src/os/linux/vm/os_linux.cpp

Wed, 01 Dec 2010 18:26:32 -0500

author
ikrylov
date
Wed, 01 Dec 2010 18:26:32 -0500
changeset 2322
828eafbd85cc
parent 2314
f95d63e2154a
child 2365
54f5dd2aa1d9
permissions
-rw-r--r--

6348631: remove the use of the HPI library from Hotspot
Summary: move functions from hpi library to hotspot, communicate with licensees and open source community, check jdk for dependency, file CCC request
Reviewed-by: coleenp, acorn, dsamersoff

duke@435 1 /*
acorn@2220 2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
coleenp@1755 25 # define __STDC_FORMAT_MACROS
coleenp@1755 26
stefank@2314 27 // no precompiled headers
stefank@2314 28 #include "classfile/classLoader.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "classfile/vmSymbols.hpp"
stefank@2314 31 #include "code/icBuffer.hpp"
stefank@2314 32 #include "code/vtableStubs.hpp"
stefank@2314 33 #include "compiler/compileBroker.hpp"
stefank@2314 34 #include "interpreter/interpreter.hpp"
stefank@2314 35 #include "jvm_linux.h"
stefank@2314 36 #include "memory/allocation.inline.hpp"
stefank@2314 37 #include "memory/filemap.hpp"
stefank@2314 38 #include "mutex_linux.inline.hpp"
stefank@2314 39 #include "oops/oop.inline.hpp"
stefank@2314 40 #include "os_share_linux.hpp"
stefank@2314 41 #include "prims/jniFastGetField.hpp"
stefank@2314 42 #include "prims/jvm.h"
stefank@2314 43 #include "prims/jvm_misc.hpp"
stefank@2314 44 #include "runtime/arguments.hpp"
stefank@2314 45 #include "runtime/extendedPC.hpp"
stefank@2314 46 #include "runtime/globals.hpp"
stefank@2314 47 #include "runtime/interfaceSupport.hpp"
stefank@2314 48 #include "runtime/java.hpp"
stefank@2314 49 #include "runtime/javaCalls.hpp"
stefank@2314 50 #include "runtime/mutexLocker.hpp"
stefank@2314 51 #include "runtime/objectMonitor.hpp"
stefank@2314 52 #include "runtime/osThread.hpp"
stefank@2314 53 #include "runtime/perfMemory.hpp"
stefank@2314 54 #include "runtime/sharedRuntime.hpp"
stefank@2314 55 #include "runtime/statSampler.hpp"
stefank@2314 56 #include "runtime/stubRoutines.hpp"
stefank@2314 57 #include "runtime/threadCritical.hpp"
stefank@2314 58 #include "runtime/timer.hpp"
stefank@2314 59 #include "services/attachListener.hpp"
stefank@2314 60 #include "services/runtimeService.hpp"
stefank@2314 61 #include "thread_linux.inline.hpp"
stefank@2314 62 #include "utilities/defaultStream.hpp"
stefank@2314 63 #include "utilities/events.hpp"
stefank@2314 64 #include "utilities/growableArray.hpp"
stefank@2314 65 #include "utilities/vmError.hpp"
stefank@2314 66 #ifdef TARGET_ARCH_x86
stefank@2314 67 # include "assembler_x86.inline.hpp"
stefank@2314 68 # include "nativeInst_x86.hpp"
stefank@2314 69 #endif
stefank@2314 70 #ifdef TARGET_ARCH_sparc
stefank@2314 71 # include "assembler_sparc.inline.hpp"
stefank@2314 72 # include "nativeInst_sparc.hpp"
stefank@2314 73 #endif
stefank@2314 74 #ifdef TARGET_ARCH_zero
stefank@2314 75 # include "assembler_zero.inline.hpp"
stefank@2314 76 # include "nativeInst_zero.hpp"
stefank@2314 77 #endif
stefank@2314 78 #ifdef COMPILER1
stefank@2314 79 #include "c1/c1_Runtime1.hpp"
stefank@2314 80 #endif
stefank@2314 81 #ifdef COMPILER2
stefank@2314 82 #include "opto/runtime.hpp"
stefank@2314 83 #endif
duke@435 84
duke@435 85 // put OS-includes here
duke@435 86 # include <sys/types.h>
duke@435 87 # include <sys/mman.h>
bobv@2036 88 # include <sys/stat.h>
bobv@2036 89 # include <sys/select.h>
duke@435 90 # include <pthread.h>
duke@435 91 # include <signal.h>
duke@435 92 # include <errno.h>
duke@435 93 # include <dlfcn.h>
duke@435 94 # include <stdio.h>
duke@435 95 # include <unistd.h>
duke@435 96 # include <sys/resource.h>
duke@435 97 # include <pthread.h>
duke@435 98 # include <sys/stat.h>
duke@435 99 # include <sys/time.h>
duke@435 100 # include <sys/times.h>
duke@435 101 # include <sys/utsname.h>
duke@435 102 # include <sys/socket.h>
duke@435 103 # include <sys/wait.h>
duke@435 104 # include <pwd.h>
duke@435 105 # include <poll.h>
duke@435 106 # include <semaphore.h>
duke@435 107 # include <fcntl.h>
duke@435 108 # include <string.h>
duke@435 109 # include <syscall.h>
duke@435 110 # include <sys/sysinfo.h>
duke@435 111 # include <gnu/libc-version.h>
duke@435 112 # include <sys/ipc.h>
duke@435 113 # include <sys/shm.h>
duke@435 114 # include <link.h>
coleenp@1755 115 # include <stdint.h>
coleenp@1755 116 # include <inttypes.h>
duke@435 117
duke@435 118 #define MAX_PATH (2 * K)
duke@435 119
duke@435 120 // for timer info max values which include all bits
duke@435 121 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 122 #define SEC_IN_NANOSECS 1000000000LL
duke@435 123
duke@435 124 ////////////////////////////////////////////////////////////////////////////////
duke@435 125 // global variables
duke@435 126 julong os::Linux::_physical_memory = 0;
duke@435 127
duke@435 128 address os::Linux::_initial_thread_stack_bottom = NULL;
duke@435 129 uintptr_t os::Linux::_initial_thread_stack_size = 0;
duke@435 130
duke@435 131 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
duke@435 132 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
duke@435 133 Mutex* os::Linux::_createThread_lock = NULL;
duke@435 134 pthread_t os::Linux::_main_thread;
duke@435 135 int os::Linux::_page_size = -1;
duke@435 136 bool os::Linux::_is_floating_stack = false;
duke@435 137 bool os::Linux::_is_NPTL = false;
duke@435 138 bool os::Linux::_supports_fast_thread_cpu_time = false;
xlu@634 139 const char * os::Linux::_glibc_version = NULL;
xlu@634 140 const char * os::Linux::_libpthread_version = NULL;
duke@435 141
duke@435 142 static jlong initial_time_count=0;
duke@435 143
duke@435 144 static int clock_tics_per_sec = 100;
duke@435 145
duke@435 146 // For diagnostics to print a message once. see run_periodic_checks
duke@435 147 static sigset_t check_signal_done;
duke@435 148 static bool check_signals = true;;
duke@435 149
duke@435 150 static pid_t _initial_pid = 0;
duke@435 151
duke@435 152 /* Signal number used to suspend/resume a thread */
duke@435 153
duke@435 154 /* do not use any signal number less than SIGSEGV, see 4355769 */
duke@435 155 static int SR_signum = SIGUSR2;
duke@435 156 sigset_t SR_sigset;
duke@435 157
kamg@677 158 /* Used to protect dlsym() calls */
kamg@677 159 static pthread_mutex_t dl_mutex;
kamg@677 160
duke@435 161 ////////////////////////////////////////////////////////////////////////////////
duke@435 162 // utility functions
duke@435 163
duke@435 164 static int SR_initialize();
duke@435 165 static int SR_finalize();
duke@435 166
duke@435 167 julong os::available_memory() {
duke@435 168 return Linux::available_memory();
duke@435 169 }
duke@435 170
duke@435 171 julong os::Linux::available_memory() {
duke@435 172 // values in struct sysinfo are "unsigned long"
duke@435 173 struct sysinfo si;
duke@435 174 sysinfo(&si);
duke@435 175
duke@435 176 return (julong)si.freeram * si.mem_unit;
duke@435 177 }
duke@435 178
duke@435 179 julong os::physical_memory() {
duke@435 180 return Linux::physical_memory();
duke@435 181 }
duke@435 182
phh@455 183 julong os::allocatable_physical_memory(julong size) {
phh@455 184 #ifdef _LP64
phh@455 185 return size;
phh@455 186 #else
phh@455 187 julong result = MIN2(size, (julong)3800*M);
phh@455 188 if (!is_allocatable(result)) {
phh@455 189 // See comments under solaris for alignment considerations
phh@455 190 julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
phh@455 191 result = MIN2(size, reasonable_size);
phh@455 192 }
phh@455 193 return result;
phh@455 194 #endif // _LP64
phh@455 195 }
phh@455 196
duke@435 197 ////////////////////////////////////////////////////////////////////////////////
duke@435 198 // environment support
duke@435 199
duke@435 200 bool os::getenv(const char* name, char* buf, int len) {
duke@435 201 const char* val = ::getenv(name);
duke@435 202 if (val != NULL && strlen(val) < (size_t)len) {
duke@435 203 strcpy(buf, val);
duke@435 204 return true;
duke@435 205 }
duke@435 206 if (len > 0) buf[0] = 0; // return a null string
duke@435 207 return false;
duke@435 208 }
duke@435 209
duke@435 210
duke@435 211 // Return true if user is running as root.
duke@435 212
duke@435 213 bool os::have_special_privileges() {
duke@435 214 static bool init = false;
duke@435 215 static bool privileges = false;
duke@435 216 if (!init) {
duke@435 217 privileges = (getuid() != geteuid()) || (getgid() != getegid());
duke@435 218 init = true;
duke@435 219 }
duke@435 220 return privileges;
duke@435 221 }
duke@435 222
duke@435 223
duke@435 224 #ifndef SYS_gettid
duke@435 225 // i386: 224, ia64: 1105, amd64: 186, sparc 143
duke@435 226 #ifdef __ia64__
duke@435 227 #define SYS_gettid 1105
duke@435 228 #elif __i386__
duke@435 229 #define SYS_gettid 224
duke@435 230 #elif __amd64__
duke@435 231 #define SYS_gettid 186
duke@435 232 #elif __sparc__
duke@435 233 #define SYS_gettid 143
duke@435 234 #else
duke@435 235 #error define gettid for the arch
duke@435 236 #endif
duke@435 237 #endif
duke@435 238
duke@435 239 // Cpu architecture string
never@1445 240 #if defined(ZERO)
never@1445 241 static char cpu_arch[] = ZERO_LIBARCH;
never@1445 242 #elif defined(IA64)
duke@435 243 static char cpu_arch[] = "ia64";
duke@435 244 #elif defined(IA32)
duke@435 245 static char cpu_arch[] = "i386";
duke@435 246 #elif defined(AMD64)
duke@435 247 static char cpu_arch[] = "amd64";
bobv@2036 248 #elif defined(ARM)
bobv@2036 249 static char cpu_arch[] = "arm";
bobv@2036 250 #elif defined(PPC)
bobv@2036 251 static char cpu_arch[] = "ppc";
duke@435 252 #elif defined(SPARC)
duke@435 253 # ifdef _LP64
duke@435 254 static char cpu_arch[] = "sparcv9";
duke@435 255 # else
duke@435 256 static char cpu_arch[] = "sparc";
duke@435 257 # endif
duke@435 258 #else
duke@435 259 #error Add appropriate cpu_arch setting
duke@435 260 #endif
duke@435 261
duke@435 262
duke@435 263 // pid_t gettid()
duke@435 264 //
duke@435 265 // Returns the kernel thread id of the currently running thread. Kernel
duke@435 266 // thread id is used to access /proc.
duke@435 267 //
duke@435 268 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
duke@435 269 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
duke@435 270 //
duke@435 271 pid_t os::Linux::gettid() {
duke@435 272 int rslt = syscall(SYS_gettid);
duke@435 273 if (rslt == -1) {
duke@435 274 // old kernel, no NPTL support
duke@435 275 return getpid();
duke@435 276 } else {
duke@435 277 return (pid_t)rslt;
duke@435 278 }
duke@435 279 }
duke@435 280
duke@435 281 // Most versions of linux have a bug where the number of processors are
duke@435 282 // determined by looking at the /proc file system. In a chroot environment,
duke@435 283 // the system call returns 1. This causes the VM to act as if it is
duke@435 284 // a single processor and elide locking (see is_MP() call).
duke@435 285 static bool unsafe_chroot_detected = false;
xlu@634 286 static const char *unstable_chroot_error = "/proc file system not found.\n"
xlu@634 287 "Java may be unstable running multithreaded in a chroot "
xlu@634 288 "environment on Linux when /proc filesystem is not mounted.";
duke@435 289
duke@435 290 void os::Linux::initialize_system_info() {
phh@1558 291 set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
phh@1558 292 if (processor_count() == 1) {
duke@435 293 pid_t pid = os::Linux::gettid();
duke@435 294 char fname[32];
duke@435 295 jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
duke@435 296 FILE *fp = fopen(fname, "r");
duke@435 297 if (fp == NULL) {
duke@435 298 unsafe_chroot_detected = true;
duke@435 299 } else {
duke@435 300 fclose(fp);
duke@435 301 }
duke@435 302 }
duke@435 303 _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
phh@1558 304 assert(processor_count() > 0, "linux error");
duke@435 305 }
duke@435 306
duke@435 307 void os::init_system_properties_values() {
duke@435 308 // char arch[12];
duke@435 309 // sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
duke@435 310
duke@435 311 // The next steps are taken in the product version:
duke@435 312 //
duke@435 313 // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
duke@435 314 // This library should be located at:
duke@435 315 // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
duke@435 316 //
duke@435 317 // If "/jre/lib/" appears at the right place in the path, then we
duke@435 318 // assume libjvm[_g].so is installed in a JDK and we use this path.
duke@435 319 //
duke@435 320 // Otherwise exit with message: "Could not create the Java virtual machine."
duke@435 321 //
duke@435 322 // The following extra steps are taken in the debugging version:
duke@435 323 //
duke@435 324 // If "/jre/lib/" does NOT appear at the right place in the path
duke@435 325 // instead of exit check for $JAVA_HOME environment variable.
duke@435 326 //
duke@435 327 // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
duke@435 328 // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
duke@435 329 // it looks like libjvm[_g].so is installed there
duke@435 330 // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
duke@435 331 //
duke@435 332 // Otherwise exit.
duke@435 333 //
duke@435 334 // Important note: if the location of libjvm.so changes this
duke@435 335 // code needs to be changed accordingly.
duke@435 336
duke@435 337 // The next few definitions allow the code to be verbatim:
duke@435 338 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
duke@435 339 #define getenv(n) ::getenv(n)
duke@435 340
duke@435 341 /*
duke@435 342 * See ld(1):
duke@435 343 * The linker uses the following search paths to locate required
duke@435 344 * shared libraries:
duke@435 345 * 1: ...
duke@435 346 * ...
duke@435 347 * 7: The default directories, normally /lib and /usr/lib.
duke@435 348 */
kvn@944 349 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
kvn@944 350 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
kvn@944 351 #else
duke@435 352 #define DEFAULT_LIBPATH "/lib:/usr/lib"
kvn@944 353 #endif
duke@435 354
duke@435 355 #define EXTENSIONS_DIR "/lib/ext"
duke@435 356 #define ENDORSED_DIR "/lib/endorsed"
duke@435 357 #define REG_DIR "/usr/java/packages"
duke@435 358
duke@435 359 {
duke@435 360 /* sysclasspath, java_home, dll_dir */
duke@435 361 {
duke@435 362 char *home_path;
duke@435 363 char *dll_path;
duke@435 364 char *pslash;
duke@435 365 char buf[MAXPATHLEN];
duke@435 366 os::jvm_path(buf, sizeof(buf));
duke@435 367
duke@435 368 // Found the full path to libjvm.so.
duke@435 369 // Now cut the path to <java_home>/jre if we can.
duke@435 370 *(strrchr(buf, '/')) = '\0'; /* get rid of /libjvm.so */
duke@435 371 pslash = strrchr(buf, '/');
duke@435 372 if (pslash != NULL)
duke@435 373 *pslash = '\0'; /* get rid of /{client|server|hotspot} */
duke@435 374 dll_path = malloc(strlen(buf) + 1);
duke@435 375 if (dll_path == NULL)
duke@435 376 return;
duke@435 377 strcpy(dll_path, buf);
duke@435 378 Arguments::set_dll_dir(dll_path);
duke@435 379
duke@435 380 if (pslash != NULL) {
duke@435 381 pslash = strrchr(buf, '/');
duke@435 382 if (pslash != NULL) {
duke@435 383 *pslash = '\0'; /* get rid of /<arch> */
duke@435 384 pslash = strrchr(buf, '/');
duke@435 385 if (pslash != NULL)
duke@435 386 *pslash = '\0'; /* get rid of /lib */
duke@435 387 }
duke@435 388 }
duke@435 389
duke@435 390 home_path = malloc(strlen(buf) + 1);
duke@435 391 if (home_path == NULL)
duke@435 392 return;
duke@435 393 strcpy(home_path, buf);
duke@435 394 Arguments::set_java_home(home_path);
duke@435 395
duke@435 396 if (!set_boot_path('/', ':'))
duke@435 397 return;
duke@435 398 }
duke@435 399
duke@435 400 /*
duke@435 401 * Where to look for native libraries
duke@435 402 *
duke@435 403 * Note: Due to a legacy implementation, most of the library path
duke@435 404 * is set in the launcher. This was to accomodate linking restrictions
duke@435 405 * on legacy Linux implementations (which are no longer supported).
duke@435 406 * Eventually, all the library path setting will be done here.
duke@435 407 *
duke@435 408 * However, to prevent the proliferation of improperly built native
duke@435 409 * libraries, the new path component /usr/java/packages is added here.
duke@435 410 * Eventually, all the library path setting will be done here.
duke@435 411 */
duke@435 412 {
duke@435 413 char *ld_library_path;
duke@435 414
duke@435 415 /*
duke@435 416 * Construct the invariant part of ld_library_path. Note that the
duke@435 417 * space for the colon and the trailing null are provided by the
duke@435 418 * nulls included by the sizeof operator (so actually we allocate
duke@435 419 * a byte more than necessary).
duke@435 420 */
duke@435 421 ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
duke@435 422 strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
duke@435 423 sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
duke@435 424
duke@435 425 /*
duke@435 426 * Get the user setting of LD_LIBRARY_PATH, and prepended it. It
duke@435 427 * should always exist (until the legacy problem cited above is
duke@435 428 * addressed).
duke@435 429 */
duke@435 430 char *v = getenv("LD_LIBRARY_PATH");
duke@435 431 if (v != NULL) {
duke@435 432 char *t = ld_library_path;
duke@435 433 /* That's +1 for the colon and +1 for the trailing '\0' */
duke@435 434 ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
duke@435 435 sprintf(ld_library_path, "%s:%s", v, t);
duke@435 436 }
duke@435 437 Arguments::set_library_path(ld_library_path);
duke@435 438 }
duke@435 439
duke@435 440 /*
duke@435 441 * Extensions directories.
duke@435 442 *
duke@435 443 * Note that the space for the colon and the trailing null are provided
duke@435 444 * by the nulls included by the sizeof operator (so actually one byte more
duke@435 445 * than necessary is allocated).
duke@435 446 */
duke@435 447 {
duke@435 448 char *buf = malloc(strlen(Arguments::get_java_home()) +
duke@435 449 sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
duke@435 450 sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
duke@435 451 Arguments::get_java_home());
duke@435 452 Arguments::set_ext_dirs(buf);
duke@435 453 }
duke@435 454
duke@435 455 /* Endorsed standards default directory. */
duke@435 456 {
duke@435 457 char * buf;
duke@435 458 buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
duke@435 459 sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
duke@435 460 Arguments::set_endorsed_dirs(buf);
duke@435 461 }
duke@435 462 }
duke@435 463
duke@435 464 #undef malloc
duke@435 465 #undef getenv
duke@435 466 #undef EXTENSIONS_DIR
duke@435 467 #undef ENDORSED_DIR
duke@435 468
duke@435 469 // Done
duke@435 470 return;
duke@435 471 }
duke@435 472
duke@435 473 ////////////////////////////////////////////////////////////////////////////////
duke@435 474 // breakpoint support
duke@435 475
duke@435 476 void os::breakpoint() {
duke@435 477 BREAKPOINT;
duke@435 478 }
duke@435 479
duke@435 480 extern "C" void breakpoint() {
duke@435 481 // use debugger to set breakpoint here
duke@435 482 }
duke@435 483
duke@435 484 ////////////////////////////////////////////////////////////////////////////////
duke@435 485 // signal support
duke@435 486
duke@435 487 debug_only(static bool signal_sets_initialized = false);
duke@435 488 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
duke@435 489
duke@435 490 bool os::Linux::is_sig_ignored(int sig) {
duke@435 491 struct sigaction oact;
duke@435 492 sigaction(sig, (struct sigaction*)NULL, &oact);
duke@435 493 void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
duke@435 494 : CAST_FROM_FN_PTR(void*, oact.sa_handler);
duke@435 495 if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
duke@435 496 return true;
duke@435 497 else
duke@435 498 return false;
duke@435 499 }
duke@435 500
duke@435 501 void os::Linux::signal_sets_init() {
duke@435 502 // Should also have an assertion stating we are still single-threaded.
duke@435 503 assert(!signal_sets_initialized, "Already initialized");
duke@435 504 // Fill in signals that are necessarily unblocked for all threads in
duke@435 505 // the VM. Currently, we unblock the following signals:
duke@435 506 // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
duke@435 507 // by -Xrs (=ReduceSignalUsage));
duke@435 508 // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
duke@435 509 // other threads. The "ReduceSignalUsage" boolean tells us not to alter
duke@435 510 // the dispositions or masks wrt these signals.
duke@435 511 // Programs embedding the VM that want to use the above signals for their
duke@435 512 // own purposes must, at this time, use the "-Xrs" option to prevent
duke@435 513 // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
duke@435 514 // (See bug 4345157, and other related bugs).
duke@435 515 // In reality, though, unblocking these signals is really a nop, since
duke@435 516 // these signals are not blocked by default.
duke@435 517 sigemptyset(&unblocked_sigs);
duke@435 518 sigemptyset(&allowdebug_blocked_sigs);
duke@435 519 sigaddset(&unblocked_sigs, SIGILL);
duke@435 520 sigaddset(&unblocked_sigs, SIGSEGV);
duke@435 521 sigaddset(&unblocked_sigs, SIGBUS);
duke@435 522 sigaddset(&unblocked_sigs, SIGFPE);
duke@435 523 sigaddset(&unblocked_sigs, SR_signum);
duke@435 524
duke@435 525 if (!ReduceSignalUsage) {
duke@435 526 if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
duke@435 527 sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 528 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 529 }
duke@435 530 if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
duke@435 531 sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 532 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 533 }
duke@435 534 if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
duke@435 535 sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 536 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 537 }
duke@435 538 }
duke@435 539 // Fill in signals that are blocked by all but the VM thread.
duke@435 540 sigemptyset(&vm_sigs);
duke@435 541 if (!ReduceSignalUsage)
duke@435 542 sigaddset(&vm_sigs, BREAK_SIGNAL);
duke@435 543 debug_only(signal_sets_initialized = true);
duke@435 544
duke@435 545 }
duke@435 546
duke@435 547 // These are signals that are unblocked while a thread is running Java.
duke@435 548 // (For some reason, they get blocked by default.)
duke@435 549 sigset_t* os::Linux::unblocked_signals() {
duke@435 550 assert(signal_sets_initialized, "Not initialized");
duke@435 551 return &unblocked_sigs;
duke@435 552 }
duke@435 553
duke@435 554 // These are the signals that are blocked while a (non-VM) thread is
duke@435 555 // running Java. Only the VM thread handles these signals.
duke@435 556 sigset_t* os::Linux::vm_signals() {
duke@435 557 assert(signal_sets_initialized, "Not initialized");
duke@435 558 return &vm_sigs;
duke@435 559 }
duke@435 560
duke@435 561 // These are signals that are blocked during cond_wait to allow debugger in
duke@435 562 sigset_t* os::Linux::allowdebug_blocked_signals() {
duke@435 563 assert(signal_sets_initialized, "Not initialized");
duke@435 564 return &allowdebug_blocked_sigs;
duke@435 565 }
duke@435 566
duke@435 567 void os::Linux::hotspot_sigmask(Thread* thread) {
duke@435 568
duke@435 569 //Save caller's signal mask before setting VM signal mask
duke@435 570 sigset_t caller_sigmask;
duke@435 571 pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
duke@435 572
duke@435 573 OSThread* osthread = thread->osthread();
duke@435 574 osthread->set_caller_sigmask(caller_sigmask);
duke@435 575
duke@435 576 pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
duke@435 577
duke@435 578 if (!ReduceSignalUsage) {
duke@435 579 if (thread->is_VM_thread()) {
duke@435 580 // Only the VM thread handles BREAK_SIGNAL ...
duke@435 581 pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
duke@435 582 } else {
duke@435 583 // ... all other threads block BREAK_SIGNAL
duke@435 584 pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
duke@435 585 }
duke@435 586 }
duke@435 587 }
duke@435 588
duke@435 589 //////////////////////////////////////////////////////////////////////////////
duke@435 590 // detecting pthread library
duke@435 591
duke@435 592 void os::Linux::libpthread_init() {
duke@435 593 // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
duke@435 594 // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
duke@435 595 // generic name for earlier versions.
duke@435 596 // Define macros here so we can build HotSpot on old systems.
duke@435 597 # ifndef _CS_GNU_LIBC_VERSION
duke@435 598 # define _CS_GNU_LIBC_VERSION 2
duke@435 599 # endif
duke@435 600 # ifndef _CS_GNU_LIBPTHREAD_VERSION
duke@435 601 # define _CS_GNU_LIBPTHREAD_VERSION 3
duke@435 602 # endif
duke@435 603
duke@435 604 size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
duke@435 605 if (n > 0) {
duke@435 606 char *str = (char *)malloc(n);
duke@435 607 confstr(_CS_GNU_LIBC_VERSION, str, n);
duke@435 608 os::Linux::set_glibc_version(str);
duke@435 609 } else {
duke@435 610 // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
duke@435 611 static char _gnu_libc_version[32];
duke@435 612 jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
duke@435 613 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
duke@435 614 os::Linux::set_glibc_version(_gnu_libc_version);
duke@435 615 }
duke@435 616
duke@435 617 n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
duke@435 618 if (n > 0) {
duke@435 619 char *str = (char *)malloc(n);
duke@435 620 confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
duke@435 621 // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
duke@435 622 // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
xlu@634 623 // is the case. LinuxThreads has a hard limit on max number of threads.
xlu@634 624 // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
xlu@634 625 // On the other hand, NPTL does not have such a limit, sysconf()
xlu@634 626 // will return -1 and errno is not changed. Check if it is really NPTL.
duke@435 627 if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
xlu@634 628 strstr(str, "NPTL") &&
xlu@634 629 sysconf(_SC_THREAD_THREADS_MAX) > 0) {
xlu@634 630 free(str);
xlu@634 631 os::Linux::set_libpthread_version("linuxthreads");
xlu@634 632 } else {
xlu@634 633 os::Linux::set_libpthread_version(str);
duke@435 634 }
duke@435 635 } else {
xlu@634 636 // glibc before 2.3.2 only has LinuxThreads.
xlu@634 637 os::Linux::set_libpthread_version("linuxthreads");
duke@435 638 }
duke@435 639
duke@435 640 if (strstr(libpthread_version(), "NPTL")) {
duke@435 641 os::Linux::set_is_NPTL();
duke@435 642 } else {
duke@435 643 os::Linux::set_is_LinuxThreads();
duke@435 644 }
duke@435 645
duke@435 646 // LinuxThreads have two flavors: floating-stack mode, which allows variable
duke@435 647 // stack size; and fixed-stack mode. NPTL is always floating-stack.
duke@435 648 if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
duke@435 649 os::Linux::set_is_floating_stack();
duke@435 650 }
duke@435 651 }
duke@435 652
duke@435 653 /////////////////////////////////////////////////////////////////////////////
duke@435 654 // thread stack
duke@435 655
duke@435 656 // Force Linux kernel to expand current thread stack. If "bottom" is close
duke@435 657 // to the stack guard, caller should block all signals.
duke@435 658 //
duke@435 659 // MAP_GROWSDOWN:
duke@435 660 // A special mmap() flag that is used to implement thread stacks. It tells
duke@435 661 // kernel that the memory region should extend downwards when needed. This
duke@435 662 // allows early versions of LinuxThreads to only mmap the first few pages
duke@435 663 // when creating a new thread. Linux kernel will automatically expand thread
duke@435 664 // stack as needed (on page faults).
