src/share/vm/opto/macro.cpp

Wed, 22 Jan 2014 17:42:23 -0800

author
kvn
date
Wed, 22 Jan 2014 17:42:23 -0800
changeset 6503
a9becfeecd1b
parent 6479
2113136690bc
parent 6198
55fb97c4c58d
child 6518
62c54fcc0a35
permissions
-rw-r--r--

Merge

duke@435 1 /*
mikael@6198 2 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "libadt/vectset.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/cfgnode.hpp"
stefank@2314 31 #include "opto/compile.hpp"
stefank@2314 32 #include "opto/connode.hpp"
stefank@2314 33 #include "opto/locknode.hpp"
stefank@2314 34 #include "opto/loopnode.hpp"
stefank@2314 35 #include "opto/macro.hpp"
stefank@2314 36 #include "opto/memnode.hpp"
stefank@2314 37 #include "opto/node.hpp"
stefank@2314 38 #include "opto/phaseX.hpp"
stefank@2314 39 #include "opto/rootnode.hpp"
stefank@2314 40 #include "opto/runtime.hpp"
stefank@2314 41 #include "opto/subnode.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43 #include "runtime/sharedRuntime.hpp"
duke@435 44
duke@435 45
duke@435 46 //
duke@435 47 // Replace any references to "oldref" in inputs to "use" with "newref".
duke@435 48 // Returns the number of replacements made.
duke@435 49 //
duke@435 50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
duke@435 51 int nreplacements = 0;
duke@435 52 uint req = use->req();
duke@435 53 for (uint j = 0; j < use->len(); j++) {
duke@435 54 Node *uin = use->in(j);
duke@435 55 if (uin == oldref) {
duke@435 56 if (j < req)
duke@435 57 use->set_req(j, newref);
duke@435 58 else
duke@435 59 use->set_prec(j, newref);
duke@435 60 nreplacements++;
duke@435 61 } else if (j >= req && uin == NULL) {
duke@435 62 break;
duke@435 63 }
duke@435 64 }
duke@435 65 return nreplacements;
duke@435 66 }
duke@435 67
duke@435 68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
duke@435 69 // Copy debug information and adjust JVMState information
duke@435 70 uint old_dbg_start = oldcall->tf()->domain()->cnt();
duke@435 71 uint new_dbg_start = newcall->tf()->domain()->cnt();
duke@435 72 int jvms_adj = new_dbg_start - old_dbg_start;
duke@435 73 assert (new_dbg_start == newcall->req(), "argument count mismatch");
kvn@498 74
kvn@5626 75 // SafePointScalarObject node could be referenced several times in debug info.
kvn@5626 76 // Use Dict to record cloned nodes.
kvn@498 77 Dict* sosn_map = new Dict(cmpkey,hashkey);
duke@435 78 for (uint i = old_dbg_start; i < oldcall->req(); i++) {
kvn@498 79 Node* old_in = oldcall->in(i);
kvn@498 80 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
kvn@895 81 if (old_in != NULL && old_in->is_SafePointScalarObject()) {
kvn@498 82 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
kvn@498 83 uint old_unique = C->unique();
kvn@5626 84 Node* new_in = old_sosn->clone(sosn_map);
kvn@5626 85 if (old_unique != C->unique()) { // New node?
kvn@3311 86 new_in->set_req(0, C->root()); // reset control edge
kvn@498 87 new_in = transform_later(new_in); // Register new node.
kvn@498 88 }
kvn@498 89 old_in = new_in;
kvn@498 90 }
kvn@498 91 newcall->add_req(old_in);
duke@435 92 }
kvn@498 93
duke@435 94 newcall->set_jvms(oldcall->jvms());
duke@435 95 for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@435 96 jvms->set_map(newcall);
duke@435 97 jvms->set_locoff(jvms->locoff()+jvms_adj);
duke@435 98 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
duke@435 99 jvms->set_monoff(jvms->monoff()+jvms_adj);
kvn@498 100 jvms->set_scloff(jvms->scloff()+jvms_adj);
duke@435 101 jvms->set_endoff(jvms->endoff()+jvms_adj);
duke@435 102 }
duke@435 103 }
duke@435 104
kvn@855 105 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
kvn@855 106 Node* cmp;
kvn@855 107 if (mask != 0) {
kvn@4115 108 Node* and_node = transform_later(new (C) AndXNode(word, MakeConX(mask)));
kvn@4115 109 cmp = transform_later(new (C) CmpXNode(and_node, MakeConX(bits)));
kvn@855 110 } else {
kvn@855 111 cmp = word;
kvn@855 112 }
kvn@4115 113 Node* bol = transform_later(new (C) BoolNode(cmp, BoolTest::ne));
kvn@4115 114 IfNode* iff = new (C) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
kvn@855 115 transform_later(iff);
duke@435 116
kvn@855 117 // Fast path taken.
kvn@4115 118 Node *fast_taken = transform_later( new (C) IfFalseNode(iff) );
duke@435 119
duke@435 120 // Fast path not-taken, i.e. slow path
kvn@4115 121 Node *slow_taken = transform_later( new (C) IfTrueNode(iff) );
kvn@855 122
kvn@855 123 if (return_fast_path) {
kvn@855 124 region->init_req(edge, slow_taken); // Capture slow-control
kvn@855 125 return fast_taken;
kvn@855 126 } else {
kvn@855 127 region->init_req(edge, fast_taken); // Capture fast-control
kvn@855 128 return slow_taken;
kvn@855 129 }
duke@435 130 }
duke@435 131
duke@435 132 //--------------------copy_predefined_input_for_runtime_call--------------------
duke@435 133 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
duke@435 134 // Set fixed predefined input arguments
duke@435 135 call->init_req( TypeFunc::Control, ctrl );
duke@435 136 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) );
duke@435 137 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
duke@435 138 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
duke@435 139 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
duke@435 140 }
duke@435 141
duke@435 142 //------------------------------make_slow_call---------------------------------
duke@435 143 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
duke@435 144
duke@435 145 // Slow-path call
duke@435 146 CallNode *call = leaf_name
kvn@4115 147 ? (CallNode*)new (C) CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
kvn@4115 148 : (CallNode*)new (C) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
duke@435 149
duke@435 150 // Slow path call has no side-effects, uses few values
duke@435 151 copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
duke@435 152 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
duke@435 153 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
duke@435 154 copy_call_debug_info(oldcall, call);
duke@435 155 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
kvn@1976 156 _igvn.replace_node(oldcall, call);
duke@435 157 transform_later(call);
duke@435 158
duke@435 159 return call;
duke@435 160 }
duke@435 161
duke@435 162 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
duke@435 163 _fallthroughproj = NULL;
duke@435 164 _fallthroughcatchproj = NULL;
duke@435 165 _ioproj_fallthrough = NULL;
duke@435 166 _ioproj_catchall = NULL;
duke@435 167 _catchallcatchproj = NULL;
duke@435 168 _memproj_fallthrough = NULL;
duke@435 169 _memproj_catchall = NULL;
duke@435 170 _resproj = NULL;
duke@435 171 for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
duke@435 172 ProjNode *pn = call->fast_out(i)->as_Proj();
duke@435 173 switch (pn->_con) {
duke@435 174 case TypeFunc::Control:
duke@435 175 {
duke@435 176 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
duke@435 177 _fallthroughproj = pn;
duke@435 178 DUIterator_Fast jmax, j = pn->fast_outs(jmax);
duke@435 179 const Node *cn = pn->fast_out(j);
duke@435 180 if (cn->is_Catch()) {
duke@435 181 ProjNode *cpn = NULL;
duke@435 182 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
duke@435 183 cpn = cn->fast_out(k)->as_Proj();
duke@435 184 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
duke@435 185 if (cpn->_con == CatchProjNode::fall_through_index)
duke@435 186 _fallthroughcatchproj = cpn;
duke@435 187 else {
duke@435 188 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
duke@435 189 _catchallcatchproj = cpn;
duke@435 190 }
duke@435 191 }
duke@435 192 }
duke@435 193 break;
duke@435 194 }
duke@435 195 case TypeFunc::I_O:
duke@435 196 if (pn->_is_io_use)
duke@435 197 _ioproj_catchall = pn;
duke@435 198 else
duke@435 199 _ioproj_fallthrough = pn;
duke@435 200 break;
duke@435 201 case TypeFunc::Memory:
duke@435 202 if (pn->_is_io_use)
duke@435 203 _memproj_catchall = pn;
duke@435 204 else
duke@435 205 _memproj_fallthrough = pn;
duke@435 206 break;
duke@435 207 case TypeFunc::Parms:
duke@435 208 _resproj = pn;
duke@435 209 break;
duke@435 210 default:
duke@435 211 assert(false, "unexpected projection from allocation node.");
duke@435 212 }
duke@435 213 }
duke@435 214
duke@435 215 }
duke@435 216
kvn@508 217 // Eliminate a card mark sequence. p2x is a ConvP2XNode
kvn@1286 218 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
kvn@508 219 assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
kvn@1286 220 if (!UseG1GC) {
kvn@1286 221 // vanilla/CMS post barrier
kvn@1286 222 Node *shift = p2x->unique_out();
kvn@1286 223 Node *addp = shift->unique_out();
kvn@1286 224 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
never@2814 225 Node *mem = addp->last_out(j);
never@2814 226 if (UseCondCardMark && mem->is_Load()) {
never@2814 227 assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
never@2814 228 // The load is checking if the card has been written so
never@2814 229 // replace it with zero to fold the test.
never@2814 230 _igvn.replace_node(mem, intcon(0));
never@2814 231 continue;
never@2814 232 }
never@2814 233 assert(mem->is_Store(), "store required");
never@2814 234 _igvn.replace_node(mem, mem->in(MemNode::Memory));
kvn@1286 235 }
kvn@1286 236 } else {
kvn@1286 237 // G1 pre/post barriers
kvn@3521 238 assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
kvn@1286 239 // It could be only one user, URShift node, in Object.clone() instrinsic
kvn@1286 240 // but the new allocation is passed to arraycopy stub and it could not
kvn@1286 241 // be scalar replaced. So we don't check the case.
kvn@1286 242
kvn@3521 243 // An other case of only one user (Xor) is when the value check for NULL
kvn@3521 244 // in G1 post barrier is folded after CCP so the code which used URShift
kvn@3521 245 // is removed.
kvn@3521 246
kvn@3521 247 // Take Region node before eliminating post barrier since it also
kvn@3521 248 // eliminates CastP2X node when it has only one user.
kvn@3521 249 Node* this_region = p2x->in(0);
kvn@3521 250 assert(this_region != NULL, "");
kvn@3521 251
kvn@1286 252 // Remove G1 post barrier.
kvn@1286 253
kvn@1286 254 // Search for CastP2X->Xor->URShift->Cmp path which
kvn@1286 255 // checks if the store done to a different from the value's region.
kvn@1286 256 // And replace Cmp with #0 (false) to collapse G1 post barrier.
kvn@1286 257 Node* xorx = NULL;
kvn@1286 258 for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
kvn@1286 259 Node* u = p2x->fast_out(i);
kvn@1286 260 if (u->Opcode() == Op_XorX) {
kvn@1286 261 xorx = u;
kvn@1286 262 break;
kvn@1286 263 }
kvn@1286 264 }
kvn@1286 265 assert(xorx != NULL, "missing G1 post barrier");
kvn@1286 266 Node* shift = xorx->unique_out();
kvn@1286 267 Node* cmpx = shift->unique_out();
kvn@1286 268 assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
kvn@1286 269 cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
kvn@1286 270 "missing region check in G1 post barrier");
kvn@1286 271 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 272
kvn@1286 273 // Remove G1 pre barrier.
kvn@1286 274
kvn@1286 275 // Search "if (marking != 0)" check and set it to "false".
kvn@1286 276 // There is no G1 pre barrier if previous stored value is NULL
kvn@1286 277 // (for example, after initialization).
kvn@1286 278 if (this_region->is_Region() && this_region->req() == 3) {
kvn@1286 279 int ind = 1;
kvn@1286 280 if (!this_region->in(ind)->is_IfFalse()) {
kvn@1286 281 ind = 2;
kvn@1286 282 }
kvn@1286 283 if (this_region->in(ind)->is_IfFalse()) {
kvn@1286 284 Node* bol = this_region->in(ind)->in(0)->in(1);
kvn@1286 285 assert(bol->is_Bool(), "");
kvn@1286 286 cmpx = bol->in(1);
kvn@1286 287 if (bol->as_Bool()->_test._test == BoolTest::ne &&
kvn@1286 288 cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
kvn@1286 289 cmpx->in(1)->is_Load()) {
kvn@1286 290 Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
kvn@1286 291 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
kvn@1286 292 PtrQueue::byte_offset_of_active());
kvn@1286 293 if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
kvn@1286 294 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
kvn@1286 295 adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
kvn@1286 296 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
kvn@1286 297 }
kvn@1286 298 }
kvn@1286 299 }
kvn@1286 300 }
kvn@1286 301 // Now CastP2X can be removed since it is used only on dead path
kvn@1286 302 // which currently still alive until igvn optimize it.
kvn@3521 303 assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
kvn@1286 304 _igvn.replace_node(p2x, top());
kvn@508 305 }
kvn@508 306 }
kvn@508 307
kvn@508 308 // Search for a memory operation for the specified memory slice.
kvn@688 309 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
kvn@508 310 Node *orig_mem = mem;
kvn@508 311 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@688 312 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
kvn@508 313 while (true) {
kvn@508 314 if (mem == alloc_mem || mem == start_mem ) {
twisti@1040 315 return mem; // hit one of our sentinels
kvn@508 316 } else if (mem->is_MergeMem()) {
kvn@508 317 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@508 318 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
kvn@508 319 Node *in = mem->in(0);
kvn@508 320 // we can safely skip over safepoints, calls, locks and membars because we
kvn@508 321 // already know that the object is safe to eliminate.
kvn@508 322 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
kvn@508 323 return in;
kvn@688 324 } else if (in->is_Call()) {
kvn@688 325 CallNode *call = in->as_Call();
kvn@688 326 if (!call->may_modify(tinst, phase)) {
kvn@688 327 mem = call->in(TypeFunc::Memory);
kvn@688 328 }
kvn@688 329 mem = in->in(TypeFunc::Memory);
kvn@688 330 } else if (in->is_MemBar()) {
kvn@508 331 mem = in->in(TypeFunc::Memory);
kvn@508 332 } else {
kvn@508 333 assert(false, "unexpected projection");
kvn@508 334 }
kvn@508 335 } else if (mem->is_Store()) {
kvn@508 336 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 337 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@508 338 if (adr_idx == alias_idx) {
kvn@508 339 assert(atype->isa_oopptr(), "address type must be oopptr");
kvn@508 340 int adr_offset = atype->offset();
kvn@508 341 uint adr_iid = atype->is_oopptr()->instance_id();
kvn@508 342 // Array elements references have the same alias_idx
kvn@508 343 // but different offset and different instance_id.
kvn@508 344 if (adr_offset == offset && adr_iid == alloc->_idx)
kvn@508 345 return mem;
kvn@508 346 } else {
kvn@508 347 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
kvn@508 348 }
kvn@508 349 mem = mem->in(MemNode::Memory);
kvn@1535 350 } else if (mem->is_ClearArray()) {
kvn@1535 351 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
kvn@1535 352 // Can not bypass initialization of the instance
kvn@1535 353 // we are looking.
kvn@1535 354 debug_only(intptr_t offset;)
kvn@1535 355 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
kvn@1535 356 InitializeNode* init = alloc->as_Allocate()->initialization();
kvn@1535 357 // We are looking for stored value, return Initialize node
kvn@1535 358 // or memory edge from Allocate node.
