src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Mon, 01 Dec 2014 15:24:56 +0100

author
mgerdin
date
Mon, 01 Dec 2014 15:24:56 +0100
changeset 7659
38d6febe66af
parent 7655
8e9ede9dd2cd
child 7673
c04f46b4abe4
permissions
-rw-r--r--

8075210: Refactor strong root processing in order to allow G1 to evolve separately from GenCollectedHeap
Summary: Create a G1RootProcessor and move SharedHeap root processing to GenCollectedHeap
Reviewed-by: brutisso, tschatzl, ehelin

mgerdin@7208 1 /*
tschatzl@6402 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
sjohanss@7118 28 #include "gc_implementation/g1/g1AllocationContext.hpp"
sjohanss@7118 29 #include "gc_implementation/g1/g1Allocator.hpp"
stefank@2314 30 #include "gc_implementation/g1/concurrentMark.hpp"
sla@5237 31 #include "gc_implementation/g1/evacuationInfo.hpp"
tonyp@2715 32 #include "gc_implementation/g1/g1AllocRegion.hpp"
tschatzl@6926 33 #include "gc_implementation/g1/g1BiasedArray.hpp"
tonyp@2975 34 #include "gc_implementation/g1/g1HRPrinter.hpp"
tschatzl@7651 35 #include "gc_implementation/g1/g1InCSetState.hpp"
sla@5237 36 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
mgerdin@5811 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
sla@5237 38 #include "gc_implementation/g1/g1YCTypes.hpp"
tschatzl@7091 39 #include "gc_implementation/g1/heapRegionManager.hpp"
brutisso@6385 40 #include "gc_implementation/g1/heapRegionSet.hpp"
jmasa@2821 41 #include "gc_implementation/shared/hSpaceCounters.hpp"
johnc@3982 42 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
stefank@2314 43 #include "memory/barrierSet.hpp"
stefank@2314 44 #include "memory/memRegion.hpp"
stefank@2314 45 #include "memory/sharedHeap.hpp"
brutisso@4579 46 #include "utilities/stack.hpp"
stefank@2314 47
ysr@777 48 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 49 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 50 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 51 // heap subsets that will yield large amounts of garbage.
ysr@777 52
johnc@5548 53 // Forward declarations
ysr@777 54 class HeapRegion;
tonyp@2493 55 class HRRSCleanupTask;
ysr@777 56 class GenerationSpec;
ysr@777 57 class OopsInHeapRegionClosure;
coleenp@4037 58 class G1KlassScanClosure;
ysr@777 59 class G1ScanHeapEvacClosure;
ysr@777 60 class ObjectClosure;
ysr@777 61 class SpaceClosure;
ysr@777 62 class CompactibleSpaceClosure;
ysr@777 63 class Space;
ysr@777 64 class G1CollectorPolicy;
ysr@777 65 class GenRemSet;
ysr@777 66 class G1RemSet;
ysr@777 67 class HeapRegionRemSetIterator;
ysr@777 68 class ConcurrentMark;
ysr@777 69 class ConcurrentMarkThread;
ysr@777 70 class ConcurrentG1Refine;
sla@5237 71 class ConcurrentGCTimer;
jmasa@2821 72 class GenerationCounters;
sla@5237 73 class STWGCTimer;
sla@5237 74 class G1NewTracer;
sla@5237 75 class G1OldTracer;
sla@5237 76 class EvacuationFailedInfo;
johnc@5548 77 class nmethod;
mgronlun@6131 78 class Ticks;
ysr@777 79
zgu@3900 80 typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
zgu@3900 81 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
ysr@777 82
johnc@1242 83 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 84 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 85
zgu@3900 86 class YoungList : public CHeapObj<mtGC> {
ysr@777 87 private:
ysr@777 88 G1CollectedHeap* _g1h;
ysr@777 89
ysr@777 90 HeapRegion* _head;
ysr@777 91
johnc@1829 92 HeapRegion* _survivor_head;
johnc@1829 93 HeapRegion* _survivor_tail;
johnc@1829 94
johnc@1829 95 HeapRegion* _curr;
johnc@1829 96
tonyp@3713 97 uint _length;
tonyp@3713 98 uint _survivor_length;
ysr@777 99
ysr@777 100 size_t _last_sampled_rs_lengths;
ysr@777 101 size_t _sampled_rs_lengths;
ysr@777 102
johnc@1829 103 void empty_list(HeapRegion* list);
ysr@777 104
ysr@777 105 public:
ysr@777 106 YoungList(G1CollectedHeap* g1h);
ysr@777 107
johnc@1829 108 void push_region(HeapRegion* hr);
johnc@1829 109 void add_survivor_region(HeapRegion* hr);
johnc@1829 110
johnc@1829 111 void empty_list();
johnc@1829 112 bool is_empty() { return _length == 0; }
tonyp@3713 113 uint length() { return _length; }
tonyp@3713 114 uint survivor_length() { return _survivor_length; }
ysr@777 115
tonyp@2961 116 // Currently we do not keep track of the used byte sum for the
tonyp@2961 117 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 118 // do so. When we'll eventually replace the young list with
tonyp@2961 119 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 120 // we'll report the more accurate information then.
tonyp@2961 121 size_t eden_used_bytes() {
tonyp@2961 122 assert(length() >= survivor_length(), "invariant");
tonyp@3713 123 return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 124 }
tonyp@2961 125 size_t survivor_used_bytes() {
tonyp@3713 126 return (size_t) survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 127 }
tonyp@2961 128
ysr@777 129 void rs_length_sampling_init();
ysr@777 130 bool rs_length_sampling_more();
ysr@777 131 void rs_length_sampling_next();
ysr@777 132
ysr@777 133 void reset_sampled_info() {
ysr@777 134 _last_sampled_rs_lengths = 0;
ysr@777 135 }
ysr@777 136 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 137
ysr@777 138 // for development purposes
ysr@777 139 void reset_auxilary_lists();
johnc@1829 140 void clear() { _head = NULL; _length = 0; }
johnc@1829 141
johnc@1829 142 void clear_survivors() {
johnc@1829 143 _survivor_head = NULL;
johnc@1829 144 _survivor_tail = NULL;
johnc@1829 145 _survivor_length = 0;
johnc@1829 146 }
johnc@1829 147
ysr@777 148 HeapRegion* first_region() { return _head; }
ysr@777 149 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 150 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 151
ysr@777 152 // debugging
ysr@777 153 bool check_list_well_formed();
johnc@1829 154 bool check_list_empty(bool check_sample = true);
ysr@777 155 void print();
ysr@777 156 };
ysr@777 157
johnc@5548 158 // The G1 STW is alive closure.
johnc@5548 159 // An instance is embedded into the G1CH and used as the
johnc@5548 160 // (optional) _is_alive_non_header closure in the STW
johnc@5548 161 // reference processor. It is also extensively used during
johnc@5548 162 // reference processing during STW evacuation pauses.
johnc@5548 163 class G1STWIsAliveClosure: public BoolObjectClosure {
johnc@5548 164 G1CollectedHeap* _g1;
johnc@5548 165 public:
johnc@5548 166 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
johnc@5548 167 bool do_object_b(oop p);
johnc@5548 168 };
johnc@5548 169
ysr@777 170 class RefineCardTableEntryClosure;
johnc@3175 171
tschatzl@7051 172 class G1RegionMappingChangedListener : public G1MappingChangedListener {
tschatzl@7051 173 private:
tschatzl@7051 174 void reset_from_card_cache(uint start_idx, size_t num_regions);
tschatzl@7051 175 public:
tschatzl@7257 176 virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
tschatzl@7051 177 };
tschatzl@7051 178
ysr@777 179 class G1CollectedHeap : public SharedHeap {
stefank@6992 180 friend class VM_CollectForMetadataAllocation;
ysr@777 181 friend class VM_G1CollectForAllocation;
ysr@777 182 friend class VM_G1CollectFull;
ysr@777 183 friend class VM_G1IncCollectionPause;
ysr@777 184 friend class VMStructs;
tonyp@2715 185 friend class MutatorAllocRegion;
tonyp@3028 186 friend class SurvivorGCAllocRegion;
tonyp@3028 187 friend class OldGCAllocRegion;
sjohanss@7118 188 friend class G1Allocator;
sjohanss@7118 189 friend class G1DefaultAllocator;
sjohanss@7118 190 friend class G1ResManAllocator;
ysr@777 191
ysr@777 192 // Closures used in implementation.
stefank@6992 193 template <G1Barrier barrier, G1Mark do_mark_object>
brutisso@3690 194 friend class G1ParCopyClosure;
ysr@777 195 friend class G1IsAliveClosure;
ysr@777 196 friend class G1EvacuateFollowersClosure;
ysr@777 197 friend class G1ParScanThreadState;
ysr@777 198 friend class G1ParScanClosureSuper;
ysr@777 199 friend class G1ParEvacuateFollowersClosure;
ysr@777 200 friend class G1ParTask;
sjohanss@7118 201 friend class G1ParGCAllocator;
sjohanss@7118 202 friend class G1DefaultParGCAllocator;
ysr@777 203 friend class G1FreeGarbageRegionClosure;
ysr@777 204 friend class RefineCardTableEntryClosure;
ysr@777 205 friend class G1PrepareCompactClosure;
ysr@777 206 friend class RegionSorter;
tonyp@2472 207 friend class RegionResetter;
ysr@777 208 friend class CountRCClosure;
ysr@777 209 friend class EvacPopObjClosure;
apetrusenko@1231 210 friend class G1ParCleanupCTTask;
ysr@777 211
tschatzl@7019 212 friend class G1FreeHumongousRegionClosure;
ysr@777 213 // Other related classes.