duke@435 665 //
duke@435 666 // However, because the memory region of a MAP_GROWSDOWN stack can grow on
duke@435 667 // demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
duke@435 668 // region, it's hard to tell if the fault is due to a legitimate stack
duke@435 669 // access or because of reading/writing non-exist memory (e.g. buffer
duke@435 670 // overrun). As a rule, if the fault happens below current stack pointer,
duke@435 671 // Linux kernel does not expand stack, instead a SIGSEGV is sent to the
duke@435 672 // application (see Linux kernel fault.c).
duke@435 673 //
duke@435 674 // This Linux feature can cause SIGSEGV when VM bangs thread stack for
duke@435 675 // stack overflow detection.
duke@435 676 //
duke@435 677 // Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
duke@435 678 // not use this flag. However, the stack of initial thread is not created
duke@435 679 // by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
duke@435 680 // unlikely) that user code can create a thread with MAP_GROWSDOWN stack
duke@435 681 // and then attach the thread to JVM.
duke@435 682 //
duke@435 683 // To get around the problem and allow stack banging on Linux, we need to
duke@435 684 // manually expand thread stack after receiving the SIGSEGV.
duke@435 685 //
duke@435 686 // There are two ways to expand thread stack to address "bottom", we used
duke@435 687 // both of them in JVM before 1.5:
duke@435 688 // 1. adjust stack pointer first so that it is below "bottom", and then
duke@435 689 // touch "bottom"
duke@435 690 // 2. mmap() the page in question
duke@435 691 //
duke@435 692 // Now alternate signal stack is gone, it's harder to use 2. For instance,
duke@435 693 // if current sp is already near the lower end of page 101, and we need to
duke@435 694 // call mmap() to map page 100, it is possible that part of the mmap() frame
duke@435 695 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
duke@435 696 // That will destroy the mmap() frame and cause VM to crash.
duke@435 697 //
duke@435 698 // The following code works by adjusting sp first, then accessing the "bottom"
duke@435 699 // page to force a page fault. Linux kernel will then automatically expand the
duke@435 700 // stack mapping.
duke@435 701 //
duke@435 702 // _expand_stack_to() assumes its frame size is less than page size, which
duke@435 703 // should always be true if the function is not inlined.
duke@435 704
duke@435 705 #if __GNUC__ < 3 // gcc 2.x does not support noinline attribute
duke@435 706 #define NOINLINE
duke@435 707 #else
duke@435 708 #define NOINLINE __attribute__ ((noinline))
duke@435 709 #endif
duke@435 710
duke@435 711 static void _expand_stack_to(address bottom) NOINLINE;
duke@435 712
duke@435 713 static void _expand_stack_to(address bottom) {
duke@435 714 address sp;
duke@435 715 size_t size;
duke@435 716 volatile char *p;
duke@435 717
duke@435 718 // Adjust bottom to point to the largest address within the same page, it
duke@435 719 // gives us a one-page buffer if alloca() allocates slightly more memory.
duke@435 720 bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
duke@435 721 bottom += os::Linux::page_size() - 1;
duke@435 722
duke@435 723 // sp might be slightly above current stack pointer; if that's the case, we
duke@435 724 // will alloca() a little more space than necessary, which is OK. Don't use
duke@435 725 // os::current_stack_pointer(), as its result can be slightly below current
duke@435 726 // stack pointer, causing us to not alloca enough to reach "bottom".
duke@435 727 sp = (address)&sp;
duke@435 728
duke@435 729 if (sp > bottom) {
duke@435 730 size = sp - bottom;
duke@435 731 p = (volatile char *)alloca(size);
duke@435 732 assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
duke@435 733 p[0] = '\0';
duke@435 734 }
duke@435 735 }
duke@435 736
duke@435 737 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
duke@435 738 assert(t!=NULL, "just checking");
duke@435 739 assert(t->osthread()->expanding_stack(), "expand should be set");
duke@435 740 assert(t->stack_base() != NULL, "stack_base was not initialized");
duke@435 741
duke@435 742 if (addr < t->stack_base() && addr >= t->stack_yellow_zone_base()) {
duke@435 743 sigset_t mask_all, old_sigset;
duke@435 744 sigfillset(&mask_all);
duke@435 745 pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
duke@435 746 _expand_stack_to(addr);
duke@435 747 pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
duke@435 748 return true;
duke@435 749 }
duke@435 750 return false;
duke@435 751 }
duke@435 752
duke@435 753 //////////////////////////////////////////////////////////////////////////////
duke@435 754 // create new thread
duke@435 755
duke@435 756 static address highest_vm_reserved_address();
duke@435 757
duke@435 758 // check if it's safe to start a new thread
duke@435 759 static bool _thread_safety_check(Thread* thread) {
duke@435 760 if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
duke@435 761 // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
duke@435 762 // Heap is mmap'ed at lower end of memory space. Thread stacks are
duke@435 763 // allocated (MAP_FIXED) from high address space. Every thread stack
duke@435 764 // occupies a fixed size slot (usually 2Mbytes, but user can change
duke@435 765 // it to other values if they rebuild LinuxThreads).
duke@435 766 //
duke@435 767 // Problem with MAP_FIXED is that mmap() can still succeed even part of
duke@435 768 // the memory region has already been mmap'ed. That means if we have too
duke@435 769 // many threads and/or very large heap, eventually thread stack will
duke@435 770 // collide with heap.
duke@435 771 //
duke@435 772 // Here we try to prevent heap/stack collision by comparing current
duke@435 773 // stack bottom with the highest address that has been mmap'ed by JVM
duke@435 774 // plus a safety margin for memory maps created by native code.
duke@435 775 //
duke@435 776 // This feature can be disabled by setting ThreadSafetyMargin to 0
duke@435 777 //
duke@435 778 if (ThreadSafetyMargin > 0) {
duke@435 779 address stack_bottom = os::current_stack_base() - os::current_stack_size();
duke@435 780
duke@435 781 // not safe if our stack extends below the safety margin
duke@435 782 return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
duke@435 783 } else {
duke@435 784 return true;
duke@435 785 }
duke@435 786 } else {
duke@435 787 // Floating stack LinuxThreads or NPTL:
duke@435 788 // Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
duke@435 789 // there's not enough space left, pthread_create() will fail. If we come
duke@435 790 // here, that means enough space has been reserved for stack.
duke@435 791 return true;
duke@435 792 }
duke@435 793 }
duke@435 794
duke@435 795 // Thread start routine for all newly created threads
duke@435 796 static void *java_start(Thread *thread) {
duke@435 797 // Try to randomize the cache line index of hot stack frames.
duke@435 798 // This helps when threads of the same stack traces evict each other's
duke@435 799 // cache lines. The threads can be either from the same JVM instance, or
duke@435 800 // from different JVM instances. The benefit is especially true for
duke@435 801 // processors with hyperthreading technology.
duke@435 802 static int counter = 0;
duke@435 803 int pid = os::current_process_id();
duke@435 804 alloca(((pid ^ counter++) & 7) * 128);
duke@435 805
duke@435 806 ThreadLocalStorage::set_thread(thread);
duke@435 807
duke@435 808 OSThread* osthread = thread->osthread();
duke@435 809 Monitor* sync = osthread->startThread_lock();
duke@435 810
duke@435 811 // non floating stack LinuxThreads needs extra check, see above
duke@435 812 if (!_thread_safety_check(thread)) {
duke@435 813 // notify parent thread
duke@435 814 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 815 osthread->set_state(ZOMBIE);
duke@435 816 sync->notify_all();
duke@435 817 return NULL;
duke@435 818 }
duke@435 819
duke@435 820 // thread_id is kernel thread id (similar to Solaris LWP id)
duke@435 821 osthread->set_thread_id(os::Linux::gettid());
duke@435 822
duke@435 823 if (UseNUMA) {
duke@435 824 int lgrp_id = os::numa_get_group_id();
duke@435 825 if (lgrp_id != -1) {
duke@435 826 thread->set_lgrp_id(lgrp_id);
duke@435 827 }
duke@435 828 }
duke@435 829 // initialize signal mask for this thread
duke@435 830 os::Linux::hotspot_sigmask(thread);
duke@435 831
duke@435 832 // initialize floating point control register
duke@435 833 os::Linux::init_thread_fpu_state();
duke@435 834
duke@435 835 // handshaking with parent thread
duke@435 836 {
duke@435 837 MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
duke@435 838
duke@435 839 // notify parent thread
duke@435 840 osthread->set_state(INITIALIZED);
duke@435 841 sync->notify_all();
duke@435 842
duke@435 843 // wait until os::start_thread()
duke@435 844 while (osthread->get_state() == INITIALIZED) {
duke@435 845 sync->wait(Mutex::_no_safepoint_check_flag);
duke@435 846 }
duke@435 847 }
duke@435 848
duke@435 849 // call one more level start routine
duke@435 850 thread->run();
duke@435 851
duke@435 852 return 0;
duke@435 853 }
duke@435 854
duke@435 855 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 856 assert(thread->osthread() == NULL, "caller responsible");
duke@435 857
duke@435 858 // Allocate the OSThread object
duke@435 859 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 860 if (osthread == NULL) {
duke@435 861 return false;
duke@435 862 }
duke@435 863
duke@435 864 // set the correct thread state
duke@435 865 osthread->set_thread_type(thr_type);
duke@435 866
duke@435 867 // Initial state is ALLOCATED but not INITIALIZED
duke@435 868 osthread->set_state(ALLOCATED);
duke@435 869
duke@435 870 thread->set_osthread(osthread);
duke@435 871
duke@435 872 // init thread attributes
duke@435 873 pthread_attr_t attr;
duke@435 874 pthread_attr_init(&attr);
duke@435 875 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
duke@435 876
duke@435 877 // stack size
duke@435 878 if (os::Linux::supports_variable_stack_size()) {
duke@435 879 // calculate stack size if it's not specified by caller
duke@435 880 if (stack_size == 0) {
duke@435 881 stack_size = os::Linux::default_stack_size(thr_type);
duke@435 882
duke@435 883 switch (thr_type) {
duke@435 884 case os::java_thread:
coleenp@2222 885 // Java threads use ThreadStackSize which default value can be
coleenp@2222 886 // changed with the flag -Xss
coleenp@2222 887 assert (JavaThread::stack_size_at_create() > 0, "this should be set");
coleenp@2222 888 stack_size = JavaThread::stack_size_at_create();
duke@435 889 break;
duke@435 890 case os::compiler_thread:
duke@435 891 if (CompilerThreadStackSize > 0) {
duke@435 892 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 893 break;
duke@435 894 } // else fall through:
duke@435 895 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 896 case os::vm_thread:
duke@435 897 case os::pgc_thread:
duke@435 898 case os::cgc_thread:
duke@435 899 case os::watcher_thread:
duke@435 900 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 901 break;
duke@435 902 }
duke@435 903 }
duke@435 904
duke@435 905 stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
duke@435 906 pthread_attr_setstacksize(&attr, stack_size);
duke@435 907 } else {
duke@435 908 // let pthread_create() pick the default value.
duke@435 909 }
duke@435 910
duke@435 911 // glibc guard page
duke@435 912 pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
duke@435 913
duke@435 914 ThreadState state;
duke@435 915
duke@435 916 {
duke@435 917 // Serialize thread creation if we are running with fixed stack LinuxThreads
duke@435 918 bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
duke@435 919 if (lock) {
duke@435 920 os::Linux::createThread_lock()->lock_without_safepoint_check();
duke@435 921 }
duke@435 922
duke@435 923 pthread_t tid;
duke@435 924 int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
duke@435 925
duke@435 926 pthread_attr_destroy(&attr);
duke@435 927
duke@435 928 if (ret != 0) {
duke@435 929 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 930 perror("pthread_create()");
duke@435 931 }
duke@435 932 // Need to clean up stuff we've allocated so far
duke@435 933 thread->set_osthread(NULL);
duke@435 934 delete osthread;
duke@435 935 if (lock) os::Linux::createThread_lock()->unlock();
duke@435 936 return false;
duke@435 937 }
duke@435 938
duke@435 939 // Store pthread info into the OSThread
duke@435 940 osthread->set_pthread_id(tid);
duke@435 941
duke@435 942 // Wait until child thread is either initialized or aborted
duke@435 943 {
duke@435 944 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 945 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 946 while ((state = osthread->get_state()) == ALLOCATED) {
duke@435 947 sync_with_child->wait(Mutex::_no_safepoint_check_flag);
duke@435 948 }
duke@435 949 }
duke@435 950
duke@435 951 if (lock) {
duke@435 952 os::Linux::createThread_lock()->unlock();
duke@435 953 }
duke@435 954 }
duke@435 955
duke@435 956 // Aborted due to thread limit being reached
duke@435 957 if (state == ZOMBIE) {
duke@435 958 thread->set_osthread(NULL);
duke@435 959 delete osthread;
duke@435 960 return false;
duke@435 961 }
duke@435 962
duke@435 963 // The thread is returned suspended (in state INITIALIZED),
duke@435 964 // and is started higher up in the call chain
duke@435 965 assert(state == INITIALIZED, "race condition");
duke@435 966 return true;
duke@435 967 }
duke@435 968
duke@435 969 /////////////////////////////////////////////////////////////////////////////
duke@435 970 // attach existing thread
duke@435 971
duke@435 972 // bootstrap the main thread
duke@435 973 bool os::create_main_thread(JavaThread* thread) {
duke@435 974 assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
duke@435 975 return create_attached_thread(thread);
duke@435 976 }
duke@435 977
duke@435 978 bool os::create_attached_thread(JavaThread* thread) {
duke@435 979 #ifdef ASSERT
duke@435 980 thread->verify_not_published();
duke@435 981 #endif
duke@435 982
duke@435 983 // Allocate the OSThread object
duke@435 984 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 985
duke@435 986 if (osthread == NULL) {
duke@435 987 return false;
duke@435 988 }
duke@435 989
duke@435 990 // Store pthread info into the OSThread
duke@435 991 osthread->set_thread_id(os::Linux::gettid());
duke@435 992 osthread->set_pthread_id(::pthread_self());
duke@435 993
duke@435 994 // initialize floating point control register
duke@435 995 os::Linux::init_thread_fpu_state();
duke@435 996
duke@435 997 // Initial thread state is RUNNABLE
duke@435 998 osthread->set_state(RUNNABLE);
duke@435 999
duke@435 1000 thread->set_osthread(osthread);
duke@435 1001
duke@435 1002 if (UseNUMA) {
duke@435 1003 int lgrp_id = os::numa_get_group_id();
duke@435 1004 if (lgrp_id != -1) {
duke@435 1005 thread->set_lgrp_id(lgrp_id);
duke@435 1006 }
duke@435 1007 }
duke@435 1008
duke@435 1009 if (os::Linux::is_initial_thread()) {
duke@435 1010 // If current thread is initial thread, its stack is mapped on demand,
duke@435 1011 // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
duke@435 1012 // the entire stack region to avoid SEGV in stack banging.
duke@435 1013 // It is also useful to get around the heap-stack-gap problem on SuSE
duke@435 1014 // kernel (see 4821821 for details). We first expand stack to the top
duke@435 1015 // of yellow zone, then enable stack yellow zone (order is significant,
duke@435 1016 // enabling yellow zone first will crash JVM on SuSE Linux), so there
duke@435 1017 // is no gap between the last two virtual memory regions.
duke@435 1018
duke@435 1019 JavaThread *jt = (JavaThread *)thread;
duke@435 1020 address addr = jt->stack_yellow_zone_base();
duke@435 1021 assert(addr != NULL, "initialization problem?");
duke@435 1022 assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
duke@435 1023
duke@435 1024 osthread->set_expanding_stack();
duke@435 1025 os::Linux::manually_expand_stack(jt, addr);
duke@435 1026 osthread->clear_expanding_stack();
duke@435 1027 }
duke@435 1028
duke@435 1029 // initialize signal mask for this thread
duke@435 1030 // and save the caller's signal mask
duke@435 1031 os::Linux::hotspot_sigmask(thread);
duke@435 1032
duke@435 1033 return true;
duke@435 1034 }
duke@435 1035
duke@435 1036 void os::pd_start_thread(Thread* thread) {
duke@435 1037 OSThread * osthread = thread->osthread();
duke@435 1038 assert(osthread->get_state() != INITIALIZED, "just checking");
duke@435 1039 Monitor* sync_with_child = osthread->startThread_lock();
duke@435 1040 MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
duke@435 1041 sync_with_child->notify();
duke@435 1042 }
duke@435 1043
duke@435 1044 // Free Linux resources related to the OSThread
duke@435 1045 void os::free_thread(OSThread* osthread) {
duke@435 1046 assert(osthread != NULL, "osthread not set");
duke@435 1047
duke@435 1048 if (Thread::current()->osthread() == osthread) {
duke@435 1049 // Restore caller's signal mask
duke@435 1050 sigset_t sigmask = osthread->caller_sigmask();
duke@435 1051 pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
duke@435 1052 }
duke@435 1053
duke@435 1054 delete osthread;
duke@435 1055 }
duke@435 1056
duke@435 1057 //////////////////////////////////////////////////////////////////////////////
duke@435 1058 // thread local storage
duke@435 1059
duke@435 1060 int os::allocate_thread_local_storage() {
duke@435 1061 pthread_key_t key;
duke@435 1062 int rslt = pthread_key_create(&key, NULL);
duke@435 1063 assert(rslt == 0, "cannot allocate thread local storage");
duke@435 1064 return (int)key;
duke@435 1065 }
duke@435 1066
duke@435 1067 // Note: This is currently not used by VM, as we don't destroy TLS key
duke@435 1068 // on VM exit.
duke@435 1069 void os::free_thread_local_storage(int index) {
duke@435 1070 int rslt = pthread_key_delete((pthread_key_t)index);
duke@435 1071 assert(rslt == 0, "invalid index");
duke@435 1072 }
duke@435 1073
duke@435 1074 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 1075 int rslt = pthread_setspecific((pthread_key_t)index, value);
duke@435 1076 assert(rslt == 0, "pthread_setspecific failed");
duke@435 1077 }
duke@435 1078
duke@435 1079 extern "C" Thread* get_thread() {
duke@435 1080 return ThreadLocalStorage::thread();
duke@435 1081 }
duke@435 1082
duke@435 1083 //////////////////////////////////////////////////////////////////////////////
duke@435 1084 // initial thread
duke@435 1085
duke@435 1086 // Check if current thread is the initial thread, similar to Solaris thr_main.
duke@435 1087 bool os::Linux::is_initial_thread(void) {
duke@435 1088 char dummy;
duke@435 1089 // If called before init complete, thread stack bottom will be null.
duke@435 1090 // Can be called if fatal error occurs before initialization.
duke@435 1091 if (initial_thread_stack_bottom() == NULL) return false;
duke@435 1092 assert(initial_thread_stack_bottom() != NULL &&
duke@435 1093 initial_thread_stack_size() != 0,
duke@435 1094 "os::init did not locate initial thread's stack region");
duke@435 1095 if ((address)&dummy >= initial_thread_stack_bottom() &&
duke@435 1096 (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
duke@435 1097 return true;
duke@435 1098 else return false;
duke@435 1099 }
duke@435 1100
duke@435 1101 // Find the virtual memory area that contains addr
duke@435 1102 static bool find_vma(address addr, address* vma_low, address* vma_high) {
duke@435 1103 FILE *fp = fopen("/proc/self/maps", "r");
duke@435 1104 if (fp) {
duke@435 1105 address low, high;
duke@435 1106 while (!feof(fp)) {
duke@435 1107 if (fscanf(fp, "%p-%p", &low, &high) == 2) {
duke@435 1108 if (low <= addr && addr < high) {
duke@435 1109 if (vma_low) *vma_low = low;
duke@435 1110 if (vma_high) *vma_high = high;
duke@435 1111 fclose (fp);
duke@435 1112 return true;
duke@435 1113 }
duke@435 1114 }
duke@435 1115 for (;;) {
duke@435 1116 int ch = fgetc(fp);
duke@435 1117 if (ch == EOF || ch == (int)'\n') break;
duke@435 1118 }
duke@435 1119 }
duke@435 1120 fclose(fp);
duke@435 1121 }
duke@435 1122 return false;
duke@435 1123 }
duke@435 1124
duke@435 1125 // Locate initial thread stack. This special handling of initial thread stack
duke@435 1126 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
duke@435 1127 // bogus value for initial thread.
duke@435 1128 void os::Linux::capture_initial_stack(size_t max_size) {
duke@435 1129 // stack size is the easy part, get it from RLIMIT_STACK
duke@435 1130 size_t stack_size;
duke@435 1131 struct rlimit rlim;
duke@435 1132 getrlimit(RLIMIT_STACK, &rlim);
duke@435 1133 stack_size = rlim.rlim_cur;
duke@435 1134
duke@435 1135 // 6308388: a bug in ld.so will relocate its own .data section to the
duke@435 1136 // lower end of primordial stack; reduce ulimit -s value a little bit
duke@435 1137 // so we won't install guard page on ld.so's data section.
duke@435 1138 stack_size -= 2 * page_size();
duke@435 1139
duke@435 1140 // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
duke@435 1141 // 7.1, in both cases we will get 2G in return value.
duke@435 1142 // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
duke@435 1143 // SuSE 7.2, Debian) can not handle alternate signal stack correctly
duke@435 1144 // for initial thread if its stack size exceeds 6M. Cap it at 2M,
duke@435 1145 // in case other parts in glibc still assumes 2M max stack size.
duke@435 1146 // FIXME: alt signal stack is gone, maybe we can relax this constraint?
duke@435 1147 #ifndef IA64
duke@435 1148 if (stack_size > 2 * K * K) stack_size = 2 * K * K;
duke@435 1149 #else
duke@435 1150 // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
duke@435 1151 if (stack_size > 4 * K * K) stack_size = 4 * K * K;
duke@435 1152 #endif
duke@435 1153
duke@435 1154 // Try to figure out where the stack base (top) is. This is harder.
duke@435 1155 //
duke@435 1156 // When an application is started, glibc saves the initial stack pointer in
duke@435 1157 // a global variable "__libc_stack_end", which is then used by system
duke@435 1158 // libraries. __libc_stack_end should be pretty close to stack top. The
duke@435 1159 // variable is available since the very early days. However, because it is
duke@435 1160 // a private interface, it could disappear in the future.
duke@435 1161 //
duke@435 1162 // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
duke@435 1163 // to __libc_stack_end, it is very close to stack top, but isn't the real
duke@435 1164 // stack top. Note that /proc may not exist if VM is running as a chroot
duke@435 1165 // program, so reading /proc/<pid>/stat could fail. Also the contents of
duke@435 1166 // /proc/<pid>/stat could change in the future (though unlikely).
duke@435 1167 //
duke@435 1168 // We try __libc_stack_end first. If that doesn't work, look for
duke@435 1169 // /proc/<pid>/stat. If neither of them works, we use current stack pointer
duke@435 1170 // as a hint, which should work well in most cases.
duke@435 1171
duke@435 1172 uintptr_t stack_start;
duke@435 1173
duke@435 1174 // try __libc_stack_end first
duke@435 1175 uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
duke@435 1176 if (p && *p) {
duke@435 1177 stack_start = *p;
duke@435 1178 } else {
duke@435 1179 // see if we can get the start_stack field from /proc/self/stat
duke@435 1180 FILE *fp;
duke@435 1181 int pid;
duke@435 1182 char state;
duke@435 1183 int ppid;
duke@435 1184 int pgrp;
duke@435 1185 int session;
duke@435 1186 int nr;
duke@435 1187 int tpgrp;
duke@435 1188 unsigned long flags;
duke@435 1189 unsigned long minflt;
duke@435 1190 unsigned long cminflt;
duke@435 1191 unsigned long majflt;
duke@435 1192 unsigned long cmajflt;
duke@435 1193 unsigned long utime;
duke@435 1194 unsigned long stime;
duke@435 1195 long cutime;
duke@435 1196 long cstime;
duke@435 1197 long prio;
duke@435 1198 long nice;
duke@435 1199 long junk;
duke@435 1200 long it_real;
duke@435 1201 uintptr_t start;
duke@435 1202 uintptr_t vsize;
bobv@2036 1203 intptr_t rss;
bobv@2036 1204 uintptr_t rsslim;
duke@435 1205 uintptr_t scodes;
duke@435 1206 uintptr_t ecode;
duke@435 1207 int i;
duke@435 1208
duke@435 1209 // Figure what the primordial thread stack base is. Code is inspired
duke@435 1210 // by email from Hans Boehm. /proc/self/stat begins with current pid,
duke@435 1211 // followed by command name surrounded by parentheses, state, etc.
duke@435 1212 char stat[2048];
duke@435 1213 int statlen;
duke@435 1214
duke@435 1215 fp = fopen("/proc/self/stat", "r");
duke@435 1216 if (fp) {
duke@435 1217 statlen = fread(stat, 1, 2047, fp);
duke@435 1218 stat[statlen] = '\0';
duke@435 1219 fclose(fp);
duke@435 1220
duke@435 1221 // Skip pid and the command string. Note that we could be dealing with
duke@435 1222 // weird command names, e.g. user could decide to rename java launcher
duke@435 1223 // to "java 1.4.2 :)", then the stat file would look like
duke@435 1224 // 1234 (java 1.4.2 :)) R ... ...
duke@435 1225 // We don't really need to know the command string, just find the last
duke@435 1226 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 1227 char * s = strrchr(stat, ')');
duke@435 1228
duke@435 1229 i = 0;
duke@435 1230 if (s) {
duke@435 1231 // Skip blank chars
duke@435 1232 do s++; while (isspace(*s));
duke@435 1233
bobv@2036 1234 #define _UFM UINTX_FORMAT
bobv@2036 1235 #define _DFM INTX_FORMAT
bobv@2036 1236
bobv@2036 1237 /* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 */
bobv@2036 1238 /* 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 */
bobv@2036 1239 i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
duke@435 1240 &state, /* 3 %c */
duke@435 1241 &ppid, /* 4 %d */
duke@435 1242 &pgrp, /* 5 %d */
duke@435 1243 &session, /* 6 %d */
duke@435 1244 &nr, /* 7 %d */
duke@435 1245 &tpgrp, /* 8 %d */
duke@435 1246 &flags, /* 9 %lu */
duke@435 1247 &minflt, /* 10 %lu */
duke@435 1248 &cminflt, /* 11 %lu */
duke@435 1249 &majflt, /* 12 %lu */
duke@435 1250 &cmajflt, /* 13 %lu */
duke@435 1251 &utime, /* 14 %lu */
duke@435 1252 &stime, /* 15 %lu */
duke@435 1253 &cutime, /* 16 %ld */
duke@435 1254 &cstime, /* 17 %ld */
duke@435 1255 &prio, /* 18 %ld */
duke@435 1256 &nice, /* 19 %ld */
duke@435 1257 &junk, /* 20 %ld */
duke@435 1258 &it_real, /* 21 %ld */
bobv@2036 1259 &start, /* 22 UINTX_FORMAT */
bobv@2036 1260 &vsize, /* 23 UINTX_FORMAT */
bobv@2036 1261 &rss, /* 24 INTX_FORMAT */
bobv@2036 1262 &rsslim, /* 25 UINTX_FORMAT */
bobv@2036 1263 &scodes, /* 26 UINTX_FORMAT */
bobv@2036 1264 &ecode, /* 27 UINTX_FORMAT */
bobv@2036 1265 &stack_start); /* 28 UINTX_FORMAT */
duke@435 1266 }
duke@435 1267
bobv@2036 1268 #undef _UFM
bobv@2036 1269 #undef _DFM
bobv@2036 1270
duke@435 1271 if (i != 28 - 2) {
duke@435 1272 assert(false, "Bad conversion from /proc/self/stat");
duke@435 1273 // product mode - assume we are the initial thread, good luck in the
duke@435 1274 // embedded case.
duke@435 1275 warning("Can't detect initial thread stack location - bad conversion");
duke@435 1276 stack_start = (uintptr_t) &rlim;
duke@435 1277 }
duke@435 1278 } else {
duke@435 1279 // For some reason we can't open /proc/self/stat (for example, running on
duke@435 1280 // FreeBSD with a Linux emulator, or inside chroot), this should work for
duke@435 1281 // most cases, so don't abort:
duke@435 1282 warning("Can't detect initial thread stack location - no /proc/self/stat");
duke@435 1283 stack_start = (uintptr_t) &rlim;
duke@435 1284 }
duke@435 1285 }
duke@435 1286
duke@435 1287 // Now we have a pointer (stack_start) very close to the stack top, the
duke@435 1288 // next thing to do is to figure out the exact location of stack top. We
duke@435 1289 // can find out the virtual memory area that contains stack_start by
duke@435 1290 // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
duke@435 1291 // and its upper limit is the real stack top. (again, this would fail if
duke@435 1292 // running inside chroot, because /proc may not exist.)
duke@435 1293
duke@435 1294 uintptr_t stack_top;
duke@435 1295 address low, high;
duke@435 1296 if (find_vma((address)stack_start, &low, &high)) {
duke@435 1297 // success, "high" is the true stack top. (ignore "low", because initial
duke@435 1298 // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
duke@435 1299 stack_top = (uintptr_t)high;
duke@435 1300 } else {
duke@435 1301 // failed, likely because /proc/self/maps does not exist
duke@435 1302 warning("Can't detect initial thread stack location - find_vma failed");
duke@435 1303 // best effort: stack_start is normally within a few pages below the real
duke@435 1304 // stack top, use it as stack top, and reduce stack size so we won't put
duke@435 1305 // guard page outside stack.
