src/os/linux/vm/os_linux.cpp

Wed, 25 Aug 2010 21:29:05 -0400

author
dholmes
date
Wed, 25 Aug 2010 21:29:05 -0400
changeset 2105
c7004d700b49
parent 2036
126ea7725993
child 2220
1c352af0135d
permissions
-rw-r--r--

6978641: Fix for 6929067 introduces additional overhead in thread creation/termination paths
Summary: Disable stack bounds checks in product mode other than for the initial thread
Reviewed-by: coleenp, jcoomes, aph

duke@435 1 /*
trims@1907 2 * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
coleenp@1755 25 # define __STDC_FORMAT_MACROS
coleenp@1755 26
duke@435 27 // do not include precompiled header file
duke@435 28 # include "incls/_os_linux.cpp.incl"
duke@435 29
duke@435 30 // put OS-includes here
duke@435 31 # include <sys/types.h>
duke@435 32 # include <sys/mman.h>
bobv@2036 33 # include <sys/stat.h>
bobv@2036 34 # include <sys/select.h>
duke@435 35 # include <pthread.h>
duke@435 36 # include <signal.h>
duke@435 37 # include <errno.h>
duke@435 38 # include <dlfcn.h>
duke@435 39 # include <stdio.h>
duke@435 40 # include <unistd.h>
duke@435 41 # include <sys/resource.h>
duke@435 42 # include <pthread.h>
duke@435 43 # include <sys/stat.h>
duke@435 44 # include <sys/time.h>
duke@435 45 # include <sys/times.h>
duke@435 46 # include <sys/utsname.h>
duke@435 47 # include <sys/socket.h>
duke@435 48 # include <sys/wait.h>
duke@435 49 # include <pwd.h>
duke@435 50 # include <poll.h>
duke@435 51 # include <semaphore.h>
duke@435 52 # include <fcntl.h>
duke@435 53 # include <string.h>
duke@435 54 # include <syscall.h>
duke@435 55 # include <sys/sysinfo.h>
duke@435 56 # include <gnu/libc-version.h>
duke@435 57 # include <sys/ipc.h>
duke@435 58 # include <sys/shm.h>
duke@435 59 # include <link.h>
coleenp@1755 60 # include <stdint.h>
coleenp@1755 61 # include <inttypes.h>
duke@435 62
duke@435 63 #define MAX_PATH (2 * K)
duke@435 64
duke@435 65 // for timer info max values which include all bits
duke@435 66 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 67 #define SEC_IN_NANOSECS 1000000000LL
duke@435 68
duke@435 69 ////////////////////////////////////////////////////////////////////////////////
duke@435 70 // global variables
duke@435 71 julong os::Linux::_physical_memory = 0;
duke@435 72
duke@435 73 address os::Linux::_initial_thread_stack_bottom = NULL;
duke@435 74 uintptr_t os::Linux::_initial_thread_stack_size = 0;
duke@435 75
duke@435 76 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
duke@435 77 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
duke@435 78 Mutex* os::Linux::_createThread_lock = NULL;
duke@435 79 pthread_t os::Linux::_main_thread;
duke@435 80 int os::Linux::_page_size = -1;
duke@435 81 bool os::Linux::_is_floating_stack = false;
duke@435 82 bool os::Linux::_is_NPTL = false;
duke@435 83 bool os::Linux::_supports_fast_thread_cpu_time = false;
xlu@634 84 const char * os::Linux::_glibc_version = NULL;
xlu@634 85 const char * os::Linux::_libpthread_version = NULL;
duke@435 86
duke@435 87 static jlong initial_time_count=0;
duke@435 88
duke@435 89 static int clock_tics_per_sec = 100;
duke@435 90
duke@435 91 // For diagnostics to print a message once. see run_periodic_checks
duke@435 92 static sigset_t check_signal_done;
duke@435 93 static bool check_signals = true;;
duke@435 94
duke@435 95 static pid_t _initial_pid = 0;
duke@435 96
duke@435 97 /* Signal number used to suspend/resume a thread */
duke@435 98
duke@435 99 /* do not use any signal number less than SIGSEGV, see 4355769 */
duke@435 100 static int SR_signum = SIGUSR2;
duke@435 101 sigset_t SR_sigset;
duke@435 102
kamg@677 103 /* Used to protect dlsym() calls */
kamg@677 104 static pthread_mutex_t dl_mutex;
kamg@677 105
duke@435 106 ////////////////////////////////////////////////////////////////////////////////
duke@435 107 // utility functions
duke@435 108
duke@435 109 static int SR_initialize();
duke@435 110 static int SR_finalize();
duke@435 111
duke@435 112 julong os::available_memory() {
duke@435 113 return Linux::available_memory();
duke@435 114 }
duke@435 115
duke@435 116 julong os::Linux::available_memory() {
duke@435 117 // values in struct sysinfo are "unsigned long"
duke@435 118 struct sysinfo si;
duke@435 119 sysinfo(&si);
duke@435 120
duke@435 121 return (julong)si.freeram * si.mem_unit;
duke@435 122 }
duke@435 123
duke@435 124 julong os::physical_memory() {
duke@435 125 return Linux::physical_memory();
duke@435 126 }
duke@435 127
phh@455 128 julong os::allocatable_physical_memory(julong size) {
phh@455 129 #ifdef _LP64
phh@455 130 return size;
phh@455 131 #else
phh@455 132 julong result = MIN2(size, (julong)3800*M);
phh@455 133 if (!is_allocatable(result)) {
phh@455 134 // See comments under solaris for alignment considerations
phh@455 135 julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
phh@455 136 result = MIN2(size, reasonable_size);
phh@455 137 }
phh@455 138 return result;
phh@455 139 #endif // _LP64
phh@455 140 }
phh@455 141
duke@435 142 ////////////////////////////////////////////////////////////////////////////////
duke@435 143 // environment support
duke@435 144
duke@435 145 bool os::getenv(const char* name, char* buf, int len) {
duke@435 146 const char* val = ::getenv(name);
duke@435 147 if (val != NULL && strlen(val) < (size_t)len) {
duke@435 148 strcpy(buf, val);
duke@435 149 return true;
duke@435 150 }
duke@435 151 if (len > 0) buf[0] = 0; // return a null string
duke@435 152 return false;
duke@435 153 }
duke@435 154
duke@435 155
duke@435 156 // Return true if user is running as root.
duke@435 157
duke@435 158 bool os::have_special_privileges() {
duke@435 159 static bool init = false;
duke@435 160 static bool privileges = false;
duke@435 161 if (!init) {
duke@435 162 privileges = (getuid() != geteuid()) || (getgid() != getegid());
duke@435 163 init = true;
duke@435 164 }
duke@435 165 return privileges;
duke@435 166 }
duke@435 167
duke@435 168
duke@435 169 #ifndef SYS_gettid
duke@435 170 // i386: 224, ia64: 1105, amd64: 186, sparc 143
duke@435 171 #ifdef __ia64__
duke@435 172 #define SYS_gettid 1105
duke@435 173 #elif __i386__
duke@435 174 #define SYS_gettid 224
duke@435 175 #elif __amd64__
duke@435 176 #define SYS_gettid 186
duke@435 177 #elif __sparc__
duke@435 178 #define SYS_gettid 143
duke@435 179 #else
duke@435 180 #error define gettid for the arch
duke@435 181 #endif
duke@435 182 #endif
duke@435 183
duke@435 184 // Cpu architecture string
never@1445 185 #if defined(ZERO)
never@1445 186 static char cpu_arch[] = ZERO_LIBARCH;
never@1445 187 #elif defined(IA64)
duke@435 188 static char cpu_arch[] = "ia64";
duke@435 189 #elif defined(IA32)
duke@435 190 static char cpu_arch[] = "i386";
duke@435 191 #elif defined(AMD64)
duke@435 192 static char cpu_arch[] = "amd64";
bobv@2036 193 #elif defined(ARM)
bobv@2036 194 static char cpu_arch[] = "arm";
bobv@2036 195 #elif defined(PPC)
bobv@2036 196 static char cpu_arch[] = "ppc";
duke@435 197 #elif defined(SPARC)
duke@435 198 # ifdef _LP64
duke@435 199 static char cpu_arch[] = "sparcv9";
duke@435 200 # else
duke@435 201 static char cpu_arch[] = "sparc";
duke@435 202 # endif
duke@435 203 #else
duke@435 204 #error Add appropriate cpu_arch setting
duke@435 205 #endif
duke@435 206
duke@435 207
duke@435 208 // pid_t gettid()
duke@435 209 //
duke@435 210 // Returns the kernel thread id of the currently running thread. Kernel
duke@435 211 // thread id is used to access /proc.
duke@435 212 //
duke@435 213 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
duke@435 214 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
duke@435 215 //
duke@435 216 pid_t os::Linux::gettid() {
duke@435 217 int rslt = syscall(SYS_gettid);
duke@435 218 if (rslt == -1) {
duke@435 219 // old kernel, no NPTL support
duke@435 220 return getpid();
duke@435 221 } else {
duke@435 222 return (pid_t)rslt;
duke@435 223 }
duke@435 224 }
duke@435 225
duke@435 226 // Most versions of linux have a bug where the number of processors are
duke@435 227 // determined by looking at the /proc file system. In a chroot environment,
duke@435 228 // the system call returns 1. This causes the VM to act as if it is
duke@435 229 // a single processor and elide locking (see is_MP() call).
duke@435 230 static bool unsafe_chroot_detected = false;
xlu@634 231 static const char *unstable_chroot_error = "/proc file system not found.\n"
xlu@634 232 "Java may be unstable running multithreaded in a chroot "
xlu@634 233 "environment on Linux when /proc filesystem is not mounted.";
duke@435 234
duke@435 235 void os::Linux::initialize_system_info() {
phh@1558 236 set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
phh@1558 237 if (processor_count() == 1) {
duke@435 238 pid_t pid = os::Linux::gettid();
duke@435 239 char fname[32];
duke@435 240 jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
duke@435 241 FILE *fp = fopen(fname, "r");
duke@435 242 if (fp == NULL) {
duke@435 243 unsafe_chroot_detected = true;
duke@435 244 } else {
duke@435 245 fclose(fp);
duke@435 246 }
duke@435 247 }
duke@435 248 _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
phh@1558 249 assert(processor_count() > 0, "linux error");
duke@435 250 }
duke@435 251
duke@435 252 void os::init_system_properties_values() {
duke@435 253 // char arch[12];
duke@435 254 // sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
duke@435 255
duke@435 256 // The next steps are taken in the product version:
duke@435 257 //
duke@435 258 // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
duke@435 259 // This library should be located at:
duke@435 260 // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
duke@435 261 //
duke@435 262 // If "/jre/lib/" appears at the right place in the path, then we
duke@435 263 // assume libjvm[_g].so is installed in a JDK and we use this path.
duke@435 264 //
duke@435 265 // Otherwise exit with message: "Could not create the Java virtual machine."
duke@435 266 //
duke@435 267 // The following extra steps are taken in the debugging version:
duke@435 268 //
duke@435 269 // If "/jre/lib/" does NOT appear at the right place in the path
duke@435 270 // instead of exit check for $JAVA_HOME environment variable.
duke@435 271 //
duke@435 272 // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
duke@435 273 // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
duke@435 274 // it looks like libjvm[_g].so is installed there
duke@435 275 // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
duke@435 276 //
duke@435 277 // Otherwise exit.
duke@435 278 //
duke@435 279 // Important note: if the location of libjvm.so changes this
duke@435 280 // code needs to be changed accordingly.
duke@435 281
duke@435 282 // The next few definitions allow the code to be verbatim:
duke@435 283 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
duke@435 284 #define getenv(n) ::getenv(n)
duke@435 285
duke@435 286 /*
duke@435 287 * See ld(1):
duke@435 288 * The linker uses the following search paths to locate required
duke@435 289 * shared libraries:
duke@435 290 * 1: ...
duke@435 291 * ...
duke@435 292 * 7: The default directories, normally /lib and /usr/lib.
duke@435 293 */
kvn@944 294 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
kvn@944 295 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
kvn@944 296 #else
duke@435 297 #define DEFAULT_LIBPATH "/lib:/usr/lib"
kvn@944 298 #endif
duke@435 299
duke@435 300 #define EXTENSIONS_DIR "/lib/ext"
duke@435 301 #define ENDORSED_DIR "/lib/endorsed"
duke@435 302 #define REG_DIR "/usr/java/packages"
duke@435 303
duke@435 304 {
duke@435 305 /* sysclasspath, java_home, dll_dir */
duke@435 306 {
duke@435 307 char *home_path;
duke@435 308 char *dll_path;
duke@435 309 char *pslash;
duke@435 310 char buf[MAXPATHLEN];
duke@435 311 os::jvm_path(buf, sizeof(buf));
duke@435 312
duke@435 313 // Found the full path to libjvm.so.
duke@435 314 // Now cut the path to <java_home>/jre if we can.
duke@435 315 *(strrchr(buf, '/')) = '\0'; /* get rid of /libjvm.so */
duke@435 316 pslash = strrchr(buf, '/');
duke@435 317 if (pslash != NULL)
duke@435 318 *pslash = '\0'; /* get rid of /{client|server|hotspot} */
duke@435 319 dll_path = malloc(strlen(buf) + 1);
duke@435 320 if (dll_path == NULL)
duke@435 321 return;
duke@435 322 strcpy(dll_path, buf);
duke@435 323 Arguments::set_dll_dir(dll_path);
duke@435 324
duke@435 325 if (pslash != NULL) {
duke@435 326 pslash = strrchr(buf, '/');
duke@435 327 if (pslash != NULL) {
duke@435 328 *pslash = '\0'; /* get rid of /<arch> */
duke@435 329 pslash = strrchr(buf, '/');
duke@435 330 if (pslash != NULL)
duke@435 331 *pslash = '\0'; /* get rid of /lib */
duke@435 332 }
duke@435 333 }
duke@435 334
duke@435 335 home_path = malloc(strlen(buf) + 1);
duke@435 336 if (home_path == NULL)
duke@435 337 return;
duke@435 338 strcpy(home_path, buf);
duke@435 339 Arguments::set_java_home(home_path);
duke@435 340
duke@435 341 if (!set_boot_path('/', ':'))
duke@435 342 return;
duke@435 343 }
duke@435 344
duke@435 345 /*
duke@435 346 * Where to look for native libraries
duke@435 347 *
duke@435 348 * Note: Due to a legacy implementation, most of the library path
duke@435 349 * is set in the launcher. This was to accomodate linking restrictions
duke@435 350 * on legacy Linux implementations (which are no longer supported).
duke@435 351 * Eventually, all the library path setting will be done here.
duke@435 352 *
duke@435 353 * However, to prevent the proliferation of improperly built native
duke@435 354 * libraries, the new path component /usr/java/packages is added here.
duke@435 355 * Eventually, all the library path setting will be done here.
duke@435 356 */
duke@435 357 {
duke@435 358 char *ld_library_path;
duke@435 359
duke@435 360 /*
duke@435 361 * Construct the invariant part of ld_library_path. Note that the
duke@435 362 * space for the colon and the trailing null are provided by the
duke@435 363 * nulls included by the sizeof operator (so actually we allocate
duke@435 364 * a byte more than necessary).
duke@435 365 */
duke@435 366 ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
duke@435 367 strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
duke@435 368 sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
duke@435 369
duke@435 370 /*
duke@435 371 * Get the user setting of LD_LIBRARY_PATH, and prepended it. It
duke@435 372 * should always exist (until the legacy problem cited above is
duke@435 373 * addressed).
duke@435 374 */
duke@435 375 char *v = getenv("LD_LIBRARY_PATH");
duke@435 376 if (v != NULL) {
duke@435 377 char *t = ld_library_path;
duke@435 378 /* That's +1 for the colon and +1 for the trailing '\0' */
duke@435 379 ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
duke@435 380 sprintf(ld_library_path, "%s:%s", v, t);
duke@435 381 }
duke@435 382 Arguments::set_library_path(ld_library_path);
duke@435 383 }
duke@435 384
duke@435 385 /*
duke@435 386 * Extensions directories.
duke@435 387 *
duke@435 388 * Note that the space for the colon and the trailing null are provided
duke@435 389 * by the nulls included by the sizeof operator (so actually one byte more
duke@435 390 * than necessary is allocated).
duke@435 391 */
duke@435 392 {
duke@435 393 char *buf = malloc(strlen(Arguments::get_java_home()) +
duke@435 394 sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
duke@435 395 sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
duke@435 396 Arguments::get_java_home());
duke@435 397 Arguments::set_ext_dirs(buf);
duke@435 398 }
duke@435 399
duke@435 400 /* Endorsed standards default directory. */
duke@435 401 {
duke@435 402 char * buf;
duke@435 403 buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
duke@435 404 sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
duke@435 405 Arguments::set_endorsed_dirs(buf);
duke@435 406 }
duke@435 407 }
duke@435 408
duke@435 409 #undef malloc
duke@435 410 #undef getenv
duke@435 411 #undef EXTENSIONS_DIR
duke@435 412 #undef ENDORSED_DIR
duke@435 413
duke@435 414 // Done
duke@435 415 return;
duke@435 416 }
duke@435 417
duke@435 418 ////////////////////////////////////////////////////////////////////////////////
duke@435 419 // breakpoint support
duke@435 420
duke@435 421 void os::breakpoint() {
duke@435 422 BREAKPOINT;
duke@435 423 }
duke@435 424
duke@435 425 extern "C" void breakpoint() {
duke@435 426 // use debugger to set breakpoint here
duke@435 427 }
duke@435 428
duke@435 429 ////////////////////////////////////////////////////////////////////////////////
duke@435 430 // signal support
duke@435 431
duke@435 432 debug_only(static bool signal_sets_initialized = false);
duke@435 433 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
duke@435 434
duke@435 435 bool os::Linux::is_sig_ignored(int sig) {
duke@435 436 struct sigaction oact;
duke@435 437 sigaction(sig, (struct sigaction*)NULL, &oact);
duke@435 438 void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
duke@435 439 : CAST_FROM_FN_PTR(void*, oact.sa_handler);
duke@435 440 if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
duke@435 441 return true;
duke@435 442 else
duke@435 443 return false;
duke@435 444 }
duke@435 445
duke@435 446 void os::Linux::signal_sets_init() {
duke@435 447 // Should also have an assertion stating we are still single-threaded.
duke@435 448 assert(!signal_sets_initialized, "Already initialized");
duke@435 449 // Fill in signals that are necessarily unblocked for all threads in
duke@435 450 // the VM. Currently, we unblock the following signals:
duke@435 451 // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
duke@435 452 // by -Xrs (=ReduceSignalUsage));
duke@435 453 // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
duke@435 454 // other threads. The "ReduceSignalUsage" boolean tells us not to alter
duke@435 455 // the dispositions or masks wrt these signals.
duke@435 456 // Programs embedding the VM that want to use the above signals for their
duke@435 457 // own purposes must, at this time, use the "-Xrs" option to prevent
duke@435 458 // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
duke@435 459 // (See bug 4345157, and other related bugs).
duke@435 460 // In reality, though, unblocking these signals is really a nop, since
duke@435 461 // these signals are not blocked by default.
duke@435 462 sigemptyset(&unblocked_sigs);
duke@435 463 sigemptyset(&allowdebug_blocked_sigs);
duke@435 464 sigaddset(&unblocked_sigs, SIGILL);
duke@435 465 sigaddset(&unblocked_sigs, SIGSEGV);
duke@435 466 sigaddset(&unblocked_sigs, SIGBUS);
duke@435 467 sigaddset(&unblocked_sigs, SIGFPE);
duke@435 468 sigaddset(&unblocked_sigs, SR_signum);
duke@435 469
duke@435 470 if (!ReduceSignalUsage) {
duke@435 471 if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
duke@435 472 sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 473 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 474 }
duke@435 475 if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
duke@435 476 sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 477 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 478 }
duke@435 479 if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
duke@435 480 sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 481 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 482 }
duke@435 483 }
duke@435 484 // Fill in signals that are blocked by all but the VM thread.
duke@435 485 sigemptyset(&vm_sigs);
duke@435 486 if (!ReduceSignalUsage)
duke@435 487 sigaddset(&vm_sigs, BREAK_SIGNAL);
duke@435 488 debug_only(signal_sets_initialized = true);
duke@435 489
duke@435 490 }
duke@435 491
duke@435 492 // These are signals that are unblocked while a thread is running Java.
duke@435 493 // (For some reason, they get blocked by default.)
duke@435 494 sigset_t* os::Linux::unblocked_signals() {
duke@435 495 assert(signal_sets_initialized, "Not initialized");
duke@435 496 return &unblocked_sigs;
duke@435 497 }
duke@435 498
duke@435 499 // These are the signals that are blocked while a (non-VM) thread is
duke@435 500 // running Java. Only the VM thread handles these signals.
duke@435 501 sigset_t* os::Linux::vm_signals() {
duke@435 502 assert(signal_sets_initialized, "Not initialized");
duke@435 503 return &vm_sigs;
duke@435 504 }
duke@435 505
duke@435 506 // These are signals that are blocked during cond_wait to allow debugger in
duke@435 507 sigset_t* os::Linux::allowdebug_blocked_signals() {
duke@435 508 assert(signal_sets_initialized, "Not initialized");
duke@435 509 return &allowdebug_blocked_sigs;
duke@435 510 }
duke@435 511
duke@435 512 void os::Linux::hotspot_sigmask(Thread* thread) {
duke@435 513
duke@435 514 //Save caller's signal mask before setting VM signal mask
duke@435 515 sigset_t caller_sigmask;
duke@435 516 pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
duke@435 517
duke@435 518 OSThread* osthread = thread->osthread();
duke@435 519 osthread->set_caller_sigmask(caller_sigmask);
duke@435 520
duke@435 521 pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
duke@435 522
duke@435 523 if (!ReduceSignalUsage) {
duke@435 524 if (thread->is_VM_thread()) {
duke@435 525 // Only the VM thread handles BREAK_SIGNAL ...
duke@435 526 pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
duke@435 527 } else {
duke@435 528 // ... all other threads block BREAK_SIGNAL
duke@435 529 pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
duke@435 530 }
duke@435 531 }
duke@435 532 }
duke@435 533
duke@435 534 //////////////////////////////////////////////////////////////////////////////
duke@435 535 // detecting pthread library
duke@435 536
duke@435 537 void os::Linux::libpthread_init() {
duke@435 538 // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
duke@435 539 // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
duke@435 540 // generic name for earlier versions.
duke@435 541 // Define macros here so we can build HotSpot on old systems.
duke@435 542 # ifndef _CS_GNU_LIBC_VERSION
duke@435 543 # define _CS_GNU_LIBC_VERSION 2
duke@435 544 # endif
duke@435 545 # ifndef _CS_GNU_LIBPTHREAD_VERSION
duke@435 546 # define _CS_GNU_LIBPTHREAD_VERSION 3
duke@435 547 # endif
duke@435 548
duke@435 549 size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
duke@435 550 if (n > 0) {
duke@435 551 char *str = (char *)malloc(n);
duke@435 552 confstr(_CS_GNU_LIBC_VERSION, str, n);
duke@435 553 os::Linux::set_glibc_version(str);
duke@435 554 } else {
duke@435 555 // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
duke@435 556 static char _gnu_libc_version[32];
duke@435 557 jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
duke@435 558 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
duke@435 559 os::Linux::set_glibc_version(_gnu_libc_version);
duke@435 560 }
duke@435 561
duke@435 562 n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
duke@435 563 if (n > 0) {
duke@435 564 char *str = (char *)malloc(n);
duke@435 565 confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
duke@435 566 // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
duke@435 567 // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
xlu@634 568 // is the case. LinuxThreads has a hard limit on max number of threads.
xlu@634 569 // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
xlu@634 570 // On the other hand, NPTL does not have such a limit, sysconf()
xlu@634 571 // will return -1 and errno is not changed. Check if it is really NPTL.
duke@435 572 if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
xlu@634 573 strstr(str, "NPTL") &&
xlu@634 574 sysconf(_SC_THREAD_THREADS_MAX) > 0) {
xlu@634 575 free(str);
xlu@634 576 os::Linux::set_libpthread_version("linuxthreads");
xlu@634 577 } else {
xlu@634 578 os::Linux::set_libpthread_version(str);
duke@435 579 }
duke@435 580 } else {
xlu@634 581 // glibc before 2.3.2 only has LinuxThreads.
xlu@634 582 os::Linux::set_libpthread_version("linuxthreads");
duke@435 583 }
duke@435 584
duke@435 585 if (strstr(libpthread_version(), "NPTL")) {
duke@435 586 os::Linux::set_is_NPTL();
duke@435 587 } else {
duke@435 588 os::Linux::set_is_LinuxThreads();
duke@435 589 }
duke@435 590
duke@435 591 // LinuxThreads have two flavors: floating-stack mode, which allows variable
duke@435 592 // stack size; and fixed-stack mode. NPTL is always floating-stack.
duke@435 593 if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
duke@435 594 os::Linux::set_is_floating_stack();
duke@435 595 }
duke@435 596 }
duke@435 597
duke@435 598 /////////////////////////////////////////////////////////////////////////////
duke@435 599 // thread stack
duke@435 600
duke@435 601 // Force Linux kernel to expand current thread stack. If "bottom" is close
duke@435 602 // to the stack guard, caller should block all signals.
duke@435 603 //
duke@435 604 // MAP_GROWSDOWN:
duke@435 605 // A special mmap() flag that is used to implement thread stacks. It tells
duke@435 606 // kernel that the memory region should extend downwards when needed. This
duke@435 607 // allows early versions of LinuxThreads to only mmap the first few pages
duke@435 608 // when creating a new thread. Linux kernel will automatically expand thread
duke@435 609 // stack as needed (on page faults).
duke@435 610 //
duke@435 611 // However, because the memory region of a MAP_GROWSDOWN stack can grow on
duke@435 612 // demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
duke@435 613 // region, it's hard to tell if the fault is due to a legitimate stack
duke@435 614 // access or because of reading/writing non-exist memory (e.g. buffer
duke@435 615 // overrun). As a rule, if the fault happens below current stack pointer,
duke@435 616 // Linux kernel does not expand stack, instead a SIGSEGV is sent to the
duke@435 617 // application (see Linux kernel fault.c).
duke@435 618 //
duke@435 619 // This Linux feature can cause SIGSEGV when VM bangs thread stack for
duke@435 620 // stack overflow detection.
duke@435 621 //
duke@435 622 // Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
duke@435 623 // not use this flag. However, the stack of initial thread is not created
duke@435 624 // by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
duke@435 625 // unlikely) that user code can create a thread with MAP_GROWSDOWN stack
duke@435 626 // and then attach the thread to JVM.
duke@435 627 //
duke@435 628 // To get around the problem and allow stack banging on Linux, we need to
duke@435 629 // manually expand thread stack after receiving the SIGSEGV.
duke@435 630 //
duke@435 631 // There are two ways to expand thread stack to address "bottom", we used
duke@435 632 // both of them in JVM before 1.5:
duke@435 633 // 1. adjust stack pointer first so that it is below "bottom", and then
duke@435 634 // touch "bottom"
duke@435 635 // 2. mmap() the page in question
duke@435 636 //
duke@435 637 // Now alternate signal stack is gone, it's harder to use 2. For instance,
duke@435 638 // if current sp is already near the lower end of page 101, and we need to
duke@435 639 // call mmap() to map page 100, it is possible that part of the mmap() frame
duke@435 640 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
duke@435 641 // That will destroy the mmap() frame and cause VM to crash.
duke@435 642 //
duke@435 643 // The following code works by adjusting sp first, then accessing the "bottom"
duke@435 644 // page to force a page fault. Linux kernel will then automatically expand the
duke@435 645 // stack mapping.
