4910 // cond_{timed}wait() but the spurious wakeup is benign and the victim will
duke@435 4911 // simply re-test the condition and re-park itself.
duke@435 4912 }
duke@435 4913
duke@435 4914
duke@435 4915 // JSR166
duke@435 4916 // -------------------------------------------------------
duke@435 4917
duke@435 4918 /*
duke@435 4919 * The solaris and linux implementations of park/unpark are fairly
duke@435 4920 * conservative for now, but can be improved. They currently use a
duke@435 4921 * mutex/condvar pair, plus a a count.
duke@435 4922 * Park decrements count if > 0, else does a condvar wait. Unpark
duke@435 4923 * sets count to 1 and signals condvar. Only one thread ever waits
duke@435 4924 * on the condvar. Contention seen when trying to park implies that someone
duke@435 4925 * is unparking you, so don't wait. And spurious returns are fine, so there
duke@435 4926 * is no need to track notifications.
duke@435 4927 */
duke@435 4928
duke@435 4929
duke@435 4930 #define NANOSECS_PER_SEC 1000000000
duke@435 4931 #define NANOSECS_PER_MILLISEC 1000000
duke@435 4932 #define MAX_SECS 100000000
duke@435 4933 /*
duke@435 4934 * This code is common to linux and solaris and will be moved to a
duke@435 4935 * common place in dolphin.
duke@435 4936 *
duke@435 4937 * The passed in time value is either a relative time in nanoseconds
duke@435 4938 * or an absolute time in milliseconds. Either way it has to be unpacked
duke@435 4939 * into suitable seconds and nanoseconds components and stored in the
duke@435 4940 * given timespec structure.
duke@435 4941 * Given time is a 64-bit value and the time_t used in the timespec is only
duke@435 4942 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
duke@435 4943 * overflow if times way in the future are given. Further on Solaris versions
duke@435 4944 * prior to 10 there is a restriction (see cond_timedwait) that the specified
duke@435 4945 * number of seconds, in abstime, is less than current_time + 100,000,000.
duke@435 4946 * As it will be 28 years before "now + 100000000" will overflow we can
duke@435 4947 * ignore overflow and just impose a hard-limit on seconds using the value
duke@435 4948 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
duke@435 4949 * years from "now".
duke@435 4950 */
duke@435 4951
duke@435 4952 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
duke@435 4953 assert (time > 0, "convertTime");
duke@435 4954
duke@435 4955 struct timeval now;
duke@435 4956 int status = gettimeofday(&now, NULL);
duke@435 4957 assert(status == 0, "gettimeofday");
duke@435 4958
duke@435 4959 time_t max_secs = now.tv_sec + MAX_SECS;
duke@435 4960
duke@435 4961 if (isAbsolute) {
duke@435 4962 jlong secs = time / 1000;
duke@435 4963 if (secs > max_secs) {
duke@435 4964 absTime->tv_sec = max_secs;
duke@435 4965 }
duke@435 4966 else {
duke@435 4967 absTime->tv_sec = secs;
duke@435 4968 }
duke@435 4969 absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
duke@435 4970 }
duke@435 4971 else {
duke@435 4972 jlong secs = time / NANOSECS_PER_SEC;
duke@435 4973 if (secs >= MAX_SECS) {
duke@435 4974 absTime->tv_sec = max_secs;
duke@435 4975 absTime->tv_nsec = 0;
duke@435 4976 }
duke@435 4977 else {
duke@435 4978 absTime->tv_sec = now.tv_sec + secs;
duke@435 4979 absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
duke@435 4980 if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
duke@435 4981 absTime->tv_nsec -= NANOSECS_PER_SEC;
duke@435 4982 ++absTime->tv_sec; // note: this must be <= max_secs
duke@435 4983 }
duke@435 4984 }
duke@435 4985 }
duke@435 4986 assert(absTime->tv_sec >= 0, "tv_sec < 0");
duke@435 4987 assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
duke@435 4988 assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
duke@435 4989 assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
duke@435 4990 }
duke@435 4991
duke@435 4992 void Parker::park(bool isAbsolute, jlong time) {
duke@435 4993 // Optional fast-path check:
duke@435 4994 // Return immediately if a permit is available.
duke@435 4995 if (_counter > 0) {
duke@435 4996 _counter = 0 ;
dholmes@1552 4997 OrderAccess::fence();
duke@435 4998 return ;
duke@435 4999 }
duke@435 5000
duke@435 5001 Thread* thread = Thread::current();
duke@435 5002 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 5003 JavaThread *jt = (JavaThread *)thread;
duke@435 5004
duke@435 5005 // Optional optimization -- avoid state transitions if there's an interrupt pending.