duke@435 1306 stack_top = stack_start;
duke@435 1307 stack_size -= 16 * page_size();
duke@435 1308 }
duke@435 1309
duke@435 1310 // stack_top could be partially down the page so align it
duke@435 1311 stack_top = align_size_up(stack_top, page_size());
duke@435 1312
duke@435 1313 if (max_size && stack_size > max_size) {
duke@435 1314 _initial_thread_stack_size = max_size;
duke@435 1315 } else {
duke@435 1316 _initial_thread_stack_size = stack_size;
duke@435 1317 }
duke@435 1318
duke@435 1319 _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
duke@435 1320 _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
duke@435 1321 }
duke@435 1322
duke@435 1323 ////////////////////////////////////////////////////////////////////////////////
duke@435 1324 // time support
duke@435 1325
duke@435 1326 // Time since start-up in seconds to a fine granularity.
duke@435 1327 // Used by VMSelfDestructTimer and the MemProfiler.
duke@435 1328 double os::elapsedTime() {
duke@435 1329
duke@435 1330 return (double)(os::elapsed_counter()) * 0.000001;
duke@435 1331 }
duke@435 1332
duke@435 1333 jlong os::elapsed_counter() {
duke@435 1334 timeval time;
duke@435 1335 int status = gettimeofday(&time, NULL);
duke@435 1336 return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
duke@435 1337 }
duke@435 1338
duke@435 1339 jlong os::elapsed_frequency() {
duke@435 1340 return (1000 * 1000);
duke@435 1341 }
duke@435 1342
ysr@777 1343 // For now, we say that linux does not support vtime. I have no idea
ysr@777 1344 // whether it can actually be made to (DLD, 9/13/05).
ysr@777 1345
ysr@777 1346 bool os::supports_vtime() { return false; }
ysr@777 1347 bool os::enable_vtime() { return false; }
ysr@777 1348 bool os::vtime_enabled() { return false; }
ysr@777 1349 double os::elapsedVTime() {
ysr@777 1350 // better than nothing, but not much
ysr@777 1351 return elapsedTime();
ysr@777 1352 }
ysr@777 1353
sbohne@496 1354 jlong os::javaTimeMillis() {
duke@435 1355 timeval time;
duke@435 1356 int status = gettimeofday(&time, NULL);
duke@435 1357 assert(status != -1, "linux error");
duke@435 1358 return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
duke@435 1359 }
duke@435 1360
duke@435 1361 #ifndef CLOCK_MONOTONIC
duke@435 1362 #define CLOCK_MONOTONIC (1)
duke@435 1363 #endif
duke@435 1364
duke@435 1365 void os::Linux::clock_init() {
duke@435 1366 // we do dlopen's in this particular order due to bug in linux
duke@435 1367 // dynamical loader (see 6348968) leading to crash on exit
duke@435 1368 void* handle = dlopen("librt.so.1", RTLD_LAZY);
duke@435 1369 if (handle == NULL) {
duke@435 1370 handle = dlopen("librt.so", RTLD_LAZY);
duke@435 1371 }
duke@435 1372
duke@435 1373 if (handle) {
duke@435 1374 int (*clock_getres_func)(clockid_t, struct timespec*) =
duke@435 1375 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
duke@435 1376 int (*clock_gettime_func)(clockid_t, struct timespec*) =
duke@435 1377 (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
duke@435 1378 if (clock_getres_func && clock_gettime_func) {
duke@435 1379 // See if monotonic clock is supported by the kernel. Note that some
duke@435 1380 // early implementations simply return kernel jiffies (updated every
duke@435 1381 // 1/100 or 1/1000 second). It would be bad to use such a low res clock
duke@435 1382 // for nano time (though the monotonic property is still nice to have).
duke@435 1383 // It's fixed in newer kernels, however clock_getres() still returns
duke@435 1384 // 1/HZ. We check if clock_getres() works, but will ignore its reported
duke@435 1385 // resolution for now. Hopefully as people move to new kernels, this
duke@435 1386 // won't be a problem.
duke@435 1387 struct timespec res;
duke@435 1388 struct timespec tp;
duke@435 1389 if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
duke@435 1390 clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
duke@435 1391 // yes, monotonic clock is supported
duke@435 1392 _clock_gettime = clock_gettime_func;
duke@435 1393 } else {
duke@435 1394 // close librt if there is no monotonic clock
duke@435 1395 dlclose(handle);
duke@435 1396 }
duke@435 1397 }
duke@435 1398 }
duke@435 1399 }
duke@435 1400
duke@435 1401 #ifndef SYS_clock_getres
duke@435 1402
duke@435 1403 #if defined(IA32) || defined(AMD64)
duke@435 1404 #define SYS_clock_getres IA32_ONLY(266) AMD64_ONLY(229)
bobv@2036 1405 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1406 #else
bobv@2036 1407 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
bobv@2036 1408 #define sys_clock_getres(x,y) -1
duke@435 1409 #endif
duke@435 1410
bobv@2036 1411 #else
bobv@2036 1412 #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
duke@435 1413 #endif
duke@435 1414
duke@435 1415 void os::Linux::fast_thread_clock_init() {
duke@435 1416 if (!UseLinuxPosixThreadCPUClocks) {
duke@435 1417 return;
duke@435 1418 }
duke@435 1419 clockid_t clockid;
duke@435 1420 struct timespec tp;
duke@435 1421 int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
duke@435 1422 (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
duke@435 1423
duke@435 1424 // Switch to using fast clocks for thread cpu time if
duke@435 1425 // the sys_clock_getres() returns 0 error code.
duke@435 1426 // Note, that some kernels may support the current thread
duke@435 1427 // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
duke@435 1428 // returned by the pthread_getcpuclockid().
duke@435 1429 // If the fast Posix clocks are supported then the sys_clock_getres()
duke@435 1430 // must return at least tp.tv_sec == 0 which means a resolution
duke@435 1431 // better than 1 sec. This is extra check for reliability.
duke@435 1432
duke@435 1433 if(pthread_getcpuclockid_func &&
duke@435 1434 pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
duke@435 1435 sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
duke@435 1436
duke@435 1437 _supports_fast_thread_cpu_time = true;
duke@435 1438 _pthread_getcpuclockid = pthread_getcpuclockid_func;
duke@435 1439 }
duke@435 1440 }
duke@435 1441
duke@435 1442 jlong os::javaTimeNanos() {
duke@435 1443 if (Linux::supports_monotonic_clock()) {
duke@435 1444 struct timespec tp;
duke@435 1445 int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
duke@435 1446 assert(status == 0, "gettime error");
duke@435 1447 jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
duke@435 1448 return result;
duke@435 1449 } else {
duke@435 1450 timeval time;
duke@435 1451 int status = gettimeofday(&time, NULL);
duke@435 1452 assert(status != -1, "linux error");
duke@435 1453 jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
duke@435 1454 return 1000 * usecs;
duke@435 1455 }
duke@435 1456 }
duke@435 1457
duke@435 1458 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 1459 if (Linux::supports_monotonic_clock()) {
duke@435 1460 info_ptr->max_value = ALL_64_BITS;
duke@435 1461
duke@435 1462 // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
duke@435 1463 info_ptr->may_skip_backward = false; // not subject to resetting or drifting
duke@435 1464 info_ptr->may_skip_forward = false; // not subject to resetting or drifting
duke@435 1465 } else {
duke@435 1466 // gettimeofday - based on time in seconds since the Epoch thus does not wrap
duke@435 1467 info_ptr->max_value = ALL_64_BITS;
duke@435 1468
duke@435 1469 // gettimeofday is a real time clock so it skips
duke@435 1470 info_ptr->may_skip_backward = true;
duke@435 1471 info_ptr->may_skip_forward = true;
duke@435 1472 }
duke@435 1473
duke@435 1474 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 1475 }
duke@435 1476
duke@435 1477 // Return the real, user, and system times in seconds from an
duke@435 1478 // arbitrary fixed point in the past.
duke@435 1479 bool os::getTimesSecs(double* process_real_time,
duke@435 1480 double* process_user_time,
duke@435 1481 double* process_system_time) {
duke@435 1482 struct tms ticks;
duke@435 1483 clock_t real_ticks = times(&ticks);
duke@435 1484
duke@435 1485 if (real_ticks == (clock_t) (-1)) {
duke@435 1486 return false;
duke@435 1487 } else {
duke@435 1488 double ticks_per_second = (double) clock_tics_per_sec;
duke@435 1489 *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
duke@435 1490 *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
duke@435 1491 *process_real_time = ((double) real_ticks) / ticks_per_second;
duke@435 1492
duke@435 1493 return true;
duke@435 1494 }
duke@435 1495 }
duke@435 1496
duke@435 1497
duke@435 1498 char * os::local_time_string(char *buf, size_t buflen) {
duke@435 1499 struct tm t;
duke@435 1500 time_t long_time;
duke@435 1501 time(&long_time);
duke@435 1502 localtime_r(&long_time, &t);
duke@435 1503 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 1504 t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
duke@435 1505 t.tm_hour, t.tm_min, t.tm_sec);
duke@435 1506 return buf;
duke@435 1507 }
duke@435 1508
ysr@983 1509 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 1510 return localtime_r(clock, res);
ysr@983 1511 }
ysr@983 1512
duke@435 1513 ////////////////////////////////////////////////////////////////////////////////
duke@435 1514 // runtime exit support
duke@435 1515
duke@435 1516 // Note: os::shutdown() might be called very early during initialization, or
duke@435 1517 // called from signal handler. Before adding something to os::shutdown(), make
duke@435 1518 // sure it is async-safe and can handle partially initialized VM.
duke@435 1519 void os::shutdown() {
duke@435 1520
duke@435 1521 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 1522 perfMemory_exit();
duke@435 1523
duke@435 1524 // needs to remove object in file system
duke@435 1525 AttachListener::abort();
duke@435 1526
duke@435 1527 // flush buffered output, finish log files
duke@435 1528 ostream_abort();
duke@435 1529
duke@435 1530 // Check for abort hook
duke@435 1531 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 1532 if (abort_hook != NULL) {
duke@435 1533 abort_hook();
duke@435 1534 }
duke@435 1535
duke@435 1536 }
duke@435 1537
duke@435 1538 // Note: os::abort() might be called very early during initialization, or
duke@435 1539 // called from signal handler. Before adding something to os::abort(), make
duke@435 1540 // sure it is async-safe and can handle partially initialized VM.
duke@435 1541 void os::abort(bool dump_core) {
duke@435 1542 os::shutdown();
duke@435 1543 if (dump_core) {
duke@435 1544 #ifndef PRODUCT
duke@435 1545 fdStream out(defaultStream::output_fd());
duke@435 1546 out.print_raw("Current thread is ");
duke@435 1547 char buf[16];
duke@435 1548 jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
duke@435 1549 out.print_raw_cr(buf);
duke@435 1550 out.print_raw_cr("Dumping core ...");
duke@435 1551 #endif
duke@435 1552 ::abort(); // dump core
duke@435 1553 }
duke@435 1554
duke@435 1555 ::exit(1);
duke@435 1556 }
duke@435 1557
duke@435 1558 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1559 void os::die() {
duke@435 1560 // _exit() on LinuxThreads only kills current thread
duke@435 1561 ::abort();
duke@435 1562 }
duke@435 1563
duke@435 1564 // unused on linux for now.
duke@435 1565 void os::set_error_file(const char *logfile) {}
duke@435 1566
ikrylov@2322 1567
ikrylov@2322 1568 // This method is a copy of JDK's sysGetLastErrorString
ikrylov@2322 1569 // from src/solaris/hpi/src/system_md.c
ikrylov@2322 1570
ikrylov@2322 1571 size_t os::lasterror(char *buf, size_t len) {
ikrylov@2322 1572
ikrylov@2322 1573 if (errno == 0) return 0;
ikrylov@2322 1574
ikrylov@2322 1575 const char *s = ::strerror(errno);
ikrylov@2322 1576 size_t n = ::strlen(s);
ikrylov@2322 1577 if (n >= len) {
ikrylov@2322 1578 n = len - 1;
ikrylov@2322 1579 }
ikrylov@2322 1580 ::strncpy(buf, s, n);
ikrylov@2322 1581 buf[n] = '\0';
ikrylov@2322 1582 return n;
ikrylov@2322 1583 }
ikrylov@2322 1584
duke@435 1585 intx os::current_thread_id() { return (intx)pthread_self(); }
duke@435 1586 int os::current_process_id() {
duke@435 1587
duke@435 1588 // Under the old linux thread library, linux gives each thread
duke@435 1589 // its own process id. Because of this each thread will return
duke@435 1590 // a different pid if this method were to return the result
duke@435 1591 // of getpid(2). Linux provides no api that returns the pid
duke@435 1592 // of the launcher thread for the vm. This implementation
duke@435 1593 // returns a unique pid, the pid of the launcher thread
duke@435 1594 // that starts the vm 'process'.
duke@435 1595
duke@435 1596 // Under the NPTL, getpid() returns the same pid as the
duke@435 1597 // launcher thread rather than a unique pid per thread.
duke@435 1598 // Use gettid() if you want the old pre NPTL behaviour.
duke@435 1599
duke@435 1600 // if you are looking for the result of a call to getpid() that
duke@435 1601 // returns a unique pid for the calling thread, then look at the
duke@435 1602 // OSThread::thread_id() method in osThread_linux.hpp file
duke@435 1603
duke@435 1604 return (int)(_initial_pid ? _initial_pid : getpid());
duke@435 1605 }
duke@435 1606
duke@435 1607 // DLL functions
duke@435 1608
duke@435 1609 const char* os::dll_file_extension() { return ".so"; }
duke@435 1610
coleenp@1788 1611 const char* os::get_temp_directory() {
coleenp@1788 1612 const char *prop = Arguments::get_property("java.io.tmpdir");
coleenp@1788 1613 return prop == NULL ? "/tmp" : prop;
coleenp@1788 1614 }
duke@435 1615
phh@1126 1616 static bool file_exists(const char* filename) {
phh@1126 1617 struct stat statbuf;
phh@1126 1618 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1619 return false;
phh@1126 1620 }
phh@1126 1621 return os::stat(filename, &statbuf) == 0;
phh@1126 1622 }
phh@1126 1623
phh@1126 1624 void os::dll_build_name(char* buffer, size_t buflen,
phh@1126 1625 const char* pname, const char* fname) {
phh@1126 1626 // Copied from libhpi
kamg@677 1627 const size_t pnamelen = pname ? strlen(pname) : 0;
kamg@677 1628
phh@1126 1629 // Quietly truncate on buffer overflow. Should be an error.
kamg@677 1630 if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
kamg@677 1631 *buffer = '\0';
kamg@677 1632 return;
kamg@677 1633 }
kamg@677 1634
kamg@677 1635 if (pnamelen == 0) {
phh@1126 1636 snprintf(buffer, buflen, "lib%s.so", fname);
phh@1126 1637 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1638 int n;
phh@1126 1639 char** pelements = split_path(pname, &n);
phh@1126 1640 for (int i = 0 ; i < n ; i++) {
phh@1126 1641 // Really shouldn't be NULL, but check can't hurt
phh@1126 1642 if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
phh@1126 1643 continue; // skip the empty path values
phh@1126 1644 }
phh@1126 1645 snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
phh@1126 1646 if (file_exists(buffer)) {
phh@1126 1647 break;
phh@1126 1648 }
phh@1126 1649 }
phh@1126 1650 // release the storage
phh@1126 1651 for (int i = 0 ; i < n ; i++) {
phh@1126 1652 if (pelements[i] != NULL) {
phh@1126 1653 FREE_C_HEAP_ARRAY(char, pelements[i]);
phh@1126 1654 }
phh@1126 1655 }
phh@1126 1656 if (pelements != NULL) {
phh@1126 1657 FREE_C_HEAP_ARRAY(char*, pelements);
phh@1126 1658 }
kamg@677 1659 } else {
phh@1126 1660 snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
kamg@677 1661 }
kamg@677 1662 }
kamg@677 1663
duke@435 1664 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1665 return getcwd(buf, buflen);
duke@435 1666 }
duke@435 1667
duke@435 1668 // check if addr is inside libjvm[_g].so
duke@435 1669 bool os::address_is_in_vm(address addr) {
duke@435 1670 static address libjvm_base_addr;
duke@435 1671 Dl_info dlinfo;
duke@435 1672
duke@435 1673 if (libjvm_base_addr == NULL) {
duke@435 1674 dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
duke@435 1675 libjvm_base_addr = (address)dlinfo.dli_fbase;
duke@435 1676 assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
duke@435 1677 }
duke@435 1678
duke@435 1679 if (dladdr((void *)addr, &dlinfo)) {
duke@435 1680 if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
duke@435 1681 }
duke@435 1682
duke@435 1683 return false;
duke@435 1684 }
duke@435 1685
duke@435 1686 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1687 int buflen, int *offset) {
duke@435 1688 Dl_info dlinfo;
duke@435 1689
duke@435 1690 if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
duke@435 1691 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
duke@435 1692 if (offset) *offset = addr - (address)dlinfo.dli_saddr;
duke@435 1693 return true;
duke@435 1694 } else {
duke@435 1695 if (buf) buf[0] = '\0';
duke@435 1696 if (offset) *offset = -1;
duke@435 1697 return false;
duke@435 1698 }
duke@435 1699 }
duke@435 1700
duke@435 1701 struct _address_to_library_name {
duke@435 1702 address addr; // input : memory address
duke@435 1703 size_t buflen; // size of fname
duke@435 1704 char* fname; // output: library name
duke@435 1705 address base; // library base addr
duke@435 1706 };
duke@435 1707
duke@435 1708 static int address_to_library_name_callback(struct dl_phdr_info *info,
duke@435 1709 size_t size, void *data) {
duke@435 1710 int i;
duke@435 1711 bool found = false;
duke@435 1712 address libbase = NULL;
duke@435 1713 struct _address_to_library_name * d = (struct _address_to_library_name *)data;
duke@435 1714
duke@435 1715 // iterate through all loadable segments
duke@435 1716 for (i = 0; i < info->dlpi_phnum; i++) {
duke@435 1717 address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
duke@435 1718 if (info->dlpi_phdr[i].p_type == PT_LOAD) {
duke@435 1719 // base address of a library is the lowest address of its loaded
duke@435 1720 // segments.
duke@435 1721 if (libbase == NULL || libbase > segbase) {
duke@435 1722 libbase = segbase;
duke@435 1723 }
duke@435 1724 // see if 'addr' is within current segment
duke@435 1725 if (segbase <= d->addr &&
duke@435 1726 d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
duke@435 1727 found = true;
duke@435 1728 }
duke@435 1729 }
duke@435 1730 }
duke@435 1731
duke@435 1732 // dlpi_name is NULL or empty if the ELF file is executable, return 0
duke@435 1733 // so dll_address_to_library_name() can fall through to use dladdr() which
duke@435 1734 // can figure out executable name from argv[0].
duke@435 1735 if (found && info->dlpi_name && info->dlpi_name[0]) {
duke@435 1736 d->base = libbase;
duke@435 1737 if (d->fname) {
duke@435 1738 jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
duke@435 1739 }
duke@435 1740 return 1;
duke@435 1741 }
duke@435 1742 return 0;
duke@435 1743 }
duke@435 1744
duke@435 1745 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1746 int buflen, int* offset) {
duke@435 1747 Dl_info dlinfo;
duke@435 1748 struct _address_to_library_name data;
duke@435 1749
duke@435 1750 // There is a bug in old glibc dladdr() implementation that it could resolve
duke@435 1751 // to wrong library name if the .so file has a base address != NULL. Here
duke@435 1752 // we iterate through the program headers of all loaded libraries to find
duke@435 1753 // out which library 'addr' really belongs to. This workaround can be
duke@435 1754 // removed once the minimum requirement for glibc is moved to 2.3.x.
duke@435 1755 data.addr = addr;
duke@435 1756 data.fname = buf;
duke@435 1757 data.buflen = buflen;
duke@435 1758 data.base = NULL;
duke@435 1759 int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
duke@435 1760
duke@435 1761 if (rslt) {
duke@435 1762 // buf already contains library name
duke@435 1763 if (offset) *offset = addr - data.base;
duke@435 1764 return true;
duke@435 1765 } else if (dladdr((void*)addr, &dlinfo)){
duke@435 1766 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
duke@435 1767 if (offset) *offset = addr - (address)dlinfo.dli_fbase;
duke@435 1768 return true;
duke@435 1769 } else {
duke@435 1770 if (buf) buf[0] = '\0';
duke@435 1771 if (offset) *offset = -1;
duke@435 1772 return false;
duke@435 1773 }
duke@435 1774 }
duke@435 1775
duke@435 1776 // Loads .dll/.so and
duke@435 1777 // in case of error it checks if .dll/.so was built for the
duke@435 1778 // same architecture as Hotspot is running on
duke@435 1779
duke@435 1780 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
duke@435 1781 {
duke@435 1782 void * result= ::dlopen(filename, RTLD_LAZY);
duke@435 1783 if (result != NULL) {
duke@435 1784 // Successful loading
duke@435 1785 return result;
duke@435 1786 }
duke@435 1787
duke@435 1788 Elf32_Ehdr elf_head;
duke@435 1789
duke@435 1790 // Read system error message into ebuf
duke@435 1791 // It may or may not be overwritten below
duke@435 1792 ::strncpy(ebuf, ::dlerror(), ebuflen-1);
duke@435 1793 ebuf[ebuflen-1]='\0';
duke@435 1794 int diag_msg_max_length=ebuflen-strlen(ebuf);
duke@435 1795 char* diag_msg_buf=ebuf+strlen(ebuf);
duke@435 1796
duke@435 1797 if (diag_msg_max_length==0) {
duke@435 1798 // No more space in ebuf for additional diagnostics message
duke@435 1799 return NULL;
duke@435 1800 }
duke@435 1801
duke@435 1802
duke@435 1803 int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
duke@435 1804
duke@435 1805 if (file_descriptor < 0) {
duke@435 1806 // Can't open library, report dlerror() message
duke@435 1807 return NULL;
duke@435 1808 }
duke@435 1809
duke@435 1810 bool failed_to_read_elf_head=
duke@435 1811 (sizeof(elf_head)!=
duke@435 1812 (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
duke@435 1813
duke@435 1814 ::close(file_descriptor);
duke@435 1815 if (failed_to_read_elf_head) {
duke@435 1816 // file i/o error - report dlerror() msg
duke@435 1817 return NULL;
duke@435 1818 }
duke@435 1819
duke@435 1820 typedef struct {
duke@435 1821 Elf32_Half code; // Actual value as defined in elf.h
duke@435 1822 Elf32_Half compat_class; // Compatibility of archs at VM's sense
duke@435 1823 char elf_class; // 32 or 64 bit
duke@435 1824 char endianess; // MSB or LSB
duke@435 1825 char* name; // String representation
duke@435 1826 } arch_t;
duke@435 1827
duke@435 1828 #ifndef EM_486
duke@435 1829 #define EM_486 6 /* Intel 80486 */
duke@435 1830 #endif
duke@435 1831
duke@435 1832 static const arch_t arch_array[]={
duke@435 1833 {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1834 {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 1835 {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
duke@435 1836 {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
duke@435 1837 {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1838 {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 1839 {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
duke@435 1840 {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
never@1445 1841 {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
never@1445 1842 {EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
never@1445 1843 {EM_S390, EM_S390, ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
never@1445 1844 {EM_ALPHA, EM_ALPHA, ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
never@1445 1845 {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
never@1445 1846 {EM_MIPS, EM_MIPS, ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
never@1445 1847 {EM_PARISC, EM_PARISC, ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
never@1445 1848 {EM_68K, EM_68K, ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
duke@435 1849 };
duke@435 1850
duke@435 1851 #if (defined IA32)
duke@435 1852 static Elf32_Half running_arch_code=EM_386;
duke@435 1853 #elif (defined AMD64)
duke@435 1854 static Elf32_Half running_arch_code=EM_X86_64;
duke@435 1855 #elif (defined IA64)
duke@435 1856 static Elf32_Half running_arch_code=EM_IA_64;
duke@435 1857 #elif (defined __sparc) && (defined _LP64)
duke@435 1858 static Elf32_Half running_arch_code=EM_SPARCV9;
duke@435 1859 #elif (defined __sparc) && (!defined _LP64)
duke@435 1860 static Elf32_Half running_arch_code=EM_SPARC;
duke@435 1861 #elif (defined __powerpc64__)
duke@435 1862 static Elf32_Half running_arch_code=EM_PPC64;
duke@435 1863 #elif (defined __powerpc__)
duke@435 1864 static Elf32_Half running_arch_code=EM_PPC;
never@1445 1865 #elif (defined ARM)
never@1445 1866 static Elf32_Half running_arch_code=EM_ARM;
never@1445 1867 #elif (defined S390)
never@1445 1868 static Elf32_Half running_arch_code=EM_S390;
never@1445 1869 #elif (defined ALPHA)
never@1445 1870 static Elf32_Half running_arch_code=EM_ALPHA;
never@1445 1871 #elif (defined MIPSEL)
never@1445 1872 static Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
never@1445 1873 #elif (defined PARISC)
never@1445 1874 static Elf32_Half running_arch_code=EM_PARISC;
never@1445 1875 #elif (defined MIPS)
never@1445 1876 static Elf32_Half running_arch_code=EM_MIPS;
never@1445 1877 #elif (defined M68K)
never@1445 1878 static Elf32_Half running_arch_code=EM_68K;
duke@435 1879 #else
duke@435 1880 #error Method os::dll_load requires that one of following is defined:\
never@1445 1881 IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
duke@435 1882 #endif
duke@435 1883
duke@435 1884 // Identify compatability class for VM's architecture and library's architecture
duke@435 1885 // Obtain string descriptions for architectures
duke@435 1886
duke@435 1887 arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
duke@435 1888 int running_arch_index=-1;
duke@435 1889
duke@435 1890 for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
duke@435 1891 if (running_arch_code == arch_array[i].code) {
duke@435 1892 running_arch_index = i;
duke@435 1893 }
duke@435 1894 if (lib_arch.code == arch_array[i].code) {
duke@435 1895 lib_arch.compat_class = arch_array[i].compat_class;
duke@435 1896 lib_arch.name = arch_array[i].name;
duke@435 1897 }
duke@435 1898 }
duke@435 1899
duke@435 1900 assert(running_arch_index != -1,
duke@435 1901 "Didn't find running architecture code (running_arch_code) in arch_array");
duke@435 1902 if (running_arch_index == -1) {
duke@435 1903 // Even though running architecture detection failed
duke@435 1904 // we may still continue with reporting dlerror() message
duke@435 1905 return NULL;
duke@435 1906 }
duke@435 1907
duke@435 1908 if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
duke@435 1909 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
duke@435 1910 return NULL;
duke@435 1911 }
duke@435 1912
never@1445 1913 #ifndef S390
duke@435 1914 if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
duke@435 1915 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
duke@435 1916 return NULL;
duke@435 1917 }
never@1445 1918 #endif // !S390
duke@435 1919
duke@435 1920 if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
duke@435 1921 if ( lib_arch.name!=NULL ) {
duke@435 1922 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1923 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
duke@435 1924 lib_arch.name, arch_array[running_arch_index].name);
duke@435 1925 } else {
duke@435 1926 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 1927 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
duke@435 1928 lib_arch.code,
duke@435 1929 arch_array[running_arch_index].name);
duke@435 1930 }
duke@435 1931 }
duke@435 1932
duke@435 1933 return NULL;
duke@435 1934 }
duke@435 1935
kamg@677 1936 /*
kamg@677 1937 * glibc-2.0 libdl is not MT safe. If you are building with any glibc,
kamg@677 1938 * chances are you might want to run the generated bits against glibc-2.0
kamg@677 1939 * libdl.so, so always use locking for any version of glibc.
kamg@677 1940 */
kamg@677 1941 void* os::dll_lookup(void* handle, const char* name) {
kamg@677 1942 pthread_mutex_lock(&dl_mutex);
kamg@677 1943 void* res = dlsym(handle, name);
kamg@677 1944 pthread_mutex_unlock(&dl_mutex);
kamg@677 1945 return res;
kamg@677 1946 }
duke@435 1947
duke@435 1948
ikrylov@2322 1949 static bool _print_ascii_file(const char* filename, outputStream* st) {
ikrylov@2322 1950 int fd = ::open(filename, O_RDONLY);
duke@435 1951 if (fd == -1) {
duke@435 1952 return false;
duke@435 1953 }
duke@435 1954
duke@435 1955 char buf[32];
duke@435 1956 int bytes;
ikrylov@2322 1957 while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
duke@435 1958 st->print_raw(buf, bytes);
duke@435 1959 }
duke@435 1960
ikrylov@2322 1961 ::close(fd);
duke@435 1962
duke@435 1963 return true;
duke@435 1964 }
duke@435 1965
duke@435 1966 void os::print_dll_info(outputStream *st) {
duke@435 1967 st->print_cr("Dynamic libraries:");
duke@435 1968
duke@435 1969 char fname[32];
duke@435 1970 pid_t pid = os::Linux::gettid();
duke@435 1971
duke@435 1972 jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
duke@435 1973
duke@435 1974 if (!_print_ascii_file(fname, st)) {
duke@435 1975 st->print("Can not get library information for pid = %d\n", pid);
duke@435 1976 }
duke@435 1977 }
duke@435 1978
duke@435 1979
duke@435 1980 void os::print_os_info(outputStream* st) {
duke@435 1981 st->print("OS:");
duke@435 1982
duke@435 1983 // Try to identify popular distros.