duke@435 646 //
duke@435 647 // _expand_stack_to() assumes its frame size is less than page size, which
duke@435 648 // should always be true if the function is not inlined.
duke@435 649
duke@435 650 #if __GNUC__ < 3 // gcc 2.x does not support noinline attribute
duke@435 651 #define NOINLINE
duke@435 652 #else
duke@435 653 #define NOINLINE __attribute__ ((noinline))
duke@435 654 #endif
duke@435 655
duke@435 656 static void _expand_stack_to(address bottom) NOINLINE;
duke@435 657
duke@435 658 static void _expand_stack_to(address bottom) {
duke@435 659 address sp;
duke@435 660 size_t size;
duke@435 661 volatile char *p;
duke@435 662
duke@435 663 // Adjust bottom to point to the largest address within the same page, it
duke@435 664 // gives us a one-page buffer if alloca() allocates slightly more memory.
duke@435 665 bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
duke@435 666 bottom += os::Linux::page_size() - 1;
duke@435 667
duke@435 668 // sp might be slightly above current stack pointer; if that's the case, we
duke@435 669 // will alloca() a little more space than necessary, which is OK. Don't use
duke@435 670 // os::current_stack_pointer(), as its result can be slightly below current
duke@435 671 // stack pointer, causing us to not alloca enough to reach "bottom".
duke@435 672 sp = (address)&sp;
duke@435 673
duke@435 674 if (sp > bottom) {
duke@435 675 size = sp - bottom;
duke@435 676 p = (volatile char *)alloca(size);
duke@435 677 assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
duke@435 678 p[0] = '\0';
duke@435 679 }
duke@435 680 }
duke@435 681
duke@435 682 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
duke@435 683 assert(t!=NULL, "just checking");
duke@435 684 assert(t->osthread()->expanding_stack(), "expand should be set");
duke@435 685 assert(t->stack_base() != NULL, "stack_base was not initialized");
duke@435 686
duke@435 687 if (addr < t->stack_base() && addr >= t->stack_yellow_zone_base()) {
duke@435 688 sigset_t mask_all, old_sigset;
duke@435 689 sigfillset(&mask_all);
duke@435 690 pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
duke@435 691 _expand_stack_to(addr);
duke@435 692 pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
duke@435 693 return true;
duke@435 694 }
duke@435 695 return false;
duke@435 696 }
duke@435 697
duke@435 698 //////////////////////////////////////////////////////////////////////////////
duke@435 699 // create new thread
duke@435 700
duke@435 701 static address highest_vm_reserved_address();
duke@435 702
duke@435 703 // check if it's safe to start a new thread
duke@435 704 static bool _thread_safety_check(Thread* thread) {
duke@435 705 if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
duke@435 706 // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
duke@435 707 // Heap is mmap'ed at lower end of memory space. Thread stacks are
duke@435 708 // allocated (MAP_FIXED) from high address space. Every thread stack
duke@435 709 // occupies a fixed size slot (usually 2Mbytes, but user can change
duke@435 710 // it to other values if they rebuild LinuxThreads).
duke@435 711 //
duke@435 712 // Problem with MAP_FIXED is that mmap() can still succeed even part of
duke@435 713 // the memory region has already been mmap'ed. That means if we have too
duke@435 714 // many threads and/or very large heap, eventually thread stack will
duke@435 715 // collide with heap.
duke@435 716 //
duke@435 717 // Here we try to prevent heap/stack collision by comparing current
duke@435 718 // stack bottom with the highest address that has been mmap'ed by JVM
duke@435 719 // plus a safety margin for memory maps created by native code.
duke@435 720 //
duke@435 721 // This feature can be disabled by setting ThreadSafetyMargin to 0
duke@435 722 //
duke@435 723 if (ThreadSafetyMargin > 0) {
duke@435 724 address stack_bottom = os::current_stack_base() - os::current_stack_size();
duke@435 725
duke@435 726 // not safe if our stack extends below the safety margin
duke@435 727 return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
duke@435 728 } else {
duke@435 729 return true;
duke@435 730 }
duke@435 731 } else {
duke@435 732 // Floating stack LinuxThreads or NPTL:
duke@435 733 // Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
duke@435 734 // there's not enough space left, pthread_create() will fail. If we come
duke@435 735 // here, that means enough space has been reserved for stack.
duke@435 736 return true;
duke@435 737 }
duke@435 738 }
duke@435 739
duke@435 740 // Thread start routine for all newly created threads
duke@435 741 static void *java_start(Thread *thread) {
duke@435 742 // Try to randomize the cache line index of hot stack frames.
duke@435 743 // This helps when threads of the same stack traces evict each other's
duke@435 744 // cache lines. The threads can be either from the same JVM instance, or
duke@435 745 // from different JVM instances. The benefit is especially true for
duke@435 746 // processors with hyperthreading technology.
duke@435 747 static int counter = 0;
duke@435 748 int pid = os::current_process_id();
duke@435 749 alloca(((pid ^ counter++) & 7) * 128);
duke@435 750
duke@435 751 ThreadLocalStorage::set_thread(thread);
duke@435 752
duke@435 753 OSThread* osthread = thread->osthread();
duke@435 754 Monitor* sync = osthread->startThread_lock();
duke@435 755
duke@435 756 // non floating stack LinuxThreads needs extra check, see above
duke@435 757 if (!_thread_safety_check(thread)) {
duke@435 758 // notify parent thread
duke@435 759 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 760 osthread->set_state(ZOMBIE);
duke@435 761 sync->notify_all();
duke@435 762 return NULL;
duke@435 763 }
duke@435 764
duke@435 765 // thread_id is kernel thread id (similar to Solaris LWP id)
duke@435 766 osthread->set_thread_id(os::Linux::gettid());
duke@435 767
duke@435 768 if (UseNUMA) {
duke@435 769 int lgrp_id = os::numa_get_group_id();
duke@435 770 if (lgrp_id != -1) {
duke@435 771 thread->set_lgrp_id(lgrp_id);
duke@435 772 }
duke@435 773 }
duke@435 774 // initialize signal mask for this thread
duke@435 775 os::Linux::hotspot_sigmask(thread);
duke@435 776
duke@435 777 // initialize floating point control register
duke@435 778 os::Linux::init_thread_fpu_state();
duke@435 779
duke@435 780 // handshaking with parent thread
duke@435 781 {
duke@435 782 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 783
duke@435 784 // notify parent thread
duke@435 785 osthread->set_state(INITIALIZED);
duke@435 786 sync->notify_all();
duke@435 787
duke@435 788 // wait until os::start_thread()
duke@435 789 while (osthread->get_state() == INITIALIZED) {
duke@435 790 sync->wait(Mutex::_no_safepoint_check_flag);
duke@435 791 }
duke@435 792 }
duke@435 793
duke@435 794 // call one more level start routine
duke@435 795 thread->run();
duke@435 796
duke@435 797 return 0;
duke@435 798 }
duke@435 799
duke@435 800 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 801 assert(thread->osthread() == NULL, "caller responsible");
duke@435 802
duke@435 803 // Allocate the OSThread object
duke@435 804 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 805 if (osthread == NULL) {
duke@435 806 return false;
duke@435 807 }
duke@435 808
duke@435 809 // set the correct thread state
duke@435 810 osthread->set_thread_type(thr_type);
duke@435 811
duke@435 812 // Initial state is ALLOCATED but not INITIALIZED
duke@435 813 osthread->set_state(ALLOCATED);
duke@435 814
duke@435 815 thread->set_osthread(osthread);
duke@435 816
duke@435 817 // init thread attributes
duke@435 818 pthread_attr_t attr;
duke@435 819 pthread_attr_init(&attr);
duke@435 820 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
duke@435 821
duke@435 822 // stack size
duke@435 823 if (os::Linux::supports_variable_stack_size()) {
duke@435 824 // calculate stack size if it's not specified by caller
duke@435 825 if (stack_size == 0) {
duke@435 826 stack_size = os::Linux::default_stack_size(thr_type);
duke@435 827
duke@435 828 switch (thr_type) {
duke@435 829 case os::java_thread:
duke@435 830 // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
duke@435 831 if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
duke@435 832 break;
duke@435 833 case os::compiler_thread:
duke@435 834 if (CompilerThreadStackSize > 0) {
duke@435 835 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 836 break;
duke@435 837 } // else fall through:
duke@435 838 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 839 case os::vm_thread:
duke@435 840 case os::pgc_thread:
duke@435 841 case os::cgc_thread:
duke@435 842 case os::watcher_thread:
duke@435 843 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 844 break;
duke@435 845 }
duke@435 846 }
duke@435 847
duke@435 848 stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
duke@435 849 pthread_attr_setstacksize(&attr, stack_size);
duke@435 850 } else {
duke@435 851 // let pthread_create() pick the default value.
duke@435 852 }
duke@435 853
duke@435 854 // glibc guard page
duke@435 855 pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
duke@435 856
duke@435 857 ThreadState state;
duke@435 858
duke@435 859 {
duke@435 860 // Serialize thread creation if we are running with fixed stack LinuxThreads
duke@435 861 bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
duke@435 862 if (lock) {
duke@435 863 os::Linux::createThread_lock()->lock_without_safepoint_check();
duke@435 864 }
duke@435 865
duke@435 866 pthread_t tid;
duke@435 867 int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
duke@435 868
duke@435 869 pthread_attr_destroy(&attr);
duke@435 870
duke@435 871 if (ret != 0) {
duke@435 872 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 873 perror("pthread_create()");
duke@435 874 }
duke@435 875 // Need to clean up stuff we've allocated so far
duke@435 876 thread->set_osthread(NULL);
duke@435 877 delete osthread;
duke@435 878 if (lock) os::Linux::createThread_lock()->unlock();
duke@435 879 return false;
duke@435 880 }
duke@435 881
duke@435 882 // Store pthread info into the OSThread
duke@435 883 osthread->set_pthread_id(tid);
duke@435 884
duke@435 885 // Wait until child thread is either initialized or aborted
duke@435 886 {
duke@435 887 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 888 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 889 while ((state = osthread->get_state()) == ALLOCATED) {
duke@435 890 sync_with_child->wait(Mutex::_no_safepoint_check_flag);
duke@435 891 }
duke@435 892 }
duke@435 893
duke@435 894 if (lock) {
duke@435 895 os::Linux::createThread_lock()->unlock();
duke@435 896 }
duke@435 897 }
duke@435 898
duke@435 899 // Aborted due to thread limit being reached
duke@435 900 if (state == ZOMBIE) {
duke@435 901 thread->set_osthread(NULL);
duke@435 902 delete osthread;
duke@435 903 return false;
duke@435 904 }
duke@435 905
duke@435 906 // The thread is returned suspended (in state INITIALIZED),
duke@435 907 // and is started higher up in the call chain
duke@435 908 assert(state == INITIALIZED, "race condition");
duke@435 909 return true;
duke@435 910 }
duke@435 911
duke@435 912 /////////////////////////////////////////////////////////////////////////////
duke@435 913 // attach existing thread
duke@435 914
duke@435 915 // bootstrap the main thread
duke@435 916 bool os::create_main_thread(JavaThread* thread) {
duke@435 917 assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
duke@435 918 return create_attached_thread(thread);
duke@435 919 }
duke@435 920
duke@435 921 bool os::create_attached_thread(JavaThread* thread) {
duke@435 922 #ifdef ASSERT
duke@435 923 thread->verify_not_published();
duke@435 924 #endif
duke@435 925
duke@435 926 // Allocate the OSThread object
duke@435 927 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 928
duke@435 929 if (osthread == NULL) {
duke@435 930 return false;
duke@435 931 }
duke@435 932
duke@435 933 // Store pthread info into the OSThread
duke@435 934 osthread->set_thread_id(os::Linux::gettid());
duke@435 935 osthread->set_pthread_id(::pthread_self());
duke@435 936
duke@435 937 // initialize floating point control register
duke@435 938 os::Linux::init_thread_fpu_state();
duke@435 939
duke@435 940 // Initial thread state is RUNNABLE
duke@435 941 osthread->set_state(RUNNABLE);
duke@435 942
duke@435 943 thread->set_osthread(osthread);
duke@435 944
duke@435 945 if (UseNUMA) {
duke@435 946 int lgrp_id = os::numa_get_group_id();
duke@435 947 if (lgrp_id != -1) {
duke@435 948 thread->set_lgrp_id(lgrp_id);
duke@435 949 }
duke@435 950 }
duke@435 951
duke@435 952 if (os::Linux::is_initial_thread()) {
duke@435 953 // If current thread is initial thread, its stack is mapped on demand,
duke@435 954 // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
duke@435 955 // the entire stack region to avoid SEGV in stack banging.
duke@435 956 // It is also useful to get around the heap-stack-gap problem on SuSE
duke@435 957 // kernel (see 4821821 for details). We first expand stack to the top
duke@435 958 // of yellow zone, then enable stack yellow zone (order is significant,
duke@435 959 // enabling yellow zone first will crash JVM on SuSE Linux), so there
duke@435 960 // is no gap between the last two virtual memory regions.
duke@435 961
duke@435 962 JavaThread *jt = (JavaThread *)thread;
duke@435 963 address addr = jt->stack_yellow_zone_base();
duke@435 964 assert(addr != NULL, "initialization problem?");
duke@435 965 assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
duke@435 966
duke@435 967 osthread->set_expanding_stack();
duke@435 968 os::Linux::manually_expand_stack(jt, addr);
duke@435 969 osthread->clear_expanding_stack();
duke@435 970 }
duke@435 971
duke@435 972 // initialize signal mask for this thread
duke@435 973 // and save the caller's signal mask
duke@435 974 os::Linux::hotspot_sigmask(thread);
duke@435 975
duke@435 976 return true;
duke@435 977 }
duke@435 978
duke@435 979 void os::pd_start_thread(Thread* thread) {
duke@435 980 OSThread * osthread = thread->osthread();
duke@435 981 assert(osthread->get_state() != INITIALIZED, "just checking");
duke@435 982 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 983 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 984 sync_with_child->notify();
duke@435 985 }
duke@435 986
duke@435 987 // Free Linux resources related to the OSThread
duke@435 988 void os::free_thread(OSThread* osthread) {
duke@435 989 assert(osthread != NULL, "osthread not set");
duke@435 990
duke@435 991 if (Thread::current()->osthread() == osthread) {
duke@435 992 // Restore caller's signal mask
duke@435 993 sigset_t sigmask = osthread->caller_sigmask();
duke@435 994 pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
duke@435 995 }
duke@435 996
duke@435 997 delete osthread;
duke@435 998 }
duke@435 999
duke@435 1000 //////////////////////////////////////////////////////////////////////////////
duke@435 1001 // thread local storage
duke@435 1002
duke@435 1003 int os::allocate_thread_local_storage() {
duke@435 1004 pthread_key_t key;
duke@435 1005 int rslt = pthread_key_create(&key, NULL);
duke@435 1006 assert(rslt == 0, "cannot allocate thread local storage");
duke@435 1007 return (int)key;
duke@435 1008 }
duke@435 1009
duke@435 1010 // Note: This is currently not used by VM, as we don't destroy TLS key
duke@435 1011 // on VM exit.
duke@435 1012 void os::free_thread_local_storage(int index) {
duke@435 1013 int rslt = pthread_key_delete((pthread_key_t)index);
duke@435 1014 assert(rslt == 0, "invalid index");
duke@435 1015 }
duke@435 1016
duke@435 1017 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 1018 int rslt = pthread_setspecific((pthread_key_t)index, value);
duke@435 1019 assert(rslt == 0, "pthread_setspecific failed");
duke@435 1020 }
duke@435 1021
duke@435 1022 extern "C" Thread* get_thread() {
duke@435 1023 return ThreadLocalStorage::thread();
duke@435 1024 }
duke@435 1025
duke@435 1026 //////////////////////////////////////////////////////////////////////////////
duke@435 1027 // initial thread
duke@435 1028
duke@435 1029 // Check if current thread is the initial thread, similar to Solaris thr_main.
duke@435 1030 bool os::Linux::is_initial_thread(void) {
duke@435 1031 char dummy;
duke@435 1032 // If called before init complete, thread stack bottom will be null.
duke@435 1033 // Can be called if fatal error occurs before initialization.
duke@435 1034 if (initial_thread_stack_bottom() == NULL) return false;
duke@435 1035 assert(initial_thread_stack_bottom() != NULL &&
duke@435 1036 initial_thread_stack_size() != 0,
duke@435 1037 "os::init did not locate initial thread's stack region");
duke@435 1038 if ((address)&dummy >= initial_thread_stack_bottom() &&
duke@435 1039 (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
duke@435 1040 return true;
duke@435 1041 else return false;
duke@435 1042 }
duke@435 1043
duke@435 1044 // Find the virtual memory area that contains addr
duke@435 1045 static bool find_vma(address addr, address* vma_low, address* vma_high) {
duke@435 1046 FILE *fp = fopen("/proc/self/maps", "r");
duke@435 1047 if (fp) {
duke@435 1048 address low, high;
duke@435 1049 while (!feof(fp)) {
duke@435 1050 if (fscanf(fp, "%p-%p", &low, &high) == 2) {
duke@435 1051 if (low <= addr && addr < high) {
duke@435 1052 if (vma_low) *vma_low = low;
duke@435 1053 if (vma_high) *vma_high = high;
duke@435 1054 fclose (fp);
duke@435 1055 return true;
duke@435 1056 }
duke@435 1057 }
duke@435 1058 for (;;) {
duke@435 1059 int ch = fgetc(fp);
duke@435 1060 if (ch == EOF || ch == (int)'\n') break;
duke@435 1061 }
duke@435 1062 }
duke@435 1063 fclose(fp);
duke@435 1064 }
duke@435 1065 return false;
duke@435 1066 }
duke@435 1067
duke@435 1068 // Locate initial thread stack. This special handling of initial thread stack
duke@435 1069 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
duke@435 1070 // bogus value for initial thread.
duke@435 1071 void os::Linux::capture_initial_stack(size_t max_size) {
duke@435 1072 // stack size is the easy part, get it from RLIMIT_STACK
duke@435 1073 size_t stack_size;
duke@435 1074 struct rlimit rlim;
duke@435 1075 getrlimit(RLIMIT_STACK, &rlim);
duke@435 1076 stack_size = rlim.rlim_cur;
duke@435 1077
duke@435 1078 // 6308388: a bug in ld.so will relocate its own .data section to the
duke@435 1079 // lower end of primordial stack; reduce ulimit -s value a little bit
duke@435 1080 // so we won't install guard page on ld.so's data section.
duke@435 1081 stack_size -= 2 * page_size();
duke@435 1082
duke@435 1083 // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
duke@435 1084 // 7.1, in both cases we will get 2G in return value.
duke@435 1085 // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
duke@435 1086 // SuSE 7.2, Debian) can not handle alternate signal stack correctly
duke@435 1087 // for initial thread if its stack size exceeds 6M. Cap it at 2M,
duke@435 1088 // in case other parts in glibc still assumes 2M max stack size.
duke@435 1089 // FIXME: alt signal stack is gone, maybe we can relax this constraint?
duke@435 1090 #ifndef IA64
duke@435 1091 if (stack_size > 2 * K * K) stack_size = 2 * K * K;
duke@435 1092 #else
duke@435 1093 // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
duke@435 1094 if (stack_size > 4 * K * K) stack_size = 4 * K * K;
duke@435 1095 #endif
duke@435 1096
duke@435 1097 // Try to figure out where the stack base (top) is. This is harder.
duke@435 1098 //
duke@435 1099 // When an application is started, glibc saves the initial stack pointer in
duke@435 1100 // a global variable "__libc_stack_end", which is then used by system
duke@435 1101 // libraries. __libc_stack_end should be pretty close to stack top. The
duke@435 1102 // variable is available since the very early days. However, because it is
duke@435 1103 // a private interface, it could disappear in the future.
duke@435 1104 //
duke@435 1105 // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
duke@435 1106 // to __libc_stack_end, it is very close to stack top, but isn't the real
duke@435 1107 // stack top. Note that /proc may not exist if VM is running as a chroot
duke@435 1108 // program, so reading /proc/<pid>/stat could fail. Also the contents of
duke@435 1109 // /proc/<pid>/stat could change in the future (though unlikely).
duke@435 1110 //
duke@435 1111 // We try __libc_stack_end first. If that doesn't work, look for
duke@435 1112 // /proc/<pid>/stat. If neither of them works, we use current stack pointer
duke@435 1113 // as a hint, which should work well in most cases.
duke@435 1114
duke@435 1115 uintptr_t stack_start;
duke@435 1116
duke@435 1117 // try __libc_stack_end first
duke@435 1118 uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
duke@435 1119 if (p && *p) {
duke@435 1120 stack_start = *p;
duke@435 1121 } else {
duke@435 1122 // see if we can get the start_stack field from /proc/self/stat
duke@435 1123 FILE *fp;
duke@435 1124 int pid;
duke@435 1125 char state;
duke@435 1126 int ppid;
duke@435 1127 int pgrp;
duke@435 1128 int session;
duke@435 1129 int nr;
duke@435 1130 int tpgrp;
duke@435 1131 unsigned long flags;
duke@435 1132 unsigned long minflt;
duke@435 1133 unsigned long cminflt;
duke@435 1134 unsigned long majflt;
duke@435 1135 unsigned long cmajflt;
duke@435 1136 unsigned long utime;
duke@435 1137 unsigned long stime;
duke@435 1138 long cutime;
duke@435 1139 long cstime;
duke@435 1140 long prio;
duke@435 1141 long nice;
duke@435 1142 long junk;
duke@435 1143 long it_real;
duke@435 1144 uintptr_t start;
duke@435 1145 uintptr_t vsize;
bobv@2036 1146 intptr_t rss;
bobv@2036 1147 uintptr_t rsslim;
duke@435 1148 uintptr_t scodes;
duke@435 1149 uintptr_t ecode;
duke@435 1150 int i;
duke@435 1151
duke@435 1152 // Figure what the primordial thread stack base is. Code is inspired
duke@435 1153 // by email from Hans Boehm. /proc/self/stat begins with current pid,
duke@435 1154 // followed by command name surrounded by parentheses, state, etc.
duke@435 1155 char stat[2048];
duke@435 1156 int statlen;
duke@435 1157
duke@435 1158 fp = fopen("/proc/self/stat", "r");
duke@435 1159 if (fp) {
duke@435 1160 statlen = fread(stat, 1, 2047, fp);
duke@435 1161 stat[statlen] = '\0';
duke@435 1162 fclose(fp);
duke@435 1163
duke@435 1164 // Skip pid and the command string. Note that we could be dealing with
duke@435 1165 // weird command names, e.g. user could decide to rename java launcher
duke@435 1166 // to "java 1.4.2 :)", then the stat file would look like
duke@435 1167 // 1234 (java 1.4.2 :)) R ... ...
duke@435 1168 // We don't really need to know the command string, just find the last
duke@435 1169 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 1170 char * s = strrchr(stat, ')');
duke@435 1171
duke@435 1172 i = 0;
duke@435 1173 if (s) {
duke@435 1174 // Skip blank chars
duke@435 1175 do s++; while (isspace(*s));
duke@435 1176
bobv@2036 1177 #define _UFM UINTX_FORMAT
bobv@2036 1178 #define _DFM INTX_FORMAT
bobv@2036 1179
bobv@2036 1180 /* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 */
bobv@2036 1181 /* 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 */
bobv@2036 1182 i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
duke@435 1183 &state, /* 3 %c */
duke@435 1184 &ppid, /* 4 %d */
duke@435 1185 &pgrp, /* 5 %d */
duke@435 1186 &session, /* 6 %d */
duke@435 1187 &nr, /* 7 %d */
duke@435 1188 &tpgrp, /* 8 %d */
duke@435 1189 &flags, /* 9 %lu */
duke@435 1190 &minflt, /* 10 %lu */
duke@435 1191 &cminflt, /* 11 %lu */
duke@435 1192 &majflt, /* 12 %lu */
duke@435 1193 &cmajflt, /* 13 %lu */
duke@435 1194 &utime, /* 14 %lu */
duke@435 1195 &stime, /* 15 %lu */
duke@435 1196 &cutime, /* 16 %ld */
duke@435 1197 &cstime, /* 17 %ld */
duke@435 1198 &prio, /* 18 %ld */
duke@435 1199 &nice, /* 19 %ld */
duke@435 1200 &junk, /* 20 %ld */
duke@435 1201 &it_real, /* 21 %ld */
bobv@2036 1202 &start, /* 22 UINTX_FORMAT */
bobv@2036 1203 &vsize, /* 23 UINTX_FORMAT */
bobv@2036 1204 &rss, /* 24 INTX_FORMAT */
bobv@2036 1205 &rsslim, /* 25 UINTX_FORMAT */
bobv@2036 1206 &scodes, /* 26 UINTX_FORMAT */
bobv@2036 1207 &ecode, /* 27 UINTX_FORMAT */
bobv@2036 1208 &stack_start); /* 28 UINTX_FORMAT */
duke@435 1209 }
duke@435 1210
bobv@2036 1211 #undef _UFM
bobv@2036 1212 #undef _DFM
bobv@2036 1213
duke@435 1214 if (i != 28 - 2) {
duke@435 1215 assert(false, "Bad conversion from /proc/self/stat");
duke@435 1216 // product mode - assume we are the initial thread, good luck in the
duke@435 1217 // embedded case.
duke@435 1218 warning("Can't detect initial thread stack location - bad conversion");
duke@435 1219 stack_start = (uintptr_t) &rlim;
duke@435 1220 }
duke@435 1221 } else {
duke@435 1222 // For some reason we can't open /proc/self/stat (for example, running on
duke@435 1223 // FreeBSD with a Linux emulator, or inside chroot), this should work for
duke@435 1224 // most cases, so don't abort:
duke@435 1225 warning("Can't detect initial thread stack location - no /proc/self/stat");
duke@435 1226 stack_start = (uintptr_t) &rlim;
duke@435 1227 }
duke@435 1228 }
duke@435 1229
duke@435 1230 // Now we have a pointer (stack_start) very close to the stack top, the
duke@435 1231 // next thing to do is to figure out the exact location of stack top. We
duke@435 1232 // can find out the virtual memory area that contains stack_start by
duke@435 1233 // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
duke@435 1234 // and its upper limit is the real stack top. (again, this would fail if
duke@435 1235 // running inside chroot, because /proc may not exist.)
duke@435 1236
duke@435 1237 uintptr_t stack_top;
duke@435 1238 address low, high;
duke@435 1239 if (find_vma((address)stack_start, &low, &high)) {
duke@435 1240 // success, "high" is the true stack top. (ignore "low", because initial
duke@435 1241 // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
duke@435 1242 stack_top = (uintptr_t)high;
duke@435 1243 } else {
duke@435 1244 // failed, likely because /proc/self/maps does not exist
duke@435 1245 warning("Can't detect initial thread stack location - find_vma failed");
duke@435 1246 // best effort: stack_start is normally within a few pages below the real
duke@435 1247 // stack top, use it as stack top, and reduce stack size so we won't put
duke@435 1248 // guard page outside stack.
duke@435 1249 stack_top = stack_start;
duke@435 1250 stack_size -= 16 * page_size();
duke@435 1251 }
duke@435 1252
duke@435 1253 // stack_top could be partially down the page so align it
duke@435 1254 stack_top = align_size_up(stack_top, page_size());
duke@435 1255
duke@435 1256 if (max_size && stack_size > max_size) {
duke@435 1257 _initial_thread_stack_size = max_size;
duke@435 1258 } else {
duke@435 1259 _initial_thread_stack_size = stack_size;
duke@435 1260 }
duke@435 1261
duke@435 1262 _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
duke@435 1263 _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
duke@435 1264 }
duke@435 1265
duke@435 1266 ////////////////////////////////////////////////////////////////////////////////
duke@435 1267 // time support
duke@435 1268
duke@435 1269 // Time since start-up in seconds to a fine granularity.