kvn@1535 359 if (init != NULL)
kvn@1535 360 return init;
kvn@1535 361 else
kvn@1535 362 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
kvn@1535 363 }
kvn@1535 364 // Otherwise skip it (the call updated 'mem' value).
kvn@1019 365 } else if (mem->Opcode() == Op_SCMemProj) {
kvn@4479 366 mem = mem->in(0);
kvn@4479 367 Node* adr = NULL;
kvn@4479 368 if (mem->is_LoadStore()) {
kvn@4479 369 adr = mem->in(MemNode::Address);
kvn@4479 370 } else {
kvn@4479 371 assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
kvn@4479 372 adr = mem->in(3); // Destination array
kvn@4479 373 }
kvn@4479 374 const TypePtr* atype = adr->bottom_type()->is_ptr();
kvn@1019 375 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@1019 376 if (adr_idx == alias_idx) {
kvn@1019 377 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 378 return NULL;
kvn@1019 379 }
kvn@4479 380 mem = mem->in(MemNode::Memory);
kvn@508 381 } else {
kvn@508 382 return mem;
kvn@508 383 }
kvn@682 384 assert(mem != orig_mem, "dead memory loop");
kvn@508 385 }
kvn@508 386 }
kvn@508 387
kvn@508 388 //
kvn@508 389 // Given a Memory Phi, compute a value Phi containing the values from stores
kvn@508 390 // on the input paths.
kvn@508 391 // Note: this function is recursive, its depth is limied by the "level" argument
kvn@508 392 // Returns the computed Phi, or NULL if it cannot compute it.
kvn@682 393 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
kvn@682 394 assert(mem->is_Phi(), "sanity");
kvn@682 395 int alias_idx = C->get_alias_index(adr_t);
kvn@682 396 int offset = adr_t->offset();
kvn@682 397 int instance_id = adr_t->instance_id();
kvn@682 398
kvn@682 399 // Check if an appropriate value phi already exists.
kvn@682 400 Node* region = mem->in(0);
kvn@682 401 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
kvn@682 402 Node* phi = region->fast_out(k);
kvn@682 403 if (phi->is_Phi() && phi != mem &&
kvn@682 404 phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
kvn@682 405 return phi;
kvn@682 406 }
kvn@682 407 }
kvn@682 408 // Check if an appropriate new value phi already exists.
kvn@2985 409 Node* new_phi = value_phis->find(mem->_idx);
kvn@2985 410 if (new_phi != NULL)
kvn@2985 411 return new_phi;
kvn@508 412
kvn@508 413 if (level <= 0) {
kvn@688 414 return NULL; // Give up: phi tree too deep
kvn@508 415 }
kvn@508 416 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 417 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@508 418
kvn@508 419 uint length = mem->req();
zgu@3900 420 GrowableArray <Node *> values(length, length, NULL, false);
kvn@508 421
kvn@682 422 // create a new Phi for the value
kvn@4115 423 PhiNode *phi = new (C) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
kvn@682 424 transform_later(phi);
kvn@682 425 value_phis->push(phi, mem->_idx);
kvn@682 426
kvn@508 427 for (uint j = 1; j < length; j++) {
kvn@508 428 Node *in = mem->in(j);
kvn@508 429 if (in == NULL || in->is_top()) {
kvn@508 430 values.at_put(j, in);
kvn@508 431 } else {
kvn@688 432 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 433 if (val == start_mem || val == alloc_mem) {
kvn@508 434 // hit a sentinel, return appropriate 0 value
kvn@508 435 values.at_put(j, _igvn.zerocon(ft));
kvn@508 436 continue;
kvn@508 437 }
kvn@508 438 if (val->is_Initialize()) {
kvn@508 439 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 440 }
kvn@508 441 if (val == NULL) {
kvn@508 442 return NULL; // can't find a value on this path
kvn@508 443 }
kvn@508 444 if (val == mem) {
kvn@508 445 values.at_put(j, mem);
kvn@508 446 } else if (val->is_Store()) {
kvn@508 447 values.at_put(j, val->in(MemNode::ValueIn));
kvn@508 448 } else if(val->is_Proj() && val->in(0) == alloc) {
kvn@508 449 values.at_put(j, _igvn.zerocon(ft));
kvn@508 450 } else if (val->is_Phi()) {
kvn@682 451 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
kvn@682 452 if (val == NULL) {
kvn@682 453 return NULL;
kvn@508 454 }
kvn@682 455 values.at_put(j, val);
kvn@1019 456 } else if (val->Opcode() == Op_SCMemProj) {
kvn@4479 457 assert(val->in(0)->is_LoadStore() || val->in(0)->Opcode() == Op_EncodeISOArray, "sanity");
kvn@1019 458 assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 459 return NULL;
kvn@508 460 } else {
kvn@1019 461 #ifdef ASSERT
kvn@1019 462 val->dump();
kvn@688 463 assert(false, "unknown node on this path");
kvn@1019 464 #endif
kvn@688 465 return NULL; // unknown node on this path
kvn@508 466 }
kvn@508 467 }
kvn@508 468 }
kvn@682 469 // Set Phi's inputs
kvn@508 470 for (uint j = 1; j < length; j++) {
kvn@508 471 if (values.at(j) == mem) {
kvn@508 472 phi->init_req(j, phi);
kvn@508 473 } else {
kvn@508 474 phi->init_req(j, values.at(j));
kvn@508 475 }
kvn@508 476 }
kvn@508 477 return phi;
kvn@508 478 }
kvn@508 479
kvn@508 480 // Search the last value stored into the object's field.
kvn@508 481 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
kvn@658 482 assert(adr_t->is_known_instance_field(), "instance required");
kvn@658 483 int instance_id = adr_t->instance_id();
kvn@658 484 assert((uint)instance_id == alloc->_idx, "wrong allocation");
kvn@508 485
kvn@508 486 int alias_idx = C->get_alias_index(adr_t);
kvn@508 487 int offset = adr_t->offset();
kvn@508 488 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 489 Node *alloc_ctrl = alloc->in(TypeFunc::Control);
kvn@508 490 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@682 491 Arena *a = Thread::current()->resource_area();
kvn@682 492 VectorSet visited(a);
kvn@508 493
kvn@508 494
kvn@508 495 bool done = sfpt_mem == alloc_mem;
kvn@508 496 Node *mem = sfpt_mem;
kvn@508 497 while (!done) {
kvn@508 498 if (visited.test_set(mem->_idx)) {
kvn@508 499 return NULL; // found a loop, give up
kvn@508 500 }
kvn@688 501 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 502 if (mem == start_mem || mem == alloc_mem) {
kvn@508 503 done = true; // hit a sentinel, return appropriate 0 value
kvn@508 504 } else if (mem->is_Initialize()) {
kvn@508 505 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 506 if (mem == NULL) {
kvn@508 507 done = true; // Something go wrong.
kvn@508 508 } else if (mem->is_Store()) {
kvn@508 509 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 510 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
kvn@508 511 done = true;
kvn@508 512 }
kvn@508 513 } else if (mem->is_Store()) {
kvn@508 514 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
kvn@508 515 assert(atype != NULL, "address type must be oopptr");
kvn@508 516 assert(C->get_alias_index(atype) == alias_idx &&
kvn@658 517 atype->is_known_instance_field() && atype->offset() == offset &&
kvn@508 518 atype->instance_id() == instance_id, "store is correct memory slice");
kvn@508 519 done = true;
kvn@508 520 } else if (mem->is_Phi()) {
kvn@508 521 // try to find a phi's unique input
kvn@508 522 Node *unique_input = NULL;
kvn@508 523 Node *top = C->top();
kvn@508 524 for (uint i = 1; i < mem->req(); i++) {
kvn@688 525 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 526 if (n == NULL || n == top || n == mem) {
kvn@508 527 continue;
kvn@508 528 } else if (unique_input == NULL) {
kvn@508 529 unique_input = n;
kvn@508 530 } else if (unique_input != n) {
kvn@508 531 unique_input = top;
kvn@508 532 break;
kvn@508 533 }
kvn@508 534 }
kvn@508 535 if (unique_input != NULL && unique_input != top) {
kvn@508 536 mem = unique_input;
kvn@508 537 } else {
kvn@508 538 done = true;
kvn@508 539 }
kvn@508 540 } else {
kvn@508 541 assert(false, "unexpected node");
kvn@508 542 }
kvn@508 543 }
kvn@508 544 if (mem != NULL) {
kvn@508 545 if (mem == start_mem || mem == alloc_mem) {
kvn@508 546 // hit a sentinel, return appropriate 0 value
kvn@508 547 return _igvn.zerocon(ft);
kvn@508 548 } else if (mem->is_Store()) {
kvn@508 549 return mem->in(MemNode::ValueIn);
kvn@508 550 } else if (mem->is_Phi()) {
kvn@508 551 // attempt to produce a Phi reflecting the values on the input paths of the Phi
kvn@682 552 Node_Stack value_phis(a, 8);
kvn@688 553 Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
kvn@508 554 if (phi != NULL) {
kvn@508 555 return phi;
kvn@682 556 } else {
kvn@682 557 // Kill all new Phis
kvn@682 558 while(value_phis.is_nonempty()) {
kvn@682 559 Node* n = value_phis.node();
kvn@1976 560 _igvn.replace_node(n, C->top());
kvn@682 561 value_phis.pop();
kvn@682 562 }
kvn@508 563 }
kvn@508 564 }
kvn@508 565 }
kvn@508 566 // Something go wrong.
kvn@508 567 return NULL;
kvn@508 568 }
kvn@508 569
kvn@508 570 // Check the possibility of scalar replacement.
kvn@508 571 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 572 // Scan the uses of the allocation to check for anything that would
kvn@508 573 // prevent us from eliminating it.
kvn@508 574 NOT_PRODUCT( const char* fail_eliminate = NULL; )
kvn@508 575 DEBUG_ONLY( Node* disq_node = NULL; )
kvn@508 576 bool can_eliminate = true;
kvn@508 577
kvn@508 578 Node* res = alloc->result_cast();
kvn@508 579 const TypeOopPtr* res_type = NULL;
kvn@508 580 if (res == NULL) {
kvn@508 581 // All users were eliminated.
kvn@508 582 } else if (!res->is_CheckCastPP()) {
kvn@508 583 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
kvn@508 584 can_eliminate = false;
kvn@508 585 } else {
kvn@508 586 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 587 if (res_type == NULL) {
kvn@508 588 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
kvn@508 589 can_eliminate = false;
kvn@508 590 } else if (res_type->isa_aryptr()) {
kvn@508 591 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 592 if (length < 0) {
kvn@508 593 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
kvn@508 594 can_eliminate = false;
kvn@508 595 }
kvn@508 596 }
kvn@508 597 }
kvn@508 598
kvn@508 599 if (can_eliminate && res != NULL) {
kvn@508 600 for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
kvn@508 601 j < jmax && can_eliminate; j++) {
kvn@508 602 Node* use = res->fast_out(j);
kvn@508 603
kvn@508 604 if (use->is_AddP()) {
kvn@508 605 const TypePtr* addp_type = _igvn.type(use)->is_ptr();
kvn@508 606 int offset = addp_type->offset();
kvn@508 607
kvn@508 608 if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
kvn@508 609 NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
kvn@508 610 can_eliminate = false;
kvn@508 611 break;
kvn@508 612 }
kvn@508 613 for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
kvn@508 614 k < kmax && can_eliminate; k++) {
kvn@508 615 Node* n = use->fast_out(k);
kvn@508 616 if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
kvn@508 617 DEBUG_ONLY(disq_node = n;)
kvn@688 618 if (n->is_Load() || n->is_LoadStore()) {
kvn@508 619 NOT_PRODUCT(fail_eliminate = "Field load";)
kvn@508 620 } else {
kvn@508 621 NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
kvn@508 622 }
kvn@508 623 can_eliminate = false;
kvn@508 624 }
kvn@508 625 }
kvn@508 626 } else if (use->is_SafePoint()) {
kvn@508 627 SafePointNode* sfpt = use->as_SafePoint();
kvn@603 628 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
kvn@508 629 // Object is passed as argument.
kvn@508 630 DEBUG_ONLY(disq_node = use;)
kvn@508 631 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
kvn@508 632 can_eliminate = false;
kvn@508 633 }
kvn@508 634 Node* sfptMem = sfpt->memory();
kvn@508 635 if (sfptMem == NULL || sfptMem->is_top()) {
kvn@508 636 DEBUG_ONLY(disq_node = use;)
kvn@508 637 NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
kvn@508 638 can_eliminate = false;
kvn@508 639 } else {
kvn@508 640 safepoints.append_if_missing(sfpt);
kvn@508 641 }
kvn@508 642 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
kvn@508 643 if (use->is_Phi()) {
kvn@508 644 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
kvn@508 645 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 646 } else {
kvn@508 647 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
kvn@508 648 }
kvn@508 649 DEBUG_ONLY(disq_node = use;)
kvn@508 650 } else {
kvn@508 651 if (use->Opcode() == Op_Return) {
kvn@508 652 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 653 }else {
kvn@508 654 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
kvn@508 655 }
kvn@508 656 DEBUG_ONLY(disq_node = use;)
kvn@508 657 }
kvn@508 658 can_eliminate = false;
kvn@508 659 }
kvn@508 660 }
kvn@508 661 }
kvn@508 662
kvn@508 663 #ifndef PRODUCT
kvn@508 664 if (PrintEliminateAllocations) {
kvn@508 665 if (can_eliminate) {
kvn@508 666 tty->print("Scalar ");
kvn@508 667 if (res == NULL)
kvn@508 668 alloc->dump();
kvn@508 669 else
kvn@508 670 res->dump();
kvn@5110 671 } else if (alloc->_is_scalar_replaceable) {
kvn@508 672 tty->print("NotScalar (%s)", fail_eliminate);
kvn@508 673 if (res == NULL)
kvn@508 674 alloc->dump();
kvn@508 675 else
kvn@508 676 res->dump();
kvn@508 677 #ifdef ASSERT
kvn@508 678 if (disq_node != NULL) {
kvn@508 679 tty->print(" >>>> ");
kvn@508 680 disq_node->dump();
kvn@508 681 }
kvn@508 682 #endif /*ASSERT*/
kvn@508 683 }
kvn@508 684 }
kvn@508 685 #endif
kvn@508 686 return can_eliminate;
kvn@508 687 }
kvn@508 688
kvn@508 689 // Do scalar replacement.
kvn@508 690 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 691 GrowableArray <SafePointNode *> safepoints_done;
kvn@508 692
kvn@508 693 ciKlass* klass = NULL;
kvn@508 694 ciInstanceKlass* iklass = NULL;
kvn@508 695 int nfields = 0;
kvn@508 696 int array_base;
kvn@508 697 int element_size;
kvn@508 698 BasicType basic_elem_type;
kvn@508 699 ciType* elem_type;
kvn@508 700
kvn@508 701 Node* res = alloc->result_cast();
kvn@508 702 const TypeOopPtr* res_type = NULL;
kvn@508 703 if (res != NULL) { // Could be NULL when there are no users
kvn@508 704 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 705 }
kvn@508 706
kvn@508 707 if (res != NULL) {
kvn@508 708 klass = res_type->klass();
kvn@508 709 if (res_type->isa_instptr()) {
kvn@508 710 // find the fields of the class which will be needed for safepoint debug information
kvn@508 711 assert(klass->is_instance_klass(), "must be an instance klass.");
kvn@508 712 iklass = klass->as_instance_klass();
kvn@508 713 nfields = iklass->nof_nonstatic_fields();
kvn@508 714 } else {
kvn@508 715 // find the array's elements which will be needed for safepoint debug information
kvn@508 716 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 717 assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
kvn@508 718 elem_type = klass->as_array_klass()->element_type();
kvn@508 719 basic_elem_type = elem_type->basic_type();
kvn@508 720 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@508 721 element_size = type2aelembytes(basic_elem_type);
kvn@508 722 }
kvn@508 723 }
kvn@508 724 //
kvn@508 725 // Process the safepoint uses
kvn@508 726 //
kvn@508 727 while (safepoints.length() > 0) {
kvn@508 728 SafePointNode* sfpt = safepoints.pop();
kvn@508 729 Node* mem = sfpt->memory();
kvn@5626 730 assert(sfpt->jvms() != NULL, "missed JVMS");
kvn@5626 731 // Fields of scalar objs are referenced only at the end
kvn@5626 732 // of regular debuginfo at the last (youngest) JVMS.