duke@435 1984 // Most Linux distributions have /etc/XXX-release file, which contains
duke@435 1985 // the OS version string. Some have more than one /etc/XXX-release file
duke@435 1986 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
duke@435 1987 // so the order is important.
duke@435 1988 if (!_print_ascii_file("/etc/mandrake-release", st) &&
duke@435 1989 !_print_ascii_file("/etc/sun-release", st) &&
duke@435 1990 !_print_ascii_file("/etc/redhat-release", st) &&
duke@435 1991 !_print_ascii_file("/etc/SuSE-release", st) &&
duke@435 1992 !_print_ascii_file("/etc/turbolinux-release", st) &&
duke@435 1993 !_print_ascii_file("/etc/gentoo-release", st) &&
bobv@2036 1994 !_print_ascii_file("/etc/debian_version", st) &&
bobv@2036 1995 !_print_ascii_file("/etc/ltib-release", st) &&
bobv@2036 1996 !_print_ascii_file("/etc/angstrom-version", st)) {
duke@435 1997 st->print("Linux");
duke@435 1998 }
duke@435 1999 st->cr();
duke@435 2000
duke@435 2001 // kernel
duke@435 2002 st->print("uname:");
duke@435 2003 struct utsname name;
duke@435 2004 uname(&name);
duke@435 2005 st->print(name.sysname); st->print(" ");
duke@435 2006 st->print(name.release); st->print(" ");
duke@435 2007 st->print(name.version); st->print(" ");
duke@435 2008 st->print(name.machine);
duke@435 2009 st->cr();
duke@435 2010
duke@435 2011 // Print warning if unsafe chroot environment detected
duke@435 2012 if (unsafe_chroot_detected) {
duke@435 2013 st->print("WARNING!! ");
duke@435 2014 st->print_cr(unstable_chroot_error);
duke@435 2015 }
duke@435 2016
duke@435 2017 // libc, pthread
duke@435 2018 st->print("libc:");
duke@435 2019 st->print(os::Linux::glibc_version()); st->print(" ");
duke@435 2020 st->print(os::Linux::libpthread_version()); st->print(" ");
duke@435 2021 if (os::Linux::is_LinuxThreads()) {
duke@435 2022 st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
duke@435 2023 }
duke@435 2024 st->cr();
duke@435 2025
duke@435 2026 // rlimit
duke@435 2027 st->print("rlimit:");
duke@435 2028 struct rlimit rlim;
duke@435 2029
duke@435 2030 st->print(" STACK ");
duke@435 2031 getrlimit(RLIMIT_STACK, &rlim);
duke@435 2032 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2033 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2034
duke@435 2035 st->print(", CORE ");
duke@435 2036 getrlimit(RLIMIT_CORE, &rlim);
duke@435 2037 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2038 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2039
duke@435 2040 st->print(", NPROC ");
duke@435 2041 getrlimit(RLIMIT_NPROC, &rlim);
duke@435 2042 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2043 else st->print("%d", rlim.rlim_cur);
duke@435 2044
duke@435 2045 st->print(", NOFILE ");
duke@435 2046 getrlimit(RLIMIT_NOFILE, &rlim);
duke@435 2047 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2048 else st->print("%d", rlim.rlim_cur);
duke@435 2049
duke@435 2050 st->print(", AS ");
duke@435 2051 getrlimit(RLIMIT_AS, &rlim);
duke@435 2052 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2053 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2054 st->cr();
duke@435 2055
duke@435 2056 // load average
duke@435 2057 st->print("load average:");
duke@435 2058 double loadavg[3];
duke@435 2059 os::loadavg(loadavg, 3);
duke@435 2060 st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
duke@435 2061 st->cr();
bobv@2036 2062
bobv@2036 2063 // meminfo
bobv@2036 2064 st->print("\n/proc/meminfo:\n");
bobv@2036 2065 _print_ascii_file("/proc/meminfo", st);
bobv@2036 2066 st->cr();
duke@435 2067 }
duke@435 2068
duke@435 2069 void os::print_memory_info(outputStream* st) {
duke@435 2070
duke@435 2071 st->print("Memory:");
duke@435 2072 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 2073
duke@435 2074 // values in struct sysinfo are "unsigned long"
duke@435 2075 struct sysinfo si;
duke@435 2076 sysinfo(&si);
duke@435 2077
duke@435 2078 st->print(", physical " UINT64_FORMAT "k",
duke@435 2079 os::physical_memory() >> 10);
duke@435 2080 st->print("(" UINT64_FORMAT "k free)",
duke@435 2081 os::available_memory() >> 10);
duke@435 2082 st->print(", swap " UINT64_FORMAT "k",
duke@435 2083 ((jlong)si.totalswap * si.mem_unit) >> 10);
duke@435 2084 st->print("(" UINT64_FORMAT "k free)",
duke@435 2085 ((jlong)si.freeswap * si.mem_unit) >> 10);
duke@435 2086 st->cr();
duke@435 2087 }
duke@435 2088
duke@435 2089 // Taken from /usr/include/bits/siginfo.h Supposed to be architecture specific
duke@435 2090 // but they're the same for all the linux arch that we support
duke@435 2091 // and they're the same for solaris but there's no common place to put this.
duke@435 2092 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
duke@435 2093 "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
duke@435 2094 "ILL_COPROC", "ILL_BADSTK" };
duke@435 2095
duke@435 2096 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
duke@435 2097 "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
duke@435 2098 "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
duke@435 2099
duke@435 2100 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
duke@435 2101
duke@435 2102 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
duke@435 2103
duke@435 2104 void os::print_siginfo(outputStream* st, void* siginfo) {
duke@435 2105 st->print("siginfo:");
duke@435 2106
duke@435 2107 const int buflen = 100;
duke@435 2108 char buf[buflen];
duke@435 2109 siginfo_t *si = (siginfo_t*)siginfo;
duke@435 2110 st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
duke@435 2111 if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
duke@435 2112 st->print("si_errno=%s", buf);
duke@435 2113 } else {
duke@435 2114 st->print("si_errno=%d", si->si_errno);
duke@435 2115 }
duke@435 2116 const int c = si->si_code;
duke@435 2117 assert(c > 0, "unexpected si_code");
duke@435 2118 switch (si->si_signo) {
duke@435 2119 case SIGILL:
duke@435 2120 st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
duke@435 2121 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2122 break;
duke@435 2123 case SIGFPE:
duke@435 2124 st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
duke@435 2125 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2126 break;
duke@435 2127 case SIGSEGV:
duke@435 2128 st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
duke@435 2129 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2130 break;
duke@435 2131 case SIGBUS:
duke@435 2132 st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
duke@435 2133 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2134 break;
duke@435 2135 default:
duke@435 2136 st->print(", si_code=%d", si->si_code);
duke@435 2137 // no si_addr
duke@435 2138 }
duke@435 2139
duke@435 2140 if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
duke@435 2141 UseSharedSpaces) {
duke@435 2142 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 2143 if (mapinfo->is_in_shared_space(si->si_addr)) {
duke@435 2144 st->print("\n\nError accessing class data sharing archive." \
duke@435 2145 " Mapped file inaccessible during execution, " \
duke@435 2146 " possible disk/network problem.");
duke@435 2147 }
duke@435 2148 }
duke@435 2149 st->cr();
duke@435 2150 }
duke@435 2151
duke@435 2152
duke@435 2153 static void print_signal_handler(outputStream* st, int sig,
duke@435 2154 char* buf, size_t buflen);
duke@435 2155
duke@435 2156 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 2157 st->print_cr("Signal Handlers:");
duke@435 2158 print_signal_handler(st, SIGSEGV, buf, buflen);
duke@435 2159 print_signal_handler(st, SIGBUS , buf, buflen);
duke@435 2160 print_signal_handler(st, SIGFPE , buf, buflen);
duke@435 2161 print_signal_handler(st, SIGPIPE, buf, buflen);
duke@435 2162 print_signal_handler(st, SIGXFSZ, buf, buflen);
duke@435 2163 print_signal_handler(st, SIGILL , buf, buflen);
duke@435 2164 print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
duke@435 2165 print_signal_handler(st, SR_signum, buf, buflen);
duke@435 2166 print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
duke@435 2167 print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
duke@435 2168 print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
duke@435 2169 print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
duke@435 2170 }
duke@435 2171
duke@435 2172 static char saved_jvm_path[MAXPATHLEN] = {0};
duke@435 2173
duke@435 2174 // Find the full path to the current module, libjvm.so or libjvm_g.so
mchung@1997 2175 void os::jvm_path(char *buf, jint buflen) {
duke@435 2176 // Error checking.
mchung@1997 2177 if (buflen < MAXPATHLEN) {
duke@435 2178 assert(false, "must use a large-enough buffer");
duke@435 2179 buf[0] = '\0';
duke@435 2180 return;
duke@435 2181 }
duke@435 2182 // Lazy resolve the path to current module.
duke@435 2183 if (saved_jvm_path[0] != 0) {
duke@435 2184 strcpy(buf, saved_jvm_path);
duke@435 2185 return;
duke@435 2186 }
duke@435 2187
duke@435 2188 char dli_fname[MAXPATHLEN];
duke@435 2189 bool ret = dll_address_to_library_name(
duke@435 2190 CAST_FROM_FN_PTR(address, os::jvm_path),
duke@435 2191 dli_fname, sizeof(dli_fname), NULL);
duke@435 2192 assert(ret != 0, "cannot locate libjvm");
bobv@2036 2193 char *rp = realpath(dli_fname, buf);
bobv@2036 2194 if (rp == NULL)
xlu@948 2195 return;
duke@435 2196
duke@435 2197 if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
duke@435 2198 // Support for the gamma launcher. Typical value for buf is
duke@435 2199 // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so". If "/jre/lib/" appears at
duke@435 2200 // the right place in the string, then assume we are installed in a JDK and
duke@435 2201 // we're done. Otherwise, check for a JAVA_HOME environment variable and fix
duke@435 2202 // up the path so it looks like libjvm.so is installed there (append a
duke@435 2203 // fake suffix hotspot/libjvm.so).
duke@435 2204 const char *p = buf + strlen(buf) - 1;
duke@435 2205 for (int count = 0; p > buf && count < 5; ++count) {
duke@435 2206 for (--p; p > buf && *p != '/'; --p)
duke@435 2207 /* empty */ ;
duke@435 2208 }
duke@435 2209
duke@435 2210 if (strncmp(p, "/jre/lib/", 9) != 0) {
duke@435 2211 // Look for JAVA_HOME in the environment.
duke@435 2212 char* java_home_var = ::getenv("JAVA_HOME");
duke@435 2213 if (java_home_var != NULL && java_home_var[0] != 0) {
mchung@1997 2214 char* jrelib_p;
mchung@1997 2215 int len;
mchung@1997 2216
duke@435 2217 // Check the current module name "libjvm.so" or "libjvm_g.so".
duke@435 2218 p = strrchr(buf, '/');
duke@435 2219 assert(strstr(p, "/libjvm") == p, "invalid library name");
duke@435 2220 p = strstr(p, "_g") ? "_g" : "";
duke@435 2221
bobv@2036 2222 rp = realpath(java_home_var, buf);
bobv@2036 2223 if (rp == NULL)
xlu@948 2224 return;
mchung@1997 2225
mchung@1997 2226 // determine if this is a legacy image or modules image
mchung@1997 2227 // modules image doesn't have "jre" subdirectory
mchung@1997 2228 len = strlen(buf);
mchung@1997 2229 jrelib_p = buf + len;
mchung@1997 2230 snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
mchung@1997 2231 if (0 != access(buf, F_OK)) {
mchung@1997 2232 snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
mchung@1997 2233 }
mchung@1997 2234
duke@435 2235 if (0 == access(buf, F_OK)) {
duke@435 2236 // Use current module name "libjvm[_g].so" instead of
duke@435 2237 // "libjvm"debug_only("_g")".so" since for fastdebug version
duke@435 2238 // we should have "libjvm.so" but debug_only("_g") adds "_g"!
mchung@1997 2239 len = strlen(buf);
mchung@1997 2240 snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
duke@435 2241 } else {
duke@435 2242 // Go back to path of .so
bobv@2036 2243 rp = realpath(dli_fname, buf);
bobv@2036 2244 if (rp == NULL)
xlu@948 2245 return;
duke@435 2246 }
duke@435 2247 }
duke@435 2248 }
duke@435 2249 }
duke@435 2250
duke@435 2251 strcpy(saved_jvm_path, buf);
duke@435 2252 }
duke@435 2253
duke@435 2254 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 2255 // no prefix required, not even "_"
duke@435 2256 }
duke@435 2257
duke@435 2258 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 2259 // no suffix required
duke@435 2260 }
duke@435 2261
duke@435 2262 ////////////////////////////////////////////////////////////////////////////////
duke@435 2263 // sun.misc.Signal support
duke@435 2264
duke@435 2265 static volatile jint sigint_count = 0;
duke@435 2266
duke@435 2267 static void
duke@435 2268 UserHandler(int sig, void *siginfo, void *context) {
duke@435 2269 // 4511530 - sem_post is serialized and handled by the manager thread. When
duke@435 2270 // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
duke@435 2271 // don't want to flood the manager thread with sem_post requests.
duke@435 2272 if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
duke@435 2273 return;
duke@435 2274
duke@435 2275 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 2276 // handler fails to abort. Let VM die immediately.
duke@435 2277 if (sig == SIGINT && is_error_reported()) {
duke@435 2278 os::die();
duke@435 2279 }
duke@435 2280
duke@435 2281 os::signal_notify(sig);
duke@435 2282 }
duke@435 2283
duke@435 2284 void* os::user_handler() {
duke@435 2285 return CAST_FROM_FN_PTR(void*, UserHandler);
duke@435 2286 }
duke@435 2287
duke@435 2288 extern "C" {
duke@435 2289 typedef void (*sa_handler_t)(int);
duke@435 2290 typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
duke@435 2291 }
duke@435 2292
duke@435 2293 void* os::signal(int signal_number, void* handler) {
duke@435 2294 struct sigaction sigAct, oldSigAct;
duke@435 2295
duke@435 2296 sigfillset(&(sigAct.sa_mask));
duke@435 2297 sigAct.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 2298 sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
duke@435 2299
duke@435 2300 if (sigaction(signal_number, &sigAct, &oldSigAct)) {
duke@435 2301 // -1 means registration failed
duke@435 2302 return (void *)-1;
duke@435 2303 }
duke@435 2304
duke@435 2305 return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
duke@435 2306 }
duke@435 2307
duke@435 2308 void os::signal_raise(int signal_number) {
duke@435 2309 ::raise(signal_number);
duke@435 2310 }
duke@435 2311
duke@435 2312 /*
duke@435 2313 * The following code is moved from os.cpp for making this
duke@435 2314 * code platform specific, which it is by its very nature.
duke@435 2315 */
duke@435 2316
duke@435 2317 // Will be modified when max signal is changed to be dynamic
duke@435 2318 int os::sigexitnum_pd() {
duke@435 2319 return NSIG;
duke@435 2320 }
duke@435 2321
duke@435 2322 // a counter for each possible signal value
duke@435 2323 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 2324
duke@435 2325 // Linux(POSIX) specific hand shaking semaphore.
duke@435 2326 static sem_t sig_sem;
duke@435 2327
duke@435 2328 void os::signal_init_pd() {
duke@435 2329 // Initialize signal structures
duke@435 2330 ::memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 2331
duke@435 2332 // Initialize signal semaphore
duke@435 2333 ::sem_init(&sig_sem, 0, 0);
duke@435 2334 }
duke@435 2335
duke@435 2336 void os::signal_notify(int sig) {
duke@435 2337 Atomic::inc(&pending_signals[sig]);
duke@435 2338 ::sem_post(&sig_sem);
duke@435 2339 }
duke@435 2340
duke@435 2341 static int check_pending_signals(bool wait) {
duke@435 2342 Atomic::store(0, &sigint_count);
duke@435 2343 for (;;) {
duke@435 2344 for (int i = 0; i < NSIG + 1; i++) {
duke@435 2345 jint n = pending_signals[i];
duke@435 2346 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 2347 return i;
duke@435 2348 }
duke@435 2349 }
duke@435 2350 if (!wait) {
duke@435 2351 return -1;
duke@435 2352 }
duke@435 2353 JavaThread *thread = JavaThread::current();
duke@435 2354 ThreadBlockInVM tbivm(thread);
duke@435 2355
duke@435 2356 bool threadIsSuspended;
duke@435 2357 do {
duke@435 2358 thread->set_suspend_equivalent();
duke@435 2359 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 2360 ::sem_wait(&sig_sem);
duke@435 2361
duke@435 2362 // were we externally suspended while we were waiting?
duke@435 2363 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 2364 if (threadIsSuspended) {
duke@435 2365 //
duke@435 2366 // The semaphore has been incremented, but while we were waiting
duke@435 2367 // another thread suspended us. We don't want to continue running
duke@435 2368 // while suspended because that would surprise the thread that
duke@435 2369 // suspended us.
duke@435 2370 //
duke@435 2371 ::sem_post(&sig_sem);
duke@435 2372
duke@435 2373 thread->java_suspend_self();
duke@435 2374 }
duke@435 2375 } while (threadIsSuspended);
duke@435 2376 }
duke@435 2377 }
duke@435 2378
duke@435 2379 int os::signal_lookup() {
duke@435 2380 return check_pending_signals(false);
duke@435 2381 }
duke@435 2382
duke@435 2383 int os::signal_wait() {
duke@435 2384 return check_pending_signals(true);
duke@435 2385 }
duke@435 2386
duke@435 2387 ////////////////////////////////////////////////////////////////////////////////
duke@435 2388 // Virtual Memory
duke@435 2389
duke@435 2390 int os::vm_page_size() {
duke@435 2391 // Seems redundant as all get out
duke@435 2392 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2393 return os::Linux::page_size();
duke@435 2394 }
duke@435 2395
duke@435 2396 // Solaris allocates memory by pages.
duke@435 2397 int os::vm_allocation_granularity() {
duke@435 2398 assert(os::Linux::page_size() != -1, "must call os::init");
duke@435 2399 return os::Linux::page_size();
duke@435 2400 }
duke@435 2401
duke@435 2402 // Rationale behind this function:
duke@435 2403 // current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
duke@435 2404 // mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
duke@435 2405 // samples for JITted code. Here we create private executable mapping over the code cache
duke@435 2406 // and then we can use standard (well, almost, as mapping can change) way to provide
duke@435 2407 // info for the reporting script by storing timestamp and location of symbol
duke@435 2408 void linux_wrap_code(char* base, size_t size) {
duke@435 2409 static volatile jint cnt = 0;
duke@435 2410
duke@435 2411 if (!UseOprofile) {
duke@435 2412 return;
duke@435 2413 }
duke@435 2414
coleenp@1852 2415 char buf[PATH_MAX+1];
duke@435 2416 int num = Atomic::add(1, &cnt);
duke@435 2417
coleenp@1788 2418 snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
coleenp@1788 2419 os::get_temp_directory(), os::current_process_id(), num);
duke@435 2420 unlink(buf);
duke@435 2421
ikrylov@2322 2422 int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
duke@435 2423
duke@435 2424 if (fd != -1) {
ikrylov@2322 2425 off_t rv = ::lseek(fd, size-2, SEEK_SET);
duke@435 2426 if (rv != (off_t)-1) {
ikrylov@2322 2427 if (::write(fd, "", 1) == 1) {
duke@435 2428 mmap(base, size,
duke@435 2429 PROT_READ|PROT_WRITE|PROT_EXEC,
duke@435 2430 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
duke@435 2431 }
duke@435 2432 }
ikrylov@2322 2433 ::close(fd);
duke@435 2434 unlink(buf);
duke@435 2435 }
duke@435 2436 }
duke@435 2437
duke@435 2438 // NOTE: Linux kernel does not really reserve the pages for us.
duke@435 2439 // All it does is to check if there are enough free pages
duke@435 2440 // left at the time of mmap(). This could be a potential
duke@435 2441 // problem.
coleenp@1091 2442 bool os::commit_memory(char* addr, size_t size, bool exec) {
coleenp@1091 2443 int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
coleenp@1091 2444 uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
duke@435 2445 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
duke@435 2446 return res != (uintptr_t) MAP_FAILED;
duke@435 2447 }
duke@435 2448
coleenp@1091 2449 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
coleenp@1091 2450 bool exec) {
coleenp@1091 2451 return commit_memory(addr, size, exec);
duke@435 2452 }
duke@435 2453
duke@435 2454 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
iveresov@576 2455
iveresov@576 2456 void os::free_memory(char *addr, size_t bytes) {
iveresov@1196 2457 ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
iveresov@1196 2458 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
iveresov@576 2459 }
iveresov@576 2460
iveresov@897 2461 void os::numa_make_global(char *addr, size_t bytes) {
iveresov@897 2462 Linux::numa_interleave_memory(addr, bytes);
iveresov@897 2463 }
iveresov@576 2464
iveresov@576 2465 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
iveresov@576 2466 Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
iveresov@576 2467 }
iveresov@576 2468
iveresov@576 2469 bool os::numa_topology_changed() { return false; }
iveresov@576 2470
iveresov@576 2471 size_t os::numa_get_groups_num() {
iveresov@576 2472 int max_node = Linux::numa_max_node();
iveresov@576 2473 return max_node > 0 ? max_node + 1 : 1;
iveresov@576 2474 }
iveresov@576 2475
iveresov@576 2476 int os::numa_get_group_id() {
iveresov@576 2477 int cpu_id = Linux::sched_getcpu();
iveresov@576 2478 if (cpu_id != -1) {
iveresov@576 2479 int lgrp_id = Linux::get_node_by_cpu(cpu_id);
iveresov@576 2480 if (lgrp_id != -1) {
iveresov@576 2481 return lgrp_id;
iveresov@576 2482 }
duke@435 2483 }
duke@435 2484 return 0;
duke@435 2485 }
duke@435 2486
iveresov@576 2487 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
iveresov@576 2488 for (size_t i = 0; i < size; i++) {
iveresov@576 2489 ids[i] = i;
iveresov@576 2490 }
iveresov@576 2491 return size;
iveresov@576 2492 }
iveresov@576 2493
duke@435 2494 bool os::get_page_info(char *start, page_info* info) {
duke@435 2495 return false;
duke@435 2496 }
duke@435 2497
duke@435 2498 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 2499 return end;
duke@435 2500 }
duke@435 2501
iveresov@576 2502 extern "C" void numa_warn(int number, char *where, ...) { }
iveresov@576 2503 extern "C" void numa_error(char *where) { }
iveresov@576 2504
iveresov@1198 2505
iveresov@1198 2506 // If we are running with libnuma version > 2, then we should
iveresov@1198 2507 // be trying to use symbols with versions 1.1
iveresov@1198 2508 // If we are running with earlier version, which did not have symbol versions,
iveresov@1198 2509 // we should use the base version.
iveresov@1198 2510 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
iveresov@1198 2511 void *f = dlvsym(handle, name, "libnuma_1.1");
iveresov@1198 2512 if (f == NULL) {
iveresov@1198 2513 f = dlsym(handle, name);
iveresov@1198 2514 }
iveresov@1198 2515 return f;
iveresov@1198 2516 }
iveresov@1198 2517
iveresov@897 2518 bool os::Linux::libnuma_init() {
iveresov@576 2519 // sched_getcpu() should be in libc.
iveresov@576 2520 set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
iveresov@576 2521 dlsym(RTLD_DEFAULT, "sched_getcpu")));
iveresov@576 2522
iveresov@576 2523 if (sched_getcpu() != -1) { // Does it work?
iveresov@702 2524 void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
iveresov@576 2525 if (handle != NULL) {
iveresov@576 2526 set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
iveresov@1198 2527 libnuma_dlsym(handle, "numa_node_to_cpus")));
iveresov@576 2528 set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
iveresov@1198 2529 libnuma_dlsym(handle, "numa_max_node")));
iveresov@576 2530 set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
iveresov@1198 2531 libnuma_dlsym(handle, "numa_available")));
iveresov@576 2532 set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
iveresov@1198 2533 libnuma_dlsym(handle, "numa_tonode_memory")));
iveresov@897 2534 set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
iveresov@1198 2535 libnuma_dlsym(handle, "numa_interleave_memory")));
iveresov@897 2536
iveresov@897 2537
iveresov@576 2538 if (numa_available() != -1) {
iveresov@1198 2539 set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
iveresov@576 2540 // Create a cpu -> node mapping
iveresov@576 2541 _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
iveresov@576 2542 rebuild_cpu_to_node_map();
iveresov@897 2543 return true;
iveresov@576 2544 }
iveresov@576 2545 }
iveresov@576 2546 }
iveresov@897 2547 return false;
iveresov@576 2548 }
iveresov@576 2549
iveresov@576 2550 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
iveresov@576 2551 // The table is later used in get_node_by_cpu().
iveresov@576 2552 void os::Linux::rebuild_cpu_to_node_map() {
iveresov@897 2553 const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
iveresov@897 2554 // in libnuma (possible values are starting from 16,
iveresov@897 2555 // and continuing up with every other power of 2, but less
iveresov@897 2556 // than the maximum number of CPUs supported by kernel), and
iveresov@897 2557 // is a subject to change (in libnuma version 2 the requirements
iveresov@897 2558 // are more reasonable) we'll just hardcode the number they use
iveresov@897 2559 // in the library.
iveresov@897 2560 const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
iveresov@897 2561
iveresov@897 2562 size_t cpu_num = os::active_processor_count();
iveresov@897 2563 size_t cpu_map_size = NCPUS / BitsPerCLong;
iveresov@897 2564 size_t cpu_map_valid_size =
iveresov@897 2565 MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
iveresov@897 2566
iveresov@576 2567 cpu_to_node()->clear();
iveresov@576 2568 cpu_to_node()->at_grow(cpu_num - 1);
iveresov@897 2569 size_t node_num = numa_get_groups_num();
iveresov@897 2570
iveresov@576 2571 unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
iveresov@897 2572 for (size_t i = 0; i < node_num; i++) {
iveresov@576 2573 if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
iveresov@897 2574 for (size_t j = 0; j < cpu_map_valid_size; j++) {
iveresov@576 2575 if (cpu_map[j] != 0) {
iveresov@897 2576 for (size_t k = 0; k < BitsPerCLong; k++) {
iveresov@576 2577 if (cpu_map[j] & (1UL << k)) {
iveresov@897 2578 cpu_to_node()->at_put(j * BitsPerCLong + k, i);
iveresov@576 2579 }
iveresov@576 2580 }
iveresov@576 2581 }
iveresov@576 2582 }
iveresov@576 2583 }
iveresov@576 2584 }
iveresov@576 2585 FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
iveresov@576 2586 }
iveresov@576 2587
iveresov@576 2588 int os::Linux::get_node_by_cpu(int cpu_id) {
iveresov@576 2589 if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
iveresov@576 2590 return cpu_to_node()->at(cpu_id);
iveresov@576 2591 }
iveresov@576 2592 return -1;
iveresov@576 2593 }
iveresov@576 2594
iveresov@576 2595 GrowableArray<int>* os::Linux::_cpu_to_node;
iveresov@576 2596 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
iveresov@576 2597 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
iveresov@576 2598 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
iveresov@576 2599 os::Linux::numa_available_func_t os::Linux::_numa_available;
iveresov@576 2600 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
iveresov@897 2601 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
iveresov@897 2602 unsigned long* os::Linux::_numa_all_nodes;
iveresov@576 2603
duke@435 2604 bool os::uncommit_memory(char* addr, size_t size) {
bobv@2036 2605 uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
bobv@2036 2606 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
bobv@2036 2607 return res != (uintptr_t) MAP_FAILED;
duke@435 2608 }
duke@435 2609
coleenp@1755 2610 // Linux uses a growable mapping for the stack, and if the mapping for
coleenp@1755 2611 // the stack guard pages is not removed when we detach a thread the
coleenp@1755 2612 // stack cannot grow beyond the pages where the stack guard was
coleenp@1755 2613 // mapped. If at some point later in the process the stack expands to
coleenp@1755 2614 // that point, the Linux kernel cannot expand the stack any further
coleenp@1755 2615 // because the guard pages are in the way, and a segfault occurs.
coleenp@1755 2616 //
coleenp@1755 2617 // However, it's essential not to split the stack region by unmapping
coleenp@1755 2618 // a region (leaving a hole) that's already part of the stack mapping,
coleenp@1755 2619 // so if the stack mapping has already grown beyond the guard pages at
coleenp@1755 2620 // the time we create them, we have to truncate the stack mapping.