duke@435 1270 // Used by VMSelfDestructTimer and the MemProfiler.
duke@435 1271 double os::elapsedTime() {
duke@435 1272
duke@435 1273 return (double)(os::elapsed_counter()) * 0.000001;
duke@435 1274 }
duke@435 1275
duke@435 1276 jlong os::elapsed_counter() {
duke@435 1277 timeval time;
duke@435 1278 int status = gettimeofday(&time, NULL);
duke@435 1279 return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
duke@435 1280 }
duke@435 1281
duke@435 1282 jlong os::elapsed_frequency() {
duke@435 1283 return (1000 * 1000);
duke@435 1284 }
duke@435 1285
ysr@777 1286 // For now, we say that linux does not support vtime. I have no idea
ysr@777 1287 // whether it can actually be made to (DLD, 9/13/05).
ysr@777 1288
ysr@777 1289 bool os::supports_vtime() { return false; }
ysr@777 1290 bool os::enable_vtime() { return false; }
ysr@777 1291 bool os::vtime_enabled() { return false; }
ysr@777 1292 double os::elapsedVTime() {
ysr@777 1293 // better than nothing, but not much
ysr@777 1294 return elapsedTime();
ysr@777 1295 }
ysr@777 1296
sbohne@496 1297 jlong os::javaTimeMillis() {
duke@435 1298 timeval time;
duke@435 1299 int status = gettimeofday(&time, NULL);
duke@435 1300 assert(status != -1, "linux error");
duke@435 1301 return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
duke@435 1302 }
duke@435 1303
duke@435 1304 #ifndef CLOCK_MONOTONIC
duke@435 1305 #define CLOCK_MONOTONIC (1)
duke@435 1306 #endif
duke@435 1307
duke@435 1308 void os::Linux::clock_init() {
duke@435 1309 // we do dlopen's in this particular order due to bug in linux
duke@435 1310 // dynamical loader (see 6348968) leading to crash on exit
duke@435 1311 void* handle = dlopen("librt.so.1", RTLD_LAZY);
duke@435 1312 if (handle == NULL) {
duke@435 1313 handle = dlopen("librt.so", RTLD_LAZY);
duke@435 1314 }
duke@435 1315
duke@435 1316 if (handle) {
duke@435 1317 int (*clock_getres_func)(clockid_t, struct timespec*) =
duke@435 1318 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
duke@435 1319 int (*clock_gettime_func)(clockid_t, struct timespec*) =
duke@435 1320 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
duke@435 1321 if (clock_getres_func && clock_gettime_func) {
duke@435 1322 // See if monotonic clock is supported by the kernel. Note that some
duke@435 1323 // early implementations simply return kernel jiffies (updated every
duke@435 1324 // 1/100 or 1/1000 second). It would be bad to use such a low res clock
duke@435 1325 // for nano time (though the monotonic property is still nice to have).
duke@435 1326 // It's fixed in newer kernels, however clock_getres() still returns
duke@435 1327 // 1/HZ. We check if clock_getres() works, but will ignore its reported
duke@435 1328 // resolution for now. Hopefully as people move to new kernels, this
duke@435 1329 // won't be a problem.
duke@435 1330 struct timespec res;
duke@435 1331 struct timespec tp;
duke@435 1332 if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
duke@435 1333 clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
duke@435 1334 // yes, monotonic clock is supported
duke@435 1335 _clock_gettime = clock_gettime_func;
duke@435 1336 } else {
duke@435 1337 // close librt if there is no monotonic clock
duke@435 1338 dlclose(handle);
duke@435 1339 }
duke@435 1340 }
duke@435 1341 }
duke@435 1342 }
duke@435 1343
duke@435 1344 #ifndef SYS_clock_getres
duke@435 1345
duke@435 1346 #if defined(IA32) || defined(AMD64)
duke@435 1347 #define SYS_clock_getres IA32_ONLY(266) AMD64_ONLY(229)
bobv@2036 1348 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1349 #else
bobv@2036 1350 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
bobv@2036 1351 #define sys_clock_getres(x,y) -1
duke@435 1352 #endif
duke@435 1353
bobv@2036 1354 #else
bobv@2036 1355 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1356 #endif
duke@435 1357
duke@435 1358 void os::Linux::fast_thread_clock_init() {
duke@435 1359 if (!UseLinuxPosixThreadCPUClocks) {
duke@435 1360 return;
duke@435 1361 }
duke@435 1362 clockid_t clockid;
duke@435 1363 struct timespec tp;
duke@435 1364 int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
duke@435 1365 (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
duke@435 1366
duke@435 1367 // Switch to using fast clocks for thread cpu time if
duke@435 1368 // the sys_clock_getres() returns 0 error code.
duke@435 1369 // Note, that some kernels may support the current thread
duke@435 1370 // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
duke@435 1371 // returned by the pthread_getcpuclockid().
duke@435 1372 // If the fast Posix clocks are supported then the sys_clock_getres()
duke@435 1373 // must return at least tp.tv_sec == 0 which means a resolution
duke@435 1374 // better than 1 sec. This is extra check for reliability.
duke@435 1375
duke@435 1376 if(pthread_getcpuclockid_func &&
duke@435 1377 pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
duke@435 1378 sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
duke@435 1379
duke@435 1380 _supports_fast_thread_cpu_time = true;
duke@435 1381 _pthread_getcpuclockid = pthread_getcpuclockid_func;
duke@435 1382 }
duke@435 1383 }
duke@435 1384
duke@435 1385 jlong os::javaTimeNanos() {
duke@435 1386 if (Linux::supports_monotonic_clock()) {
duke@435 1387 struct timespec tp;
duke@435 1388 int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
duke@435 1389 assert(status == 0, "gettime error");
duke@435 1390 jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
duke@435 1391 return result;
duke@435 1392 } else {
duke@435 1393 timeval time;
duke@435 1394 int status = gettimeofday(&time, NULL);
duke@435 1395 assert(status != -1, "linux error");
duke@435 1396 jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
duke@435 1397 return 1000 * usecs;
duke@435 1398 }
duke@435 1399 }
duke@435 1400
duke@435 1401 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 1402 if (Linux::supports_monotonic_clock()) {
duke@435 1403 info_ptr->max_value = ALL_64_BITS;
duke@435 1404
duke@435 1405 // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
duke@435 1406 info_ptr->may_skip_backward = false; // not subject to resetting or drifting
duke@435 1407 info_ptr->may_skip_forward = false; // not subject to resetting or drifting
duke@435 1408 } else {
duke@435 1409 // gettimeofday - based on time in seconds since the Epoch thus does not wrap
duke@435 1410 info_ptr->max_value = ALL_64_BITS;
duke@435 1411
duke@435 1412 // gettimeofday is a real time clock so it skips
duke@435 1413 info_ptr->may_skip_backward = true;
duke@435 1414 info_ptr->may_skip_forward = true;
duke@435 1415 }
duke@435 1416
duke@435 1417 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 1418 }
duke@435 1419
duke@435 1420 // Return the real, user, and system times in seconds from an
duke@435 1421 // arbitrary fixed point in the past.
duke@435 1422 bool os::getTimesSecs(double* process_real_time,
duke@435 1423 double* process_user_time,
duke@435 1424 double* process_system_time) {
duke@435 1425 struct tms ticks;
duke@435 1426 clock_t real_ticks = times(&ticks);
duke@435 1427
duke@435 1428 if (real_ticks == (clock_t) (-1)) {
duke@435 1429 return false;
duke@435 1430 } else {
duke@435 1431 double ticks_per_second = (double) clock_tics_per_sec;
duke@435 1432 *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
duke@435 1433 *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
duke@435 1434 *process_real_time = ((double) real_ticks) / ticks_per_second;
duke@435 1435
duke@435 1436 return true;
duke@435 1437 }
duke@435 1438 }
duke@435 1439
duke@435 1440
duke@435 1441 char * os::local_time_string(char *buf, size_t buflen) {
duke@435 1442 struct tm t;
duke@435 1443 time_t long_time;
duke@435 1444 time(&long_time);
duke@435 1445 localtime_r(&long_time, &t);
duke@435 1446 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 1447 t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
duke@435 1448 t.tm_hour, t.tm_min, t.tm_sec);
duke@435 1449 return buf;
duke@435 1450 }
duke@435 1451
ysr@983 1452 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 1453 return localtime_r(clock, res);
ysr@983 1454 }
ysr@983 1455
duke@435 1456 ////////////////////////////////////////////////////////////////////////////////
duke@435 1457 // runtime exit support
duke@435 1458
duke@435 1459 // Note: os::shutdown() might be called very early during initialization, or
duke@435 1460 // called from signal handler. Before adding something to os::shutdown(), make
duke@435 1461 // sure it is async-safe and can handle partially initialized VM.
duke@435 1462 void os::shutdown() {
duke@435 1463
duke@435 1464 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 1465 perfMemory_exit();
duke@435 1466
duke@435 1467 // needs to remove object in file system
duke@435 1468 AttachListener::abort();
duke@435 1469
duke@435 1470 // flush buffered output, finish log files
duke@435 1471 ostream_abort();
duke@435 1472
duke@435 1473 // Check for abort hook
duke@435 1474 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 1475 if (abort_hook != NULL) {
duke@435 1476 abort_hook();
duke@435 1477 }
duke@435 1478
duke@435 1479 }
duke@435 1480
duke@435 1481 // Note: os::abort() might be called very early during initialization, or
duke@435 1482 // called from signal handler. Before adding something to os::abort(), make
duke@435 1483 // sure it is async-safe and can handle partially initialized VM.
duke@435 1484 void os::abort(bool dump_core) {
duke@435 1485 os::shutdown();
duke@435 1486 if (dump_core) {
duke@435 1487 #ifndef PRODUCT
duke@435 1488 fdStream out(defaultStream::output_fd());
duke@435 1489 out.print_raw("Current thread is ");
duke@435 1490 char buf[16];
duke@435 1491 jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
duke@435 1492 out.print_raw_cr(buf);
duke@435 1493 out.print_raw_cr("Dumping core ...");
duke@435 1494 #endif
duke@435 1495 ::abort(); // dump core
duke@435 1496 }
duke@435 1497
duke@435 1498 ::exit(1);
duke@435 1499 }
duke@435 1500
duke@435 1501 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1502 void os::die() {
duke@435 1503 // _exit() on LinuxThreads only kills current thread
duke@435 1504 ::abort();
duke@435 1505 }
duke@435 1506
duke@435 1507 // unused on linux for now.
duke@435 1508 void os::set_error_file(const char *logfile) {}
duke@435 1509
duke@435 1510 intx os::current_thread_id() { return (intx)pthread_self(); }
duke@435 1511 int os::current_process_id() {
duke@435 1512
duke@435 1513 // Under the old linux thread library, linux gives each thread
duke@435 1514 // its own process id. Because of this each thread will return
duke@435 1515 // a different pid if this method were to return the result
duke@435 1516 // of getpid(2). Linux provides no api that returns the pid
duke@435 1517 // of the launcher thread for the vm. This implementation
duke@435 1518 // returns a unique pid, the pid of the launcher thread
duke@435 1519 // that starts the vm 'process'.
duke@435 1520
duke@435 1521 // Under the NPTL, getpid() returns the same pid as the
duke@435 1522 // launcher thread rather than a unique pid per thread.
duke@435 1523 // Use gettid() if you want the old pre NPTL behaviour.
duke@435 1524
duke@435 1525 // if you are looking for the result of a call to getpid() that
duke@435 1526 // returns a unique pid for the calling thread, then look at the
duke@435 1527 // OSThread::thread_id() method in osThread_linux.hpp file
duke@435 1528
duke@435 1529 return (int)(_initial_pid ? _initial_pid : getpid());
duke@435 1530 }
duke@435 1531
duke@435 1532 // DLL functions
duke@435 1533
duke@435 1534 const char* os::dll_file_extension() { return ".so"; }
duke@435 1535
coleenp@1788 1536 const char* os::get_temp_directory() {
coleenp@1788 1537 const char *prop = Arguments::get_property("java.io.tmpdir");
coleenp@1788 1538 return prop == NULL ? "/tmp" : prop;
coleenp@1788 1539 }
duke@435 1540
phh@1126 1541 static bool file_exists(const char* filename) {
phh@1126 1542 struct stat statbuf;
phh@1126 1543 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1544 return false;
phh@1126 1545 }
phh@1126 1546 return os::stat(filename, &statbuf) == 0;
phh@1126 1547 }
phh@1126 1548
phh@1126 1549 void os::dll_build_name(char* buffer, size_t buflen,
phh@1126 1550 const char* pname, const char* fname) {
phh@1126 1551 // Copied from libhpi
kamg@677 1552 const size_t pnamelen = pname ? strlen(pname) : 0;
kamg@677 1553
phh@1126 1554 // Quietly truncate on buffer overflow. Should be an error.
kamg@677 1555 if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
kamg@677 1556 *buffer = '\0';
kamg@677 1557 return;
kamg@677 1558 }
kamg@677 1559
kamg@677 1560 if (pnamelen == 0) {
phh@1126 1561 snprintf(buffer, buflen, "lib%s.so", fname);
phh@1126 1562 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1563 int n;
phh@1126 1564 char** pelements = split_path(pname, &n);
phh@1126 1565 for (int i = 0 ; i < n ; i++) {
phh@1126 1566 // Really shouldn't be NULL, but check can't hurt
phh@1126 1567 if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
phh@1126 1568 continue; // skip the empty path values
phh@1126 1569 }
phh@1126 1570 snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
phh@1126 1571 if (file_exists(buffer)) {
phh@1126 1572 break;
phh@1126 1573 }
phh@1126 1574 }
phh@1126 1575 // release the storage
phh@1126 1576 for (int i = 0 ; i < n ; i++) {
phh@1126 1577 if (pelements[i] != NULL) {
phh@1126 1578 FREE_C_HEAP_ARRAY(char, pelements[i]);
phh@1126 1579 }
phh@1126 1580 }
phh@1126 1581 if (pelements != NULL) {
phh@1126 1582 FREE_C_HEAP_ARRAY(char*, pelements);
phh@1126 1583 }
kamg@677 1584 } else {
phh@1126 1585 snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
kamg@677 1586 }
kamg@677 1587 }
kamg@677 1588
duke@435 1589 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1590 return getcwd(buf, buflen);
duke@435 1591 }
duke@435 1592
duke@435 1593 // check if addr is inside libjvm[_g].so
duke@435 1594 bool os::address_is_in_vm(address addr) {
duke@435 1595 static address libjvm_base_addr;
duke@435 1596 Dl_info dlinfo;
duke@435 1597
duke@435 1598 if (libjvm_base_addr == NULL) {
duke@435 1599 dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
duke@435 1600 libjvm_base_addr = (address)dlinfo.dli_fbase;
duke@435 1601 assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
duke@435 1602 }
duke@435 1603
duke@435 1604 if (dladdr((void *)addr, &dlinfo)) {
duke@435 1605 if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
duke@435 1606 }
duke@435 1607
duke@435 1608 return false;
duke@435 1609 }
duke@435 1610
duke@435 1611 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1612 int buflen, int *offset) {
duke@435 1613 Dl_info dlinfo;
duke@435 1614
duke@435 1615 if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
duke@435 1616 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
duke@435 1617 if (offset) *offset = addr - (address)dlinfo.dli_saddr;
duke@435 1618 return true;
duke@435 1619 } else {
duke@435 1620 if (buf) buf[0] = '\0';
duke@435 1621 if (offset) *offset = -1;
duke@435 1622 return false;
duke@435 1623 }
duke@435 1624 }
duke@435 1625
duke@435 1626 struct _address_to_library_name {
duke@435 1627 address addr; // input : memory address
duke@435 1628 size_t buflen; // size of fname
duke@435 1629 char* fname; // output: library name
duke@435 1630 address base; // library base addr
duke@435 1631 };
duke@435 1632
duke@435 1633 static int address_to_library_name_callback(struct dl_phdr_info *info,
duke@435 1634 size_t size, void *data) {
duke@435 1635 int i;
duke@435 1636 bool found = false;
duke@435 1637 address libbase = NULL;
duke@435 1638 struct _address_to_library_name * d = (struct _address_to_library_name *)data;
duke@435 1639
duke@435 1640 // iterate through all loadable segments
duke@435 1641 for (i = 0; i < info->dlpi_phnum; i++) {
duke@435 1642 address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
duke@435 1643 if (info->dlpi_phdr[i].p_type == PT_LOAD) {
duke@435 1644 // base address of a library is the lowest address of its loaded
duke@435 1645 // segments.
duke@435 1646 if (libbase == NULL || libbase > segbase) {
duke@435 1647 libbase = segbase;
duke@435 1648 }
duke@435 1649 // see if 'addr' is within current segment
duke@435 1650 if (segbase <= d->addr &&
duke@435 1651 d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
duke@435 1652 found = true;
duke@435 1653 }
duke@435 1654 }
duke@435 1655 }
duke@435 1656
duke@435 1657 // dlpi_name is NULL or empty if the ELF file is executable, return 0
duke@435 1658 // so dll_address_to_library_name() can fall through to use dladdr() which
duke@435 1659 // can figure out executable name from argv[0].
duke@435 1660 if (found && info->dlpi_name && info->dlpi_name[0]) {
duke@435 1661 d->base = libbase;
duke@435 1662 if (d->fname) {
duke@435 1663 jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
duke@435 1664 }
duke@435 1665 return 1;
duke@435 1666 }
duke@435 1667 return 0;
duke@435 1668 }
duke@435 1669
duke@435 1670 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1671 int buflen, int* offset) {
duke@435 1672 Dl_info dlinfo;
duke@435 1673 struct _address_to_library_name data;
duke@435 1674
duke@435 1675 // There is a bug in old glibc dladdr() implementation that it could resolve
duke@435 1676 // to wrong library name if the .so file has a base address != NULL. Here
duke@435 1677 // we iterate through the program headers of all loaded libraries to find
duke@435 1678 // out which library 'addr' really belongs to. This workaround can be
duke@435 1679 // removed once the minimum requirement for glibc is moved to 2.3.x.
duke@435 1680 data.addr = addr;
duke@435 1681 data.fname = buf;
duke@435 1682 data.buflen = buflen;
duke@435 1683 data.base = NULL;
duke@435 1684 int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
duke@435 1685
duke@435 1686 if (rslt) {
duke@435 1687 // buf already contains library name
duke@435 1688 if (offset) *offset = addr - data.base;
duke@435 1689 return true;
duke@435 1690 } else if (dladdr((void*)addr, &dlinfo)){
duke@435 1691 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
duke@435 1692 if (offset) *offset = addr - (address)dlinfo.dli_fbase;
duke@435 1693 return true;
duke@435 1694 } else {
duke@435 1695 if (buf) buf[0] = '\0';
duke@435 1696 if (offset) *offset = -1;
duke@435 1697 return false;
duke@435 1698 }
duke@435 1699 }
duke@435 1700
duke@435 1701 // Loads .dll/.so and
duke@435 1702 // in case of error it checks if .dll/.so was built for the
duke@435 1703 // same architecture as Hotspot is running on
duke@435 1704
duke@435 1705 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
duke@435 1706 {
duke@435 1707 void * result= ::dlopen(filename, RTLD_LAZY);
duke@435 1708 if (result != NULL) {
duke@435 1709 // Successful loading
duke@435 1710 return result;
duke@435 1711 }
duke@435 1712
duke@435 1713 Elf32_Ehdr elf_head;
duke@435 1714
duke@435 1715 // Read system error message into ebuf
duke@435 1716 // It may or may not be overwritten below
duke@435 1717 ::strncpy(ebuf, ::dlerror(), ebuflen-1);
duke@435 1718 ebuf[ebuflen-1]='\0';
duke@435 1719 int diag_msg_max_length=ebuflen-strlen(ebuf);
duke@435 1720 char* diag_msg_buf=ebuf+strlen(ebuf);
duke@435 1721
duke@435 1722 if (diag_msg_max_length==0) {
duke@435 1723 // No more space in ebuf for additional diagnostics message
duke@435 1724 return NULL;
duke@435 1725 }
duke@435 1726
duke@435 1727
duke@435 1728 int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
duke@435 1729
duke@435 1730 if (file_descriptor < 0) {
duke@435 1731 // Can't open library, report dlerror() message
duke@435 1732 return NULL;
duke@435 1733 }
duke@435 1734
duke@435 1735 bool failed_to_read_elf_head=
duke@435 1736 (sizeof(elf_head)!=
duke@435 1737 (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
duke@435 1738
duke@435 1739 ::close(file_descriptor);
duke@435 1740 if (failed_to_read_elf_head) {
duke@435 1741 // file i/o error - report dlerror() msg
duke@435 1742 return NULL;
duke@435 1743 }
duke@435 1744
duke@435 1745 typedef struct {
duke@435 1746 Elf32_Half code; // Actual value as defined in elf.h
duke@435 1747 Elf32_Half compat_class; // Compatibility of archs at VM's sense
duke@435 1748 char elf_class; // 32 or 64 bit
duke@435 1749 char endianess; // MSB or LSB
duke@435 1750 char* name; // String representation
duke@435 1751 } arch_t;
duke@435 1752
duke@435 1753 #ifndef EM_486
duke@435 1754 #define EM_486 6 /* Intel 80486 */
duke@435 1755 #endif
duke@435 1756
duke@435 1757 static const arch_t arch_array[]={
duke@435 1758 {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1759 {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1760 {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
duke@435 1761 {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
duke@435 1762 {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1763 {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1764 {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
duke@435 1765 {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
never@1445 1766 {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
never@1445 1767 {EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
never@1445 1768 {EM_S390, EM_S390, ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
never@1445 1769 {EM_ALPHA, EM_ALPHA, ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
never@1445 1770 {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
never@1445 1771 {EM_MIPS, EM_MIPS, ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
never@1445 1772 {EM_PARISC, EM_PARISC, ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
never@1445 1773 {EM_68K, EM_68K, ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
duke@435 1774 };
duke@435 1775
duke@435 1776 #if (defined IA32)
duke@435 1777 static Elf32_Half running_arch_code=EM_386;
duke@435 1778 #elif (defined AMD64)
duke@435 1779 static Elf32_Half running_arch_code=EM_X86_64;
duke@435 1780 #elif (defined IA64)
duke@435 1781 static Elf32_Half running_arch_code=EM_IA_64;
duke@435 1782 #elif (defined __sparc) && (defined _LP64)
duke@435 1783 static Elf32_Half running_arch_code=EM_SPARCV9;
duke@435 1784 #elif (defined __sparc) && (!defined _LP64)
duke@435 1785 static Elf32_Half running_arch_code=EM_SPARC;
duke@435 1786 #elif (defined __powerpc64__)
duke@435 1787 static Elf32_Half running_arch_code=EM_PPC64;
duke@435 1788 #elif (defined __powerpc__)
duke@435 1789 static Elf32_Half running_arch_code=EM_PPC;
never@1445 1790 #elif (defined ARM)
never@1445 1791 static Elf32_Half running_arch_code=EM_ARM;
never@1445 1792 #elif (defined S390)
never@1445 1793 static Elf32_Half running_arch_code=EM_S390;
never@1445 1794 #elif (defined ALPHA)
never@1445 1795 static Elf32_Half running_arch_code=EM_ALPHA;
never@1445 1796 #elif (defined MIPSEL)
never@1445 1797 static Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
never@1445 1798 #elif (defined PARISC)
never@1445 1799 static Elf32_Half running_arch_code=EM_PARISC;
never@1445 1800 #elif (defined MIPS)
never@1445 1801 static Elf32_Half running_arch_code=EM_MIPS;
never@1445 1802 #elif (defined M68K)
never@1445 1803 static Elf32_Half running_arch_code=EM_68K;
duke@435 1804 #else
duke@435 1805 #error Method os::dll_load requires that one of following is defined:\
never@1445 1806 IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
duke@435 1807 #endif
duke@435 1808
duke@435 1809 // Identify compatability class for VM's architecture and library's architecture
duke@435 1810 // Obtain string descriptions for architectures
duke@435 1811
duke@435 1812 arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
duke@435 1813 int running_arch_index=-1;
duke@435 1814
duke@435 1815 for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
duke@435 1816 if (running_arch_code == arch_array[i].code) {
duke@435 1817 running_arch_index = i;
duke@435 1818 }
duke@435 1819 if (lib_arch.code == arch_array[i].code) {
duke@435 1820 lib_arch.compat_class = arch_array[i].compat_class;
duke@435 1821 lib_arch.name = arch_array[i].name;
duke@435 1822 }
duke@435 1823 }
duke@435 1824
duke@435 1825 assert(running_arch_index != -1,
duke@435 1826 "Didn't find running architecture code (running_arch_code) in arch_array");
duke@435 1827 if (running_arch_index == -1) {
duke@435 1828 // Even though running architecture detection failed
duke@435 1829 // we may still continue with reporting dlerror() message
duke@435 1830 return NULL;
duke@435 1831 }
duke@435 1832
duke@435 1833 if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
duke@435 1834 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
duke@435 1835 return NULL;
duke@435 1836 }
duke@435 1837
never@1445 1838 #ifndef S390
duke@435 1839 if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
duke@435 1840 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
duke@435 1841 return NULL;
duke@435 1842 }
never@1445 1843 #endif // !S390
duke@435 1844
duke@435 1845 if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
duke@435 1846 if ( lib_arch.name!=NULL ) {
duke@435 1847 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1848 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
duke@435 1849 lib_arch.name, arch_array[running_arch_index].name);
duke@435 1850 } else {
duke@435 1851 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1852 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
duke@435 1853 lib_arch.code,
duke@435 1854 arch_array[running_arch_index].name);
duke@435 1855 }
duke@435 1856 }
duke@435 1857
duke@435 1858 return NULL;
duke@435 1859 }
duke@435 1860
kamg@677 1861 /*
kamg@677 1862 * glibc-2.0 libdl is not MT safe. If you are building with any glibc,
kamg@677 1863 * chances are you might want to run the generated bits against glibc-2.0
kamg@677 1864 * libdl.so, so always use locking for any version of glibc.
kamg@677 1865 */
kamg@677 1866 void* os::dll_lookup(void* handle, const char* name) {
kamg@677 1867 pthread_mutex_lock(&dl_mutex);
kamg@677 1868 void* res = dlsym(handle, name);
kamg@677 1869 pthread_mutex_unlock(&dl_mutex);
kamg@677 1870 return res;
kamg@677 1871 }
duke@435 1872
duke@435 1873
duke@435 1874 bool _print_ascii_file(const char* filename, outputStream* st) {
duke@435 1875 int fd = open(filename, O_RDONLY);
duke@435 1876 if (fd == -1) {
duke@435 1877 return false;
duke@435 1878 }
duke@435 1879
duke@435 1880 char buf[32];
duke@435 1881 int bytes;
duke@435 1882 while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
duke@435 1883 st->print_raw(buf, bytes);
duke@435 1884 }
duke@435 1885
duke@435 1886 close(fd);
duke@435 1887
duke@435 1888 return true;
duke@435 1889 }
duke@435 1890
duke@435 1891 void os::print_dll_info(outputStream *st) {
duke@435 1892 st->print_cr("Dynamic libraries:");
duke@435 1893
duke@435 1894 char fname[32];
duke@435 1895 pid_t pid = os::Linux::gettid();
duke@435 1896
duke@435 1897 jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
duke@435 1898
duke@435 1899 if (!_print_ascii_file(fname, st)) {
duke@435 1900 st->print("Can not get library information for pid = %d\n", pid);
duke@435 1901 }
duke@435 1902 }
duke@435 1903
duke@435 1904
duke@435 1905 void os::print_os_info(outputStream* st) {
duke@435 1906 st->print("OS:");
duke@435 1907
duke@435 1908 // Try to identify popular distros.