ysr@777 214 friend class G1MarkSweep;
ysr@777 215
ysr@777 216 private:
ysr@777 217 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 218 static G1CollectedHeap* _g1h;
ysr@777 219
tonyp@1377 220 static size_t _humongous_object_threshold_in_words;
tonyp@1377 221
tonyp@2472 222 // The secondary free list which contains regions that have been
tschatzl@7050 223 // freed up during the cleanup process. This will be appended to
tschatzl@7050 224 // the master free list when appropriate.
brutisso@6385 225 FreeRegionList _secondary_free_list;
tonyp@2472 226
tonyp@3268 227 // It keeps track of the old regions.
brutisso@6385 228 HeapRegionSet _old_set;
tonyp@3268 229
tonyp@2472 230 // It keeps track of the humongous regions.
brutisso@6385 231 HeapRegionSet _humongous_set;
ysr@777 232
tschatzl@7019 233 void clear_humongous_is_live_table();
tschatzl@7019 234 void eagerly_reclaim_humongous_regions();
tschatzl@7019 235
ysr@777 236 // The number of regions we could create by expansion.
tonyp@3713 237 uint _expansion_regions;
ysr@777 238
ysr@777 239 // The block offset table for the G1 heap.
ysr@777 240 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 241
tonyp@3268 242 // Tears down the region sets / lists so that they are empty and the
tonyp@3268 243 // regions on the heap do not belong to a region set / list. The
tonyp@3268 244 // only exception is the humongous set which we leave unaltered. If
tonyp@3268 245 // free_list_only is true, it will only tear down the master free
tonyp@3268 246 // list. It is called before a Full GC (free_list_only == false) or
tonyp@3268 247 // before heap shrinking (free_list_only == true).
tonyp@3268 248 void tear_down_region_sets(bool free_list_only);
tonyp@3268 249
tonyp@3268 250 // Rebuilds the region sets / lists so that they are repopulated to
tonyp@3268 251 // reflect the contents of the heap. The only exception is the
tonyp@3268 252 // humongous set which was not torn down in the first place. If
tonyp@3268 253 // free_list_only is true, it will only rebuild the master free
tonyp@3268 254 // list. It is called after a Full GC (free_list_only == false) or
tonyp@3268 255 // after heap shrinking (free_list_only == true).
tonyp@3268 256 void rebuild_region_sets(bool free_list_only);
ysr@777 257
tschatzl@7051 258 // Callback for region mapping changed events.
tschatzl@7051 259 G1RegionMappingChangedListener _listener;
tschatzl@7051 260
ysr@777 261 // The sequence of all heap regions in the heap.
tschatzl@7091 262 HeapRegionManager _hrm;
ysr@777 263
sjohanss@7118 264 // Class that handles the different kinds of allocations.
sjohanss@7118 265 G1Allocator* _allocator;
tonyp@3028 266
jcoomes@7159 267 // Statistics for each allocation context
jcoomes@7159 268 AllocationContextStats _allocation_context_stats;
jcoomes@7159 269
johnc@3982 270 // PLAB sizing policy for survivors.
johnc@3982 271 PLABStats _survivor_plab_stats;
johnc@3982 272
johnc@3982 273 // PLAB sizing policy for tenured objects.
johnc@3982 274 PLABStats _old_plab_stats;
johnc@3982 275
tonyp@3410 276 // It specifies whether we should attempt to expand the heap after a
tonyp@3410 277 // region allocation failure. If heap expansion fails we set this to
tonyp@3410 278 // false so that we don't re-attempt the heap expansion (it's likely
tonyp@3410 279 // that subsequent expansion attempts will also fail if one fails).
tonyp@3410 280 // Currently, it is only consulted during GC and it's reset at the
tonyp@3410 281 // start of each GC.
tonyp@3410 282 bool _expand_heap_after_alloc_failure;
tonyp@3410 283
tonyp@2715 284 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 285 void init_mutator_alloc_region();
tonyp@2715 286
tonyp@2715 287 // It releases the mutator alloc region.
tonyp@2715 288 void release_mutator_alloc_region();
tonyp@2715 289
tonyp@3028 290 // It initializes the GC alloc regions at the start of a GC.
sla@5237 291 void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
tonyp@3028 292
tonyp@3028 293 // It releases the GC alloc regions at the end of a GC.
sla@5237 294 void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
tonyp@3028 295
tonyp@3028 296 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 297 // before a Full GC.
tonyp@1071 298 void abandon_gc_alloc_regions();
ysr@777 299
jmasa@2821 300 // Helper for monitoring and management support.
jmasa@2821 301 G1MonitoringSupport* _g1mm;
jmasa@2821 302
tschatzl@7019 303 // Records whether the region at the given index is kept live by roots or
tschatzl@7019 304 // references from the young generation.
tschatzl@7019 305 class HumongousIsLiveBiasedMappedArray : public G1BiasedMappedArray<bool> {
tschatzl@7019 306 protected:
tschatzl@7019 307 bool default_value() const { return false; }
tschatzl@7019 308 public:
tschatzl@7019 309 void clear() { G1BiasedMappedArray<bool>::clear(); }
tschatzl@7019 310 void set_live(uint region) {
tschatzl@7019 311 set_by_index(region, true);
tschatzl@7019 312 }
tschatzl@7019 313 bool is_live(uint region) {
tschatzl@7019 314 return get_by_index(region);
tschatzl@7019 315 }
tschatzl@7019 316 };
tschatzl@7019 317
tschatzl@7019 318 HumongousIsLiveBiasedMappedArray _humongous_is_live;
tschatzl@7019 319 // Stores whether during humongous object registration we found candidate regions.
tschatzl@7019 320 // If not, we can skip a few steps.
tschatzl@7019 321 bool _has_humongous_reclaim_candidates;
tonyp@961 322
iveresov@788 323 volatile unsigned _gc_time_stamp;
ysr@777 324
ysr@777 325 size_t* _surviving_young_words;
ysr@777 326
tonyp@2975 327 G1HRPrinter _hr_printer;
tonyp@2975 328
ysr@777 329 void setup_surviving_young_words();
ysr@777 330 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 331 void cleanup_surviving_young_words();
ysr@777 332
tonyp@2011 333 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 334 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 335 // explicitly started if:
tonyp@2011 336 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 337 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
brutisso@3456 338 // (c) cause == _g1_humongous_allocation
tonyp@2011 339 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 340
brutisso@3823 341 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 342 // concurrent cycles) we have started.
brutisso@3823 343 volatile unsigned int _old_marking_cycles_started;
brutisso@3823 344
brutisso@3823 345 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 346 // concurrent cycles) we have completed.
brutisso@3823 347 volatile unsigned int _old_marking_cycles_completed;
tonyp@2011 348
sla@5237 349 bool _concurrent_cycle_started;
stefank@7648 350 bool _heap_summary_sent;
sla@5237 351
tonyp@2817 352 // This is a non-product method that is helpful for testing. It is
tonyp@2817 353 // called at the end of a GC and artificially expands the heap by
tonyp@2817 354 // allocating a number of dead regions. This way we can induce very
tonyp@2817 355 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 356 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 357 // this method will be found dead by the marking cycle).
tonyp@2817 358 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 359
tonyp@3957 360 // Clear RSets after a compaction. It also resets the GC time stamps.
tonyp@3957 361 void clear_rsets_post_compaction();
tonyp@3957 362
tonyp@3957 363 // If the HR printer is active, dump the state of the regions in the
tonyp@3957 364 // heap after a compaction.
tschatzl@7091 365 void print_hrm_post_compaction();
tonyp@3957 366
brutisso@4015 367 double verify(bool guard, const char* msg);
brutisso@4015 368 void verify_before_gc();
brutisso@4015 369 void verify_after_gc();
brutisso@4015 370
brutisso@4063 371 void log_gc_header();
brutisso@4063 372 void log_gc_footer(double pause_time_sec);
brutisso@4063 373
tonyp@2315 374 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 375 // line number, file, etc.
tonyp@2315 376
tonyp@2643 377 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 378 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 379 (_extra_message_), \
tonyp@2472 380 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 381 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 382 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 383
tonyp@2315 384 #define assert_heap_locked() \
tonyp@2315 385 do { \
tonyp@2315 386 assert(Heap_lock->owned_by_self(), \
tonyp@2315 387 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 388 } while (0)
tonyp@2315 389
tonyp@2643 390 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 391 do { \
tonyp@2315 392 assert(Heap_lock->owned_by_self() || \
tonyp@2472 393 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 394 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 395 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 396 "should be at a safepoint")); \
tonyp@2315 397 } while (0)
tonyp@2315 398
tonyp@2315 399 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 400 do { \
tonyp@2315 401 assert(Heap_lock->owned_by_self() && \
tonyp@2315 402 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 403 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 404 "should not be at a safepoint")); \
tonyp@2315 405 } while (0)
tonyp@2315 406
tonyp@2315 407 #define assert_heap_not_locked() \
tonyp@2315 408 do { \
tonyp@2315 409 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 410 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 411 } while (0)
tonyp@2315 412
tonyp@2315 413 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 414 do { \
tonyp@2315 415 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 416 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 417 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 418 "should not be at a safepoint")); \
tonyp@2315 419 } while (0)
tonyp@2315 420
tonyp@2643 421 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 422 do { \
tonyp@2472 423 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 424 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 425 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 426 } while (0)
tonyp@2315 427
tonyp@2315 428 #define assert_not_at_safepoint() \
tonyp@2315 429 do { \
tonyp@2315 430 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 431 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 432 } while (0)
tonyp@2315 433
ysr@777 434 protected:
ysr@777 435
johnc@3021 436 // The young region list.