kvn@5626 733 // Record relative start index.
kvn@5626 734 uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
kvn@4115 735 SafePointScalarObjectNode* sobj = new (C) SafePointScalarObjectNode(res_type,
kvn@508 736 #ifdef ASSERT
kvn@508 737 alloc,
kvn@508 738 #endif
kvn@508 739 first_ind, nfields);
kvn@3311 740 sobj->init_req(0, C->root());
kvn@508 741 transform_later(sobj);
kvn@508 742
kvn@508 743 // Scan object's fields adding an input to the safepoint for each field.
kvn@508 744 for (int j = 0; j < nfields; j++) {
kvn@741 745 intptr_t offset;
kvn@508 746 ciField* field = NULL;
kvn@508 747 if (iklass != NULL) {
kvn@508 748 field = iklass->nonstatic_field_at(j);
kvn@508 749 offset = field->offset();
kvn@508 750 elem_type = field->type();
kvn@508 751 basic_elem_type = field->layout_type();
kvn@508 752 } else {
kvn@741 753 offset = array_base + j * (intptr_t)element_size;
kvn@508 754 }
kvn@508 755
kvn@508 756 const Type *field_type;
kvn@508 757 // The next code is taken from Parse::do_get_xxx().
kvn@559 758 if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
kvn@508 759 if (!elem_type->is_loaded()) {
kvn@508 760 field_type = TypeInstPtr::BOTTOM;
kvn@2037 761 } else if (field != NULL && field->is_constant() && field->is_static()) {
kvn@508 762 // This can happen if the constant oop is non-perm.
kvn@508 763 ciObject* con = field->constant_value().as_object();
kvn@508 764 // Do not "join" in the previous type; it doesn't add value,
kvn@508 765 // and may yield a vacuous result if the field is of interface type.
kvn@508 766 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
kvn@508 767 assert(field_type != NULL, "field singleton type must be consistent");
kvn@508 768 } else {
kvn@508 769 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
kvn@508 770 }
kvn@559 771 if (UseCompressedOops) {
kvn@656 772 field_type = field_type->make_narrowoop();
kvn@559 773 basic_elem_type = T_NARROWOOP;
kvn@559 774 }
kvn@508 775 } else {
kvn@508 776 field_type = Type::get_const_basic_type(basic_elem_type);
kvn@508 777 }
kvn@508 778
kvn@508 779 const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
kvn@508 780
kvn@508 781 Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
kvn@508 782 if (field_val == NULL) {
kvn@3311 783 // We weren't able to find a value for this field,
kvn@3311 784 // give up on eliminating this allocation.
kvn@3311 785
kvn@3311 786 // Remove any extra entries we added to the safepoint.
kvn@508 787 uint last = sfpt->req() - 1;
kvn@508 788 for (int k = 0; k < j; k++) {
kvn@508 789 sfpt->del_req(last--);
kvn@508 790 }
kvn@508 791 // rollback processed safepoints
kvn@508 792 while (safepoints_done.length() > 0) {
kvn@508 793 SafePointNode* sfpt_done = safepoints_done.pop();
kvn@508 794 // remove any extra entries we added to the safepoint
kvn@508 795 last = sfpt_done->req() - 1;
kvn@508 796 for (int k = 0; k < nfields; k++) {
kvn@508 797 sfpt_done->del_req(last--);
kvn@508 798 }
kvn@508 799 JVMState *jvms = sfpt_done->jvms();
kvn@508 800 jvms->set_endoff(sfpt_done->req());
kvn@508 801 // Now make a pass over the debug information replacing any references
kvn@508 802 // to SafePointScalarObjectNode with the allocated object.
kvn@508 803 int start = jvms->debug_start();
kvn@508 804 int end = jvms->debug_end();
kvn@508 805 for (int i = start; i < end; i++) {
kvn@508 806 if (sfpt_done->in(i)->is_SafePointScalarObject()) {
kvn@508 807 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
kvn@5626 808 if (scobj->first_index(jvms) == sfpt_done->req() &&
kvn@508 809 scobj->n_fields() == (uint)nfields) {
kvn@508 810 assert(scobj->alloc() == alloc, "sanity");
kvn@508 811 sfpt_done->set_req(i, res);
kvn@508 812 }
kvn@508 813 }
kvn@508 814 }
kvn@508 815 }
kvn@508 816 #ifndef PRODUCT
kvn@508 817 if (PrintEliminateAllocations) {
kvn@508 818 if (field != NULL) {
kvn@508 819 tty->print("=== At SafePoint node %d can't find value of Field: ",
kvn@508 820 sfpt->_idx);
kvn@508 821 field->print();
kvn@508 822 int field_idx = C->get_alias_index(field_addr_type);
kvn@508 823 tty->print(" (alias_idx=%d)", field_idx);
kvn@508 824 } else { // Array's element
kvn@508 825 tty->print("=== At SafePoint node %d can't find value of array element [%d]",
kvn@508 826 sfpt->_idx, j);
kvn@508 827 }
kvn@508 828 tty->print(", which prevents elimination of: ");
kvn@508 829 if (res == NULL)
kvn@508 830 alloc->dump();
kvn@508 831 else
kvn@508 832 res->dump();
kvn@508 833 }
kvn@508 834 #endif
kvn@508 835 return false;
kvn@508 836 }
kvn@559 837 if (UseCompressedOops && field_type->isa_narrowoop()) {
kvn@559 838 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
kvn@559 839 // to be able scalar replace the allocation.
kvn@656 840 if (field_val->is_EncodeP()) {
kvn@656 841 field_val = field_val->in(1);
kvn@656 842 } else {
kvn@5111 843 field_val = transform_later(new (C) DecodeNNode(field_val, field_val->get_ptr_type()));
kvn@656 844 }
kvn@559 845 }
kvn@508 846 sfpt->add_req(field_val);
kvn@508 847 }
kvn@508 848 JVMState *jvms = sfpt->jvms();
kvn@508 849 jvms->set_endoff(sfpt->req());
kvn@508 850 // Now make a pass over the debug information replacing any references
kvn@508 851 // to the allocated object with "sobj"
kvn@508 852 int start = jvms->debug_start();
kvn@508 853 int end = jvms->debug_end();
kvn@5110 854 sfpt->replace_edges_in_range(res, sobj, start, end);
kvn@508 855 safepoints_done.append_if_missing(sfpt); // keep it for rollback
kvn@508 856 }
kvn@508 857 return true;
kvn@508 858 }
kvn@508 859
kvn@508 860 // Process users of eliminated allocation.
kvn@5110 861 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
kvn@508 862 Node* res = alloc->result_cast();
kvn@508 863 if (res != NULL) {
kvn@508 864 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
kvn@508 865 Node *use = res->last_out(j);
kvn@508 866 uint oc1 = res->outcnt();
kvn@508 867
kvn@508 868 if (use->is_AddP()) {
kvn@508 869 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
kvn@508 870 Node *n = use->last_out(k);
kvn@508 871 uint oc2 = use->outcnt();
kvn@508 872 if (n->is_Store()) {
kvn@1535 873 #ifdef ASSERT
kvn@1535 874 // Verify that there is no dependent MemBarVolatile nodes,
kvn@1535 875 // they should be removed during IGVN, see MemBarNode::Ideal().
kvn@1535 876 for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
kvn@1535 877 p < pmax; p++) {
kvn@1535 878 Node* mb = n->fast_out(p);
kvn@1535 879 assert(mb->is_Initialize() || !mb->is_MemBar() ||
kvn@1535 880 mb->req() <= MemBarNode::Precedent ||
kvn@1535 881 mb->in(MemBarNode::Precedent) != n,
kvn@1535 882 "MemBarVolatile should be eliminated for non-escaping object");
kvn@1535 883 }
kvn@1535 884 #endif
kvn@508 885 _igvn.replace_node(n, n->in(MemNode::Memory));
kvn@508 886 } else {
kvn@508 887 eliminate_card_mark(n);
kvn@508 888 }
kvn@508 889 k -= (oc2 - use->outcnt());
kvn@508 890 }
kvn@508 891 } else {
kvn@508 892 eliminate_card_mark(use);
kvn@508 893 }
kvn@508 894 j -= (oc1 - res->outcnt());
kvn@508 895 }
kvn@508 896 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
kvn@508 897 _igvn.remove_dead_node(res);
kvn@508 898 }
kvn@508 899
kvn@508 900 //
kvn@508 901 // Process other users of allocation's projections
kvn@508 902 //
kvn@508 903 if (_resproj != NULL && _resproj->outcnt() != 0) {
kvn@5110 904 // First disconnect stores captured by Initialize node.
kvn@5110 905 // If Initialize node is eliminated first in the following code,
kvn@5110 906 // it will kill such stores and DUIterator_Last will assert.
kvn@5110 907 for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax); j < jmax; j++) {
kvn@5110 908 Node *use = _resproj->fast_out(j);
kvn@5110 909 if (use->is_AddP()) {
kvn@5110 910 // raw memory addresses used only by the initialization
kvn@5110 911 _igvn.replace_node(use, C->top());
kvn@5110 912 --j; --jmax;
kvn@5110 913 }
kvn@5110 914 }
kvn@508 915 for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
kvn@508 916 Node *use = _resproj->last_out(j);
kvn@508 917 uint oc1 = _resproj->outcnt();
kvn@508 918 if (use->is_Initialize()) {
kvn@508 919 // Eliminate Initialize node.
kvn@508 920 InitializeNode *init = use->as_Initialize();
kvn@508 921 assert(init->outcnt() <= 2, "only a control and memory projection expected");
kvn@508 922 Node *ctrl_proj = init->proj_out(TypeFunc::Control);
kvn@508 923 if (ctrl_proj != NULL) {
kvn@508 924 assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
kvn@508 925 _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
kvn@508 926 }
kvn@508 927 Node *mem_proj = init->proj_out(TypeFunc::Memory);
kvn@508 928 if (mem_proj != NULL) {
kvn@508 929 Node *mem = init->in(TypeFunc::Memory);
kvn@508 930 #ifdef ASSERT
kvn@508 931 if (mem->is_MergeMem()) {
kvn@508 932 assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
kvn@508 933 } else {
kvn@508 934 assert(mem == _memproj_fallthrough, "allocation memory projection");
kvn@508 935 }
kvn@508 936 #endif
kvn@508 937 _igvn.replace_node(mem_proj, mem);
kvn@508 938 }
kvn@508 939 } else {
kvn@508 940 assert(false, "only Initialize or AddP expected");
kvn@508 941 }
kvn@508 942 j -= (oc1 - _resproj->outcnt());
kvn@508 943 }
kvn@508 944 }
kvn@508 945 if (_fallthroughcatchproj != NULL) {
kvn@508 946 _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
kvn@508 947 }
kvn@508 948 if (_memproj_fallthrough != NULL) {
kvn@508 949 _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
kvn@508 950 }
kvn@508 951 if (_memproj_catchall != NULL) {
kvn@508 952 _igvn.replace_node(_memproj_catchall, C->top());
kvn@508 953 }
kvn@508 954 if (_ioproj_fallthrough != NULL) {
kvn@508 955 _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
kvn@508 956 }
kvn@508 957 if (_ioproj_catchall != NULL) {
kvn@508 958 _igvn.replace_node(_ioproj_catchall, C->top());
kvn@508 959 }
kvn@508 960 if (_catchallcatchproj != NULL) {
kvn@508 961 _igvn.replace_node(_catchallcatchproj, C->top());
kvn@508 962 }
kvn@508 963 }
kvn@508 964
kvn@508 965 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
kvn@5110 966 if (!EliminateAllocations || !alloc->_is_non_escaping) {
kvn@5110 967 return false;
kvn@5110 968 }
kvn@5110 969 Node* klass = alloc->in(AllocateNode::KlassNode);
kvn@5110 970 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
kvn@5110 971 Node* res = alloc->result_cast();
kvn@5110 972 // Eliminate boxing allocations which are not used
kvn@5110 973 // regardless scalar replacable status.
kvn@5110 974 bool boxing_alloc = C->eliminate_boxing() &&
kvn@5110 975 tklass->klass()->is_instance_klass() &&
kvn@5110 976 tklass->klass()->as_instance_klass()->is_box_klass();
kvn@5110 977 if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
kvn@508 978 return false;
kvn@508 979 }
kvn@508 980
kvn@508 981 extract_call_projections(alloc);
kvn@508 982
kvn@508 983 GrowableArray <SafePointNode *> safepoints;
kvn@508 984 if (!can_eliminate_allocation(alloc, safepoints)) {
kvn@508 985 return false;
kvn@508 986 }
kvn@508 987
kvn@5110 988 if (!alloc->_is_scalar_replaceable) {
kvn@5110 989 assert(res == NULL, "sanity");
kvn@5110 990 // We can only eliminate allocation if all debug info references
kvn@5110 991 // are already replaced with SafePointScalarObject because
kvn@5110 992 // we can't search for a fields value without instance_id.
kvn@5110 993 if (safepoints.length() > 0) {
kvn@5110 994 return false;
kvn@5110 995 }
kvn@5110 996 }
kvn@5110 997
kvn@508 998 if (!scalar_replacement(alloc, safepoints)) {
kvn@508 999 return false;
kvn@508 1000 }
kvn@508 1001
never@1515 1002 CompileLog* log = C->log();
never@1515 1003 if (log != NULL) {
never@1515 1004 log->head("eliminate_allocation type='%d'",
never@1515 1005 log->identify(tklass->klass()));
never@1515 1006 JVMState* p = alloc->jvms();
never@1515 1007 while (p != NULL) {
never@1515 1008 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 1009 p = p->caller();
never@1515 1010 }
never@1515 1011 log->tail("eliminate_allocation");
never@1515 1012 }
never@1515 1013
kvn@508 1014 process_users_of_allocation(alloc);
kvn@508 1015
kvn@508 1016 #ifndef PRODUCT
never@1515 1017 if (PrintEliminateAllocations) {
never@1515 1018 if (alloc->is_AllocateArray())
never@1515 1019 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
never@1515 1020 else
never@1515 1021 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
never@1515 1022 }
kvn@508 1023 #endif
kvn@508 1024
kvn@508 1025 return true;
kvn@508 1026 }
kvn@508 1027
kvn@5110 1028 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
kvn@5110 1029 // EA should remove all uses of non-escaping boxing node.