duke@435 1909 // Most Linux distributions have /etc/XXX-release file, which contains
duke@435 1910 // the OS version string. Some have more than one /etc/XXX-release file
duke@435 1911 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
duke@435 1912 // so the order is important.
duke@435 1913 if (!_print_ascii_file("/etc/mandrake-release", st) &&
duke@435 1914 !_print_ascii_file("/etc/sun-release", st) &&
duke@435 1915 !_print_ascii_file("/etc/redhat-release", st) &&
duke@435 1916 !_print_ascii_file("/etc/SuSE-release", st) &&
duke@435 1917 !_print_ascii_file("/etc/turbolinux-release", st) &&
duke@435 1918 !_print_ascii_file("/etc/gentoo-release", st) &&
bobv@2036 1919 !_print_ascii_file("/etc/debian_version", st) &&
bobv@2036 1920 !_print_ascii_file("/etc/ltib-release", st) &&
bobv@2036 1921 !_print_ascii_file("/etc/angstrom-version", st)) {
duke@435 1922 st->print("Linux");
duke@435 1923 }
duke@435 1924 st->cr();
duke@435 1925
duke@435 1926 // kernel
duke@435 1927 st->print("uname:");
duke@435 1928 struct utsname name;
duke@435 1929 uname(&name);
duke@435 1930 st->print(name.sysname); st->print(" ");
duke@435 1931 st->print(name.release); st->print(" ");
duke@435 1932 st->print(name.version); st->print(" ");
duke@435 1933 st->print(name.machine);
duke@435 1934 st->cr();
duke@435 1935
duke@435 1936 // Print warning if unsafe chroot environment detected
duke@435 1937 if (unsafe_chroot_detected) {
duke@435 1938 st->print("WARNING!! ");
duke@435 1939 st->print_cr(unstable_chroot_error);
duke@435 1940 }
duke@435 1941
duke@435 1942 // libc, pthread
duke@435 1943 st->print("libc:");
duke@435 1944 st->print(os::Linux::glibc_version()); st->print(" ");
duke@435 1945 st->print(os::Linux::libpthread_version()); st->print(" ");
duke@435 1946 if (os::Linux::is_LinuxThreads()) {
duke@435 1947 st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
duke@435 1948 }
duke@435 1949 st->cr();
duke@435 1950
duke@435 1951 // rlimit
duke@435 1952 st->print("rlimit:");
duke@435 1953 struct rlimit rlim;
duke@435 1954
duke@435 1955 st->print(" STACK ");
duke@435 1956 getrlimit(RLIMIT_STACK, &rlim);
duke@435 1957 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1958 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 1959
duke@435 1960 st->print(", CORE ");
duke@435 1961 getrlimit(RLIMIT_CORE, &rlim);
duke@435 1962 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1963 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 1964
duke@435 1965 st->print(", NPROC ");
duke@435 1966 getrlimit(RLIMIT_NPROC, &rlim);
duke@435 1967 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1968 else st->print("%d", rlim.rlim_cur);
duke@435 1969
duke@435 1970 st->print(", NOFILE ");
duke@435 1971 getrlimit(RLIMIT_NOFILE, &rlim);
duke@435 1972 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1973 else st->print("%d", rlim.rlim_cur);
duke@435 1974
duke@435 1975 st->print(", AS ");
duke@435 1976 getrlimit(RLIMIT_AS, &rlim);
duke@435 1977 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 1978 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 1979 st->cr();
duke@435 1980
duke@435 1981 // load average
duke@435 1982 st->print("load average:");
duke@435 1983 double loadavg[3];
duke@435 1984 os::loadavg(loadavg, 3);
duke@435 1985 st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
duke@435 1986 st->cr();
bobv@2036 1987
bobv@2036 1988 // meminfo
bobv@2036 1989 st->print("\n/proc/meminfo:\n");
bobv@2036 1990 _print_ascii_file("/proc/meminfo", st);
bobv@2036 1991 st->cr();
duke@435 1992 }
duke@435 1993
duke@435 1994 void os::print_memory_info(outputStream* st) {
duke@435 1995
duke@435 1996 st->print("Memory:");
duke@435 1997 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 1998
duke@435 1999 // values in struct sysinfo are "unsigned long"
duke@435 2000 struct sysinfo si;
duke@435 2001 sysinfo(&si);
duke@435 2002
duke@435 2003 st->print(", physical " UINT64_FORMAT "k",
duke@435 2004 os::physical_memory() >> 10);
duke@435 2005 st->print("(" UINT64_FORMAT "k free)",
duke@435 2006 os::available_memory() >> 10);
duke@435 2007 st->print(", swap " UINT64_FORMAT "k",
duke@435 2008 ((jlong)si.totalswap * si.mem_unit) >> 10);
duke@435 2009 st->print("(" UINT64_FORMAT "k free)",
duke@435 2010 ((jlong)si.freeswap * si.mem_unit) >> 10);
duke@435 2011 st->cr();
duke@435 2012 }
duke@435 2013
duke@435 2014 // Taken from /usr/include/bits/siginfo.h Supposed to be architecture specific
duke@435 2015 // but they're the same for all the linux arch that we support
duke@435 2016 // and they're the same for solaris but there's no common place to put this.
duke@435 2017 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
duke@435 2018 "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
duke@435 2019 "ILL_COPROC", "ILL_BADSTK" };
duke@435 2020
duke@435 2021 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
duke@435 2022 "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
duke@435 2023 "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
duke@435 2024
duke@435 2025 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
duke@435 2026
duke@435 2027 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
duke@435 2028
duke@435 2029 void os::print_siginfo(outputStream* st, void* siginfo) {
duke@435 2030 st->print("siginfo:");
duke@435 2031
duke@435 2032 const int buflen = 100;
duke@435 2033 char buf[buflen];
duke@435 2034 siginfo_t *si = (siginfo_t*)siginfo;
duke@435 2035 st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
duke@435 2036 if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
duke@435 2037 st->print("si_errno=%s", buf);
duke@435 2038 } else {
duke@435 2039 st->print("si_errno=%d", si->si_errno);
duke@435 2040 }
duke@435 2041 const int c = si->si_code;
duke@435 2042 assert(c > 0, "unexpected si_code");
duke@435 2043 switch (si->si_signo) {
duke@435 2044 case SIGILL:
duke@435 2045 st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
duke@435 2046 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2047 break;
duke@435 2048 case SIGFPE:
duke@435 2049 st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
duke@435 2050 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2051 break;
duke@435 2052 case SIGSEGV:
duke@435 2053 st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
duke@435 2054 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2055 break;
duke@435 2056 case SIGBUS:
duke@435 2057 st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
duke@435 2058 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2059 break;
duke@435 2060 default:
duke@435 2061 st->print(", si_code=%d", si->si_code);
duke@435 2062 // no si_addr
duke@435 2063 }
duke@435 2064
duke@435 2065 if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
duke@435 2066 UseSharedSpaces) {
duke@435 2067 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 2068 if (mapinfo->is_in_shared_space(si->si_addr)) {
duke@435 2069 st->print("\n\nError accessing class data sharing archive." \
duke@435 2070 " Mapped file inaccessible during execution, " \
duke@435 2071 " possible disk/network problem.");
duke@435 2072 }
duke@435 2073 }
duke@435 2074 st->cr();
duke@435 2075 }
duke@435 2076
duke@435 2077
duke@435 2078 static void print_signal_handler(outputStream* st, int sig,
duke@435 2079 char* buf, size_t buflen);
duke@435 2080
duke@435 2081 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 2082 st->print_cr("Signal Handlers:");
duke@435 2083 print_signal_handler(st, SIGSEGV, buf, buflen);
duke@435 2084 print_signal_handler(st, SIGBUS , buf, buflen);
duke@435 2085 print_signal_handler(st, SIGFPE , buf, buflen);
duke@435 2086 print_signal_handler(st, SIGPIPE, buf, buflen);
duke@435 2087 print_signal_handler(st, SIGXFSZ, buf, buflen);
duke@435 2088 print_signal_handler(st, SIGILL , buf, buflen);
duke@435 2089 print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
duke@435 2090 print_signal_handler(st, SR_signum, buf, buflen);
duke@435 2091 print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
duke@435 2092 print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
duke@435 2093 print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
duke@435 2094 print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
duke@435 2095 }
duke@435 2096
duke@435 2097 static char saved_jvm_path[MAXPATHLEN] = {0};
duke@435 2098
duke@435 2099 // Find the full path to the current module, libjvm.so or libjvm_g.so
mchung@1997 2100 void os::jvm_path(char *buf, jint buflen) {
duke@435 2101 // Error checking.
mchung@1997 2102 if (buflen < MAXPATHLEN) {
duke@435 2103 assert(false, "must use a large-enough buffer");
duke@435 2104 buf[0] = '\0';
duke@435 2105 return;
duke@435 2106 }
duke@435 2107 // Lazy resolve the path to current module.
duke@435 2108 if (saved_jvm_path[0] != 0) {
duke@435 2109 strcpy(buf, saved_jvm_path);
duke@435 2110 return;
duke@435 2111 }
duke@435 2112
duke@435 2113 char dli_fname[MAXPATHLEN];
duke@435 2114 bool ret = dll_address_to_library_name(
duke@435 2115 CAST_FROM_FN_PTR(address, os::jvm_path),
duke@435 2116 dli_fname, sizeof(dli_fname), NULL);
duke@435 2117 assert(ret != 0, "cannot locate libjvm");
bobv@2036 2118 char *rp = realpath(dli_fname, buf);
bobv@2036 2119 if (rp == NULL)
xlu@948 2120 return;
duke@435 2121
duke@435 2122 if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
duke@435 2123 // Support for the gamma launcher. Typical value for buf is
duke@435 2124 // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so". If "/jre/lib/" appears at
duke@435 2125 // the right place in the string, then assume we are installed in a JDK and
duke@435 2126 // we're done. Otherwise, check for a JAVA_HOME environment variable and fix
duke@435 2127 // up the path so it looks like libjvm.so is installed there (append a
duke@435 2128 // fake suffix hotspot/libjvm.so).
duke@435 2129 const char *p = buf + strlen(buf) - 1;
duke@435 2130 for (int count = 0; p > buf && count < 5; ++count) {
duke@435 2131 for (--p; p > buf && *p != '/'; --p)
duke@435 2132 /* empty */ ;
duke@435 2133 }
duke@435 2134
duke@435 2135 if (strncmp(p, "/jre/lib/", 9) != 0) {
duke@435 2136 // Look for JAVA_HOME in the environment.
duke@435 2137 char* java_home_var = ::getenv("JAVA_HOME");
duke@435 2138 if (java_home_var != NULL && java_home_var[0] != 0) {
mchung@1997 2139 char* jrelib_p;
mchung@1997 2140 int len;
mchung@1997 2141
duke@435 2142 // Check the current module name "libjvm.so" or "libjvm_g.so".
duke@435 2143 p = strrchr(buf, '/');
duke@435 2144 assert(strstr(p, "/libjvm") == p, "invalid library name");
duke@435 2145 p = strstr(p, "_g") ? "_g" : "";
duke@435 2146
bobv@2036 2147 rp = realpath(java_home_var, buf);
bobv@2036 2148 if (rp == NULL)
xlu@948 2149 return;
mchung@1997 2150
mchung@1997 2151 // determine if this is a legacy image or modules image
mchung@1997 2152 // modules image doesn't have "jre" subdirectory
mchung@1997 2153 len = strlen(buf);
mchung@1997 2154 jrelib_p = buf + len;
mchung@1997 2155 snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
mchung@1997 2156 if (0 != access(buf, F_OK)) {
mchung@1997 2157 snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
mchung@1997 2158 }
mchung@1997 2159
duke@435 2160 if (0 == access(buf, F_OK)) {
duke@435 2161 // Use current module name "libjvm[_g].so" instead of
duke@435 2162 // "libjvm"debug_only("_g")".so" since for fastdebug version
duke@435 2163 // we should have "libjvm.so" but debug_only("_g") adds "_g"!
duke@435 2164 // It is used when we are choosing the HPI library's name
duke@435 2165 // "libhpi[_g].so" in hpi::initialize_get_interface().
mchung@1997 2166 len = strlen(buf);
mchung@1997 2167 snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
duke@435 2168 } else {
duke@435 2169 // Go back to path of .so
bobv@2036 2170 rp = realpath(dli_fname, buf);
bobv@2036 2171 if (rp == NULL)
xlu@948 2172 return;
duke@435 2173 }
duke@435 2174 }
duke@435 2175 }
duke@435 2176 }
duke@435 2177
duke@435 2178 strcpy(saved_jvm_path, buf);
duke@435 2179 }
duke@435 2180
duke@435 2181 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 2182 // no prefix required, not even "_"
duke@435 2183 }
duke@435 2184
duke@435 2185 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 2186 // no suffix required
duke@435 2187 }
duke@435 2188
duke@435 2189 ////////////////////////////////////////////////////////////////////////////////
duke@435 2190 // sun.misc.Signal support
duke@435 2191
duke@435 2192 static volatile jint sigint_count = 0;
duke@435 2193
duke@435 2194 static void
duke@435 2195 UserHandler(int sig, void *siginfo, void *context) {
duke@435 2196 // 4511530 - sem_post is serialized and handled by the manager thread. When
duke@435 2197 // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
duke@435 2198 // don't want to flood the manager thread with sem_post requests.
duke@435 2199 if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
duke@435 2200 return;
duke@435 2201
duke@435 2202 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 2203 // handler fails to abort. Let VM die immediately.
duke@435 2204 if (sig == SIGINT && is_error_reported()) {
duke@435 2205 os::die();
duke@435 2206 }
duke@435 2207
duke@435 2208 os::signal_notify(sig);
duke@435 2209 }
duke@435 2210
duke@435 2211 void* os::user_handler() {
duke@435 2212 return CAST_FROM_FN_PTR(void*, UserHandler);
duke@435 2213 }
duke@435 2214
duke@435 2215 extern "C" {
duke@435 2216 typedef void (*sa_handler_t)(int);
duke@435 2217 typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
duke@435 2218 }
duke@435 2219
duke@435 2220 void* os::signal(int signal_number, void* handler) {
duke@435 2221 struct sigaction sigAct, oldSigAct;
duke@435 2222
duke@435 2223 sigfillset(&(sigAct.sa_mask));
duke@435 2224 sigAct.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 2225 sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
duke@435 2226
duke@435 2227 if (sigaction(signal_number, &sigAct, &oldSigAct)) {
duke@435 2228 // -1 means registration failed
duke@435 2229 return (void *)-1;
duke@435 2230 }
duke@435 2231
duke@435 2232 return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
duke@435 2233 }
duke@435 2234
duke@435 2235 void os::signal_raise(int signal_number) {
duke@435 2236 ::raise(signal_number);
duke@435 2237 }
duke@435 2238
duke@435 2239 /*
duke@435 2240 * The following code is moved from os.cpp for making this
duke@435 2241 * code platform specific, which it is by its very nature.
duke@435 2242 */
duke@435 2243
duke@435 2244 // Will be modified when max signal is changed to be dynamic
duke@435 2245 int os::sigexitnum_pd() {
duke@435 2246 return NSIG;
duke@435 2247 }
duke@435 2248
duke@435 2249 // a counter for each possible signal value
duke@435 2250 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 2251
duke@435 2252 // Linux(POSIX) specific hand shaking semaphore.
duke@435 2253 static sem_t sig_sem;
duke@435 2254
duke@435 2255 void os::signal_init_pd() {
duke@435 2256 // Initialize signal structures
duke@435 2257 ::memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 2258
duke@435 2259 // Initialize signal semaphore
duke@435 2260 ::sem_init(&sig_sem, 0, 0);
duke@435 2261 }
duke@435 2262
duke@435 2263 void os::signal_notify(int sig) {
duke@435 2264 Atomic::inc(&pending_signals[sig]);
duke@435 2265 ::sem_post(&sig_sem);
duke@435 2266 }
duke@435 2267
duke@435 2268 static int check_pending_signals(bool wait) {
duke@435 2269 Atomic::store(0, &sigint_count);
duke@435 2270 for (;;) {
duke@435 2271 for (int i = 0; i < NSIG + 1; i++) {
duke@435 2272 jint n = pending_signals[i];
duke@435 2273 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 2274 return i;
duke@435 2275 }
duke@435 2276 }
duke@435 2277 if (!wait) {
duke@435 2278 return -1;
duke@435 2279 }
duke@435 2280 JavaThread *thread = JavaThread::current();
duke@435 2281 ThreadBlockInVM tbivm(thread);
duke@435 2282
duke@435 2283 bool threadIsSuspended;
duke@435 2284 do {
duke@435 2285 thread->set_suspend_equivalent();
duke@435 2286 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 2287 ::sem_wait(&sig_sem);
duke@435 2288
duke@435 2289 // were we externally suspended while we were waiting?
duke@435 2290 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 2291 if (threadIsSuspended) {
duke@435 2292 //
duke@435 2293 // The semaphore has been incremented, but while we were waiting
duke@435 2294 // another thread suspended us. We don't want to continue running
duke@435 2295 // while suspended because that would surprise the thread that
duke@435 2296 // suspended us.
duke@435 2297 //
duke@435 2298 ::sem_post(&sig_sem);
duke@435 2299
duke@435 2300 thread->java_suspend_self();
duke@435 2301 }
duke@435 2302 } while (threadIsSuspended);
duke@435 2303 }
duke@435 2304 }
duke@435 2305
duke@435 2306 int os::signal_lookup() {
duke@435 2307 return check_pending_signals(false);
duke@435 2308 }
duke@435 2309
duke@435 2310 int os::signal_wait() {
duke@435 2311 return check_pending_signals(true);
duke@435 2312 }
duke@435 2313
duke@435 2314 ////////////////////////////////////////////////////////////////////////////////
duke@435 2315 // Virtual Memory
duke@435 2316
duke@435 2317 int os::vm_page_size() {
duke@435 2318 // Seems redundant as all get out
duke@435 2319 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2320 return os::Linux::page_size();
duke@435 2321 }
duke@435 2322
duke@435 2323 // Solaris allocates memory by pages.
duke@435 2324 int os::vm_allocation_granularity() {
duke@435 2325 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2326 return os::Linux::page_size();
duke@435 2327 }
duke@435 2328
duke@435 2329 // Rationale behind this function:
duke@435 2330 // current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
duke@435 2331 // mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
duke@435 2332 // samples for JITted code. Here we create private executable mapping over the code cache
duke@435 2333 // and then we can use standard (well, almost, as mapping can change) way to provide
duke@435 2334 // info for the reporting script by storing timestamp and location of symbol
duke@435 2335 void linux_wrap_code(char* base, size_t size) {
duke@435 2336 static volatile jint cnt = 0;
duke@435 2337
duke@435 2338 if (!UseOprofile) {
duke@435 2339 return;
duke@435 2340 }
duke@435 2341
coleenp@1852 2342 char buf[PATH_MAX+1];
duke@435 2343 int num = Atomic::add(1, &cnt);
duke@435 2344
coleenp@1788 2345 snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
coleenp@1788 2346 os::get_temp_directory(), os::current_process_id(), num);
duke@435 2347 unlink(buf);
duke@435 2348
duke@435 2349 int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
duke@435 2350
duke@435 2351 if (fd != -1) {
duke@435 2352 off_t rv = lseek(fd, size-2, SEEK_SET);
duke@435 2353 if (rv != (off_t)-1) {
duke@435 2354 if (write(fd, "", 1) == 1) {
duke@435 2355 mmap(base, size,
duke@435 2356 PROT_READ|PROT_WRITE|PROT_EXEC,
duke@435 2357 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
duke@435 2358 }
duke@435 2359 }
duke@435 2360 close(fd);
duke@435 2361 unlink(buf);
duke@435 2362 }
duke@435 2363 }
duke@435 2364
duke@435 2365 // NOTE: Linux kernel does not really reserve the pages for us.
duke@435 2366 // All it does is to check if there are enough free pages
duke@435 2367 // left at the time of mmap(). This could be a potential
duke@435 2368 // problem.
coleenp@1091 2369 bool os::commit_memory(char* addr, size_t size, bool exec) {
coleenp@1091 2370 int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
coleenp@1091 2371 uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
duke@435 2372 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
duke@435 2373 return res != (uintptr_t) MAP_FAILED;
duke@435 2374 }
duke@435 2375
coleenp@1091 2376 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
coleenp@1091 2377 bool exec) {
coleenp@1091 2378 return commit_memory(addr, size, exec);
duke@435 2379 }
duke@435 2380
duke@435 2381 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
iveresov@576 2382
iveresov@576 2383 void os::free_memory(char *addr, size_t bytes) {
iveresov@1196 2384 ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
iveresov@1196 2385 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
iveresov@576 2386 }
iveresov@576 2387
iveresov@897 2388 void os::numa_make_global(char *addr, size_t bytes) {
iveresov@897 2389 Linux::numa_interleave_memory(addr, bytes);
iveresov@897 2390 }
iveresov@576 2391
iveresov@576 2392 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
iveresov@576 2393 Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
iveresov@576 2394 }
iveresov@576 2395
iveresov@576 2396 bool os::numa_topology_changed() { return false; }
iveresov@576 2397
iveresov@576 2398 size_t os::numa_get_groups_num() {
iveresov@576 2399 int max_node = Linux::numa_max_node();
iveresov@576 2400 return max_node > 0 ? max_node + 1 : 1;
iveresov@576 2401 }
iveresov@576 2402
iveresov@576 2403 int os::numa_get_group_id() {
iveresov@576 2404 int cpu_id = Linux::sched_getcpu();
iveresov@576 2405 if (cpu_id != -1) {
iveresov@576 2406 int lgrp_id = Linux::get_node_by_cpu(cpu_id);
iveresov@576 2407 if (lgrp_id != -1) {
iveresov@576 2408 return lgrp_id;
iveresov@576 2409 }
duke@435 2410 }
duke@435 2411 return 0;
duke@435 2412 }
duke@435 2413
iveresov@576 2414 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
iveresov@576 2415 for (size_t i = 0; i < size; i++) {
iveresov@576 2416 ids[i] = i;
iveresov@576 2417 }
iveresov@576 2418 return size;
iveresov@576 2419 }
iveresov@576 2420
duke@435 2421 bool os::get_page_info(char *start, page_info* info) {
duke@435 2422 return false;
duke@435 2423 }
duke@435 2424
duke@435 2425 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 2426 return end;
duke@435 2427 }
duke@435 2428
iveresov@576 2429 extern "C" void numa_warn(int number, char *where, ...) { }
iveresov@576 2430 extern "C" void numa_error(char *where) { }
iveresov@576 2431
iveresov@1198 2432
iveresov@1198 2433 // If we are running with libnuma version > 2, then we should
iveresov@1198 2434 // be trying to use symbols with versions 1.1
iveresov@1198 2435 // If we are running with earlier version, which did not have symbol versions,
iveresov@1198 2436 // we should use the base version.
iveresov@1198 2437 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
iveresov@1198 2438 void *f = dlvsym(handle, name, "libnuma_1.1");
iveresov@1198 2439 if (f == NULL) {
iveresov@1198 2440 f = dlsym(handle, name);
iveresov@1198 2441 }
iveresov@1198 2442 return f;
iveresov@1198 2443 }
iveresov@1198 2444
iveresov@897 2445 bool os::Linux::libnuma_init() {
iveresov@576 2446 // sched_getcpu() should be in libc.
iveresov@576 2447 set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
iveresov@576 2448 dlsym(RTLD_DEFAULT, "sched_getcpu")));
iveresov@576 2449
iveresov@576 2450 if (sched_getcpu() != -1) { // Does it work?
iveresov@702 2451 void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
iveresov@576 2452 if (handle != NULL) {
iveresov@576 2453 set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
iveresov@1198 2454 libnuma_dlsym(handle, "numa_node_to_cpus")));
iveresov@576 2455 set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
iveresov@1198 2456 libnuma_dlsym(handle, "numa_max_node")));
iveresov@576 2457 set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
iveresov@1198 2458 libnuma_dlsym(handle, "numa_available")));
iveresov@576 2459 set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
iveresov@1198 2460 libnuma_dlsym(handle, "numa_tonode_memory")));
iveresov@897 2461 set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
iveresov@1198 2462 libnuma_dlsym(handle, "numa_interleave_memory")));
iveresov@897 2463
iveresov@897 2464
iveresov@576 2465 if (numa_available() != -1) {
iveresov@1198 2466 set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
iveresov@576 2467 // Create a cpu -> node mapping
iveresov@576 2468 _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
iveresov@576 2469 rebuild_cpu_to_node_map();
iveresov@897 2470 return true;
iveresov@576 2471 }
iveresov@576 2472 }
iveresov@576 2473 }
iveresov@897 2474 return false;
iveresov@576 2475 }
iveresov@576 2476
iveresov@576 2477 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
iveresov@576 2478 // The table is later used in get_node_by_cpu().
iveresov@576 2479 void os::Linux::rebuild_cpu_to_node_map() {
iveresov@897 2480 const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
iveresov@897 2481 // in libnuma (possible values are starting from 16,
iveresov@897 2482 // and continuing up with every other power of 2, but less
iveresov@897 2483 // than the maximum number of CPUs supported by kernel), and
iveresov@897 2484 // is a subject to change (in libnuma version 2 the requirements
iveresov@897 2485 // are more reasonable) we'll just hardcode the number they use
iveresov@897 2486 // in the library.
iveresov@897 2487 const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
iveresov@897 2488
iveresov@897 2489 size_t cpu_num = os::active_processor_count();
iveresov@897 2490 size_t cpu_map_size = NCPUS / BitsPerCLong;
iveresov@897 2491 size_t cpu_map_valid_size =
iveresov@897 2492 MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
iveresov@897 2493
iveresov@576 2494 cpu_to_node()->clear();
iveresov@576 2495 cpu_to_node()->at_grow(cpu_num - 1);
iveresov@897 2496 size_t node_num = numa_get_groups_num();
iveresov@897 2497
iveresov@576 2498 unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
iveresov@897 2499 for (size_t i = 0; i < node_num; i++) {
iveresov@576 2500 if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
iveresov@897 2501 for (size_t j = 0; j < cpu_map_valid_size; j++) {
iveresov@576 2502 if (cpu_map[j] != 0) {
iveresov@897 2503 for (size_t k = 0; k < BitsPerCLong; k++) {
iveresov@576 2504 if (cpu_map[j] & (1UL << k)) {
iveresov@897 2505 cpu_to_node()->at_put(j * BitsPerCLong + k, i);
iveresov@576 2506 }
iveresov@576 2507 }
iveresov@576 2508 }
iveresov@576 2509 }
iveresov@576 2510 }
iveresov@576 2511 }
iveresov@576 2512 FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
iveresov@576 2513 }
iveresov@576 2514
iveresov@576 2515 int os::Linux::get_node_by_cpu(int cpu_id) {
iveresov@576 2516 if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
iveresov@576 2517 return cpu_to_node()->at(cpu_id);
iveresov@576 2518 }
iveresov@576 2519 return -1;
iveresov@576 2520 }
iveresov@576 2521
iveresov@576 2522 GrowableArray<int>* os::Linux::_cpu_to_node;
iveresov@576 2523 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
iveresov@576 2524 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
iveresov@576 2525 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
iveresov@576 2526 os::Linux::numa_available_func_t os::Linux::_numa_available;
iveresov@576 2527 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
iveresov@897 2528 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
iveresov@897 2529 unsigned long* os::Linux::_numa_all_nodes;
iveresov@576 2530
duke@435 2531 bool os::uncommit_memory(char* addr, size_t size) {
bobv@2036 2532 uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
bobv@2036 2533 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
bobv@2036 2534 return res != (uintptr_t) MAP_FAILED;
duke@435 2535 }
duke@435 2536
coleenp@1755 2537 // Linux uses a growable mapping for the stack, and if the mapping for
coleenp@1755 2538 // the stack guard pages is not removed when we detach a thread the
coleenp@1755 2539 // stack cannot grow beyond the pages where the stack guard was
coleenp@1755 2540 // mapped. If at some point later in the process the stack expands to
coleenp@1755 2541 // that point, the Linux kernel cannot expand the stack any further
coleenp@1755 2542 // because the guard pages are in the way, and a segfault occurs.