ysr@777 437 YoungList* _young_list;
ysr@777 438
ysr@777 439 // The current policy object for the collector.
ysr@777 440 G1CollectorPolicy* _g1_policy;
ysr@777 441
tonyp@2472 442 // This is the second level of trying to allocate a new region. If
tonyp@2715 443 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 444 // check whether there's anything available on the
tonyp@2715 445 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 446 // that list, if _free_regions_coming is set.
jwilhelm@6422 447 HeapRegion* new_region_try_secondary_free_list(bool is_old);
ysr@777 448
tonyp@2643 449 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 450 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 451 // attempt to expand the heap if necessary to satisfy the allocation
jwilhelm@6422 452 // request. If the region is to be used as an old region or for a
jwilhelm@6422 453 // humongous object, set is_old to true. If not, to false.
jwilhelm@6422 454 HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
ysr@777 455
tonyp@2643 456 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 457 // and starting at index first so that they appear as a single
tonyp@2643 458 // humongous region.
tonyp@3713 459 HeapWord* humongous_obj_allocate_initialize_regions(uint first,
tonyp@3713 460 uint num_regions,
sjohanss@7118 461 size_t word_size,
sjohanss@7118 462 AllocationContext_t context);
tonyp@2643 463
tonyp@2643 464 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 465 // NULL if unsuccessful.
sjohanss@7118 466 HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
ysr@777 467
tonyp@2315 468 // The following two methods, allocate_new_tlab() and
tonyp@2315 469 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 470 // into the G1's allocation routines. They have the following
tonyp@2315 471 // assumptions:
tonyp@2315 472 //
tonyp@2315 473 // * They should both be called outside safepoints.
tonyp@2315 474 //
tonyp@2315 475 // * They should both be called without holding the Heap_lock.
tonyp@2315 476 //
tonyp@2315 477 // * All allocation requests for new TLABs should go to
tonyp@2315 478 // allocate_new_tlab().
tonyp@2315 479 //
tonyp@2971 480 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 481 //
tonyp@2315 482 // * If either call cannot satisfy the allocation request using the
tonyp@2315 483 // current allocating region, they will try to get a new one. If
tonyp@2315 484 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 485 // retry the allocation.
tonyp@2315 486 //
tonyp@2315 487 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 488 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 489 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 490 // schedule a Full GC.
tonyp@2315 491 //
tonyp@2315 492 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 493 // should never be called with word_size being humongous. All
tonyp@2315 494 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 495 // will satisfy them with a special path.
ysr@777 496
tonyp@2315 497 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 498
tonyp@2315 499 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 500 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 501
tonyp@2715 502 // The following three methods take a gc_count_before_ret
tonyp@2715 503 // parameter which is used to return the GC count if the method
tonyp@2715 504 // returns NULL. Given that we are required to read the GC count
tonyp@2715 505 // while holding the Heap_lock, and these paths will take the
tonyp@2715 506 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 507 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 508 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 509 // Heap_lock just to read the GC count.
tonyp@2315 510
tonyp@2715 511 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 512 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 513 // should only be used for non-humongous allocations.
tonyp@2715 514 inline HeapWord* attempt_allocation(size_t word_size,
mgerdin@4853 515 unsigned int* gc_count_before_ret,
mgerdin@4853 516 int* gclocker_retry_count_ret);
tonyp@2315 517
tonyp@2715 518 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 519 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 520 // pause. This should only be used for non-humongous allocations.
tonyp@2715 521 HeapWord* attempt_allocation_slow(size_t word_size,
sjohanss@7118 522 AllocationContext_t context,
mgerdin@4853 523 unsigned int* gc_count_before_ret,
mgerdin@4853 524 int* gclocker_retry_count_ret);
tonyp@2315 525
tonyp@2715 526 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 527 // potentially schedule a GC pause.
tonyp@2715 528 HeapWord* attempt_allocation_humongous(size_t word_size,
mgerdin@4853 529 unsigned int* gc_count_before_ret,
mgerdin@4853 530 int* gclocker_retry_count_ret);
tonyp@2454 531
tonyp@2715 532 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 533 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 534 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 535 // or not.
tonyp@2315 536 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
sjohanss@7118 537 AllocationContext_t context,
sjohanss@7118 538 bool expect_null_mutator_alloc_region);
tonyp@2315 539
tonyp@2315 540 // It dirties the cards that cover the block so that so that the post
tonyp@2315 541 // write barrier never queues anything when updating objects on this
tonyp@2315 542 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 543 // belongs to a young region.
tonyp@2315 544 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 545
ysr@777 546 // Allocate blocks during garbage collection. Will ensure an
ysr@777 547 // allocation region, either by picking one or expanding the
ysr@777 548 // heap, and then allocate a block of the given size. The block
ysr@777 549 // may not be a humongous - it must fit into a single heap region.
tschatzl@7651 550 inline HeapWord* par_allocate_during_gc(InCSetState dest,
tschatzl@7651 551 size_t word_size,
tschatzl@7651 552 AllocationContext_t context);
ysr@777 553 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 554 // that parallel threads might be attempting allocations.
ysr@777 555 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 556
tonyp@3028 557 // Allocation attempt during GC for a survivor object / PLAB.
sjohanss@7118 558 inline HeapWord* survivor_attempt_allocation(size_t word_size,
sjohanss@7118 559 AllocationContext_t context);
apetrusenko@980 560
tonyp@3028 561 // Allocation attempt during GC for an old object / PLAB.
sjohanss@7118 562 inline HeapWord* old_attempt_allocation(size_t word_size,
sjohanss@7118 563 AllocationContext_t context);
tonyp@2715 564
tonyp@3028 565 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 566
tonyp@3028 567 // For mutator alloc regions.
tonyp@2715 568 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 569 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 570 size_t allocated_bytes);
tonyp@2715 571
tonyp@3028 572 // For GC alloc regions.
tonyp@3713 573 HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
tschatzl@7651 574 InCSetState dest);
tonyp@3028 575 void retire_gc_alloc_region(HeapRegion* alloc_region,
tschatzl@7651 576 size_t allocated_bytes, InCSetState dest);
tonyp@3028 577
tonyp@2011 578 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 579 // inspection request and should collect the entire heap
tonyp@2315 580 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 581 // cleared during the GC
tonyp@2011 582 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 583 // the GC should attempt (at least) to satisfy
tonyp@2315 584 // - it returns false if it is unable to do the collection due to the
tonyp@2315 585 // GC locker being active, true otherwise
tonyp@2315 586 bool do_collection(bool explicit_gc,
tonyp@2011 587 bool clear_all_soft_refs,
ysr@777 588 size_t word_size);
ysr@777 589
ysr@777 590 // Callback from VM_G1CollectFull operation.
ysr@777 591 // Perform a full collection.
coleenp@4037 592 virtual void do_full_collection(bool clear_all_soft_refs);
ysr@777 593
ysr@777 594 // Resize the heap if necessary after a full collection. If this is
ysr@777 595 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 596 // and will be considered part of the used portion of the heap.
ysr@777 597 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 598
ysr@777 599 // Callback from VM_G1CollectForAllocation operation.
ysr@777 600 // This function does everything necessary/possible to satisfy a
ysr@777 601 // failed allocation request (including collection, expansion, etc.)
sjohanss@7118 602 HeapWord* satisfy_failed_allocation(size_t word_size,
sjohanss@7118 603 AllocationContext_t context,
sjohanss@7118 604 bool* succeeded);
ysr@777 605
ysr@777 606 // Attempting to expand the heap sufficiently
ysr@777 607 // to support an allocation of the given "word_size". If
ysr@777 608 // successful, perform the allocation and return the address of the
ysr@777 609 // allocated block, or else "NULL".
sjohanss@7118 610 HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
ysr@777 611
johnc@3175 612 // Process any reference objects discovered during
johnc@3175 613 // an incremental evacuation pause.
johnc@4130 614 void process_discovered_references(uint no_of_gc_workers);
johnc@3175 615
johnc@3175 616 // Enqueue any remaining discovered references
johnc@3175 617 // after processing.
johnc@4130 618 void enqueue_discovered_references(uint no_of_gc_workers);
johnc@3175 619
ysr@777 620 public:
jmasa@2821 621
sjohanss@7131 622 G1Allocator* allocator() {
sjohanss@7131 623 return _allocator;
sjohanss@7131 624 }
sjohanss@7131 625
tonyp@3176 626 G1MonitoringSupport* g1mm() {
tonyp@3176 627 assert(_g1mm != NULL, "should have been initialized");
tonyp@3176 628 return _g1mm;
tonyp@3176 629 }
jmasa@2821 630
ysr@777 631 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 632 // Returns true if the heap was expanded by the requested amount;
johnc@2504 633 // false otherwise.
ysr@777 634 // (Rounds up to a HeapRegion boundary.)
johnc@2504 635 bool expand(size_t expand_bytes);
ysr@777 636
tschatzl@7651 637 // Returns the PLAB statistics for a given destination.
tschatzl@7651 638 inline PLABStats* alloc_buffer_stats(InCSetState dest);
sjohanss@7118 639
tschatzl@7651 640 // Determines PLAB size for a given destination.
tschatzl@7651 641 inline size_t desired_plab_sz(InCSetState dest);
sjohanss@7118 642
jcoomes@7159 643 inline AllocationContextStats& allocation_context_stats();
jcoomes@7159 644
ysr@777 645 // Do anything common to GC's.