coleenp@1755 2621 // So, we need to know the extent of the stack mapping when
coleenp@1755 2622 // create_stack_guard_pages() is called.
coleenp@1755 2623
coleenp@1755 2624 // Find the bounds of the stack mapping. Return true for success.
coleenp@1755 2625 //
coleenp@1755 2626 // We only need this for stacks that are growable: at the time of
coleenp@1755 2627 // writing thread stacks don't use growable mappings (i.e. those
coleenp@1755 2628 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
coleenp@1755 2629 // only applies to the main thread.
coleenp@1755 2630 static bool
coleenp@1755 2631 get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
coleenp@1755 2632 {
coleenp@1755 2633 FILE *f = fopen("/proc/self/maps", "r");
coleenp@1755 2634 if (f == NULL)
coleenp@1755 2635 return false;
coleenp@1755 2636
coleenp@1755 2637 while (!feof(f)) {
coleenp@1755 2638 size_t dummy;
coleenp@1755 2639 char *str = NULL;
coleenp@1755 2640 ssize_t len = getline(&str, &dummy, f);
coleenp@1755 2641 if (len == -1) {
coleenp@1760 2642 fclose(f);
coleenp@1755 2643 return false;
coleenp@1755 2644 }
coleenp@1755 2645
coleenp@1755 2646 if (len > 0 && str[len-1] == '\n') {
coleenp@1755 2647 str[len-1] = 0;
coleenp@1755 2648 len--;
coleenp@1755 2649 }
coleenp@1755 2650
coleenp@1755 2651 static const char *stack_str = "[stack]";
coleenp@1755 2652 if (len > (ssize_t)strlen(stack_str)
coleenp@1755 2653 && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
coleenp@1755 2654 if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
coleenp@1755 2655 uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
coleenp@1755 2656 if (sp >= *bottom && sp <= *top) {
coleenp@1755 2657 free(str);
coleenp@1760 2658 fclose(f);
coleenp@1755 2659 return true;
coleenp@1755 2660 }
coleenp@1755 2661 }
coleenp@1755 2662 }
coleenp@1755 2663 free(str);
coleenp@1755 2664 }
coleenp@1760 2665 fclose(f);
coleenp@1755 2666 return false;
coleenp@1755 2667 }
coleenp@1755 2668
coleenp@1755 2669 // If the (growable) stack mapping already extends beyond the point
coleenp@1755 2670 // where we're going to put our guard pages, truncate the mapping at
coleenp@1755 2671 // that point by munmap()ping it. This ensures that when we later
coleenp@1755 2672 // munmap() the guard pages we don't leave a hole in the stack
dholmes@2105 2673 // mapping. This only affects the main/initial thread, but guard
dholmes@2105 2674 // against future OS changes
coleenp@1755 2675 bool os::create_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2676 uintptr_t stack_extent, stack_base;
dholmes@2105 2677 bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
dholmes@2105 2678 if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
dholmes@2105 2679 assert(os::Linux::is_initial_thread(),
dholmes@2105 2680 "growable stack in non-initial thread");
coleenp@1755 2681 if (stack_extent < (uintptr_t)addr)
coleenp@1755 2682 ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
coleenp@1755 2683 }
coleenp@1755 2684
coleenp@1755 2685 return os::commit_memory(addr, size);
coleenp@1755 2686 }
coleenp@1755 2687
coleenp@1755 2688 // If this is a growable mapping, remove the guard pages entirely by
dholmes@2105 2689 // munmap()ping them. If not, just call uncommit_memory(). This only
dholmes@2105 2690 // affects the main/initial thread, but guard against future OS changes
coleenp@1755 2691 bool os::remove_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2692 uintptr_t stack_extent, stack_base;
dholmes@2105 2693 bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
dholmes@2105 2694 if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
dholmes@2105 2695 assert(os::Linux::is_initial_thread(),
dholmes@2105 2696 "growable stack in non-initial thread");
dholmes@2105 2697
coleenp@1755 2698 return ::munmap(addr, size) == 0;
coleenp@1755 2699 }
coleenp@1755 2700
coleenp@1755 2701 return os::uncommit_memory(addr, size);
coleenp@1755 2702 }
coleenp@1755 2703
duke@435 2704 static address _highest_vm_reserved_address = NULL;
duke@435 2705
duke@435 2706 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
duke@435 2707 // at 'requested_addr'. If there are existing memory mappings at the same
duke@435 2708 // location, however, they will be overwritten. If 'fixed' is false,
duke@435 2709 // 'requested_addr' is only treated as a hint, the return value may or
duke@435 2710 // may not start from the requested address. Unlike Linux mmap(), this
duke@435 2711 // function returns NULL to indicate failure.
duke@435 2712 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
duke@435 2713 char * addr;
duke@435 2714 int flags;
duke@435 2715
duke@435 2716 flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
duke@435 2717 if (fixed) {
duke@435 2718 assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
duke@435 2719 flags |= MAP_FIXED;
duke@435 2720 }
duke@435 2721
coleenp@1091 2722 // Map uncommitted pages PROT_READ and PROT_WRITE, change access
coleenp@1091 2723 // to PROT_EXEC if executable when we commit the page.
coleenp@1091 2724 addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
duke@435 2725 flags, -1, 0);
duke@435 2726
duke@435 2727 if (addr != MAP_FAILED) {
duke@435 2728 // anon_mmap() should only get called during VM initialization,
duke@435 2729 // don't need lock (actually we can skip locking even it can be called
duke@435 2730 // from multiple threads, because _highest_vm_reserved_address is just a
duke@435 2731 // hint about the upper limit of non-stack memory regions.)
duke@435 2732 if ((address)addr + bytes > _highest_vm_reserved_address) {
duke@435 2733 _highest_vm_reserved_address = (address)addr + bytes;
duke@435 2734 }
duke@435 2735 }
duke@435 2736
duke@435 2737 return addr == MAP_FAILED ? NULL : addr;
duke@435 2738 }
duke@435 2739
duke@435 2740 // Don't update _highest_vm_reserved_address, because there might be memory
duke@435 2741 // regions above addr + size. If so, releasing a memory region only creates
duke@435 2742 // a hole in the address space, it doesn't help prevent heap-stack collision.
duke@435 2743 //
duke@435 2744 static int anon_munmap(char * addr, size_t size) {
duke@435 2745 return ::munmap(addr, size) == 0;
duke@435 2746 }
duke@435 2747
duke@435 2748 char* os::reserve_memory(size_t bytes, char* requested_addr,
duke@435 2749 size_t alignment_hint) {
duke@435 2750 return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
duke@435 2751 }
duke@435 2752
duke@435 2753 bool os::release_memory(char* addr, size_t size) {
duke@435 2754 return anon_munmap(addr, size);
duke@435 2755 }
duke@435 2756
duke@435 2757 static address highest_vm_reserved_address() {
duke@435 2758 return _highest_vm_reserved_address;
duke@435 2759 }
duke@435 2760
duke@435 2761 static bool linux_mprotect(char* addr, size_t size, int prot) {
duke@435 2762 // Linux wants the mprotect address argument to be page aligned.
duke@435 2763 char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
duke@435 2764
duke@435 2765 // According to SUSv3, mprotect() should only be used with mappings
duke@435 2766 // established by mmap(), and mmap() always maps whole pages. Unaligned
duke@435 2767 // 'addr' likely indicates problem in the VM (e.g. trying to change
duke@435 2768 // protection of malloc'ed or statically allocated memory). Check the
duke@435 2769 // caller if you hit this assert.
duke@435 2770 assert(addr == bottom, "sanity check");
duke@435 2771
duke@435 2772 size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
duke@435 2773 return ::mprotect(bottom, size, prot) == 0;
duke@435 2774 }
duke@435 2775
coleenp@672 2776 // Set protections specified
coleenp@672 2777 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 2778 bool is_committed) {
coleenp@672 2779 unsigned int p = 0;
coleenp@672 2780 switch (prot) {
coleenp@672 2781 case MEM_PROT_NONE: p = PROT_NONE; break;
coleenp@672 2782 case MEM_PROT_READ: p = PROT_READ; break;
coleenp@672 2783 case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
coleenp@672 2784 case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
coleenp@672 2785 default:
coleenp@672 2786 ShouldNotReachHere();
coleenp@672 2787 }
coleenp@672 2788 // is_committed is unused.
coleenp@672 2789 return linux_mprotect(addr, bytes, p);
duke@435 2790 }
duke@435 2791
duke@435 2792 bool os::guard_memory(char* addr, size_t size) {
duke@435 2793 return linux_mprotect(addr, size, PROT_NONE);
duke@435 2794 }
duke@435 2795
duke@435 2796 bool os::unguard_memory(char* addr, size_t size) {
coleenp@912 2797 return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
duke@435 2798 }
duke@435 2799
duke@435 2800 // Large page support
duke@435 2801
duke@435 2802 static size_t _large_page_size = 0;
duke@435 2803
duke@435 2804 bool os::large_page_init() {
duke@435 2805 if (!UseLargePages) return false;
duke@435 2806
duke@435 2807 if (LargePageSizeInBytes) {
duke@435 2808 _large_page_size = LargePageSizeInBytes;
duke@435 2809 } else {
duke@435 2810 // large_page_size on Linux is used to round up heap size. x86 uses either
duke@435 2811 // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
duke@435 2812 // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
duke@435 2813 // page as large as 256M.
duke@435 2814 //
duke@435 2815 // Here we try to figure out page size by parsing /proc/meminfo and looking
duke@435 2816 // for a line with the following format:
duke@435 2817 // Hugepagesize: 2048 kB
duke@435 2818 //
duke@435 2819 // If we can't determine the value (e.g. /proc is not mounted, or the text
duke@435 2820 // format has been changed), we'll use the largest page size supported by
duke@435 2821 // the processor.
duke@435 2822
never@1445 2823 #ifndef ZERO
bobv@2036 2824 _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
bobv@2036 2825 ARM_ONLY(2 * M) PPC_ONLY(4 * M);
never@1445 2826 #endif // ZERO
duke@435 2827
duke@435 2828 FILE *fp = fopen("/proc/meminfo", "r");
duke@435 2829 if (fp) {
duke@435 2830 while (!feof(fp)) {
duke@435 2831 int x = 0;
duke@435 2832 char buf[16];
duke@435 2833 if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
duke@435 2834 if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
duke@435 2835 _large_page_size = x * K;
duke@435 2836 break;
duke@435 2837 }
duke@435 2838 } else {
duke@435 2839 // skip to next line
duke@435 2840 for (;;) {
duke@435 2841 int ch = fgetc(fp);
duke@435 2842 if (ch == EOF || ch == (int)'\n') break;
duke@435 2843 }
duke@435 2844 }
duke@435 2845 }
duke@435 2846 fclose(fp);
duke@435 2847 }
duke@435 2848 }
duke@435 2849
duke@435 2850 const size_t default_page_size = (size_t)Linux::page_size();
duke@435 2851 if (_large_page_size > default_page_size) {
duke@435 2852 _page_sizes[0] = _large_page_size;
duke@435 2853 _page_sizes[1] = default_page_size;
duke@435 2854 _page_sizes[2] = 0;
duke@435 2855 }
duke@435 2856
duke@435 2857 // Large page support is available on 2.6 or newer kernel, some vendors
duke@435 2858 // (e.g. Redhat) have backported it to their 2.4 based distributions.
duke@435 2859 // We optimistically assume the support is available. If later it turns out
duke@435 2860 // not true, VM will automatically switch to use regular page size.
duke@435 2861 return true;
duke@435 2862 }
duke@435 2863
duke@435 2864 #ifndef SHM_HUGETLB
duke@435 2865 #define SHM_HUGETLB 04000
duke@435 2866 #endif
duke@435 2867
coleenp@1091 2868 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
coleenp@1091 2869 // "exec" is passed in but not used. Creating the shared image for
coleenp@1091 2870 // the code cache doesn't have an SHM_X executable permission to check.
duke@435 2871 assert(UseLargePages, "only for large pages");
duke@435 2872
duke@435 2873 key_t key = IPC_PRIVATE;
duke@435 2874 char *addr;
duke@435 2875
duke@435 2876 bool warn_on_failure = UseLargePages &&
duke@435 2877 (!FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 2878 !FLAG_IS_DEFAULT(LargePageSizeInBytes)
duke@435 2879 );
duke@435 2880 char msg[128];
duke@435 2881
duke@435 2882 // Create a large shared memory region to attach to based on size.
duke@435 2883 // Currently, size is the total size of the heap
duke@435 2884 int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
duke@435 2885 if (shmid == -1) {
duke@435 2886 // Possible reasons for shmget failure:
duke@435 2887 // 1. shmmax is too small for Java heap.
duke@435 2888 // > check shmmax value: cat /proc/sys/kernel/shmmax
duke@435 2889 // > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
duke@435 2890 // 2. not enough large page memory.
duke@435 2891 // > check available large pages: cat /proc/meminfo
duke@435 2892 // > increase amount of large pages:
duke@435 2893 // echo new_value > /proc/sys/vm/nr_hugepages
duke@435 2894 // Note 1: different Linux may use different name for this property,
duke@435 2895 // e.g. on Redhat AS-3 it is "hugetlb_pool".
duke@435 2896 // Note 2: it's possible there's enough physical memory available but
duke@435 2897 // they are so fragmented after a long run that they can't
duke@435 2898 // coalesce into large pages. Try to reserve large pages when
duke@435 2899 // the system is still "fresh".
duke@435 2900 if (warn_on_failure) {
duke@435 2901 jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
duke@435 2902 warning(msg);
duke@435 2903 }
duke@435 2904 return NULL;
duke@435 2905 }
duke@435 2906
duke@435 2907 // attach to the region
kvn@1892 2908 addr = (char*)shmat(shmid, req_addr, 0);
duke@435 2909 int err = errno;
duke@435 2910
duke@435 2911 // Remove shmid. If shmat() is successful, the actual shared memory segment
duke@435 2912 // will be deleted when it's detached by shmdt() or when the process
duke@435 2913 // terminates. If shmat() is not successful this will remove the shared
duke@435 2914 // segment immediately.
duke@435 2915 shmctl(shmid, IPC_RMID, NULL);
duke@435 2916
duke@435 2917 if ((intptr_t)addr == -1) {
duke@435 2918 if (warn_on_failure) {
duke@435 2919 jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
duke@435 2920 warning(msg);
duke@435 2921 }
duke@435 2922 return NULL;
duke@435 2923 }
duke@435 2924
duke@435 2925 return addr;
duke@435 2926 }
duke@435 2927
duke@435 2928 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 2929 // detaching the SHM segment will also delete it, see reserve_memory_special()
duke@435 2930 int rslt = shmdt(base);
duke@435 2931 return rslt == 0;
duke@435 2932 }
duke@435 2933
duke@435 2934 size_t os::large_page_size() {
duke@435 2935 return _large_page_size;
duke@435 2936 }
duke@435 2937
duke@435 2938 // Linux does not support anonymous mmap with large page memory. The only way
duke@435 2939 // to reserve large page memory without file backing is through SysV shared
duke@435 2940 // memory API. The entire memory region is committed and pinned upfront.
duke@435 2941 // Hopefully this will change in the future...
duke@435 2942 bool os::can_commit_large_page_memory() {
duke@435 2943 return false;
duke@435 2944 }
duke@435 2945
jcoomes@514 2946 bool os::can_execute_large_page_memory() {
jcoomes@514 2947 return false;
jcoomes@514 2948 }
jcoomes@514 2949
duke@435 2950 // Reserve memory at an arbitrary address, only if that area is
duke@435 2951 // available (and not reserved for something else).
duke@435 2952
duke@435 2953 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 2954 const int max_tries = 10;
duke@435 2955 char* base[max_tries];
duke@435 2956 size_t size[max_tries];
duke@435 2957 const size_t gap = 0x000000;
duke@435 2958
duke@435 2959 // Assert only that the size is a multiple of the page size, since
duke@435 2960 // that's all that mmap requires, and since that's all we really know
duke@435 2961 // about at this low abstraction level. If we need higher alignment,
duke@435 2962 // we can either pass an alignment to this method or verify alignment
duke@435 2963 // in one of the methods further up the call chain. See bug 5044738.
duke@435 2964 assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
duke@435 2965
duke@435 2966 // Repeatedly allocate blocks until the block is allocated at the
duke@435 2967 // right spot. Give up after max_tries. Note that reserve_memory() will
duke@435 2968 // automatically update _highest_vm_reserved_address if the call is
duke@435 2969 // successful. The variable tracks the highest memory address every reserved
duke@435 2970 // by JVM. It is used to detect heap-stack collision if running with
duke@435 2971 // fixed-stack LinuxThreads. Because here we may attempt to reserve more
duke@435 2972 // space than needed, it could confuse the collision detecting code. To
duke@435 2973 // solve the problem, save current _highest_vm_reserved_address and
duke@435 2974 // calculate the correct value before return.
duke@435 2975 address old_highest = _highest_vm_reserved_address;
duke@435 2976
duke@435 2977 // Linux mmap allows caller to pass an address as hint; give it a try first,
duke@435 2978 // if kernel honors the hint then we can return immediately.
duke@435 2979 char * addr = anon_mmap(requested_addr, bytes, false);
duke@435 2980 if (addr == requested_addr) {
duke@435 2981 return requested_addr;
duke@435 2982 }
duke@435 2983
duke@435 2984 if (addr != NULL) {
duke@435 2985 // mmap() is successful but it fails to reserve at the requested address
duke@435 2986 anon_munmap(addr, bytes);
duke@435 2987 }
duke@435 2988
duke@435 2989 int i;
duke@435 2990 for (i = 0; i < max_tries; ++i) {
duke@435 2991 base[i] = reserve_memory(bytes);
duke@435 2992
duke@435 2993 if (base[i] != NULL) {
duke@435 2994 // Is this the block we wanted?
duke@435 2995 if (base[i] == requested_addr) {
duke@435 2996 size[i] = bytes;
duke@435 2997 break;
duke@435 2998 }
duke@435 2999
duke@435 3000 // Does this overlap the block we wanted? Give back the overlapped
duke@435 3001 // parts and try again.
duke@435 3002
duke@435 3003 size_t top_overlap = requested_addr + (bytes + gap) - base[i];
duke@435 3004 if (top_overlap >= 0 && top_overlap < bytes) {
duke@435 3005 unmap_memory(base[i], top_overlap);
duke@435 3006 base[i] += top_overlap;
duke@435 3007 size[i] = bytes - top_overlap;
duke@435 3008 } else {
duke@435 3009 size_t bottom_overlap = base[i] + bytes - requested_addr;
duke@435 3010 if (bottom_overlap >= 0 && bottom_overlap < bytes) {
duke@435 3011 unmap_memory(requested_addr, bottom_overlap);
duke@435 3012 size[i] = bytes - bottom_overlap;
duke@435 3013 } else {
duke@435 3014 size[i] = bytes;
duke@435 3015 }
duke@435 3016 }
duke@435 3017 }
duke@435 3018 }
duke@435 3019
duke@435 3020 // Give back the unused reserved pieces.
duke@435 3021
duke@435 3022 for (int j = 0; j < i; ++j) {
duke@435 3023 if (base[j] != NULL) {
duke@435 3024 unmap_memory(base[j], size[j]);
duke@435 3025 }
duke@435 3026 }
duke@435 3027
duke@435 3028 if (i < max_tries) {
duke@435 3029 _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
duke@435 3030 return requested_addr;
duke@435 3031 } else {
duke@435 3032 _highest_vm_reserved_address = old_highest;
duke@435 3033 return NULL;
duke@435 3034 }
duke@435 3035 }
duke@435 3036
duke@435 3037 size_t os::read(int fd, void *buf, unsigned int nBytes) {
duke@435 3038 return ::read(fd, buf, nBytes);
duke@435 3039 }
duke@435 3040
duke@435 3041 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
duke@435 3042 // Solaris uses poll(), linux uses park().
duke@435 3043 // Poll() is likely a better choice, assuming that Thread.interrupt()
duke@435 3044 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
duke@435 3045 // SIGSEGV, see 4355769.
duke@435 3046
duke@435 3047 const int NANOSECS_PER_MILLISECS = 1000000;
duke@435 3048
duke@435 3049 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
duke@435 3050 assert(thread == Thread::current(), "thread consistency check");
duke@435 3051
duke@435 3052 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 3053 slp->reset() ;
duke@435 3054 OrderAccess::fence() ;
duke@435 3055
duke@435 3056 if (interruptible) {
duke@435 3057 jlong prevtime = javaTimeNanos();
duke@435 3058
duke@435 3059 for (;;) {
duke@435 3060 if (os::is_interrupted(thread, true)) {
duke@435 3061 return OS_INTRPT;
duke@435 3062 }
duke@435 3063
duke@435 3064 jlong newtime = javaTimeNanos();
duke@435 3065
duke@435 3066 if (newtime - prevtime < 0) {
duke@435 3067 // time moving backwards, should only happen if no monotonic clock
duke@435 3068 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 3069 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 3070 } else {
duke@435 3071 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 3072 }
duke@435 3073
duke@435 3074 if(millis <= 0) {
duke@435 3075 return OS_OK;
duke@435 3076 }
duke@435 3077
duke@435 3078 prevtime = newtime;
duke@435 3079
duke@435 3080 {
duke@435 3081 assert(thread->is_Java_thread(), "sanity check");
duke@435 3082 JavaThread *jt = (JavaThread *) thread;
duke@435 3083 ThreadBlockInVM tbivm(jt);
duke@435 3084 OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
duke@435 3085
duke@435 3086 jt->set_suspend_equivalent();
duke@435 3087 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 3088 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 3089
duke@435 3090 slp->park(millis);
duke@435 3091
duke@435 3092 // were we externally suspended while we were waiting?
duke@435 3093 jt->check_and_wait_while_suspended();
duke@435 3094 }
duke@435 3095 }
duke@435 3096 } else {
duke@435 3097 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 3098 jlong prevtime = javaTimeNanos();
duke@435 3099
duke@435 3100 for (;;) {
duke@435 3101 // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
duke@435 3102 // the 1st iteration ...
duke@435 3103 jlong newtime = javaTimeNanos();
duke@435 3104
duke@435 3105 if (newtime - prevtime < 0) {
duke@435 3106 // time moving backwards, should only happen if no monotonic clock
duke@435 3107 // not a guarantee() because JVM should not abort on kernel/glibc bugs
duke@435 3108 assert(!Linux::supports_monotonic_clock(), "time moving backwards");
duke@435 3109 } else {
duke@435 3110 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
duke@435 3111 }
duke@435 3112
duke@435 3113 if(millis <= 0) break ;
duke@435 3114
duke@435 3115 prevtime = newtime;
duke@435 3116 slp->park(millis);
duke@435 3117 }
duke@435 3118 return OS_OK ;
duke@435 3119 }
duke@435 3120 }
duke@435 3121
duke@435 3122 int os::naked_sleep() {
duke@435 3123 // %% make the sleep time an integer flag. for now use 1 millisec.
duke@435 3124 return os::sleep(Thread::current(), 1, false);
duke@435 3125 }
duke@435 3126
duke@435 3127 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 3128 void os::infinite_sleep() {
duke@435 3129 while (true) { // sleep forever ...
duke@435 3130 ::sleep(100); // ... 100 seconds at a time
duke@435 3131 }
duke@435 3132 }
duke@435 3133
duke@435 3134 // Used to convert frequent JVM_Yield() to nops
duke@435 3135 bool os::dont_yield() {
duke@435 3136 return DontYieldALot;
duke@435 3137 }
duke@435 3138
duke@435 3139 void os::yield() {
duke@435 3140 sched_yield();
duke@435 3141 }
duke@435 3142
duke@435 3143 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
duke@435 3144
duke@435 3145 void os::yield_all(int attempts) {
duke@435 3146 // Yields to all threads, including threads with lower priorities
duke@435 3147 // Threads on Linux are all with same priority. The Solaris style
duke@435 3148 // os::yield_all() with nanosleep(1ms) is not necessary.
duke@435 3149 sched_yield();
duke@435 3150 }
duke@435 3151
duke@435 3152 // Called from the tight loops to possibly influence time-sharing heuristics
duke@435 3153 void os::loop_breaker(int attempts) {
duke@435 3154 os::yield_all(attempts);
duke@435 3155 }
duke@435 3156
duke@435 3157 ////////////////////////////////////////////////////////////////////////////////
duke@435 3158 // thread priority support
duke@435 3159
duke@435 3160 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
duke@435 3161 // only supports dynamic priority, static priority must be zero. For real-time
duke@435 3162 // applications, Linux supports SCHED_RR which allows static priority (1-99).
duke@435 3163 // However, for large multi-threaded applications, SCHED_RR is not only slower
duke@435 3164 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
duke@435 3165 // of 5 runs - Sep 2005).
duke@435 3166 //
duke@435 3167 // The following code actually changes the niceness of kernel-thread/LWP. It
duke@435 3168 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
duke@435 3169 // not the entire user process, and user level threads are 1:1 mapped to kernel
duke@435 3170 // threads. It has always been the case, but could change in the future. For
duke@435 3171 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
duke@435 3172 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
duke@435 3173
duke@435 3174 int os::java_to_os_priority[MaxPriority + 1] = {
duke@435 3175 19, // 0 Entry should never be used
duke@435 3176
duke@435 3177 4, // 1 MinPriority
duke@435 3178 3, // 2
duke@435 3179 2, // 3
duke@435 3180
duke@435 3181 1, // 4
duke@435 3182 0, // 5 NormPriority
duke@435 3183 -1, // 6
duke@435 3184
duke@435 3185 -2, // 7
duke@435 3186 -3, // 8
duke@435 3187 -4, // 9 NearMaxPriority
duke@435 3188
duke@435 3189 -5 // 10 MaxPriority
duke@435 3190 };
duke@435 3191
duke@435 3192 static int prio_init() {
duke@435 3193 if (ThreadPriorityPolicy == 1) {
duke@435 3194 // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
duke@435 3195 // if effective uid is not root. Perhaps, a more elegant way of doing
duke@435 3196 // this is to test CAP_SYS_NICE capability, but that will require libcap.so
duke@435 3197 if (geteuid() != 0) {
duke@435 3198 if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
duke@435 3199 warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
duke@435 3200 }
duke@435 3201 ThreadPriorityPolicy = 0;
duke@435 3202 }
duke@435 3203 }
duke@435 3204 return 0;
duke@435 3205 }
duke@435 3206
duke@435 3207 OSReturn os::set_native_priority(Thread* thread, int newpri) {
duke@435 3208 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
duke@435 3209
duke@435 3210 int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
duke@435 3211 return (ret == 0) ? OS_OK : OS_ERR;
duke@435 3212 }
duke@435 3213
duke@435 3214 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
duke@435 3215 if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
duke@435 3216 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 3217 return OS_OK;
duke@435 3218 }
duke@435 3219
duke@435 3220 errno = 0;
duke@435 3221 *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
duke@435 3222 return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
duke@435 3223 }
duke@435 3224
duke@435 3225 // Hint to the underlying OS that a task switch would not be good.
duke@435 3226 // Void return because it's a hint and can fail.
duke@435 3227 void os::hint_no_preempt() {}
duke@435 3228
duke@435 3229 ////////////////////////////////////////////////////////////////////////////////
duke@435 3230 // suspend/resume support
duke@435 3231
duke@435 3232 // the low-level signal-based suspend/resume support is a remnant from the
duke@435 3233 // old VM-suspension that used to be for java-suspension, safepoints etc,
duke@435 3234 // within hotspot. Now there is a single use-case for this:
duke@435 3235 // - calling get_thread_pc() on the VMThread by the flat-profiler task
duke@435 3236 // that runs in the watcher thread.
duke@435 3237 // The remaining code is greatly simplified from the more general suspension
duke@435 3238 // code that used to be used.
duke@435 3239 //
duke@435 3240 // The protocol is quite simple:
duke@435 3241 // - suspend:
duke@435 3242 // - sends a signal to the target thread
duke@435 3243 // - polls the suspend state of the osthread using a yield loop
duke@435 3244 // - target thread signal handler (SR_handler) sets suspend state
duke@435 3245 // and blocks in sigsuspend until continued
duke@435 3246 // - resume:
duke@435 3247 // - sets target osthread state to continue
duke@435 3248 // - sends signal to end the sigsuspend loop in the SR_handler
duke@435 3249 //
duke@435 3250 // Note that the SR_lock plays no role in this suspend/resume protocol.
duke@435 3251 //
duke@435 3252
duke@435 3253 static void resume_clear_context(OSThread *osthread) {
duke@435 3254 osthread->set_ucontext(NULL);
duke@435 3255 osthread->set_siginfo(NULL);
duke@435 3256
duke@435 3257 // notify the suspend action is completed, we have now resumed
duke@435 3258 osthread->sr.clear_suspended();
duke@435 3259 }
duke@435 3260
duke@435 3261 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3262 osthread->set_ucontext(context);
duke@435 3263 osthread->set_siginfo(siginfo);
duke@435 3264 }
duke@435 3265
duke@435 3266 //
duke@435 3267 // Handler function invoked when a thread's execution is suspended or
duke@435 3268 // resumed. We have to be careful that only async-safe functions are
duke@435 3269 // called here (Note: most pthread functions are not async safe and
duke@435 3270 // should be avoided.)