coleenp@1755 2543 //
coleenp@1755 2544 // However, it's essential not to split the stack region by unmapping
coleenp@1755 2545 // a region (leaving a hole) that's already part of the stack mapping,
coleenp@1755 2546 // so if the stack mapping has already grown beyond the guard pages at
coleenp@1755 2547 // the time we create them, we have to truncate the stack mapping.
coleenp@1755 2548 // So, we need to know the extent of the stack mapping when
coleenp@1755 2549 // create_stack_guard_pages() is called.
coleenp@1755 2550
coleenp@1755 2551 // Find the bounds of the stack mapping. Return true for success.
coleenp@1755 2552 //
coleenp@1755 2553 // We only need this for stacks that are growable: at the time of
coleenp@1755 2554 // writing thread stacks don't use growable mappings (i.e. those
coleenp@1755 2555 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
coleenp@1755 2556 // only applies to the main thread.
coleenp@1755 2557 static bool
coleenp@1755 2558 get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
coleenp@1755 2559 {
coleenp@1755 2560 FILE *f = fopen("/proc/self/maps", "r");
coleenp@1755 2561 if (f == NULL)
coleenp@1755 2562 return false;
coleenp@1755 2563
coleenp@1755 2564 while (!feof(f)) {
coleenp@1755 2565 size_t dummy;
coleenp@1755 2566 char *str = NULL;
coleenp@1755 2567 ssize_t len = getline(&str, &dummy, f);
coleenp@1755 2568 if (len == -1) {
coleenp@1760 2569 fclose(f);
coleenp@1755 2570 return false;
coleenp@1755 2571 }
coleenp@1755 2572
coleenp@1755 2573 if (len > 0 && str[len-1] == '\n') {
coleenp@1755 2574 str[len-1] = 0;
coleenp@1755 2575 len--;
coleenp@1755 2576 }
coleenp@1755 2577
coleenp@1755 2578 static const char *stack_str = "[stack]";
coleenp@1755 2579 if (len > (ssize_t)strlen(stack_str)
coleenp@1755 2580 && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
coleenp@1755 2581 if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
coleenp@1755 2582 uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
coleenp@1755 2583 if (sp >= *bottom && sp <= *top) {
coleenp@1755 2584 free(str);
coleenp@1760 2585 fclose(f);
coleenp@1755 2586 return true;
coleenp@1755 2587 }
coleenp@1755 2588 }
coleenp@1755 2589 }
coleenp@1755 2590 free(str);
coleenp@1755 2591 }
coleenp@1760 2592 fclose(f);
coleenp@1755 2593 return false;
coleenp@1755 2594 }
coleenp@1755 2595
coleenp@1755 2596 // If the (growable) stack mapping already extends beyond the point
coleenp@1755 2597 // where we're going to put our guard pages, truncate the mapping at
coleenp@1755 2598 // that point by munmap()ping it. This ensures that when we later
coleenp@1755 2599 // munmap() the guard pages we don't leave a hole in the stack
dholmes@2105 2600 // mapping. This only affects the main/initial thread, but guard
dholmes@2105 2601 // against future OS changes
coleenp@1755 2602 bool os::create_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2603 uintptr_t stack_extent, stack_base;
dholmes@2105 2604 bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
dholmes@2105 2605 if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
dholmes@2105 2606 assert(os::Linux::is_initial_thread(),
dholmes@2105 2607 "growable stack in non-initial thread");
coleenp@1755 2608 if (stack_extent < (uintptr_t)addr)
coleenp@1755 2609 ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
coleenp@1755 2610 }
coleenp@1755 2611
coleenp@1755 2612 return os::commit_memory(addr, size);
coleenp@1755 2613 }
coleenp@1755 2614
coleenp@1755 2615 // If this is a growable mapping, remove the guard pages entirely by
dholmes@2105 2616 // munmap()ping them. If not, just call uncommit_memory(). This only
dholmes@2105 2617 // affects the main/initial thread, but guard against future OS changes
coleenp@1755 2618 bool os::remove_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2619 uintptr_t stack_extent, stack_base;
dholmes@2105 2620 bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
dholmes@2105 2621 if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
dholmes@2105 2622 assert(os::Linux::is_initial_thread(),
dholmes@2105 2623 "growable stack in non-initial thread");
dholmes@2105 2624
coleenp@1755 2625 return ::munmap(addr, size) == 0;
coleenp@1755 2626 }
coleenp@1755 2627
coleenp@1755 2628 return os::uncommit_memory(addr, size);
coleenp@1755 2629 }
coleenp@1755 2630
duke@435 2631 static address _highest_vm_reserved_address = NULL;
duke@435 2632
duke@435 2633 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
duke@435 2634 // at 'requested_addr'. If there are existing memory mappings at the same
duke@435 2635 // location, however, they will be overwritten. If 'fixed' is false,
duke@435 2636 // 'requested_addr' is only treated as a hint, the return value may or
duke@435 2637 // may not start from the requested address. Unlike Linux mmap(), this
duke@435 2638 // function returns NULL to indicate failure.
duke@435 2639 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
duke@435 2640 char * addr;
duke@435 2641 int flags;
duke@435 2642
duke@435 2643 flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
duke@435 2644 if (fixed) {
duke@435 2645 assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
duke@435 2646 flags |= MAP_FIXED;
duke@435 2647 }
duke@435 2648
coleenp@1091 2649 // Map uncommitted pages PROT_READ and PROT_WRITE, change access
coleenp@1091 2650 // to PROT_EXEC if executable when we commit the page.
coleenp@1091 2651 addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
duke@435 2652 flags, -1, 0);
duke@435 2653
duke@435 2654 if (addr != MAP_FAILED) {
duke@435 2655 // anon_mmap() should only get called during VM initialization,
duke@435 2656 // don't need lock (actually we can skip locking even it can be called
duke@435 2657 // from multiple threads, because _highest_vm_reserved_address is just a
duke@435 2658 // hint about the upper limit of non-stack memory regions.)
duke@435 2659 if ((address)addr + bytes > _highest_vm_reserved_address) {
duke@435 2660 _highest_vm_reserved_address = (address)addr + bytes;
duke@435 2661 }
duke@435 2662 }
duke@435 2663
duke@435 2664 return addr == MAP_FAILED ? NULL : addr;
duke@435 2665 }
duke@435 2666
duke@435 2667 // Don't update _highest_vm_reserved_address, because there might be memory
duke@435 2668 // regions above addr + size. If so, releasing a memory region only creates
duke@435 2669 // a hole in the address space, it doesn't help prevent heap-stack collision.
duke@435 2670 //
duke@435 2671 static int anon_munmap(char * addr, size_t size) {
duke@435 2672 return ::munmap(addr, size) == 0;
duke@435 2673 }
duke@435 2674
duke@435 2675 char* os::reserve_memory(size_t bytes, char* requested_addr,
duke@435 2676 size_t alignment_hint) {
duke@435 2677 return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
duke@435 2678 }
duke@435 2679
duke@435 2680 bool os::release_memory(char* addr, size_t size) {
duke@435 2681 return anon_munmap(addr, size);
duke@435 2682 }
duke@435 2683
duke@435 2684 static address highest_vm_reserved_address() {
duke@435 2685 return _highest_vm_reserved_address;
duke@435 2686 }
duke@435 2687
duke@435 2688 static bool linux_mprotect(char* addr, size_t size, int prot) {
duke@435 2689 // Linux wants the mprotect address argument to be page aligned.
duke@435 2690 char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
duke@435 2691
duke@435 2692 // According to SUSv3, mprotect() should only be used with mappings
duke@435 2693 // established by mmap(), and mmap() always maps whole pages. Unaligned
duke@435 2694 // 'addr' likely indicates problem in the VM (e.g. trying to change
duke@435 2695 // protection of malloc'ed or statically allocated memory). Check the
duke@435 2696 // caller if you hit this assert.
duke@435 2697 assert(addr == bottom, "sanity check");
duke@435 2698
duke@435 2699 size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
duke@435 2700 return ::mprotect(bottom, size, prot) == 0;
duke@435 2701 }
duke@435 2702
coleenp@672 2703 // Set protections specified
coleenp@672 2704 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 2705 bool is_committed) {
coleenp@672 2706 unsigned int p = 0;
coleenp@672 2707 switch (prot) {
coleenp@672 2708 case MEM_PROT_NONE: p = PROT_NONE; break;
coleenp@672 2709 case MEM_PROT_READ: p = PROT_READ; break;
coleenp@672 2710 case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
coleenp@672 2711 case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
coleenp@672 2712 default:
coleenp@672 2713 ShouldNotReachHere();
coleenp@672 2714 }
coleenp@672 2715 // is_committed is unused.
coleenp@672 2716 return linux_mprotect(addr, bytes, p);
duke@435 2717 }
duke@435 2718
duke@435 2719 bool os::guard_memory(char* addr, size_t size) {
duke@435 2720 return linux_mprotect(addr, size, PROT_NONE);
duke@435 2721 }
duke@435 2722
duke@435 2723 bool os::unguard_memory(char* addr, size_t size) {
coleenp@912 2724 return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
duke@435 2725 }
duke@435 2726
duke@435 2727 // Large page support
duke@435 2728
duke@435 2729 static size_t _large_page_size = 0;
duke@435 2730
duke@435 2731 bool os::large_page_init() {
duke@435 2732 if (!UseLargePages) return false;
duke@435 2733
duke@435 2734 if (LargePageSizeInBytes) {
duke@435 2735 _large_page_size = LargePageSizeInBytes;
duke@435 2736 } else {
duke@435 2737 // large_page_size on Linux is used to round up heap size. x86 uses either
duke@435 2738 // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
duke@435 2739 // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
duke@435 2740 // page as large as 256M.
duke@435 2741 //
duke@435 2742 // Here we try to figure out page size by parsing /proc/meminfo and looking
duke@435 2743 // for a line with the following format:
duke@435 2744 // Hugepagesize: 2048 kB
duke@435 2745 //
duke@435 2746 // If we can't determine the value (e.g. /proc is not mounted, or the text
duke@435 2747 // format has been changed), we'll use the largest page size supported by
duke@435 2748 // the processor.
duke@435 2749
never@1445 2750 #ifndef ZERO
bobv@2036 2751 _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
bobv@2036 2752 ARM_ONLY(2 * M) PPC_ONLY(4 * M);
never@1445 2753 #endif // ZERO
duke@435 2754
duke@435 2755 FILE *fp = fopen("/proc/meminfo", "r");
duke@435 2756 if (fp) {
duke@435 2757 while (!feof(fp)) {
duke@435 2758 int x = 0;
duke@435 2759 char buf[16];
duke@435 2760 if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
duke@435 2761 if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
duke@435 2762 _large_page_size = x * K;
duke@435 2763 break;
duke@435 2764 }
duke@435 2765 } else {
duke@435 2766 // skip to next line
duke@435 2767 for (;;) {
duke@435 2768 int ch = fgetc(fp);
duke@435 2769 if (ch == EOF || ch == (int)'\n') break;
duke@435 2770 }
duke@435 2771 }
duke@435 2772 }
duke@435 2773 fclose(fp);
duke@435 2774 }
duke@435 2775 }
duke@435 2776
duke@435 2777 const size_t default_page_size = (size_t)Linux::page_size();
duke@435 2778 if (_large_page_size > default_page_size) {
duke@435 2779 _page_sizes[0] = _large_page_size;
duke@435 2780 _page_sizes[1] = default_page_size;
duke@435 2781 _page_sizes[2] = 0;
duke@435 2782 }
duke@435 2783
duke@435 2784 // Large page support is available on 2.6 or newer kernel, some vendors
duke@435 2785 // (e.g. Redhat) have backported it to their 2.4 based distributions.
duke@435 2786 // We optimistically assume the support is available. If later it turns out
duke@435 2787 // not true, VM will automatically switch to use regular page size.
duke@435 2788 return true;
duke@435 2789 }
duke@435 2790
duke@435 2791 #ifndef SHM_HUGETLB
duke@435 2792 #define SHM_HUGETLB 04000
duke@435 2793 #endif
duke@435 2794
coleenp@1091 2795 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
coleenp@1091 2796 // "exec" is passed in but not used. Creating the shared image for
coleenp@1091 2797 // the code cache doesn't have an SHM_X executable permission to check.
duke@435 2798 assert(UseLargePages, "only for large pages");
duke@435 2799
duke@435 2800 key_t key = IPC_PRIVATE;
duke@435 2801 char *addr;
duke@435 2802
duke@435 2803 bool warn_on_failure = UseLargePages &&
duke@435 2804 (!FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 2805 !FLAG_IS_DEFAULT(LargePageSizeInBytes)
duke@435 2806 );
duke@435 2807 char msg[128];
duke@435 2808
duke@435 2809 // Create a large shared memory region to attach to based on size.
duke@435 2810 // Currently, size is the total size of the heap
duke@435 2811 int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
duke@435 2812 if (shmid == -1) {
duke@435 2813 // Possible reasons for shmget failure:
duke@435 2814 // 1. shmmax is too small for Java heap.
duke@435 2815 // > check shmmax value: cat /proc/sys/kernel/shmmax
duke@435 2816 // > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
duke@435 2817 // 2. not enough large page memory.
duke@435 2818 // > check available large pages: cat /proc/meminfo
duke@435 2819 // > increase amount of large pages:
duke@435 2820 // echo new_value > /proc/sys/vm/nr_hugepages
duke@435 2821 // Note 1: different Linux may use different name for this property,
duke@435 2822 // e.g. on Redhat AS-3 it is "hugetlb_pool".
duke@435 2823 // Note 2: it's possible there's enough physical memory available but
duke@435 2824 // they are so fragmented after a long run that they can't
duke@435 2825 // coalesce into large pages. Try to reserve large pages when
duke@435 2826 // the system is still "fresh".
duke@435 2827 if (warn_on_failure) {
duke@435 2828 jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
duke@435 2829 warning(msg);
duke@435 2830 }
duke@435 2831 return NULL;
duke@435 2832 }
duke@435 2833
duke@435 2834 // attach to the region
kvn@1892 2835 addr = (char*)shmat(shmid, req_addr, 0);
duke@435 2836 int err = errno;
duke@435 2837
duke@435 2838 // Remove shmid. If shmat() is successful, the actual shared memory segment
duke@435 2839 // will be deleted when it's detached by shmdt() or when the process
duke@435 2840 // terminates. If shmat() is not successful this will remove the shared
duke@435 2841 // segment immediately.
duke@435 2842 shmctl(shmid, IPC_RMID, NULL);
duke@435 2843
duke@435 2844 if ((intptr_t)addr == -1) {
duke@435 2845 if (warn_on_failure) {
duke@435 2846 jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
duke@435 2847 warning(msg);
duke@435 2848 }
duke@435 2849 return NULL;
duke@435 2850 }
duke@435 2851
duke@435 2852 return addr;
duke@435 2853 }
duke@435 2854
duke@435 2855 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 2856 // detaching the SHM segment will also delete it, see reserve_memory_special()
duke@435 2857 int rslt = shmdt(base);
duke@435 2858 return rslt == 0;
duke@435 2859 }
duke@435 2860
duke@435 2861 size_t os::large_page_size() {
duke@435 2862 return _large_page_size;
duke@435 2863 }
duke@435 2864
duke@435 2865 // Linux does not support anonymous mmap with large page memory. The only way
duke@435 2866 // to reserve large page memory without file backing is through SysV shared
duke@435 2867 // memory API. The entire memory region is committed and pinned upfront.
duke@435 2868 // Hopefully this will change in the future...
duke@435 2869 bool os::can_commit_large_page_memory() {
duke@435 2870 return false;
duke@435 2871 }
duke@435 2872
jcoomes@514 2873 bool os::can_execute_large_page_memory() {
jcoomes@514 2874 return false;
jcoomes@514 2875 }
jcoomes@514 2876
duke@435 2877 // Reserve memory at an arbitrary address, only if that area is
duke@435 2878 // available (and not reserved for something else).
duke@435 2879
duke@435 2880 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 2881 const int max_tries = 10;
duke@435 2882 char* base[max_tries];
duke@435 2883 size_t size[max_tries];
duke@435 2884 const size_t gap = 0x000000;
duke@435 2885
duke@435 2886 // Assert only that the size is a multiple of the page size, since
duke@435 2887 // that's all that mmap requires, and since that's all we really know
duke@435 2888 // about at this low abstraction level. If we need higher alignment,
duke@435 2889 // we can either pass an alignment to this method or verify alignment
duke@435 2890 // in one of the methods further up the call chain. See bug 5044738.
duke@435 2891 assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
duke@435 2892
duke@435 2893 // Repeatedly allocate blocks until the block is allocated at the
duke@435 2894 // right spot. Give up after max_tries. Note that reserve_memory() will
duke@435 2895 // automatically update _highest_vm_reserved_address if the call is
duke@435 2896 // successful. The variable tracks the highest memory address every reserved
duke@435 2897 // by JVM. It is used to detect heap-stack collision if running with
duke@435 2898 // fixed-stack LinuxThreads. Because here we may attempt to reserve more
duke@435 2899 // space than needed, it could confuse the collision detecting code. To
duke@435 2900 // solve the problem, save current _highest_vm_reserved_address and
duke@435 2901 // calculate the correct value before return.
duke@435 2902 address old_highest = _highest_vm_reserved_address;
duke@435 2903
duke@435 2904 // Linux mmap allows caller to pass an address as hint; give it a try first,
duke@435 2905 // if kernel honors the hint then we can return immediately.
duke@435 2906 char * addr = anon_mmap(requested_addr, bytes, false);
duke@435 2907 if (addr == requested_addr) {
duke@435 2908 return requested_addr;
duke@435 2909 }
duke@435 2910
duke@435 2911 if (addr != NULL) {
duke@435 2912 // mmap() is successful but it fails to reserve at the requested address
duke@435 2913 anon_munmap(addr, bytes);
duke@435 2914 }
duke@435 2915
duke@435 2916 int i;
duke@435 2917 for (i = 0; i < max_tries; ++i) {
duke@435 2918 base[i] = reserve_memory(bytes);
duke@435 2919
duke@435 2920 if (base[i] != NULL) {
duke@435 2921 // Is this the block we wanted?
duke@435 2922 if (base[i] == requested_addr) {
duke@435 2923 size[i] = bytes;
duke@435 2924 break;
duke@435 2925 }
duke@435 2926
duke@435 2927 // Does this overlap the block we wanted? Give back the overlapped
duke@435 2928 // parts and try again.
duke@435 2929
duke@435 2930 size_t top_overlap = requested_addr + (bytes + gap) - base[i];
duke@435 2931 if (top_overlap >= 0 && top_overlap < bytes) {
duke@435 2932 unmap_memory(base[i], top_overlap);
duke@435 2933 base[i] += top_overlap;
duke@435 2934 size[i] = bytes - top_overlap;
duke@435 2935 } else {
duke@435 2936 size_t bottom_overlap = base[i] + bytes - requested_addr;
duke@435 2937 if (bottom_overlap >= 0 && bottom_overlap < bytes) {
duke@435 2938 unmap_memory(requested_addr, bottom_overlap);
duke@435 2939 size[i] = bytes - bottom_overlap;
duke@435 2940 } else {
duke@435 2941 size[i] = bytes;
duke@435 2942 }
duke@435 2943 }
duke@435 2944 }
duke@435 2945 }
duke@435 2946
duke@435 2947 // Give back the unused reserved pieces.
duke@435 2948
duke@435 2949 for (int j = 0; j < i; ++j) {
duke@435 2950 if (base[j] != NULL) {
duke@435 2951 unmap_memory(base[j], size[j]);
duke@435 2952 }
duke@435 2953 }
duke@435 2954
duke@435 2955 if (i < max_tries) {
duke@435 2956 _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
duke@435 2957 return requested_addr;
duke@435 2958 } else {
duke@435 2959 _highest_vm_reserved_address = old_highest;
duke@435 2960 return NULL;
duke@435 2961 }
duke@435 2962 }
duke@435 2963
duke@435 2964 size_t os::read(int fd, void *buf, unsigned int nBytes) {
duke@435 2965 return ::read(fd, buf, nBytes);
duke@435 2966 }
duke@435 2967
duke@435 2968 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
duke@435 2969 // Solaris uses poll(), linux uses park().
duke@435 2970 // Poll() is likely a better choice, assuming that Thread.interrupt()
duke@435 2971 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
duke@435 2972 // SIGSEGV, see 4355769.
duke@435 2973
duke@435 2974 const int NANOSECS_PER_MILLISECS = 1000000;
duke@435 2975
duke@435 2976 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
duke@435 2977 assert(thread == Thread::current(), "thread consistency check");
duke@435 2978
duke@435 2979 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 2980 slp->reset() ;
duke@435 2981 OrderAccess::fence() ;
duke@435 2982
duke@435 2983 if (interruptible) {
duke@435 2984 jlong prevtime = javaTimeNanos();
duke@435 2985
duke@435 2986 for (;;) {
duke@435 2987 if (os::is_interrupted(thread, true)) {
duke@435 2988 return OS_INTRPT;
duke@435 2989 }
duke@435 2990
duke@435 2991 jlong newtime = javaTimeNanos();
duke@435 2992
duke@435 2993 if (newtime - prevtime < 0) {
duke@435 2994 // time moving backwards, should only happen if no monotonic clock
duke@435 2995 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 2996 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 2997 } else {
duke@435 2998 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 2999 }
duke@435 3000
duke@435 3001 if(millis <= 0) {
duke@435 3002 return OS_OK;
duke@435 3003 }
duke@435 3004
duke@435 3005 prevtime = newtime;
duke@435 3006
duke@435 3007 {
duke@435 3008 assert(thread->is_Java_thread(), "sanity check");
duke@435 3009 JavaThread *jt = (JavaThread *) thread;
duke@435 3010 ThreadBlockInVM tbivm(jt);
duke@435 3011 OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
duke@435 3012
duke@435 3013 jt->set_suspend_equivalent();
duke@435 3014 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 3015 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 3016
duke@435 3017 slp->park(millis);
duke@435 3018
duke@435 3019 // were we externally suspended while we were waiting?
duke@435 3020 jt->check_and_wait_while_suspended();
duke@435 3021 }
duke@435 3022 }
duke@435 3023 } else {
duke@435 3024 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 3025 jlong prevtime = javaTimeNanos();
duke@435 3026
duke@435 3027 for (;;) {
duke@435 3028 // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
duke@435 3029 // the 1st iteration ...
duke@435 3030 jlong newtime = javaTimeNanos();
duke@435 3031
duke@435 3032 if (newtime - prevtime < 0) {
duke@435 3033 // time moving backwards, should only happen if no monotonic clock
duke@435 3034 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 3035 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 3036 } else {
duke@435 3037 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 3038 }
duke@435 3039
duke@435 3040 if(millis <= 0) break ;
duke@435 3041
duke@435 3042 prevtime = newtime;
duke@435 3043 slp->park(millis);
duke@435 3044 }
duke@435 3045 return OS_OK ;
duke@435 3046 }
duke@435 3047 }
duke@435 3048
duke@435 3049 int os::naked_sleep() {
duke@435 3050 // %% make the sleep time an integer flag. for now use 1 millisec.
duke@435 3051 return os::sleep(Thread::current(), 1, false);
duke@435 3052 }
duke@435 3053
duke@435 3054 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 3055 void os::infinite_sleep() {
duke@435 3056 while (true) { // sleep forever ...
duke@435 3057 ::sleep(100); // ... 100 seconds at a time
duke@435 3058 }
duke@435 3059 }
duke@435 3060
duke@435 3061 // Used to convert frequent JVM_Yield() to nops
duke@435 3062 bool os::dont_yield() {
duke@435 3063 return DontYieldALot;
duke@435 3064 }
duke@435 3065
duke@435 3066 void os::yield() {
duke@435 3067 sched_yield();
duke@435 3068 }
duke@435 3069
duke@435 3070 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
duke@435 3071
duke@435 3072 void os::yield_all(int attempts) {
duke@435 3073 // Yields to all threads, including threads with lower priorities
duke@435 3074 // Threads on Linux are all with same priority. The Solaris style
duke@435 3075 // os::yield_all() with nanosleep(1ms) is not necessary.
duke@435 3076 sched_yield();
duke@435 3077 }
duke@435 3078
duke@435 3079 // Called from the tight loops to possibly influence time-sharing heuristics
duke@435 3080 void os::loop_breaker(int attempts) {
duke@435 3081 os::yield_all(attempts);
duke@435 3082 }
duke@435 3083
duke@435 3084 ////////////////////////////////////////////////////////////////////////////////
duke@435 3085 // thread priority support
duke@435 3086
duke@435 3087 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
duke@435 3088 // only supports dynamic priority, static priority must be zero. For real-time
duke@435 3089 // applications, Linux supports SCHED_RR which allows static priority (1-99).
duke@435 3090 // However, for large multi-threaded applications, SCHED_RR is not only slower
duke@435 3091 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
duke@435 3092 // of 5 runs - Sep 2005).
duke@435 3093 //
duke@435 3094 // The following code actually changes the niceness of kernel-thread/LWP. It
duke@435 3095 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
duke@435 3096 // not the entire user process, and user level threads are 1:1 mapped to kernel
duke@435 3097 // threads. It has always been the case, but could change in the future. For
duke@435 3098 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
duke@435 3099 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
duke@435 3100
duke@435 3101 int os::java_to_os_priority[MaxPriority + 1] = {
duke@435 3102 19, // 0 Entry should never be used
duke@435 3103
duke@435 3104 4, // 1 MinPriority
duke@435 3105 3, // 2
duke@435 3106 2, // 3
duke@435 3107
duke@435 3108 1, // 4
duke@435 3109 0, // 5 NormPriority
duke@435 3110 -1, // 6
duke@435 3111
duke@435 3112 -2, // 7
duke@435 3113 -3, // 8
duke@435 3114 -4, // 9 NearMaxPriority
duke@435 3115
duke@435 3116 -5 // 10 MaxPriority
duke@435 3117 };
duke@435 3118
duke@435 3119 static int prio_init() {
duke@435 3120 if (ThreadPriorityPolicy == 1) {
duke@435 3121 // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
duke@435 3122 // if effective uid is not root. Perhaps, a more elegant way of doing
duke@435 3123 // this is to test CAP_SYS_NICE capability, but that will require libcap.so
duke@435 3124 if (geteuid() != 0) {
duke@435 3125 if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
duke@435 3126 warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
duke@435 3127 }
duke@435 3128 ThreadPriorityPolicy = 0;
duke@435 3129 }
duke@435 3130 }
duke@435 3131 return 0;
duke@435 3132 }
duke@435 3133
duke@435 3134 OSReturn os::set_native_priority(Thread* thread, int newpri) {
duke@435 3135 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
duke@435 3136
duke@435 3137 int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
duke@435 3138 return (ret == 0) ? OS_OK : OS_ERR;
duke@435 3139 }
duke@435 3140
duke@435 3141 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
duke@435 3142 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
duke@435 3143 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 3144 return OS_OK;
duke@435 3145 }
duke@435 3146
duke@435 3147 errno = 0;
duke@435 3148 *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
duke@435 3149 return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
duke@435 3150 }
duke@435 3151
duke@435 3152 // Hint to the underlying OS that a task switch would not be good.