ysr@777 646 virtual void gc_prologue(bool full);
ysr@777 647 virtual void gc_epilogue(bool full);
ysr@777 648
tschatzl@7019 649 inline void set_humongous_is_live(oop obj);
tschatzl@7019 650
tschatzl@7019 651 bool humongous_is_live(uint region) {
tschatzl@7019 652 return _humongous_is_live.is_live(region);
tschatzl@7019 653 }
tschatzl@7019 654
tschatzl@7019 655 // Returns whether the given region (which must be a humongous (start) region)
tschatzl@7019 656 // is to be considered conservatively live regardless of any other conditions.
tschatzl@7019 657 bool humongous_region_is_always_live(uint index);
tschatzl@7019 658 // Register the given region to be part of the collection set.
tschatzl@7019 659 inline void register_humongous_region_with_in_cset_fast_test(uint index);
tschatzl@7019 660 // Register regions with humongous objects (actually on the start region) in
tschatzl@7019 661 // the in_cset_fast_test table.
tschatzl@7019 662 void register_humongous_regions_with_in_cset_fast_test();
tonyp@961 663 // We register a region with the fast "in collection set" test. We
tonyp@961 664 // simply set to true the array slot corresponding to this region.
tschatzl@7651 665 void register_young_region_with_in_cset_fast_test(HeapRegion* r) {
tschatzl@7651 666 _in_cset_fast_test.set_in_young(r->hrm_index());
tschatzl@7651 667 }
tschatzl@7651 668 void register_old_region_with_in_cset_fast_test(HeapRegion* r) {
tschatzl@7651 669 _in_cset_fast_test.set_in_old(r->hrm_index());
tonyp@961 670 }
tonyp@961 671
tonyp@961 672 // This is a fast test on whether a reference points into the
tschatzl@6330 673 // collection set or not. Assume that the reference
tschatzl@6330 674 // points into the heap.
tschatzl@6541 675 inline bool in_cset_fast_test(oop obj);
tonyp@961 676
johnc@1829 677 void clear_cset_fast_test() {
tschatzl@6926 678 _in_cset_fast_test.clear();
johnc@1829 679 }
johnc@1829 680
brutisso@3823 681 // This is called at the start of either a concurrent cycle or a Full
brutisso@3823 682 // GC to update the number of old marking cycles started.
brutisso@3823 683 void increment_old_marking_cycles_started();
brutisso@3823 684
tonyp@2011 685 // This is called at the end of either a concurrent cycle or a Full
brutisso@3823 686 // GC to update the number of old marking cycles completed. Those two
tonyp@2011 687 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 688 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 689 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 690 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 691 // tighter consistency checking in the method. If concurrent is
tonyp@2372 692 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 693 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 694 // in this nesting (i.e., the concurrent cycle). Further nesting is
brutisso@3823 695 // not currently supported. The end of this call also notifies
tonyp@2372 696 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 697 // GC to happen (e.g., it called System.gc() with
tonyp@2011 698 // +ExplicitGCInvokesConcurrent).
brutisso@3823 699 void increment_old_marking_cycles_completed(bool concurrent);
tonyp@2011 700
brutisso@3823 701 unsigned int old_marking_cycles_completed() {
brutisso@3823 702 return _old_marking_cycles_completed;
tonyp@2011 703 }
tonyp@2011 704
mgronlun@6131 705 void register_concurrent_cycle_start(const Ticks& start_time);
sla@5237 706 void register_concurrent_cycle_end();
sla@5237 707 void trace_heap_after_concurrent_cycle();
sla@5237 708
sla@5237 709 G1YCType yc_type();
sla@5237 710
tonyp@2975 711 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 712
brutisso@6385 713 // Frees a non-humongous region by initializing its contents and
brutisso@6385 714 // adding it to the free list that's passed as a parameter (this is
brutisso@6385 715 // usually a local list which will be appended to the master free
brutisso@6385 716 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 717 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 718 // up. The assumption is that this will be done later.
tschatzl@6404 719 // The locked parameter indicates if the caller has already taken
tschatzl@6404 720 // care of proper synchronization. This may allow some optimizations.
brutisso@6385 721 void free_region(HeapRegion* hr,
brutisso@6385 722 FreeRegionList* free_list,
tschatzl@6404 723 bool par,
tschatzl@6404 724 bool locked = false);
brutisso@6385 725
brutisso@6385 726 // Frees a humongous region by collapsing it into individual regions
brutisso@6385 727 // and calling free_region() for each of them. The freed regions
brutisso@6385 728 // will be added to the free list that's passed as a parameter (this
brutisso@6385 729 // is usually a local list which will be appended to the master free
brutisso@6385 730 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 731 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 732 // up. The assumption is that this will be done later.
brutisso@6385 733 void free_humongous_region(HeapRegion* hr,
brutisso@6385 734 FreeRegionList* free_list,
brutisso@6385 735 bool par);
ysr@777 736 protected:
ysr@777 737
ysr@777 738 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 739 // (Rounds down to a HeapRegion boundary.)
ysr@777 740 virtual void shrink(size_t expand_bytes);
ysr@777 741 void shrink_helper(size_t expand_bytes);
ysr@777 742
jcoomes@2064 743 #if TASKQUEUE_STATS
jcoomes@2064 744 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 745 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 746 void reset_taskqueue_stats();
jcoomes@2064 747 #endif // TASKQUEUE_STATS
jcoomes@2064 748
tonyp@2315 749 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 750 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 751 // return whether the VM operation was successful (it did do an
tonyp@2315 752 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 753 // locker was active). Given that we should not be holding the
tonyp@2315 754 // Heap_lock when we enter this method, we will pass the
tonyp@2315 755 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 756 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 757 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 758 // before the call, so it's easy to read gc_count_before just before.
brutisso@5581 759 HeapWord* do_collection_pause(size_t word_size,
brutisso@5581 760 unsigned int gc_count_before,
brutisso@5581 761 bool* succeeded,
brutisso@5581 762 GCCause::Cause gc_cause);
ysr@777 763
ysr@777 764 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 765 // thread. It returns false if it is unable to do the collection due
tonyp@2315 766 // to the GC locker being active, true otherwise
tonyp@2315 767 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 768
ysr@777 769 // Actually do the work of evacuating the collection set.
sla@5237 770 void evacuate_collection_set(EvacuationInfo& evacuation_info);
ysr@777 771
ysr@777 772 // The g1 remembered set of the heap.
ysr@777 773 G1RemSet* _g1_rem_set;
ysr@777 774
iveresov@1051 775 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 776 // concurrently after the collection.
iveresov@1051 777 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 778
ysr@777 779 // The closure used to refine a single card.
ysr@777 780 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 781
ysr@777 782 // A function to check the consistency of dirty card logs.
ysr@777 783 void check_ct_logs_at_safepoint();
ysr@777 784
johnc@2060 785 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 786 // references into the current collection set. This is used to
johnc@2060 787 // update the remembered sets of the regions in the collection
johnc@2060 788 // set in the event of an evacuation failure.
johnc@2060 789 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 790
ysr@777 791 // After a collection pause, make the regions in the CS into free
ysr@777 792 // regions.
sla@5237 793 void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
ysr@777 794
johnc@1829 795 // Abandon the current collection set without recording policy
johnc@1829 796 // statistics or updating free lists.
johnc@1829 797 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 798
ysr@777 799 // The concurrent marker (and the thread it runs in.)
ysr@777 800 ConcurrentMark* _cm;
ysr@777 801 ConcurrentMarkThread* _cmThread;
ysr@777 802 bool _mark_in_progress;
ysr@777 803
ysr@777 804 // The concurrent refiner.
ysr@777 805 ConcurrentG1Refine* _cg1r;
ysr@777 806
ysr@777 807 // The parallel task queues
ysr@777 808 RefToScanQueueSet *_task_queues;
ysr@777 809
ysr@777 810 // True iff a evacuation has failed in the current collection.
ysr@777 811 bool _evacuation_failed;
ysr@777 812
sla@5237 813 EvacuationFailedInfo* _evacuation_failed_info_array;
ysr@777 814
ysr@777 815 // Failed evacuations cause some logical from-space objects to have
ysr@777 816 // forwarding pointers to themselves. Reset them.
ysr@777 817 void remove_self_forwarding_pointers();
ysr@777 818
brutisso@4579 819 // Together, these store an object with a preserved mark, and its mark value.
brutisso@4579 820 Stack<oop, mtGC> _objs_with_preserved_marks;
brutisso@4579 821 Stack<markOop, mtGC> _preserved_marks_of_objs;
ysr@777 822
ysr@777 823 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 824 // word being overwritten with a self-forwarding-pointer.
ysr@777 825 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 826
ysr@777 827 // The stack of evac-failure objects left to be scanned.
ysr@777 828 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 829 // The closure to apply to evac-failure objects.
ysr@777 830
ysr@777 831 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 832 // Set the field above.
ysr@777 833 void
ysr@777 834 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 835 _evac_failure_closure = evac_failure_closure;
ysr@777 836 }
ysr@777 837
ysr@777 838 // Push "obj" on the scan stack.
ysr@777 839 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 840 // Process scan stack entries until the stack is empty.
ysr@777 841 void drain_evac_failure_scan_stack();
ysr@777 842 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 843 // prevent unnecessary recursion.
ysr@777 844 bool _drain_in_progress;
ysr@777 845
ysr@777 846 // Do any necessary initialization for evacuation-failure handling.
ysr@777 847 // "cl" is the closure that will be used to process evac-failure
ysr@777 848 // objects.