kvn@5110 1030 if (!C->eliminate_boxing() || boxing->proj_out(TypeFunc::Parms) != NULL) {
kvn@5110 1031 return false;
kvn@5110 1032 }
kvn@5110 1033
kvn@5110 1034 extract_call_projections(boxing);
kvn@5110 1035
kvn@5110 1036 const TypeTuple* r = boxing->tf()->range();
kvn@5110 1037 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@5110 1038 const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
kvn@5110 1039 assert(t != NULL, "sanity");
kvn@5110 1040
kvn@5110 1041 CompileLog* log = C->log();
kvn@5110 1042 if (log != NULL) {
kvn@5110 1043 log->head("eliminate_boxing type='%d'",
kvn@5110 1044 log->identify(t->klass()));
kvn@5110 1045 JVMState* p = boxing->jvms();
kvn@5110 1046 while (p != NULL) {
kvn@5110 1047 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
kvn@5110 1048 p = p->caller();
kvn@5110 1049 }
kvn@5110 1050 log->tail("eliminate_boxing");
kvn@5110 1051 }
kvn@5110 1052
kvn@5110 1053 process_users_of_allocation(boxing);
kvn@5110 1054
kvn@5110 1055 #ifndef PRODUCT
kvn@5110 1056 if (PrintEliminateAllocations) {
kvn@5110 1057 tty->print("++++ Eliminated: %d ", boxing->_idx);
kvn@5110 1058 boxing->method()->print_short_name(tty);
kvn@5110 1059 tty->cr();
kvn@5110 1060 }
kvn@5110 1061 #endif
kvn@5110 1062
kvn@5110 1063 return true;
kvn@5110 1064 }
duke@435 1065
duke@435 1066 //---------------------------set_eden_pointers-------------------------
duke@435 1067 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
duke@435 1068 if (UseTLAB) { // Private allocation: load from TLS
kvn@4115 1069 Node* thread = transform_later(new (C) ThreadLocalNode());
duke@435 1070 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
duke@435 1071 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
duke@435 1072 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
duke@435 1073 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
duke@435 1074 } else { // Shared allocation: load from globals
duke@435 1075 CollectedHeap* ch = Universe::heap();
duke@435 1076 address top_adr = (address)ch->top_addr();
duke@435 1077 address end_adr = (address)ch->end_addr();
duke@435 1078 eden_top_adr = makecon(TypeRawPtr::make(top_adr));
duke@435 1079 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
duke@435 1080 }
duke@435 1081 }
duke@435 1082
duke@435 1083
duke@435 1084 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
duke@435 1085 Node* adr = basic_plus_adr(base, offset);
kvn@855 1086 const TypePtr* adr_type = adr->bottom_type()->is_ptr();
goetz@6479 1087 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
duke@435 1088 transform_later(value);
duke@435 1089 return value;
duke@435 1090 }
duke@435 1091
duke@435 1092
duke@435 1093 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
duke@435 1094 Node* adr = basic_plus_adr(base, offset);
goetz@6479 1095 mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
duke@435 1096 transform_later(mem);
duke@435 1097 return mem;
duke@435 1098 }
duke@435 1099
duke@435 1100 //=============================================================================
duke@435 1101 //
duke@435 1102 // A L L O C A T I O N
duke@435 1103 //
duke@435 1104 // Allocation attempts to be fast in the case of frequent small objects.
duke@435 1105 // It breaks down like this:
duke@435 1106 //
duke@435 1107 // 1) Size in doublewords is computed. This is a constant for objects and
duke@435 1108 // variable for most arrays. Doubleword units are used to avoid size
duke@435 1109 // overflow of huge doubleword arrays. We need doublewords in the end for
duke@435 1110 // rounding.
duke@435 1111 //
duke@435 1112 // 2) Size is checked for being 'too large'. Too-large allocations will go
duke@435 1113 // the slow path into the VM. The slow path can throw any required
duke@435 1114 // exceptions, and does all the special checks for very large arrays. The
duke@435 1115 // size test can constant-fold away for objects. For objects with
duke@435 1116 // finalizers it constant-folds the otherway: you always go slow with
duke@435 1117 // finalizers.
duke@435 1118 //
duke@435 1119 // 3) If NOT using TLABs, this is the contended loop-back point.
duke@435 1120 // Load-Locked the heap top. If using TLABs normal-load the heap top.
duke@435 1121 //
duke@435 1122 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route.
duke@435 1123 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish
duke@435 1124 // "size*8" we always enter the VM, where "largish" is a constant picked small
duke@435 1125 // enough that there's always space between the eden max and 4Gig (old space is
duke@435 1126 // there so it's quite large) and large enough that the cost of entering the VM
duke@435 1127 // is dwarfed by the cost to initialize the space.
duke@435 1128 //
duke@435 1129 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
duke@435 1130 // down. If contended, repeat at step 3. If using TLABs normal-store
duke@435 1131 // adjusted heap top back down; there is no contention.
duke@435 1132 //
duke@435 1133 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark
duke@435 1134 // fields.
duke@435 1135 //
duke@435 1136 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
duke@435 1137 // oop flavor.
duke@435 1138 //
duke@435 1139 //=============================================================================
duke@435 1140 // FastAllocateSizeLimit value is in DOUBLEWORDS.
duke@435 1141 // Allocations bigger than this always go the slow route.
duke@435 1142 // This value must be small enough that allocation attempts that need to
duke@435 1143 // trigger exceptions go the slow route. Also, it must be small enough so
duke@435 1144 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
duke@435 1145 //=============================================================================j//
duke@435 1146 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
duke@435 1147 // The allocator will coalesce int->oop copies away. See comment in
duke@435 1148 // coalesce.cpp about how this works. It depends critically on the exact
duke@435 1149 // code shape produced here, so if you are changing this code shape
duke@435 1150 // make sure the GC info for the heap-top is correct in and around the
duke@435 1151 // slow-path call.
duke@435 1152 //
duke@435 1153
duke@435 1154 void PhaseMacroExpand::expand_allocate_common(
duke@435 1155 AllocateNode* alloc, // allocation node to be expanded
duke@435 1156 Node* length, // array length for an array allocation
duke@435 1157 const TypeFunc* slow_call_type, // Type of slow call
duke@435 1158 address slow_call_address // Address of slow call
duke@435 1159 )
duke@435 1160 {
duke@435 1161
duke@435 1162 Node* ctrl = alloc->in(TypeFunc::Control);
duke@435 1163 Node* mem = alloc->in(TypeFunc::Memory);
duke@435 1164 Node* i_o = alloc->in(TypeFunc::I_O);
duke@435 1165 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize);
duke@435 1166 Node* klass_node = alloc->in(AllocateNode::KlassNode);
duke@435 1167 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
duke@435 1168
duke@435 1169 assert(ctrl != NULL, "must have control");
duke@435 1170 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
duke@435 1171 // they will not be used if "always_slow" is set
duke@435 1172 enum { slow_result_path = 1, fast_result_path = 2 };
duke@435 1173 Node *result_region;
duke@435 1174 Node *result_phi_rawmem;
duke@435 1175 Node *result_phi_rawoop;
duke@435 1176 Node *result_phi_i_o;
duke@435 1177
duke@435 1178 // The initial slow comparison is a size check, the comparison
duke@435 1179 // we want to do is a BoolTest::gt
duke@435 1180 bool always_slow = false;
duke@435 1181 int tv = _igvn.find_int_con(initial_slow_test, -1);
duke@435 1182 if (tv >= 0) {
duke@435 1183 always_slow = (tv == 1);
duke@435 1184 initial_slow_test = NULL;
duke@435 1185 } else {
duke@435 1186 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
duke@435 1187 }
duke@435 1188
kvn@1215 1189 if (C->env()->dtrace_alloc_probes() ||
ysr@777 1190 !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
ysr@777 1191 (UseConcMarkSweepGC && CMSIncrementalMode))) {
duke@435 1192 // Force slow-path allocation
duke@435 1193 always_slow = true;
duke@435 1194 initial_slow_test = NULL;
duke@435 1195 }
duke@435 1196
ysr@777 1197
duke@435 1198 enum { too_big_or_final_path = 1, need_gc_path = 2 };
duke@435 1199 Node *slow_region = NULL;
duke@435 1200 Node *toobig_false = ctrl;
duke@435 1201
duke@435 1202 assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
duke@435 1203 // generate the initial test if necessary
duke@435 1204 if (initial_slow_test != NULL ) {
kvn@4115 1205 slow_region = new (C) RegionNode(3);
duke@435 1206
duke@435 1207 // Now make the initial failure test. Usually a too-big test but
duke@435 1208 // might be a TRUE for finalizers or a fancy class check for
duke@435 1209 // newInstance0.
kvn@4115 1210 IfNode *toobig_iff = new (C) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
duke@435 1211 transform_later(toobig_iff);
duke@435 1212 // Plug the failing-too-big test into the slow-path region
kvn@4115 1213 Node *toobig_true = new (C) IfTrueNode( toobig_iff );
duke@435 1214 transform_later(toobig_true);
duke@435 1215 slow_region ->init_req( too_big_or_final_path, toobig_true );
kvn@4115 1216 toobig_false = new (C) IfFalseNode( toobig_iff );
duke@435 1217 transform_later(toobig_false);
duke@435 1218 } else { // No initial test, just fall into next case
duke@435 1219 toobig_false = ctrl;
duke@435 1220 debug_only(slow_region = NodeSentinel);
duke@435 1221 }
duke@435 1222
duke@435 1223 Node *slow_mem = mem; // save the current memory state for slow path
duke@435 1224 // generate the fast allocation code unless we know that the initial test will always go slow
duke@435 1225 if (!always_slow) {
kvn@1000 1226 // Fast path modifies only raw memory.
kvn@1000 1227 if (mem->is_MergeMem()) {
kvn@1000 1228 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
kvn@1000 1229 }
kvn@1000 1230
ysr@777 1231 Node* eden_top_adr;
ysr@777 1232 Node* eden_end_adr;
ysr@777 1233
ysr@777 1234 set_eden_pointers(eden_top_adr, eden_end_adr);
ysr@777 1235
ysr@777 1236 // Load Eden::end. Loop invariant and hoisted.
ysr@777 1237 //
ysr@777 1238 // Note: We set the control input on "eden_end" and "old_eden_top" when using
ysr@777 1239 // a TLAB to work around a bug where these values were being moved across
ysr@777 1240 // a safepoint. These are not oops, so they cannot be include in the oop
phh@2423 1241 // map, but they can be changed by a GC. The proper way to fix this would
ysr@777 1242 // be to set the raw memory state when generating a SafepointNode. However
ysr@777 1243 // this will require extensive changes to the loop optimization in order to
ysr@777 1244 // prevent a degradation of the optimization.
ysr@777 1245 // See comment in memnode.hpp, around line 227 in class LoadPNode.
ysr@777 1246 Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
ysr@777 1247
duke@435 1248 // allocate the Region and Phi nodes for the result
kvn@4115 1249 result_region = new (C) RegionNode(3);
kvn@4115 1250 result_phi_rawmem = new (C) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@4115 1251 result_phi_rawoop = new (C) PhiNode(result_region, TypeRawPtr::BOTTOM);
kvn@4115 1252 result_phi_i_o = new (C) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
duke@435 1253
duke@435 1254 // We need a Region for the loop-back contended case.
duke@435 1255 enum { fall_in_path = 1, contended_loopback_path = 2 };
duke@435 1256 Node *contended_region;
duke@435 1257 Node *contended_phi_rawmem;
phh@2423 1258 if (UseTLAB) {
duke@435 1259 contended_region = toobig_false;
duke@435 1260 contended_phi_rawmem = mem;
duke@435 1261 } else {
kvn@4115 1262 contended_region = new (C) RegionNode(3);
kvn@4115 1263 contended_phi_rawmem = new (C) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 1264 // Now handle the passing-too-big test. We fall into the contended
duke@435 1265 // loop-back merge point.
phh@2423 1266 contended_region ->init_req(fall_in_path, toobig_false);
phh@2423 1267 contended_phi_rawmem->init_req(fall_in_path, mem);
duke@435 1268 transform_later(contended_region);
duke@435 1269 transform_later(contended_phi_rawmem);
duke@435 1270 }
duke@435 1271
duke@435 1272 // Load(-locked) the heap top.
duke@435 1273 // See note above concerning the control input when using a TLAB
duke@435 1274 Node *old_eden_top = UseTLAB
goetz@6479 1275 ? new (C) LoadPNode (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered)
goetz@6479 1276 : new (C) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire);
duke@435 1277
duke@435 1278 transform_later(old_eden_top);
duke@435 1279 // Add to heap top to get a new heap top
kvn@4115 1280 Node *new_eden_top = new (C) AddPNode(top(), old_eden_top, size_in_bytes);
duke@435 1281 transform_later(new_eden_top);
duke@435 1282 // Check for needing a GC; compare against heap end
kvn@4115 1283 Node *needgc_cmp = new (C) CmpPNode(new_eden_top, eden_end);
duke@435 1284 transform_later(needgc_cmp);
kvn@4115 1285 Node *needgc_bol = new (C) BoolNode(needgc_cmp, BoolTest::ge);
duke@435 1286 transform_later(needgc_bol);
kvn@4115 1287 IfNode *needgc_iff = new (C) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
duke@435 1288 transform_later(needgc_iff);
duke@435 1289
duke@435 1290 // Plug the failing-heap-space-need-gc test into the slow-path region
kvn@4115 1291 Node *needgc_true = new (C) IfTrueNode(needgc_iff);
duke@435 1292 transform_later(needgc_true);
phh@2423 1293 if (initial_slow_test) {
phh@2423 1294 slow_region->init_req(need_gc_path, needgc_true);
duke@435 1295 // This completes all paths into the slow merge point
duke@435 1296 transform_later(slow_region);
duke@435 1297 } else { // No initial slow path needed!
duke@435 1298 // Just fall from the need-GC path straight into the VM call.
phh@2423 1299 slow_region = needgc_true;
duke@435 1300 }
duke@435 1301 // No need for a GC. Setup for the Store-Conditional
kvn@4115 1302 Node *needgc_false = new (C) IfFalseNode(needgc_iff);
duke@435 1303 transform_later(needgc_false);
duke@435 1304
duke@435 1305 // Grab regular I/O before optional prefetch may change it.
duke@435 1306 // Slow-path does no I/O so just set it to the original I/O.
phh@2423 1307 result_phi_i_o->init_req(slow_result_path, i_o);
duke@435 1308
duke@435 1309 i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
duke@435 1310 old_eden_top, new_eden_top, length);
duke@435 1311
phh@2423 1312 // Name successful fast-path variables
phh@2423 1313 Node* fast_oop = old_eden_top;
phh@2423 1314 Node* fast_oop_ctrl;
phh@2423 1315 Node* fast_oop_rawmem;
phh@2423 1316
duke@435 1317 // Store (-conditional) the modified eden top back down.
duke@435 1318 // StorePConditional produces flags for a test PLUS a modified raw
duke@435 1319 // memory state.
phh@2423 1320 if (UseTLAB) {
phh@2423 1321 Node* store_eden_top =
kvn@4115 1322 new (C) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
goetz@6479 1323 TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered);
duke@435 1324 transform_later(store_eden_top);
duke@435 1325 fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
phh@2423 1326 fast_oop_rawmem = store_eden_top;
duke@435 1327 } else {
phh@2423 1328 Node* store_eden_top =
kvn@4115 1329 new (C) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
phh@2423 1330 new_eden_top, fast_oop/*old_eden_top*/);
duke@435 1331 transform_later(store_eden_top);
kvn@4115 1332 Node *contention_check = new (C) BoolNode(store_eden_top, BoolTest::ne);
duke@435 1333 transform_later(contention_check);
kvn@4115 1334 store_eden_top = new (C) SCMemProjNode(store_eden_top);
duke@435 1335 transform_later(store_eden_top);
duke@435 1336
duke@435 1337 // If not using TLABs, check to see if there was contention.
kvn@4115 1338 IfNode *contention_iff = new (C) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
duke@435 1339 transform_later(contention_iff);
kvn@4115 1340 Node *contention_true = new (C) IfTrueNode(contention_iff);
duke@435 1341 transform_later(contention_true);
duke@435 1342 // If contention, loopback and try again.
phh@2423 1343 contended_region->init_req(contended_loopback_path, contention_true);
phh@2423 1344 contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
duke@435 1345
duke@435 1346 // Fast-path succeeded with no contention!