duke@435 3153 // Void return because it's a hint and can fail.
duke@435 3154 void os::hint_no_preempt() {}
duke@435 3155
duke@435 3156 ////////////////////////////////////////////////////////////////////////////////
duke@435 3157 // suspend/resume support
duke@435 3158
duke@435 3159 // the low-level signal-based suspend/resume support is a remnant from the
duke@435 3160 // old VM-suspension that used to be for java-suspension, safepoints etc,
duke@435 3161 // within hotspot. Now there is a single use-case for this:
duke@435 3162 // - calling get_thread_pc() on the VMThread by the flat-profiler task
duke@435 3163 // that runs in the watcher thread.
duke@435 3164 // The remaining code is greatly simplified from the more general suspension
duke@435 3165 // code that used to be used.
duke@435 3166 //
duke@435 3167 // The protocol is quite simple:
duke@435 3168 // - suspend:
duke@435 3169 // - sends a signal to the target thread
duke@435 3170 // - polls the suspend state of the osthread using a yield loop
duke@435 3171 // - target thread signal handler (SR_handler) sets suspend state
duke@435 3172 // and blocks in sigsuspend until continued
duke@435 3173 // - resume:
duke@435 3174 // - sets target osthread state to continue
duke@435 3175 // - sends signal to end the sigsuspend loop in the SR_handler
duke@435 3176 //
duke@435 3177 // Note that the SR_lock plays no role in this suspend/resume protocol.
duke@435 3178 //
duke@435 3179
duke@435 3180 static void resume_clear_context(OSThread *osthread) {
duke@435 3181 osthread->set_ucontext(NULL);
duke@435 3182 osthread->set_siginfo(NULL);
duke@435 3183
duke@435 3184 // notify the suspend action is completed, we have now resumed
duke@435 3185 osthread->sr.clear_suspended();
duke@435 3186 }
duke@435 3187
duke@435 3188 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3189 osthread->set_ucontext(context);
duke@435 3190 osthread->set_siginfo(siginfo);
duke@435 3191 }
duke@435 3192
duke@435 3193 //
duke@435 3194 // Handler function invoked when a thread's execution is suspended or
duke@435 3195 // resumed. We have to be careful that only async-safe functions are
duke@435 3196 // called here (Note: most pthread functions are not async safe and
duke@435 3197 // should be avoided.)
duke@435 3198 //
duke@435 3199 // Note: sigwait() is a more natural fit than sigsuspend() from an
duke@435 3200 // interface point of view, but sigwait() prevents the signal hander
duke@435 3201 // from being run. libpthread would get very confused by not having
duke@435 3202 // its signal handlers run and prevents sigwait()'s use with the
duke@435 3203 // mutex granting granting signal.
duke@435 3204 //
duke@435 3205 // Currently only ever called on the VMThread
duke@435 3206 //
duke@435 3207 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3208 // Save and restore errno to avoid confusing native code with EINTR
duke@435 3209 // after sigsuspend.
duke@435 3210 int old_errno = errno;
duke@435 3211
duke@435 3212 Thread* thread = Thread::current();
duke@435 3213 OSThread* osthread = thread->osthread();
duke@435 3214 assert(thread->is_VM_thread(), "Must be VMThread");
duke@435 3215 // read current suspend action
duke@435 3216 int action = osthread->sr.suspend_action();
duke@435 3217 if (action == SR_SUSPEND) {
duke@435 3218 suspend_save_context(osthread, siginfo, context);
duke@435 3219
duke@435 3220 // Notify the suspend action is about to be completed. do_suspend()
duke@435 3221 // waits until SR_SUSPENDED is set and then returns. We will wait
duke@435 3222 // here for a resume signal and that completes the suspend-other
duke@435 3223 // action. do_suspend/do_resume is always called as a pair from
duke@435 3224 // the same thread - so there are no races
duke@435 3225
duke@435 3226 // notify the caller
duke@435 3227 osthread->sr.set_suspended();
duke@435 3228
duke@435 3229 sigset_t suspend_set; // signals for sigsuspend()
duke@435 3230
duke@435 3231 // get current set of blocked signals and unblock resume signal
duke@435 3232 pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
duke@435 3233 sigdelset(&suspend_set, SR_signum);
duke@435 3234
duke@435 3235 // wait here until we are resumed
duke@435 3236 do {
duke@435 3237 sigsuspend(&suspend_set);
duke@435 3238 // ignore all returns until we get a resume signal
duke@435 3239 } while (osthread->sr.suspend_action() != SR_CONTINUE);
duke@435 3240
duke@435 3241 resume_clear_context(osthread);
duke@435 3242
duke@435 3243 } else {
duke@435 3244 assert(action == SR_CONTINUE, "unexpected sr action");
duke@435 3245 // nothing special to do - just leave the handler
duke@435 3246 }
duke@435 3247
duke@435 3248 errno = old_errno;
duke@435 3249 }
duke@435 3250
duke@435 3251
duke@435 3252 static int SR_initialize() {
duke@435 3253 struct sigaction act;
duke@435 3254 char *s;
duke@435 3255 /* Get signal number to use for suspend/resume */
duke@435 3256 if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
duke@435 3257 int sig = ::strtol(s, 0, 10);
duke@435 3258 if (sig > 0 || sig < _NSIG) {
duke@435 3259 SR_signum = sig;
duke@435 3260 }
duke@435 3261 }
duke@435 3262
duke@435 3263 assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
duke@435 3264 "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
duke@435 3265
duke@435 3266 sigemptyset(&SR_sigset);
duke@435 3267 sigaddset(&SR_sigset, SR_signum);
duke@435 3268
duke@435 3269 /* Set up signal handler for suspend/resume */
duke@435 3270 act.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 3271 act.sa_handler = (void (*)(int)) SR_handler;
duke@435 3272
duke@435 3273 // SR_signum is blocked by default.
duke@435 3274 // 4528190 - We also need to block pthread restart signal (32 on all
duke@435 3275 // supported Linux platforms). Note that LinuxThreads need to block
duke@435 3276 // this signal for all threads to work properly. So we don't have
duke@435 3277 // to use hard-coded signal number when setting up the mask.
duke@435 3278 pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
duke@435 3279
duke@435 3280 if (sigaction(SR_signum, &act, 0) == -1) {
duke@435 3281 return -1;
duke@435 3282 }
duke@435 3283
duke@435 3284 // Save signal flag
duke@435 3285 os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
duke@435 3286 return 0;
duke@435 3287 }
duke@435 3288
duke@435 3289 static int SR_finalize() {
duke@435 3290 return 0;
duke@435 3291 }
duke@435 3292
duke@435 3293
duke@435 3294 // returns true on success and false on error - really an error is fatal
duke@435 3295 // but this seems the normal response to library errors
duke@435 3296 static bool do_suspend(OSThread* osthread) {
duke@435 3297 // mark as suspended and send signal
duke@435 3298 osthread->sr.set_suspend_action(SR_SUSPEND);
duke@435 3299 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3300 assert_status(status == 0, status, "pthread_kill");
duke@435 3301
duke@435 3302 // check status and wait until notified of suspension
duke@435 3303 if (status == 0) {
duke@435 3304 for (int i = 0; !osthread->sr.is_suspended(); i++) {
duke@435 3305 os::yield_all(i);
duke@435 3306 }
duke@435 3307 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3308 return true;
duke@435 3309 }
duke@435 3310 else {
duke@435 3311 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3312 return false;
duke@435 3313 }
duke@435 3314 }
duke@435 3315
duke@435 3316 static void do_resume(OSThread* osthread) {
duke@435 3317 assert(osthread->sr.is_suspended(), "thread should be suspended");
duke@435 3318 osthread->sr.set_suspend_action(SR_CONTINUE);
duke@435 3319
duke@435 3320 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3321 assert_status(status == 0, status, "pthread_kill");
duke@435 3322 // check status and wait unit notified of resumption
duke@435 3323 if (status == 0) {
duke@435 3324 for (int i = 0; osthread->sr.is_suspended(); i++) {
duke@435 3325 os::yield_all(i);
duke@435 3326 }
duke@435 3327 }
duke@435 3328 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3329 }
duke@435 3330
duke@435 3331 ////////////////////////////////////////////////////////////////////////////////
duke@435 3332 // interrupt support
duke@435 3333
duke@435 3334 void os::interrupt(Thread* thread) {
duke@435 3335 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3336 "possibility of dangling Thread pointer");
duke@435 3337
duke@435 3338 OSThread* osthread = thread->osthread();
duke@435 3339
duke@435 3340 if (!osthread->interrupted()) {
duke@435 3341 osthread->set_interrupted(true);
duke@435 3342 // More than one thread can get here with the same value of osthread,
duke@435 3343 // resulting in multiple notifications. We do, however, want the store
duke@435 3344 // to interrupted() to be visible to other threads before we execute unpark().
duke@435 3345 OrderAccess::fence();
duke@435 3346 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 3347 if (slp != NULL) slp->unpark() ;
duke@435 3348 }
duke@435 3349
duke@435 3350 // For JSR166. Unpark even if interrupt status already was set
duke@435 3351 if (thread->is_Java_thread())
duke@435 3352 ((JavaThread*)thread)->parker()->unpark();
duke@435 3353
duke@435 3354 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3355 if (ev != NULL) ev->unpark() ;
duke@435 3356
duke@435 3357 }
duke@435 3358
duke@435 3359 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3360 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3361 "possibility of dangling Thread pointer");
duke@435 3362
duke@435 3363 OSThread* osthread = thread->osthread();
duke@435 3364
duke@435 3365 bool interrupted = osthread->interrupted();
duke@435 3366
duke@435 3367 if (interrupted && clear_interrupted) {
duke@435 3368 osthread->set_interrupted(false);
duke@435 3369 // consider thread->_SleepEvent->reset() ... optional optimization
duke@435 3370 }
duke@435 3371
duke@435 3372 return interrupted;
duke@435 3373 }
duke@435 3374
duke@435 3375 ///////////////////////////////////////////////////////////////////////////////////
duke@435 3376 // signal handling (except suspend/resume)
duke@435 3377
duke@435 3378 // This routine may be used by user applications as a "hook" to catch signals.
duke@435 3379 // The user-defined signal handler must pass unrecognized signals to this
duke@435 3380 // routine, and if it returns true (non-zero), then the signal handler must
duke@435 3381 // return immediately. If the flag "abort_if_unrecognized" is true, then this
duke@435 3382 // routine will never retun false (zero), but instead will execute a VM panic
duke@435 3383 // routine kill the process.
duke@435 3384 //
duke@435 3385 // If this routine returns false, it is OK to call it again. This allows
duke@435 3386 // the user-defined signal handler to perform checks either before or after
duke@435 3387 // the VM performs its own checks. Naturally, the user code would be making
duke@435 3388 // a serious error if it tried to handle an exception (such as a null check
duke@435 3389 // or breakpoint) that the VM was generating for its own correct operation.
duke@435 3390 //
duke@435 3391 // This routine may recognize any of the following kinds of signals:
duke@435 3392 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
duke@435 3393 // It should be consulted by handlers for any of those signals.
duke@435 3394 //
duke@435 3395 // The caller of this routine must pass in the three arguments supplied
duke@435 3396 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
duke@435 3397 // field of the structure passed to sigaction(). This routine assumes that
duke@435 3398 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
duke@435 3399 //
duke@435 3400 // Note that the VM will print warnings if it detects conflicting signal
duke@435 3401 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
duke@435 3402 //
duke@435 3403 extern "C" int
duke@435 3404 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
duke@435 3405 void* ucontext, int abort_if_unrecognized);
duke@435 3406
duke@435 3407 void signalHandler(int sig, siginfo_t* info, void* uc) {
duke@435 3408 assert(info != NULL && uc != NULL, "it must be old kernel");
duke@435 3409 JVM_handle_linux_signal(sig, info, uc, true);
duke@435 3410 }
duke@435 3411
duke@435 3412
duke@435 3413 // This boolean allows users to forward their own non-matching signals
duke@435 3414 // to JVM_handle_linux_signal, harmlessly.
duke@435 3415 bool os::Linux::signal_handlers_are_installed = false;
duke@435 3416
duke@435 3417 // For signal-chaining
duke@435 3418 struct sigaction os::Linux::sigact[MAXSIGNUM];
duke@435 3419 unsigned int os::Linux::sigs = 0;
duke@435 3420 bool os::Linux::libjsig_is_loaded = false;
duke@435 3421 typedef struct sigaction *(*get_signal_t)(int);
duke@435 3422 get_signal_t os::Linux::get_signal_action = NULL;
duke@435 3423
duke@435 3424 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
duke@435 3425 struct sigaction *actp = NULL;
duke@435 3426
duke@435 3427 if (libjsig_is_loaded) {
duke@435 3428 // Retrieve the old signal handler from libjsig
duke@435 3429 actp = (*get_signal_action)(sig);
duke@435 3430 }
duke@435 3431 if (actp == NULL) {
duke@435 3432 // Retrieve the preinstalled signal handler from jvm
duke@435 3433 actp = get_preinstalled_handler(sig);
duke@435 3434 }
duke@435 3435
duke@435 3436 return actp;
duke@435 3437 }
duke@435 3438
duke@435 3439 static bool call_chained_handler(struct sigaction *actp, int sig,
duke@435 3440 siginfo_t *siginfo, void *context) {
duke@435 3441 // Call the old signal handler
duke@435 3442 if (actp->sa_handler == SIG_DFL) {
duke@435 3443 // It's more reasonable to let jvm treat it as an unexpected exception
duke@435 3444 // instead of taking the default action.
duke@435 3445 return false;
duke@435 3446 } else if (actp->sa_handler != SIG_IGN) {
duke@435 3447 if ((actp->sa_flags & SA_NODEFER) == 0) {
duke@435 3448 // automaticlly block the signal
duke@435 3449 sigaddset(&(actp->sa_mask), sig);
duke@435 3450 }
duke@435 3451
duke@435 3452 sa_handler_t hand;
duke@435 3453 sa_sigaction_t sa;
duke@435 3454 bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
duke@435 3455 // retrieve the chained handler
duke@435 3456 if (siginfo_flag_set) {
duke@435 3457 sa = actp->sa_sigaction;
duke@435 3458 } else {
duke@435 3459 hand = actp->sa_handler;
duke@435 3460 }
duke@435 3461
duke@435 3462 if ((actp->sa_flags & SA_RESETHAND) != 0) {
duke@435 3463 actp->sa_handler = SIG_DFL;
duke@435 3464 }
duke@435 3465
duke@435 3466 // try to honor the signal mask
duke@435 3467 sigset_t oset;
duke@435 3468 pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
duke@435 3469
duke@435 3470 // call into the chained handler
duke@435 3471 if (siginfo_flag_set) {
duke@435 3472 (*sa)(sig, siginfo, context);
duke@435 3473 } else {
duke@435 3474 (*hand)(sig);
duke@435 3475 }
duke@435 3476
duke@435 3477 // restore the signal mask
duke@435 3478 pthread_sigmask(SIG_SETMASK, &oset, 0);
duke@435 3479 }
duke@435 3480 // Tell jvm's signal handler the signal is taken care of.
duke@435 3481 return true;
duke@435 3482 }
duke@435 3483
duke@435 3484 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
duke@435 3485 bool chained = false;
duke@435 3486 // signal-chaining
duke@435 3487 if (UseSignalChaining) {
duke@435 3488 struct sigaction *actp = get_chained_signal_action(sig);
duke@435 3489 if (actp != NULL) {
duke@435 3490 chained = call_chained_handler(actp, sig, siginfo, context);
duke@435 3491 }
duke@435 3492 }
duke@435 3493 return chained;
duke@435 3494 }
duke@435 3495
duke@435 3496 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
duke@435 3497 if ((( (unsigned int)1 << sig ) & sigs) != 0) {
duke@435 3498 return &sigact[sig];
duke@435 3499 }
duke@435 3500 return NULL;
duke@435 3501 }
duke@435 3502
duke@435 3503 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
duke@435 3504 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3505 sigact[sig] = oldAct;
duke@435 3506 sigs |= (unsigned int)1 << sig;
duke@435 3507 }
duke@435 3508
duke@435 3509 // for diagnostic
duke@435 3510 int os::Linux::sigflags[MAXSIGNUM];
duke@435 3511
duke@435 3512 int os::Linux::get_our_sigflags(int sig) {
duke@435 3513 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3514 return sigflags[sig];
duke@435 3515 }
duke@435 3516
duke@435 3517 void os::Linux::set_our_sigflags(int sig, int flags) {
duke@435 3518 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3519 sigflags[sig] = flags;
duke@435 3520 }
duke@435 3521
duke@435 3522 void os::Linux::set_signal_handler(int sig, bool set_installed) {
duke@435 3523 // Check for overwrite.
duke@435 3524 struct sigaction oldAct;
duke@435 3525 sigaction(sig, (struct sigaction*)NULL, &oldAct);
duke@435 3526
duke@435 3527 void* oldhand = oldAct.sa_sigaction
duke@435 3528 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3529 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3530 if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
duke@435 3531 oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
duke@435 3532 oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
duke@435 3533 if (AllowUserSignalHandlers || !set_installed) {
duke@435 3534 // Do not overwrite; user takes responsibility to forward to us.
duke@435 3535 return;
duke@435 3536 } else if (UseSignalChaining) {
duke@435 3537 // save the old handler in jvm
duke@435 3538 save_preinstalled_handler(sig, oldAct);
duke@435 3539 // libjsig also interposes the sigaction() call below and saves the
duke@435 3540 // old sigaction on it own.
duke@435 3541 } else {
jcoomes@1845 3542 fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
jcoomes@1845 3543 "%#lx for signal %d.", (long)oldhand, sig));
duke@435 3544 }
duke@435 3545 }
duke@435 3546
duke@435 3547 struct sigaction sigAct;
duke@435 3548 sigfillset(&(sigAct.sa_mask));
duke@435 3549 sigAct.sa_handler = SIG_DFL;
duke@435 3550 if (!set_installed) {
duke@435 3551 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3552 } else {
duke@435 3553 sigAct.sa_sigaction = signalHandler;
duke@435 3554 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3555 }
duke@435 3556 // Save flags, which are set by ours
duke@435 3557 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3558 sigflags[sig] = sigAct.sa_flags;
duke@435 3559
duke@435 3560 int ret = sigaction(sig, &sigAct, &oldAct);
duke@435 3561 assert(ret == 0, "check");
duke@435 3562
duke@435 3563 void* oldhand2 = oldAct.sa_sigaction
duke@435 3564 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3565 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3566 assert(oldhand2 == oldhand, "no concurrent signal handler installation");
duke@435 3567 }
duke@435 3568
duke@435 3569 // install signal handlers for signals that HotSpot needs to
duke@435 3570 // handle in order to support Java-level exception handling.
duke@435 3571
duke@435 3572 void os::Linux::install_signal_handlers() {
duke@435 3573 if (!signal_handlers_are_installed) {
duke@435 3574 signal_handlers_are_installed = true;
duke@435 3575
duke@435 3576 // signal-chaining
duke@435 3577 typedef void (*signal_setting_t)();
duke@435 3578 signal_setting_t begin_signal_setting = NULL;
duke@435 3579 signal_setting_t end_signal_setting = NULL;
duke@435 3580 begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3581 dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
duke@435 3582 if (begin_signal_setting != NULL) {
duke@435 3583 end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3584 dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
duke@435 3585 get_signal_action = CAST_TO_FN_PTR(get_signal_t,
duke@435 3586 dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
duke@435 3587 libjsig_is_loaded = true;
duke@435 3588 assert(UseSignalChaining, "should enable signal-chaining");
duke@435 3589 }
duke@435 3590 if (libjsig_is_loaded) {
duke@435 3591 // Tell libjsig jvm is setting signal handlers
duke@435 3592 (*begin_signal_setting)();
duke@435 3593 }
duke@435 3594
duke@435 3595 set_signal_handler(SIGSEGV, true);
duke@435 3596 set_signal_handler(SIGPIPE, true);
duke@435 3597 set_signal_handler(SIGBUS, true);
duke@435 3598 set_signal_handler(SIGILL, true);
duke@435 3599 set_signal_handler(SIGFPE, true);
duke@435 3600 set_signal_handler(SIGXFSZ, true);
duke@435 3601
duke@435 3602 if (libjsig_is_loaded) {
duke@435 3603 // Tell libjsig jvm finishes setting signal handlers
duke@435 3604 (*end_signal_setting)();
duke@435 3605 }
duke@435 3606
duke@435 3607 // We don't activate signal checker if libjsig is in place, we trust ourselves
duke@435 3608 // and if UserSignalHandler is installed all bets are off
duke@435 3609 if (CheckJNICalls) {
duke@435 3610 if (libjsig_is_loaded) {
duke@435 3611 tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
duke@435 3612 check_signals = false;
duke@435 3613 }
duke@435 3614 if (AllowUserSignalHandlers) {
duke@435 3615 tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
duke@435 3616 check_signals = false;
duke@435 3617 }
duke@435 3618 }
duke@435 3619 }
duke@435 3620 }
duke@435 3621
duke@435 3622 // This is the fastest way to get thread cpu time on Linux.
duke@435 3623 // Returns cpu time (user+sys) for any thread, not only for current.
duke@435 3624 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
duke@435 3625 // It might work on 2.6.10+ with a special kernel/glibc patch.
duke@435 3626 // For reference, please, see IEEE Std 1003.1-2004:
duke@435 3627 // http://www.unix.org/single_unix_specification
duke@435 3628
duke@435 3629 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
duke@435 3630 struct timespec tp;
duke@435 3631 int rc = os::Linux::clock_gettime(clockid, &tp);
duke@435 3632 assert(rc == 0, "clock_gettime is expected to return 0 code");
duke@435 3633
duke@435 3634 return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
duke@435 3635 }
duke@435 3636
duke@435 3637 /////
duke@435 3638 // glibc on Linux platform uses non-documented flag
duke@435 3639 // to indicate, that some special sort of signal
duke@435 3640 // trampoline is used.
duke@435 3641 // We will never set this flag, and we should
duke@435 3642 // ignore this flag in our diagnostic
duke@435 3643 #ifdef SIGNIFICANT_SIGNAL_MASK
duke@435 3644 #undef SIGNIFICANT_SIGNAL_MASK
duke@435 3645 #endif
duke@435 3646 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
duke@435 3647
duke@435 3648 static const char* get_signal_handler_name(address handler,
duke@435 3649 char* buf, int buflen) {
duke@435 3650 int offset;
duke@435 3651 bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
duke@435 3652 if (found) {
duke@435 3653 // skip directory names
duke@435 3654 const char *p1, *p2;
duke@435 3655 p1 = buf;
duke@435 3656 size_t len = strlen(os::file_separator());
duke@435 3657 while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
duke@435 3658 jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
duke@435 3659 } else {
duke@435 3660 jio_snprintf(buf, buflen, PTR_FORMAT, handler);
duke@435 3661 }
duke@435 3662 return buf;
duke@435 3663 }
duke@435 3664
duke@435 3665 static void print_signal_handler(outputStream* st, int sig,
duke@435 3666 char* buf, size_t buflen) {
duke@435 3667 struct sigaction sa;
duke@435 3668
duke@435 3669 sigaction(sig, NULL, &sa);
duke@435 3670
duke@435 3671 // See comment for SIGNIFICANT_SIGNAL_MASK define
duke@435 3672 sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3673
duke@435 3674 st->print("%s: ", os::exception_name(sig, buf, buflen));
duke@435 3675
duke@435 3676 address handler = (sa.sa_flags & SA_SIGINFO)
duke@435 3677 ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
duke@435 3678 : CAST_FROM_FN_PTR(address, sa.sa_handler);
duke@435 3679
duke@435 3680 if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
duke@435 3681 st->print("SIG_DFL");
duke@435 3682 } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
duke@435 3683 st->print("SIG_IGN");
duke@435 3684 } else {
duke@435 3685 st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
duke@435 3686 }
duke@435 3687
duke@435 3688 st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
duke@435 3689
duke@435 3690 address rh = VMError::get_resetted_sighandler(sig);
duke@435 3691 // May be, handler was resetted by VMError?
duke@435 3692 if(rh != NULL) {
duke@435 3693 handler = rh;
duke@435 3694 sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
duke@435 3695 }
duke@435 3696
duke@435 3697 st->print(", sa_flags=" PTR32_FORMAT, sa.sa_flags);
duke@435 3698
duke@435 3699 // Check: is it our handler?
duke@435 3700 if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
duke@435 3701 handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
duke@435 3702 // It is our signal handler
duke@435 3703 // check for flags, reset system-used one!