ysr@777 849 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 850 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 851 // structures.
ysr@777 852 void finalize_for_evac_failure();
ysr@777 853
ysr@777 854 // An attempt to evacuate "obj" has failed; take necessary steps.
sla@5237 855 oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
ysr@777 856 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 857
johnc@4016 858 #ifndef PRODUCT
johnc@4016 859 // Support for forcing evacuation failures. Analogous to
johnc@4016 860 // PromotionFailureALot for the other collectors.
johnc@4016 861
johnc@4016 862 // Records whether G1EvacuationFailureALot should be in effect
johnc@4016 863 // for the current GC
johnc@4016 864 bool _evacuation_failure_alot_for_current_gc;
johnc@4016 865
johnc@4016 866 // Used to record the GC number for interval checking when
johnc@4016 867 // determining whether G1EvaucationFailureALot is in effect
johnc@4016 868 // for the current GC.
johnc@4016 869 size_t _evacuation_failure_alot_gc_number;
johnc@4016 870
johnc@4016 871 // Count of the number of evacuations between failures.
johnc@4016 872 volatile size_t _evacuation_failure_alot_count;
johnc@4016 873
johnc@4016 874 // Set whether G1EvacuationFailureALot should be in effect
johnc@4016 875 // for the current GC (based upon the type of GC and which
johnc@4016 876 // command line flags are set);
johnc@4016 877 inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
johnc@4016 878 bool during_initial_mark,
johnc@4016 879 bool during_marking);
johnc@4016 880
johnc@4016 881 inline void set_evacuation_failure_alot_for_current_gc();
johnc@4016 882
johnc@4016 883 // Return true if it's time to cause an evacuation failure.
johnc@4016 884 inline bool evacuation_should_fail();
johnc@4016 885
johnc@4016 886 // Reset the G1EvacuationFailureALot counters. Should be called at
sla@5237 887 // the end of an evacuation pause in which an evacuation failure occurred.
johnc@4016 888 inline void reset_evacuation_should_fail();
johnc@4016 889 #endif // !PRODUCT
johnc@4016 890
johnc@3175 891 // ("Weak") Reference processing support.
johnc@3175 892 //
sla@5237 893 // G1 has 2 instances of the reference processor class. One
johnc@3175 894 // (_ref_processor_cm) handles reference object discovery
johnc@3175 895 // and subsequent processing during concurrent marking cycles.
johnc@3175 896 //
johnc@3175 897 // The other (_ref_processor_stw) handles reference object
johnc@3175 898 // discovery and processing during full GCs and incremental
johnc@3175 899 // evacuation pauses.
johnc@3175 900 //
johnc@3175 901 // During an incremental pause, reference discovery will be
johnc@3175 902 // temporarily disabled for _ref_processor_cm and will be
johnc@3175 903 // enabled for _ref_processor_stw. At the end of the evacuation
johnc@3175 904 // pause references discovered by _ref_processor_stw will be
johnc@3175 905 // processed and discovery will be disabled. The previous
johnc@3175 906 // setting for reference object discovery for _ref_processor_cm
johnc@3175 907 // will be re-instated.
johnc@3175 908 //
johnc@3175 909 // At the start of marking:
johnc@3175 910 // * Discovery by the CM ref processor is verified to be inactive
johnc@3175 911 // and it's discovered lists are empty.
johnc@3175 912 // * Discovery by the CM ref processor is then enabled.
johnc@3175 913 //
johnc@3175 914 // At the end of marking:
johnc@3175 915 // * Any references on the CM ref processor's discovered
johnc@3175 916 // lists are processed (possibly MT).
johnc@3175 917 //
johnc@3175 918 // At the start of full GC we:
johnc@3175 919 // * Disable discovery by the CM ref processor and
johnc@3175 920 // empty CM ref processor's discovered lists
johnc@3175 921 // (without processing any entries).
johnc@3175 922 // * Verify that the STW ref processor is inactive and it's
johnc@3175 923 // discovered lists are empty.
johnc@3175 924 // * Temporarily set STW ref processor discovery as single threaded.
johnc@3175 925 // * Temporarily clear the STW ref processor's _is_alive_non_header
johnc@3175 926 // field.
johnc@3175 927 // * Finally enable discovery by the STW ref processor.
johnc@3175 928 //
johnc@3175 929 // The STW ref processor is used to record any discovered
johnc@3175 930 // references during the full GC.
johnc@3175 931 //
johnc@3175 932 // At the end of a full GC we:
johnc@3175 933 // * Enqueue any reference objects discovered by the STW ref processor
johnc@3175 934 // that have non-live referents. This has the side-effect of
johnc@3175 935 // making the STW ref processor inactive by disabling discovery.
johnc@3175 936 // * Verify that the CM ref processor is still inactive
johnc@3175 937 // and no references have been placed on it's discovered
johnc@3175 938 // lists (also checked as a precondition during initial marking).
johnc@3175 939
johnc@3175 940 // The (stw) reference processor...
johnc@3175 941 ReferenceProcessor* _ref_processor_stw;
johnc@3175 942
sla@5237 943 STWGCTimer* _gc_timer_stw;
sla@5237 944 ConcurrentGCTimer* _gc_timer_cm;
sla@5237 945
sla@5237 946 G1OldTracer* _gc_tracer_cm;
sla@5237 947 G1NewTracer* _gc_tracer_stw;
sla@5237 948
johnc@3175 949 // During reference object discovery, the _is_alive_non_header
johnc@3175 950 // closure (if non-null) is applied to the referent object to
johnc@3175 951 // determine whether the referent is live. If so then the
johnc@3175 952 // reference object does not need to be 'discovered' and can
johnc@3175 953 // be treated as a regular oop. This has the benefit of reducing
johnc@3175 954 // the number of 'discovered' reference objects that need to
johnc@3175 955 // be processed.
johnc@3175 956 //
johnc@3175 957 // Instance of the is_alive closure for embedding into the
johnc@3175 958 // STW reference processor as the _is_alive_non_header field.
johnc@3175 959 // Supplying a value for the _is_alive_non_header field is
johnc@3175 960 // optional but doing so prevents unnecessary additions to
johnc@3175 961 // the discovered lists during reference discovery.
johnc@3175 962 G1STWIsAliveClosure _is_alive_closure_stw;
johnc@3175 963
johnc@3175 964 // The (concurrent marking) reference processor...
johnc@3175 965 ReferenceProcessor* _ref_processor_cm;
johnc@3175 966
johnc@2379 967 // Instance of the concurrent mark is_alive closure for embedding
johnc@3175 968 // into the Concurrent Marking reference processor as the
johnc@3175 969 // _is_alive_non_header field. Supplying a value for the
johnc@3175 970 // _is_alive_non_header field is optional but doing so prevents
johnc@3175 971 // unnecessary additions to the discovered lists during reference
johnc@3175 972 // discovery.
johnc@3175 973 G1CMIsAliveClosure _is_alive_closure_cm;
ysr@777 974
johnc@3336 975 // Cache used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 976 HeapRegion** _worker_cset_start_region;
johnc@3336 977
johnc@3336 978 // Time stamp to validate the regions recorded in the cache
johnc@3336 979 // used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 980 // The heap region entry for a given worker is valid iff
johnc@3336 981 // the associated time stamp value matches the current value
johnc@3336 982 // of G1CollectedHeap::_gc_time_stamp.
johnc@3336 983 unsigned int* _worker_cset_start_region_time_stamp;
johnc@3336 984
tonyp@2472 985 volatile bool _free_regions_coming;
ysr@777 986
ysr@777 987 public:
jmasa@2188 988
ysr@777 989 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 990
jcoomes@2064 991 RefToScanQueue *task_queue(int i) const;
ysr@777 992
iveresov@1051 993 // A set of cards where updates happened during the GC
iveresov@1051 994 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 995
johnc@2060 996 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 997 // references into the current collection set. This is used to
johnc@2060 998 // update the remembered sets of the regions in the collection
johnc@2060 999 // set in the event of an evacuation failure.
johnc@2060 1000 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 1001 { return _into_cset_dirty_card_queue_set; }
johnc@2060 1002
ysr@777 1003 // Create a G1CollectedHeap with the specified policy.
ysr@777 1004 // Must call the initialize method afterwards.
ysr@777 1005 // May not return if something goes wrong.
ysr@777 1006 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 1007
ysr@777 1008 // Initialize the G1CollectedHeap to have the initial and
coleenp@4037 1009 // maximum sizes and remembered and barrier sets
ysr@777 1010 // specified by the policy object.
ysr@777 1011 jint initialize();
ysr@777 1012
pliden@6690 1013 virtual void stop();
pliden@6690 1014
tschatzl@5701 1015 // Return the (conservative) maximum heap alignment for any G1 heap
tschatzl@5701 1016 static size_t conservative_max_heap_alignment();
tschatzl@5701 1017
johnc@3175 1018 // Initialize weak reference processing.
johnc@2379 1019 virtual void ref_processing_init();
ysr@777 1020
mgerdin@7659 1021 // Explicitly import set_par_threads into this scope
mgerdin@7659 1022 using SharedHeap::set_par_threads;
jmasa@3294 1023 // Set _n_par_threads according to a policy TBD.
jmasa@3294 1024 void set_par_threads();
jmasa@3294 1025
ysr@777 1026 virtual CollectedHeap::Name kind() const {
ysr@777 1027 return CollectedHeap::G1CollectedHeap;
ysr@777 1028 }
ysr@777 1029
ysr@777 1030 // The current policy object for the collector.