duke@435 3271 //
duke@435 3272 // Note: sigwait() is a more natural fit than sigsuspend() from an
duke@435 3273 // interface point of view, but sigwait() prevents the signal hander
duke@435 3274 // from being run. libpthread would get very confused by not having
duke@435 3275 // its signal handlers run and prevents sigwait()'s use with the
duke@435 3276 // mutex granting granting signal.
duke@435 3277 //
duke@435 3278 // Currently only ever called on the VMThread
duke@435 3279 //
duke@435 3280 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
duke@435 3281 // Save and restore errno to avoid confusing native code with EINTR
duke@435 3282 // after sigsuspend.
duke@435 3283 int old_errno = errno;
duke@435 3284
duke@435 3285 Thread* thread = Thread::current();
duke@435 3286 OSThread* osthread = thread->osthread();
duke@435 3287 assert(thread->is_VM_thread(), "Must be VMThread");
duke@435 3288 // read current suspend action
duke@435 3289 int action = osthread->sr.suspend_action();
duke@435 3290 if (action == SR_SUSPEND) {
duke@435 3291 suspend_save_context(osthread, siginfo, context);
duke@435 3292
duke@435 3293 // Notify the suspend action is about to be completed. do_suspend()
duke@435 3294 // waits until SR_SUSPENDED is set and then returns. We will wait
duke@435 3295 // here for a resume signal and that completes the suspend-other
duke@435 3296 // action. do_suspend/do_resume is always called as a pair from
duke@435 3297 // the same thread - so there are no races
duke@435 3298
duke@435 3299 // notify the caller
duke@435 3300 osthread->sr.set_suspended();
duke@435 3301
duke@435 3302 sigset_t suspend_set; // signals for sigsuspend()
duke@435 3303
duke@435 3304 // get current set of blocked signals and unblock resume signal
duke@435 3305 pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
duke@435 3306 sigdelset(&suspend_set, SR_signum);
duke@435 3307
duke@435 3308 // wait here until we are resumed
duke@435 3309 do {
duke@435 3310 sigsuspend(&suspend_set);
duke@435 3311 // ignore all returns until we get a resume signal
duke@435 3312 } while (osthread->sr.suspend_action() != SR_CONTINUE);
duke@435 3313
duke@435 3314 resume_clear_context(osthread);
duke@435 3315
duke@435 3316 } else {
duke@435 3317 assert(action == SR_CONTINUE, "unexpected sr action");
duke@435 3318 // nothing special to do - just leave the handler
duke@435 3319 }
duke@435 3320
duke@435 3321 errno = old_errno;
duke@435 3322 }
duke@435 3323
duke@435 3324
duke@435 3325 static int SR_initialize() {
duke@435 3326 struct sigaction act;
duke@435 3327 char *s;
duke@435 3328 /* Get signal number to use for suspend/resume */
duke@435 3329 if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
duke@435 3330 int sig = ::strtol(s, 0, 10);
duke@435 3331 if (sig > 0 || sig < _NSIG) {
duke@435 3332 SR_signum = sig;
duke@435 3333 }
duke@435 3334 }
duke@435 3335
duke@435 3336 assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
duke@435 3337 "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
duke@435 3338
duke@435 3339 sigemptyset(&SR_sigset);
duke@435 3340 sigaddset(&SR_sigset, SR_signum);
duke@435 3341
duke@435 3342 /* Set up signal handler for suspend/resume */
duke@435 3343 act.sa_flags = SA_RESTART|SA_SIGINFO;
duke@435 3344 act.sa_handler = (void (*)(int)) SR_handler;
duke@435 3345
duke@435 3346 // SR_signum is blocked by default.
duke@435 3347 // 4528190 - We also need to block pthread restart signal (32 on all
duke@435 3348 // supported Linux platforms). Note that LinuxThreads need to block
duke@435 3349 // this signal for all threads to work properly. So we don't have
duke@435 3350 // to use hard-coded signal number when setting up the mask.
duke@435 3351 pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
duke@435 3352
duke@435 3353 if (sigaction(SR_signum, &act, 0) == -1) {
duke@435 3354 return -1;
duke@435 3355 }
duke@435 3356
duke@435 3357 // Save signal flag
duke@435 3358 os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
duke@435 3359 return 0;
duke@435 3360 }
duke@435 3361
duke@435 3362 static int SR_finalize() {
duke@435 3363 return 0;
duke@435 3364 }
duke@435 3365
duke@435 3366
duke@435 3367 // returns true on success and false on error - really an error is fatal
duke@435 3368 // but this seems the normal response to library errors
duke@435 3369 static bool do_suspend(OSThread* osthread) {
duke@435 3370 // mark as suspended and send signal
duke@435 3371 osthread->sr.set_suspend_action(SR_SUSPEND);
duke@435 3372 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3373 assert_status(status == 0, status, "pthread_kill");
duke@435 3374
duke@435 3375 // check status and wait until notified of suspension
duke@435 3376 if (status == 0) {
duke@435 3377 for (int i = 0; !osthread->sr.is_suspended(); i++) {
duke@435 3378 os::yield_all(i);
duke@435 3379 }
duke@435 3380 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3381 return true;
duke@435 3382 }
duke@435 3383 else {
duke@435 3384 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3385 return false;
duke@435 3386 }
duke@435 3387 }
duke@435 3388
duke@435 3389 static void do_resume(OSThread* osthread) {
duke@435 3390 assert(osthread->sr.is_suspended(), "thread should be suspended");
duke@435 3391 osthread->sr.set_suspend_action(SR_CONTINUE);
duke@435 3392
duke@435 3393 int status = pthread_kill(osthread->pthread_id(), SR_signum);
duke@435 3394 assert_status(status == 0, status, "pthread_kill");
duke@435 3395 // check status and wait unit notified of resumption
duke@435 3396 if (status == 0) {
duke@435 3397 for (int i = 0; osthread->sr.is_suspended(); i++) {
duke@435 3398 os::yield_all(i);
duke@435 3399 }
duke@435 3400 }
duke@435 3401 osthread->sr.set_suspend_action(SR_NONE);
duke@435 3402 }
duke@435 3403
duke@435 3404 ////////////////////////////////////////////////////////////////////////////////
duke@435 3405 // interrupt support
duke@435 3406
duke@435 3407 void os::interrupt(Thread* thread) {
duke@435 3408 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3409 "possibility of dangling Thread pointer");
duke@435 3410
duke@435 3411 OSThread* osthread = thread->osthread();
duke@435 3412
duke@435 3413 if (!osthread->interrupted()) {
duke@435 3414 osthread->set_interrupted(true);
duke@435 3415 // More than one thread can get here with the same value of osthread,
duke@435 3416 // resulting in multiple notifications. We do, however, want the store
duke@435 3417 // to interrupted() to be visible to other threads before we execute unpark().
duke@435 3418 OrderAccess::fence();
duke@435 3419 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 3420 if (slp != NULL) slp->unpark() ;
duke@435 3421 }
duke@435 3422
duke@435 3423 // For JSR166. Unpark even if interrupt status already was set
duke@435 3424 if (thread->is_Java_thread())
duke@435 3425 ((JavaThread*)thread)->parker()->unpark();
duke@435 3426
duke@435 3427 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3428 if (ev != NULL) ev->unpark() ;
duke@435 3429
duke@435 3430 }
duke@435 3431
duke@435 3432 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3433 assert(Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3434 "possibility of dangling Thread pointer");
duke@435 3435
duke@435 3436 OSThread* osthread = thread->osthread();
duke@435 3437
duke@435 3438 bool interrupted = osthread->interrupted();
duke@435 3439
duke@435 3440 if (interrupted && clear_interrupted) {
duke@435 3441 osthread->set_interrupted(false);
duke@435 3442 // consider thread->_SleepEvent->reset() ... optional optimization
duke@435 3443 }
duke@435 3444
duke@435 3445 return interrupted;
duke@435 3446 }
duke@435 3447
duke@435 3448 ///////////////////////////////////////////////////////////////////////////////////
duke@435 3449 // signal handling (except suspend/resume)
duke@435 3450
duke@435 3451 // This routine may be used by user applications as a "hook" to catch signals.
duke@435 3452 // The user-defined signal handler must pass unrecognized signals to this
duke@435 3453 // routine, and if it returns true (non-zero), then the signal handler must
duke@435 3454 // return immediately. If the flag "abort_if_unrecognized" is true, then this
duke@435 3455 // routine will never retun false (zero), but instead will execute a VM panic
duke@435 3456 // routine kill the process.
duke@435 3457 //
duke@435 3458 // If this routine returns false, it is OK to call it again. This allows
duke@435 3459 // the user-defined signal handler to perform checks either before or after
duke@435 3460 // the VM performs its own checks. Naturally, the user code would be making
duke@435 3461 // a serious error if it tried to handle an exception (such as a null check
duke@435 3462 // or breakpoint) that the VM was generating for its own correct operation.
duke@435 3463 //
duke@435 3464 // This routine may recognize any of the following kinds of signals:
duke@435 3465 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
duke@435 3466 // It should be consulted by handlers for any of those signals.
duke@435 3467 //
duke@435 3468 // The caller of this routine must pass in the three arguments supplied
duke@435 3469 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
duke@435 3470 // field of the structure passed to sigaction(). This routine assumes that
duke@435 3471 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
duke@435 3472 //
duke@435 3473 // Note that the VM will print warnings if it detects conflicting signal
duke@435 3474 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
duke@435 3475 //
duke@435 3476 extern "C" int
duke@435 3477 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
duke@435 3478 void* ucontext, int abort_if_unrecognized);
duke@435 3479
duke@435 3480 void signalHandler(int sig, siginfo_t* info, void* uc) {
duke@435 3481 assert(info != NULL && uc != NULL, "it must be old kernel");
duke@435 3482 JVM_handle_linux_signal(sig, info, uc, true);
duke@435 3483 }
duke@435 3484
duke@435 3485
duke@435 3486 // This boolean allows users to forward their own non-matching signals
duke@435 3487 // to JVM_handle_linux_signal, harmlessly.
duke@435 3488 bool os::Linux::signal_handlers_are_installed = false;
duke@435 3489
duke@435 3490 // For signal-chaining
duke@435 3491 struct sigaction os::Linux::sigact[MAXSIGNUM];
duke@435 3492 unsigned int os::Linux::sigs = 0;
duke@435 3493 bool os::Linux::libjsig_is_loaded = false;
duke@435 3494 typedef struct sigaction *(*get_signal_t)(int);
duke@435 3495 get_signal_t os::Linux::get_signal_action = NULL;
duke@435 3496
duke@435 3497 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
duke@435 3498 struct sigaction *actp = NULL;
duke@435 3499
duke@435 3500 if (libjsig_is_loaded) {
duke@435 3501 // Retrieve the old signal handler from libjsig
duke@435 3502 actp = (*get_signal_action)(sig);
duke@435 3503 }
duke@435 3504 if (actp == NULL) {
duke@435 3505 // Retrieve the preinstalled signal handler from jvm
duke@435 3506 actp = get_preinstalled_handler(sig);
duke@435 3507 }
duke@435 3508
duke@435 3509 return actp;
duke@435 3510 }
duke@435 3511
duke@435 3512 static bool call_chained_handler(struct sigaction *actp, int sig,
duke@435 3513 siginfo_t *siginfo, void *context) {
duke@435 3514 // Call the old signal handler
duke@435 3515 if (actp->sa_handler == SIG_DFL) {
duke@435 3516 // It's more reasonable to let jvm treat it as an unexpected exception
duke@435 3517 // instead of taking the default action.
duke@435 3518 return false;
duke@435 3519 } else if (actp->sa_handler != SIG_IGN) {
duke@435 3520 if ((actp->sa_flags & SA_NODEFER) == 0) {
duke@435 3521 // automaticlly block the signal
duke@435 3522 sigaddset(&(actp->sa_mask), sig);
duke@435 3523 }
duke@435 3524
duke@435 3525 sa_handler_t hand;
duke@435 3526 sa_sigaction_t sa;
duke@435 3527 bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
duke@435 3528 // retrieve the chained handler
duke@435 3529 if (siginfo_flag_set) {
duke@435 3530 sa = actp->sa_sigaction;
duke@435 3531 } else {
duke@435 3532 hand = actp->sa_handler;
duke@435 3533 }
duke@435 3534
duke@435 3535 if ((actp->sa_flags & SA_RESETHAND) != 0) {
duke@435 3536 actp->sa_handler = SIG_DFL;
duke@435 3537 }
duke@435 3538
duke@435 3539 // try to honor the signal mask
duke@435 3540 sigset_t oset;
duke@435 3541 pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
duke@435 3542
duke@435 3543 // call into the chained handler
duke@435 3544 if (siginfo_flag_set) {
duke@435 3545 (*sa)(sig, siginfo, context);
duke@435 3546 } else {
duke@435 3547 (*hand)(sig);
duke@435 3548 }
duke@435 3549
duke@435 3550 // restore the signal mask
duke@435 3551 pthread_sigmask(SIG_SETMASK, &oset, 0);
duke@435 3552 }
duke@435 3553 // Tell jvm's signal handler the signal is taken care of.
duke@435 3554 return true;
duke@435 3555 }
duke@435 3556
duke@435 3557 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
duke@435 3558 bool chained = false;
duke@435 3559 // signal-chaining
duke@435 3560 if (UseSignalChaining) {
duke@435 3561 struct sigaction *actp = get_chained_signal_action(sig);
duke@435 3562 if (actp != NULL) {
duke@435 3563 chained = call_chained_handler(actp, sig, siginfo, context);
duke@435 3564 }
duke@435 3565 }
duke@435 3566 return chained;
duke@435 3567 }
duke@435 3568
duke@435 3569 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
duke@435 3570 if ((( (unsigned int)1 << sig ) & sigs) != 0) {
duke@435 3571 return &sigact[sig];
duke@435 3572 }
duke@435 3573 return NULL;
duke@435 3574 }
duke@435 3575
duke@435 3576 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
duke@435 3577 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3578 sigact[sig] = oldAct;
duke@435 3579 sigs |= (unsigned int)1 << sig;
duke@435 3580 }
duke@435 3581
duke@435 3582 // for diagnostic
duke@435 3583 int os::Linux::sigflags[MAXSIGNUM];
duke@435 3584
duke@435 3585 int os::Linux::get_our_sigflags(int sig) {
duke@435 3586 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3587 return sigflags[sig];
duke@435 3588 }
duke@435 3589
duke@435 3590 void os::Linux::set_our_sigflags(int sig, int flags) {
duke@435 3591 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3592 sigflags[sig] = flags;
duke@435 3593 }
duke@435 3594
duke@435 3595 void os::Linux::set_signal_handler(int sig, bool set_installed) {
duke@435 3596 // Check for overwrite.
duke@435 3597 struct sigaction oldAct;
duke@435 3598 sigaction(sig, (struct sigaction*)NULL, &oldAct);
duke@435 3599
duke@435 3600 void* oldhand = oldAct.sa_sigaction
duke@435 3601 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3602 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3603 if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
duke@435 3604 oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
duke@435 3605 oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
duke@435 3606 if (AllowUserSignalHandlers || !set_installed) {
duke@435 3607 // Do not overwrite; user takes responsibility to forward to us.
duke@435 3608 return;
duke@435 3609 } else if (UseSignalChaining) {
duke@435 3610 // save the old handler in jvm
duke@435 3611 save_preinstalled_handler(sig, oldAct);
duke@435 3612 // libjsig also interposes the sigaction() call below and saves the
duke@435 3613 // old sigaction on it own.
duke@435 3614 } else {
jcoomes@1845 3615 fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
jcoomes@1845 3616 "%#lx for signal %d.", (long)oldhand, sig));
duke@435 3617 }
duke@435 3618 }
duke@435 3619
duke@435 3620 struct sigaction sigAct;
duke@435 3621 sigfillset(&(sigAct.sa_mask));
duke@435 3622 sigAct.sa_handler = SIG_DFL;
duke@435 3623 if (!set_installed) {
duke@435 3624 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3625 } else {
duke@435 3626 sigAct.sa_sigaction = signalHandler;
duke@435 3627 sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
duke@435 3628 }
duke@435 3629 // Save flags, which are set by ours
duke@435 3630 assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
duke@435 3631 sigflags[sig] = sigAct.sa_flags;
duke@435 3632
duke@435 3633 int ret = sigaction(sig, &sigAct, &oldAct);
duke@435 3634 assert(ret == 0, "check");
duke@435 3635
duke@435 3636 void* oldhand2 = oldAct.sa_sigaction
duke@435 3637 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 3638 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 3639 assert(oldhand2 == oldhand, "no concurrent signal handler installation");
duke@435 3640 }
duke@435 3641
duke@435 3642 // install signal handlers for signals that HotSpot needs to
duke@435 3643 // handle in order to support Java-level exception handling.
duke@435 3644
duke@435 3645 void os::Linux::install_signal_handlers() {
duke@435 3646 if (!signal_handlers_are_installed) {
duke@435 3647 signal_handlers_are_installed = true;
duke@435 3648
duke@435 3649 // signal-chaining
duke@435 3650 typedef void (*signal_setting_t)();
duke@435 3651 signal_setting_t begin_signal_setting = NULL;
duke@435 3652 signal_setting_t end_signal_setting = NULL;
duke@435 3653 begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3654 dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
duke@435 3655 if (begin_signal_setting != NULL) {
duke@435 3656 end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 3657 dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
duke@435 3658 get_signal_action = CAST_TO_FN_PTR(get_signal_t,
duke@435 3659 dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
duke@435 3660 libjsig_is_loaded = true;
duke@435 3661 assert(UseSignalChaining, "should enable signal-chaining");
duke@435 3662 }
duke@435 3663 if (libjsig_is_loaded) {
duke@435 3664 // Tell libjsig jvm is setting signal handlers
duke@435 3665 (*begin_signal_setting)();
duke@435 3666 }
duke@435 3667
duke@435 3668 set_signal_handler(SIGSEGV, true);
duke@435 3669 set_signal_handler(SIGPIPE, true);
duke@435 3670 set_signal_handler(SIGBUS, true);
duke@435 3671 set_signal_handler(SIGILL, true);
duke@435 3672 set_signal_handler(SIGFPE, true);
duke@435 3673 set_signal_handler(SIGXFSZ, true);
duke@435 3674
duke@435 3675 if (libjsig_is_loaded) {
duke@435 3676 // Tell libjsig jvm finishes setting signal handlers
duke@435 3677 (*end_signal_setting)();
duke@435 3678 }
duke@435 3679
duke@435 3680 // We don't activate signal checker if libjsig is in place, we trust ourselves
duke@435 3681 // and if UserSignalHandler is installed all bets are off
duke@435 3682 if (CheckJNICalls) {
duke@435 3683 if (libjsig_is_loaded) {
duke@435 3684 tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
duke@435 3685 check_signals = false;
duke@435 3686 }
duke@435 3687 if (AllowUserSignalHandlers) {
duke@435 3688 tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
duke@435 3689 check_signals = false;
duke@435 3690 }
duke@435 3691 }
duke@435 3692 }
duke@435 3693 }
duke@435 3694
duke@435 3695 // This is the fastest way to get thread cpu time on Linux.
duke@435 3696 // Returns cpu time (user+sys) for any thread, not only for current.
duke@435 3697 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
duke@435 3698 // It might work on 2.6.10+ with a special kernel/glibc patch.
duke@435 3699 // For reference, please, see IEEE Std 1003.1-2004:
duke@435 3700 // http://www.unix.org/single_unix_specification
duke@435 3701
duke@435 3702 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
duke@435 3703 struct timespec tp;
duke@435 3704 int rc = os::Linux::clock_gettime(clockid, &tp);
duke@435 3705 assert(rc == 0, "clock_gettime is expected to return 0 code");
duke@435 3706
duke@435 3707 return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
duke@435 3708 }
duke@435 3709
duke@435 3710 /////
duke@435 3711 // glibc on Linux platform uses non-documented flag
duke@435 3712 // to indicate, that some special sort of signal
duke@435 3713 // trampoline is used.
duke@435 3714 // We will never set this flag, and we should
duke@435 3715 // ignore this flag in our diagnostic
duke@435 3716 #ifdef SIGNIFICANT_SIGNAL_MASK
duke@435 3717 #undef SIGNIFICANT_SIGNAL_MASK
duke@435 3718 #endif
duke@435 3719 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
duke@435 3720
duke@435 3721 static const char* get_signal_handler_name(address handler,
duke@435 3722 char* buf, int buflen) {
duke@435 3723 int offset;
duke@435 3724 bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
duke@435 3725 if (found) {
duke@435 3726 // skip directory names
duke@435 3727 const char *p1, *p2;
duke@435 3728 p1 = buf;
duke@435 3729 size_t len = strlen(os::file_separator());
duke@435 3730 while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
duke@435 3731 jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
duke@435 3732 } else {
duke@435 3733 jio_snprintf(buf, buflen, PTR_FORMAT, handler);
duke@435 3734 }
duke@435 3735 return buf;
duke@435 3736 }
duke@435 3737
duke@435 3738 static void print_signal_handler(outputStream* st, int sig,
duke@435 3739 char* buf, size_t buflen) {
duke@435 3740 struct sigaction sa;
duke@435 3741
duke@435 3742 sigaction(sig, NULL, &sa);
duke@435 3743
duke@435 3744 // See comment for SIGNIFICANT_SIGNAL_MASK define
duke@435 3745 sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3746
duke@435 3747 st->print("%s: ", os::exception_name(sig, buf, buflen));
duke@435 3748
duke@435 3749 address handler = (sa.sa_flags & SA_SIGINFO)
duke@435 3750 ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
duke@435 3751 : CAST_FROM_FN_PTR(address, sa.sa_handler);
duke@435 3752
duke@435 3753 if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
duke@435 3754 st->print("SIG_DFL");
duke@435 3755 } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
duke@435 3756 st->print("SIG_IGN");
duke@435 3757 } else {
duke@435 3758 st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
duke@435 3759 }
duke@435 3760
duke@435 3761 st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
duke@435 3762
duke@435 3763 address rh = VMError::get_resetted_sighandler(sig);
duke@435 3764 // May be, handler was resetted by VMError?
duke@435 3765 if(rh != NULL) {
duke@435 3766 handler = rh;
duke@435 3767 sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
duke@435 3768 }
duke@435 3769
duke@435 3770 st->print(", sa_flags=" PTR32_FORMAT, sa.sa_flags);
duke@435 3771
duke@435 3772 // Check: is it our handler?
duke@435 3773 if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
duke@435 3774 handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
duke@435 3775 // It is our signal handler
duke@435 3776 // check for flags, reset system-used one!
duke@435 3777 if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 3778 st->print(
duke@435 3779 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
duke@435 3780 os::Linux::get_our_sigflags(sig));
duke@435 3781 }
duke@435 3782 }
duke@435 3783 st->cr();
duke@435 3784 }
duke@435 3785
duke@435 3786
duke@435 3787 #define DO_SIGNAL_CHECK(sig) \
duke@435 3788 if (!sigismember(&check_signal_done, sig)) \
duke@435 3789 os::Linux::check_signal_handler(sig)
duke@435 3790
duke@435 3791 // This method is a periodic task to check for misbehaving JNI applications
duke@435 3792 // under CheckJNI, we can add any periodic checks here
duke@435 3793
duke@435 3794 void os::run_periodic_checks() {
duke@435 3795
duke@435 3796 if (check_signals == false) return;
duke@435 3797
duke@435 3798 // SEGV and BUS if overridden could potentially prevent
duke@435 3799 // generation of hs*.log in the event of a crash, debugging
duke@435 3800 // such a case can be very challenging, so we absolutely
duke@435 3801 // check the following for a good measure:
duke@435 3802 DO_SIGNAL_CHECK(SIGSEGV);
duke@435 3803 DO_SIGNAL_CHECK(SIGILL);
duke@435 3804 DO_SIGNAL_CHECK(SIGFPE);
duke@435 3805 DO_SIGNAL_CHECK(SIGBUS);
duke@435 3806 DO_SIGNAL_CHECK(SIGPIPE);
duke@435 3807 DO_SIGNAL_CHECK(SIGXFSZ);
duke@435 3808
duke@435 3809
duke@435 3810 // ReduceSignalUsage allows the user to override these handlers
duke@435 3811 // see comments at the very top and jvm_solaris.h
duke@435 3812 if (!ReduceSignalUsage) {
duke@435 3813 DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
duke@435 3814 DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
duke@435 3815 DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
duke@435 3816 DO_SIGNAL_CHECK(BREAK_SIGNAL);
duke@435 3817 }
duke@435 3818
duke@435 3819 DO_SIGNAL_CHECK(SR_signum);
duke@435 3820 DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
duke@435 3821 }
duke@435 3822
duke@435 3823 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
duke@435 3824
duke@435 3825 static os_sigaction_t os_sigaction = NULL;
duke@435 3826
duke@435 3827 void os::Linux::check_signal_handler(int sig) {
duke@435 3828 char buf[O_BUFLEN];
duke@435 3829 address jvmHandler = NULL;
duke@435 3830
duke@435 3831
duke@435 3832 struct sigaction act;
duke@435 3833 if (os_sigaction == NULL) {
duke@435 3834 // only trust the default sigaction, in case it has been interposed
duke@435 3835 os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
duke@435 3836 if (os_sigaction == NULL) return;
duke@435 3837 }
duke@435 3838
duke@435 3839 os_sigaction(sig, (struct sigaction*)NULL, &act);
duke@435 3840
duke@435 3841
duke@435 3842 act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
duke@435 3843
duke@435 3844 address thisHandler = (act.sa_flags & SA_SIGINFO)
duke@435 3845 ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
duke@435 3846 : CAST_FROM_FN_PTR(address, act.sa_handler) ;
duke@435 3847
duke@435 3848
duke@435 3849 switch(sig) {
duke@435 3850 case SIGSEGV:
duke@435 3851 case SIGBUS:
duke@435 3852 case SIGFPE:
duke@435 3853 case SIGPIPE:
duke@435 3854 case SIGILL:
duke@435 3855 case SIGXFSZ:
duke@435 3856 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
duke@435 3857 break;
duke@435 3858
duke@435 3859 case SHUTDOWN1_SIGNAL:
duke@435 3860 case SHUTDOWN2_SIGNAL:
duke@435 3861 case SHUTDOWN3_SIGNAL:
duke@435 3862 case BREAK_SIGNAL:
duke@435 3863 jvmHandler = (address)user_handler();
duke@435 3864 break;
duke@435 3865
duke@435 3866 case INTERRUPT_SIGNAL:
duke@435 3867 jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
duke@435 3868 break;
duke@435 3869
duke@435 3870 default:
duke@435 3871 if (sig == SR_signum) {
duke@435 3872 jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
duke@435 3873 } else {
duke@435 3874 return;
duke@435 3875 }
duke@435 3876 break;
duke@435 3877 }
duke@435 3878
duke@435 3879 if (thisHandler != jvmHandler) {
duke@435 3880 tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
duke@435 3881 tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
duke@435 3882 tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
duke@435 3883 // No need to check this sig any longer
duke@435 3884 sigaddset(&check_signal_done, sig);
duke@435 3885 } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
duke@435 3886 tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
duke@435 3887 tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
duke@435 3888 tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
duke@435 3889 // No need to check this sig any longer
duke@435 3890 sigaddset(&check_signal_done, sig);
duke@435 3891 }
duke@435 3892
duke@435 3893 // Dump all the signal
duke@435 3894 if (sigismember(&check_signal_done, sig)) {
duke@435 3895 print_signal_handlers(tty, buf, O_BUFLEN);
duke@435 3896 }
duke@435 3897 }
duke@435 3898
duke@435 3899 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
duke@435 3900
duke@435 3901 extern bool signal_name(int signo, char* buf, size_t len);
duke@435 3902
duke@435 3903 const char* os::exception_name(int exception_code, char* buf, size_t size) {
duke@435 3904 if (0 < exception_code && exception_code <= SIGRTMAX) {
duke@435 3905 // signal
duke@435 3906 if (!signal_name(exception_code, buf, size)) {
duke@435 3907 jio_snprintf(buf, size, "SIG%d", exception_code);
duke@435 3908 }
duke@435 3909 return buf;
duke@435 3910 } else {
duke@435 3911 return NULL;
duke@435 3912 }
duke@435 3913 }
duke@435 3914
duke@435 3915 // this is called _before_ the most of global arguments have been parsed
duke@435 3916 void os::init(void) {
duke@435 3917 char dummy; /* used to get a guess on initial stack address */
duke@435 3918 // first_hrtime = gethrtime();
duke@435 3919
duke@435 3920 // With LinuxThreads the JavaMain thread pid (primordial thread)
duke@435 3921 // is different than the pid of the java launcher thread.
duke@435 3922 // So, on Linux, the launcher thread pid is passed to the VM
duke@435 3923 // via the sun.java.launcher.pid property.
duke@435 3924 // Use this property instead of getpid() if it was correctly passed.
duke@435 3925 // See bug 6351349.