duke@435 3704 if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 3705 st->print(
duke@435 3706 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
duke@435 3707 os::Linux::get_our_sigflags(sig));
duke@435 3708 }
duke@435 3709 }
duke@435 3710 st->cr();
duke@435 3711 }
duke@435 3712
duke@435 3713
duke@435 3714 #define DO_SIGNAL_CHECK(sig) \
duke@435 3715 if (!sigismember(&check_signal_done, sig)) \
duke@435 3716 os::Linux::check_signal_handler(sig)
duke@435 3717
duke@435 3718 // This method is a periodic task to check for misbehaving JNI applications
duke@435 3719 // under CheckJNI, we can add any periodic checks here
duke@435 3720
duke@435 3721 void os::run_periodic_checks() {
duke@435 3722
duke@435 3723 if (check_signals == false) return;
duke@435 3724
duke@435 3725 // SEGV and BUS if overridden could potentially prevent
duke@435 3726 // generation of hs*.log in the event of a crash, debugging
duke@435 3727 // such a case can be very challenging, so we absolutely
duke@435 3728 // check the following for a good measure:
duke@435 3729 DO_SIGNAL_CHECK(SIGSEGV);
duke@435 3730 DO_SIGNAL_CHECK(SIGILL);
duke@435 3731 DO_SIGNAL_CHECK(SIGFPE);
duke@435 3732 DO_SIGNAL_CHECK(SIGBUS);
duke@435 3733 DO_SIGNAL_CHECK(SIGPIPE);
duke@435 3734 DO_SIGNAL_CHECK(SIGXFSZ);
duke@435 3735
duke@435 3736
duke@435 3737 // ReduceSignalUsage allows the user to override these handlers
duke@435 3738 // see comments at the very top and jvm_solaris.h
duke@435 3739 if (!ReduceSignalUsage) {
duke@435 3740 DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
duke@435 3741 DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
duke@435 3742 DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
duke@435 3743 DO_SIGNAL_CHECK(BREAK_SIGNAL);
duke@435 3744 }
duke@435 3745
duke@435 3746 DO_SIGNAL_CHECK(SR_signum);
duke@435 3747 DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
duke@435 3748 }
duke@435 3749
duke@435 3750 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
duke@435 3751
duke@435 3752 static os_sigaction_t os_sigaction = NULL;
duke@435 3753
duke@435 3754 void os::Linux::check_signal_handler(int sig) {
duke@435 3755 char buf[O_BUFLEN];
duke@435 3756 address jvmHandler = NULL;
duke@435 3757
duke@435 3758
duke@435 3759 struct sigaction act;
duke@435 3760 if (os_sigaction == NULL) {
duke@435 3761 // only trust the default sigaction, in case it has been interposed
duke@435 3762 os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
duke@435 3763 if (os_sigaction == NULL) return;
duke@435 3764 }
duke@435 3765
duke@435 3766 os_sigaction(sig, (struct sigaction*)NULL, &act);
duke@435 3767
duke@435 3768
duke@435 3769 act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3770
duke@435 3771 address thisHandler = (act.sa_flags & SA_SIGINFO)
duke@435 3772 ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
duke@435 3773 : CAST_FROM_FN_PTR(address, act.sa_handler) ;
duke@435 3774
duke@435 3775
duke@435 3776 switch(sig) {
duke@435 3777 case SIGSEGV:
duke@435 3778 case SIGBUS:
duke@435 3779 case SIGFPE:
duke@435 3780 case SIGPIPE:
duke@435 3781 case SIGILL:
duke@435 3782 case SIGXFSZ:
duke@435 3783 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
duke@435 3784 break;
duke@435 3785
duke@435 3786 case SHUTDOWN1_SIGNAL:
duke@435 3787 case SHUTDOWN2_SIGNAL:
duke@435 3788 case SHUTDOWN3_SIGNAL:
duke@435 3789 case BREAK_SIGNAL:
duke@435 3790 jvmHandler = (address)user_handler();
duke@435 3791 break;
duke@435 3792
duke@435 3793 case INTERRUPT_SIGNAL:
duke@435 3794 jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
duke@435 3795 break;
duke@435 3796
duke@435 3797 default:
duke@435 3798 if (sig == SR_signum) {
duke@435 3799 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
duke@435 3800 } else {
duke@435 3801 return;
duke@435 3802 }
duke@435 3803 break;
duke@435 3804 }
duke@435 3805
duke@435 3806 if (thisHandler != jvmHandler) {
duke@435 3807 tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
duke@435 3808 tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
duke@435 3809 tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
duke@435 3810 // No need to check this sig any longer
duke@435 3811 sigaddset(&check_signal_done, sig);
duke@435 3812 } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 3813 tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
duke@435 3814 tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
duke@435 3815 tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
duke@435 3816 // No need to check this sig any longer
duke@435 3817 sigaddset(&check_signal_done, sig);
duke@435 3818 }
duke@435 3819
duke@435 3820 // Dump all the signal
duke@435 3821 if (sigismember(&check_signal_done, sig)) {
duke@435 3822 print_signal_handlers(tty, buf, O_BUFLEN);
duke@435 3823 }
duke@435 3824 }
duke@435 3825
duke@435 3826 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
duke@435 3827
duke@435 3828 extern bool signal_name(int signo, char* buf, size_t len);
duke@435 3829
duke@435 3830 const char* os::exception_name(int exception_code, char* buf, size_t size) {
duke@435 3831 if (0 < exception_code && exception_code <= SIGRTMAX) {
duke@435 3832 // signal
duke@435 3833 if (!signal_name(exception_code, buf, size)) {
duke@435 3834 jio_snprintf(buf, size, "SIG%d", exception_code);
duke@435 3835 }
duke@435 3836 return buf;
duke@435 3837 } else {
duke@435 3838 return NULL;
duke@435 3839 }
duke@435 3840 }
duke@435 3841
duke@435 3842 // this is called _before_ the most of global arguments have been parsed
duke@435 3843 void os::init(void) {
duke@435 3844 char dummy; /* used to get a guess on initial stack address */
duke@435 3845 // first_hrtime = gethrtime();
duke@435 3846
duke@435 3847 // With LinuxThreads the JavaMain thread pid (primordial thread)
duke@435 3848 // is different than the pid of the java launcher thread.
duke@435 3849 // So, on Linux, the launcher thread pid is passed to the VM
duke@435 3850 // via the sun.java.launcher.pid property.
duke@435 3851 // Use this property instead of getpid() if it was correctly passed.
duke@435 3852 // See bug 6351349.
duke@435 3853 pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
duke@435 3854
duke@435 3855 _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
duke@435 3856
duke@435 3857 clock_tics_per_sec = sysconf(_SC_CLK_TCK);
duke@435 3858
duke@435 3859 init_random(1234567);
duke@435 3860
duke@435 3861 ThreadCritical::initialize();
duke@435 3862
duke@435 3863 Linux::set_page_size(sysconf(_SC_PAGESIZE));
duke@435 3864 if (Linux::page_size() == -1) {
jcoomes@1845 3865 fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
jcoomes@1845 3866 strerror(errno)));
duke@435 3867 }
duke@435 3868 init_page_sizes((size_t) Linux::page_size());
duke@435 3869
duke@435 3870 Linux::initialize_system_info();
duke@435 3871
duke@435 3872 // main_thread points to the aboriginal thread
duke@435 3873 Linux::_main_thread = pthread_self();
duke@435 3874
duke@435 3875 Linux::clock_init();
duke@435 3876 initial_time_count = os::elapsed_counter();
kamg@677 3877 pthread_mutex_init(&dl_mutex, NULL);
duke@435 3878 }
duke@435 3879
duke@435 3880 // To install functions for atexit system call
duke@435 3881 extern "C" {
duke@435 3882 static void perfMemory_exit_helper() {
duke@435 3883 perfMemory_exit();
duke@435 3884 }
duke@435 3885 }
duke@435 3886
duke@435 3887 // this is called _after_ the global arguments have been parsed
duke@435 3888 jint os::init_2(void)
duke@435 3889 {
duke@435 3890 Linux::fast_thread_clock_init();
duke@435 3891
duke@435 3892 // Allocate a single page and mark it as readable for safepoint polling
duke@435 3893 address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 3894 guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
duke@435 3895
duke@435 3896 os::set_polling_page( polling_page );
duke@435 3897
duke@435 3898 #ifndef PRODUCT
duke@435 3899 if(Verbose && PrintMiscellaneous)
duke@435 3900 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 3901 #endif
duke@435 3902
duke@435 3903 if (!UseMembar) {
duke@435 3904 address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 3905 guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
duke@435 3906 os::set_memory_serialize_page( mem_serialize_page );
duke@435 3907
duke@435 3908 #ifndef PRODUCT
duke@435 3909 if(Verbose && PrintMiscellaneous)
duke@435 3910 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 3911 #endif
duke@435 3912 }
duke@435 3913
duke@435 3914 FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
duke@435 3915
duke@435 3916 // initialize suspend/resume support - must do this before signal_sets_init()
duke@435 3917 if (SR_initialize() != 0) {
duke@435 3918 perror("SR_initialize failed");
duke@435 3919 return JNI_ERR;
duke@435 3920 }
duke@435 3921
duke@435 3922 Linux::signal_sets_init();
duke@435 3923 Linux::install_signal_handlers();
duke@435 3924
duke@435 3925 size_t threadStackSizeInBytes = ThreadStackSize * K;
duke@435 3926 if (threadStackSizeInBytes != 0 &&
duke@435 3927 threadStackSizeInBytes < Linux::min_stack_allowed) {
duke@435 3928 tty->print_cr("\nThe stack size specified is too small, "
duke@435 3929 "Specify at least %dk",
duke@435 3930 Linux::min_stack_allowed / K);
duke@435 3931 return JNI_ERR;
duke@435 3932 }
duke@435 3933
duke@435 3934 // Make the stack size a multiple of the page size so that
duke@435 3935 // the yellow/red zones can be guarded.
duke@435 3936 JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
duke@435 3937 vm_page_size()));
duke@435 3938
duke@435 3939 Linux::capture_initial_stack(JavaThread::stack_size_at_create());
duke@435 3940
duke@435 3941 Linux::libpthread_init();
duke@435 3942 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 3943 tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
duke@435 3944 Linux::glibc_version(), Linux::libpthread_version(),
duke@435 3945 Linux::is_floating_stack() ? "floating stack" : "fixed stack");
duke@435 3946 }
duke@435 3947
iveresov@576 3948 if (UseNUMA) {
iveresov@897 3949 if (!Linux::libnuma_init()) {
iveresov@897 3950 UseNUMA = false;
iveresov@897 3951 } else {
iveresov@897 3952 if ((Linux::numa_max_node() < 1)) {
iveresov@897 3953 // There's only one node(they start from 0), disable NUMA.
iveresov@897 3954 UseNUMA = false;
iveresov@897 3955 }
iveresov@897 3956 }
iveresov@897 3957 if (!UseNUMA && ForceNUMA) {
iveresov@897 3958 UseNUMA = true;
iveresov@897 3959 }
iveresov@576 3960 }
iveresov@576 3961
duke@435 3962 if (MaxFDLimit) {
duke@435 3963 // set the number of file descriptors to max. print out error
duke@435 3964 // if getrlimit/setrlimit fails but continue regardless.
duke@435 3965 struct rlimit nbr_files;
duke@435 3966 int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 3967 if (status != 0) {
duke@435 3968 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 3969 perror("os::init_2 getrlimit failed");
duke@435 3970 } else {
duke@435 3971 nbr_files.rlim_cur = nbr_files.rlim_max;
duke@435 3972 status = setrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 3973 if (status != 0) {
duke@435 3974 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 3975 perror("os::init_2 setrlimit failed");
duke@435 3976 }
duke@435 3977 }
duke@435 3978 }
duke@435 3979
duke@435 3980 // Initialize lock used to serialize thread creation (see os::create_thread)
duke@435 3981 Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
duke@435 3982
duke@435 3983 // Initialize HPI.
duke@435 3984 jint hpi_result = hpi::initialize();
duke@435 3985 if (hpi_result != JNI_OK) {
duke@435 3986 tty->print_cr("There was an error trying to initialize the HPI library.");
duke@435 3987 return hpi_result;
duke@435 3988 }
duke@435 3989
duke@435 3990 // at-exit methods are called in the reverse order of their registration.
duke@435 3991 // atexit functions are called on return from main or as a result of a
duke@435 3992 // call to exit(3C). There can be only 32 of these functions registered
duke@435 3993 // and atexit() does not set errno.
duke@435 3994
duke@435 3995 if (PerfAllowAtExitRegistration) {
duke@435 3996 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 3997 // atexit functions can be delayed until process exit time, which
duke@435 3998 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 3999 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 4000
duke@435 4001 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 4002 // the future if the appropriate cleanup code can be added to the
duke@435 4003 // VM_Exit VMOperation's doit method.
duke@435 4004 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 4005 warning("os::init2 atexit(perfMemory_exit_helper) failed");
duke@435 4006 }
duke@435 4007 }
duke@435 4008
duke@435 4009 // initialize thread priority policy
duke@435 4010 prio_init();
duke@435 4011
duke@435 4012 return JNI_OK;
duke@435 4013 }
duke@435 4014
bobv@2036 4015 // this is called at the end of vm_initialization
bobv@2036 4016 void os::init_3(void) { }
bobv@2036 4017
duke@435 4018 // Mark the polling page as unreadable
duke@435 4019 void os::make_polling_page_unreadable(void) {
duke@435 4020 if( !guard_memory((char*)_polling_page, Linux::page_size()) )
duke@435 4021 fatal("Could not disable polling page");
duke@435 4022 };
duke@435 4023
duke@435 4024 // Mark the polling page as readable
duke@435 4025 void os::make_polling_page_readable(void) {
coleenp@672 4026 if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
duke@435 4027 fatal("Could not enable polling page");
coleenp@672 4028 }
duke@435 4029 };
duke@435 4030
duke@435 4031 int os::active_processor_count() {
duke@435 4032 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4033 // so just return the number of online processors.
duke@435 4034 int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
duke@435 4035 assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
duke@435 4036 return online_cpus;
duke@435 4037 }
duke@435 4038
duke@435 4039 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 4040 // Not yet implemented.
duke@435 4041 return false;
duke@435 4042 }
duke@435 4043
duke@435 4044 bool os::bind_to_processor(uint processor_id) {
duke@435 4045 // Not yet implemented.
duke@435 4046 return false;
duke@435 4047 }
duke@435 4048
duke@435 4049 ///
duke@435 4050
duke@435 4051 // Suspends the target using the signal mechanism and then grabs the PC before
duke@435 4052 // resuming the target. Used by the flat-profiler only
duke@435 4053 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 4054 // Make sure that it is called by the watcher for the VMThread
duke@435 4055 assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
duke@435 4056 assert(thread->is_VM_thread(), "Can only be called for VMThread");
duke@435 4057
duke@435 4058 ExtendedPC epc;
duke@435 4059
duke@435 4060 OSThread* osthread = thread->osthread();
duke@435 4061 if (do_suspend(osthread)) {
duke@435 4062 if (osthread->ucontext() != NULL) {
duke@435 4063 epc = os::Linux::ucontext_get_pc(osthread->ucontext());
duke@435 4064 } else {
duke@435 4065 // NULL context is unexpected, double-check this is the VMThread
duke@435 4066 guarantee(thread->is_VM_thread(), "can only be called for VMThread");
duke@435 4067 }
duke@435 4068 do_resume(osthread);
duke@435 4069 }
duke@435 4070 // failure means pthread_kill failed for some reason - arguably this is
duke@435 4071 // a fatal problem, but such problems are ignored elsewhere
duke@435 4072
duke@435 4073 return epc;
duke@435 4074 }
duke@435 4075
duke@435 4076 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
duke@435 4077 {
duke@435 4078 if (is_NPTL()) {
duke@435 4079 return pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4080 } else {
duke@435 4081 #ifndef IA64
duke@435 4082 // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
duke@435 4083 // word back to default 64bit precision if condvar is signaled. Java
duke@435 4084 // wants 53bit precision. Save and restore current value.
duke@435 4085 int fpu = get_fpu_control_word();
duke@435 4086 #endif // IA64
duke@435 4087 int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4088 #ifndef IA64
duke@435 4089 set_fpu_control_word(fpu);
duke@435 4090 #endif // IA64
duke@435 4091 return status;
duke@435 4092 }
duke@435 4093 }
duke@435 4094
duke@435 4095 ////////////////////////////////////////////////////////////////////////////////
duke@435 4096 // debug support
duke@435 4097
duke@435 4098 static address same_page(address x, address y) {
duke@435 4099 int page_bits = -os::vm_page_size();
duke@435 4100 if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
duke@435 4101 return x;
duke@435 4102 else if (x > y)
duke@435 4103 return (address)(intptr_t(y) | ~page_bits) + 1;
duke@435 4104 else
duke@435 4105 return (address)(intptr_t(y) & page_bits);
duke@435 4106 }
duke@435 4107
bobv@2036 4108 bool os::find(address addr, outputStream* st) {
duke@435 4109 Dl_info dlinfo;
duke@435 4110 memset(&dlinfo, 0, sizeof(dlinfo));
duke@435 4111 if (dladdr(addr, &dlinfo)) {
bobv@2036 4112 st->print(PTR_FORMAT ": ", addr);
duke@435 4113 if (dlinfo.dli_sname != NULL) {
bobv@2036 4114 st->print("%s+%#x", dlinfo.dli_sname,
duke@435 4115 addr - (intptr_t)dlinfo.dli_saddr);
duke@435 4116 } else if (dlinfo.dli_fname) {
bobv@2036 4117 st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
duke@435 4118 } else {
bobv@2036 4119 st->print("<absolute address>");
duke@435 4120 }
duke@435 4121 if (dlinfo.dli_fname) {
bobv@2036 4122 st->print(" in %s", dlinfo.dli_fname);
duke@435 4123 }
duke@435 4124 if (dlinfo.dli_fbase) {
bobv@2036 4125 st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
duke@435 4126 }
bobv@2036 4127 st->cr();
duke@435 4128
duke@435 4129 if (Verbose) {
duke@435 4130 // decode some bytes around the PC
duke@435 4131 address begin = same_page(addr-40, addr);
duke@435 4132 address end = same_page(addr+40, addr);
duke@435 4133 address lowest = (address) dlinfo.dli_sname;
duke@435 4134 if (!lowest) lowest = (address) dlinfo.dli_fbase;
duke@435 4135 if (begin < lowest) begin = lowest;
duke@435 4136 Dl_info dlinfo2;
duke@435 4137 if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
duke@435 4138 && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
duke@435 4139 end = (address) dlinfo2.dli_saddr;
bobv@2036 4140 Disassembler::decode(begin, end, st);
duke@435 4141 }
duke@435 4142 return true;
duke@435 4143 }
duke@435 4144 return false;
duke@435 4145 }
duke@435 4146
duke@435 4147 ////////////////////////////////////////////////////////////////////////////////
duke@435 4148 // misc
duke@435 4149
duke@435 4150 // This does not do anything on Linux. This is basically a hook for being
duke@435 4151 // able to use structured exception handling (thread-local exception filters)
duke@435 4152 // on, e.g., Win32.
duke@435 4153 void
duke@435 4154 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
duke@435 4155 JavaCallArguments* args, Thread* thread) {
duke@435 4156 f(value, method, args, thread);
duke@435 4157 }
duke@435 4158
duke@435 4159 void os::print_statistics() {
duke@435 4160 }
duke@435 4161
duke@435 4162 int os::message_box(const char* title, const char* message) {
duke@435 4163 int i;
duke@435 4164 fdStream err(defaultStream::error_fd());
duke@435 4165 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4166 err.cr();
duke@435 4167 err.print_raw_cr(title);
duke@435 4168 for (i = 0; i < 78; i++) err.print_raw("-");
duke@435 4169 err.cr();
duke@435 4170 err.print_raw_cr(message);
duke@435 4171 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4172 err.cr();
duke@435 4173
duke@435 4174 char buf[16];
duke@435 4175 // Prevent process from exiting upon "read error" without consuming all CPU
duke@435 4176 while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
duke@435 4177
duke@435 4178 return buf[0] == 'y' || buf[0] == 'Y';
duke@435 4179 }
duke@435 4180
duke@435 4181 int os::stat(const char *path, struct stat *sbuf) {
duke@435 4182 char pathbuf[MAX_PATH];
duke@435 4183 if (strlen(path) > MAX_PATH - 1) {
duke@435 4184 errno = ENAMETOOLONG;
duke@435 4185 return -1;
duke@435 4186 }
duke@435 4187 hpi::native_path(strcpy(pathbuf, path));
duke@435 4188 return ::stat(pathbuf, sbuf);
duke@435 4189 }
duke@435 4190
duke@435 4191 bool os::check_heap(bool force) {
duke@435 4192 return true;
duke@435 4193 }
duke@435 4194
duke@435 4195 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
duke@435 4196 return ::vsnprintf(buf, count, format, args);
duke@435 4197 }
duke@435 4198
duke@435 4199 // Is a (classpath) directory empty?
duke@435 4200 bool os::dir_is_empty(const char* path) {
duke@435 4201 DIR *dir = NULL;
duke@435 4202 struct dirent *ptr;
duke@435 4203
duke@435 4204 dir = opendir(path);
duke@435 4205 if (dir == NULL) return true;
duke@435 4206
duke@435 4207 /* Scan the directory */
duke@435 4208 bool result = true;
duke@435 4209 char buf[sizeof(struct dirent) + MAX_PATH];
duke@435 4210 while (result && (ptr = ::readdir(dir)) != NULL) {
duke@435 4211 if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
duke@435 4212 result = false;
duke@435 4213 }
duke@435 4214 }
duke@435 4215 closedir(dir);
duke@435 4216 return result;
duke@435 4217 }
duke@435 4218
duke@435 4219 // create binary file, rewriting existing file if required
duke@435 4220 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 4221 int oflags = O_WRONLY | O_CREAT;
duke@435 4222 if (!rewrite_existing) {
duke@435 4223 oflags |= O_EXCL;
duke@435 4224 }
duke@435 4225 return ::open64(path, oflags, S_IREAD | S_IWRITE);
duke@435 4226 }
duke@435 4227
duke@435 4228 // return current position of file pointer
duke@435 4229 jlong os::current_file_offset(int fd) {
duke@435 4230 return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
duke@435 4231 }
duke@435 4232
duke@435 4233 // move file pointer to the specified offset
duke@435 4234 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 4235 return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
duke@435 4236 }
duke@435 4237
duke@435 4238 // Map a block of memory.
duke@435 4239 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4240 char *addr, size_t bytes, bool read_only,
duke@435 4241 bool allow_exec) {
duke@435 4242 int prot;
duke@435 4243 int flags;
duke@435 4244
duke@435 4245 if (read_only) {
duke@435 4246 prot = PROT_READ;
duke@435 4247 flags = MAP_SHARED;
duke@435 4248 } else {
duke@435 4249 prot = PROT_READ | PROT_WRITE;
duke@435 4250 flags = MAP_PRIVATE;
duke@435 4251 }
duke@435 4252
duke@435 4253 if (allow_exec) {
duke@435 4254 prot |= PROT_EXEC;
duke@435 4255 }
duke@435 4256
duke@435 4257 if (addr != NULL) {
duke@435 4258 flags |= MAP_FIXED;
duke@435 4259 }
duke@435 4260
duke@435 4261 char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
duke@435 4262 fd, file_offset);
duke@435 4263 if (mapped_address == MAP_FAILED) {
duke@435 4264 return NULL;
duke@435 4265 }
duke@435 4266 return mapped_address;
duke@435 4267 }
duke@435 4268
duke@435 4269
duke@435 4270 // Remap a block of memory.
duke@435 4271 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4272 char *addr, size_t bytes, bool read_only,
duke@435 4273 bool allow_exec) {
duke@435 4274 // same as map_memory() on this OS
duke@435 4275 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 4276 allow_exec);
duke@435 4277 }
duke@435 4278
duke@435 4279
duke@435 4280 // Unmap a block of memory.
duke@435 4281 bool os::unmap_memory(char* addr, size_t bytes) {
duke@435 4282 return munmap(addr, bytes) == 0;
duke@435 4283 }
duke@435 4284
duke@435 4285 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
duke@435 4286
duke@435 4287 static clockid_t thread_cpu_clockid(Thread* thread) {
duke@435 4288 pthread_t tid = thread->osthread()->pthread_id();
duke@435 4289 clockid_t clockid;
duke@435 4290
duke@435 4291 // Get thread clockid
duke@435 4292 int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
duke@435 4293 assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
duke@435 4294 return clockid;
duke@435 4295 }
duke@435 4296
duke@435 4297 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 4298 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 4299 // of a thread.
duke@435 4300 //
duke@435 4301 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 4302 // the fast estimate available on the platform.
duke@435 4303
duke@435 4304 jlong os::current_thread_cpu_time() {
duke@435 4305 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4306 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4307 } else {
duke@435 4308 // return user + sys since the cost is the same
duke@435 4309 return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
duke@435 4310 }
duke@435 4311 }
duke@435 4312
duke@435 4313 jlong os::thread_cpu_time(Thread* thread) {
duke@435 4314 // consistent with what current_thread_cpu_time() returns
duke@435 4315 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4316 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4317 } else {
duke@435 4318 return slow_thread_cpu_time(thread, true /* user + sys */);
duke@435 4319 }
duke@435 4320 }
duke@435 4321
duke@435 4322 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 4323 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4324 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4325 } else {
duke@435 4326 return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 4327 }
duke@435 4328 }
duke@435 4329
duke@435 4330 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4331 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4332 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4333 } else {
duke@435 4334 return slow_thread_cpu_time(thread, user_sys_cpu_time);
duke@435 4335 }
duke@435 4336 }
duke@435 4337
duke@435 4338 //
duke@435 4339 // -1 on error.
duke@435 4340 //
duke@435 4341
duke@435 4342 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4343 static bool proc_pid_cpu_avail = true;
duke@435 4344 static bool proc_task_unchecked = true;
duke@435 4345 static const char *proc_stat_path = "/proc/%d/stat";
duke@435 4346 pid_t tid = thread->osthread()->thread_id();
duke@435 4347 int i;
duke@435 4348 char *s;
duke@435 4349 char stat[2048];
duke@435 4350 int statlen;
duke@435 4351 char proc_name[64];
duke@435 4352 int count;
duke@435 4353 long sys_time, user_time;
duke@435 4354 char string[64];
bobv@2036 4355 char cdummy;
duke@435 4356 int idummy;
duke@435 4357 long ldummy;
duke@435 4358 FILE *fp;
duke@435 4359
duke@435 4360 // We first try accessing /proc/<pid>/cpu since this is faster to
duke@435 4361 // process. If this file is not present (linux kernels 2.5 and above)
duke@435 4362 // then we open /proc/<pid>/stat.
duke@435 4363 if ( proc_pid_cpu_avail ) {
duke@435 4364 sprintf(proc_name, "/proc/%d/cpu", tid);
duke@435 4365 fp = fopen(proc_name, "r");
duke@435 4366 if ( fp != NULL ) {
duke@435 4367 count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
duke@435 4368 fclose(fp);
duke@435 4369 if ( count != 3 ) return -1;
duke@435 4370
duke@435 4371 if (user_sys_cpu_time) {
duke@435 4372 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4373 } else {
duke@435 4374 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4375 }
duke@435 4376 }
duke@435 4377 else proc_pid_cpu_avail = false;
duke@435 4378 }
duke@435 4379
duke@435 4380 // The /proc/<tid>/stat aggregates per-process usage on
duke@435 4381 // new Linux kernels 2.6+ where NPTL is supported.
duke@435 4382 // The /proc/self/task/<tid>/stat still has the per-thread usage.
duke@435 4383 // See bug 6328462.
duke@435 4384 // There can be no directory /proc/self/task on kernels 2.4 with NPTL
duke@435 4385 // and possibly in some other cases, so we check its availability.
duke@435 4386 if (proc_task_unchecked && os::Linux::is_NPTL()) {
duke@435 4387 // This is executed only once
duke@435 4388 proc_task_unchecked = false;
duke@435 4389 fp = fopen("/proc/self/task", "r");
duke@435 4390 if (fp != NULL) {
duke@435 4391 proc_stat_path = "/proc/self/task/%d/stat";
duke@435 4392 fclose(fp);
duke@435 4393 }
duke@435 4394 }
duke@435 4395
duke@435 4396 sprintf(proc_name, proc_stat_path, tid);
duke@435 4397 fp = fopen(proc_name, "r");
duke@435 4398 if ( fp == NULL ) return -1;
duke@435 4399 statlen = fread(stat, 1, 2047, fp);
duke@435 4400 stat[statlen] = '\0';
duke@435 4401 fclose(fp);
duke@435 4402
duke@435 4403 // Skip pid and the command string. Note that we could be dealing with
duke@435 4404 // weird command names, e.g. user could decide to rename java launcher
duke@435 4405 // to "java 1.4.2 :)", then the stat file would look like
duke@435 4406 // 1234 (java 1.4.2 :)) R ... ...
duke@435 4407 // We don't really need to know the command string, just find the last
duke@435 4408 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 4409 s = strrchr(stat, ')');
duke@435 4410 i = 0;
duke@435 4411 if (s == NULL ) return -1;
duke@435 4412
duke@435 4413 // Skip blank chars
duke@435 4414 do s++; while (isspace(*s));
duke@435 4415
bobv@2036 4416 count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
bobv@2036 4417 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
duke@435 4418 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
duke@435 4419 &user_time, &sys_time);
bobv@2036 4420 if ( count != 13 ) return -1;
duke@435 4421 if (user_sys_cpu_time) {
duke@435 4422 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4423 } else {
duke@435 4424 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4425 }
duke@435 4426 }
duke@435 4427
duke@435 4428 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4429 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4430 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4431 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4432 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4433 }
duke@435 4434
duke@435 4435 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4436 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4437 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4438 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4439 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4440 }
duke@435 4441
duke@435 4442 bool os::is_thread_cpu_time_supported() {
duke@435 4443 return true;
duke@435 4444 }
duke@435 4445
duke@435 4446 // System loadavg support. Returns -1 if load average cannot be obtained.
duke@435 4447 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4448 // so just return the system wide load average.