kvn@4115 1347 Node *contention_false = new (C) IfFalseNode(contention_iff);
duke@435 1348 transform_later(contention_false);
duke@435 1349 fast_oop_ctrl = contention_false;
phh@2423 1350
phh@2423 1351 // Bump total allocated bytes for this thread
kvn@4115 1352 Node* thread = new (C) ThreadLocalNode();
phh@2423 1353 transform_later(thread);
phh@2423 1354 Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
phh@2423 1355 in_bytes(JavaThread::allocated_bytes_offset()));
phh@2423 1356 Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
phh@2423 1357 0, TypeLong::LONG, T_LONG);
phh@2423 1358 #ifdef _LP64
phh@2423 1359 Node* alloc_size = size_in_bytes;
phh@2423 1360 #else
kvn@4115 1361 Node* alloc_size = new (C) ConvI2LNode(size_in_bytes);
phh@2423 1362 transform_later(alloc_size);
phh@2423 1363 #endif
kvn@4115 1364 Node* new_alloc_bytes = new (C) AddLNode(alloc_bytes, alloc_size);
phh@2423 1365 transform_later(new_alloc_bytes);
phh@2423 1366 fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
phh@2423 1367 0, new_alloc_bytes, T_LONG);
duke@435 1368 }
duke@435 1369
roland@3392 1370 InitializeNode* init = alloc->initialization();
duke@435 1371 fast_oop_rawmem = initialize_object(alloc,
duke@435 1372 fast_oop_ctrl, fast_oop_rawmem, fast_oop,
duke@435 1373 klass_node, length, size_in_bytes);
duke@435 1374
roland@3392 1375 // If initialization is performed by an array copy, any required
roland@3392 1376 // MemBarStoreStore was already added. If the object does not
roland@3392 1377 // escape no need for a MemBarStoreStore. Otherwise we need a
roland@3392 1378 // MemBarStoreStore so that stores that initialize this object
roland@3392 1379 // can't be reordered with a subsequent store that makes this
roland@3392 1380 // object accessible by other threads.
roland@3392 1381 if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
roland@3392 1382 if (init == NULL || init->req() < InitializeNode::RawStores) {
roland@3392 1383 // No InitializeNode or no stores captured by zeroing
roland@3392 1384 // elimination. Simply add the MemBarStoreStore after object
roland@3392 1385 // initialization.
roland@4694 1386 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
roland@3392 1387 transform_later(mb);
roland@3392 1388
roland@3392 1389 mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
roland@3392 1390 mb->init_req(TypeFunc::Control, fast_oop_ctrl);
kvn@4115 1391 fast_oop_ctrl = new (C) ProjNode(mb,TypeFunc::Control);
roland@3392 1392 transform_later(fast_oop_ctrl);
kvn@4115 1393 fast_oop_rawmem = new (C) ProjNode(mb,TypeFunc::Memory);
roland@3392 1394 transform_later(fast_oop_rawmem);
roland@3392 1395 } else {
roland@3392 1396 // Add the MemBarStoreStore after the InitializeNode so that
roland@3392 1397 // all stores performing the initialization that were moved
roland@3392 1398 // before the InitializeNode happen before the storestore
roland@3392 1399 // barrier.
roland@3392 1400
roland@3392 1401 Node* init_ctrl = init->proj_out(TypeFunc::Control);
roland@3392 1402 Node* init_mem = init->proj_out(TypeFunc::Memory);
roland@3392 1403
roland@3392 1404 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
roland@3392 1405 transform_later(mb);
roland@3392 1406
kvn@4115 1407 Node* ctrl = new (C) ProjNode(init,TypeFunc::Control);
roland@3392 1408 transform_later(ctrl);
kvn@4115 1409 Node* mem = new (C) ProjNode(init,TypeFunc::Memory);
roland@3392 1410 transform_later(mem);
roland@3392 1411
roland@3392 1412 // The MemBarStoreStore depends on control and memory coming
roland@3392 1413 // from the InitializeNode
roland@3392 1414 mb->init_req(TypeFunc::Memory, mem);
roland@3392 1415 mb->init_req(TypeFunc::Control, ctrl);
roland@3392 1416
kvn@4115 1417 ctrl = new (C) ProjNode(mb,TypeFunc::Control);
roland@3392 1418 transform_later(ctrl);
kvn@4115 1419 mem = new (C) ProjNode(mb,TypeFunc::Memory);
roland@3392 1420 transform_later(mem);
roland@3392 1421
roland@3392 1422 // All nodes that depended on the InitializeNode for control
roland@3392 1423 // and memory must now depend on the MemBarNode that itself
roland@3392 1424 // depends on the InitializeNode
roland@3392 1425 _igvn.replace_node(init_ctrl, ctrl);
roland@3392 1426 _igvn.replace_node(init_mem, mem);
roland@3392 1427 }
roland@3392 1428 }
roland@3392 1429
kvn@1215 1430 if (C->env()->dtrace_extended_probes()) {
duke@435 1431 // Slow-path call
duke@435 1432 int size = TypeFunc::Parms + 2;
kvn@4115 1433 CallLeafNode *call = new (C) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
kvn@4115 1434 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
kvn@4115 1435 "dtrace_object_alloc",
kvn@4115 1436 TypeRawPtr::BOTTOM);
duke@435 1437
duke@435 1438 // Get base of thread-local storage area
kvn@4115 1439 Node* thread = new (C) ThreadLocalNode();
duke@435 1440 transform_later(thread);
duke@435 1441
duke@435 1442 call->init_req(TypeFunc::Parms+0, thread);
duke@435 1443 call->init_req(TypeFunc::Parms+1, fast_oop);
phh@2423 1444 call->init_req(TypeFunc::Control, fast_oop_ctrl);
phh@2423 1445 call->init_req(TypeFunc::I_O , top()); // does no i/o
phh@2423 1446 call->init_req(TypeFunc::Memory , fast_oop_rawmem);
phh@2423 1447 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
phh@2423 1448 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
duke@435 1449 transform_later(call);
kvn@4115 1450 fast_oop_ctrl = new (C) ProjNode(call,TypeFunc::Control);
duke@435 1451 transform_later(fast_oop_ctrl);
kvn@4115 1452 fast_oop_rawmem = new (C) ProjNode(call,TypeFunc::Memory);
duke@435 1453 transform_later(fast_oop_rawmem);
duke@435 1454 }
duke@435 1455
duke@435 1456 // Plug in the successful fast-path into the result merge point
phh@2423 1457 result_region ->init_req(fast_result_path, fast_oop_ctrl);
phh@2423 1458 result_phi_rawoop->init_req(fast_result_path, fast_oop);
phh@2423 1459 result_phi_i_o ->init_req(fast_result_path, i_o);
phh@2423 1460 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
duke@435 1461 } else {
duke@435 1462 slow_region = ctrl;
kvn@3396 1463 result_phi_i_o = i_o; // Rename it to use in the following code.
duke@435 1464 }
duke@435 1465
duke@435 1466 // Generate slow-path call
kvn@4115 1467 CallNode *call = new (C) CallStaticJavaNode(slow_call_type, slow_call_address,
kvn@4115 1468 OptoRuntime::stub_name(slow_call_address),
kvn@4115 1469 alloc->jvms()->bci(),
kvn@4115 1470 TypePtr::BOTTOM);
duke@435 1471 call->init_req( TypeFunc::Control, slow_region );
duke@435 1472 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1473 call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
duke@435 1474 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1475 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1476
duke@435 1477 call->init_req(TypeFunc::Parms+0, klass_node);
duke@435 1478 if (length != NULL) {
duke@435 1479 call->init_req(TypeFunc::Parms+1, length);
duke@435 1480 }
duke@435 1481
duke@435 1482 // Copy debug information and adjust JVMState information, then replace
duke@435 1483 // allocate node with the call
duke@435 1484 copy_call_debug_info((CallNode *) alloc, call);
duke@435 1485 if (!always_slow) {
duke@435 1486 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
kvn@3396 1487 } else {
kvn@3396 1488 // Hook i_o projection to avoid its elimination during allocation
kvn@3396 1489 // replacement (when only a slow call is generated).
kvn@3396 1490 call->set_req(TypeFunc::I_O, result_phi_i_o);
duke@435 1491 }
kvn@1976 1492 _igvn.replace_node(alloc, call);
duke@435 1493 transform_later(call);
duke@435 1494
duke@435 1495 // Identify the output projections from the allocate node and
duke@435 1496 // adjust any references to them.
duke@435 1497 // The control and io projections look like:
duke@435 1498 //
duke@435 1499 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl)
duke@435 1500 // Allocate Catch
duke@435 1501 // ^---Proj(io) <-------+ ^---CatchProj(io)
duke@435 1502 //
duke@435 1503 // We are interested in the CatchProj nodes.
duke@435 1504 //
duke@435 1505 extract_call_projections(call);
duke@435 1506
kvn@3396 1507 // An allocate node has separate memory projections for the uses on
kvn@3396 1508 // the control and i_o paths. Replace the control memory projection with
kvn@3396 1509 // result_phi_rawmem (unless we are only generating a slow call when
kvn@3396 1510 // both memory projections are combined)
duke@435 1511 if (!always_slow && _memproj_fallthrough != NULL) {
duke@435 1512 for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1513 Node *use = _memproj_fallthrough->fast_out(i);
kvn@3847 1514 _igvn.rehash_node_delayed(use);
duke@435 1515 imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
duke@435 1516 // back up iterator
duke@435 1517 --i;
duke@435 1518 }
duke@435 1519 }
kvn@3396 1520 // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
kvn@3396 1521 // _memproj_catchall so we end up with a call that has only 1 memory projection.
duke@435 1522 if (_memproj_catchall != NULL ) {
duke@435 1523 if (_memproj_fallthrough == NULL) {
kvn@4115 1524 _memproj_fallthrough = new (C) ProjNode(call, TypeFunc::Memory);
duke@435 1525 transform_later(_memproj_fallthrough);
duke@435 1526 }
duke@435 1527 for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1528 Node *use = _memproj_catchall->fast_out(i);
kvn@3847 1529 _igvn.rehash_node_delayed(use);
duke@435 1530 imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
duke@435 1531 // back up iterator
duke@435 1532 --i;
duke@435 1533 }
kvn@3396 1534 assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
kvn@3396 1535 _igvn.remove_dead_node(_memproj_catchall);
duke@435 1536 }
duke@435 1537
kvn@3396 1538 // An allocate node has separate i_o projections for the uses on the control
kvn@3396 1539 // and i_o paths. Always replace the control i_o projection with result i_o
kvn@3396 1540 // otherwise incoming i_o become dead when only a slow call is generated
kvn@3396 1541 // (it is different from memory projections where both projections are
kvn@3396 1542 // combined in such case).
kvn@3396 1543 if (_ioproj_fallthrough != NULL) {
duke@435 1544 for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1545 Node *use = _ioproj_fallthrough->fast_out(i);
kvn@3847 1546 _igvn.rehash_node_delayed(use);
duke@435 1547 imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
duke@435 1548 // back up iterator
duke@435 1549 --i;
duke@435 1550 }
duke@435 1551 }
kvn@3396 1552 // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
kvn@3396 1553 // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
duke@435 1554 if (_ioproj_catchall != NULL ) {
kvn@3396 1555 if (_ioproj_fallthrough == NULL) {
kvn@4115 1556 _ioproj_fallthrough = new (C) ProjNode(call, TypeFunc::I_O);
kvn@3396 1557 transform_later(_ioproj_fallthrough);
kvn@3396 1558 }
duke@435 1559 for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1560 Node *use = _ioproj_catchall->fast_out(i);
kvn@3847 1561 _igvn.rehash_node_delayed(use);
duke@435 1562 imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
duke@435 1563 // back up iterator
duke@435 1564 --i;
duke@435 1565 }
kvn@3396 1566 assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
kvn@3396 1567 _igvn.remove_dead_node(_ioproj_catchall);
duke@435 1568 }
duke@435 1569
duke@435 1570 // if we generated only a slow call, we are done
kvn@3396 1571 if (always_slow) {
kvn@3396 1572 // Now we can unhook i_o.
kvn@3398 1573 if (result_phi_i_o->outcnt() > 1) {
kvn@3398 1574 call->set_req(TypeFunc::I_O, top());
kvn@3398 1575 } else {
kvn@3398 1576 assert(result_phi_i_o->unique_ctrl_out() == call, "");
kvn@3398 1577 // Case of new array with negative size known during compilation.
kvn@3398 1578 // AllocateArrayNode::Ideal() optimization disconnect unreachable
kvn@3398 1579 // following code since call to runtime will throw exception.
kvn@3398 1580 // As result there will be no users of i_o after the call.
kvn@3398 1581 // Leave i_o attached to this call to avoid problems in preceding graph.
kvn@3398 1582 }
duke@435 1583 return;
kvn@3396 1584 }
duke@435 1585
duke@435 1586
duke@435 1587 if (_fallthroughcatchproj != NULL) {
duke@435 1588 ctrl = _fallthroughcatchproj->clone();
duke@435 1589 transform_later(ctrl);
kvn@1143 1590 _igvn.replace_node(_fallthroughcatchproj, result_region);
duke@435 1591 } else {
duke@435 1592 ctrl = top();
duke@435 1593 }
duke@435 1594 Node *slow_result;
duke@435 1595 if (_resproj == NULL) {
duke@435 1596 // no uses of the allocation result
duke@435 1597 slow_result = top();
duke@435 1598 } else {
duke@435 1599 slow_result = _resproj->clone();
duke@435 1600 transform_later(slow_result);
kvn@1143 1601 _igvn.replace_node(_resproj, result_phi_rawoop);
duke@435 1602 }
duke@435 1603
duke@435 1604 // Plug slow-path into result merge point
duke@435 1605 result_region ->init_req( slow_result_path, ctrl );
duke@435 1606 result_phi_rawoop->init_req( slow_result_path, slow_result);
duke@435 1607 result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
duke@435 1608 transform_later(result_region);
duke@435 1609 transform_later(result_phi_rawoop);
duke@435 1610 transform_later(result_phi_rawmem);
duke@435 1611 transform_later(result_phi_i_o);
duke@435 1612 // This completes all paths into the result merge point
duke@435 1613 }
duke@435 1614
duke@435 1615
duke@435 1616 // Helper for PhaseMacroExpand::expand_allocate_common.
duke@435 1617 // Initializes the newly-allocated storage.
duke@435 1618 Node*
duke@435 1619 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
duke@435 1620 Node* control, Node* rawmem, Node* object,
duke@435 1621 Node* klass_node, Node* length,
duke@435 1622 Node* size_in_bytes) {
duke@435 1623 InitializeNode* init = alloc->initialization();
duke@435 1624 // Store the klass & mark bits
duke@435 1625 Node* mark_node = NULL;
duke@435 1626 // For now only enable fast locking for non-array types
duke@435 1627 if (UseBiasedLocking && (length == NULL)) {
stefank@3391 1628 mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 1629 } else {
duke@435 1630 mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
duke@435 1631 }
duke@435 1632 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
coleenp@548 1633
coleenp@4037 1634 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
duke@435 1635 int header_size = alloc->minimum_header_size(); // conservatively small
duke@435 1636
duke@435 1637 // Array length
duke@435 1638 if (length != NULL) { // Arrays need length field
duke@435 1639 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
duke@435 1640 // conservatively small header size:
coleenp@548 1641 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1642 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
duke@435 1643 if (k->is_array_klass()) // we know the exact header size in most cases:
duke@435 1644 header_size = Klass::layout_helper_header_size(k->layout_helper());
duke@435 1645 }
duke@435 1646
duke@435 1647 // Clear the object body, if necessary.