duke@435 3926 pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
duke@435 3927
duke@435 3928 _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
duke@435 3929
duke@435 3930 clock_tics_per_sec = sysconf(_SC_CLK_TCK);
duke@435 3931
duke@435 3932 init_random(1234567);
duke@435 3933
duke@435 3934 ThreadCritical::initialize();
duke@435 3935
duke@435 3936 Linux::set_page_size(sysconf(_SC_PAGESIZE));
duke@435 3937 if (Linux::page_size() == -1) {
jcoomes@1845 3938 fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
jcoomes@1845 3939 strerror(errno)));
duke@435 3940 }
duke@435 3941 init_page_sizes((size_t) Linux::page_size());
duke@435 3942
duke@435 3943 Linux::initialize_system_info();
duke@435 3944
duke@435 3945 // main_thread points to the aboriginal thread
duke@435 3946 Linux::_main_thread = pthread_self();
duke@435 3947
duke@435 3948 Linux::clock_init();
duke@435 3949 initial_time_count = os::elapsed_counter();
kamg@677 3950 pthread_mutex_init(&dl_mutex, NULL);
duke@435 3951 }
duke@435 3952
duke@435 3953 // To install functions for atexit system call
duke@435 3954 extern "C" {
duke@435 3955 static void perfMemory_exit_helper() {
duke@435 3956 perfMemory_exit();
duke@435 3957 }
duke@435 3958 }
duke@435 3959
duke@435 3960 // this is called _after_ the global arguments have been parsed
duke@435 3961 jint os::init_2(void)
duke@435 3962 {
duke@435 3963 Linux::fast_thread_clock_init();
duke@435 3964
duke@435 3965 // Allocate a single page and mark it as readable for safepoint polling
duke@435 3966 address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 3967 guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
duke@435 3968
duke@435 3969 os::set_polling_page( polling_page );
duke@435 3970
duke@435 3971 #ifndef PRODUCT
duke@435 3972 if(Verbose && PrintMiscellaneous)
duke@435 3973 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 3974 #endif
duke@435 3975
duke@435 3976 if (!UseMembar) {
duke@435 3977 address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
duke@435 3978 guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
duke@435 3979 os::set_memory_serialize_page( mem_serialize_page );
duke@435 3980
duke@435 3981 #ifndef PRODUCT
duke@435 3982 if(Verbose && PrintMiscellaneous)
duke@435 3983 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 3984 #endif
duke@435 3985 }
duke@435 3986
duke@435 3987 FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
duke@435 3988
duke@435 3989 // initialize suspend/resume support - must do this before signal_sets_init()
duke@435 3990 if (SR_initialize() != 0) {
duke@435 3991 perror("SR_initialize failed");
duke@435 3992 return JNI_ERR;
duke@435 3993 }
duke@435 3994
duke@435 3995 Linux::signal_sets_init();
duke@435 3996 Linux::install_signal_handlers();
duke@435 3997
coleenp@2222 3998 // Check minimum allowable stack size for thread creation and to initialize
coleenp@2222 3999 // the java system classes, including StackOverflowError - depends on page
coleenp@2222 4000 // size. Add a page for compiler2 recursion in main thread.
coleenp@2222 4001 // Add in 2*BytesPerWord times page size to account for VM stack during
coleenp@2222 4002 // class initialization depending on 32 or 64 bit VM.
coleenp@2222 4003 os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
coleenp@2222 4004 (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
coleenp@2222 4005 2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
coleenp@2222 4006
duke@435 4007 size_t threadStackSizeInBytes = ThreadStackSize * K;
duke@435 4008 if (threadStackSizeInBytes != 0 &&
coleenp@2222 4009 threadStackSizeInBytes < os::Linux::min_stack_allowed) {
duke@435 4010 tty->print_cr("\nThe stack size specified is too small, "
duke@435 4011 "Specify at least %dk",
coleenp@2222 4012 os::Linux::min_stack_allowed/ K);
duke@435 4013 return JNI_ERR;
duke@435 4014 }
duke@435 4015
duke@435 4016 // Make the stack size a multiple of the page size so that
duke@435 4017 // the yellow/red zones can be guarded.
duke@435 4018 JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
duke@435 4019 vm_page_size()));
duke@435 4020
duke@435 4021 Linux::capture_initial_stack(JavaThread::stack_size_at_create());
duke@435 4022
duke@435 4023 Linux::libpthread_init();
duke@435 4024 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 4025 tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
duke@435 4026 Linux::glibc_version(), Linux::libpthread_version(),
duke@435 4027 Linux::is_floating_stack() ? "floating stack" : "fixed stack");
duke@435 4028 }
duke@435 4029
iveresov@576 4030 if (UseNUMA) {
iveresov@897 4031 if (!Linux::libnuma_init()) {
iveresov@897 4032 UseNUMA = false;
iveresov@897 4033 } else {
iveresov@897 4034 if ((Linux::numa_max_node() < 1)) {
iveresov@897 4035 // There's only one node(they start from 0), disable NUMA.
iveresov@897 4036 UseNUMA = false;
iveresov@897 4037 }
iveresov@897 4038 }
iveresov@897 4039 if (!UseNUMA && ForceNUMA) {
iveresov@897 4040 UseNUMA = true;
iveresov@897 4041 }
iveresov@576 4042 }
iveresov@576 4043
duke@435 4044 if (MaxFDLimit) {
duke@435 4045 // set the number of file descriptors to max. print out error
duke@435 4046 // if getrlimit/setrlimit fails but continue regardless.
duke@435 4047 struct rlimit nbr_files;
duke@435 4048 int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 4049 if (status != 0) {
duke@435 4050 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 4051 perror("os::init_2 getrlimit failed");
duke@435 4052 } else {
duke@435 4053 nbr_files.rlim_cur = nbr_files.rlim_max;
duke@435 4054 status = setrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 4055 if (status != 0) {
duke@435 4056 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 4057 perror("os::init_2 setrlimit failed");
duke@435 4058 }
duke@435 4059 }
duke@435 4060 }
duke@435 4061
duke@435 4062 // Initialize lock used to serialize thread creation (see os::create_thread)
duke@435 4063 Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
duke@435 4064
duke@435 4065 // at-exit methods are called in the reverse order of their registration.
duke@435 4066 // atexit functions are called on return from main or as a result of a
duke@435 4067 // call to exit(3C). There can be only 32 of these functions registered
duke@435 4068 // and atexit() does not set errno.
duke@435 4069
duke@435 4070 if (PerfAllowAtExitRegistration) {
duke@435 4071 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 4072 // atexit functions can be delayed until process exit time, which
duke@435 4073 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 4074 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 4075
duke@435 4076 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 4077 // the future if the appropriate cleanup code can be added to the
duke@435 4078 // VM_Exit VMOperation's doit method.
duke@435 4079 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 4080 warning("os::init2 atexit(perfMemory_exit_helper) failed");
duke@435 4081 }
duke@435 4082 }
duke@435 4083
duke@435 4084 // initialize thread priority policy
duke@435 4085 prio_init();
duke@435 4086
duke@435 4087 return JNI_OK;
duke@435 4088 }
duke@435 4089
bobv@2036 4090 // this is called at the end of vm_initialization
bobv@2036 4091 void os::init_3(void) { }
bobv@2036 4092
duke@435 4093 // Mark the polling page as unreadable
duke@435 4094 void os::make_polling_page_unreadable(void) {
duke@435 4095 if( !guard_memory((char*)_polling_page, Linux::page_size()) )
duke@435 4096 fatal("Could not disable polling page");
duke@435 4097 };
duke@435 4098
duke@435 4099 // Mark the polling page as readable
duke@435 4100 void os::make_polling_page_readable(void) {
coleenp@672 4101 if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
duke@435 4102 fatal("Could not enable polling page");
coleenp@672 4103 }
duke@435 4104 };
duke@435 4105
duke@435 4106 int os::active_processor_count() {
duke@435 4107 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4108 // so just return the number of online processors.
duke@435 4109 int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
duke@435 4110 assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
duke@435 4111 return online_cpus;
duke@435 4112 }
duke@435 4113
duke@435 4114 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 4115 // Not yet implemented.
duke@435 4116 return false;
duke@435 4117 }
duke@435 4118
duke@435 4119 bool os::bind_to_processor(uint processor_id) {
duke@435 4120 // Not yet implemented.
duke@435 4121 return false;
duke@435 4122 }
duke@435 4123
duke@435 4124 ///
duke@435 4125
duke@435 4126 // Suspends the target using the signal mechanism and then grabs the PC before
duke@435 4127 // resuming the target. Used by the flat-profiler only
duke@435 4128 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 4129 // Make sure that it is called by the watcher for the VMThread
duke@435 4130 assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
duke@435 4131 assert(thread->is_VM_thread(), "Can only be called for VMThread");
duke@435 4132
duke@435 4133 ExtendedPC epc;
duke@435 4134
duke@435 4135 OSThread* osthread = thread->osthread();
duke@435 4136 if (do_suspend(osthread)) {
duke@435 4137 if (osthread->ucontext() != NULL) {
duke@435 4138 epc = os::Linux::ucontext_get_pc(osthread->ucontext());
duke@435 4139 } else {
duke@435 4140 // NULL context is unexpected, double-check this is the VMThread
duke@435 4141 guarantee(thread->is_VM_thread(), "can only be called for VMThread");
duke@435 4142 }
duke@435 4143 do_resume(osthread);
duke@435 4144 }
duke@435 4145 // failure means pthread_kill failed for some reason - arguably this is
duke@435 4146 // a fatal problem, but such problems are ignored elsewhere
duke@435 4147
duke@435 4148 return epc;
duke@435 4149 }
duke@435 4150
duke@435 4151 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
duke@435 4152 {
duke@435 4153 if (is_NPTL()) {
duke@435 4154 return pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4155 } else {
duke@435 4156 #ifndef IA64
duke@435 4157 // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
duke@435 4158 // word back to default 64bit precision if condvar is signaled. Java
duke@435 4159 // wants 53bit precision. Save and restore current value.
duke@435 4160 int fpu = get_fpu_control_word();
duke@435 4161 #endif // IA64
duke@435 4162 int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
duke@435 4163 #ifndef IA64
duke@435 4164 set_fpu_control_word(fpu);
duke@435 4165 #endif // IA64
duke@435 4166 return status;
duke@435 4167 }
duke@435 4168 }
duke@435 4169
duke@435 4170 ////////////////////////////////////////////////////////////////////////////////
duke@435 4171 // debug support
duke@435 4172
duke@435 4173 static address same_page(address x, address y) {
duke@435 4174 int page_bits = -os::vm_page_size();
duke@435 4175 if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
duke@435 4176 return x;
duke@435 4177 else if (x > y)
duke@435 4178 return (address)(intptr_t(y) | ~page_bits) + 1;
duke@435 4179 else
duke@435 4180 return (address)(intptr_t(y) & page_bits);
duke@435 4181 }
duke@435 4182
bobv@2036 4183 bool os::find(address addr, outputStream* st) {
duke@435 4184 Dl_info dlinfo;
duke@435 4185 memset(&dlinfo, 0, sizeof(dlinfo));
duke@435 4186 if (dladdr(addr, &dlinfo)) {
bobv@2036 4187 st->print(PTR_FORMAT ": ", addr);
duke@435 4188 if (dlinfo.dli_sname != NULL) {
bobv@2036 4189 st->print("%s+%#x", dlinfo.dli_sname,
duke@435 4190 addr - (intptr_t)dlinfo.dli_saddr);
duke@435 4191 } else if (dlinfo.dli_fname) {
bobv@2036 4192 st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
duke@435 4193 } else {
bobv@2036 4194 st->print("<absolute address>");
duke@435 4195 }
duke@435 4196 if (dlinfo.dli_fname) {
bobv@2036 4197 st->print(" in %s", dlinfo.dli_fname);
duke@435 4198 }
duke@435 4199 if (dlinfo.dli_fbase) {
bobv@2036 4200 st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
duke@435 4201 }
bobv@2036 4202 st->cr();
duke@435 4203
duke@435 4204 if (Verbose) {
duke@435 4205 // decode some bytes around the PC
duke@435 4206 address begin = same_page(addr-40, addr);
duke@435 4207 address end = same_page(addr+40, addr);
duke@435 4208 address lowest = (address) dlinfo.dli_sname;
duke@435 4209 if (!lowest) lowest = (address) dlinfo.dli_fbase;
duke@435 4210 if (begin < lowest) begin = lowest;
duke@435 4211 Dl_info dlinfo2;
duke@435 4212 if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
duke@435 4213 && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
duke@435 4214 end = (address) dlinfo2.dli_saddr;
bobv@2036 4215 Disassembler::decode(begin, end, st);
duke@435 4216 }
duke@435 4217 return true;
duke@435 4218 }
duke@435 4219 return false;
duke@435 4220 }
duke@435 4221
duke@435 4222 ////////////////////////////////////////////////////////////////////////////////
duke@435 4223 // misc
duke@435 4224
duke@435 4225 // This does not do anything on Linux. This is basically a hook for being
duke@435 4226 // able to use structured exception handling (thread-local exception filters)
duke@435 4227 // on, e.g., Win32.
duke@435 4228 void
duke@435 4229 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
duke@435 4230 JavaCallArguments* args, Thread* thread) {
duke@435 4231 f(value, method, args, thread);
duke@435 4232 }
duke@435 4233
duke@435 4234 void os::print_statistics() {
duke@435 4235 }
duke@435 4236
duke@435 4237 int os::message_box(const char* title, const char* message) {
duke@435 4238 int i;
duke@435 4239 fdStream err(defaultStream::error_fd());
duke@435 4240 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4241 err.cr();
duke@435 4242 err.print_raw_cr(title);
duke@435 4243 for (i = 0; i < 78; i++) err.print_raw("-");
duke@435 4244 err.cr();
duke@435 4245 err.print_raw_cr(message);
duke@435 4246 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4247 err.cr();
duke@435 4248
duke@435 4249 char buf[16];
duke@435 4250 // Prevent process from exiting upon "read error" without consuming all CPU
duke@435 4251 while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
duke@435 4252
duke@435 4253 return buf[0] == 'y' || buf[0] == 'Y';
duke@435 4254 }
duke@435 4255
duke@435 4256 int os::stat(const char *path, struct stat *sbuf) {
duke@435 4257 char pathbuf[MAX_PATH];
duke@435 4258 if (strlen(path) > MAX_PATH - 1) {
duke@435 4259 errno = ENAMETOOLONG;
duke@435 4260 return -1;
duke@435 4261 }
ikrylov@2322 4262 os::native_path(strcpy(pathbuf, path));
duke@435 4263 return ::stat(pathbuf, sbuf);
duke@435 4264 }
duke@435 4265
duke@435 4266 bool os::check_heap(bool force) {
duke@435 4267 return true;
duke@435 4268 }
duke@435 4269
duke@435 4270 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
duke@435 4271 return ::vsnprintf(buf, count, format, args);
duke@435 4272 }
duke@435 4273
duke@435 4274 // Is a (classpath) directory empty?
duke@435 4275 bool os::dir_is_empty(const char* path) {
duke@435 4276 DIR *dir = NULL;
duke@435 4277 struct dirent *ptr;
duke@435 4278
duke@435 4279 dir = opendir(path);
duke@435 4280 if (dir == NULL) return true;
duke@435 4281
duke@435 4282 /* Scan the directory */
duke@435 4283 bool result = true;
duke@435 4284 char buf[sizeof(struct dirent) + MAX_PATH];
duke@435 4285 while (result && (ptr = ::readdir(dir)) != NULL) {
duke@435 4286 if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
duke@435 4287 result = false;
duke@435 4288 }
duke@435 4289 }
duke@435 4290 closedir(dir);
duke@435 4291 return result;
duke@435 4292 }
duke@435 4293
ikrylov@2322 4294 // This code originates from JDK's sysOpen and open64_w
ikrylov@2322 4295 // from src/solaris/hpi/src/system_md.c
ikrylov@2322 4296
ikrylov@2322 4297 #ifndef O_DELETE
ikrylov@2322 4298 #define O_DELETE 0x10000
ikrylov@2322 4299 #endif
ikrylov@2322 4300
ikrylov@2322 4301 // Open a file. Unlink the file immediately after open returns
ikrylov@2322 4302 // if the specified oflag has the O_DELETE flag set.
ikrylov@2322 4303 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
ikrylov@2322 4304
ikrylov@2322 4305 int os::open(const char *path, int oflag, int mode) {
ikrylov@2322 4306
ikrylov@2322 4307 if (strlen(path) > MAX_PATH - 1) {
ikrylov@2322 4308 errno = ENAMETOOLONG;
ikrylov@2322 4309 return -1;
ikrylov@2322 4310 }
ikrylov@2322 4311 int fd;
ikrylov@2322 4312 int o_delete = (oflag & O_DELETE);
ikrylov@2322 4313 oflag = oflag & ~O_DELETE;
ikrylov@2322 4314
ikrylov@2322 4315 fd = ::open64(path, oflag, mode);
ikrylov@2322 4316 if (fd == -1) return -1;
ikrylov@2322 4317
ikrylov@2322 4318 //If the open succeeded, the file might still be a directory
ikrylov@2322 4319 {
ikrylov@2322 4320 struct stat64 buf64;
ikrylov@2322 4321 int ret = ::fstat64(fd, &buf64);
ikrylov@2322 4322 int st_mode = buf64.st_mode;
ikrylov@2322 4323
ikrylov@2322 4324 if (ret != -1) {
ikrylov@2322 4325 if ((st_mode & S_IFMT) == S_IFDIR) {
ikrylov@2322 4326 errno = EISDIR;
ikrylov@2322 4327 ::close(fd);
ikrylov@2322 4328 return -1;
ikrylov@2322 4329 }
ikrylov@2322 4330 } else {
ikrylov@2322 4331 ::close(fd);
ikrylov@2322 4332 return -1;
ikrylov@2322 4333 }
ikrylov@2322 4334 }
ikrylov@2322 4335
ikrylov@2322 4336 /*
ikrylov@2322 4337 * All file descriptors that are opened in the JVM and not
ikrylov@2322 4338 * specifically destined for a subprocess should have the
ikrylov@2322 4339 * close-on-exec flag set. If we don't set it, then careless 3rd
ikrylov@2322 4340 * party native code might fork and exec without closing all
ikrylov@2322 4341 * appropriate file descriptors (e.g. as we do in closeDescriptors in
ikrylov@2322 4342 * UNIXProcess.c), and this in turn might:
ikrylov@2322 4343 *
ikrylov@2322 4344 * - cause end-of-file to fail to be detected on some file
ikrylov@2322 4345 * descriptors, resulting in mysterious hangs, or
ikrylov@2322 4346 *
ikrylov@2322 4347 * - might cause an fopen in the subprocess to fail on a system
ikrylov@2322 4348 * suffering from bug 1085341.
ikrylov@2322 4349 *
ikrylov@2322 4350 * (Yes, the default setting of the close-on-exec flag is a Unix
ikrylov@2322 4351 * design flaw)
ikrylov@2322 4352 *
ikrylov@2322 4353 * See:
ikrylov@2322 4354 * 1085341: 32-bit stdio routines should support file descriptors >255
ikrylov@2322 4355 * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
ikrylov@2322 4356 * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
ikrylov@2322 4357 */
ikrylov@2322 4358 #ifdef FD_CLOEXEC
ikrylov@2322 4359 {
ikrylov@2322 4360 int flags = ::fcntl(fd, F_GETFD);
ikrylov@2322 4361 if (flags != -1)
ikrylov@2322 4362 ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
ikrylov@2322 4363 }
ikrylov@2322 4364 #endif
ikrylov@2322 4365
ikrylov@2322 4366 if (o_delete != 0) {
ikrylov@2322 4367 ::unlink(path);
ikrylov@2322 4368 }
ikrylov@2322 4369 return fd;
ikrylov@2322 4370 }
ikrylov@2322 4371
ikrylov@2322 4372
duke@435 4373 // create binary file, rewriting existing file if required
duke@435 4374 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 4375 int oflags = O_WRONLY | O_CREAT;
duke@435 4376 if (!rewrite_existing) {
duke@435 4377 oflags |= O_EXCL;
duke@435 4378 }
duke@435 4379 return ::open64(path, oflags, S_IREAD | S_IWRITE);
duke@435 4380 }
duke@435 4381
duke@435 4382 // return current position of file pointer
duke@435 4383 jlong os::current_file_offset(int fd) {
duke@435 4384 return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
duke@435 4385 }
duke@435 4386
duke@435 4387 // move file pointer to the specified offset
duke@435 4388 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 4389 return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
duke@435 4390 }
duke@435 4391
ikrylov@2322 4392 // This code originates from JDK's sysAvailable
ikrylov@2322 4393 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
ikrylov@2322 4394
ikrylov@2322 4395 int os::available(int fd, jlong *bytes) {
ikrylov@2322 4396 jlong cur, end;
ikrylov@2322 4397 int mode;
ikrylov@2322 4398 struct stat64 buf64;
ikrylov@2322 4399
ikrylov@2322 4400 if (::fstat64(fd, &buf64) >= 0) {
ikrylov@2322 4401 mode = buf64.st_mode;
ikrylov@2322 4402 if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
ikrylov@2322 4403 /*
ikrylov@2322 4404 * XXX: is the following call interruptible? If so, this might
ikrylov@2322 4405 * need to go through the INTERRUPT_IO() wrapper as for other
ikrylov@2322 4406 * blocking, interruptible calls in this file.
ikrylov@2322 4407 */
ikrylov@2322 4408 int n;
ikrylov@2322 4409 if (::ioctl(fd, FIONREAD, &n) >= 0) {
ikrylov@2322 4410 *bytes = n;
ikrylov@2322 4411 return 1;
ikrylov@2322 4412 }
ikrylov@2322 4413 }
ikrylov@2322 4414 }
ikrylov@2322 4415 if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
ikrylov@2322 4416 return 0;
ikrylov@2322 4417 } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
ikrylov@2322 4418 return 0;
ikrylov@2322 4419 } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
ikrylov@2322 4420 return 0;
ikrylov@2322 4421 }
ikrylov@2322 4422 *bytes = end - cur;
ikrylov@2322 4423 return 1;
ikrylov@2322 4424 }
ikrylov@2322 4425
duke@435 4426 // Map a block of memory.
duke@435 4427 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4428 char *addr, size_t bytes, bool read_only,
duke@435 4429 bool allow_exec) {
duke@435 4430 int prot;
duke@435 4431 int flags;
duke@435 4432
duke@435 4433 if (read_only) {
duke@435 4434 prot = PROT_READ;
duke@435 4435 flags = MAP_SHARED;
duke@435 4436 } else {
duke@435 4437 prot = PROT_READ | PROT_WRITE;
duke@435 4438 flags = MAP_PRIVATE;
duke@435 4439 }
duke@435 4440
duke@435 4441 if (allow_exec) {
duke@435 4442 prot |= PROT_EXEC;
duke@435 4443 }
duke@435 4444
duke@435 4445 if (addr != NULL) {
duke@435 4446 flags |= MAP_FIXED;
duke@435 4447 }
duke@435 4448
duke@435 4449 char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
duke@435 4450 fd, file_offset);
duke@435 4451 if (mapped_address == MAP_FAILED) {
duke@435 4452 return NULL;
duke@435 4453 }
duke@435 4454 return mapped_address;
duke@435 4455 }
duke@435 4456
duke@435 4457
duke@435 4458 // Remap a block of memory.
duke@435 4459 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4460 char *addr, size_t bytes, bool read_only,
duke@435 4461 bool allow_exec) {
duke@435 4462 // same as map_memory() on this OS
duke@435 4463 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 4464 allow_exec);
duke@435 4465 }
duke@435 4466
duke@435 4467
duke@435 4468 // Unmap a block of memory.
duke@435 4469 bool os::unmap_memory(char* addr, size_t bytes) {
duke@435 4470 return munmap(addr, bytes) == 0;
duke@435 4471 }
duke@435 4472
duke@435 4473 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
duke@435 4474
duke@435 4475 static clockid_t thread_cpu_clockid(Thread* thread) {
duke@435 4476 pthread_t tid = thread->osthread()->pthread_id();
duke@435 4477 clockid_t clockid;
duke@435 4478
duke@435 4479 // Get thread clockid
duke@435 4480 int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
duke@435 4481 assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
duke@435 4482 return clockid;
duke@435 4483 }
duke@435 4484
duke@435 4485 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 4486 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 4487 // of a thread.
duke@435 4488 //
duke@435 4489 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 4490 // the fast estimate available on the platform.
duke@435 4491
duke@435 4492 jlong os::current_thread_cpu_time() {
duke@435 4493 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4494 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4495 } else {
duke@435 4496 // return user + sys since the cost is the same
duke@435 4497 return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
duke@435 4498 }
duke@435 4499 }
duke@435 4500
duke@435 4501 jlong os::thread_cpu_time(Thread* thread) {
duke@435 4502 // consistent with what current_thread_cpu_time() returns
duke@435 4503 if (os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4504 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4505 } else {
duke@435 4506 return slow_thread_cpu_time(thread, true /* user + sys */);
duke@435 4507 }
duke@435 4508 }
duke@435 4509
duke@435 4510 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 4511 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4512 return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
duke@435 4513 } else {
duke@435 4514 return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 4515 }
duke@435 4516 }
duke@435 4517
duke@435 4518 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4519 if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
duke@435 4520 return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
duke@435 4521 } else {
duke@435 4522 return slow_thread_cpu_time(thread, user_sys_cpu_time);
duke@435 4523 }
duke@435 4524 }
duke@435 4525
duke@435 4526 //
duke@435 4527 // -1 on error.
duke@435 4528 //
duke@435 4529
duke@435 4530 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 4531 static bool proc_pid_cpu_avail = true;
duke@435 4532 static bool proc_task_unchecked = true;
duke@435 4533 static const char *proc_stat_path = "/proc/%d/stat";
duke@435 4534 pid_t tid = thread->osthread()->thread_id();
duke@435 4535 int i;
duke@435 4536 char *s;
duke@435 4537 char stat[2048];
duke@435 4538 int statlen;
duke@435 4539 char proc_name[64];
duke@435 4540 int count;
duke@435 4541 long sys_time, user_time;
duke@435 4542 char string[64];
bobv@2036 4543 char cdummy;
duke@435 4544 int idummy;
duke@435 4545 long ldummy;
duke@435 4546 FILE *fp;
duke@435 4547
duke@435 4548 // We first try accessing /proc/<pid>/cpu since this is faster to
duke@435 4549 // process. If this file is not present (linux kernels 2.5 and above)
duke@435 4550 // then we open /proc/<pid>/stat.
duke@435 4551 if ( proc_pid_cpu_avail ) {
duke@435 4552 sprintf(proc_name, "/proc/%d/cpu", tid);
duke@435 4553 fp = fopen(proc_name, "r");
duke@435 4554 if ( fp != NULL ) {
duke@435 4555 count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
duke@435 4556 fclose(fp);
duke@435 4557 if ( count != 3 ) return -1;
duke@435 4558
duke@435 4559 if (user_sys_cpu_time) {
duke@435 4560 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4561 } else {
duke@435 4562 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4563 }
duke@435 4564 }
duke@435 4565 else proc_pid_cpu_avail = false;
duke@435 4566 }
duke@435 4567
duke@435 4568 // The /proc/<tid>/stat aggregates per-process usage on
duke@435 4569 // new Linux kernels 2.6+ where NPTL is supported.
duke@435 4570 // The /proc/self/task/<tid>/stat still has the per-thread usage.
duke@435 4571 // See bug 6328462.
duke@435 4572 // There can be no directory /proc/self/task on kernels 2.4 with NPTL
duke@435 4573 // and possibly in some other cases, so we check its availability.
duke@435 4574 if (proc_task_unchecked && os::Linux::is_NPTL()) {
duke@435 4575 // This is executed only once
duke@435 4576 proc_task_unchecked = false;
duke@435 4577 fp = fopen("/proc/self/task", "r");
duke@435 4578 if (fp != NULL) {
duke@435 4579 proc_stat_path = "/proc/self/task/%d/stat";
duke@435 4580 fclose(fp);
duke@435 4581 }
duke@435 4582 }
duke@435 4583
duke@435 4584 sprintf(proc_name, proc_stat_path, tid);
duke@435 4585 fp = fopen(proc_name, "r");
duke@435 4586 if ( fp == NULL ) return -1;
duke@435 4587 statlen = fread(stat, 1, 2047, fp);
duke@435 4588 stat[statlen] = '\0';
duke@435 4589 fclose(fp);
duke@435 4590
duke@435 4591 // Skip pid and the command string. Note that we could be dealing with
duke@435 4592 // weird command names, e.g. user could decide to rename java launcher
duke@435 4593 // to "java 1.4.2 :)", then the stat file would look like
duke@435 4594 // 1234 (java 1.4.2 :)) R ... ...
duke@435 4595 // We don't really need to know the command string, just find the last
duke@435 4596 // occurrence of ")" and then start parsing from there. See bug 4726580.