duke@435 5006 // Check interrupt before trying to wait
duke@435 5007 if (Thread::is_interrupted(thread, false)) {
duke@435 5008 return;
duke@435 5009 }
duke@435 5010
duke@435 5011 // Next, demultiplex/decode time arguments
duke@435 5012 timespec absTime;
acorn@2220 5013 if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
duke@435 5014 return;
duke@435 5015 }
duke@435 5016 if (time > 0) {
duke@435 5017 unpackTime(&absTime, isAbsolute, time);
duke@435 5018 }
duke@435 5019
duke@435 5020
duke@435 5021 // Enter safepoint region
duke@435 5022 // Beware of deadlocks such as 6317397.
duke@435 5023 // The per-thread Parker:: mutex is a classic leaf-lock.
duke@435 5024 // In particular a thread must never block on the Threads_lock while
duke@435 5025 // holding the Parker:: mutex. If safepoints are pending both the
duke@435 5026 // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
duke@435 5027 ThreadBlockInVM tbivm(jt);
duke@435 5028
duke@435 5029 // Don't wait if cannot get lock since interference arises from
duke@435 5030 // unblocking. Also. check interrupt before trying wait
duke@435 5031 if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
duke@435 5032 return;
duke@435 5033 }
duke@435 5034
duke@435 5035 int status ;
duke@435 5036 if (_counter > 0) { // no wait needed
duke@435 5037 _counter = 0;
duke@435 5038 status = pthread_mutex_unlock(_mutex);
duke@435 5039 assert (status == 0, "invariant") ;
dholmes@1552 5040 OrderAccess::fence();
duke@435 5041 return;
duke@435 5042 }
duke@435 5043
duke@435 5044 #ifdef ASSERT
duke@435 5045 // Don't catch signals while blocked; let the running threads have the signals.
duke@435 5046 // (This allows a debugger to break into the running thread.)
duke@435 5047 sigset_t oldsigs;
duke@435 5048 sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
duke@435 5049 pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
duke@435 5050 #endif
duke@435 5051
duke@435 5052 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 5053 jt->set_suspend_equivalent();
duke@435 5054 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 5055
duke@435 5056 if (time == 0) {
duke@435 5057 status = pthread_cond_wait (_cond, _mutex) ;
duke@435 5058 } else {
duke@435 5059 status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
duke@435 5060 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 5061 pthread_cond_destroy (_cond) ;
duke@435 5062 pthread_cond_init (_cond, NULL);
duke@435 5063 }
duke@435 5064 }
duke@435 5065 assert_status(status == 0 || status == EINTR ||
duke@435 5066 status == ETIME || status == ETIMEDOUT,
duke@435 5067 status, "cond_timedwait");
duke@435 5068
duke@435 5069 #ifdef ASSERT
duke@435 5070 pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
duke@435 5071 #endif
duke@435 5072
duke@435 5073 _counter = 0 ;
duke@435 5074 status = pthread_mutex_unlock(_mutex) ;
duke@435 5075 assert_status(status == 0, status, "invariant") ;
duke@435 5076 // If externally suspended while waiting, re-suspend
duke@435 5077 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 5078 jt->java_suspend_self();
duke@435 5079 }
duke@435 5080
dholmes@1552 5081 OrderAccess::fence();
duke@435 5082 }
duke@435 5083
duke@435 5084 void Parker::unpark() {
duke@435 5085 int s, status ;
duke@435 5086 status = pthread_mutex_lock(_mutex);
duke@435 5087 assert (status == 0, "invariant") ;
duke@435 5088 s = _counter;
duke@435 5089 _counter = 1;
duke@435 5090 if (s < 1) {
duke@435 5091 if (WorkAroundNPTLTimedWaitHang) {
duke@435 5092 status = pthread_cond_signal (_cond) ;
duke@435 5093 assert (status == 0, "invariant") ;
duke@435 5094 status = pthread_mutex_unlock(_mutex);
duke@435 5095 assert (status == 0, "invariant") ;
duke@435 5096 } else {
duke@435 5097 status = pthread_mutex_unlock(_mutex);
duke@435 5098 assert (status == 0, "invariant") ;
duke@435 5099 status = pthread_cond_signal (_cond) ;
duke@435 5100 assert (status == 0, "invariant") ;
duke@435 5101 }
duke@435 5102 } else {
duke@435 5103 pthread_mutex_unlock(_mutex);
duke@435 5104 assert (status == 0, "invariant") ;
duke@435 5105 }
duke@435 5106 }
duke@435 5107
duke@435 5108
duke@435 5109 extern char** environ;
duke@435 5110
duke@435 5111 #ifndef __NR_fork
duke@435 5112 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
duke@435 5113 #endif
duke@435 5114
duke@435 5115 #ifndef __NR_execve
duke@435 5116 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
duke@435 5117 #endif
duke@435 5118
duke@435 5119 // Run the specified command in a separate process. Return its exit value,
duke@435 5120 // or -1 on failure (e.g. can't fork a new process).
duke@435 5121 // Unlike system(), this function can be called from signal handler. It
duke@435 5122 // doesn't block SIGINT et al.