duke@435 1648 if (init == NULL) {
duke@435 1649 // The init has somehow disappeared; be cautious and clear everything.
duke@435 1650 //
duke@435 1651 // This can happen if a node is allocated but an uncommon trap occurs
duke@435 1652 // immediately. In this case, the Initialize gets associated with the
duke@435 1653 // trap, and may be placed in a different (outer) loop, if the Allocate
duke@435 1654 // is in a loop. If (this is rare) the inner loop gets unrolled, then
duke@435 1655 // there can be two Allocates to one Initialize. The answer in all these
duke@435 1656 // edge cases is safety first. It is always safe to clear immediately
duke@435 1657 // within an Allocate, and then (maybe or maybe not) clear some more later.
duke@435 1658 if (!ZeroTLAB)
duke@435 1659 rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
duke@435 1660 header_size, size_in_bytes,
duke@435 1661 &_igvn);
duke@435 1662 } else {
duke@435 1663 if (!init->is_complete()) {
duke@435 1664 // Try to win by zeroing only what the init does not store.
duke@435 1665 // We can also try to do some peephole optimizations,
duke@435 1666 // such as combining some adjacent subword stores.
duke@435 1667 rawmem = init->complete_stores(control, rawmem, object,
duke@435 1668 header_size, size_in_bytes, &_igvn);
duke@435 1669 }
duke@435 1670 // We have no more use for this link, since the AllocateNode goes away:
duke@435 1671 init->set_req(InitializeNode::RawAddress, top());
duke@435 1672 // (If we keep the link, it just confuses the register allocator,
duke@435 1673 // who thinks he sees a real use of the address by the membar.)
duke@435 1674 }
duke@435 1675
duke@435 1676 return rawmem;
duke@435 1677 }
duke@435 1678
duke@435 1679 // Generate prefetch instructions for next allocations.
duke@435 1680 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
duke@435 1681 Node*& contended_phi_rawmem,
duke@435 1682 Node* old_eden_top, Node* new_eden_top,
duke@435 1683 Node* length) {
kvn@1802 1684 enum { fall_in_path = 1, pf_path = 2 };
duke@435 1685 if( UseTLAB && AllocatePrefetchStyle == 2 ) {
duke@435 1686 // Generate prefetch allocation with watermark check.
duke@435 1687 // As an allocation hits the watermark, we will prefetch starting
duke@435 1688 // at a "distance" away from watermark.
duke@435 1689
kvn@4115 1690 Node *pf_region = new (C) RegionNode(3);
kvn@4115 1691 Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
duke@435 1692 TypeRawPtr::BOTTOM );
duke@435 1693 // I/O is used for Prefetch
kvn@4115 1694 Node *pf_phi_abio = new (C) PhiNode( pf_region, Type::ABIO );
duke@435 1695
kvn@4115 1696 Node *thread = new (C) ThreadLocalNode();
duke@435 1697 transform_later(thread);
duke@435 1698
kvn@4115 1699 Node *eden_pf_adr = new (C) AddPNode( top()/*not oop*/, thread,
duke@435 1700 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
duke@435 1701 transform_later(eden_pf_adr);
duke@435 1702
goetz@6479 1703 Node *old_pf_wm = new (C) LoadPNode(needgc_false,
duke@435 1704 contended_phi_rawmem, eden_pf_adr,
goetz@6479 1705 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
goetz@6479 1706 MemNode::unordered);
duke@435 1707 transform_later(old_pf_wm);
duke@435 1708
duke@435 1709 // check against new_eden_top
kvn@4115 1710 Node *need_pf_cmp = new (C) CmpPNode( new_eden_top, old_pf_wm );
duke@435 1711 transform_later(need_pf_cmp);
kvn@4115 1712 Node *need_pf_bol = new (C) BoolNode( need_pf_cmp, BoolTest::ge );
duke@435 1713 transform_later(need_pf_bol);
kvn@4115 1714 IfNode *need_pf_iff = new (C) IfNode( needgc_false, need_pf_bol,
duke@435 1715 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1716 transform_later(need_pf_iff);
duke@435 1717
duke@435 1718 // true node, add prefetchdistance
kvn@4115 1719 Node *need_pf_true = new (C) IfTrueNode( need_pf_iff );
duke@435 1720 transform_later(need_pf_true);
duke@435 1721
kvn@4115 1722 Node *need_pf_false = new (C) IfFalseNode( need_pf_iff );
duke@435 1723 transform_later(need_pf_false);
duke@435 1724
kvn@4115 1725 Node *new_pf_wmt = new (C) AddPNode( top(), old_pf_wm,
duke@435 1726 _igvn.MakeConX(AllocatePrefetchDistance) );
duke@435 1727 transform_later(new_pf_wmt );
duke@435 1728 new_pf_wmt->set_req(0, need_pf_true);
duke@435 1729
goetz@6479 1730 Node *store_new_wmt = new (C) StorePNode(need_pf_true,
duke@435 1731 contended_phi_rawmem, eden_pf_adr,
goetz@6479 1732 TypeRawPtr::BOTTOM, new_pf_wmt,
goetz@6479 1733 MemNode::unordered);
duke@435 1734 transform_later(store_new_wmt);
duke@435 1735
duke@435 1736 // adding prefetches
duke@435 1737 pf_phi_abio->init_req( fall_in_path, i_o );
duke@435 1738
duke@435 1739 Node *prefetch_adr;
duke@435 1740 Node *prefetch;
duke@435 1741 uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
duke@435 1742 uint step_size = AllocatePrefetchStepSize;
duke@435 1743 uint distance = 0;
duke@435 1744
duke@435 1745 for ( uint i = 0; i < lines; i++ ) {
kvn@4115 1746 prefetch_adr = new (C) AddPNode( old_pf_wm, new_pf_wmt,
duke@435 1747 _igvn.MakeConX(distance) );
duke@435 1748 transform_later(prefetch_adr);
kvn@4115 1749 prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
duke@435 1750 transform_later(prefetch);
duke@435 1751 distance += step_size;
duke@435 1752 i_o = prefetch;
duke@435 1753 }
duke@435 1754 pf_phi_abio->set_req( pf_path, i_o );
duke@435 1755
duke@435 1756 pf_region->init_req( fall_in_path, need_pf_false );
duke@435 1757 pf_region->init_req( pf_path, need_pf_true );
duke@435 1758
duke@435 1759 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
duke@435 1760 pf_phi_rawmem->init_req( pf_path, store_new_wmt );
duke@435 1761
duke@435 1762 transform_later(pf_region);
duke@435 1763 transform_later(pf_phi_rawmem);
duke@435 1764 transform_later(pf_phi_abio);
duke@435 1765
duke@435 1766 needgc_false = pf_region;
duke@435 1767 contended_phi_rawmem = pf_phi_rawmem;
duke@435 1768 i_o = pf_phi_abio;
kvn@1802 1769 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
kvn@3052 1770 // Insert a prefetch for each allocation.
kvn@3052 1771 // This code is used for Sparc with BIS.
kvn@4115 1772 Node *pf_region = new (C) RegionNode(3);
kvn@4115 1773 Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
kvn@4115 1774 TypeRawPtr::BOTTOM );
kvn@1802 1775
kvn@3052 1776 // Generate several prefetch instructions.
kvn@3052 1777 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
kvn@1802 1778 uint step_size = AllocatePrefetchStepSize;
kvn@1802 1779 uint distance = AllocatePrefetchDistance;
kvn@1802 1780
kvn@1802 1781 // Next cache address.
kvn@4115 1782 Node *cache_adr = new (C) AddPNode(old_eden_top, old_eden_top,
kvn@1802 1783 _igvn.MakeConX(distance));
kvn@1802 1784 transform_later(cache_adr);
kvn@4115 1785 cache_adr = new (C) CastP2XNode(needgc_false, cache_adr);
kvn@1802 1786 transform_later(cache_adr);
kvn@1802 1787 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
kvn@4115 1788 cache_adr = new (C) AndXNode(cache_adr, mask);
kvn@1802 1789 transform_later(cache_adr);
kvn@4115 1790 cache_adr = new (C) CastX2PNode(cache_adr);
kvn@1802 1791 transform_later(cache_adr);
kvn@1802 1792
kvn@1802 1793 // Prefetch
kvn@4115 1794 Node *prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
kvn@1802 1795 prefetch->set_req(0, needgc_false);
kvn@1802 1796 transform_later(prefetch);
kvn@1802 1797 contended_phi_rawmem = prefetch;
kvn@1802 1798 Node *prefetch_adr;
kvn@1802 1799 distance = step_size;
kvn@1802 1800 for ( uint i = 1; i < lines; i++ ) {
kvn@4115 1801 prefetch_adr = new (C) AddPNode( cache_adr, cache_adr,
kvn@1802 1802 _igvn.MakeConX(distance) );
kvn@1802 1803 transform_later(prefetch_adr);
kvn@4115 1804 prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
kvn@1802 1805 transform_later(prefetch);
kvn@1802 1806 distance += step_size;
kvn@1802 1807 contended_phi_rawmem = prefetch;
kvn@1802 1808 }
duke@435 1809 } else if( AllocatePrefetchStyle > 0 ) {
duke@435 1810 // Insert a prefetch for each allocation only on the fast-path
duke@435 1811 Node *prefetch_adr;
duke@435 1812 Node *prefetch;
kvn@3052 1813 // Generate several prefetch instructions.
kvn@3052 1814 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
duke@435 1815 uint step_size = AllocatePrefetchStepSize;
duke@435 1816 uint distance = AllocatePrefetchDistance;
duke@435 1817 for ( uint i = 0; i < lines; i++ ) {
kvn@4115 1818 prefetch_adr = new (C) AddPNode( old_eden_top, new_eden_top,
duke@435 1819 _igvn.MakeConX(distance) );
duke@435 1820 transform_later(prefetch_adr);
kvn@4115 1821 prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
duke@435 1822 // Do not let it float too high, since if eden_top == eden_end,
duke@435 1823 // both might be null.
duke@435 1824 if( i == 0 ) { // Set control for first prefetch, next follows it
duke@435 1825 prefetch->init_req(0, needgc_false);
duke@435 1826 }
duke@435 1827 transform_later(prefetch);
duke@435 1828 distance += step_size;
duke@435 1829 i_o = prefetch;
duke@435 1830 }
duke@435 1831 }
duke@435 1832 return i_o;
duke@435 1833 }
duke@435 1834
duke@435 1835
duke@435 1836 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
duke@435 1837 expand_allocate_common(alloc, NULL,
duke@435 1838 OptoRuntime::new_instance_Type(),
duke@435 1839 OptoRuntime::new_instance_Java());
duke@435 1840 }
duke@435 1841
duke@435 1842 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
duke@435 1843 Node* length = alloc->in(AllocateNode::ALength);
kvn@3157 1844 InitializeNode* init = alloc->initialization();
kvn@3157 1845 Node* klass_node = alloc->in(AllocateNode::KlassNode);
kvn@3157 1846 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
kvn@3157 1847 address slow_call_address; // Address of slow call
kvn@3157 1848 if (init != NULL && init->is_complete_with_arraycopy() &&
kvn@3157 1849 k->is_type_array_klass()) {
kvn@3157 1850 // Don't zero type array during slow allocation in VM since
kvn@3157 1851 // it will be initialized later by arraycopy in compiled code.
kvn@3157 1852 slow_call_address = OptoRuntime::new_array_nozero_Java();
kvn@3157 1853 } else {
kvn@3157 1854 slow_call_address = OptoRuntime::new_array_Java();
kvn@3157 1855 }
duke@435 1856 expand_allocate_common(alloc, length,
duke@435 1857 OptoRuntime::new_array_Type(),
kvn@3157 1858 slow_call_address);
duke@435 1859 }
duke@435 1860
kvn@3406 1861 //-------------------mark_eliminated_box----------------------------------
kvn@3406 1862 //
kvn@2951 1863 // During EA obj may point to several objects but after few ideal graph
kvn@2951 1864 // transformations (CCP) it may point to only one non escaping object
kvn@2951 1865 // (but still using phi), corresponding locks and unlocks will be marked
kvn@2951 1866 // for elimination. Later obj could be replaced with a new node (new phi)
kvn@2951 1867 // and which does not have escape information. And later after some graph
kvn@2951 1868 // reshape other locks and unlocks (which were not marked for elimination
kvn@2951 1869 // before) are connected to this new obj (phi) but they still will not be
kvn@2951 1870 // marked for elimination since new obj has no escape information.
kvn@2951 1871 // Mark all associated (same box and obj) lock and unlock nodes for
kvn@2951 1872 // elimination if some of them marked already.
kvn@3406 1873 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
kvn@3421 1874 if (oldbox->as_BoxLock()->is_eliminated())
kvn@3421 1875 return; // This BoxLock node was processed already.
kvn@3406 1876
kvn@3421 1877 // New implementation (EliminateNestedLocks) has separate BoxLock
kvn@3421 1878 // node for each locked region so mark all associated locks/unlocks as
kvn@3421 1879 // eliminated even if different objects are referenced in one locked region
kvn@3421 1880 // (for example, OSR compilation of nested loop inside locked scope).
kvn@3421 1881 if (EliminateNestedLocks ||
kvn@3406 1882 oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
kvn@3406 1883 // Box is used only in one lock region. Mark this box as eliminated.
kvn@3406 1884 _igvn.hash_delete(oldbox);
kvn@3406 1885 oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
kvn@3406 1886 _igvn.hash_insert(oldbox);
kvn@3406 1887
kvn@3406 1888 for (uint i = 0; i < oldbox->outcnt(); i++) {
kvn@3406 1889 Node* u = oldbox->raw_out(i);
kvn@3406 1890 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
kvn@3406 1891 AbstractLockNode* alock = u->as_AbstractLock();
kvn@3406 1892 // Check lock's box since box could be referenced by Lock's debug info.
kvn@3406 1893 if (alock->box_node() == oldbox) {
kvn@3406 1894 // Mark eliminated all related locks and unlocks.
kvn@3406 1895 alock->set_non_esc_obj();
kvn@3406 1896 }
kvn@3406 1897 }
kvn@3406 1898 }
kvn@2951 1899 return;
kvn@501 1900 }
kvn@3406 1901
kvn@3406 1902 // Create new "eliminated" BoxLock node and use it in monitor debug info
kvn@3406 1903 // instead of oldbox for the same object.
kvn@3419 1904 BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
kvn@3406 1905
kvn@3406 1906 // Note: BoxLock node is marked eliminated only here and it is used
kvn@3406 1907 // to indicate that all associated lock and unlock nodes are marked
kvn@3406 1908 // for elimination.
kvn@3406 1909 newbox->set_eliminated();
kvn@3406 1910 transform_later(newbox);
kvn@3406 1911
kvn@3406 1912 // Replace old box node with new box for all users of the same object.
kvn@3406 1913 for (uint i = 0; i < oldbox->outcnt();) {
kvn@3406 1914 bool next_edge = true;
kvn@3406 1915
kvn@3406 1916 Node* u = oldbox->raw_out(i);
kvn@3406 1917 if (u->is_AbstractLock()) {
kvn@3406 1918 AbstractLockNode* alock = u->as_AbstractLock();
kvn@3407 1919 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
kvn@3406 1920 // Replace Box and mark eliminated all related locks and unlocks.
kvn@3406 1921 alock->set_non_esc_obj();
kvn@3847 1922 _igvn.rehash_node_delayed(alock);
kvn@3406 1923 alock->set_box_node(newbox);
kvn@3406 1924 next_edge = false;
kvn@3406 1925 }
kvn@3406 1926 }
kvn@3407 1927 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
kvn@3406 1928 FastLockNode* flock = u->as_FastLock();
kvn@3406 1929 assert(flock->box_node() == oldbox, "sanity");
kvn@3847 1930 _igvn.rehash_node_delayed(flock);
kvn@3406 1931 flock->set_box_node(newbox);
kvn@3406 1932 next_edge = false;
kvn@3406 1933 }
kvn@3406 1934
kvn@3406 1935 // Replace old box in monitor debug info.