duke@435 4597 s = strrchr(stat, ')');
duke@435 4598 i = 0;
duke@435 4599 if (s == NULL ) return -1;
duke@435 4600
duke@435 4601 // Skip blank chars
duke@435 4602 do s++; while (isspace(*s));
duke@435 4603
bobv@2036 4604 count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
bobv@2036 4605 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
duke@435 4606 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
duke@435 4607 &user_time, &sys_time);
bobv@2036 4608 if ( count != 13 ) return -1;
duke@435 4609 if (user_sys_cpu_time) {
duke@435 4610 return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
duke@435 4611 } else {
duke@435 4612 return (jlong)user_time * (1000000000 / clock_tics_per_sec);
duke@435 4613 }
duke@435 4614 }
duke@435 4615
duke@435 4616 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4617 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4618 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4619 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4620 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4621 }
duke@435 4622
duke@435 4623 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4624 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 4625 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 4626 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 4627 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4628 }
duke@435 4629
duke@435 4630 bool os::is_thread_cpu_time_supported() {
duke@435 4631 return true;
duke@435 4632 }
duke@435 4633
duke@435 4634 // System loadavg support. Returns -1 if load average cannot be obtained.
duke@435 4635 // Linux doesn't yet have a (official) notion of processor sets,
duke@435 4636 // so just return the system wide load average.
duke@435 4637 int os::loadavg(double loadavg[], int nelem) {
duke@435 4638 return ::getloadavg(loadavg, nelem);
duke@435 4639 }
duke@435 4640
duke@435 4641 void os::pause() {
duke@435 4642 char filename[MAX_PATH];
duke@435 4643 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 4644 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 4645 } else {
duke@435 4646 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 4647 }
duke@435 4648
duke@435 4649 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 4650 if (fd != -1) {
duke@435 4651 struct stat buf;
ikrylov@2322 4652 ::close(fd);
duke@435 4653 while (::stat(filename, &buf) == 0) {
duke@435 4654 (void)::poll(NULL, 0, 100);
duke@435 4655 }
duke@435 4656 } else {
duke@435 4657 jio_fprintf(stderr,
duke@435 4658 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 4659 }
duke@435 4660 }
duke@435 4661
duke@435 4662 extern "C" {
duke@435 4663
duke@435 4664 /**
duke@435 4665 * NOTE: the following code is to keep the green threads code
duke@435 4666 * in the libjava.so happy. Once the green threads is removed,
duke@435 4667 * these code will no longer be needed.
duke@435 4668 */
duke@435 4669 int
duke@435 4670 jdk_waitpid(pid_t pid, int* status, int options) {
duke@435 4671 return waitpid(pid, status, options);
duke@435 4672 }
duke@435 4673
duke@435 4674 int
duke@435 4675 fork1() {
duke@435 4676 return fork();
duke@435 4677 }
duke@435 4678
duke@435 4679 int
duke@435 4680 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
duke@435 4681 return sem_init(sem, pshared, value);
duke@435 4682 }
duke@435 4683
duke@435 4684 int
duke@435 4685 jdk_sem_post(sem_t *sem) {
duke@435 4686 return sem_post(sem);
duke@435 4687 }
duke@435 4688
duke@435 4689 int
duke@435 4690 jdk_sem_wait(sem_t *sem) {
duke@435 4691 return sem_wait(sem);
duke@435 4692 }
duke@435 4693
duke@435 4694 int
duke@435 4695 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
duke@435 4696 return pthread_sigmask(how , newmask, oldmask);
duke@435 4697 }
duke@435 4698
duke@435 4699 }
duke@435 4700
duke@435 4701 // Refer to the comments in os_solaris.cpp park-unpark.
duke@435 4702 //
duke@435 4703 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
duke@435 4704 // hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
duke@435 4705 // For specifics regarding the bug see GLIBC BUGID 261237 :
duke@435 4706 // http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
duke@435 4707 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
duke@435 4708 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
duke@435 4709 // is used. (The simple C test-case provided in the GLIBC bug report manifests the
duke@435 4710 // hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
duke@435 4711 // and monitorenter when we're using 1-0 locking. All those operations may result in
duke@435 4712 // calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
duke@435 4713 // of libpthread avoids the problem, but isn't practical.
duke@435 4714 //
duke@435 4715 // Possible remedies:
duke@435 4716 //
duke@435 4717 // 1. Establish a minimum relative wait time. 50 to 100 msecs seems to work.
duke@435 4718 // This is palliative and probabilistic, however. If the thread is preempted
duke@435 4719 // between the call to compute_abstime() and pthread_cond_timedwait(), more
duke@435 4720 // than the minimum period may have passed, and the abstime may be stale (in the
duke@435 4721 // past) resultin in a hang. Using this technique reduces the odds of a hang
duke@435 4722 // but the JVM is still vulnerable, particularly on heavily loaded systems.
duke@435 4723 //
duke@435 4724 // 2. Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
duke@435 4725 // of the usual flag-condvar-mutex idiom. The write side of the pipe is set
duke@435 4726 // NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
duke@435 4727 // reduces to poll()+read(). This works well, but consumes 2 FDs per extant
duke@435 4728 // thread.
duke@435 4729 //
duke@435 4730 // 3. Embargo pthread_cond_timedwait() and implement a native "chron" thread
duke@435 4731 // that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
duke@435 4732 // a timeout request to the chron thread and then blocking via pthread_cond_wait().
duke@435 4733 // This also works well. In fact it avoids kernel-level scalability impediments
duke@435 4734 // on certain platforms that don't handle lots of active pthread_cond_timedwait()
duke@435 4735 // timers in a graceful fashion.
duke@435 4736 //
duke@435 4737 // 4. When the abstime value is in the past it appears that control returns
duke@435 4738 // correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
duke@435 4739 // Subsequent timedwait/wait calls may hang indefinitely. Given that, we
duke@435 4740 // can avoid the problem by reinitializing the condvar -- by cond_destroy()
duke@435 4741 // followed by cond_init() -- after all calls to pthread_cond_timedwait().
duke@435 4742 // It may be possible to avoid reinitialization by checking the return
duke@435 4743 // value from pthread_cond_timedwait(). In addition to reinitializing the
duke@435 4744 // condvar we must establish the invariant that cond_signal() is only called
duke@435 4745 // within critical sections protected by the adjunct mutex. This prevents
duke@435 4746 // cond_signal() from "seeing" a condvar that's in the midst of being
duke@435 4747 // reinitialized or that is corrupt. Sadly, this invariant obviates the
duke@435 4748 // desirable signal-after-unlock optimization that avoids futile context switching.
duke@435 4749 //
duke@435 4750 // I'm also concerned that some versions of NTPL might allocate an auxilliary
duke@435 4751 // structure when a condvar is used or initialized. cond_destroy() would
duke@435 4752 // release the helper structure. Our reinitialize-after-timedwait fix
duke@435 4753 // put excessive stress on malloc/free and locks protecting the c-heap.
duke@435 4754 //
duke@435 4755 // We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
duke@435 4756 // It may be possible to refine (4) by checking the kernel and NTPL verisons
duke@435 4757 // and only enabling the work-around for vulnerable environments.
duke@435 4758
duke@435 4759 // utility to compute the abstime argument to timedwait:
duke@435 4760 // millis is the relative timeout time
duke@435 4761 // abstime will be the absolute timeout time
duke@435 4762 // TODO: replace compute_abstime() with unpackTime()
duke@435 4763
duke@435 4764 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
duke@435 4765 if (millis < 0) millis = 0;
duke@435 4766 struct timeval now;
duke@435 4767 int status = gettimeofday(&now, NULL);
duke@435 4768 assert(status == 0, "gettimeofday");
duke@435 4769 jlong seconds = millis / 1000;
duke@435 4770 millis %= 1000;
duke@435 4771 if (seconds > 50000000) { // see man cond_timedwait(3T)
duke@435 4772 seconds = 50000000;
duke@435 4773 }
duke@435 4774 abstime->tv_sec = now.tv_sec + seconds;
duke@435 4775 long usec = now.tv_usec + millis * 1000;
duke@435 4776 if (usec >= 1000000) {
duke@435 4777 abstime->tv_sec += 1;
duke@435 4778 usec -= 1000000;
duke@435 4779 }
duke@435 4780 abstime->tv_nsec = usec * 1000;
duke@435 4781 return abstime;
duke@435 4782 }
duke@435 4783
duke@435 4784
duke@435 4785 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
duke@435 4786 // Conceptually TryPark() should be equivalent to park(0).
duke@435 4787
duke@435 4788 int os::PlatformEvent::TryPark() {
duke@435 4789 for (;;) {
duke@435 4790 const int v = _Event ;
duke@435 4791 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4792 if (Atomic::cmpxchg (0, &_Event, v) == v) return v ;
duke@435 4793 }
duke@435 4794 }
duke@435 4795
duke@435 4796 void os::PlatformEvent::park() { // AKA "down()"
duke@435 4797 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 4798 // may call park().
duke@435 4799 // TODO: assert that _Assoc != NULL or _Assoc == Self
duke@435 4800 int v ;
duke@435 4801 for (;;) {
duke@435 4802 v = _Event ;
duke@435 4803 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4804 }
duke@435 4805 guarantee (v >= 0, "invariant") ;
duke@435 4806 if (v == 0) {
duke@435 4807 // Do this the hard way by blocking ...
duke@435 4808 int status = pthread_mutex_lock(_mutex);
duke@435 4809 assert_status(status == 0, status, "mutex_lock");
duke@435 4810 guarantee (_nParked == 0, "invariant") ;
duke@435 4811 ++ _nParked ;
duke@435 4812 while (_Event < 0) {
duke@435 4813 status = pthread_cond_wait(_cond, _mutex);
duke@435 4814 // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
duke@435 4815 // Treat this the same as if the wait was interrupted
duke@435 4816 if (status == ETIME) { status = EINTR; }
duke@435 4817 assert_status(status == 0 || status == EINTR, status, "cond_wait");
duke@435 4818 }
duke@435 4819 -- _nParked ;
duke@435 4820
duke@435 4821 // In theory we could move the ST of 0 into _Event past the unlock(),
duke@435 4822 // but then we'd need a MEMBAR after the ST.
duke@435 4823 _Event = 0 ;
duke@435 4824 status = pthread_mutex_unlock(_mutex);
duke@435 4825 assert_status(status == 0, status, "mutex_unlock");
duke@435 4826 }
duke@435 4827 guarantee (_Event >= 0, "invariant") ;
duke@435 4828 }
duke@435 4829
duke@435 4830 int os::PlatformEvent::park(jlong millis) {
duke@435 4831 guarantee (_nParked == 0, "invariant") ;
duke@435 4832
duke@435 4833 int v ;
duke@435 4834 for (;;) {
duke@435 4835 v = _Event ;
duke@435 4836 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4837 }
duke@435 4838 guarantee (v >= 0, "invariant") ;
duke@435 4839 if (v != 0) return OS_OK ;
duke@435 4840
duke@435 4841 // We do this the hard way, by blocking the thread.
duke@435 4842 // Consider enforcing a minimum timeout value.
duke@435 4843 struct timespec abst;
duke@435 4844 compute_abstime(&abst, millis);
duke@435 4845
duke@435 4846 int ret = OS_TIMEOUT;
duke@435 4847 int status = pthread_mutex_lock(_mutex);
duke@435 4848 assert_status(status == 0, status, "mutex_lock");
duke@435 4849 guarantee (_nParked == 0, "invariant") ;
duke@435 4850 ++_nParked ;
duke@435 4851
duke@435 4852 // Object.wait(timo) will return because of
duke@435 4853 // (a) notification
duke@435 4854 // (b) timeout
duke@435 4855 // (c) thread.interrupt
duke@435 4856 //
duke@435 4857 // Thread.interrupt and object.notify{All} both call Event::set.
duke@435 4858 // That is, we treat thread.interrupt as a special case of notification.
duke@435 4859 // The underlying Solaris implementation, cond_timedwait, admits
duke@435 4860 // spurious/premature wakeups, but the JLS/JVM spec prevents the
duke@435 4861 // JVM from making those visible to Java code. As such, we must
duke@435 4862 // filter out spurious wakeups. We assume all ETIME returns are valid.
duke@435 4863 //
duke@435 4864 // TODO: properly differentiate simultaneous notify+interrupt.
duke@435 4865 // In that case, we should propagate the notify to another waiter.
duke@435 4866
duke@435 4867 while (_Event < 0) {
duke@435 4868 status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
duke@435 4869 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4870 pthread_cond_destroy (_cond);
duke@435 4871 pthread_cond_init (_cond, NULL) ;
duke@435 4872 }
duke@435 4873 assert_status(status == 0 || status == EINTR ||
duke@435 4874 status == ETIME || status == ETIMEDOUT,
duke@435 4875 status, "cond_timedwait");
duke@435 4876 if (!FilterSpuriousWakeups) break ; // previous semantics
duke@435 4877 if (status == ETIME || status == ETIMEDOUT) break ;
duke@435 4878 // We consume and ignore EINTR and spurious wakeups.
duke@435 4879 }
duke@435 4880 --_nParked ;
duke@435 4881 if (_Event >= 0) {
duke@435 4882 ret = OS_OK;
duke@435 4883 }
duke@435 4884 _Event = 0 ;
duke@435 4885 status = pthread_mutex_unlock(_mutex);
duke@435 4886 assert_status(status == 0, status, "mutex_unlock");
duke@435 4887 assert (_nParked == 0, "invariant") ;
duke@435 4888 return ret;
duke@435 4889 }
duke@435 4890
duke@435 4891 void os::PlatformEvent::unpark() {
duke@435 4892 int v, AnyWaiters ;
duke@435 4893 for (;;) {
duke@435 4894 v = _Event ;
duke@435 4895 if (v > 0) {
duke@435 4896 // The LD of _Event could have reordered or be satisfied
duke@435 4897 // by a read-aside from this processor's write buffer.
duke@435 4898 // To avoid problems execute a barrier and then
duke@435 4899 // ratify the value.
duke@435 4900 OrderAccess::fence() ;
duke@435 4901 if (_Event == v) return ;
duke@435 4902 continue ;
duke@435 4903 }
duke@435 4904 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 4905 }
duke@435 4906 if (v < 0) {
duke@435 4907 // Wait for the thread associated with the event to vacate
duke@435 4908 int status = pthread_mutex_lock(_mutex);
duke@435 4909 assert_status(status == 0, status, "mutex_lock");
duke@435 4910 AnyWaiters = _nParked ;
duke@435 4911 assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
duke@435 4912 if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 4913 AnyWaiters = 0 ;
duke@435 4914 pthread_cond_signal (_cond);
duke@435 4915 }
duke@435 4916 status = pthread_mutex_unlock(_mutex);
duke@435 4917 assert_status(status == 0, status, "mutex_unlock");
duke@435 4918 if (AnyWaiters != 0) {
duke@435 4919 status = pthread_cond_signal(_cond);
duke@435 4920 assert_status(status == 0, status, "cond_signal");
duke@435 4921 }
duke@435 4922 }
duke@435 4923
duke@435 4924 // Note that we signal() _after dropping the lock for "immortal" Events.
duke@435 4925 // This is safe and avoids a common class of futile wakeups. In rare
duke@435 4926 // circumstances this can cause a thread to return prematurely from
duke@435 4927 // cond_{timed}wait() but the spurious wakeup is benign and the victim will
duke@435 4928 // simply re-test the condition and re-park itself.
duke@435 4929 }
duke@435 4930
duke@435 4931
duke@435 4932 // JSR166
duke@435 4933 // -------------------------------------------------------
duke@435 4934
duke@435 4935 /*
duke@435 4936 * The solaris and linux implementations of park/unpark are fairly
duke@435 4937 * conservative for now, but can be improved. They currently use a
duke@435 4938 * mutex/condvar pair, plus a a count.
duke@435 4939 * Park decrements count if > 0, else does a condvar wait. Unpark
duke@435 4940 * sets count to 1 and signals condvar. Only one thread ever waits
duke@435 4941 * on the condvar. Contention seen when trying to park implies that someone
duke@435 4942 * is unparking you, so don't wait. And spurious returns are fine, so there
duke@435 4943 * is no need to track notifications.
duke@435 4944 */
duke@435 4945
duke@435 4946
duke@435 4947 #define NANOSECS_PER_SEC 1000000000
duke@435 4948 #define NANOSECS_PER_MILLISEC 1000000
duke@435 4949 #define MAX_SECS 100000000
duke@435 4950 /*
duke@435 4951 * This code is common to linux and solaris and will be moved to a
duke@435 4952 * common place in dolphin.
duke@435 4953 *
duke@435 4954 * The passed in time value is either a relative time in nanoseconds
duke@435 4955 * or an absolute time in milliseconds. Either way it has to be unpacked
duke@435 4956 * into suitable seconds and nanoseconds components and stored in the
duke@435 4957 * given timespec structure.
duke@435 4958 * Given time is a 64-bit value and the time_t used in the timespec is only
duke@435 4959 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
duke@435 4960 * overflow if times way in the future are given. Further on Solaris versions
duke@435 4961 * prior to 10 there is a restriction (see cond_timedwait) that the specified
duke@435 4962 * number of seconds, in abstime, is less than current_time + 100,000,000.
duke@435 4963 * As it will be 28 years before "now + 100000000" will overflow we can
duke@435 4964 * ignore overflow and just impose a hard-limit on seconds using the value
duke@435 4965 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
duke@435 4966 * years from "now".
duke@435 4967 */
duke@435 4968
duke@435 4969 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
duke@435 4970 assert (time > 0, "convertTime");
duke@435 4971
duke@435 4972 struct timeval now;
duke@435 4973 int status = gettimeofday(&now, NULL);
duke@435 4974 assert(status == 0, "gettimeofday");
duke@435 4975
duke@435 4976 time_t max_secs = now.tv_sec + MAX_SECS;
duke@435 4977
duke@435 4978 if (isAbsolute) {
duke@435 4979 jlong secs = time / 1000;
duke@435 4980 if (secs > max_secs) {
duke@435 4981 absTime->tv_sec = max_secs;
duke@435 4982 }
duke@435 4983 else {
duke@435 4984 absTime->tv_sec = secs;
duke@435 4985 }
duke@435 4986 absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
duke@435 4987 }
duke@435 4988 else {
duke@435 4989 jlong secs = time / NANOSECS_PER_SEC;
duke@435 4990 if (secs >= MAX_SECS) {
duke@435 4991 absTime->tv_sec = max_secs;
duke@435 4992 absTime->tv_nsec = 0;
duke@435 4993 }
duke@435 4994 else {
duke@435 4995 absTime->tv_sec = now.tv_sec + secs;
duke@435 4996 absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
duke@435 4997 if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
duke@435 4998 absTime->tv_nsec -= NANOSECS_PER_SEC;
duke@435 4999 ++absTime->tv_sec; // note: this must be <= max_secs
duke@435 5000 }
duke@435 5001 }
duke@435 5002 }
duke@435 5003 assert(absTime->tv_sec >= 0, "tv_sec < 0");
duke@435 5004 assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
duke@435 5005 assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
duke@435 5006 assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
duke@435 5007 }
duke@435 5008
duke@435 5009 void Parker::park(bool isAbsolute, jlong time) {
duke@435 5010 // Optional fast-path check:
duke@435 5011 // Return immediately if a permit is available.
duke@435 5012 if (_counter > 0) {
duke@435 5013 _counter = 0 ;
dholmes@1552 5014 OrderAccess::fence();
duke@435 5015 return ;
duke@435 5016 }
duke@435 5017
duke@435 5018 Thread* thread = Thread::current();
duke@435 5019 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 5020 JavaThread *jt = (JavaThread *)thread;
duke@435 5021
duke@435 5022 // Optional optimization -- avoid state transitions if there's an interrupt pending.
duke@435 5023 // Check interrupt before trying to wait
duke@435 5024 if (Thread::is_interrupted(thread, false)) {
duke@435 5025 return;
duke@435 5026 }
duke@435 5027
duke@435 5028 // Next, demultiplex/decode time arguments
duke@435 5029 timespec absTime;
acorn@2220 5030 if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
duke@435 5031 return;
duke@435 5032 }
duke@435 5033 if (time > 0) {
duke@435 5034 unpackTime(&absTime, isAbsolute, time);
duke@435 5035 }
duke@435 5036
duke@435 5037
duke@435 5038 // Enter safepoint region
duke@435 5039 // Beware of deadlocks such as 6317397.
duke@435 5040 // The per-thread Parker:: mutex is a classic leaf-lock.
duke@435 5041 // In particular a thread must never block on the Threads_lock while
duke@435 5042 // holding the Parker:: mutex. If safepoints are pending both the
duke@435 5043 // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
duke@435 5044 ThreadBlockInVM tbivm(jt);
duke@435 5045
duke@435 5046 // Don't wait if cannot get lock since interference arises from
duke@435 5047 // unblocking. Also. check interrupt before trying wait
duke@435 5048 if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
duke@435 5049 return;
duke@435 5050 }
duke@435 5051
duke@435 5052 int status ;
duke@435 5053 if (_counter > 0) { // no wait needed
duke@435 5054 _counter = 0;
duke@435 5055 status = pthread_mutex_unlock(_mutex);
duke@435 5056 assert (status == 0, "invariant") ;
dholmes@1552 5057 OrderAccess::fence();
duke@435 5058 return;
duke@435 5059 }
duke@435 5060
duke@435 5061 #ifdef ASSERT
duke@435 5062 // Don't catch signals while blocked; let the running threads have the signals.
duke@435 5063 // (This allows a debugger to break into the running thread.)
duke@435 5064 sigset_t oldsigs;
duke@435 5065 sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
duke@435 5066 pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
duke@435 5067 #endif
duke@435 5068
duke@435 5069 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 5070 jt->set_suspend_equivalent();
duke@435 5071 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 5072
duke@435 5073 if (time == 0) {
duke@435 5074 status = pthread_cond_wait (_cond, _mutex) ;
duke@435 5075 } else {
duke@435 5076 status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
duke@435 5077 if (status != 0 && WorkAroundNPTLTimedWaitHang) {
duke@435 5078 pthread_cond_destroy (_cond) ;
duke@435 5079 pthread_cond_init (_cond, NULL);
duke@435 5080 }
duke@435 5081 }
duke@435 5082 assert_status(status == 0 || status == EINTR ||
duke@435 5083 status == ETIME || status == ETIMEDOUT,
duke@435 5084 status, "cond_timedwait");
duke@435 5085
duke@435 5086 #ifdef ASSERT
duke@435 5087 pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
duke@435 5088 #endif
duke@435 5089
duke@435 5090 _counter = 0 ;
duke@435 5091 status = pthread_mutex_unlock(_mutex) ;
duke@435 5092 assert_status(status == 0, status, "invariant") ;
duke@435 5093 // If externally suspended while waiting, re-suspend
duke@435 5094 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 5095 jt->java_suspend_self();
duke@435 5096 }
duke@435 5097
dholmes@1552 5098 OrderAccess::fence();
duke@435 5099 }
duke@435 5100
duke@435 5101 void Parker::unpark() {
duke@435 5102 int s, status ;
duke@435 5103 status = pthread_mutex_lock(_mutex);
duke@435 5104 assert (status == 0, "invariant") ;
duke@435 5105 s = _counter;
duke@435 5106 _counter = 1;
duke@435 5107 if (s < 1) {
duke@435 5108 if (WorkAroundNPTLTimedWaitHang) {
duke@435 5109 status = pthread_cond_signal (_cond) ;
duke@435 5110 assert (status == 0, "invariant") ;
duke@435 5111 status = pthread_mutex_unlock(_mutex);
duke@435 5112 assert (status == 0, "invariant") ;
duke@435 5113 } else {
duke@435 5114 status = pthread_mutex_unlock(_mutex);
duke@435 5115 assert (status == 0, "invariant") ;
duke@435 5116 status = pthread_cond_signal (_cond) ;
duke@435 5117 assert (status == 0, "invariant") ;
duke@435 5118 }
duke@435 5119 } else {
duke@435 5120 pthread_mutex_unlock(_mutex);
duke@435 5121 assert (status == 0, "invariant") ;
duke@435 5122 }
duke@435 5123 }
duke@435 5124
duke@435 5125
duke@435 5126 extern char** environ;
duke@435 5127
duke@435 5128 #ifndef __NR_fork
duke@435 5129 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
duke@435 5130 #endif
duke@435 5131
duke@435 5132 #ifndef __NR_execve
duke@435 5133 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
duke@435 5134 #endif
duke@435 5135
duke@435 5136 // Run the specified command in a separate process. Return its exit value,
duke@435 5137 // or -1 on failure (e.g. can't fork a new process).
duke@435 5138 // Unlike system(), this function can be called from signal handler. It
duke@435 5139 // doesn't block SIGINT et al.
duke@435 5140 int os::fork_and_exec(char* cmd) {
xlu@634 5141 const char * argv[4] = {"sh", "-c", cmd, NULL};
duke@435 5142
duke@435 5143 // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
duke@435 5144 // pthread_atfork handlers and reset pthread library. All we need is a
duke@435 5145 // separate process to execve. Make a direct syscall to fork process.
duke@435 5146 // On IA64 there's no fork syscall, we have to use fork() and hope for
duke@435 5147 // the best...
duke@435 5148 pid_t pid = NOT_IA64(syscall(__NR_fork);)
duke@435 5149 IA64_ONLY(fork();)
duke@435 5150
duke@435 5151 if (pid < 0) {
duke@435 5152 // fork failed
duke@435 5153 return -1;
duke@435 5154
duke@435 5155 } else if (pid == 0) {
duke@435 5156 // child process
duke@435 5157
duke@435 5158 // execve() in LinuxThreads will call pthread_kill_other_threads_np()
duke@435 5159 // first to kill every thread on the thread list. Because this list is
duke@435 5160 // not reset by fork() (see notes above), execve() will instead kill
duke@435 5161 // every thread in the parent process. We know this is the only thread
duke@435 5162 // in the new process, so make a system call directly.
duke@435 5163 // IA64 should use normal execve() from glibc to match the glibc fork()
duke@435 5164 // above.
duke@435 5165 NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
xlu@634 5166 IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
duke@435 5167
duke@435 5168 // execve failed
duke@435 5169 _exit(-1);
duke@435 5170
duke@435 5171 } else {
duke@435 5172 // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
duke@435 5173 // care about the actual exit code, for now.
duke@435 5174
duke@435 5175 int status;
duke@435 5176
duke@435 5177 // Wait for the child process to exit. This returns immediately if
duke@435 5178 // the child has already exited. */
duke@435 5179 while (waitpid(pid, &status, 0) < 0) {
duke@435 5180 switch (errno) {
duke@435 5181 case ECHILD: return 0;
duke@435 5182 case EINTR: break;
duke@435 5183 default: return -1;
duke@435 5184 }
duke@435 5185 }
duke@435 5186
duke@435 5187 if (WIFEXITED(status)) {
duke@435 5188 // The child exited normally; get its exit code.
duke@435 5189 return WEXITSTATUS(status);
duke@435 5190 } else if (WIFSIGNALED(status)) {
duke@435 5191 // The child exited because of a signal
duke@435 5192 // The best value to return is 0x80 + signal number,
duke@435 5193 // because that is what all Unix shells do, and because
duke@435 5194 // it allows callers to distinguish between process exit and
duke@435 5195 // process death by signal.
duke@435 5196 return 0x80 + WTERMSIG(status);
duke@435 5197 } else {
duke@435 5198 // Unknown exit code; pass it through
duke@435 5199 return status;
duke@435 5200 }
duke@435 5201 }
duke@435 5202 }
bobv@2036 5203
bobv@2036 5204 // is_headless_jre()
bobv@2036 5205 //
bobv@2036 5206 // Test for the existence of libmawt in motif21 or xawt directories
bobv@2036 5207 // in order to report if we are running in a headless jre
bobv@2036 5208 //
bobv@2036 5209 bool os::is_headless_jre() {
bobv@2036 5210 struct stat statbuf;
bobv@2036 5211 char buf[MAXPATHLEN];
bobv@2036 5212 char libmawtpath[MAXPATHLEN];
bobv@2036 5213 const char *xawtstr = "/xawt/libmawt.so";
bobv@2036 5214 const char *motifstr = "/motif21/libmawt.so";
bobv@2036 5215 char *p;
bobv@2036 5216
bobv@2036 5217 // Get path to libjvm.so
bobv@2036 5218 os::jvm_path(buf, sizeof(buf));
bobv@2036 5219
bobv@2036 5220 // Get rid of libjvm.so
bobv@2036 5221 p = strrchr(buf, '/');
bobv@2036 5222 if (p == NULL) return false;
bobv@2036 5223 else *p = '\0';
bobv@2036 5224
bobv@2036 5225 // Get rid of client or server
bobv@2036 5226 p = strrchr(buf, '/');
bobv@2036 5227 if (p == NULL) return false;
bobv@2036 5228 else *p = '\0';
bobv@2036 5229
bobv@2036 5230 // check xawt/libmawt.so
bobv@2036 5231 strcpy(libmawtpath, buf);
bobv@2036 5232 strcat(libmawtpath, xawtstr);
bobv@2036 5233 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 5234
bobv@2036 5235 // check motif21/libmawt.so
bobv@2036 5236 strcpy(libmawtpath, buf);
bobv@2036 5237 strcat(libmawtpath, motifstr);
bobv@2036 5238 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 5239
bobv@2036 5240 return true;
bobv@2036 5241 }
bobv@2036 5242

mercurial