ysr@777 1031 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 1032
coleenp@4037 1033 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
coleenp@4037 1034
ysr@777 1035 // Adaptive size policy. No such thing for g1.
ysr@777 1036 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 1037
ysr@777 1038 // The rem set and barrier set.
ysr@777 1039 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 1040
ysr@777 1041 unsigned get_gc_time_stamp() {
ysr@777 1042 return _gc_time_stamp;
ysr@777 1043 }
ysr@777 1044
goetz@6911 1045 inline void reset_gc_time_stamp();
iveresov@788 1046
tonyp@3957 1047 void check_gc_time_stamps() PRODUCT_RETURN;
tonyp@3957 1048
goetz@6911 1049 inline void increment_gc_time_stamp();
ysr@777 1050
tonyp@3957 1051 // Reset the given region's GC timestamp. If it's starts humongous,
tonyp@3957 1052 // also reset the GC timestamp of its corresponding
tonyp@3957 1053 // continues humongous regions too.
tonyp@3957 1054 void reset_gc_time_stamps(HeapRegion* hr);
tonyp@3957 1055
johnc@2060 1056 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 1057 DirtyCardQueue* into_cset_dcq,
vkempik@6552 1058 bool concurrent, uint worker_i);
ysr@777 1059
ysr@777 1060 // The shared block offset table array.
ysr@777 1061 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 1062
johnc@3175 1063 // Reference Processing accessors
johnc@3175 1064
johnc@3175 1065 // The STW reference processor....
johnc@3175 1066 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
johnc@3175 1067
sla@5237 1068 // The Concurrent Marking reference processor...
johnc@3175 1069 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
ysr@777 1070
sla@5237 1071 ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
sla@5237 1072 G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
sla@5237 1073
ysr@777 1074 virtual size_t capacity() const;
ysr@777 1075 virtual size_t used() const;
tonyp@1281 1076 // This should be called when we're not holding the heap lock. The
tonyp@1281 1077 // result might be a bit inaccurate.
tonyp@1281 1078 size_t used_unlocked() const;
ysr@777 1079 size_t recalculate_used() const;
ysr@777 1080
ysr@777 1081 // These virtual functions do the actual allocation.
ysr@777 1082 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 1083 // allocation, via inlined code (by exporting the address of the top and
ysr@777 1084 // end fields defining the extent of the contiguous allocation region.)
ysr@777 1085 // But G1CollectedHeap doesn't yet support this.
ysr@777 1086
ysr@777 1087 virtual bool is_maximal_no_gc() const {
tschatzl@7091 1088 return _hrm.available() == 0;
ysr@777 1089 }
ysr@777 1090
tschatzl@7050 1091 // The current number of regions in the heap.
tschatzl@7091 1092 uint num_regions() const { return _hrm.length(); }
tonyp@2963 1093
tonyp@2963 1094 // The max number of regions in the heap.
tschatzl@7091 1095 uint max_regions() const { return _hrm.max_length(); }
ysr@777 1096
ysr@777 1097 // The number of regions that are completely free.
tschatzl@7091 1098 uint num_free_regions() const { return _hrm.num_free_regions(); }
ysr@777 1099
ysr@777 1100 // The number of regions that are not completely free.
tschatzl@7050 1101 uint num_used_regions() const { return num_regions() - num_free_regions(); }
tonyp@2963 1102
tonyp@2849 1103 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 1104 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 1105 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 1106 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 1107
brutisso@7005 1108 #ifndef PRODUCT
brutisso@7005 1109 // Make sure that the given bitmap has no marked objects in the
brutisso@7005 1110 // range [from,limit). If it does, print an error message and return
brutisso@7005 1111 // false. Otherwise, just return true. bitmap_name should be "prev"
brutisso@7005 1112 // or "next".
brutisso@7005 1113 bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
brutisso@7005 1114 HeapWord* from, HeapWord* limit);
brutisso@7005 1115
brutisso@7005 1116 // Verify that the prev / next bitmap range [tams,end) for the given
brutisso@7005 1117 // region has no marks. Return true if all is well, false if errors
brutisso@7005 1118 // are detected.
brutisso@7005 1119 bool verify_bitmaps(const char* caller, HeapRegion* hr);
brutisso@7005 1120 #endif // PRODUCT
brutisso@7005 1121
brutisso@7005 1122 // If G1VerifyBitmaps is set, verify that the marking bitmaps for
brutisso@7005 1123 // the given region do not have any spurious marks. If errors are
brutisso@7005 1124 // detected, print appropriate error messages and crash.
brutisso@7005 1125 void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
brutisso@7005 1126
brutisso@7005 1127 // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
brutisso@7005 1128 // have any spurious marks. If errors are detected, print
brutisso@7005 1129 // appropriate error messages and crash.
brutisso@7005 1130 void check_bitmaps(const char* caller) PRODUCT_RETURN;
brutisso@7005 1131
tschatzl@7651 1132 // Do sanity check on the contents of the in-cset fast test table.
tschatzl@7651 1133 bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
tschatzl@7651 1134
tonyp@2472 1135 // verify_region_sets() performs verification over the region
tonyp@2472 1136 // lists. It will be compiled in the product code to be used when
tonyp@2472 1137 // necessary (i.e., during heap verification).
tonyp@2472 1138 void verify_region_sets();
ysr@777 1139
tonyp@2472 1140 // verify_region_sets_optional() is planted in the code for
tonyp@2472 1141 // list verification in non-product builds (and it can be enabled in
sla@5237 1142 // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 1143 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1144 void verify_region_sets_optional() {
tonyp@2472 1145 verify_region_sets();
tonyp@2472 1146 }
tonyp@2472 1147 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1148 void verify_region_sets_optional() { }
tonyp@2472 1149 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 1150
tonyp@2472 1151 #ifdef ASSERT
tonyp@2643 1152 bool is_on_master_free_list(HeapRegion* hr) {
tschatzl@7091 1153 return _hrm.is_free(hr);
tonyp@2472 1154 }
tonyp@2472 1155 #endif // ASSERT
ysr@777 1156
tonyp@2472 1157 // Wrapper for the region list operations that can be called from
tonyp@2472 1158 // methods outside this class.
ysr@777 1159
jwilhelm@6422 1160 void secondary_free_list_add(FreeRegionList* list) {
jwilhelm@6422 1161 _secondary_free_list.add_ordered(list);
tonyp@2472 1162 }
ysr@777 1163
tonyp@2472 1164 void append_secondary_free_list() {
tschatzl@7091 1165 _hrm.insert_list_into_free_list(&_secondary_free_list);
tonyp@2472 1166 }
ysr@777 1167
tonyp@2643 1168 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1169 // If the secondary free list looks empty there's no reason to
tonyp@2643 1170 // take the lock and then try to append it.
tonyp@2472 1171 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1172 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1173 append_secondary_free_list();
tonyp@2472 1174 }
tonyp@2472 1175 }
ysr@777 1176
tschatzl@6541 1177 inline void old_set_remove(HeapRegion* hr);
tonyp@3268 1178
brutisso@3456 1179 size_t non_young_capacity_bytes() {
brutisso@3456 1180 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
brutisso@3456 1181 }
brutisso@3456 1182
tonyp@2472 1183 void set_free_regions_coming();
tonyp@2472 1184 void reset_free_regions_coming();
tonyp@2472 1185 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1186 void wait_while_free_regions_coming();
ysr@777 1187
tonyp@3539 1188 // Determine whether the given region is one that we are using as an
tonyp@3539 1189 // old GC alloc region.
tonyp@3539 1190 bool is_old_gc_alloc_region(HeapRegion* hr) {
sjohanss@7118 1191 return _allocator->is_retained_old_region(hr);
tonyp@3539 1192 }
tonyp@3539 1193
ysr@777 1194 // Perform a collection of the heap; intended for use in implementing
ysr@777 1195 // "System.gc". This probably implies as full a collection as the
ysr@777 1196 // "CollectedHeap" supports.
ysr@777 1197 virtual void collect(GCCause::Cause cause);
ysr@777 1198
ysr@777 1199 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1200 void collect_locked(GCCause::Cause cause);
ysr@777 1201
sjohanss@7298 1202 virtual bool copy_allocation_context_stats(const jint* contexts,
jcoomes@7160 1203 jlong* totals,
jcoomes@7160 1204 jbyte* accuracy,
jcoomes@7160 1205 jint len);
jcoomes@7160 1206
sla@5237 1207 // True iff an evacuation has failed in the most-recent collection.
ysr@777 1208 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1209
brutisso@6385 1210 void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
brutisso@6385 1211 void prepend_to_freelist(FreeRegionList* list);
brutisso@6385 1212 void decrement_summary_bytes(size_t bytes);
ysr@777 1213
stefank@3335 1214 // Returns "TRUE" iff "p" points into the committed areas of the heap.
ysr@777 1215 virtual bool is_in(const void* p) const;
tschatzl@7051 1216 #ifdef ASSERT
tschatzl@7051 1217 // Returns whether p is in one of the available areas of the heap. Slow but
tschatzl@7051 1218 // extensive version.
tschatzl@7051 1219 bool is_in_exact(const void* p) const;
tschatzl@7051 1220 #endif
ysr@777 1221
ysr@777 1222 // Return "TRUE" iff the given object address is within the collection
tschatzl@7019 1223 // set. Slow implementation.