kvn@3406 1936 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
kvn@3406 1937 SafePointNode* sfn = u->as_SafePoint();
kvn@3406 1938 JVMState* youngest_jvms = sfn->jvms();
kvn@3406 1939 int max_depth = youngest_jvms->depth();
kvn@3406 1940 for (int depth = 1; depth <= max_depth; depth++) {
kvn@3406 1941 JVMState* jvms = youngest_jvms->of_depth(depth);
kvn@3406 1942 int num_mon = jvms->nof_monitors();
kvn@3406 1943 // Loop over monitors
kvn@3406 1944 for (int idx = 0; idx < num_mon; idx++) {
kvn@3406 1945 Node* obj_node = sfn->monitor_obj(jvms, idx);
kvn@3406 1946 Node* box_node = sfn->monitor_box(jvms, idx);
kvn@3407 1947 if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
kvn@3406 1948 int j = jvms->monitor_box_offset(idx);
kvn@3847 1949 _igvn.replace_input_of(u, j, newbox);
kvn@3406 1950 next_edge = false;
kvn@3406 1951 }
kvn@3406 1952 }
kvn@3406 1953 }
kvn@3406 1954 }
kvn@3406 1955 if (next_edge) i++;
kvn@3406 1956 }
kvn@3406 1957 }
kvn@3406 1958
kvn@3406 1959 //-----------------------mark_eliminated_locking_nodes-----------------------
kvn@3406 1960 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
kvn@3406 1961 if (EliminateNestedLocks) {
kvn@3406 1962 if (alock->is_nested()) {
kvn@3406 1963 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
kvn@3406 1964 return;
kvn@3406 1965 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
kvn@3406 1966 // Only Lock node has JVMState needed here.
kvn@3406 1967 if (alock->jvms() != NULL && alock->as_Lock()->is_nested_lock_region()) {
kvn@3406 1968 // Mark eliminated related nested locks and unlocks.
kvn@3406 1969 Node* obj = alock->obj_node();
kvn@3406 1970 BoxLockNode* box_node = alock->box_node()->as_BoxLock();
kvn@3406 1971 assert(!box_node->is_eliminated(), "should not be marked yet");
kvn@2951 1972 // Note: BoxLock node is marked eliminated only here
kvn@2951 1973 // and it is used to indicate that all associated lock
kvn@2951 1974 // and unlock nodes are marked for elimination.
kvn@3406 1975 box_node->set_eliminated(); // Box's hash is always NO_HASH here
kvn@3406 1976 for (uint i = 0; i < box_node->outcnt(); i++) {
kvn@3406 1977 Node* u = box_node->raw_out(i);
kvn@3406 1978 if (u->is_AbstractLock()) {
kvn@3406 1979 alock = u->as_AbstractLock();
kvn@3406 1980 if (alock->box_node() == box_node) {
kvn@3406 1981 // Verify that this Box is referenced only by related locks.
kvn@3407 1982 assert(alock->obj_node()->eqv_uncast(obj), "");
kvn@3406 1983 // Mark all related locks and unlocks.
kvn@3406 1984 alock->set_nested();
kvn@3406 1985 }
kvn@3406 1986 }
kvn@3406 1987 }
kvn@3406 1988 }
kvn@3406 1989 return;
kvn@3406 1990 }
kvn@3406 1991 // Process locks for non escaping object
kvn@3406 1992 assert(alock->is_non_esc_obj(), "");
kvn@3406 1993 } // EliminateNestedLocks
kvn@895 1994
kvn@3406 1995 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
kvn@3406 1996 // Look for all locks of this object and mark them and
kvn@3406 1997 // corresponding BoxLock nodes as eliminated.
kvn@3406 1998 Node* obj = alock->obj_node();
kvn@3406 1999 for (uint j = 0; j < obj->outcnt(); j++) {
kvn@3406 2000 Node* o = obj->raw_out(j);
kvn@3407 2001 if (o->is_AbstractLock() &&
kvn@3407 2002 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
kvn@3406 2003 alock = o->as_AbstractLock();
kvn@3406 2004 Node* box = alock->box_node();
kvn@3406 2005 // Replace old box node with new eliminated box for all users
kvn@3406 2006 // of the same object and mark related locks as eliminated.
kvn@3406 2007 mark_eliminated_box(box, obj);
kvn@3406 2008 }
kvn@3406 2009 }
kvn@3406 2010 }
kvn@2951 2011 }
kvn@501 2012
kvn@2951 2013 // we have determined that this lock/unlock can be eliminated, we simply
kvn@2951 2014 // eliminate the node without expanding it.
kvn@2951 2015 //
kvn@2951 2016 // Note: The membar's associated with the lock/unlock are currently not
kvn@2951 2017 // eliminated. This should be investigated as a future enhancement.
kvn@2951 2018 //
kvn@2951 2019 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
kvn@2951 2020
kvn@2951 2021 if (!alock->is_eliminated()) {
kvn@2951 2022 return false;
kvn@2951 2023 }
kvn@2951 2024 #ifdef ASSERT
kvn@3406 2025 if (!alock->is_coarsened()) {
kvn@2951 2026 // Check that new "eliminated" BoxLock node is created.
kvn@2951 2027 BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
kvn@2951 2028 assert(oldbox->is_eliminated(), "should be done already");
kvn@2951 2029 }
kvn@2951 2030 #endif
never@1515 2031 CompileLog* log = C->log();
never@1515 2032 if (log != NULL) {
never@1515 2033 log->head("eliminate_lock lock='%d'",
never@1515 2034 alock->is_Lock());
never@1515 2035 JVMState* p = alock->jvms();
never@1515 2036 while (p != NULL) {
never@1515 2037 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
never@1515 2038 p = p->caller();
never@1515 2039 }
never@1515 2040 log->tail("eliminate_lock");
never@1515 2041 }
never@1515 2042
kvn@501 2043 #ifndef PRODUCT
kvn@501 2044 if (PrintEliminateLocks) {
kvn@501 2045 if (alock->is_Lock()) {
kvn@3311 2046 tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
kvn@501 2047 } else {
kvn@3311 2048 tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
kvn@501 2049 }
kvn@501 2050 }
kvn@501 2051 #endif
kvn@501 2052
kvn@501 2053 Node* mem = alock->in(TypeFunc::Memory);
kvn@501 2054 Node* ctrl = alock->in(TypeFunc::Control);
kvn@501 2055
kvn@501 2056 extract_call_projections(alock);
kvn@501 2057 // There are 2 projections from the lock. The lock node will
kvn@501 2058 // be deleted when its last use is subsumed below.
kvn@501 2059 assert(alock->outcnt() == 2 &&
kvn@501 2060 _fallthroughproj != NULL &&
kvn@501 2061 _memproj_fallthrough != NULL,
kvn@501 2062 "Unexpected projections from Lock/Unlock");
kvn@501 2063
kvn@501 2064 Node* fallthroughproj = _fallthroughproj;
kvn@501 2065 Node* memproj_fallthrough = _memproj_fallthrough;
duke@435 2066
duke@435 2067 // The memory projection from a lock/unlock is RawMem
duke@435 2068 // The input to a Lock is merged memory, so extract its RawMem input
duke@435 2069 // (unless the MergeMem has been optimized away.)
duke@435 2070 if (alock->is_Lock()) {
roland@3047 2071 // Seach for MemBarAcquireLock node and delete it also.
kvn@501 2072 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
roland@3047 2073 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
kvn@501 2074 Node* ctrlproj = membar->proj_out(TypeFunc::Control);
kvn@501 2075 Node* memproj = membar->proj_out(TypeFunc::Memory);
kvn@1143 2076 _igvn.replace_node(ctrlproj, fallthroughproj);
kvn@1143 2077 _igvn.replace_node(memproj, memproj_fallthrough);
kvn@895 2078
kvn@895 2079 // Delete FastLock node also if this Lock node is unique user
kvn@895 2080 // (a loop peeling may clone a Lock node).
kvn@895 2081 Node* flock = alock->as_Lock()->fastlock_node();
kvn@895 2082 if (flock->outcnt() == 1) {
kvn@895 2083 assert(flock->unique_out() == alock, "sanity");
kvn@1143 2084 _igvn.replace_node(flock, top());
kvn@895 2085 }
duke@435 2086 }
duke@435 2087
roland@3047 2088 // Seach for MemBarReleaseLock node and delete it also.
kvn@501 2089 if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
kvn@501 2090 ctrl->in(0)->is_MemBar()) {
kvn@501 2091 MemBarNode* membar = ctrl->in(0)->as_MemBar();
roland@3047 2092 assert(membar->Opcode() == Op_MemBarReleaseLock &&
kvn@501 2093 mem->is_Proj() && membar == mem->in(0), "");
kvn@1143 2094 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 2095 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 2096 fallthroughproj = ctrl;
kvn@501 2097 memproj_fallthrough = mem;
kvn@501 2098 ctrl = membar->in(TypeFunc::Control);
kvn@501 2099 mem = membar->in(TypeFunc::Memory);
kvn@501 2100 }
kvn@501 2101
kvn@1143 2102 _igvn.replace_node(fallthroughproj, ctrl);
kvn@1143 2103 _igvn.replace_node(memproj_fallthrough, mem);
kvn@501 2104 return true;
duke@435 2105 }
duke@435 2106
duke@435 2107
duke@435 2108 //------------------------------expand_lock_node----------------------
duke@435 2109 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
duke@435 2110
duke@435 2111 Node* ctrl = lock->in(TypeFunc::Control);
duke@435 2112 Node* mem = lock->in(TypeFunc::Memory);
duke@435 2113 Node* obj = lock->obj_node();
duke@435 2114 Node* box = lock->box_node();
kvn@501 2115 Node* flock = lock->fastlock_node();
duke@435 2116
kvn@3419 2117 assert(!box->as_BoxLock()->is_eliminated(), "sanity");
kvn@3406 2118
duke@435 2119 // Make the merge point
kvn@855 2120 Node *region;
kvn@855 2121 Node *mem_phi;
kvn@855 2122 Node *slow_path;
duke@435 2123
kvn@855 2124 if (UseOptoBiasInlining) {
kvn@855 2125 /*
twisti@1040 2126 * See the full description in MacroAssembler::biased_locking_enter().
kvn@855 2127 *
kvn@855 2128 * if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
kvn@855 2129 * // The object is biased.
kvn@855 2130 * proto_node = klass->prototype_header;
kvn@855 2131 * o_node = thread | proto_node;
kvn@855 2132 * x_node = o_node ^ mark_word;
kvn@855 2133 * if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
kvn@855 2134 * // Done.
kvn@855 2135 * } else {
kvn@855 2136 * if( (x_node & biased_lock_mask) != 0 ) {
kvn@855 2137 * // The klass's prototype header is no longer biased.
kvn@855 2138 * cas(&mark_word, mark_word, proto_node)
kvn@855 2139 * goto cas_lock;
kvn@855 2140 * } else {
kvn@855 2141 * // The klass's prototype header is still biased.
kvn@855 2142 * if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
kvn@855 2143 * old = mark_word;
kvn@855 2144 * new = o_node;
kvn@855 2145 * } else {
kvn@855 2146 * // Different thread or anonymous biased.
kvn@855 2147 * old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
kvn@855 2148 * new = thread | old;
kvn@855 2149 * }
kvn@855 2150 * // Try to rebias.
kvn@855 2151 * if( cas(&mark_word, old, new) == 0 ) {
kvn@855 2152 * // Done.
kvn@855 2153 * } else {
kvn@855 2154 * goto slow_path; // Failed.
kvn@855 2155 * }
kvn@855 2156 * }
kvn@855 2157 * }
kvn@855 2158 * } else {
kvn@855 2159 * // The object is not biased.
kvn@855 2160 * cas_lock:
kvn@855 2161 * if( FastLock(obj) == 0 ) {
kvn@855 2162 * // Done.
kvn@855 2163 * } else {
kvn@855 2164 * slow_path:
kvn@855 2165 * OptoRuntime::complete_monitor_locking_Java(obj);
kvn@855 2166 * }
kvn@855 2167 * }
kvn@855 2168 */
kvn@855 2169
kvn@4115 2170 region = new (C) RegionNode(5);
kvn@855 2171 // create a Phi for the memory state
kvn@4115 2172 mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2173
kvn@4115 2174 Node* fast_lock_region = new (C) RegionNode(3);
kvn@4115 2175 Node* fast_lock_mem_phi = new (C) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2176
kvn@855 2177 // First, check mark word for the biased lock pattern.
kvn@855 2178 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 2179
kvn@855 2180 // Get fast path - mark word has the biased lock pattern.
kvn@855 2181 ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
kvn@855 2182 markOopDesc::biased_lock_mask_in_place,
kvn@855 2183 markOopDesc::biased_lock_pattern, true);
kvn@855 2184 // fast_lock_region->in(1) is set to slow path.
kvn@855 2185 fast_lock_mem_phi->init_req(1, mem);
kvn@855 2186
kvn@855 2187 // Now check that the lock is biased to the current thread and has
kvn@855 2188 // the same epoch and bias as Klass::_prototype_header.
kvn@855 2189
kvn@855 2190 // Special-case a fresh allocation to avoid building nodes:
kvn@855 2191 Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
kvn@855 2192 if (klass_node == NULL) {
kvn@855 2193 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
kvn@855 2194 klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
kvn@925 2195 #ifdef _LP64
ehelin@5694 2196 if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
kvn@925 2197 assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
kvn@925 2198 klass_node->in(1)->init_req(0, ctrl);
kvn@925 2199 } else
kvn@925 2200 #endif
kvn@925 2201 klass_node->init_req(0, ctrl);
kvn@855 2202 }
stefank@3391 2203 Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
kvn@855 2204
kvn@4115 2205 Node* thread = transform_later(new (C) ThreadLocalNode());
kvn@4115 2206 Node* cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
kvn@4115 2207 Node* o_node = transform_later(new (C) OrXNode(cast_thread, proto_node));
kvn@4115 2208 Node* x_node = transform_later(new (C) XorXNode(o_node, mark_node));
kvn@855 2209
kvn@855 2210 // Get slow path - mark word does NOT match the value.
kvn@855 2211 Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node,
kvn@855 2212 (~markOopDesc::age_mask_in_place), 0);
kvn@855 2213 // region->in(3) is set to fast path - the object is biased to the current thread.
kvn@855 2214 mem_phi->init_req(3, mem);
kvn@855 2215
kvn@855 2216
kvn@855 2217 // Mark word does NOT match the value (thread | Klass::_prototype_header).
kvn@855 2218
kvn@855 2219
kvn@855 2220 // First, check biased pattern.
kvn@855 2221 // Get fast path - _prototype_header has the same biased lock pattern.
kvn@855 2222 ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
kvn@855 2223 markOopDesc::biased_lock_mask_in_place, 0, true);
kvn@855 2224
kvn@855 2225 not_biased_ctrl = fast_lock_region->in(2); // Slow path
kvn@855 2226 // fast_lock_region->in(2) - the prototype header is no longer biased
kvn@855 2227 // and we have to revoke the bias on this object.
kvn@855 2228 // We are going to try to reset the mark of this object to the prototype
kvn@855 2229 // value and fall through to the CAS-based locking scheme.
kvn@855 2230 Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@4115 2231 Node* cas = new (C) StoreXConditionalNode(not_biased_ctrl, mem, adr,
kvn@4115 2232 proto_node, mark_node);
kvn@855 2233 transform_later(cas);
kvn@4115 2234 Node* proj = transform_later( new (C) SCMemProjNode(cas));
kvn@855 2235 fast_lock_mem_phi->init_req(2, proj);
kvn@855 2236
kvn@855 2237
kvn@855 2238 // Second, check epoch bits.