duke@435 4449 int os::loadavg(double loadavg[], int nelem) {
duke@435 4450 return ::getloadavg(loadavg, nelem);
duke@435 4451 }
duke@435 4452
duke@435 4453 void os::pause() {
duke@435 4454 char filename[MAX_PATH];
duke@435 4455 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 4456 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 4457 } else {
duke@435 4458 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 4459 }
duke@435 4460
duke@435 4461 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 4462 if (fd != -1) {
duke@435 4463 struct stat buf;
duke@435 4464 close(fd);
duke@435 4465 while (::stat(filename, &buf) == 0) {
duke@435 4466 (void)::poll(NULL, 0, 100);
duke@435 4467 }
duke@435 4468 } else {
duke@435 4469 jio_fprintf(stderr,
duke@435 4470 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 4471 }
duke@435 4472 }
duke@435 4473
duke@435 4474 extern "C" {
duke@435 4475
duke@435 4476 /**
duke@435 4477 * NOTE: the following code is to keep the green threads code
duke@435 4478 * in the libjava.so happy. Once the green threads is removed,
duke@435 4479 * these code will no longer be needed.
duke@435 4480 */
duke@435 4481 int
duke@435 4482 jdk_waitpid(pid_t pid, int* status, int options) {
duke@435 4483 return waitpid(pid, status, options);
duke@435 4484 }
duke@435 4485
duke@435 4486 int
duke@435 4487 fork1() {
duke@435 4488 return fork();
duke@435 4489 }
duke@435 4490
duke@435 4491 int
duke@435 4492 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
duke@435 4493 return sem_init(sem, pshared, value);
duke@435 4494 }
duke@435 4495
duke@435 4496 int
duke@435 4497 jdk_sem_post(sem_t *sem) {
duke@435 4498 return sem_post(sem);
duke@435 4499 }
duke@435 4500
duke@435 4501 int
duke@435 4502 jdk_sem_wait(sem_t *sem) {
duke@435 4503 return sem_wait(sem);
duke@435 4504 }
duke@435 4505
duke@435 4506 int
duke@435 4507 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
duke@435 4508 return pthread_sigmask(how , newmask, oldmask);
duke@435 4509 }
duke@435 4510
duke@435 4511 }
duke@435 4512
duke@435 4513 // Refer to the comments in os_solaris.cpp park-unpark.
duke@435 4514 //
duke@435 4515 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
duke@435 4516 // hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
duke@435 4517 // For specifics regarding the bug see GLIBC BUGID 261237 :
duke@435 4518 // http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
duke@435 4519 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
duke@435 4520 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
duke@435 4521 // is used. (The simple C test-case provided in the GLIBC bug report manifests the
duke@435 4522 // hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
duke@435 4523 // and monitorenter when we're using 1-0 locking. All those operations may result in
duke@435 4524 // calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
duke@435 4525 // of libpthread avoids the problem, but isn't practical.
duke@435 4526 //
duke@435 4527 // Possible remedies:
duke@435 4528 //
duke@435 4529 // 1. Establish a minimum relative wait time. 50 to 100 msecs seems to work.
duke@435 4530 // This is palliative and probabilistic, however. If the thread is preempted
duke@435 4531 // between the call to compute_abstime() and pthread_cond_timedwait(), more
duke@435 4532 // than the minimum period may have passed, and the abstime may be stale (in the
duke@435 4533 // past) resultin in a hang. Using this technique reduces the odds of a hang
duke@435 4534 // but the JVM is still vulnerable, particularly on heavily loaded systems.
duke@435 4535 //
duke@435 4536 // 2. Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
duke@435 4537 // of the usual flag-condvar-mutex idiom. The write side of the pipe is set
duke@435 4538 // NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
duke@435 4539 // reduces to poll()+read(). This works well, but consumes 2 FDs per extant
duke@435 4540 // thread.
duke@435 4541 //
duke@435 4542 // 3. Embargo pthread_cond_timedwait() and implement a native "chron" thread
duke@435 4543 // that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
duke@435 4544 // a timeout request to the chron thread and then blocking via pthread_cond_wait().
duke@435 4545 // This also works well. In fact it avoids kernel-level scalability impediments
duke@435 4546 // on certain platforms that don't handle lots of active pthread_cond_timedwait()
duke@435 4547 // timers in a graceful fashion.
duke@435 4548 //
duke@435 4549 // 4. When the abstime value is in the past it appears that control returns
duke@435 4550 // correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
duke@435 4551 // Subsequent timedwait/wait calls may hang indefinitely. Given that, we
duke@435 4552 // can avoid the problem by reinitializing the condvar -- by cond_destroy()
duke@435 4553 // followed by cond_init() -- after all calls to pthread_cond_timedwait().
duke@435 4554 // It may be possible to avoid reinitialization by checking the return
duke@435 4555 // value from pthread_cond_timedwait(). In addition to reinitializing the
duke@435 4556 // condvar we must establish the invariant that cond_signal() is only called
duke@435 4557 // within critical sections protected by the adjunct mutex. This prevents
duke@435 4558 // cond_signal() from "seeing" a condvar that's in the midst of being
duke@435 4559 // reinitialized or that is corrupt. Sadly, this invariant obviates the
duke@435 4560 // desirable signal-after-unlock optimization that avoids futile context switching.
duke@435 4561 //
duke@435 4562 // I'm also concerned that some versions of NTPL might allocate an auxilliary
duke@435 4563 // structure when a condvar is used or initialized. cond_destroy() would
duke@435 4564 // release the helper structure. Our reinitialize-after-timedwait fix
duke@435 4565 // put excessive stress on malloc/free and locks protecting the c-heap.
duke@435 4566 //
duke@435 4567 // We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
duke@435 4568 // It may be possible to refine (4) by checking the kernel and NTPL verisons
duke@435 4569 // and only enabling the work-around for vulnerable environments.
duke@435 4570
duke@435 4571 // utility to compute the abstime argument to timedwait:
duke@435 4572 // millis is the relative timeout time
duke@435 4573 // abstime will be the absolute timeout time
duke@435 4574 // TODO: replace compute_abstime() with unpackTime()
duke@435 4575
duke@435 4576 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
duke@435 4577 if (millis < 0) millis = 0;
duke@435 4578 struct timeval now;
duke@435 4579 int status = gettimeofday(&now, NULL);
duke@435 4580 assert(status == 0, "gettimeofday");
duke@435 4581 jlong seconds = millis / 1000;
duke@435 4582 millis %= 1000;
duke@435 4583 if (seconds > 50000000) { // see man cond_timedwait(3T)
duke@435 4584 seconds = 50000000;
duke@435 4585 }
duke@435 4586 abstime->tv_sec = now.tv_sec + seconds;
duke@435 4587 long usec = now.tv_usec + millis * 1000;
duke@435 4588 if (usec >= 1000000) {
duke@435 4589 abstime->tv_sec += 1;
duke@435 4590 usec -= 1000000;
duke@435 4591 }
duke@435 4592 abstime->tv_nsec = usec * 1000;
duke@435 4593 return abstime;
duke@435 4594 }
duke@435 4595
duke@435 4596
duke@435 4597 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
duke@435 4598 // Conceptually TryPark() should be equivalent to park(0).
duke@435 4599
duke@435 4600 int os::PlatformEvent::TryPark() {
duke@435 4601 for (;;) {
duke@435 4602 const int v = _Event ;
duke@435 4603 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4604 if (Atomic::cmpxchg (0, &_Event, v) == v) return v ;
duke@435 4605 }
duke@435 4606 }
duke@435 4607
duke@435 4608 void os::PlatformEvent::park() { // AKA "down()"
duke@435 4609 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 4610 // may call park().
duke@435 4611 // TODO: assert that _Assoc != NULL or _Assoc == Self
duke@435 4612 int v ;
duke@435 4613 for (;;) {
duke@435 4614 v = _Event ;
duke@435 4615 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4616 }
duke@435 4617 guarantee (v >= 0, "invariant") ;
duke@435 4618 if (v == 0) {
duke@435 4619 // Do this the hard way by blocking ...
duke@435 4620 int status = pthread_mutex_lock(_mutex);
duke@435 4621 assert_status(status == 0, status, "mutex_lock");
duke@435 4622 guarantee (_nParked == 0, "invariant") ;
duke@435 4623 ++ _nParked ;
duke@435 4624 while (_Event < 0) {
duke@435 4625 status = pthread_cond_wait(_cond, _mutex);
duke@435 4626 // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
duke@435 4627 // Treat this the same as if the wait was interrupted
duke@435 4628 if (status == ETIME) { status = EINTR; }
duke@435 4629 assert_status(status == 0 || status == EINTR, status, "cond_wait");
duke@435 4630 }
duke@435 4631 -- _nParked ;
duke@435 4632
duke@435 4633 // In theory we could move the ST of 0 into _Event past the unlock(),
duke@435 4634 // but then we'd need a MEMBAR after the ST.
duke@435 4635 _Event = 0 ;
duke@435 4636 status = pthread_mutex_unlock(_mutex);
duke@435 4637 assert_status(status == 0, status, "mutex_unlock");
duke@435 4638 }
duke@435 4639 guarantee (_Event >= 0, "invariant") ;
duke@435 4640 }
duke@435 4641
duke@435 4642 int os::PlatformEvent::park(jlong millis) {
duke@435 4643 guarantee (_nParked == 0, "invariant") ;
duke@435 4644
duke@435 4645 int v ;
duke@435 4646 for (;;) {
duke@435 4647 v = _Event ;
duke@435 4648 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4649 }
duke@435 4650 guarantee (v >= 0, "invariant") ;
duke@435 4651 if (v != 0) return OS_OK ;
duke@435 4652
duke@435 4653 // We do this the hard way, by blocking the thread.
duke@435 4654 // Consider enforcing a minimum timeout value.
duke@435 4655 struct timespec abst;
duke@435 4656 compute_abstime(&abst, millis);
duke@435 4657
duke@435 4658 int ret = OS_TIMEOUT;
duke@435 4659 int status = pthread_mutex_lock(_mutex);
duke@435 4660 assert_status(status == 0, status, "mutex_lock");
duke@435 4661 guarantee (_nParked == 0, "invariant") ;
duke@435 4662 ++_nParked ;
duke@435 4663
duke@435 4664 // Object.wait(timo) will return because of
duke@435 4665 // (a) notification
duke@435 4666 // (b) timeout
duke@435 4667 // (c) thread.interrupt
duke@435 4668 //
duke@435 4669 // Thread.interrupt and object.notify{All} both call Event::set.
duke@435 4670 // That is, we treat thread.interrupt as a special case of notification.
duke@435 4671 // The underlying Solaris implementation, cond_timedwait, admits
duke@435 4672 // spurious/premature wakeups, but the JLS/JVM spec prevents the
duke@435 4673 // JVM from making those visible to Java code. As such, we must
duke@435 4674 // filter out spurious wakeups. We assume all ETIME returns are valid.
duke@435 4675 //
duke@435 4676 // TODO: properly differentiate simultaneous notify+interrupt.
duke@435 4677 // In that case, we should propagate the notify to another waiter.
duke@435 4678
duke@435 4679 while (_Event < 0) {
duke@435 4680 status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
duke@435 4681 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4682 pthread_cond_destroy (_cond);
duke@435 4683 pthread_cond_init (_cond, NULL) ;
duke@435 4684 }
duke@435 4685 assert_status(status == 0 || status == EINTR ||
duke@435 4686 status == ETIME || status == ETIMEDOUT,
duke@435 4687 status, "cond_timedwait");
duke@435 4688 if (!FilterSpuriousWakeups) break ; // previous semantics
duke@435 4689 if (status == ETIME || status == ETIMEDOUT) break ;
duke@435 4690 // We consume and ignore EINTR and spurious wakeups.
duke@435 4691 }
duke@435 4692 --_nParked ;
duke@435 4693 if (_Event >= 0) {
duke@435 4694 ret = OS_OK;
duke@435 4695 }
duke@435 4696 _Event = 0 ;
duke@435 4697 status = pthread_mutex_unlock(_mutex);
duke@435 4698 assert_status(status == 0, status, "mutex_unlock");
duke@435 4699 assert (_nParked == 0, "invariant") ;
duke@435 4700 return ret;
duke@435 4701 }
duke@435 4702
duke@435 4703 void os::PlatformEvent::unpark() {
duke@435 4704 int v, AnyWaiters ;
duke@435 4705 for (;;) {
duke@435 4706 v = _Event ;
duke@435 4707 if (v > 0) {
duke@435 4708 // The LD of _Event could have reordered or be satisfied
duke@435 4709 // by a read-aside from this processor's write buffer.
duke@435 4710 // To avoid problems execute a barrier and then
duke@435 4711 // ratify the value.
duke@435 4712 OrderAccess::fence() ;
duke@435 4713 if (_Event == v) return ;
duke@435 4714 continue ;
duke@435 4715 }
duke@435 4716 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 4717 }
duke@435 4718 if (v < 0) {
duke@435 4719 // Wait for the thread associated with the event to vacate
duke@435 4720 int status = pthread_mutex_lock(_mutex);
duke@435 4721 assert_status(status == 0, status, "mutex_lock");
duke@435 4722 AnyWaiters = _nParked ;
duke@435 4723 assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
duke@435 4724 if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4725 AnyWaiters = 0 ;
duke@435 4726 pthread_cond_signal (_cond);
duke@435 4727 }
duke@435 4728 status = pthread_mutex_unlock(_mutex);
duke@435 4729 assert_status(status == 0, status, "mutex_unlock");
duke@435 4730 if (AnyWaiters != 0) {
duke@435 4731 status = pthread_cond_signal(_cond);
duke@435 4732 assert_status(status == 0, status, "cond_signal");
duke@435 4733 }
duke@435 4734 }
duke@435 4735
duke@435 4736 // Note that we signal() _after dropping the lock for "immortal" Events.
duke@435 4737 // This is safe and avoids a common class of futile wakeups. In rare
duke@435 4738 // circumstances this can cause a thread to return prematurely from
duke@435 4739 // cond_{timed}wait() but the spurious wakeup is benign and the victim will
duke@435 4740 // simply re-test the condition and re-park itself.
duke@435 4741 }
duke@435 4742
duke@435 4743
duke@435 4744 // JSR166
duke@435 4745 // -------------------------------------------------------
duke@435 4746
duke@435 4747 /*
duke@435 4748 * The solaris and linux implementations of park/unpark are fairly
duke@435 4749 * conservative for now, but can be improved. They currently use a
duke@435 4750 * mutex/condvar pair, plus a a count.
duke@435 4751 * Park decrements count if > 0, else does a condvar wait. Unpark
duke@435 4752 * sets count to 1 and signals condvar. Only one thread ever waits
duke@435 4753 * on the condvar. Contention seen when trying to park implies that someone
duke@435 4754 * is unparking you, so don't wait. And spurious returns are fine, so there
duke@435 4755 * is no need to track notifications.
duke@435 4756 */
duke@435 4757
duke@435 4758
duke@435 4759 #define NANOSECS_PER_SEC 1000000000
duke@435 4760 #define NANOSECS_PER_MILLISEC 1000000
duke@435 4761 #define MAX_SECS 100000000
duke@435 4762 /*
duke@435 4763 * This code is common to linux and solaris and will be moved to a
duke@435 4764 * common place in dolphin.
duke@435 4765 *
duke@435 4766 * The passed in time value is either a relative time in nanoseconds
duke@435 4767 * or an absolute time in milliseconds. Either way it has to be unpacked
duke@435 4768 * into suitable seconds and nanoseconds components and stored in the
duke@435 4769 * given timespec structure.
duke@435 4770 * Given time is a 64-bit value and the time_t used in the timespec is only
duke@435 4771 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
duke@435 4772 * overflow if times way in the future are given. Further on Solaris versions
duke@435 4773 * prior to 10 there is a restriction (see cond_timedwait) that the specified
duke@435 4774 * number of seconds, in abstime, is less than current_time + 100,000,000.
duke@435 4775 * As it will be 28 years before "now + 100000000" will overflow we can
duke@435 4776 * ignore overflow and just impose a hard-limit on seconds using the value
duke@435 4777 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
duke@435 4778 * years from "now".
duke@435 4779 */
duke@435 4780
duke@435 4781 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
duke@435 4782 assert (time > 0, "convertTime");
duke@435 4783
duke@435 4784 struct timeval now;
duke@435 4785 int status = gettimeofday(&now, NULL);
duke@435 4786 assert(status == 0, "gettimeofday");
duke@435 4787
duke@435 4788 time_t max_secs = now.tv_sec + MAX_SECS;
duke@435 4789
duke@435 4790 if (isAbsolute) {
duke@435 4791 jlong secs = time / 1000;
duke@435 4792 if (secs > max_secs) {
duke@435 4793 absTime->tv_sec = max_secs;
duke@435 4794 }
duke@435 4795 else {
duke@435 4796 absTime->tv_sec = secs;
duke@435 4797 }
duke@435 4798 absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
duke@435 4799 }
duke@435 4800 else {
duke@435 4801 jlong secs = time / NANOSECS_PER_SEC;
duke@435 4802 if (secs >= MAX_SECS) {
duke@435 4803 absTime->tv_sec = max_secs;
duke@435 4804 absTime->tv_nsec = 0;
duke@435 4805 }
duke@435 4806 else {
duke@435 4807 absTime->tv_sec = now.tv_sec + secs;
duke@435 4808 absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
duke@435 4809 if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
duke@435 4810 absTime->tv_nsec -= NANOSECS_PER_SEC;
duke@435 4811 ++absTime->tv_sec; // note: this must be <= max_secs
duke@435 4812 }
duke@435 4813 }
duke@435 4814 }
duke@435 4815 assert(absTime->tv_sec >= 0, "tv_sec < 0");
duke@435 4816 assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
duke@435 4817 assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
duke@435 4818 assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
duke@435 4819 }
duke@435 4820
duke@435 4821 void Parker::park(bool isAbsolute, jlong time) {
duke@435 4822 // Optional fast-path check:
duke@435 4823 // Return immediately if a permit is available.
duke@435 4824 if (_counter > 0) {
duke@435 4825 _counter = 0 ;
dholmes@1552 4826 OrderAccess::fence();
duke@435 4827 return ;
duke@435 4828 }
duke@435 4829
duke@435 4830 Thread* thread = Thread::current();
duke@435 4831 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 4832 JavaThread *jt = (JavaThread *)thread;
duke@435 4833
duke@435 4834 // Optional optimization -- avoid state transitions if there's an interrupt pending.
duke@435 4835 // Check interrupt before trying to wait
duke@435 4836 if (Thread::is_interrupted(thread, false)) {
duke@435 4837 return;
duke@435 4838 }
duke@435 4839
duke@435 4840 // Next, demultiplex/decode time arguments
duke@435 4841 timespec absTime;
duke@435 4842 if (time < 0) { // don't wait at all
duke@435 4843 return;
duke@435 4844 }
duke@435 4845 if (time > 0) {
duke@435 4846 unpackTime(&absTime, isAbsolute, time);
duke@435 4847 }
duke@435 4848
duke@435 4849
duke@435 4850 // Enter safepoint region
duke@435 4851 // Beware of deadlocks such as 6317397.
duke@435 4852 // The per-thread Parker:: mutex is a classic leaf-lock.
duke@435 4853 // In particular a thread must never block on the Threads_lock while
duke@435 4854 // holding the Parker:: mutex. If safepoints are pending both the
duke@435 4855 // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
duke@435 4856 ThreadBlockInVM tbivm(jt);
duke@435 4857
duke@435 4858 // Don't wait if cannot get lock since interference arises from
duke@435 4859 // unblocking. Also. check interrupt before trying wait
duke@435 4860 if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
duke@435 4861 return;
duke@435 4862 }
duke@435 4863
duke@435 4864 int status ;
duke@435 4865 if (_counter > 0) { // no wait needed
duke@435 4866 _counter = 0;
duke@435 4867 status = pthread_mutex_unlock(_mutex);
duke@435 4868 assert (status == 0, "invariant") ;
dholmes@1552 4869 OrderAccess::fence();
duke@435 4870 return;
duke@435 4871 }
duke@435 4872
duke@435 4873 #ifdef ASSERT
duke@435 4874 // Don't catch signals while blocked; let the running threads have the signals.
duke@435 4875 // (This allows a debugger to break into the running thread.)
duke@435 4876 sigset_t oldsigs;
duke@435 4877 sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
duke@435 4878 pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
duke@435 4879 #endif
duke@435 4880
duke@435 4881 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 4882 jt->set_suspend_equivalent();
duke@435 4883 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 4884
duke@435 4885 if (time == 0) {
duke@435 4886 status = pthread_cond_wait (_cond, _mutex) ;
duke@435 4887 } else {
duke@435 4888 status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
duke@435 4889 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4890 pthread_cond_destroy (_cond) ;
duke@435 4891 pthread_cond_init (_cond, NULL);
duke@435 4892 }
duke@435 4893 }
duke@435 4894 assert_status(status == 0 || status == EINTR ||
duke@435 4895 status == ETIME || status == ETIMEDOUT,
duke@435 4896 status, "cond_timedwait");
duke@435 4897
duke@435 4898 #ifdef ASSERT
duke@435 4899 pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
duke@435 4900 #endif
duke@435 4901
duke@435 4902 _counter = 0 ;
duke@435 4903 status = pthread_mutex_unlock(_mutex) ;
duke@435 4904 assert_status(status == 0, status, "invariant") ;
duke@435 4905 // If externally suspended while waiting, re-suspend
duke@435 4906 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 4907 jt->java_suspend_self();
duke@435 4908 }
duke@435 4909
dholmes@1552 4910 OrderAccess::fence();
duke@435 4911 }
duke@435 4912
duke@435 4913 void Parker::unpark() {
duke@435 4914 int s, status ;
duke@435 4915 status = pthread_mutex_lock(_mutex);
duke@435 4916 assert (status == 0, "invariant") ;
duke@435 4917 s = _counter;
duke@435 4918 _counter = 1;
duke@435 4919 if (s < 1) {
duke@435 4920 if (WorkAroundNPTLTimedWaitHang) {
duke@435 4921 status = pthread_cond_signal (_cond) ;
duke@435 4922 assert (status == 0, "invariant") ;
duke@435 4923 status = pthread_mutex_unlock(_mutex);
duke@435 4924 assert (status == 0, "invariant") ;
duke@435 4925 } else {
duke@435 4926 status = pthread_mutex_unlock(_mutex);
duke@435 4927 assert (status == 0, "invariant") ;
duke@435 4928 status = pthread_cond_signal (_cond) ;
duke@435 4929 assert (status == 0, "invariant") ;
duke@435 4930 }
duke@435 4931 } else {
duke@435 4932 pthread_mutex_unlock(_mutex);
duke@435 4933 assert (status == 0, "invariant") ;
duke@435 4934 }
duke@435 4935 }
duke@435 4936
duke@435 4937
duke@435 4938 extern char** environ;
duke@435 4939
duke@435 4940 #ifndef __NR_fork
duke@435 4941 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
duke@435 4942 #endif
duke@435 4943
duke@435 4944 #ifndef __NR_execve
duke@435 4945 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
duke@435 4946 #endif
duke@435 4947
duke@435 4948 // Run the specified command in a separate process. Return its exit value,
duke@435 4949 // or -1 on failure (e.g. can't fork a new process).
duke@435 4950 // Unlike system(), this function can be called from signal handler. It
duke@435 4951 // doesn't block SIGINT et al.
duke@435 4952 int os::fork_and_exec(char* cmd) {
xlu@634 4953 const char * argv[4] = {"sh", "-c", cmd, NULL};
duke@435 4954
duke@435 4955 // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
duke@435 4956 // pthread_atfork handlers and reset pthread library. All we need is a
duke@435 4957 // separate process to execve. Make a direct syscall to fork process.
duke@435 4958 // On IA64 there's no fork syscall, we have to use fork() and hope for
duke@435 4959 // the best...
duke@435 4960 pid_t pid = NOT_IA64(syscall(__NR_fork);)
duke@435 4961 IA64_ONLY(fork();)
duke@435 4962
duke@435 4963 if (pid < 0) {
duke@435 4964 // fork failed
duke@435 4965 return -1;
duke@435 4966
duke@435 4967 } else if (pid == 0) {
duke@435 4968 // child process
duke@435 4969
duke@435 4970 // execve() in LinuxThreads will call pthread_kill_other_threads_np()
duke@435 4971 // first to kill every thread on the thread list. Because this list is
duke@435 4972 // not reset by fork() (see notes above), execve() will instead kill
duke@435 4973 // every thread in the parent process. We know this is the only thread
duke@435 4974 // in the new process, so make a system call directly.
duke@435 4975 // IA64 should use normal execve() from glibc to match the glibc fork()
duke@435 4976 // above.
duke@435 4977 NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
xlu@634 4978 IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
duke@435 4979
duke@435 4980 // execve failed
duke@435 4981 _exit(-1);
duke@435 4982
duke@435 4983 } else {
duke@435 4984 // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
duke@435 4985 // care about the actual exit code, for now.
duke@435 4986
duke@435 4987 int status;
duke@435 4988
duke@435 4989 // Wait for the child process to exit. This returns immediately if
duke@435 4990 // the child has already exited. */
duke@435 4991 while (waitpid(pid, &status, 0) < 0) {
duke@435 4992 switch (errno) {
duke@435 4993 case ECHILD: return 0;
duke@435 4994 case EINTR: break;
duke@435 4995 default: return -1;
duke@435 4996 }
duke@435 4997 }
duke@435 4998
duke@435 4999 if (WIFEXITED(status)) {
duke@435 5000 // The child exited normally; get its exit code.
duke@435 5001 return WEXITSTATUS(status);
duke@435 5002 } else if (WIFSIGNALED(status)) {
duke@435 5003 // The child exited because of a signal
duke@435 5004 // The best value to return is 0x80 + signal number,
duke@435 5005 // because that is what all Unix shells do, and because
duke@435 5006 // it allows callers to distinguish between process exit and
duke@435 5007 // process death by signal.
duke@435 5008 return 0x80 + WTERMSIG(status);
duke@435 5009 } else {
duke@435 5010 // Unknown exit code; pass it through
duke@435 5011 return status;
duke@435 5012 }
duke@435 5013 }
duke@435 5014 }
bobv@2036 5015
bobv@2036 5016 // is_headless_jre()
bobv@2036 5017 //
bobv@2036 5018 // Test for the existence of libmawt in motif21 or xawt directories
bobv@2036 5019 // in order to report if we are running in a headless jre
bobv@2036 5020 //
bobv@2036 5021 bool os::is_headless_jre() {
bobv@2036 5022 struct stat statbuf;
bobv@2036 5023 char buf[MAXPATHLEN];
bobv@2036 5024 char libmawtpath[MAXPATHLEN];
bobv@2036 5025 const char *xawtstr = "/xawt/libmawt.so";
bobv@2036 5026 const char *motifstr = "/motif21/libmawt.so";
bobv@2036 5027 char *p;
bobv@2036 5028
bobv@2036 5029 // Get path to libjvm.so
bobv@2036 5030 os::jvm_path(buf, sizeof(buf));
bobv@2036 5031
bobv@2036 5032 // Get rid of libjvm.so
bobv@2036 5033 p = strrchr(buf, '/');
bobv@2036 5034 if (p == NULL) return false;
bobv@2036 5035 else *p = '\0';
bobv@2036 5036
bobv@2036 5037 // Get rid of client or server
bobv@2036 5038 p = strrchr(buf, '/');
bobv@2036 5039 if (p == NULL) return false;
bobv@2036 5040 else *p = '\0';
bobv@2036 5041
bobv@2036 5042 // check xawt/libmawt.so
bobv@2036 5043 strcpy(libmawtpath, buf);
bobv@2036 5044 strcat(libmawtpath, xawtstr);
bobv@2036 5045 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 5046
bobv@2036 5047 // check motif21/libmawt.so
bobv@2036 5048 strcpy(libmawtpath, buf);
bobv@2036 5049 strcat(libmawtpath, motifstr);
bobv@2036 5050 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 5051
bobv@2036 5052 return true;
bobv@2036 5053 }
bobv@2036 5054

mercurial