ysr@777 1224 inline bool obj_in_cs(oop obj);
ysr@777 1225
tschatzl@7019 1226 inline bool is_in_cset(oop obj);
tschatzl@7019 1227
tschatzl@7019 1228 inline bool is_in_cset_or_humongous(const oop obj);
tschatzl@7019 1229
tschatzl@7019 1230 private:
tschatzl@7019 1231 // This array is used for a quick test on whether a reference points into
tschatzl@7019 1232 // the collection set or not. Each of the array's elements denotes whether the
tschatzl@7019 1233 // corresponding region is in the collection set or not.
tschatzl@7651 1234 G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
tschatzl@7019 1235
tschatzl@7019 1236 public:
tschatzl@7019 1237
tschatzl@7651 1238 inline InCSetState in_cset_state(const oop obj);
tschatzl@7019 1239
ysr@777 1240 // Return "TRUE" iff the given object address is in the reserved
coleenp@4037 1241 // region of g1.
ysr@777 1242 bool is_in_g1_reserved(const void* p) const {
tschatzl@7091 1243 return _hrm.reserved().contains(p);
ysr@777 1244 }
ysr@777 1245
tonyp@2717 1246 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1247 // reserved for the heap
tschatzl@7050 1248 MemRegion g1_reserved() const {
tschatzl@7091 1249 return _hrm.reserved();
tonyp@2717 1250 }
tonyp@2717 1251
johnc@2593 1252 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1253
tschatzl@7051 1254 G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
tschatzl@7051 1255 return (G1SATBCardTableLoggingModRefBS*) barrier_set();
mgerdin@5811 1256 }
mgerdin@5811 1257
ysr@777 1258 // This resets the card table to all zeros. It is used after
ysr@777 1259 // a collection pause which used the card table to claim cards.
ysr@777 1260 void cleanUpCardTable();
ysr@777 1261
ysr@777 1262 // Iteration functions.
ysr@777 1263
ysr@777 1264 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1265 // "cl.do_oop" on each.
coleenp@4037 1266 virtual void oop_iterate(ExtendedOopClosure* cl);
ysr@777 1267
ysr@777 1268 // Iterate over all objects, calling "cl.do_object" on each.
coleenp@4037 1269 virtual void object_iterate(ObjectClosure* cl);
coleenp@4037 1270
coleenp@4037 1271 virtual void safe_object_iterate(ObjectClosure* cl) {
coleenp@4037 1272 object_iterate(cl);
iveresov@1113 1273 }
ysr@777 1274
ysr@777 1275 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1276 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1277
ysr@777 1278 // Iterate over heap regions, in address order, terminating the
ysr@777 1279 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1280 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1281
tonyp@2963 1282 // Return the region with the given index. It assumes the index is valid.
tschatzl@6541 1283 inline HeapRegion* region_at(uint index) const;
ysr@777 1284
tschatzl@7019 1285 // Calculate the region index of the given address. Given address must be
tschatzl@7019 1286 // within the heap.
tschatzl@7019 1287 inline uint addr_to_region(HeapWord* addr) const;
tschatzl@7019 1288
tschatzl@7050 1289 inline HeapWord* bottom_addr_for_region(uint index) const;
tschatzl@7050 1290
ysr@777 1291 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1292 // of regions divided by the number of parallel threads times some
ysr@777 1293 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1294 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1295 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1296 // calls will use the same "claim_value", and that that claim value is
ysr@777 1297 // different from the claim_value of any heap region before the start of
ysr@777 1298 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1299 // attempting to claim the first region in each chunk, and, if
ysr@777 1300 // successful, applying the closure to each region in the chunk (and
ysr@777 1301 // setting the claim value of the second and subsequent regions of the
ysr@777 1302 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1303 // i.e., that a closure never attempt to abort a traversal.
tschatzl@7050 1304 void heap_region_par_iterate_chunked(HeapRegionClosure* cl,
tschatzl@7050 1305 uint worker_id,
tschatzl@7050 1306 uint num_workers,
tschatzl@7050 1307 jint claim_value) const;
ysr@777 1308
tonyp@825 1309 // It resets all the region claim values to the default.
tonyp@825 1310 void reset_heap_region_claim_values();
tonyp@825 1311
johnc@3412 1312 // Resets the claim values of regions in the current
johnc@3412 1313 // collection set to the default.
johnc@3412 1314 void reset_cset_heap_region_claim_values();
johnc@3412 1315
tonyp@790 1316 #ifdef ASSERT
tonyp@790 1317 bool check_heap_region_claim_values(jint claim_value);
johnc@3296 1318
johnc@3296 1319 // Same as the routine above but only checks regions in the
johnc@3296 1320 // current collection set.
johnc@3296 1321 bool check_cset_heap_region_claim_values(jint claim_value);
tonyp@790 1322 #endif // ASSERT
tonyp@790 1323
johnc@3336 1324 // Clear the cached cset start regions and (more importantly)
johnc@3336 1325 // the time stamps. Called when we reset the GC time stamp.
johnc@3336 1326 void clear_cset_start_regions();
johnc@3336 1327
johnc@3336 1328 // Given the id of a worker, obtain or calculate a suitable
johnc@3336 1329 // starting region for iterating over the current collection set.
vkempik@6552 1330 HeapRegion* start_cset_region_for_worker(uint worker_i);
johnc@3296 1331
ysr@777 1332 // Iterate over the regions (if any) in the current collection set.
ysr@777 1333 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1334
ysr@777 1335 // As above but starting from region r
ysr@777 1336 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1337
tschatzl@7018 1338 HeapRegion* next_compaction_region(const HeapRegion* from) const;
ysr@777 1339
ysr@777 1340 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1341 // space containing a given address, or else returns NULL.
ysr@777 1342 virtual Space* space_containing(const void* addr) const;
ysr@777 1343
brutisso@7049 1344 // Returns the HeapRegion that contains addr. addr must not be NULL.
brutisso@7049 1345 template <class T>
brutisso@7049 1346 inline HeapRegion* heap_region_containing_raw(const T addr) const;
brutisso@7049 1347
brutisso@7049 1348 // Returns the HeapRegion that contains addr. addr must not be NULL.
brutisso@7049 1349 // If addr is within a humongous continues region, it returns its humongous start region.
tonyp@2963 1350 template <class T>
tonyp@2963 1351 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1352
ysr@777 1353 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1354 // each address in the (reserved) heap is a member of exactly
ysr@777 1355 // one block. The defining characteristic of a block is that it is
ysr@777 1356 // possible to find its size, and thus to progress forward to the next
ysr@777 1357 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1358 // represent Java objects, or they might be free blocks in a
ysr@777 1359 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1360 // distinguishable and the size of each is determinable.
ysr@777 1361
ysr@777 1362 // Returns the address of the start of the "block" that contains the
ysr@777 1363 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1364 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1365 // non-object.
ysr@777 1366 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1367
ysr@777 1368 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1369 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1370 // of the active area of the heap.
ysr@777 1371 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1372
ysr@777 1373 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1374 // the block is an object.
ysr@777 1375 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1376
ysr@777 1377 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1378 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1379
ysr@777 1380 // Section on thread-local allocation buffers (TLABs)
ysr@777 1381 // See CollectedHeap for semantics.
ysr@777 1382
brutisso@6376 1383 bool supports_tlab_allocation() const;
brutisso@6376 1384 size_t tlab_capacity(Thread* ignored) const;
brutisso@6376 1385 size_t tlab_used(Thread* ignored) const;
brutisso@6376 1386 size_t max_tlab_size() const;
brutisso@6376 1387 size_t unsafe_max_tlab_alloc(Thread* ignored) const;
ysr@777 1388
ysr@777 1389 // Can a compiler initialize a new object without store barriers?
ysr@777 1390 // This permission only extends from the creation of a new object
ysr@1462 1391 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1392 // is granted for this heap type, the compiler promises to call
ysr@1462 1393 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1394 // a new object for which such initializing store barriers will
ysr@1462 1395 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1396 // ready to provide a compensating write barrier as necessary
ysr@1462 1397 // if that storage came out of a non-young region. The efficiency
ysr@1462 1398 // of this implementation depends crucially on being able to
ysr@1462 1399 // answer very efficiently in constant time whether a piece of
ysr@1462 1400 // storage in the heap comes from a young region or not.
ysr@1462 1401 // See ReduceInitialCardMarks.
ysr@777 1402 virtual bool can_elide_tlab_store_barriers() const {
brutisso@3184 1403 return true;
ysr@1462 1404 }
ysr@1462 1405
ysr@1601 1406 virtual bool card_mark_must_follow_store() const {
ysr@1601 1407 return true;
ysr@1601 1408 }
ysr@1601 1409
tschatzl@6541 1410 inline bool is_in_young(const oop obj);
ysr@1462 1411
jmasa@2909 1412 #ifdef ASSERT
jmasa@2909 1413 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1414 #endif
jmasa@2909 1415
jmasa@2909 1416 virtual bool is_scavengable(const void* addr);
jmasa@2909 1417
ysr@1462 1418 // We don't need barriers for initializing stores to objects
ysr@1462 1419 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1420 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1421 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1422 // information for young gen objects.
tschatzl@6541 1423 virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
ysr@777 1424
ysr@777 1425 // Returns "true" iff the given word_size is "very large".
ysr@777 1426 static bool isHumongous(size_t word_size) {
johnc@1748 1427 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1428 // are capped at the humongous thresold and we want to
johnc@1748 1429 // ensure that we don't try to allocate a TLAB as
johnc@1748 1430 // humongous and that we don't allocate a humongous
johnc@1748 1431 // object in a TLAB.
johnc@1748 1432 return word_size > _humongous_object_threshold_in_words;
ysr@777 1433 }
ysr@777 1434
ysr@777 1435 // Update mod union table with the set of dirty cards.