kvn@4115 2239 Node* rebiased_region = new (C) RegionNode(3);
kvn@4115 2240 Node* old_phi = new (C) PhiNode( rebiased_region, TypeX_X);
kvn@4115 2241 Node* new_phi = new (C) PhiNode( rebiased_region, TypeX_X);
kvn@855 2242
kvn@855 2243 // Get slow path - mark word does NOT match epoch bits.
kvn@855 2244 Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node,
kvn@855 2245 markOopDesc::epoch_mask_in_place, 0);
kvn@855 2246 // The epoch of the current bias is not valid, attempt to rebias the object
kvn@855 2247 // toward the current thread.
kvn@855 2248 rebiased_region->init_req(2, epoch_ctrl);
kvn@855 2249 old_phi->init_req(2, mark_node);
kvn@855 2250 new_phi->init_req(2, o_node);
kvn@855 2251
kvn@855 2252 // rebiased_region->in(1) is set to fast path.
kvn@855 2253 // The epoch of the current bias is still valid but we know
kvn@855 2254 // nothing about the owner; it might be set or it might be clear.
kvn@855 2255 Node* cmask = MakeConX(markOopDesc::biased_lock_mask_in_place |
kvn@855 2256 markOopDesc::age_mask_in_place |
kvn@855 2257 markOopDesc::epoch_mask_in_place);
kvn@4115 2258 Node* old = transform_later(new (C) AndXNode(mark_node, cmask));
kvn@4115 2259 cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
kvn@4115 2260 Node* new_mark = transform_later(new (C) OrXNode(cast_thread, old));
kvn@855 2261 old_phi->init_req(1, old);
kvn@855 2262 new_phi->init_req(1, new_mark);
kvn@855 2263
kvn@855 2264 transform_later(rebiased_region);
kvn@855 2265 transform_later(old_phi);
kvn@855 2266 transform_later(new_phi);
kvn@855 2267
kvn@855 2268 // Try to acquire the bias of the object using an atomic operation.
kvn@855 2269 // If this fails we will go in to the runtime to revoke the object's bias.
kvn@4115 2270 cas = new (C) StoreXConditionalNode(rebiased_region, mem, adr,
kvn@855 2271 new_phi, old_phi);
kvn@855 2272 transform_later(cas);
kvn@4115 2273 proj = transform_later( new (C) SCMemProjNode(cas));
kvn@855 2274
kvn@855 2275 // Get slow path - Failed to CAS.
kvn@855 2276 not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
kvn@855 2277 mem_phi->init_req(4, proj);
kvn@855 2278 // region->in(4) is set to fast path - the object is rebiased to the current thread.
kvn@855 2279
kvn@855 2280 // Failed to CAS.
kvn@4115 2281 slow_path = new (C) RegionNode(3);
kvn@4115 2282 Node *slow_mem = new (C) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2283
kvn@855 2284 slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
kvn@855 2285 slow_mem->init_req(1, proj);
kvn@855 2286
kvn@855 2287 // Call CAS-based locking scheme (FastLock node).
kvn@855 2288
kvn@855 2289 transform_later(fast_lock_region);
kvn@855 2290 transform_later(fast_lock_mem_phi);
kvn@855 2291
kvn@855 2292 // Get slow path - FastLock failed to lock the object.
kvn@855 2293 ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
kvn@855 2294 mem_phi->init_req(2, fast_lock_mem_phi);
kvn@855 2295 // region->in(2) is set to fast path - the object is locked to the current thread.
kvn@855 2296
kvn@855 2297 slow_path->init_req(2, ctrl); // Capture slow-control
kvn@855 2298 slow_mem->init_req(2, fast_lock_mem_phi);
kvn@855 2299
kvn@855 2300 transform_later(slow_path);
kvn@855 2301 transform_later(slow_mem);
kvn@855 2302 // Reset lock's memory edge.
kvn@855 2303 lock->set_req(TypeFunc::Memory, slow_mem);
kvn@855 2304
kvn@855 2305 } else {
kvn@4115 2306 region = new (C) RegionNode(3);
kvn@855 2307 // create a Phi for the memory state
kvn@4115 2308 mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2309
kvn@855 2310 // Optimize test; set region slot 2
kvn@855 2311 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
kvn@855 2312 mem_phi->init_req(2, mem);
kvn@855 2313 }
duke@435 2314
duke@435 2315 // Make slow path call
duke@435 2316 CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
duke@435 2317
duke@435 2318 extract_call_projections(call);
duke@435 2319
duke@435 2320 // Slow path can only throw asynchronous exceptions, which are always
duke@435 2321 // de-opted. So the compiler thinks the slow-call can never throw an
duke@435 2322 // exception. If it DOES throw an exception we would need the debug
duke@435 2323 // info removed first (since if it throws there is no monitor).
duke@435 2324 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2325 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2326
duke@435 2327 // Capture slow path
duke@435 2328 // disconnect fall-through projection from call and create a new one
duke@435 2329 // hook up users of fall-through projection to region
duke@435 2330 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2331 transform_later(slow_ctrl);
duke@435 2332 _igvn.hash_delete(_fallthroughproj);
bharadwaj@4315 2333 _fallthroughproj->disconnect_inputs(NULL, C);
duke@435 2334 region->init_req(1, slow_ctrl);
duke@435 2335 // region inputs are now complete
duke@435 2336 transform_later(region);
kvn@1143 2337 _igvn.replace_node(_fallthroughproj, region);
duke@435 2338
kvn@4115 2339 Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
duke@435 2340 mem_phi->init_req(1, memproj );
duke@435 2341 transform_later(mem_phi);
kvn@1143 2342 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2343 }
duke@435 2344
duke@435 2345 //------------------------------expand_unlock_node----------------------
duke@435 2346 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
duke@435 2347
kvn@501 2348 Node* ctrl = unlock->in(TypeFunc::Control);
duke@435 2349 Node* mem = unlock->in(TypeFunc::Memory);
duke@435 2350 Node* obj = unlock->obj_node();
duke@435 2351 Node* box = unlock->box_node();
duke@435 2352
kvn@3419 2353 assert(!box->as_BoxLock()->is_eliminated(), "sanity");
kvn@3406 2354
duke@435 2355 // No need for a null check on unlock
duke@435 2356
duke@435 2357 // Make the merge point
kvn@855 2358 Node *region;
kvn@855 2359 Node *mem_phi;
kvn@855 2360
kvn@855 2361 if (UseOptoBiasInlining) {
kvn@855 2362 // Check for biased locking unlock case, which is a no-op.
twisti@1040 2363 // See the full description in MacroAssembler::biased_locking_exit().
kvn@4115 2364 region = new (C) RegionNode(4);
kvn@855 2365 // create a Phi for the memory state
kvn@4115 2366 mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2367 mem_phi->init_req(3, mem);
kvn@855 2368
kvn@855 2369 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
kvn@855 2370 ctrl = opt_bits_test(ctrl, region, 3, mark_node,
kvn@855 2371 markOopDesc::biased_lock_mask_in_place,
kvn@855 2372 markOopDesc::biased_lock_pattern);
kvn@855 2373 } else {
kvn@4115 2374 region = new (C) RegionNode(3);
kvn@855 2375 // create a Phi for the memory state
kvn@4115 2376 mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
kvn@855 2377 }
duke@435 2378
kvn@4115 2379 FastUnlockNode *funlock = new (C) FastUnlockNode( ctrl, obj, box );
duke@435 2380 funlock = transform_later( funlock )->as_FastUnlock();
duke@435 2381 // Optimize test; set region slot 2
kvn@855 2382 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
duke@435 2383
duke@435 2384 CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
duke@435 2385
duke@435 2386 extract_call_projections(call);
duke@435 2387
duke@435 2388 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 2389 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 2390
duke@435 2391 // No exceptions for unlocking
duke@435 2392 // Capture slow path
duke@435 2393 // disconnect fall-through projection from call and create a new one
duke@435 2394 // hook up users of fall-through projection to region
duke@435 2395 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 2396 transform_later(slow_ctrl);
duke@435 2397 _igvn.hash_delete(_fallthroughproj);
bharadwaj@4315 2398 _fallthroughproj->disconnect_inputs(NULL, C);
duke@435 2399 region->init_req(1, slow_ctrl);
duke@435 2400 // region inputs are now complete
duke@435 2401 transform_later(region);
kvn@1143 2402 _igvn.replace_node(_fallthroughproj, region);
duke@435 2403
kvn@4115 2404 Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
duke@435 2405 mem_phi->init_req(1, memproj );
duke@435 2406 mem_phi->init_req(2, mem);
duke@435 2407 transform_later(mem_phi);
kvn@1143 2408 _igvn.replace_node(_memproj_fallthrough, mem_phi);
duke@435 2409 }
duke@435 2410
kvn@3311 2411 //---------------------------eliminate_macro_nodes----------------------
kvn@3311 2412 // Eliminate scalar replaced allocations and associated locks.
kvn@3311 2413 void PhaseMacroExpand::eliminate_macro_nodes() {
duke@435 2414 if (C->macro_count() == 0)
kvn@3311 2415 return;
kvn@3311 2416
kvn@895 2417 // First, attempt to eliminate locks
kvn@2951 2418 int cnt = C->macro_count();
kvn@2951 2419 for (int i=0; i < cnt; i++) {
kvn@2951 2420 Node *n = C->macro_node(i);
kvn@2951 2421 if (n->is_AbstractLock()) { // Lock and Unlock nodes
kvn@2951 2422 // Before elimination mark all associated (same box and obj)
kvn@2951 2423 // lock and unlock nodes.
kvn@2951 2424 mark_eliminated_locking_nodes(n->as_AbstractLock());
kvn@2951 2425 }
kvn@2951 2426 }
kvn@508 2427 bool progress = true;
kvn@508 2428 while (progress) {
kvn@508 2429 progress = false;
kvn@508 2430 for (int i = C->macro_count(); i > 0; i--) {
kvn@508 2431 Node * n = C->macro_node(i-1);
kvn@508 2432 bool success = false;
kvn@508 2433 debug_only(int old_macro_count = C->macro_count(););
kvn@895 2434 if (n->is_AbstractLock()) {
kvn@895 2435 success = eliminate_locking_node(n->as_AbstractLock());
kvn@895 2436 }
kvn@895 2437 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@895 2438 progress = progress || success;
kvn@895 2439 }
kvn@895 2440 }
kvn@895 2441 // Next, attempt to eliminate allocations
kvn@895 2442 progress = true;
kvn@895 2443 while (progress) {
kvn@895 2444 progress = false;
kvn@895 2445 for (int i = C->macro_count(); i > 0; i--) {
kvn@895 2446 Node * n = C->macro_node(i-1);
kvn@895 2447 bool success = false;
kvn@895 2448 debug_only(int old_macro_count = C->macro_count(););
kvn@508 2449 switch (n->class_id()) {
kvn@508 2450 case Node::Class_Allocate:
kvn@508 2451 case Node::Class_AllocateArray:
kvn@508 2452 success = eliminate_allocate_node(n->as_Allocate());
kvn@508 2453 break;
kvn@5110 2454 case Node::Class_CallStaticJava:
kvn@5110 2455 success = eliminate_boxing_node(n->as_CallStaticJava());
kvn@5110 2456 break;
kvn@508 2457 case Node::Class_Lock:
kvn@508 2458 case Node::Class_Unlock:
kvn@895 2459 assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
kvn@508 2460 break;
kvn@508 2461 default:
kvn@3311 2462 assert(n->Opcode() == Op_LoopLimit ||
kvn@3311 2463 n->Opcode() == Op_Opaque1 ||
kvn@3311 2464 n->Opcode() == Op_Opaque2, "unknown node type in macro list");
kvn@508 2465 }
kvn@508 2466 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@508 2467 progress = progress || success;
kvn@508 2468 }
kvn@508 2469 }
kvn@3311 2470 }
kvn@3311 2471
kvn@3311 2472 //------------------------------expand_macro_nodes----------------------
kvn@3311 2473 // Returns true if a failure occurred.
kvn@3311 2474 bool PhaseMacroExpand::expand_macro_nodes() {
kvn@3311 2475 // Last attempt to eliminate macro nodes.
kvn@3311 2476 eliminate_macro_nodes();
kvn@3311 2477
kvn@508 2478 // Make sure expansion will not cause node limit to be exceeded.
kvn@508 2479 // Worst case is a macro node gets expanded into about 50 nodes.
kvn@508 2480 // Allow 50% more for optimization.
duke@435 2481 if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
duke@435 2482 return true;
kvn@508 2483
kvn@3311 2484 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
kvn@3311 2485 bool progress = true;
kvn@3311 2486 while (progress) {
kvn@3311 2487 progress = false;
kvn@3311 2488 for (int i = C->macro_count(); i > 0; i--) {
kvn@3311 2489 Node * n = C->macro_node(i-1);
kvn@3311 2490 bool success = false;
kvn@3311 2491 debug_only(int old_macro_count = C->macro_count(););
kvn@3311 2492 if (n->Opcode() == Op_LoopLimit) {
kvn@3311 2493 // Remove it from macro list and put on IGVN worklist to optimize.
kvn@3311 2494 C->remove_macro_node(n);
kvn@3311 2495 _igvn._worklist.push(n);
kvn@3311 2496 success = true;
kvn@5110 2497 } else if (n->Opcode() == Op_CallStaticJava) {
kvn@5110 2498 // Remove it from macro list and put on IGVN worklist to optimize.
kvn@5110 2499 C->remove_macro_node(n);
kvn@5110 2500 _igvn._worklist.push(n);
kvn@5110 2501 success = true;
kvn@3311 2502 } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
kvn@3311 2503 _igvn.replace_node(n, n->in(1));
kvn@3311 2504 success = true;
kvn@3311 2505 }
kvn@3311 2506 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@3311 2507 progress = progress || success;
kvn@3311 2508 }
kvn@3311 2509 }
kvn@3311 2510
duke@435 2511 // expand "macro" nodes
duke@435 2512 // nodes are removed from the macro list as they are processed
duke@435 2513 while (C->macro_count() > 0) {
kvn@508 2514 int macro_count = C->macro_count();
kvn@508 2515 Node * n = C->macro_node(macro_count-1);
duke@435 2516 assert(n->is_macro(), "only macro nodes expected here");
duke@435 2517 if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
duke@435 2518 // node is unreachable, so don't try to expand it
duke@435 2519 C->remove_macro_node(n);
duke@435 2520 continue;
duke@435 2521 }
duke@435 2522 switch (n->class_id()) {
duke@435 2523 case Node::Class_Allocate:
duke@435 2524 expand_allocate(n->as_Allocate());
duke@435 2525 break;
duke@435 2526 case Node::Class_AllocateArray:
duke@435 2527 expand_allocate_array(n->as_AllocateArray());
duke@435 2528 break;
duke@435 2529 case Node::Class_Lock:
duke@435 2530 expand_lock_node(n->as_Lock());
duke@435 2531 break;
duke@435 2532 case Node::Class_Unlock:
duke@435 2533 expand_unlock_node(n->as_Unlock());
duke@435 2534 break;
duke@435 2535 default:
duke@435 2536 assert(false, "unknown node type in macro list");
duke@435 2537 }
kvn@508 2538 assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
duke@435 2539 if (C->failing()) return true;
duke@435 2540 }
coleenp@548 2541
coleenp@548 2542 _igvn.set_delay_transform(false);
duke@435 2543 _igvn.optimize();
kvn@3311 2544 if (C->failing()) return true;
duke@435 2545 return false;
duke@435 2546 }

mercurial