duke@435 5123 int os::fork_and_exec(char* cmd) {
xlu@634 5124 const char * argv[4] = {"sh", "-c", cmd, NULL};
duke@435 5125
duke@435 5126 // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
duke@435 5127 // pthread_atfork handlers and reset pthread library. All we need is a
duke@435 5128 // separate process to execve. Make a direct syscall to fork process.
duke@435 5129 // On IA64 there's no fork syscall, we have to use fork() and hope for
duke@435 5130 // the best...
duke@435 5131 pid_t pid = NOT_IA64(syscall(__NR_fork);)
duke@435 5132 IA64_ONLY(fork();)
duke@435 5133
duke@435 5134 if (pid < 0) {
duke@435 5135 // fork failed
duke@435 5136 return -1;
duke@435 5137
duke@435 5138 } else if (pid == 0) {
duke@435 5139 // child process
duke@435 5140
duke@435 5141 // execve() in LinuxThreads will call pthread_kill_other_threads_np()
duke@435 5142 // first to kill every thread on the thread list. Because this list is
duke@435 5143 // not reset by fork() (see notes above), execve() will instead kill
duke@435 5144 // every thread in the parent process. We know this is the only thread
duke@435 5145 // in the new process, so make a system call directly.
duke@435 5146 // IA64 should use normal execve() from glibc to match the glibc fork()
duke@435 5147 // above.
duke@435 5148 NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
xlu@634 5149 IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
duke@435 5150
duke@435 5151 // execve failed
duke@435 5152 _exit(-1);
duke@435 5153
duke@435 5154 } else {
duke@435 5155 // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
duke@435 5156 // care about the actual exit code, for now.
duke@435 5157
duke@435 5158 int status;
duke@435 5159
duke@435 5160 // Wait for the child process to exit. This returns immediately if
duke@435 5161 // the child has already exited. */
duke@435 5162 while (waitpid(pid, &status, 0) < 0) {
duke@435 5163 switch (errno) {
duke@435 5164 case ECHILD: return 0;
duke@435 5165 case EINTR: break;
duke@435 5166 default: return -1;
duke@435 5167 }
duke@435 5168 }
duke@435 5169
duke@435 5170 if (WIFEXITED(status)) {
duke@435 5171 // The child exited normally; get its exit code.
duke@435 5172 return WEXITSTATUS(status);
duke@435 5173 } else if (WIFSIGNALED(status)) {
duke@435 5174 // The child exited because of a signal
duke@435 5175 // The best value to return is 0x80 + signal number,
duke@435 5176 // because that is what all Unix shells do, and because
duke@435 5177 // it allows callers to distinguish between process exit and
duke@435 5178 // process death by signal.
duke@435 5179 return 0x80 + WTERMSIG(status);
duke@435 5180 } else {
duke@435 5181 // Unknown exit code; pass it through
duke@435 5182 return status;
duke@435 5183 }
duke@435 5184 }
duke@435 5185 }
bobv@2036 5186
bobv@2036 5187 // is_headless_jre()
bobv@2036 5188 //
bobv@2036 5189 // Test for the existence of libmawt in motif21 or xawt directories
bobv@2036 5190 // in order to report if we are running in a headless jre
bobv@2036 5191 //
bobv@2036 5192 bool os::is_headless_jre() {
bobv@2036 5193 struct stat statbuf;
bobv@2036 5194 char buf[MAXPATHLEN];
bobv@2036 5195 char libmawtpath[MAXPATHLEN];
bobv@2036 5196 const char *xawtstr = "/xawt/libmawt.so";
bobv@2036 5197 const char *motifstr = "/motif21/libmawt.so";
bobv@2036 5198 char *p;
bobv@2036 5199
bobv@2036 5200 // Get path to libjvm.so
bobv@2036 5201 os::jvm_path(buf, sizeof(buf));
bobv@2036 5202
bobv@2036 5203 // Get rid of libjvm.so
bobv@2036 5204 p = strrchr(buf, '/');
bobv@2036 5205 if (p == NULL) return false;
bobv@2036 5206 else *p = '\0';
bobv@2036 5207
bobv@2036 5208 // Get rid of client or server
bobv@2036 5209 p = strrchr(buf, '/');
bobv@2036 5210 if (p == NULL) return false;
bobv@2036 5211 else *p = '\0';
bobv@2036 5212
bobv@2036 5213 // check xawt/libmawt.so
bobv@2036 5214 strcpy(libmawtpath, buf);
bobv@2036 5215 strcat(libmawtpath, xawtstr);
bobv@2036 5216 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 5217
bobv@2036 5218 // check motif21/libmawt.so
bobv@2036 5219 strcpy(libmawtpath, buf);
bobv@2036 5220 strcat(libmawtpath, motifstr);
bobv@2036 5221 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 5222
bobv@2036 5223 return true;
bobv@2036 5224 }
bobv@2036 5225

mercurial