ysr@777 1436 void updateModUnion();
ysr@777 1437
ysr@777 1438 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1439 // that this is always a safe operation, since it doesn't clear any
ysr@777 1440 // bits.
ysr@777 1441 void markModUnionRange(MemRegion mr);
ysr@777 1442
ysr@777 1443 // Records the fact that a marking phase is no longer in progress.
ysr@777 1444 void set_marking_complete() {
ysr@777 1445 _mark_in_progress = false;
ysr@777 1446 }
ysr@777 1447 void set_marking_started() {
ysr@777 1448 _mark_in_progress = true;
ysr@777 1449 }
ysr@777 1450 bool mark_in_progress() {
ysr@777 1451 return _mark_in_progress;
ysr@777 1452 }
ysr@777 1453
ysr@777 1454 // Print the maximum heap capacity.
ysr@777 1455 virtual size_t max_capacity() const;
ysr@777 1456
ysr@777 1457 virtual jlong millis_since_last_gc();
ysr@777 1458
tonyp@2974 1459
ysr@777 1460 // Convenience function to be used in situations where the heap type can be
ysr@777 1461 // asserted to be this type.
ysr@777 1462 static G1CollectedHeap* heap();
ysr@777 1463
ysr@777 1464 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1465 // add appropriate methods for any other surv rate groups
ysr@777 1466
brutisso@6376 1467 YoungList* young_list() const { return _young_list; }
ysr@777 1468
ysr@777 1469 // debugging
ysr@777 1470 bool check_young_list_well_formed() {
ysr@777 1471 return _young_list->check_list_well_formed();
ysr@777 1472 }
johnc@1829 1473
johnc@1829 1474 bool check_young_list_empty(bool check_heap,
ysr@777 1475 bool check_sample = true);
ysr@777 1476
ysr@777 1477 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1478 // many of these need to be public.
ysr@777 1479
ysr@777 1480 // The functions below are helper functions that a subclass of
ysr@777 1481 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1482 // functions.
ysr@777 1483 // This performs a concurrent marking of the live objects in a
ysr@777 1484 // bitmap off to the side.
ysr@777 1485 void doConcurrentMark();
ysr@777 1486
ysr@777 1487 bool isMarkedPrev(oop obj) const;
ysr@777 1488 bool isMarkedNext(oop obj) const;
ysr@777 1489
ysr@777 1490 // Determine if an object is dead, given the object and also
ysr@777 1491 // the region to which the object belongs. An object is dead
ysr@777 1492 // iff a) it was not allocated since the last mark and b) it
ysr@777 1493 // is not marked.
ysr@777 1494 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1495 return
ysr@777 1496 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1497 !isMarkedPrev(obj);
ysr@777 1498 }
ysr@777 1499
ysr@777 1500 // This function returns true when an object has been
ysr@777 1501 // around since the previous marking and hasn't yet
ysr@777 1502 // been marked during this marking.
ysr@777 1503 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1504 return
ysr@777 1505 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1506 !isMarkedNext(obj);
ysr@777 1507 }
ysr@777 1508
ysr@777 1509 // Determine if an object is dead, given only the object itself.
ysr@777 1510 // This will find the region to which the object belongs and
ysr@777 1511 // then call the region version of the same function.
ysr@777 1512
ysr@777 1513 // Added if it is NULL it isn't dead.
ysr@777 1514
tschatzl@6541 1515 inline bool is_obj_dead(const oop obj) const;
ysr@777 1516
tschatzl@6541 1517 inline bool is_obj_ill(const oop obj) const;
ysr@777 1518
johnc@5548 1519 bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
johnc@5548 1520 HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
johnc@5548 1521 bool is_marked(oop obj, VerifyOption vo);
johnc@5548 1522 const char* top_at_mark_start_str(VerifyOption vo);
johnc@5548 1523
johnc@5548 1524 ConcurrentMark* concurrent_mark() const { return _cm; }
johnc@5548 1525
johnc@5548 1526 // Refinement
johnc@5548 1527
johnc@5548 1528 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
johnc@5548 1529
johnc@5548 1530 // The dirty cards region list is used to record a subset of regions
johnc@5548 1531 // whose cards need clearing. The list if populated during the
johnc@5548 1532 // remembered set scanning and drained during the card table
johnc@5548 1533 // cleanup. Although the methods are reentrant, population/draining
johnc@5548 1534 // phases must not overlap. For synchronization purposes the last
johnc@5548 1535 // element on the list points to itself.
johnc@5548 1536 HeapRegion* _dirty_cards_region_list;
johnc@5548 1537 void push_dirty_cards_region(HeapRegion* hr);
johnc@5548 1538 HeapRegion* pop_dirty_cards_region();
johnc@5548 1539
johnc@5548 1540 // Optimized nmethod scanning support routines
johnc@5548 1541
johnc@5548 1542 // Register the given nmethod with the G1 heap
johnc@5548 1543 virtual void register_nmethod(nmethod* nm);
johnc@5548 1544
johnc@5548 1545 // Unregister the given nmethod from the G1 heap
johnc@5548 1546 virtual void unregister_nmethod(nmethod* nm);
johnc@5548 1547
tschatzl@6402 1548 // Free up superfluous code root memory.
tschatzl@6402 1549 void purge_code_root_memory();
tschatzl@6402 1550
johnc@5548 1551 // Rebuild the stong code root lists for each region
johnc@5548 1552 // after a full GC
johnc@5548 1553 void rebuild_strong_code_roots();
johnc@5548 1554
tschatzl@6229 1555 // Delete entries for dead interned string and clean up unreferenced symbols
tschatzl@6229 1556 // in symbol table, possibly in parallel.
tschatzl@6229 1557 void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
tschatzl@6229 1558
stefank@6992 1559 // Parallel phase of unloading/cleaning after G1 concurrent mark.
stefank@6992 1560 void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
stefank@6992 1561
tschatzl@6405 1562 // Redirty logged cards in the refinement queue.
tschatzl@6405 1563 void redirty_logged_cards();
johnc@5548 1564 // Verification
johnc@5548 1565
johnc@5548 1566 // The following is just to alert the verification code
johnc@5548 1567 // that a full collection has occurred and that the
johnc@5548 1568 // remembered sets are no longer up to date.
johnc@5548 1569 bool _full_collection;
johnc@5548 1570 void set_full_collection() { _full_collection = true;}
johnc@5548 1571 void clear_full_collection() {_full_collection = false;}
johnc@5548 1572 bool full_collection() {return _full_collection;}
johnc@5548 1573
johnc@5548 1574 // Perform any cleanup actions necessary before allowing a verification.
johnc@5548 1575 virtual void prepare_for_verify();
johnc@5548 1576
johnc@5548 1577 // Perform verification.
johnc@5548 1578
johnc@5548 1579 // vo == UsePrevMarking -> use "prev" marking information,
johnc@5548 1580 // vo == UseNextMarking -> use "next" marking information
johnc@5548 1581 // vo == UseMarkWord -> use the mark word in the object header
johnc@5548 1582 //
johnc@5548 1583 // NOTE: Only the "prev" marking information is guaranteed to be
johnc@5548 1584 // consistent most of the time, so most calls to this should use
johnc@5548 1585 // vo == UsePrevMarking.
johnc@5548 1586 // Currently, there is only one case where this is called with
johnc@5548 1587 // vo == UseNextMarking, which is to verify the "next" marking
johnc@5548 1588 // information at the end of remark.
johnc@5548 1589 // Currently there is only one place where this is called with
johnc@5548 1590 // vo == UseMarkWord, which is to verify the marking during a
johnc@5548 1591 // full GC.
johnc@5548 1592 void verify(bool silent, VerifyOption vo);
johnc@5548 1593
johnc@5548 1594 // Override; it uses the "prev" marking information
johnc@5548 1595 virtual void verify(bool silent);
johnc@5548 1596
tonyp@3957 1597 // The methods below are here for convenience and dispatch the
tonyp@3957 1598 // appropriate method depending on value of the given VerifyOption
johnc@5548 1599 // parameter. The values for that parameter, and their meanings,
johnc@5548 1600 // are the same as those above.
tonyp@3957 1601
tonyp@3957 1602 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1603 const HeapRegion* hr,
tschatzl@6541 1604 const VerifyOption vo) const;
tonyp@3957 1605
tonyp@3957 1606 bool is_obj_dead_cond(const oop obj,
tschatzl@6541 1607 const VerifyOption vo) const;
tonyp@3957 1608
johnc@5548 1609 // Printing
tonyp@3957 1610
johnc@5548 1611 virtual void print_on(outputStream* st) const;
johnc@5548 1612 virtual void print_extended_on(outputStream* st) const;
johnc@5548 1613 virtual void print_on_error(outputStream* st) const;
ysr@777 1614
johnc@5548 1615 virtual void print_gc_threads_on(outputStream* st) const;
johnc@5548 1616 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1617
johnc@5548 1618 // Override
johnc@5548 1619 void print_tracing_info() const;
johnc@5548 1620
johnc@5548 1621 // The following two methods are helpful for debugging RSet issues.
johnc@5548 1622 void print_cset_rsets() PRODUCT_RETURN;
johnc@5548 1623 void print_all_rsets() PRODUCT_RETURN;
apetrusenko@1231 1624
ysr@777 1625 public:
ysr@777 1626 size_t pending_card_num();
ysr@777 1627 size_t cards_scanned();
ysr@777 1628
ysr@777 1629 protected:
ysr@777 1630 size_t _max_heap_capacity;
ysr@777 1631 };
ysr@777 1632
stefank@2314 1633 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial